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ABSTRACT 

Coastal zones are critical ecosystems that provide important habitat for marine animals, 

fish, shellfish, birds, and many other species. However, there is a risk of mineral oil impacting in 

these areas due to human activities offshore. Shoreline classification is the first step to establishing 

response contingency plans in case of an oil spill. 

This study estimates the potential of using open-access, high-resolution Sentinel-1 and 

Sentinel-2 imagery for the mapping of shoreline types in support of oil spill preparedness and 

response activities. The two classification maps, depicting shoreline and coastal land cover, were 

produced using an advanced object-based Random Forest (RF) algorithm. Various features 

extracted from multi-source data, including spectral, texture, ratio, polarimetric features, and 

digital elevation model (DEM), were analyzed to identify the most valuable features for 

discrimination between different shoreline types. Multiple classification scenarios with the most 

useful features were then assessed and compared to find the best classification model. 

The developed algorithm achieved accuracies of 87.10% and 84.75% of coastal land cover 

and shoreline maps. These results demonstrated the high potential of using freely available 

Sentinel-1 and -2 satellite data for coastal mapping. 
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1. Introduction 

1.1 Overview 

Coastal zones are critical transition areas between terrestrial environments, freshwater 

habitats, and the ocean (Baztan et al., 2015). A coastline, which is defined as the line of contact 

between land and the water body, is one of the most important linear features on the earth’s surface 

(Alesheikh et al., 2007). These dynamic environments are among the most productive ecosystems 

providing spawning habitats for marine animals, fish, shellfish, birds, and many other oceanic 

creatures (Crossland et al., 2005). The coastal areas are highly diverse and play an essential role 

in transferring matter, energy, and organisms (Joensuu et al., 2018). Also, coastal areas are 

substantial for maintaining human life and are used as both commercial and subsistence food 

sources. More than half of the world’s major cities are located in coastal zones, and 40% of all the 

people on the planet live within 100 km of a coastal zone (Saleem & Awange, 2019; Baztan et al., 

2015). Besides having an aesthetic appeal, the areas near the shore provide recreational and tourism 

opportunities for many people. 

Human activities in the marine environments, such as exploration and extraction of 

resources, freight and transport, marine tourism, and fishing, increases the risk of oil spills and 

other contaminations. Oil spills can occur for various reasons, such as a tanker accidents, 

discharges during the loading and unloading of oil (Fingas, 2014), illegal discharges from ships 

(Martín Alonso et al., 2015), or blowouts (French-McCay et al., 2018; Zhao et al., 2014), etc. It is 

worth noting that most oil tanker accidents occur near land, and thus, the spilled oil can reach 

shorelines very quickly (Wiens, 2013). That is why a rapid and effective response to an oil spill 

that has reached shorelines is critical. 
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In case of oil contamination, plants and animals populating the coastal zone may be killed 

outright or severely injured to dramatically decrease their survival chances (Jackson et al., 1989). 

For example, birds' feathers might be fouled by oil sticking them together. This results in an 

inability of birds to fly.  Moreover, oil pollution affects the thermal balance of seabirds. If oil 

adheres to the plumage, water-repellant properties of the plumage reduce and an insulating layer 

of air is displaced by water. In this case, the seabird's heat loss can exceed their heat production 

causing a bird's death from hypothermia (Jenssen, 1994). 

Smaller organisms can suffocate if they are covered by a thick layer of oil. Several studies 

have demonstrated the harmful effects of crude oil in capelin. It was shown that an oil spill 

occurring during springtime in the vicinity of the capelin's spawning grounds could significantly 

impact capelin recruitment (Frantzen et al., 2012; Khan & Payne, 2005). Even short-term exposure 

of capelin eggs to heavy fuel oil, at environmentally relevant total hydrocarbon content 

concentrations, may induce adverse developmental effects on growth and embryo development in 

capelin eggs, as well as mortality (Tairova et al., 2019). Therefore, there is a need for oil spill 

response preparedness. 

There are approximately 20,000 oil tanker passages through or near Canadian waters each 

year. Of these, approximately 17,000 occur on the east coast of Canada (Turner, 2010). During the 

past decade, 176 oil spills were registered in the area of active oil exploration and production off 

the coast of Newfoundland and Labrador (C-NLOPB, 2020). 

Despite significant development of new technologies for oil spill clean-up, looking at the 

examples of oil spills that occurred on March 5, 2006, in the Gulf of Finland and on November 16, 

2018, near Newfoundland, it remains questionable whether the industry is capable of mitigating a 

large oil spill in ice-covered or harsh environments (K. Wang et al., 2008). When Newfoundland's 
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largest-ever oil spill occurred in 2018, zero liters (out of 250,000) of spilled oil was collected 

during the recovery efforts due to harsh weather conditions. Rough seas and strong northwest gale 

winds at the time of the spill blocked workers from attempting a cleanup over the first days, and 

the oil was broken down to the point that it could not be cleaned up in the following days. Failing 

to mitigate the oil from marine environments increases the risk of coastal areas being impacted by 

oil spills. 

The distribution of oil washed onto a shoreline is not uniform. Being thinly spread on one 

location, oil can be heavily concentrated in adjacent areas (Lamarche et al., 2007). Thus, to protect 

coastal environments effectively, it is necessary to determine sections that are the most vulnerable 

to an oil spill. Oil spill contingency plans are created to address controlling and recovering an oil 

spill effectively. The oil spill contingency plans include the procedures, materials, and other 

information to quickly respond to discharged oil, including information about shoreline types that 

determine the choice of an oil spill mitigation technique (RRT, 2015; US EPA, 2019). 

Many factors affect the behavior of oil that has reached a shoreline. According to 

Environment and Climate Change Canada (ECCC) (2016), the main factors include a) the physical 

properties of the oil, such as viscosity, density, solubility, interfacial tension, and stickiness; b) the 

dynamic coastal processes, such as tide, wind, water flow, and currents; and c) the physical 

properties of the shoreline, which include the substrate type, the form, and the slope of the coastal 

zone. Depending on these factors, oil can be naturally removed, buried under the upper layer of 

the surface, penetrate through the substrate, or be retained on the surface. Depending on oil 

behavior on various types of shorelines, appropriate treatment options must be selected. These 

treatment tactics include natural recovery, washing removal methods, physical removal 

techniques, or chemical and biological treatment. 
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Shoreline classification is the first step to creating Environmental Sensitivity Index (ESI) 

maps. ESI maps are an important decision-support tool used for emergency response in case of an 

oil spill incident (Lawal & Oyegun, 2017). They help to identify the elements at risk and prioritize 

the most sensitive areas for protection. These areas usually include high biodiversity, critical 

habitats, endangered species, critical natural resources, and others of environmental, economic, or 

cultural importance (Michel et al., 1995). 

In Canada, the Shoreline Cleanup Assessment Technique (SCAT) is used for collecting 

field data to document shoreline conditions after oil spills (Lamarche et al., 2007). However, pre-

spill SCAT (or pre-SCAT) procedures are still needed to support early response management and 

planning, reducing environmental impacts and making the response and cleanup efforts more 

efficient (Percy et al., 1997).  

Pre-spill SCAT methodology is based on the data collected by helicopter videography 

(Demers et al., 2013; Wynja et al., 2014). Implementing this approach over large, remote areas 

may cause additional logistical challenges, higher costs, and a potential hazard for people. Thus, 

there is a need to explore the potential of satellite imagery classification as an alternative, cost-

effective method for coastal mapping. This research utilizes imagery obtained from Sentinel-1 and 

Sentinel-2. These satellites provide freely available data with global coverage of land and coastal 

areas, revisit schedules of 5- and 6-days, and spatial resolutions of 10 and 20 m, respectively (ESA, 

n.d.). Applying automated processing techniques to the Sentinel satellite data allows for a more 

cost- and time-effective broad-scale mapping than traditional helicopter videography.  
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1.2 Research Goals and Objectives 

The overall goal of this research was to assess the potential of Sentinel-1 and Sentinel-2 

satellite data for shoreline classification in support of oil spill response. The specific study 

objectives were to: 

1) determine shoreline categories, such as bedrock, sand, or vegetation, important for 

oils spill response planning that can be identified using Sentinel-1 and Sentinel-2 

satellite data; 

2) identify suitable features to extract shoreline categories from Sentinel-1 and -2 

imagery; 

3) develop a suitable processing chain to extract shoreline types from Sentinel-1 and 

-2 imagery; and 

4) assess the accuracy and utility of the resulting shoreline classification. 

The shoreline categories relevant to oil spill response planning were determined by 

developing a classification scheme based on the analysis of field data samples of spectral response 

in Sentinel-2 bands. Potentially predictable variables extracted and analyzed in this study included 

reflectance, radar backscatter, image transforms, image texture, and terrain parameters. The most 

valuable features for shoreline classification were found through feature selection and separability 

analysis procedures. The most suitable processing chain was identified by testing various 

classification scenarios using different predictable variables as well as the accuracy assessment 

and comparison. 
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1.3 Document Structure 

Chapter 2 provides background information for shoreline classification methodology, 

including the description of classification schemes and the literature review of relevant work. The 

study area and data used in this investigation are described in Chapter 3. The methodology is 

described in detail in Chapter 4. The results of the analysis are presented in Chapter 5, while 

Chapter 6 comprises a critical discussion of the results of this investigation. Chapter 7 presents 

conclusions and recommendations for future work. 
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2. Background  

2.1 Shoreline Assessment and Classification 

On March 23, 1989, the oil tanker Exxon Valdez, loaded with approximately 200 million 

liters of crude oil, grounded on Bligh Reef in Prince William Sound (PWS), Gulf of Alaska, U.S., 

spilling 40 million liters of its cargo. An estimated 40% of the spilled oil was stranded on 783 km 

of shoreline, whereas 141 km (18%) were heavily oiled, 94 km (12%) were moderately oiled, 326 

km (41%) were lightly oiled, and the remaining 223 km (29%) were only very lightly oiled (Neff 

et al., 1995). 

To deal with the most extensive marine oil spill in the U.S. at that time, the largest ever 

containment and cleanup operation was mobilized (Neff et al., 1995). The Exxon Valdez 

response's cornerstone was the Shoreline Cleanup Assessment Technique (SCAT) process, which 

was created to provide decision-making support to Exxon’s spill-management team for shoreline 

treatment planning and operations throughout the response effort  (ECCC, 2016; Owens & Sergy, 

2004). SCAT teams analyzed shoreline physical characteristics and oiling conditions, which were 

later used to set priorities and methods for shoreline clean-up.  

The data provided by the SCAT teams played a key role in the Exxon Valdez shoreline 

response operation in Alaska from 1989 through 1993 at both the strategic and tactical levels 

(Wiens, 2013). Later, SCAT evolved and was applied in other environments, including rivers, 

freshwater, and Arctic waters (Owens & Sergy, 2004). The SCAT data were fundamental for 

developing shoreline treatment recommendations on the Deepwater Horizon shoreline response 

from 2010 through 2012 in the Gulf of Mexico (Michel et al., 2013; Santner et al., 2011).  
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In the wake of the Exxon Valdez spill, the International Convention on Oil Pollution 

Preparedness, Response, and Cooperation (OPRC) was established in 1990 to facilitate 

international cooperation on oil pollution emergencies (Canada, 2020). Many countries, including 

Canada, adopted the SCAT concept and continued developing standardized guidelines for oil spill 

response (ECCC, 2016; NOAA, 2013; Owens & Sergy, 2004). The development of these 

guidelines was necessary to provide responders with specific and detailed information for 

operational-level decisions. These standards would help prioritize the most sensitive shorelines 

(with biological or human resources) for clean-up. Moreover, the oil distribution is usually non-

uniform in the affected area which can be extensive. Therefore, having a detailed survey helps to 

minimize the problems related to logistics and accessibility (Lamarche et al., 2007). The SCAT 

process comprises the following elements: 

– Collection of real-time survey data on shoreline oiling conditions, as well as 

shoreline and backshore character; 

– Identification of environmental, cultural, and operational constraints to shoreline 

treatment; 

– Recommendations regarding shoreline treatment priorities, criteria for the 

completion of the desired treatment, and treatment options; 

– Monitoring of the treatment progress; and 

– Working with stakeholders to ensure an agreement that sufficient treatment has 

been completed (ECCC, 2018). 

Some of the information obtained by the SCAT program can be gathered and processed in 

advance (ECCC, 2018). While SCAT applies to the surveying of shorelines already affected by an 

oil spill, the pre-SCAT mapping process aims at collecting and assessing data before an incident 
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to support early response management and planning and help to reduce environmental impacts and 

make the response and cleanup efforts more efficient (Percy et al., 1997). Pre-SCAT data includes 

two main components: pre-SCAT mapping and pre-SCAT segmentation. The pre-SCAT shoreline 

segmentation is the process of the along-shore division into sections within which the shoreline 

characteristics are relatively homogeneous (ECCC, 2018). These characteristics include physical 

features, substrate type, wave exposure, and other factors that directly affect oil behavior and the 

choice of treatment options. In general, segments should be between 100 m and 1000 m in length 

(ECCC, 2018). The information pre-SCAT mapping dataset typically includes for each segment 

is described in Table 2.1. 
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Table 2.1. The elements of the Pre-SCAT mapping dataset 

Pre-SCAT mapping dataset components 

Backshore character 

The predominant coastal character within the shoreline segment, e.g., cliff/hill, 

sloped, flat/lowland, beach, delta, dune, lagoon, wetland, public road, 

agricultural field, parking lot, etc.  

Shoreline character 

Substrate materials and the morphology (form).  

The substrate classification is based on the grain size (diameter) of the 

sediment and includes: 

- boulder (>256mm); 

- cobble (64-256 mm); 

- pebble (4-64 mm); 

- granule (2-4 mm); 

- sand (0.125-2 mm); 

- silt (0.004-0.0625 mm); and 

- clay (0.00024-0.004 mm). 

Shore form can be represented by the beach, flat, cliff, bedrock ramp, bedrock 

platform, and terrace. 

Oil behavior parameters 
Description of tidal range, natural collection sites (e.g., debris, logs, traps), over 

wash potential, exposure to waves, intertidal/nearshore vegetation. 

Access and Staging   

Land, water, and air access equipment; 

Staging areas type and capacity; 

Boat ramps; 

Storage facilities; and 

Proximity to resources and operational support. 

Response constraints 
Ecological, biological, wildlife, archaeological, historical, cultural and 

subsistence, socio-economic, and other constraints. 

Jurisdiction and ownership 

Land ownership or management information including federal, provincial, 

municipal, commercial, private, first nations, agency, government, or personal 

contact information. 

Auxiliary data Photographs, video materials, and maps. 

Response priorities 

Sensitivity ranking based on ecological, cultural, and human use; 

Seasonal assessments (e.g., sediment accretion and erosion related to seasonal 

wave-energy levels); 

Remoteness; and 

Resources availability. 

 

The 1989 surveys for the Exxon Valdez shoreline response operation in Alaska were 

carried out with few Geographical Information System (GIS) supporting tools and no recent aerial 

photographs or digitized shoreline maps. All navigation was carried out with the help of paper 

maps and charts. The maps for the area affected by the Exxon Valdez oil spill were not revised 

after an earthquake in 1964, which changed the shoreline in Prince William Sound significantly 

(Wiens, 2013). As the technology developed, videography became the principal source of 

information about physical and biotic characteristics. The use of videography for shoreline 
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mapping was explored during the development of the British  Columbia  Physical  Shore-Zone  

Mapping System in 1979, and it was recognized as an efficient method to monitor shoreline 

characteristics, including morphology, substrate, and wave exposure (Howens et al., 1994). The 

development of GIS enabled a more effective and accurate assessment of shorelines. Today, audio 

commentaries and helicopter videography acquired at low altitudes can be transferred into a GIS, 

and Global Positioning System (GPS) waypoints are continuously obtained during the flight and 

subsequently overlaid onto the digitized vector layers (Owens & Sergy, 2004). This allows the 

association of video fragments with vector portions and furthers manual shoreline segmentation 

and classification. 

There are several requirements for conducting efficient aerial surveys. According to the 

ECCC, aerial surveys should be taken with an altitude of 50-150 m and a ground speed of 

approximately 50-70 knots. The flight line should be around 200 m seaward from the water line. 

Also, the location of viewing targets should be ahead at approximately 45 degrees from the flight 

line, while the sun is preferred to be behind the video camera operator for best lighting (ECCC, 

2018). Integrated audio commentaries provided descriptions of the coastline can be recorded to 

aid with interpretation (Wynja et al., 2014). The georeferenced videos are subsequently imported 

into the GIS software to be integrated with other geospatial information. 

Although helicopter-based aerial surveys provide imagery at a very high spatial resolution 

capable of distinguishing finer substrate types (Anderson et al., 2012; Berry et al., 2001), there are 

several limitations of this method which including the following: 

– Data acquisition and processing are expensive and time-consuming; 

– Acquiring videography often faces logistical challenges related to weather and 

accessibility. Flights are usually limited to ideal weather conditions, low tides, as well 
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as the operational range of the helicopter. Fuel caching might be required as well in 

cases of dealing with remote locations where no or few refueling stations are available 

(Banks et al., 2014a); and 

– The quality of the resulting maps directly depends on the experience of the 

videographer/interpreter (Lamarche et al., 2007). 

Several shoreline classification systems designed for different purposes are currently in 

use. Commonly used shoreline classification schemes are included in the following programs: the 

Environmental Sensitivity Index (ESI) habitat mapping by National Oceanic and Atmospheric 

Administration (NOAA), the British Columbia Coastal Mapping Program (BCCMP), and ECCC 

SCAT shoreline classification mapping.  

In general, shoreline classification used in the three above-mentioned programs is based 

primarily on a substrate character (material) and secondarily on shoreline morphology (form). 

Table 2.2 provides an overview of the shoreline categories used in these programs. 
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Table 2.2. Comparison of shoreline classification schemes 

ECCC NOAA BCCMP  

Bedrock 

Exposed Rocky Shores  

Exposed Rocky Cliffs  

Exposed Wave-Cut Platforms  

Sheltered Rocky Shores  

Rock Cliff, Narrow 

Rock Platform Wide/ Narrow 

Rock Ramp Wide/ Narrow 

Sand beach/bank 

Fine to Medium- Grained Sand Beaches  

Scarps and steep slopes in a sand 

Coarse-Grained Sand Beaches  

Rock Ramp with Sand Beach Wide/ 

Narrow 

Rock Platform with Sand Beach Wide/ 

Narrow  

Rock Cliff with Sand Beach  

Sand Beach  

Sand/Mud Textures Sand Beach 

Mud tidal flat 

Exposed Tidal Flats  

Sheltered Tidal Flats 

Exposed scarps and steep slopes in clay 

Mud Flat  

Sand tidal flat 
Exposed Tidal Flats  

Sheltered Tidal Flats  
Sand Flat  

Mixed and coarse 

sediment tidal flat 

Exposed Tidal Flats  

Sheltered Tidal Flats 

Hypersaline tidal flats 

Gravel Flat or Fan  

Sand and Gravel Flat or Fan  

Mixed sediment 

beach/bank 
Mixed Sand and Gravel Beaches  

Rock Ramp with Sand and Gravel Beach 

Wide/ Narrow 

Rock Platform, with Sand and Gravel 

Beach Wide/ Narrow 

Rock Cliff with Sand and Gravel Beach  

Sand and Gravel Beach  

Pebble/cobble 

beach/bank 

Gravel Beaches  

Gravel Beaches (cobbles and boulders)  

Rock Ramp with Gravel Beach Wide/ 

Narrow 

Rock Platform, with Gravel Beach Wide/ 

Narrow 

Rock Cliff with Gravel Beach  

Gravel Beach  

Boulder beach/bank 
Gravel Beaches (cobbles and boulders)  

Sheltered Rocky Rubble Shores  
Gravel Beach  

Man-made permeable 
Riprap  

Sheltered Riprap  
Man-made, Permeable  

Man-made solid Exposed, solid man-made structures Man-made, impermeable 

Marsh 

Salt- and Brackish- Water Marshes  

Freshwater Marshes  

Swamps  

Shrub-Scrub Wetlands  

Estuarine/Organics/ Fine  

Peat shoreline Peat shorelines  - 

Ice-poor tundra cliff Tundra Cliffs  - 

Ice-rich tundra cliff Tundra Cliffs  - 

Inundated low-lying 

tundra 
Inundated Low-Lying Tundra  - 

Ice shelf - - 

Snow - - 

- Vegetated low banks - 

- Swamps - 

- Scrub-shrub wetlands; Mangroves - 

- - Channels 
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NOAA uses 27 marine classes for Environmental Sensitivity Index (ESI) habitat mapping 

(NOAA, 2013) to provide a summary of coastal resources that are at risk in case of an oil spill. 

The shorelines are ranked based on their sensitivity to oiling. The resulting NOAA ESI maps 

integrate geographically-referenced biological and human-use resources with ESI-classified 

shorelines.  

The BCCMP was developed to map the physical characteristics of the coastal zone. The 

scheme included 40 shore types that were designed to create an inventory dataset containing shore 

morphology, substrate, and wave exposure characteristics (Howens et al., 1994). 

ECCC uses 24 SCAT classes for the description and documentation of oiled shorelines 

(ECCC, 2018). Example photographs of ECCC shoreline types are provided in Figure 2.1, while 

their detailed characteristics and corresponding oil response considerations are described in Table 

2.3. This classification has been the common standard for the physical description of shoreline 

types, backshore types, coastal character, and substrate types for national oil spill response in 

Canada. For example, this classification scheme was used for the Emergency Spatial Pre-SCAT 

for Arctic Coastal Ecosystems (eSPACE) project initiated by Environment Canada in 2009. 

Detailed shoreline mapping for several Arctic study areas, including the Beaufort Sea–Mackenzie 

Delta channels–Banks Island, Resolute Bay, Victoria Strait, Hudson Bay, James Bay, and 

Labrador, was conducted through traditional helicopter videography (Wynja et al., 2014). Besides 

that, the use of satellites, including RADARSAT-2, SPOT-4 and -5, Landsat-5, for shoreline 

mapping was also explored (Banks et al., 2014b, 2014b, 2015; Demers et al., 2013) as a part of the 

eSpace program where the ECCC SCAT shoreline classification scheme was also adapted. 
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Figure 2.1. Photograph examples of SCAT shoreline types (Wynja et al., 2014) 
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Table 2.3. SCAT shoreline types characteristics and oil response considerations 

SCAT Class Description 

Bedrock 

shorelines 

Impermeable outcrops of consolidated native rock. They are divided into cliffs, ramps, and platforms. Cliffs are characterized by the slopes more than 35°; 

ramps slopes range from around 5° to 35°; and platforms have an overall slope of less than 5° (ECCC, 2016). 

Plants and animals usually accumulate in the intertidal zone, especially in cracks and crevices, which are protected from wave, wind, and ice actions. Oil often 

does not persist on bedrock cliffs as it is rapidly removed by wave action. However, in sheltered locations, heavy or weathered crude oils can persist for 

months to years because wave energy is too low to remove the oil naturally.  

The most appropriate response action on exposed high wave-energy coasts is natural recovery. However, sheltered coasts are not able to recover naturally, and 

the oil may persist for a long time. In this case, the other techniques, such as flooding, physical washing, hand-deployed vacuum systems, or dispersants, 

should be implemented depending on the type of stranded oil. Also, low- to high-pressure spraying at ambient water temperatures can be applied to remove 

fresh oils. 

Sand beaches Beaches are composed of sand with a grain-size diameter ranging from 0.0625 mm to 2.0 mm. Small amounts of granules, pebbles, cobbles, boulders, silts, or 

clay may also be present. The sand beaches are divided into coarse- and fine-sand beaches having grain diameters ranging from 0.5 mm to 2 mm and less than 

0.5 mm, respectively (ECCC, 2016). 

The sand beaches are unstable and mobile as their surface easily changes under even slight wave actions. Therefore, the oil can be buried or mixed with the 

sand very quickly. Also, light and medium oils can readily penetrate coarse-sand beaches mixing with groundwater. 

Although the biological productivity of sand beaches is relatively low, these areas are often used as recreational facilities for people as well as resting or 

foraging habitats for birds. Also, organisms living in the beach sediment may die if oil concentrations in the interstitial water are high. These factors increase 

the sensitivity of sand beaches significantly. Oil can penetrate fine- to medium-grained sand up to 10-15 cm in depth. 

Fine- and medium-grained sand beaches are considered among the easiest to clean (NOAA, 2013). However, there is a high risk of the mixing of oil deeper 

into the sediments by vehicle movements and foot traffic. The treatment techniques depend on several factors, including the size of the oiled area, 

accessibility, time available for cleanup, and others. For example, manual removal is preferred when a little area is affected. However, with the increase of the 

oiled area size, the effectiveness of this technique decreases. Combinations of methods, such as flooding oil into trenches followed by recovery with vacuums 

or skimmers and mechanical removal followed by sediment relocation, are recommended. 

Flats Wide low angled (less than 5°) sloping surfaces of sediments are usually located near low-lying areas, lagoons, or estuaries. Mudflats contain very fine 

(smaller than 0.0625 mm in diameter) sediments, such as mud, silt, or clay.  The grain size of sediment in sand flats ranges from 0.0625 to 2.0 mm in diameter 

(ECCC, 2016). Flats are often located in the lower intertidal zone in conjunction with marsh or boulder flats in the upper intertidal and supratidal zones. Since 

mud flats are usually water-saturated, the potential for natural penetration of oil is low. However, having a mobile surface layer, these sediments can be mixed 

with light oils. Mixed with subsurface sediments, oil can persist there for long periods. Also, oil can be moved deeper into the sediments through cracks in the 

mud or the holes of burrowing animals. 

Being very productive biological habitats for many burrowing animals (such as snails, worms, and clams) and birds, mudflats have a high sensitivity to spilled 

oil. Sand flats have lower biological productivity than mudflats but higher than sand beaches. 

Since there is a high risk of driving oil into the subsurface, there are limited options for the removal of oil from mudflat's shorelines. The preferred methods 

include herding, flooding or washing, and collection using sorbents or vacuums. Flooding or low-pressure ambient temperature water washing can be used to 

flush oil for on-water recovery. Disturbing sediment can have an impact of mixing oil into sediments. All movement of personnel and vehicles must be taken 

with caution. 

[Continued on the next page] 
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Table 2.3. SCAT shoreline types characteristics and oil response considerations [continue] 

SCAT Class Description 

Mixed 

sediment 

beaches & 

flats 

Mixed sediment beaches and flats are composed of sand (with grains of 0.0625 to 2.0 mm in diameter) with a combination of granules (two to four mm in 

diameter), pebbles (4 to 64 mm in diameter), or cobble (64 to 256 mm in diameter) (ECCC, 2016). The surface layer usually consists of coarser sediments, 

while the subsurface contains predominantly sand. Oil penetration into the beach sediments may be up to 50 cm (NOAA, 2013). Also, the burial of oil may 

occur due to the mobility of sand fractures. 

The sensitivity of a mixed sediment beach to oil and treatment is low to medium as the coarse sediments support little life. The most common biota are 

burrowing or mobile species. A mixed sediment beach is similar to a sand beach in terms of penetration, retention, and persistence of oil. For example, as on 

sand beaches, light oils can readily penetrate medium- or coarse materials and mix with groundwater. However, the cleanup approaches are more similar to a 

pebble/cobble beach. Flushing techniques should be avoided as they can move the oil deeper into the sediments. 

Pebble/ 

cobble beach 

“Coarse sediment beach” consists of either pebble (four to 64 mm in diameter) or cobbles (64 to 256 mm in diameter), or a combination of both.  The main 

difference between a pebble/cobble from mixed sediment beaches is the open interstitial spaces between individual pebbles or cobbles not filled with finer 

sediments. Similar to mixed sediment beaches, the oil sensitivity level ranges from low to medium. 

Pebble/cobble beaches are very permeable and have a dynamic and unstable surface layer. Therefore, the oil penetrates easily, especially when the particle size 

is large. The slopes on pebble/cobble beaches range from 5° to 35°, whereas the upper part of the intertidal zone usually has a steep slope, which hinders 

accessibility for cleanup vehicles. As with mixed sediment beaches, the main concern during the cleanup process is the excessive removal of sediment, which 

should be avoided because natural replacement rates are usually very slow and can take decades. Moreover, this technique can cause the beach to retreat or 

erode. 

Boulder 

beach 

An unconsolidated accumulation of boulders that are more than 256 mm in diameter in the shore zone. Boulder beaches are highly permeable and allow the oil 

to penetrate underlying sediments, which usually consist of pebbles and cobbles. This type of beach is stable and, therefore, provides habitats for biological 

growth, especially in more sheltered and shaded areas. Thus, biological productivity and sensitivity to oil can be relatively high, especially in the lowest parts 

of the beach, where the sediments are less mobile. 

The outer exposed surfaces of boulders usually cleaned using similar techniques used for a bedrock outcrop. However, the inner protected surfaces of the 

interstitial spaces are very difficult to access, limiting the oil removal options. In these cases, natural recovery is a preferred option. In most cases, mechanical 

removal is not practical. However, if this treatment technique is used, the boulders must be replaced with new boulders from other sites or the same cleaned 

boulders. 

Man-made 

shorelines 

Anthropogenic structures composed of either solid or permeable materials. Solid man-made structures include seawalls, groins, piers, port facilities, etc., while 

permeable features may consist of berms, bulkheads, cribwork, dikes, gabion, baskets, piers, rip-rap, etc. 

The surfaces of each of these materials are different in texture and roughness that affect the potential of oil to cling to them. For example, oil readily adheres to 

dry and rough surfaces; however, it does not stick to wet and smooth materials. Similar to the bedrock shorelines, oil is not left ashore on exposed areas, while 

it may persist for a long period on sheltered locations. 

Manmade structures usually are of great importance due to their frequent use by people or high social values. Thus, the treatment techniques depend not only 

on the type of material but the purpose of the structure itself. For example, for historic structures, only non-aggressive, labor-intensive manual methods are 

typically used. In the low human use areas, the option of natural recovery might be preferred. Physical washing can be efficient for oil removal from solid 

man-made shorelines. 

[Continued on the next page]  
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Table 2.3. SCAT shoreline types characteristics and oil response considerations [continue] 

SCAT Class Description 

Marsh Marsh is a coastal zone that is covered at least once a month by salt or brackish water at high tide, and that supports significant (more than 15%) non-vascular, 

salt-tolerant plants such as grasses, rushes, reeds, and sedges. Saltwater marshes are common in sheltered wave-energy environments, such as estuaries, 

lagoons, deltas, or behind-barrier beaches (ECCC, 2016). 

Although the fine mud substrate prevents penetration, light oils can fill animal burrows and cracks. Also, oils easily adhere to the stems and leaves of 

vegetation. If so, the oil may persist for very long periods due to the low level of wave energy in these environments. 

Salt marshes are very sensitive to oil as they are extremely productive ecosystems and important to migratory birds, fish populations, and resident fauna. Salt 

marshes vary significantly in terms of physical and biological characteristics. Therefore, an individualized treatment plan should be implemented for each 

distinct marsh depending on substrate character, oiling conditions, species composition, time of year, size of the spill, type of oil, location, and others. 

Response activities should avoid the trampling of a marsh as it can drive the oil deeper into the sediments. Thus, it is recommended to use boats, boardwalks, 

or mats, as well as to limit the number of personnel. Sediment removal techniques are not recommended as they may result in oil mixing or disrupting the root 

systems. Low-pressure, ambient water washing is the preferred method that allows light- or medium-oil removal without causing damage. Sometimes, 

vegetation cutting or burning should be considered to lower the risk of sticky oil to marsh birds and animals. If burning is chosen, the protection of root 

systems by a layer of water should be ensured. 

Peat A spongy, compressible, fibrous material that forms from the incomplete decomposition of plant materials. The peat deposits may occur as a mat on a beach or 

a mobile slurry. This shoreline is usually located along low-lying and sheltered coastlines, which is where spilled oil is also likely to accumulate. Thick wide 

mats of suspended peat can occur in the water, forming peat slurry. If oil contact with slurry, it will be mixed and persist for a long time. 

Peat shorelines are potential bird-feeding areas. Preferred response options include natural recovery, flooding or washing, sorbents. Vacuum systems, 

combined with booms and skimmers, can also be used to recover deep and thick pools, but only in the areas without debris. If skimmers cannot be deployed, 

rope mops are used to recover oil in peat slurries. Sometimes, nets with a fine mesh are used to collect oil mixed in a peat slurry. Trampling vegetation and 

using heavy machinery should be avoided as this can cause deeper penetration of oil into the peat. 

Tundra cliffs An erosional feature present on Arctic coasts. Similar to bedrock cliffs, tundra cliffs have very narrow or absent beaches. Tundra cliffs are divided into ice-rich 

and ice-poor. Ice-rich tundra cliffs are composed of tundra mat, peat, and ice with relatively little sediment. Ice-poor tundra cliffs are unconsolidated sediment 

cliffs with an overlying surface layer of tundra vegetation and peat. Wave actions or thermal erosion of the cliff make the tundra and peat materials falling to 

the base of the cliff. Erosion rates vary from 0.5 m/year to 4.0 m/year depending on wave exposure level and the height of the cliff, which ranges from less 

than one m to ten m (ECCC, 2016). 

The potential of oil to stick to the exposed ground is low. However, if the peat contains slumped blocks, the oil may be collected in the spaces between the 

blocks. If the cliff is low, there is a risk of oil splashed over the cliff where it can persist for a while. Also, although exposed ground ice surfaces do not support 

plant life, the overlying tundra vegetation is composed of living plants and is sensitive to trampling and other disturbances.  

The behavior of oil and response options for ice-poor tundra cliffs are similar to sand, mixed sediment, or mud. Tundra cliffs are unstable, and there is always 

a risk of block falls, slumping, and mudflows due to natural erosion. Therefore, the primary concern during cleanup operations is the safety of personnel. Thus, 

natural recovery is the preferred response option in these environments. Techniques that can potentially cause additional erosion of the cliff face, such as low-

pressure washing, are not recommended. 

[Continued on the next page] 
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Table 2.3. SCAT shoreline types characteristics and oil response considerations [continue] 

SCAT Class Description 

Inundated 

low-lying 

tundra 

shoreline 

A very low-lying coastal tundra that is flooded by marine waters during spring high tides or wind-induced surges. These shorelines consist of vegetation in 

combination with peat mats, brackish lagoons, and small streams. While the vegetated soil of the tundra hinders the penetration of heavy oil, light oils can 

penetrate the soil, especially when the soil is dry. These shorelines have a high sensitivity to the oil spill as they are important bird habitats during the Arctic 

summer. 

Low-lying tundra shorelines are usually inaccessible or have limited access. Therefore, natural recovery is often the only option for treating oiling. In other 

cases, treatment techniques are similar to the ones for peat shorelines. For example, rope mops, as well as vacuum systems combined with booms and 

skimmers, may be used to recover mobile oil from the open areas without debris. Also, same as for peat shores, these shorelines are sensitive to trampling and 

vehicle traffic. These methods should be avoided as they can cause driving the oil more deeply into sediments. 

Ice shelves Impermeable surfaces of ice of glaciers reached the coast, or solid seasonal ice formed as a layer on the shore. In general, ice prevents oil from making contact 

with the shoreline substrate. The behavior of oil depends on the form of shoreline ice, its' texture, and the temperature of the air-ice boundary. For example, 

stranded on the shore-zone ice oil can be encapsulated within the ice during the freeze-up period. However, during a thaw cycle, oil does not adhere to the ice 

surface remaining on ice leads. 

Although marine mammals may use the ice shore to haul themselves out of the water, in general, ice surfaces do not support significant plant or animal life. 

Therefore, ice shorelines are not considered sensitive environments, and the most appropriate oil removal option in these areas is natural recovery. Other 

tactics that might be used for removing oil on shore-fast ice include flooding, washing from a boat or barge, high- and low-pressure warm/hot water washing, 

and others. Sometimes, manual removal of the oiled ice in combination with melting (and then the collection of the oil) or direct burning is implemented to 

minimize the accumulation of oil in remote areas. 

Snow-

covered 

shoreline 

Any shoreline type with seasonal snow on top. The oil behavior on snow depends on various factors, including the character of the snow surface (fresh 

powder, wet slush, compacted, containing ice layers, etc.), the air temperature, and the surface character of the shore (i.e., flat or sloping). The snow layer itself 

is not considered to be a sensitive environment. When selecting oil removal tactics, the nature and sensitivity of the underlying sediment or bedrock substrates 

must be considered. 

Recovery tactics include natural recovery (for light oils that will evaporate during thaw periods), flooding or low-pressure ambient-water washing (if air 

temperatures are above freezing), manual removal with shovels and rakes (for small amounts of oil), burning (for remote areas), and others. 
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2.2 Land Cover Classification Using Satellite Remote Sensing 

Dating back to the early 1970s, remote sensing technology has offered an opportunity to 

obtain accurate and timely environmental information covering extensive geographical areas in a 

cost-efficient manner. Nowadays, remote sensing products are used in a variety of applications, 

including climate change (Ouyang et al., 2014; Syed et al., 2010; J. Yang et al., 2013), natural 

hazard assessment (Dell’Acqua & Gamba, 2012; Giustarini et al., 2013; Yuri Fialko et al., 2005), 

biodiversity studies (Nagendra, 2001; Nagendra & Gadgil, 1999; Skidmore et al., 2015; Steven E. 

Franklin, 2010), land cover classification for monitoring of urban areas (Georganos et al., 2018; 

Qiu et al., 2020; Tavares et al., 2019), forest (Hansen et al., 2008, 2013; Myneni et al., 2007), 

agriculture (Alcantara et al., 2012; Lebourgeois et al., 2017; Segarra et al., 2020), and other 

environments (Guo et al., 2017; Leigh et al., 2014; Y. Wang, 2010). 

The focus of this research is the land cover classification of the shoreline. Land cover 

mapping is a complicated process that depends on numerous factors, including satellite sensors 

and their spatial and spectral resolutions, input features, classification schemes, training and 

validation data, pre- and post-processing techniques, classification algorithms, etc. (Ma et al., 

2017). The following subsections describe the most influential factors on the land cover 

classification results. 

2.2.1 Satellite Sensor Characteristics 

Remotely sensed data are obtained using passive or active sensors. Passive sensors rely on 

natural sources of electromagnetic radiation (EMR), e.g., the sun or the earth, with their infrared 

radiation, and record radiance reflected or emitted from an object on land. Most investigations in 

optical remote sensing are based on the identification of relationships between the amounts of 

reflected, emitted, or back-scattered energy in particular bands. Optical sensors have various 
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spectral resolutions, which refers to the number and size of bands in the electromagnetic spectrum 

to which the remote sensing instrument is sensitive (Jensen, 2016). In this context, the sensors can 

be divided into panchromatic, multispectral, or hyperspectral, which acquire data using one, 

several, or hundreds of spectral bands, respectively (Khorram et al., 2012).  

Jiao et al. (2019) used China’s Gaofen (GF)-5 hyperspectral satellite, Landsat-8, and 

Sentinel-2 multispectral data to investigate their difference in the classification performance for 

coastal wetlands mapping. The GF-5 data provided superior results for finer classification, while 

the classification based on Landsat-8 data achieved the lowest accuracy. Even though GF-5 data 

have the same spatial resolution as Landsat-8 (30 m), it has spectral advantages to the Landsat-8 

data. Having numerous bands and narrow spectral range, hyperspectral sensors are able to obtain 

almost continuous spectral information of ground objects, which allow a significant improvement 

of the classification results. Jiao et al. (2019) found that the three satellites achieved similar results 

when the number of land cover types for classification was small, i.e., 13 classes. With the increase 

in the number of classes, Sentinel-2 and Landsat-8 data performance decreased compared to GF-

5. The better performance of GF-5 was explained by the numerous narrow bands which were found 

capable of providing sufficient spectral information to classify coastal wetlands into 22 classes. 

Multispectral data have been widely used for land cover classification. Since 2008, Landsat 

sensor data was available at no charge to users, and therefore, it has become the traditional choice 

as well as due to the wide geographic coverage and temporal depth of the archive (Gallant, 2015; 

Klemas, 2013). However, for a finer classification, multispectral data of higher spatial resolution 

is needed to be used. Lane et al. (2014) used a high spatial resolution WorldView-2 (WV-2) 

satellite, which provides imagery in eight spectral bands, including coastal, blue, green, yellow, 

red, red-edge, and two NIR bands. WV-2 with a high spatial resolution of two m produced a 

detailed classification of coastal wetlands into 22 classes with an overall accuracy (OA) of 86.5%. 
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(Laba et al., 2008) used 0.61-cm and 2.4-m QuickBird data to classify wetlands into 20 land cover 

types achieving an OA of 75%. Also, the use of Landsat sensor data might be inefficient for 

classification of coastal zones which are characterized by frequent clouds and continuous changes 

of tide levels. The moderate temporal resolution of 8–16 days for combined Landsat 7 and 8 often 

does not allow obtaining the images at the time with the lowest and highest tides. 

Coastal zones often appear in narrow and patchy patterns, especially in the case of cliffs in 

Newfoundland. In this context, one of the major limitations of Landsat imagery is its spatial 

resolution of 30 m, which might be too low relative to the coastline width. Therefore, using Landsat 

imagery for shoreline classification may be insufficient, as the width of the coastline may appear 

to be less than one pixel (Jia et al., 2021; Saleem & Awange, 2019). Sentinel-2, which includes 

two identical sensors launched in June 2015 and March 2017, enhanced the mission of Landsat 

and SPOT (Kaplan & Avdan, 2017; Qunming Wang et al., 2017). Free access, global coverage, a 

wide-swath, high spatial resolution (10–60 m), the temporal resolution of five days, and multi-

spectral (13 spectral bands) capabilities allow using the data for a wide range of applications, 

including land cover classification (Nivedita Priyadarshini et al., 2018; Thanh Noi & Kappas, 

2018), wetland (Kaplan & Avdan, 2017), vegetation (T. Dong et al., 2020; Korhonen et al., 2017; 

Immitzer et al., 2016), urban mapping (X. Yang et al., 2017; Kopecka et al., 2017; Lefebvre et al., 

2016), coastal waters monitoring (Hedley et al., 2018; Marzano et al., 2021), and others. 

Sentinel-2 was also used for coastal area mapping. For example, Zhang et al. (2019) 

achieved the OA of 95.81% and 95.09% for coastal wetland classifications of the Yellow River 

Delta into eight classes and Jiaozhou Bay into seven classes, respectively. Jia et al. (2021) used 

the Sentinel-2 product for mapping tidal flats along China’s coastline. The authors classified 

China's coastal zone into four categories, including tidal flats, vegetation, water, and built-up. The 

authors produced a flat tidal map with an OA of 94%. 
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In contrast to optical sensors, radar systems emit their own EMR. The two types of imaging 

radars most commonly used are Real Aperture Radar (RAR) and Synthetic Aperture Radar (SAR). 

The azimuth resolution of RAR systems is determined by the antenna beam width and depends on 

the distance between the radar and the target. SAR systems coherently synthesize signals collected 

at different positions. It results in creating a large synthetic aperture with a narrow equivalent beam 

width and high-resolution imaging in azimuth (Jin, 2013).  

One of the main drawbacks of optical sensors is the inability to penetrate through the clouds 

and collect data at night. The radio waves used in SAR typically range from approximately 3 cm 

up to a few meters in wavelength, which is much longer than the wavelength of visible and NIR 

light, typically used in making optical images. Table 2.4 describes some of the frequency bands 

used in remote sensing. For example, Sentinel-1 used in this research operates at C-band that 

utilizes the EMR from 3.75 to 7.5 cm in wavelength.  Operating at longer wavelengths allows 

sensors to penetrate through clouds and collect the data day and night and in most weather 

conditions (Woodhouse, 2017). This is beneficial for coastal environment applications, which are 

perpetually covered in clouds.  

Table 2.4. Characteristics of some of the microwave bands used in remote sensing 

Band Frequency (GHz) Wavelength (cm) 

P 0.3-1 30-100 

L 1-2 15-30 

S 2-4 7.5-15 

C 4-8 3.8-7.5 

X 8-12.5 2.4-3.8 

 

Radar signals can be transmitted and received in various modes of polarization. 

Polarization is an index describing the characteristics of electromagnetic waves. It is used to 

express the orientation of the oscillation within the electric field of electromagnetic energy relative 
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to the direction of motion of the wave (Dwivedi, 2017). Conventional SAR systems transmit the 

signals in a plane polarization, horizontal (H) or vertical (V). Therefore, four different 

combinations of signal transmission and reception are possible. They refer to HH, VV, HV, and 

VH, where the first and second letters indicate the transmitted and received polarizations. Radar 

systems can have one, two, or all four of these polarization combinations. Besides that, there is a 

circular polarization where the electric field component rotates as the waves propagate. 

Fully polarimetric SAR systems have shown great potential in identifying land cover types 

(Banks et al., 2015; Beijma et al., 2014; Cable et al., 2014; Corcoran et al., 2013). The parameters 

extracted using polarimetric decomposition were related to the physical properties of natural 

objects and useful for land cover mapping. For example,  (Y. Chen et al., 2014) used fully 

polarimetric ALOS PALSAR data for land cover classification over coastal wetlands in Yancheng, 

China. Coastal and near-shore land cover types in the Beaufort Sea, Canada was also classified 

using Freeman–Durden and Cloude–Pottier decompositions applied to polarimetric RADARSAT-

2 data (Banks et al., 2015). Parameters derived from Cloude–Pottier and Freeman–Durden 

decompositions extracted from RADARSAT-2 were also found to be supportive in conjunction 

with polarimetric response plots for land cover identification within the Great Lakes Basin of 

Canada (Cable et al., 2014). 

While optical sensors provide data associated with reflectance and emissivity 

characteristics of objects, radar data contain information about structural, textural, and dielectric 

properties (Feng et al., 2019). The integration of data obtained from optical and radar sensors may 

achieve better classification results.  

Corcoran et al. (2013) used multi-temporal and multi-source data, including the one 

obtained from Landsat 5 TM, RADARSAT-2, and ALOS-2 PALSAR, for coastal wetlands 
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classification in Northern Minnesota. Beijma et al. (2014) used combined S- and X-band quad-

polarimetric airborne SAR, optical Landsat imagery, and elevation data to map coastal salt marsh 

vegetation habitats. Rodrigues et al. (2011) classified coastal wetlands in the Amazon in northern 

Brazil using Landsat-7, RADARSAT-1, and integrated data from both satellites. The accuracy 

obtained from the combined data was higher than the ones obtained from using optical or SAR 

data alone. These findings were in agreement with the Franklin et al. (2018) research, where 

integrated RADARSAT-2 and Landsat-8 product outperformed the individual bands of the sensors 

in the classification of the Hudson Bay Lowlands Ecoregion. 

The successful implementation of the European Space Agency (ESA) Copernicus program 

allowed a synergistic utilization of freely available Sentinel-1 and Sentinel-2 datasets. Sentinel’s 

optical and radar data were used together for mapping soil moisture (Hajj et al., 2017), wetland 

mapping (Chatziantoniou et al., 2017; Mahdianpari et al., 2019), crop mapping (Van Tricht et al., 

2018), coastal land cover classification (Feng et al., 2019), and other applications. 

2.2.2 Image Preprocessing 

Image preprocessing techniques are intended to correct for sensors radiometric and 

geometric distortions of data and may improve the classification accuracy. Optical imagery often 

needs to be atmospherically corrected (Huang et al., 2008; C. Song et al., 2001). The presence of 

gases and aerosols in the atmosphere causes atmospheric effects, such as absorption and scattering, 

which affect the spectral radiance measured by the satellite. If sunlight is absorbed by the 

atmosphere, the sensor receives attenuated radiation. When sunlight is scattered, the radiation 

received by satellites may be increased or decreased depending on the atmospheric conditions. The 

atmospheric effect is a significant source of uncertainty in observing the land surface. Accurate 

atmospheric correction is an essential preprocessing step to improve satellite image quality for 

land surface property analyses. 
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Atmospheric correction aims to generate the estimates of radiation that is emitted and 

reflected at the surface (Thome et al., 1998).  Several methods minimize the atmospheric effects, 

including relative and absolute radiometric corrections, single-image, and multiple-image 

normalization. Relative radiometric correction normalizes the intensities among different bands 

within a scene to remove detector-related problems. Then, the intensities are compared with a 

standard reference surface on the same date and same scene. Absolute radiometric correction uses 

the data about the solar zenith angle, the optical thickness caused by molecular scattering, the 

atmospheric transmittance for a given angle of incidence, the spectral irradiance at the top of the 

atmosphere, and the Rayleigh and Mie scattering. Single-image normalization is based on the 

assumption that infrared data are less affected by atmospheric scattering effects than visible. The 

histogram shifts due to haze are used to adjust for the atmospheric effects. This method involves a 

subtractive bias established for each band. Multiple image normalization uses regression analysis 

for several dates and is used mainly for change detection purposes (Khorram et al., 2012).  

Raw SAR data needs to be calibrated to provide imagery in which the pixel values can be 

directly related to the radar backscatter of the scene. In other words, calibration allows converting 

the radar reflectivity into physical units. For example, radar reflectivity may be transformed into 

Beta Naught 𝛽° , where the area normalization is aligned with the slant range; Sigma Naught 𝜎°, 

where the area normalization is aligned with the ground range plane; and Gamma γ° , where the 

area normalization is aligned with a plane perpendicular to the slant range (ESA, 2015; Small et 

al., 2009). 

Despite the SAR advantages mentioned in previous section, SAR images contain speckle 

noise. This noise appears from coherent interference of backscattered radar echoes. The effect of 

speckle can be removed at the expense of spatial resolution. Many techniques, including Lee, 
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Kuan, Frost, Gamma MAP, and other speckle filters, can be used to reduce speckle noise (Yommy 

et al., 2015). Speckle removal methods aim to decrease speckle noise without losing information 

about the edges, texture, and other object features (Zhong et al., 2009). The effect of speckle 

filtering often depends on the selected window size. For example, if the window size is too small, 

the speckle will not be removed. A too-large window size may blur the edges and reduce the 

contrast between the objects (Lee et al., 1999). 

Spatial low pass or smoothing filters are often applied to SAR and optical data to decrease 

intra-class variability and random noise (Tøttrup, 2004). Pan-sharpening is used to generate a 

higher spatial resolution multi-spectral image by combining a high-resolution panchromatic image 

and a low-resolution multispectral image (Mitchell, 2010). For example, (Ranson et al., 2001) 

investigated the effects of topography on forest classification in mountainous terrain. It was found 

that radiometric correction improved classification accuracy significantly. Radiometric correction 

methods are used for the reduction of slope-aspect effects in optical satellite imagery. For example, 

Meyer et al. (1993) found that the accuracy in a forest type classification was improved by 10% to 

30% after applying the radiometric correction. 

2.2.3 Feature Extraction 

The results of a land cover classification directly depend on the input variables. Besides 

the original optical or radar bands, additional predictor variables can be generated by applying 

image transforms, such as spectral indices, band ratios, texture measures, and principal component 

analysis (PCA). 

The extraction of spectral indices and the band ratio technique are the methods of multi-

spectral transformation (Bouzekri et al., 2015). These methods allow the suppression in 

topographic variation and enhance the spectral difference between bands (Rajendran et al., 2012). 
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In a simple way, these methods are applied by dividing the digital number (DN) values of one 

band by the values of another, creating a new gray-scale image with relative band intensities (Gabr 

et al., 2015).  

Spectral indices are often used as additional explanatory variables to improve the 

classification (Dash et al., 2007). Indices are calculated through arithmetic combinations of 

different spectral bands.  

Spectral indices have been widely used to analyze and monitor temporal and spatial 

variations of different surface type characteristics. For example, vegetation conditions are usually 

monitored using the indices generated from the data collected in the Visible and Near-Infrared 

(VNIR) regions (Jiang et al., 2006). The Normalized Difference Vegetation Index (NDVI) is built 

on the pigment absorption feature in the red and NIR regions of the electromagnetic spectrum. 

This index has been widely used to estimate various properties of vegetation (Chuvieco et al., 

2004; Gamon et al., 1993; Yengoh et al., 2016).  To monitor the spatial distribution of urban built-

up areas, the difference between the values in NIR and Mid-infrared (MIR) bands is used (Zha et 

al., 2003), while the normalized difference between the BV in green and NIR bands is useful to 

identify water bodies (McFeeters, 1996). 

Satellite-derived data often contain images having similar information. As a result, an inter-

band correlation problem occurs during multispectral image processing (Lillesand & Kiefer, 

2000). PCA is designed to address this problem. PCA is an image transformation technique that 

increases interpretability while reducing dimensionality with minimal loss of information. The 

data are reduced through their geometrical projection onto lower dimensions called principal 

components (PCs) (Crósta & Moore, 1988; Jolliffe & Cadima, 2016; Lever et al., 2017). The 

algorithm utilizes an orthogonal transformation to transform the original dataset into a new space 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spectral-band
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of linearly uncorrelated attributes. During the eigenvalue decomposition of a correlation matrix, 

the eigenvector of the highest eigenvalue captures the largest possible information in the dataset. 

Then, the algorithm selects the subset that contains the most informative eigenvectors. It results in 

creating the dataset with a lower-dimensional space where every data sample of the original image 

is represented by a smaller feature vector (Dinç et al., 2014).  

PCA is a widely accepted transformation technique that has proven to be of great value for 

multispectral data analysis (Pan et al., 2019). It is worth noting that principal components are not 

correlated with each other. Moreover, they can reduce image noise and improve data representation 

(Pan et al., 2019). However, since the PCA is an unsupervised transformation method, the resulting 

new feature set is not interpretable. 

During the visual interpretation process, humans perceive different factors simultaneously. 

They include not only spectral information but the texture, edges, context, geometry, size, 

brightness, etc. Thus, many researchers try to incorporate multiple characteristics into the image 

classification process (Jensen, 2016). The texture is considered one of the most valuable 

characteristics used to extract meaningful information for different purposes (Haralick et al., 

1973).  

The texture is the frequency of tonal change on an image and provides the information of 

object characteristics, such as smoothness, coarseness, or regularity (Gonzalez & Woods, 1992; 

Lillesand & Kiefer, 2000).  For example, a visually smooth texture may be found over the image 

area with only slight changes in DN values, while a visually coarse texture is determined by the 

presence of abrupt changes in DN values (Coburn & Roberts, 2004). 

The incorporation of texture is a popular technique for classification improvement (Coburn 

& Roberts, 2004). Although the textural features are expected to be more useful when analyzing 
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SAR images, the effectiveness of textures in optical imagery was demonstrated in many 

applications, such as discriminating urban environments (Dell’Acqua & Gamba, 2006), evaluation 

of the biomass of various forest types (Singh et al., 2014), and burn scars detection (Smith et al., 

2010). It was found that the texture provides information that is independent of spectral reflectance 

values (Hall-Beyer, 2016). Therefore, incorporating texture allows the improvement of results 

regardless of the chosen algorithm (Marceau et al., 1990; Presutti et al., 2001; Lu et al., 2008). 

There are several approaches to texture processing. In general, they can be grouped based 

on the statistics texture measures that have been derived: first-order statistics, second-order 

statistics, or semi-variogram (Jensen, 2016). First-order statistics of local areas include a mean, 

variance, skewness, kurtosis, minimum and maximum, etc. This category also includes some more 

complex metrics, such as Moran’s I spatial autocorrelation, which is calculated based on the 

weighted deviations of brightness values (BV) from their mean in the local window (Purkis et al., 

2006). 

The most commonly used texture measures are those derived from the Grey Level Co-

occurrence Matrix (GLCM), which was proposed by Haralick et al. (1973). The GLCM defines 

the joint occurrence frequency of the two values i and j for a pixel pair within a neighborhood, 

normalized to probabilities. Many second-order statistical properties can be calculated from the 

GLCM. Initially, Haralick et al. (1973) proposed 28 different measures. Ten of them were widely 

adopted by the remote sensing community and are often used in image processing applications. 

Texture attributes computed from the GLCM may be divided into three groups according to the 

purpose of the weights in the equations: contrast, orderliness, and statistics (Eichkitz et al., 2013).  

The Contrast group measures include contrast (CON), dissimilarity (DISS), and homogeneity 

(HOM). They are calculated using weights related to the distance from the GLCM diagonal. 

Orderliness group measurements, including Angular Second Moment (ASM), Energy (E), 
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Maximum (MAX), and Entropy (ENT), show how regular the pixel values are within the window 

(Hall-Beyer, 2007). The statistics group includes the measures of mean, variance (VAR), and 

correlation (COR) derived from GLCM. Mean and VAR related to the spectral heterogeneity of 

the image, while COR measures the linear dependency of grey levels between neighboring pixels 

(or predictability of pixel relationships).  

The GLCM method for texture extraction has been successfully tested for many 

applications, including land-cover mapping in coastal (Su & Gibeaut, 2017), urban (Herold et al., 

2003), forested (Kayitakire et al., 2006; Tuominen & Pekkarinen, 2005) and other environments. 

Lane et al. (2014) computed six GLCM texture measures, including HOM, CON, DISS, 

ENT, ASM, and CORR, from the WV-2 NIR-1 band. They found that the HOM texture variable 

provided the greatest discrimination between coastal wetland types. Coarse texture indicated by 

low HOM values was associated with shrub-scrub habitats, where tree leaves, leaf shadows, and 

interspersed grasses created a high variation of the reflectance intensity within local 

neighborhoods. In contrast, smooth texture indicated by large HOM values was associated with 

calm water bodies and aquatic beds with submerged vascular vegetation. Most herbaceous habitats 

were found to have relatively smooth textures due to the similarity of plant species and their heights 

within local neighborhoods. 

GLCM was also used to extract vegetation information and investigate the land cover 

change dynamics of Mediterranean coastal wetlands (Berberoğlu et al., 2010). Jiao et al. (2019) 

implemented four measures of GLCM texture features, including entropy, homogeneity, contrast, 

dissimilarity, and correlation for mapping coastal wetlands. Wang et al. (2018) assessed vegetation 

classification using high spatial resolution Pléiades satellite imagery in the central zone of 

Yancheng National Natural Reservation (YNNR) in Jiangsu, China. The results obtained by using 
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the high spatial resolution Pléiades spectral data alone and spectral data combined with GLCM 

texture features were compared. Mean, variance, ASM, entropy, and contrast were tested in the 3 

× 3, 5 × 5, 7 × 7, and 9 × 9 window sizes, whereas mean, ASM, and entropy were superior in the 

vegetation classification. The authors found the improvement of the overall accuracy of vegetation 

classification about 6.50% from 76.27% to 82.87% with the additional use of GLCM texture 

features. 

The performance of classification can be enhanced by the incorporation of other ancillary 

data, such as a Digital Elevation Model (DEM) and its derivatives, geological layers, and data from 

other sensors (Geerling et al., 2007; Hoshikawa & Umezaki, 2014; Ricchetti, 2000; Sluiter & 

Pebesma, 2010). When multi-temporal imagery is used, the classification is applied to a fusion of 

images captured at different times from the same site (Persson et al., 2018; Schultz et al., 2015). 

For example, (Persson et al., 2018) achieved the highest overall accuracy of  88.2% for three 

species classification using the four image datasets, while the classification of a single image 

produced the map with an OA of 80.5%. 

In most cases, multiple techniques are used. For example, Tøttrup (2004) achieved the 

highest accuracy for tropical forest classification when using pre-classification image smoothing 

and multi-date imagery.  Ranson (2001) reached the best classification when applying radiometric 

correction using a DEM, extracting band ratios, and implementing PCA. Lane et al. (2014) 

improved the coastal wetland classification accuracy from 79% to 86.5% by incorporation of 

additional bands and features, including yellow, red-edge, NIR-2, coastal bands, NDVI, and 

texture, with commonly used WV-2 VNIR bands. 
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2.2.4 Image Classification 

The choice of an appropriate classification algorithm is one of the most important 

influential factors for supervised classification (Ma et al., 2017). It was proven that different 

classification techniques lead to different results (McInerney & Nieuwenhuis, 2009; Pal, 2005; X. 

Song et al., 2012). The classification methods can be grouped in different ways. For example, they 

can be divided into pixel-based (PB) and object-based (OB) algorithms and parametric and non-

parametric methods. The description of these methods is provided in this section. 

Pixel-based (also called “per-pixel”) classification has long been the most common 

approach in the past (Belgiu & Csillik, 2018; Hussain et al., 2013; Myint et al., 2011). However, 

with the development of sensors able to produce finer resolution data, it was found that the per-

pixel algorithms were not always capable of extracting the desired information and resulted in low 

accuracy caused by pixel heterogeneity, mixed pixels, and spectral similarity of some features 

(Peña-Barragán et al., 2011). For example, in optical remote sensing, the single-pixel approach 

utilizes only spectral information in each pixel. Thus, this method fails when objects have similar 

spectral characteristics (Herold et al., 2003; Rejaur Rahman & Saha, 2008). Another factor that 

negatively affects the results of the per-pixel method is that the pixel value forms not only from 

the signal coming from the land region represented by this pixel but from the surrounding areas. 

Therefore, many researchers started to develop methods that take into account not only information 

from a single pixel, but its surrounding pixels. In addition to that not only spectral parameters but 

also spatial parameters, such as size, shape, and texture, started to be included in the analysis 

(Jensen, 2016). 

The Object-Based Image Analysis (OBIA) method enables the use of both spectral and 

spatial information and relationships between the image objects (Blaschke, 2010). OBIA is an 

iterative method with two primary steps. The imagery is first divided into segments ( or “image 
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objects”), defined as individual regions with similar shape and spectral characteristics (Blaschke, 

2010; Blaschke et al., 2014). The resulting objects are subsequently classified using various 

supervised or unsupervised classification approaches (Hay & Castilla, n.d.). 

Many researchers have reported superior results obtained from the OBIA method pixel-

based approaches (Belgiu & Csillik, 2018; Castillejo-González et al., 2009; Lebourgeois et al., 

2017; Ma et al., 2017; Pu et al., 2011; Yan et al., 2006). Besides improved accuracy, OBIA reduces 

noise effects, which are common in pixel-based classification methods (Liu & Xia, 2010; 

Whiteside et al., 2011), making the final classification map easier for interpretation and decision-

making. 

There are several segmentation algorithms, which can be broadly grouped into three 

categories: pixel-based, edge‐based, and region‐based (Tian & Chen, 2007). The pixel‐based 

algorithm groups pixels into objects by thresholding (Mardia & Hainsworth, 1988). The edge-

based segmentation approach identifies edges between regions based on contrast characteristics 

and links them into contours to represent the boundaries of objects (Moigne & Tilton, 1995). 

Region‐based segmentation is based on detecting homogeneous parts of images (S.-Y. Chen et al., 

1991; Moigne & Tilton, 1995).  

Multi-resolution segmentation (MRS) proposed by Baatz & Schäpe (2000) is a bottom-up 

region-based technique that merges smaller objects into bigger ones. This algorithm implements a 

local optimization process starting at any point in the image with one-pixel objects. The segments 

grow simultaneously over the whole scene so that adjacent image objects are of similar size and 

comparable scale. The segmentation results depend on the user-defined parameters, such as scale, 

shape, and compactness. The objects have a square shape when higher values are set up for shape 

and compactness parameters. The scale parameter defines the maximum standard deviation of the 



35 

 

homogeneity criteria with regard to the weighted image layers for generating image objects. In 

general, smaller values of the scale parameter produce relatively smaller image objects, while 

greater values produce the larger average size objects. When the smallest growth exceeds the 

defined scale parameter, the process stops (Benz et al., 2004). An MRS algorithm was widely and 

successfully used by many researchers (Al-Khudhairy et al., 2005; Myint et al., 2011; Novelli et 

al., 2016; Wenxia Wei et al., 2005; Zhou & Troy, 2008).  

The OBIA approach was assessed in several studies for shoreline classification. For 

instance, Demers et al. (2013) applied OBIA to develop a classification scheme using combined 

data obtained from RADARSAT-2, SPOT-4/-5, and a DEM, achieving an overall accuracy of 

75%. Demers et al. (2015) compared the per-pixel and object-based methods for shoreline 

classification in two sites located in the Western Arctic along the Beaufort Sea coastline. The 

classification was done using RADARSAT-2, SPOT-4/-5, and DEM data. The author noted that 

the shoreline features on the map obtained from OBIA are clearly visible and better represented 

than on the map obtained from the pixel-based classification. Also, it was observed that the OBIA 

approach provides more flexibility allowing the researcher to modify the classification easily. 

Numerous pattern recognition techniques have been developed for satellite-based image 

classification (Lu & Weng, 2007; Schowengerdt & Schowengerdt, 2006). The classification 

algorithms may be grouped into parametric and non-parametric. The choice of a particular 

classifier relies on the nature of the data. Parametric algorithms assume that all samples are derived 

from populations with well-defined statistical distributions, while non-parametric techniques make 

no such assumptions. 

A widely-used parametric algorithm for land cover classification is the maximum 

likelihood (ML) (Ali et al., 2018; Banks et al., 2014a; Z. Chen et al., 2017). An ML algorithm is 
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based on Bayes' theorem and requires an assumption of the normal distribution of samples in each 

class (Duda et al., 2012). If the dataset meets this assumption, the ML is the optimal choice 

(Kavzoglu & Reis, 2008). The ML decision rule is based on the multivariate probability density 

function. The ML algorithm assigns each pixel with measurements 𝑋 to the class 𝑖 whose units are 

most probable to give rise to the feature vector 𝑋. In other words, the probability of a pixel 

belonging to each predefined set of 𝑚 classes is calculated, and then, the pixel is assigned to the 

class in which the probability is the highest (Jensen, 2016). 

There are many non-parametric classifiers, e.g., 𝐾-nearest neighbor (KNN), support vector 

machine (SVM), decision tree (DT), Random Forest (RF), and other algorithms. KNN belongs to 

the group of the nearest neighbor classifiers, which assign a pixel to a class based on the Euclidian 

distance from that pixel to the nearest training data pixel in 𝑛 −dimensional feature space 

(Schowengerdt & Schowengerdt, 2006). For KNN, a user defines the 𝑘-parameter which is the 

number of training pixels. Thus, the algorithm searches away from the pixel to be classified in all 

directions until it meets 𝑘 pixels. Then, the pixel is assigned to the class with the majority of pixels 

encountered. The traditional KNN classifier was the most popular among the ones used in OBIA 

approach. However, from 2011, SVM and RF classifiers attracted great attention of many 

researchers due to the high performance of these algorithms (Ma et al., 2017). 

The SVM is a powerful technique for classification and regression problems based on a 

statistical learning theory (Vapnik, 2000). The basic idea of support vector machines for pattern 

classification is to construct an optimal hyperplane using a training sample subset to act as the 

support vectors and maximize the margin of separation. In other words, the SVM classifier finds 

the support vectors and the separation hyperplane for each pair of classes. It allows for the 

maximization of the margin between classes. It also provides a powerfully modern supervised 
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classification method that does not require an assumption of a normal distribution of data and 

needs many fewer samples than traditional MLC (Y. Wang, 2010). 

Some researchers found the superior performance of the SVM algorithm over traditional 

ML, minimum distance, and parallelepiped classifiers (Mountrakis et al., 2011), as well as over 

the advanced classifiers, such as Classification and Regression Trees (CART) and RF (Foody & 

Mathur, 2004; Nitze et al., 2012; Shao & Lunetta, 2012). 

Decision tree (DT) methods constitute another category of non-parametric pattern 

recognition techniques. In contrast to traditional statistical methods like KNN, which use all 

feature space covariates simultaneously, the DT methods are based on the partitioning of the 

dataset by constructing the chain of decisions. 

One of the most well-known DT classification algorithms is Classification and Regression 

Trees, which splits the training data into smaller sub-sets based on an attribute value test. The 

subsets created by the splits are called nodes. The subsets that are not split are called terminal 

nodes assigned to classes (Breiman et al., 1984). As a result, CART constructs a binary decision 

tree with homogeneous and pure nodes (Simioni et al., 2018).  The complexity of the model is 

defined by the parameters of the maximum depth and the number of child nodes. In general, the 

larger depth, the more complex the decision tree and the greater potential to achieve a higher 

classification accuracy. However, if too many nodes are created, the model may become over-

fitted (Qian et al., 2015). Pruning techniques are often used to reduce the likelihood of overfitting. 

Pruning allows reducing the size of decision trees by trimming the parts of the tree that do not 

provide power for the classification.  

The random forest (RF) classifier, developed by Breiman (2001a), uses a group of decision 

trees instead of one decision tree, which leads to improved classification results (Polikar, 2006). 
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Each decision tree is constructed using a sample with replacement from the training data using the 

bagging approach. The sample contains around 64% of instances, which appear in this sample at 

least one time. These instances are also called “in-bag instances.” The other 36% of instances 

remain “out-of-bag” (Fawagreh et al., 2014). When a large number of decision trees is generated, 

the most popular class is determined for each pixel via a majority voting procedure based on the 

votes obtained from the decision trees (Breiman, 2001a). 

The RF classifier has demonstrated its ability to increase the quality of land cover maps in 

various applications (Belgiu & Drăguţ, 2016; Hao et al., 2015; Novelli et al., 2016; Pelletier et al., 

2016). For example, Zhang et al. (2019) achieved 94.78% OA for in Yellow River Delta wetland 

classification using RF, while the OA of 67.09 % was obtained by using SVM. Moreover, the RF 

performance's computational time is considerably lower compared to other classifiers such as DT 

or SVM (Pelletier et al., 2016). However, it is worth noting that the accuracy and computational 

time depend on the number of input features. 

In general, RF was found to be most suitable for OBIA and found to achieve the highest 

mean classification accuracy, followed by the SVM and the DT classifiers (Li et al., 2016; Ma et 

al., 2017). Moreover, it was suggested that RF was less affected by the redundant data than other 

algorithms, including SVM (Li et al., 2016). Breiman (2001) identifies the following advantages 

of the RF algorithm: robustness to outliers and noise, fast speed of processing, the ability to 

generate valuable estimates of error, strength, and correlation. Last but not least, RF also provides 

information on the importance of the variables, which can be used as a means of feature selection 

and weighting of explanatory variables. Considering all these advantages of the RF, this algorithm 

was chosen to classify shoreline types in this study. The implementation of the RF allowed us to 

use highly dimensional data from a variety of sources, including the satellite data obtained from 

Sentinal-1 and -2 and DEM, achieving a considerably high overall accuracy. 



39 

 

2.3 Satellite-Based Shoreline Classification 

Most of the work on shoreline classification was done through the traditional manual 

interpretation of helicopter videography. The most extensive work to classify the Canadian Arctic 

shoreline using helicopter videography was done by Wynja (2014). As a result of this work, the 

coastal information of the following regions has been mapped: the Beaufort Sea region, Resolute 

Bay, Victoria Strait, Hudson Bay, James Bay, and the Labrador coast. However, realizing the 

limitations of the helicopter videography method as related to time processing, financial expenses, 

and logistics, several studies were conducted as a part of the eSPACE project to assess the potential 

of satellite images to classify coastal land types (Z. Chen et al., 2017; Banks et al., 2015; Demers 

et al., 2015; Banks et al., 2014a, 2014b; Demers et al., 2013). 

Satellite imagery has been used to map a variety of shoreline features (Brebbia, 2008). 

Satellite-based methods are becoming more successful as sensors are being developed with greater 

capabilities, and the data is getting to be more easily and widely accessible. The development of 

an automated algorithm to process satellite data would allow for a more cost- and time-effectively 

mapping, covering larger areas in comparison with the one conducted by the traditional helicopter 

videography method.  

Only a few studies assessed the potential of satellite data for shoreline sensitivity mapping. 

The majority of these studies were done for the Canadian coastline. These studies are summarized 

in Table 2.2 and discussed in this chapter. 

Banks et al. (2014a) focused on assessing the potential of using radar imagery for mapping 

coastal and near-shore land cover types. The images obtained from RADARSAT-2 were used as 

the main dataset. Various image acquisition parameters, including incidence angle and 

polarization, were explored to determine the most optimal for shoreline classification. Besides the 
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RADARSAT data, pan-sharpened SPOT-4 spectral bands were tested to investigate the potential 

of using multidimensional data for the improvement in classification results. 
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Table 2.5. Satellite-based shoreline classification studies over the Canadian coastline 

Article Sensor 
Number of 

classes 

 

Study area 

 

Classifier Input variables OA 

(Banks et al., 

2014a) 

RADARSAT-2 

 

SPOT-4 

16 

West Point, Richard Island, 

Beaufort Sea, NWT 

 

Tuktoyaktuk Harbour, 

Beaufort Sea, NWT 

PB MLC 

Shallow angle 

HH, HV, and VV backscatter 

values 

52.9% and 

59.1% 

Shallow angle 

HH, HV, and VV backscatter 

values; 

green, red, NIR, and MID 

bands 

86.1% and 

76.2% 

green, red, NIR, and MID 

bands 

82.5% and 

59.1% 

(Banks et al., 

2014b) 
RADARSAT-2 16 

West Point, Richard Island, 

Beaufort Sea, NWT 

 

Tuktoyaktuk Harbour, 

Beaufort Sea, NWT 

Unsupervised polarimetric SAR classifiers: 

Wishart-entropy/alpha, 

Wishart-entropy/anisotropy/alpha, Freeman-

Wishart 

Shallow, medium, and steep 

incidence angle SLC fine 

Quad- 

Pol images 

OA was not 

assessed 

 

(Demers et al., 

2015) 

RADARSAT-2,  

Spot 4-5 
9 

Richards Island, NWT 

 

 Ivvavik, Yukon Territory 

PB MLC 
FQ15, FQ30, 

green, red, NIR, and SWIR 

bands; 

slope grid 

73% and 

73% 

OB hierarchical classification 
74% and 

63% 

[Continued on the next page] 
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Table 2.5. Satellite-based shoreline classification studies over the Canadian coastline [continue] 

Article Sensor 
Number of 

classes 

 

Study area 

 

Classifier Input variables OA 

(Banks et al., 

2015) 

RADARSAT-2 

Landsat-5 
7 

Dease Strait,  Coronation 

Gulf, and Bathurst Inlet,  

NU 

RF 

Green, Red, NIR, SWIR-1 and 

-2, NDVI; 

Freeman-Durden 

decompositions: double-bounce 

and volume scattering; 

Touzi Decomposition: 

secondary and tertiary 

eigenvalues 

HV Intensity, 

DEM and Slope 

91% 

(Z. Chen et al., 

2017) 
Pléiades-HR 9 

Tuktoyaktuk Harbour, 

Beaufort Sea, NWT 

P-B MLC 

PAN, red, green, blue, IR 

NDVI, NDWI, 

DEM, slope 

87% 

P-B RF 81% 

O-B MLC 86% 

O-B RF 88% 
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The authors conducted a deep analysis of the backscatter characteristics of various 

shoreline types and found that a larger difference in incident angle affects backscatter substantially.  

Shallow angle images were found to be the most useful for interclass separability. However, other 

features, which could be extracted from SAR data (e.g., texture or band ratios), were not 

investigated, and only backscatter values were used as an input. As a result, the use of SAR data 

alone provided the worst OA (52.9% and 59.15%) in comparison with the accuracies obtained 

when only SPOT-4 data was used (82.5% and 59.1%) or when the combination of SPOT-4 and 

RADARSAT-2 data was used (86.1% and 76.2%). Moreover, focusing on assessing the 

RADARSAT potential, Banks (2014a) did not analyze the spectral characteristics of SPOT-4 data. 

However, the extraction of spectral indices and their incorporation in the classification process 

might improve the results significantly. 

Banks et al. (2014b) applied unsupervised polarimetric SAR classifiers, namely Wishart-

entropy/alpha, to improve an understanding of the scattering behavior of coastal land covers at 

various incidence angles Wishart-entropy/anisotropy/alpha, and Freeman-Wishart to Fine Quad-

Pol RADARSAT-2 data.  The OA was not assessed in this study. Instead, the results were 

evaluated through the analysis of whether the obtained clusters represented particular shoreline 

features. The results demonstrated a greater potential of shallow and medium angles data for class 

discrimination, which agreed with the previous study (Banks et al., 2014a). The results of this 

study are useful to improve the understanding of which SAR data features are the most useful for 

shoreline classification. However, the effect of using features must also be compared when used 

in combination with other data, including optical images and a DEM. The integration of radar and 

optical data might be beneficial as these sensors contain different information: optical sensors 

collect data associated with reflectance and emissivity, while radar data provide structural, textural, 
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and dielectric characteristics of land objects (Feng et al., 2019). For example, Demersh et al. (2015) 

developed a classification scheme using combined data obtained from multiple sources. Based on 

the findings from Banks et al. (2014a and 2014b), Demersh et al. (2015) used medium-to-shallow 

incidence angles Fine-Quad (FQ) fully polarimetric RADARSAT-2 data along with SPOT-4/-5 

and slope grid data for a supervised classification. Aiming to assess the pixel-based (P-B) and 

object-based (O-B) algorithms for shoreline classification, MLC and hierarchical classification 

were applied. Although researchers compared the results obtained from P-B and O-B approaches, 

it is worth noting that the input parameters varied both between the methods and between the two 

study areas. For example, the standard deviation VV feature and the mean SPOT NIR band were 

used to classify the study areas at Ivvavik. However, these features were not used for the 

classification in the Richard Island area. Also, the resolutions of slope grid data were different in 

each study (30 m and 40 m). These factors indicate the absence of consistency in the classifications 

in this research.  

The resolutions of DEMs used in Demers et al. (2015) were low, 30m and 40 m. However, 

accurate elevation data are essential for coastal mapping, especially in the Arctic, where the coastal 

zone is usually narrow. As a result of using the slope grid with coarse resolution, jagged edges at 

the land-water interface appeared in the final map obtained by P-B classification. 

Besides an assessment of different classification algorithms, Demers et al. (2015) explored 

the potential for classifier transferability by applying classification models trained on data from 

the Richards Island site to the Ivvavik site. The overall accuracy of 71% and 78% for the pixel- 

and object-based methods demonstrated the ability to classify shore classes using satellite data, 

allowing for the creation of the classification map along the whole Canadian coastline in the future. 

However, Demers et al. (2015) also formulated one of the main obstacles of using satellite imagery 
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for shoreline mapping which was the low probability of acquiring the data from multiple sources 

during the low tide period. This obstacle is critical as the shoreline classification focuses on 

intertidal zone, which is open during the low tide. 

The highest shoreline classification OA results were achieved by Banks et al. (2015). The 

RF Forest algorithm was used to classify the shoreline along the Dease Strait, Coronation Gulf, 

and Bathurst Inlet, Nunavut. Multiple RADARSAT-2 and Landsat 5 images were used along with 

the DEM data. Forty-nine predictor variables were analyzed, whereas only 14 of them were used 

in the final classification. The most important variables included Landsat-5 Green, Red, NIR, 

SWIR-1, SWIR-2 bands, NDVI values, Freeman-Durden double bounce and volume scattering, 

pedestal height, and secondary and tertiary eigenvalues of the Touzi decomposition, HV intensity, 

DEM values, and slope. The optimized model reached an OA accuracy of 91%, classifying the 

shoreline into seven types, demonstrating the ability to classify coastal land cover types at 

acceptable levels. However, although the authors noted that optical data are the most important for 

the classification, only seven variables extracted from the Landsat-5 data were analyzed. These 

variables were the six spectral bands and NDVI. The effects of other spectral indices, texture 

measures, or Principal Components (PCs) were not assessed. 

One of the main limitations of all previously discussed papers is the use of low- or medium-

resolution satellite images, which leads to misclassification between the coastal land covers. Chen 

et al. (2017) used very high-resolution optical Pléiades satellite imagery to classify the shoreline 

of Tuktoyaktuk Harbour  (same study areas as in Banks et al. (2014b, 2014a)), applying a hybrid 

object-based approach which included semi-automatic water/land separation, texture analysis 

based on local binary pattern (LBP), and RF classification. 



46 

 

Although the resolution of panchromatic and spectral bands is very high (0.5 m and 2 m, 

respectively), the obtained OA was 88%, which is only 2% higher than obtained by Banks et al. 

(2014a) using RADARSAT-2 and SPOT-4 data. Moreover, Chen et al. (2017) classified the shore 

into seven classes, while the number of classes used by Banks et al. (2014a) is 16. Since the 

classification accuracy decreases with an increase in the number of classes (Ma et al., 2017), the 

statement that the Pléiades High Resolution (HR) optical imagery provided more accurate 

information about the shore types was questionable. The accuracy was not significantly improved 

when using the higher resolution data. The Pléiades HR satellite provides images only in 

panchromatic and four spectral bands, including the blue, green, red, and IR. The lack of other 

bands outside the visible spectrum does not allow the construction of many spectral indices that 

might improve the separability between the classes. 

The major limitation of most of the studies discussed above is shoreline width relative to 

image resolution. Therefore, providing such detailed discrimination of classes following the SCAT 

methodology is not possible. The more general classes had to be adapted from the SCAT classes 

to avoid interclass confusion, which might be caused by the lower spatial resolution of satellite 

imagery in comparison to helicopter videography.  For example, Demers et al. (2015) combined 

the Sand beach/flat, Mud tidal flat, and Mixed fine sediment beach/tidal flat into Fine sediment 

class; while Pebble/Cobble beach, Boulder beach or bank, mixed coarse sediment tidal flat were 

merged into Coarse sediment class. As a result, there was no consistency in the number of shoreline 

classes between the studies. For instance, the number of classes in Banks et al. (2015), Chen et al. 

(2017), and Banks et al. (2014) were 7, 9, and 18, respectively. The number of classes that can be 

extracted from satellite data depends on the spatial and spectral characteristics of the sensor and 

the nature of the shoreline. For example, in this research, it was impossible to differentiate between 
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bedrock ramp, which has a steep slope, and bedrock cliff classes due to their similar spectral 

characteristics and the low DEM resolution.  
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3. Study Area and Data 

3.1 Study Area 

The area of interest for this investigation is located in the Avalon Peninsula, Newfoundland 

and Labrador (NL), covering approximately 1190 linear km of shoreline, as shown in Figure 3.1. 

The Avalon Peninsula is home to more than 260,000 residents, approximately 51% of the total 

population of Newfoundland (Government of Canada, 2012).  

 

Figure 3.1. Study area. 
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The Avalon Peninsula is located at the meeting point of warm North Atlantic Current and 

cold Labrador Current. The mixing of warm and cold waters creates a nearly continual presence 

of moist air and fog, especially during spring to early summer (Darack, 2006). 

Newfoundland’s coastal communities have traditionally relied on the harvesting of fish 

resources as a source of livelihood (Burella et al., 2021). Nowadays, the local fishing industry is 

represented mostly by small-scale enterprises owned by a single skipper or operating on one vessel 

(Murray et al., 2007). However, fisheries for cod, flatfish, herring, shellfish, and capelin spawning 

on gravel beaches of Newfoundland are still of high cultural and economic importance (Byron & 

Doyle, 2003; Catto & Etheridge, 2006). Also, the coastline of the Avalon Peninsula is recognized 

as one of the world’s most attractive tourism destinations (National Geographic, 2010). 

The Avalon Peninsula has one of Canada's most dynamic and physically variable coastlines 

(Catto, 2011). The dominant shoreline type is the bedrock cliff. The cliffs are habitats for various 

sessile organisms, such as sponges, corals, and anemones, which attach themselves to the substrate.  

The study area includes several ecologically valuable areas, provincial parks, and reserves, 

including Mistaken Point Ecological Reserve (MPER), nominated for the United Nations 

Educational, Scientific and Cultural Organization (UNESCO) World Heritage Site Status 

(UNESCO, 2010). MPER, established in 1987, contains some of the oldest and architecturally 

complex Ediacaran fossils (Narbonne & Gehling, 2003). 

The area includes islands that provide essential habitats for seabirds, such as gulls, puffins, 

and northern gannets, etc. These islands are often characterized by distinct plant and animal 

communities (NCC, 2020). A potential oil spill occurring near sensitive cliff and island habitats 

poses a significant risk to sea birds leading to their mortality. 
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The Avalon Peninsula is located adjacent to the major trans-Atlantic shipping lanes, which 

connect eastern North America and northwestern Europe. International vessel traffic and local 

fishery ship traffic result in the potential for oil spill accidents and deliberate discharge of oiled 

bilge water (Catto & Etheridge, 2006). 

Another potential source of an oil spill is the development of offshore oil platforms. The 

provincial capital, the city of St. John's, is the center of the oil and gas industry in Eastern Canada 

and is one of 19 World Energy Cities (WECP, n.d.). Four offshore oil-producing projects, 

including Hibernia, Terra Nova, White Rose, and Hebron, Newfoundland and Labrador produce 

25 percent of Canada’s conventional light crude. Oil production operations and the necessary 

vessel traffic are potential sources of an oil spill. The risk of accidental oil discharges during 

refinery and tanker operations is also of a big concern. 
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3.2 Data 

3.2.1 Satellite Data 

The primary sources of satellite data for this research include imagery from the Sentinel-2 

and Sentinel-1 missions operated by the European Space Agency. 

Sentinel-2 provides multispectral imagery with a spatial resolution ranging from 10 to 60 

m. The imagery was acquired in 13 spectral bands with a swath width of 290 km. The visible and 

near-infrared (NIR) bands are collected with a spatial resolution of 10 m. The short-wave infrared 

(SWIR) bands are provided at 20 m, while the coastal aerosol, water vapor, and SWIR-cirrus bands 

have a spatial resolution of 60 m. Sentinel-2 comprises a constellation of two identical satellites 

(Sentinel-2A and 2B) flying on the same orbit with a phase difference of 180 degrees and collecting 

imagery with a nominal revisit schedule of five days. The spectral and spatial characteristics of 

Sentinel-2 are shown in Table 3.1. Since bands 1, 9, and 10 are primarily designed to support 

atmospheric correction, they were not used in any subsequent analysis of shoreline types. 

  



52 

 

Table 3.1. Sentinel-2 sensor characteristics (ESA, n.d.) 

Description 

Sentinel-2 sensors 

Spatial 

Resolution (m) 

S2A S2B 

Central 

wavelength 

(nm) 

Bandwidth 

(nm) 

Central 

wavelength 

(nm) 

Bandwidth 

(nm) 

Band 1 Coastal aerosol 442.7 21 442.3 21 60 

Band 2 Blue 492 66 492.1 66 

10 Band 3 Green 559.8 36 559.0 36 

Band 4 Red 664.6 31 665.0 31 

Band 5 Vegetation red edge 704.1 15 703.8 16 

20 Band 6 Vegetation red edge 740.5 15 739.1 15 

Band 7 Vegetation red edge 782.8 20 779.7 20 

Band 8 NIR 832.8 106 833.0 106 10 

Band 8a Narrow NIR 864.7 21 864.0 22 20 

Band 9 Water vapor 945.1 20 943.2 21 
60 

Band 10 SWIR – Cirrus 1373.5 31 1376.9 30 

Band 11 SWIR 1613.7 91 1610.4 94 
20 

Band 12 SWIR 2202.4 175 2185.7 185 

 

Sentinel-2 images are available in two processing levels: Level-1C and Level-2A, 

corresponding to the top-of-atmosphere and bottom-of-atmosphere (or surface) reflectance in 

cartographic geometry. For this study, the Level-2A products were used, which was the mission 

Analysis Ready Data (ARD), i.e., radiometrically, geometrically, and atmospherically corrected, 

and can be used directly for the analysis. 

Three Sentinel-2A scenes (Figure 3.2) were acquired on June 5, 2020. They cover an area 

of 33,750 square km that includes a shoreline of 1150 km in length. The satellite images were 

selected based on several criteria, including image acquisition during the vegetation period, low 

cloud coverage, and low tides at the time of image acquisition. The satellite data were captured in 

clear weather conditions with minimal cloud coverage (0.06, 0.28, and 0.02 %).  
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Figure 3.2. Sentinel-2 image coverage. 

 

The Sentinel- 2 data was acquired at 12:08 pm Newfoundland Standard Time (NST), just 

around an hour before low tide, determined by Fisheries and Oceans Canada (2021) (Table 3.2). 

That was beneficial for the research as it allows the classification of the intertidal zone, which was 

considered the most vulnerable to oil spills (ECCC, 2018). At the time of image acquisition, the 

average water level was approximately 0.3-0.4 m, while the lowest and the highest water levels 

varied from 0.1 m to 1.5 m during the day. Table 3.2 demonstrates the low water levels closest to 

the image acquisition time.  
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Table 3.2. Low water level around the time of Sentinel-2 image acquisition. 

 Low water level (m) Low tide time (NST) 

Bell Island 0.1 12:58 

St. John’s 0.3 13.04 

Middle Cove 0.2 12:55 

St. Anthony 0.3 12:17 

Trepassey 0.2 13:15 

Data source: (Fisheries and Oceans Canada, 2021) 

 

The Sentinel-1 mission comprises two satellites, Sentinel-1A and Sentinel-1B, which carry 

a C-band SAR able to collect data regardless of weather conditions. The Sentinel-1 SAR 

instrument, operating at 5.405 GHz, supports four imaging modes (Yagüe-Martínez et al., 2016). 

In this research, the Level-1 Ground Range Detected (GRD) Interferometric Wide (IW) swath 

mode products were used. The imagery have a medium resolution of 20 m, and the two-satellite 

constellation offers a repeat cycle of 6 days on average.  

Two dual-polarized (HH+HV) scenes were acquired on June 6, 2020, at around 9:40 am 

NST (Figure 3.3). At the time of acquisition of Sentinel-1 imagery, the water level was relatively 

high, which was disadvantageous for the classification results and was taken into consideration 

(Table 3.3). It was suggested that HH and HV are the best polarizations for differentiating 

substrates based on surface roughness (Holah et al., 2005). Therefore, the images with both HH 

and HV polarizations were used in this project. 
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Table 3.3. Water level around the time of Sentinel-1 image acquisition 

 Low water level (m) Time (NST) 

Bell Island 0.8 08:28 

St. John’s 1.2 07:58 

Middle Cove 1.0 07:48 

St. Anthony 1.2 07:16 

Trepassey 1.4 08:17 

Data source: (Fisheries and Oceans Canada, 2021) 

 

 

Figure 3.3. Sentinel-1 image coverage. 
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3.2.2 Auxiliary Data 

Auxiliary data used in this investigation included Canadian Digital Elevation Models 

(CDEMs) datasets as well as aerial photography. CDEM dataset was downloaded from the 

Government of Canada website (Government of Canada., n.d.). CDEM forms part of the elevation 

system designed by Natural Resources Canada (NRCan, 2016). The CDEM with the highest 

available resolution (20 m) was used for this research as the elevation data was considered critical 

for identifying shoreline types (Demers et al., 2015). 

Aerial photography collected in red, green, and blue bands and having the spatial resolution 

of 0.5 m were also used as reference data to aid in interpreting satellite imagery. This dataset was 

acquired by the Government of Newfoundland and Labrador Surveys and Mapping Services 

Division during the summer of 2008 (Government of Newfoundland and Labrador, n.d.). In 

addition to aerial photography, Google Earth imagery was used for visual analysis of suitable 

training sample sites. 

3.2.3 Field Data 

A field survey to collect training and validation data was carried out in August 2020. Prior 

to any fieldwork, the study area was visually analyzed using high-resolution aerial photography 

and Google Earth imagery. The potential training sites were selected based on their 

representativeness of different shoreline types, as well as their accessibility. 

The SCAT classification scheme described in Chapter 2.1 was adapted in this research to 

reflect the scheme currently used by ECCC for shoreline classification (ECCC, 2018; Wynja et 

al., 2014). This classification has been the common standard for the physical description of 

shoreline types, backshore types, coastal character, and substrate types for national oil spill 

response in Canada. Additional classes, which were not used in SCAT methodology, were added 
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to the classification scheme in this research. These classes include water, forest, and grass.  Due 

to the narrow character of the intertidal zone for bedrock cliffs, the forest and the grass classes are 

vegetation layers located over the cliffs. Thus, technically the intertidal zones of these classes are 

represented by cliffs, not vegetation. However, the decision to keep these classes separate and not 

merge them with the bedrock cliff class was made because the difference between these land cover 

types affects the choice of an appropriate oil spill response technique and provides valuable 

information about accessibility to the areas. 

The field observations were collected in areas of homogeneous land cover. At each site, 

detailed information, including geographic coordinates, description of dominant land cover(s), and 

surrounding landscape, was collected, and on-site photographs were taken. 

The reference data polygons were defined in a geographic information system (GIS) based 

on the data collected in-situ as well as satellite, aerial, and Google Earth imagery. The locations of 

the samples are shown in Figure 3.1. The reference data were split into two datasets. Half of the 

polygons were used to train the classifiers, and the other half remained for the accuracy assessment 

of the classified coastal land maps. 

Two factors were considered in terms of the selection of sampling location areas. On the 

one hand, the site should be large enough to capture the characteristics of each class and avoid 

spectral mixing. On the other hand, the area had to be small enough to prevent high variations 

between pixel values and to increase class separability. The main concern was that the polygons 

had to be drawn in such a way that their boundaries did not include transition areas between 

different land cover types. However, the shorelines in the study area are often very narrow, 

especially in the case of bedrock cliffs. Therefore, in some cases, it was not possible to find a 

training site with an area wider than four pixels. 
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Figure 3.4 shows all categories identified during the fieldwork. Some of them were later 

merged to avoid interclass confusion. For example, the samples of man-made buildings and roads 

were used as separate subclasses for building learning databases, as they have different spectral 

characteristics. However, they were combined for the final classification due to the similarity of 

oil spill response techniques (ECCC, 2018). Similarly, bedrock high and low cliffs were merged 

into one category. Also, bedrock platforms having flat and rough surfaces forming the bedrock 

platform class. Table 3.4 summarizes the shoreline classes initially identified during the fieldwork, 

the generalized categories used for the final classification, and the corresponding pre-spill SCAT 

shoreline types as described in Chapter 2.1. 
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Figure 3.4. Initial shoreline types identified during fieldwork. 
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Table 3.4. Shoreline types used in this study and corresponding SCAT classes 

Shoreline classes identified during the 

fieldwork 

Generalized Shoreline Classes used for final 

classification in this study 

Corresponding SCAT 

Classes 

Man-Made structures/ buildings 
Man-Made 

Man-Made Solid; 

Man-Made Permeable Roads 

Bedrock flat platforms 

Bedrock Platform 

Bedrock 

Bedrock platform with rough bouldery 

surface 

Bedrock high cliffs 
Bedrock Cliff 

Bedrock low cliffs 

Pebble/Cobble Beach or Bank Pebble/Cobble Beach or Bank 
Pebble/Cobble Beach or 

Bank 

Sand beach or bank Sand beach or bank Sand beach or bank 

Forest Forest - 

Grass Grass - 

Water Water - 

  



61 

 

4. Methodology 

This chapter describes the methodology implemented in this study. The methodological 

workflow is provided in Figure 4.1.  

 

Figure 4.1. Methodology. 

 

First, preprocessing was implemented to ensure that all datasets have the same projection 

and cover the same area. This was achieved by applying the following steps: reprojection, 

mosaicking, and clipping. The following additional operations had to be performed with satellite 

data: calibration, orthorectification, speckle reduction for Sentinel-1 images, and spatial resolution 

enhancement for Sentinel-2 data. Next, several features, including spectral indices, band ratios, 

texture measures, and PCs, were generated. This was followed by an additional processing step, 

namely correlation matrices and box-and-whiskers plots, to identify the most useful features for 

classification. Finally, an object-based classification, which included image segmentation and 

applying RF classifier, was implemented. This was followed by the final accuracy assessment 

analysis. These major steps are discussed in more detail in the following subsections. 
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4.1 Image Preprocessing 

Sentinel-2 products in Level-2A were used in this study. Level-2A images correspond to 

the bottom-of-atmosphere reflectance in cartographic geometry and are utilized as the Analysis 

Ready Data mission, i.e., radiometrically, geometrically, and atmospherically corrected, meaning 

that they can be directly used for the analysis. However, some additional preprocessing steps were 

still required for this study. They included mosaicking and spatial resolution enhancement.  

Sentinel-2 imagery collected in visible and NIR bands had 10 m spatial resolution, while 

red-edge and SWIR bands data had the resolution of 20 m. The spectral bands with a 20 m spatial 

resolution were resampled to a pixel size of 10 m to maintain the spatial resolution integrity. For 

this purpose,  a super-resolution (SuperRes) method introduced by Brodu (2017) was applied. This 

technique relies on the assumption that the proportion of objects within a pixel area is the same 

across the bands. However, the reflectance of each element depends on the spectral band at which 

it is observed, and thus, varies from band to band. Starting from the highest resolution bands, this 

technique separates band-dependent spectral information, i.e., reflectance, from information that 

is common across all bands. i.e., the geometry of scene elements. Then, the model unmixes the 

low-resolution bands such that they are consistent with those band-independent scene elements 

while preserving their overall reflectance. The subsets of resulting products obtained by the super-

resolution algorithm implementation compared with original Sentinel-2 and resampled images are 

demonstrated in Appendix A. 

The preprocessing steps for Sentinel-1 data included calibration, orthorectification, speckle 

reduction, and image mosaicking. First, digital pixel values were converted to radiometrically 

calibrated SAR backscatter coefficient, which provides a backscatter ratio estimate per given 

reference area. The reference area can be defined to be in the slant range plane (Beta Naught 
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backscatter), locally tangent to an ellipsoidal model of the ground surface (Sigma Naught), or in 

the plane perpendicular to the line of sight from the sensor to an ellipsoidal model of the ground 

surface (Gamma Naught) (Small, 2011). In this research, the Sentinel-1 imagery was calibrated to 

the Sigma Naught 𝜎° using the procedure introduced by Filipponi (2019) implemented in the PCI 

Geomatica 2018 software.  

Speckle is one of the main SAR data drawbacks, which negatively affects the visual 

appearance of images and the accuracy of further image analysis (Lee, 1981). In this study, the 

enhanced Lee adaptive filter was selected to suppress the effect of speckle noise because of its 

ability to preserve edges, linear features, and texture information (Lee et al., 1994). A 5 x 5 window 

was selected due to the small size of shoreline features to be classified in this study. This allowed 

maintaining the boundaries between natural objects. 

Orthorectification of de-speckled Sentinel-1 data was performed using the rational function 

model (Zhang et al., 2011; Habib et al., 2007) based on the external DEM previously obtained 

from the Government of Canada website (Government of Canada., n.d.). 

A two-km buffer was created along the eastern part of the Avalon Peninsula coastline to 

define the boundaries of the study area. All datasets were projected to the Universal Transverse 

Mercator (UTM) Zone 22 N coordinate system using the WGS84 reference ellipsoid, mosaicked 

and clipped by the previously obtained study area polygon. The classification was applied only to 

the area inside this polygon to reduce computational expenses. 

4.2 Feature Extraction & Selection 

First, original spectral bands were extracted and used to inspect the spectral characteristics 

of shoreline features by constructing spectral profiles and box-and-whisker plots of pixel 
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distributions of classes in each band. During the exploratory analysis, spectral evaluation for the 

unique characteristics of some features has been performed.  

Spectral profiles were produced for the shoreline classes using the training sample 

polygons. Means of pixels for each class were derived after applying the SuperRes algorithm. The 

spectral response exploratory analysis allowed examining the separation capacity of the Sentinel-

2 data and generated additional predictable variables, such as band ratios and spectral indices. 

Next, 39 spectral features were extracted to assess their influence on classification performance. 

These spectral indices included soil (brightness-related), water, and vegetation indices which were 

sensitive to soil texture, moisture, and changes in organic matter content (Gholizadeh et al., 2018). 

A summary of the derived indices is presented in Table 4.1. 
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Table 4.1. Derived indices and band ratios details 

Index Definition Reference 

Normalized Difference 

Built-up Index 
𝑁𝐷𝐵𝐼 =

𝑆𝑊𝐼𝑅1 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅1 + 𝑁𝐼𝑅
 (Zha et al., 2003) 

Second Brightness Index 𝐵𝐼2 =
√𝑅𝑒𝑑2 + 𝐺𝑟𝑒𝑒𝑛2 + 𝑁𝐼𝑅2

3
 (Escadafal, 1989) 

Redness Index 𝑅𝐼 =
𝑅𝑒𝑑2

𝐺𝑟𝑒𝑒𝑛3 (Pouget et al., 1991) 

Brightness Index 𝐵𝐼 =
√𝑅𝑒𝑑2 + 𝐺𝑟𝑒𝑒𝑛2

2
 (Escadafal, 1989) 

Color Index 𝐶𝐼 =
𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛

𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛
 (Pouget et al., 1991) 

Difference Vegetation 

Index  
𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅𝑒𝑑 (Tucker, 1979) 

Green Normalized 

Difference Vegetation 

Index  
𝐺𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 (Gitelson et al., 1996) 

Infrared Percentage 

Vegetation Index  
𝐼𝑃𝑉𝐼 =

𝑁𝐼𝑅

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (Crippen, 1990) 

Inverted Red-Edge 

Chlorophyll Index  
𝐼𝑅𝐸𝐶𝐼 =

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑅𝐸1/𝑅𝐸2
 (Frampton et al., 2013) 

Modified Soil Adjusted 

Vegetation Index 

𝑀𝑆𝐴𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑) ∗ (1 + 𝐿)

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿
 , 

 𝑤ℎ𝑒𝑟𝑒 𝐿 = 1 − 2a ∗ NDVI ∗ WDVI, 

a is the slope of the soil line 

(Qi et al., 1994) 

Normalized Difference 

Pigment Index 
𝑁𝐷𝑃𝐼 =

𝑆𝑊𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑆𝑊𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 (Lacaux et al., 2007) 

Normalized Differential 

Turbidity Index 
𝑁𝐷𝑇𝐼 =

𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛

𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛
 (Lacaux et al., 2007) 

Modified Normalized 

Difference Water Index 
𝑀𝑁𝐷𝑊𝐼 =

𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅
 (Xu, 2006) 

Normalized Difference 

Water Index 
𝑁𝐷𝑊𝐼 =

𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 (McFeeters, 1996) 

Pigment Specific Simple 

Ratio (Cholophyll a)  
𝑃𝑆𝑆𝑅𝐴 =

𝑁𝐼𝑅

𝑅𝑒𝑑
 (Blackburn, 1998) 

Perpendicular Vegetation 

Index 
𝑃𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅𝑒𝑑 (Major et al., 1990) 

Transformed NDVI 𝑇𝑁𝐷𝑉𝐼 = √
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
+ 0.5 (Tucker, 1979) 

Weighted Difference 

Vegetation Index 

𝑊𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝛼𝑅𝑒𝑑 , 

 where α is the slope of the soil line 

(Clevers & Verhoef, 

1993) 

Aerosol-free Vegetation 

Index 

𝐴𝐹𝑅𝐼 =
𝑁𝐼𝑅 − 0.66𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅 + 0.66𝑆𝑊𝐼𝑅1
 

 

(Karnieli et al., 2001) 

[Continued on the next page] 
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Table 4.1. Derived indices and band ratios details [continue] 

Index Definition Reference 

Aerosol-free Vegetation 

Index 21 
𝐴𝐹𝑅𝐼21 =

𝑁𝐼𝑅 − 0.5𝑆𝑊𝐼𝑅2

𝑁𝐼𝑅 + 0.5𝑆𝑊𝐼𝑅2
 (Karnieli et al., 2001) 

Red Edge Chlorophyll 

Index 
𝐶𝐼𝑅𝑒𝑑𝐸𝑑𝑔𝑒 =

𝑅𝐸1

𝑅𝐸2
− 1 

(Clevers & Gitelson, 

2012) 

Two-band Enhanced 

Vegetation Index 𝐸𝑉𝐼2 =
2.5(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

𝑁𝐼𝑅 + 2.4𝑅𝑒𝑑 + 1
 (Jiang et al., 2008) 

Enhanced Vegetation 

Index 
𝐸𝑉𝐼 =

2.5(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

1 + 𝑁𝐼𝑅 + 6𝑅𝑒𝑑 − 7.5𝐵𝑙𝑢𝑒
 (A. Huete et al., 2002) 

Global Environment 

Monitoring Index 

𝐺𝐸𝑀𝐼 =
𝜂(1 − 0.25𝜂) − (𝑅𝑒𝑑 + 0.125)

1 − 𝑅𝑒𝑑
, 

 𝑤ℎ𝑒𝑟𝑒 𝜂 =
2(𝑁𝐼𝑅2 − 𝑅𝑒𝑑2) + 1.5𝑁𝐼𝑅 + 0.5𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 0.5
 

(Pinty & Verstraete, 

1992) 

Greenness Index 𝐺𝐼 =
𝐺𝑟𝑒𝑒𝑛

𝑅𝑒𝑑
 (Main et al., 2011) 

Green-Red Vegetation 

Index 
GRVI =

𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑
 (Motohka et al., 2010) 

Leaf Area Index 𝐿𝐴𝐼 = (3.618 ×  𝐸𝑉𝐼) –  0.118 (Boegh et al., 2002) 

Modified Chlorophyll 

Absorption Ratio Index 

Improved 

𝑀𝐶𝐴𝑅𝐼2 =  
1.5(2.5(𝑁𝐼𝑅 − 𝑅𝑒𝑑)) − (1.3(𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛))

√(2𝑁𝐼𝑅 + 1)2 − (6𝑁𝐼𝑅 − 5√𝑅𝑒𝑑 − 0.5

 (Haboudane et al., 

2004) 

Modified Chlorophyll 

Absorption in Reflectance 

Index 
𝑀𝐶𝐴𝑅𝐼 = ((𝑅𝐸 − 𝑅𝑒𝑑) − 0.2(𝑅𝐸 − 𝐺𝑟𝑒𝑒𝑛)) ∗

𝑅𝐸

𝑅𝑒𝑑
 (Daughtry et al., 2000) 

Modified Soil Adjusted 

Vegetation Index 𝑀𝑆𝐴𝑉𝐼2 = 0.5(2(𝑁𝐼𝑅 + 1) − √2𝑁𝐼𝑅 + 12 − 8(𝑁𝐼𝑅 − 𝑅𝑒𝑑) (Qi et al., 1994) 

Modified Triangular 

Vegetation Index 
𝑀𝑇𝑉𝐼 = 1.2(1.2(𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛) − 2.5(𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛)) 

(Haboudane et al., 

2004) 

Normalized Differences 

Vegetation Index 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (Tucker, 1979) 

Normalized Multi-band 

Drought Index 
𝑁𝑀𝐷𝐼 =

𝑁𝐼𝑅 − (𝑆𝑊𝐼𝑅1 − 𝑆𝑊𝐼𝑅2)

𝑁𝐼𝑅 + (𝑆𝑊𝐼𝑅1 − 𝑆𝑊𝐼𝑅2)
 (L. Wang & Qu, 2007) 

Optimized soil-adjusted 

vegetation index 𝑂𝑆𝐴𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 0.16
  (Rondeaux et al., 1996) 

Red Edge Normalized 

Difference Vegetation 

Index 
𝑅𝐸𝑁𝐷𝑉𝐼 =

𝑅𝐸 − 𝑁𝐼𝑅

𝑅𝐸 + 𝑁𝐼𝑅
 (Gitelson et al., 1996) 

Ratio  Vegetation-Index 𝑅𝑉𝐼 =
𝑅𝑒𝑑

𝑁𝐼𝑅
 

(Pearson & Miller, 

1972) 

Soil Adjusted  Vegetation  

Index 𝑆𝐴𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑) ∗ (1 + 𝐿)

𝑁𝐼𝑅 − 𝑅𝑒𝑑 + 𝐿
 , 𝑤ℎ𝑒𝑟𝑒 𝐿 = 0,5 (A. R. Huete, 1988) 

 

Principal component analysis was applied to Sentinel-2 data to create and explore the 

predictable variables for classification. Ten Sentinel-2 bands (i.e., B2 to B8a, B11, and B12) were 

used as an input for PCA analysis, creating ten principal components. 
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Several textural features were calculated based on the GLCM (Haralick et al., 1973) for 

visible and NIR bands of the satellite image, including contrast, dissimilarity, and homogeneity, 

ASM, energy, entropy, mean, variance, and GLCM correlation were also extracted (Table 4.2). 

Image texture was analyzed using a window size of 5 x 5, which correspond to the area of 2500 

m² on the ground. This window size was the smallest window size available in ESA Sentinel 

Application Platform v8.0.0. It was chosen due to the nature of shorelines, which are generally 

narrow along the coastline in the study area. Therefore, having a smaller window size allowed 

maintaining the boundaries between various land cover types. 

Table 4.2. GLCM texture measures and their equations. 

GLCM Texture Variable Equation 

Contrast 

Contrast 𝐶𝑂𝑁 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2𝑁−1
𝑖,𝑗=0   

(4-1) 

 

Dissimilarity 𝐷𝐼𝑆𝑆 = ∑ 𝑃𝑖,𝑗⃒𝑖 − 𝑗⃒𝑁−1
𝑖,𝑗=0   (4-2) 

Homogeneity 𝐻𝑂𝑀 = ∑
𝑃𝑖,𝑗

1+(𝑖−𝑗)2
𝑁−1
𝑖,𝑗=0   (4-3) 

Orderliness 

Angular Second Moment 𝐴𝑆𝑀 = ∑ 𝑃𝑖,𝑗
2𝑁−1

𝑖,𝑗=0   (4-4) 

Energy 𝐸 = √𝐴𝑆𝑀 (4-5) 

Entropy 𝐸𝑁𝑇 = ∑ 𝑃𝑖,𝑗(− ln 𝑃𝑖,𝑗)𝑁−1
𝑖,𝑗=0   (4-6) 

Maximum Probability 𝑀𝐴𝑋 = 𝑚𝑎𝑥𝑖𝑗 𝑃𝑖,𝑗  (4-7) 

Statistics 

Mean 
µ𝑖 = ∑ 𝑖(𝑃𝑖,𝑗)𝑁−1

𝑖,𝑗=0   

µ𝑗 = ∑ 𝑗(𝑃𝑖,𝑗)𝑁−1
𝑖,𝑗=0   

(4-8) 

Variance 

𝜎𝑖
2 = ∑ 𝑃𝑖,𝑗(𝑖 − µ𝑖)2𝑁−1

𝑖,𝑗=0   

 
𝜎𝑗

2 = ∑ 𝑃𝑖,𝑗(𝑗 − µ𝑗)2𝑁−1
𝑖,𝑗=0   

(4-9) 

Correlation 𝐶𝑂𝑅 = ∑ 𝑃𝑖,𝑗[
(𝑖−µ𝑖)(𝑗−µ𝑗)

√(𝜎𝑖
2)(𝑗)

]𝑁−1
𝑖,𝑗=0   (4-10) 

𝒊 and 𝒋 are the labels of the GLCM columns and rows, respectively. 

𝑷𝒊,𝒋 is the probability of values 𝒊 and 𝒋 occurring in neighboring pixels in the original image within the user-defined window. 

 

In total, 76 potential predictor variables were generated, including 10 spectral, 44 spectral 

indices, ten principal components, 40 texture measures, and two radar backscattering features. 

Training sample statistics were collected from each imagery for feature selection to identify the 

most useful features for classification.  
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Feature selection was conducted based on the visual analysis of box-and-whisker plots, as 

this type of analysis provides a better understanding compared to the statistical analysis (Jensen, 

2016). 

To exclude the bands with redundant spectral information, correlation matrices were 

produced. In particular, a feature from a pair of features with an absolute correlation value higher 

than 0.9 was excluded from further analysis. This reduced the data dimensionality and, thus, 

minimized the image classification processing time without affecting the accuracy. 

4.3 Segmentation 

Following preprocessing, the satellite image was partitioned into non-overlapping 

homogeneous regions using the MRS algorithm. Image segmentation was performed in the 

Trimble eCognition Developer 9.5.0. In particular, the MRS approach creates a hierarchical 

network of image objects by implementing the segmentation at different levels with various 

parameters. Each object is encoded with its neighbors, super-object, and sub-objects (Göttsche & 

Olesen, 2002). In this study, a two‐level hierarchical network of objects was created. Since a DEM 

and slope parameters play a key role in defining shoreline classes, these variables were used to 

create the first segmentation level. The second level was generated based on the VNIR bands, as 

they have the highest spatial resolution among Sentinel-2 images. Notably, using a DEM and slope 

parameters is not very common in remote sensing for the image segmentation process. However, 

several studies proved the efficiency of segmentation using different terrain attributes for various 

purposes, such as identification of different landscape types (Eisak et al., 2014; Iwahashi et al., 

2018; Iwahashi & Pike, 2007; Stepinski & Bagaria, 2009) or building localization and 

classification (Miliaresis & Kokkas, 2007; Woestyne et al., 2004). 
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Three parameters of scale, shape, and compactness must be determined for using MRS. 

Since there are no generally accepted segmentation criteria for shoreline classification, several 

combinations of parameters were examined. For shape and compactness parameters, the lowest 

values were chosen due to the nature of Newfoundland’s coastal zone, which is generally narrow. 

The optimal segmentation parameters were assessed visually through an iterative process. Various 

scale parameters from 10 to 50 were tested. The scale parameter determines the maximum standard 

deviation of the homogeneity with regard to the image layers’ weights. In general, smaller values 

of the scale parameter produce smaller image objects. The scale parameters from 30 to 40 

demonstrated the most acceptable results during visual analysis. Then, several classifications were 

implemented using the scales of 30 to 40, and the segmentation model that produced the best 

classification results was selected for further analysis. As a result, the values of 35, 0.1, and 0.1 

were chosen for scale, shape, and compactness, respectively.  

4.4 Random Forest Classification 

The Random Forest (RF) classifier described by Breiman (2001a) was used in this research 

as it demonstrated advantages (such as robustness to outliers and noise, high processing speed, and 

the ability to generate useful estimates of error) over other algorithms in many satellite-based land 

cover classification studies, including robustness to outliers and noise, high processing speed, the 

ability to generate useful estimates of error, strength, and correlation (Belgiu & Drăguţ, 2016; 

Pelletier et al., 2016; Pal, 2005; Breiman, 2001b; Breiman et al., 1984). Some studies suggested 

that RF was less affected by redundant data compared to the other algorithms, such as 𝐾-nearest 

neighbor (KNN) and support vector machine (SVM) (Li et al., 2016).  

In general, the RF classifier is an ensemble learning method that generates a number of 

trees from training samples and their subsets (Breiman, 2001b). The dataset is classified several 
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times using a random subselection of training pixels. This results in creating multiple decision 

trees. The final decision is made based on a vote of each tree, i.e., the most frequent tree output is 

used as the final one (Gislason et al., 2006). 

Considering all these advantages, RF was chosen to classify shoreline types in this study. 

Also, the implementation of RF allowed using high dimensional data from a variety of sources, 

including satellite data obtained from Sentinel-1 and -2, as well as topographical features.  

RF classifiers require several parameters that should be determined by a user, including the 

number of trees (𝑁) and the number of variables for splitting at each tree node (𝑀). The 𝑀 

parameter was set as the square root of the number of the available layers, as suggested by previous 

related research (Belgiu & Drăguţ, 2016; Gislason et al., 2006). Increasing the 𝑁 parameter leads 

to higher accuracy rates, although this improvement levels off eventually. In this study, 1000 trees 

have been generated in the forest. The decision about the number of trees was based on previous 

studies where fewer than 1000 trees reduced the classification accuracy, while more trees did not 

improve results (Reese et al., 2014; Guan et al., 2013; Millard & Richardson, 2013). 

Ten classification scenarios were tested to find the best combination of input variables 

producing the highest classification results. The tested scenarios contained various combinations 

of input variables including original Sentinel-2 bands, principal components, textural measures, 

spectral indices, SAR backscatter data, and terrain parameters. The results obtained from the best 

coastal land classification model were used to create the shoreline classification map. The polyline 

shapefile representing the shoreline was divided into 0.5 km long segments. Then, each segment 

was assigned to a class based on the information of the closest polygon of the coastal land 

classification map. 
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As a result, the two classification maps are created: shoreline and coastal land cover maps. 

The coastal land cover map shows the polygons representing different types of surfaces within a 

two km buffer from the shoreline. This area covers both foreshore and backshore zones. The 

shoreline classification map depicts the line representing various sediment types of a coastline, 

i.e., a line that forms the boundary between the land and the ocean. 

4.5 Accuracy Assessment 

The classification accuracies were assessed for each scenario to investigate the degree of 

‘correctness’ of the resulting maps (Campbell & Wynne, 2011). An accuracy assessment was 

performed using a confusion (error) matrix, a cross-tabulation of the assigned class against the 

corresponding class observed in the field (Canters, 1997).  

Global and class-dependent measures of accuracy, including overall accuracy (OA), 

producer’s accuracy (PA), user’s accuracy (UA), and Cohen’s Kappa statistic, were derived from 

an error matrix. The model with the highest OA was considered the one that produced the best 

classification results. 

The description of these measures is presented in Table 4.3. To obtain OA, the number of 

correctly classified pixels was divided by the total number of test pixels. The total number of 

correct pixels in a class was divided by the total number of pixels of the corresponding class 

identified during the fieldwork to calculate PA. UA was obtained by dividing the total number of 

correct pixels in a class by the total number of pixels classified in that class. The Kappa index was 

calculated as the number of correctly classified pixels by the model divided by the number of 

correctly classified pixels by random chance (Camps-Valls et al., 2011; Zhenku & Redmond, 

1995). 
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Table 4.3. The accuracy measures calculated in this research 

Description Equation 

Overall accuracy (OA) is obtained from the matrix by dividing the 

number of pixels correctly classified by the total number of test pixels. 
𝑂𝐴 =

∑ 𝑛𝑗𝑗
𝑞
𝑗=1

𝑁
 ( 4-11) 

User’s accuracy (UA) of a class is the proportion of the pixels 

classified as a class 𝑖 that has reference class 𝑖. UA is a measure of 

commission error (errors of inclusion) and indicates the probability of 

a classified pixel on the map to represent that category on the ground 

𝑈𝑖 =
𝑛𝑖𝑖

∑ 𝑛𝑖𝑗
𝑞
𝑗=1

 ( 4-12) 

Producer’s accuracy (PA) of a class represents the probability that a 

pixel belonging to class j in the reference dataset is correctly classified. 

PA is the total number of correct pixels in a class divided by the total 

number of pixels of the corresponding class identified from the 

ground-truth data (i.e., the column total). PA is a measure of omission 

error (errors of exclusion) and shows the probability of reference 

pixels correctly classified. 

𝑃𝑗 =
𝑛𝑗𝑗

∑ 𝑛𝑖𝑗
𝑞
𝑖=1

 ( 4-13) 

Kappa coefficient, or the Kappa index of agreement (KIA), reflects the 

difference between actual agreement and the agreement expected by 

chance. 

𝐾𝐼𝐴 =

∑ 𝑛𝑗𝑗
𝑞
𝑗=1

𝑁
− ∑ 𝑃𝑖+𝑃+𝑗

𝑞
𝑖=1

1 − ∑ 𝑃𝑖+𝑃+𝑗
𝑞
𝑖=1

 ( 4-14) 

𝑛 is the number of pixels, 

𝑞 is the number of classes, 

𝑁 is the total number of test pixels, 

𝑖 and 𝑗 are {1,2, … 𝑞} and represent the classified on the map and the reference (ground truth) classes represented 

by rows and columns, respectively, in an error matrix. 

 

The evaluation of whether the differences between the accuracies obtained from various 

scenarios are statistically significant was done to ensure that the accuracies are similar in a 

statistical sense.  
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The non-parametric McNemar’s test was used in this study because it is designed to assess 

the statistical significance of the difference between two proportions when samples are not 

independent (McNemar, 1947). First, a 2 × 2 dimension confusion matrix of the number of 

correctly and wrongly classified pixels for each pair of scenarios was calculated. The following 

elements were computed from an error classification matrix: 𝑓12 is the number of samples correctly 

classified by the first scenario but misclassified by the second one;  𝑓21 is the number of samples 

wrongly classified by the first scenario but correctly classified by the second one;  𝑓11 and 𝑓22 are 

the numbers of samples correctly classified and misclassified by both scenarios, respectively. 

Table 4.4. The matrix of correctly and incorrectly classified pixels for classifications used 

for McNemar's test 

Allocation 

Classification 2 

Correct Incorrect Sum 

C
la

ss
if

ic
at

io
n

 1
 Correct 𝑓11 𝑓12  

Incorrect 𝑓21 𝑓22  

Sum    

 

Then, 𝑧 score was also calculated as: 

𝑧 =
𝑓12 − 𝑓21

√𝑓12 + 𝑓21

 (4-15) 

The null hypothesis 𝐻0 of no significant difference was rejected at 5% level if |𝑧| is less than 1.96 

(Kumar et al., 2017). Also, the chi-square (𝑋2)-test was calculated to assess whether the difference 

between classifications is significant using the following equation: 
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𝑋2 =
(𝑓12 − 𝑓21)2

𝑓12 + 𝑓21
 (4-16) 

The obtained 𝑋2 value was compared against the tabulated chi-squared values. The 𝐻0, of no 

significant difference, was rejected if the obtained 𝑋2 was less the tabulated chi-squared value at 

a particular level of significance with one degree of freedom (de Leeuw et al., 2006). 

Similar to the coastal land classification map, the assessment of the shoreline classification 

map was performed through the computation of a confusion matrix. The samples for accuracy 

assessment were generated by the creation of randomly distributed points within the previously 

collected polygons for validation. The points among each class were allocated proportionally to 

the total area of polygons of each shoreline type (i.e., the shoreline type having a larger total area 

of polygons gets more points). The confusion matrix was used to calculate accuracy assessment 

matrices, including OA, PA, UA, and Kappa statistics. 
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5. Results 

5.1 Selection of Predictor Variables 

During the preprocessing and the feature extraction steps, 10 Sentinel-2 bands were 

enhanced and unified by 10 m resolution by utilizing a SuperRes method (Brodu, 2017). De-

speckled Sigma Naught 𝜎° backscatter values were extracted for dual-polarized HH and HV 

Sentinel-1 bands.  

Thirty-nine spectral indices were extracted following the equations in Table 4.1. These 

spectral indices included soil (brightness-related), water, and vegetation indices, which were 

sensitive to soil texture, moisture, and changes in organic matter content (Gholizadeh et al., 2018). 

In addition, 40 textural features were extracted using the equations shown in Table 4.2. The list of 

all extracted variables is shown in Table 5.1. 

The feature selection process involved the exclusion of redundant bands based on the 

analysis of correlation matrices and box-and-whiskers plots. The detailed description of the results 

obtained during the feature extraction and selection steps is presented in the following subsections. 
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Table 5.1. Extracted features from Sentinel-2 and Sentinel-1. 

Sentinel-2 bands 

B2 - Blue B7 - Vegetation red edge-3 

B3 - Green B8-NIR 

B4 - Red B8a-Narrow NIR 

B5 - Vegetation red edge-1 B11-SWIR-1 

B6 - Vegetation red edge-2 B12-SWIR-2 

Sentinel-1 bands 

Sigma Naught 𝜎° backscatter values extracted from HH band 

Sigma Naught 𝜎° backscatter values extracted from HV band 

Spectral Indices 

Normalized Difference Built-up Index (NDBI) Aerosol-free Vegetation Index 21 (AFRI 21) 

Second Brightness Index (BI2) Red Edge Chlorophyll Index (CIRedEdge) 

Redness Index (RI) Two-band Enhanced Vegetation Index (EVI2) 

Brightness Index (BI) Enhanced Vegetation Index (EVI) 

Color Index (CI) Global Environment Monitoring Index (GEMI) 

Difference Vegetation Index (DVI) Greenness Index (GI) 

Green Normalized Difference Vegetation Index  (GNDVI) Green-Red Vegetation Index (GRVI) 

Infrared Percentage Vegetation Index (IPVI) Leaf Area Index (LAI) 

Inverted Red-Edge Chlorophyll Index (IRECI) 
Modified Chlorophyll Absorption Ratio Index Improved 

(MCARI2) 

Modified Soil Adjusted Vegetation Index (MSAVI) 
Modified Chlorophyll Absorption in Reflectance Index 

(MCARI) 

Normalized Difference Pigment Index (NDPI) Modified Soil Adjusted Vegetation Index (MSAVI2) 

Normalized Differential Turbidity Index (NDTI) Modified Triangular Vegetation Index (MTVI) 

Modified Normalized Difference Water Index (MNDVWI) Normalized Differences Vegetation Index (NDVI) 

Normalized Difference Water Index (NDWI) Normalized Multi-band Drought Index (NMDI) 

Pigment Specific Simple Ratio (Cholophyll a) (PSSRA) Optimized soil-adjusted vegetation index (OSAVI) 

Perpendicular Vegetation Index (PVI) 
Red Edge Normalized Difference Vegetation Index 

(RENDVI) 

Transformed NDVI (TNDVI) Ratio  Vegetation-Index (RVI) 

Weighted Difference Vegetation Index (WDVI) Soil Adjusted  Vegetation  Index (SAVI) 

Aerosol-free Vegetation Index (AFRI)  

Texture measures - extracted for B2, B3, B4, and B8 

Contrast (CON) Entropy (ENT) 

Dissimilarity (DISS) Maximum Probability (MAX) 

Homogeneity (HOM) Mean 

Angular Second Moment (ASM) Variance (VAR) 

Energy (E) Correlation (COR) 

 

5.1.1 Spectral Bands and Indices 

Spectral profiles (Figure 5.1) were constructed for the eleven shoreline classes defined 

based on the training sample polygons to examine the separation capacity of the Sentinel-2 data. 

These classes are low bedrock cliff, high bedrock cliff, bedrock ramp, bedrock platform/low ramp, 
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bedrock boulder platform, forest, grass, man-made, road, pebble/cobble, and sand. The lines in 

the figure represent the average pixel value for each class.  

 

Figure 5.1. Spectral profiles of shoreline types using Sentinel-2A data.  

 

All bedrock classes demonstrated a similar spectral response. They were characterized by 

a slight increase in spectral responses from visible bands to the narrow NIR, followed by a slight 

decrease in the SWIR spectrum. Road and pebble/cobble classes followed similar curves across 

the bands. This similarity may also be observed in the box-and-whisker plots constructed for all 

ten Sentinel-2 bands shown in Appendix C (Figure C.1 to Figure C.10). In general, the potential 

of visible bands to differentiate between non-vegetated classes is low. The largest separability 

potential among these classes is found between the high bedrock cliff and bedrock platform.  

A noticeable increase of spectral reflectance from red-edge to NIR bands may be easily 

observed for the vegetation classes, i.e., forest and grass. These characteristics are widely used for 

the computation of different vegetation indices, which were also calculated in this study. 
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While the DN of the man-made class, which mostly includes buildings and structures, does 

not dramatically change from visible to NIR bands, the values significantly rise from NIR to SWIR 

bands. This can be explained by the fact that roofs usually contain a strong iron-oxide component, 

which is characterized by absorption at visible and NIR (Herold et al., 2004). The reflectance 

increasing towards longer wavelengths may be also related to the absence of water features in 

roofs’ material (Heiden et al., 2001). This difference between the reflectance values of man-made 

features in NIR and SWIR is usually used to compute NDBI, which helps to distinguish built-up 

areas from the other classes.  In this study, it was found that the narrow NIR band has lower mean 

values for the man-made class, and computed an index using B8a and SWIR to discriminate man-

made class from the others. It is worth noting that the sand class also rises from B8a to B11. 

Therefore, confusion between the man-made and sand classes may occur. Pebble/cobble pixel 

values slightly decreased between visible and NIR bands. This distinctive feature was used to 

compute another spectral index using B4 and B8a bands.  

In addition to these proposed indices, the other 39 existing spectral indices described in 

Chapter 4.2 were examined. The correlation matrix (Appendix B) was also constructed to find the 

highly correlated indices. A feature from a pair with an absolute correlation value higher than 0.9 

was excluded from further analysis. The remaining indices were further analyzed for the ability to 

separate different shoreline types using the visual interpretation of box-and-whisker plots. The 

products, for which the boxes in box-and-whisker plots were overlapping for multiple classes, 

were considered insignificant and were excluded from further analysis. The indices initially 

incorporated for classification were NDPI, MNDWI, IRECI, GNDVI, IPVI, NDWI, CI, NDBI, 

(𝐵4−𝐵8𝑎)

(𝐵4+𝐵8𝑎)
 (further refer to as Ratio 1), 

(𝐵8𝑎−𝐵2)

(𝐵8𝑎+𝐵2)
 (further refer to as Ratio 2), 

(𝐵11−𝐵8𝑎)

(𝐵11+𝐵8𝑎)
 (further refer 

to as Ratio 3). However, only four of them (NDBI, MNDWI, Ratio 1, and Ratio 2) were selected 
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for the final classification during the next feature selection step, which was implemented using the 

trial and error method. The box-and-whisker plots of these products are shown in Appendix C 

(Figure C.11 to Figure C.14). 

5.1.2 Principal Component Analysis 

Ten principal components were obtained from the PCA. An exploratory analysis was 

conducted to examine the usefulness of these components for shoreline classification. The first 

principal component describes 96.05% of the variance in the ten Sentinel-2 bands used for this 

research. The second principal component accounts for 3.13% of the remaining variance, while 

the third one explains another 0.65%, bringing the total of the first three components to 99.82% 

(Table 5.2). This was in agreement with the visual inspection, which found the best image quality 

of the first principal component that is decreasing sequentially with each subsequent remaining 

principal component, as it is shown in Appendix D (Figure D.1). 

Table 5.2. Percent and Accumulative of Eigenvalues 

Principal Component Variance Explained [%] Cumulative Variance Explained [%] 

PC1 96.7729 96.7729 

PC2 2.481 99.254 

PC3 0.580 99.834 

PC4 0.059 99.893 

PC 5 0.041 99.934 

PC 6 0.021 99.955 

PC 7 0.018 99.973 

PC 8 0.012 99.985 

PC 9 0.008 99.993 

PC 10 0.007 100 

 

The first principal component is highly correlated with the NIR, Red Edge, and SWIR 

bands, while the second principal component's highest correlation was found with the blue band 

(Appendix B). Box-and-whisker plots of all principal components are presented in Appendix C 
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(Figure C.14 to Figure C.24). Like the visible bands, principal components do not provide a strong 

separability between non-vegetated classes. However, the use of several variables may help in 

successful discrimination between different shoreline types. For example, while the first principal 

component shows a similar distribution between pebble/cobble and platform, these classes were 

separable using principal components 2, 3, and 7. Likewise, the box-and-whisker plots for both 

principal components 1, 2, and 6 demonstrate the difference between the distribution of the values 

of platform and cliff. At the same time, other principal components have similar values for these 

classes. The best separability of water from other classes was found for the first principal 

component product. 

As shown in Table 5.2, the first three principal components explain a large proportion of 

the variance, and subsequent principal components explain much less. With the decrease of 

information contained in each subsequent PC, the interclass separability potential of these 

components is also declining. Therefore, principal components 8-10 products were removed from 

the final classification as they did not provide interclass separability.  

5.1.3 Texture Features 

As a result of texture analysis, 10 GLCM measures were created for each of the blue, red, 

green, and NIR Sentinel-2 bands (Table 5.3). First, the correlation matrix was computed for all 40 

texture features (Figure B.2). Many of these measures were highly correlated because of the 

calculation method, as it agrees with Hall-Beyer (2016). One of the texture measures within a pair 

with an absolute correlation value higher than 0.9 was excluded from further analysis. The decision 

to exclude a feature for a pair was made based on the corresponding box-and-whisker plots. The 

box-and-whisker plots of the remaining measures are represented in Appendix C (Figure C.25 to 

Figure C.30).  However, not all of them were included in the final classification. RF was 
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implemented in the Trimble eCognition Developer 9.5.0 software, which also produced variable 

importance estimations, providing qualitative analysis of the variable contribution. During the trial 

and error approach, the least important variables were excluded from the classification scenario 

and the resulted OA was checked. If the resulted OA increased, these features were excluded from 

further analysis. If the OA did not increase, the features were returned to the classification scenario. 

The improvement of the OA (from 84.2% in scenario 5 to 85.6% in scenario 8) was observed when 

B3 CON, B3 DISS, and B4 ASM were not used. As a result, only six texture features, including 

B2 CON, B2 E, B2 VAR, B2 ENT, B4 COR, and B3 contrast (Figure 5.2), were employed in the 

final classification. Table 5.3 summarizes a list of textural features extracted and employed for 

shoreline classification in this study. 

To conclude, only 18 features remained during the feature selection process, which was 

performed through box-and-whisker plots, correlation matrices, and classification accuracy 

assessment. The correlation matrix of these features is shown in Figure 5.3. 

Table 5.3. Texture measures extracted in the study 

Texture measures 
Sentinel-2 bands 

B2 B3 B4 B8 

Contrast (CON) ✓ ᴼ × × 

Dissimilarity (DISS) × ᴼ × × 

Homogeneity (HOM) × × × × 

Angular Second Moment (ASM) × ✓ ᴼ × 

Energy (E) ✓ × × × 

Entropy (ENT) ✓ × × × 

Maximum Probability (MAX) × × × × 

Mean × × × × 

Variance (VAR) ✓ × × × 

Correlation (COR) × × ✓ × 

 

✓ the measures included in the final classification 

ᴼ 
the measures, which were left after analysis of correlation matrix and box-and-whisker plots, but not included in the final 

classification 

× the measures which were excluded after correlation matrix and box-and-whisker analysis 
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Figure 5.2. The most important GLCM texture measures. 
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Variable 𝜎𝐻𝐻
°  

B4 

COR 

B3 

ASM 

B2 

ENT 

B2 

VAR 

B2 

E 

B2 

CON 
MNDWI NDBI Ratio 1 Ratio 2 PC7 PC6 PC5 PC4 PC3 PC2 PC1 

σHH
°  1.00 0.06 -0.04 0.04 0.00 -0.03 0.03 0.00 0.01 0.00 0.00 0.02 0.03 -0.04 0.03 -0.01 0.02 0.09 

B4 

CORR 
0.06 1.00 0.46 0.75 0.80 0.55 0.53 -0.02 -0.01 0.00 0.00 -0.03 -0.05 -0.15 0.24 -0.01 -0.54 0.90 

B3 

ASM 
-0.04 0.46 1.00 0.17 0.66 0.88 0.07 -0.01 0.01 0.00 0.00 -0.02 -0.02 -0.06 0.11 0.03 -0.45 0.39 

B2 

ENT 
0.04 0.75 0.17 1.00 0.80 0.35 0.74 -0.01 0.00 0.00 0.00 -0.03 -0.07 -0.16 0.27 -0.04 -0.18 0.71 

B2 

VAR 
0.00 0.80 0.66 0.80 1.00 0.83 0.50 -0.02 0.00 0.00 0.00 -0.06 -0.08 -0.18 0.30 -0.09 -0.39 0.72 

B2 

E 
-0.03 0.55 0.88 0.35 0.83 1.00 0.22 -0.02 0.00 0.00 0.00 -0.04 -0.05 -0.15 0.23 -0.12 -0.43 0.47 

B2 

CON 
0.03 0.53 0.07 0.74 0.50 0.22 1.00 -0.01 0.00 0.00 0.00 0.05 0.05 -0.15 0.21 -0.05 -0.16 0.48 

MNDWI 0.00 -0.02 -0.01 -0.01 -0.02 -0.02 -0.01 1.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 -0.01 0.00 -0.02 

NDBI 0.01 -0.01 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 -0.02 -0.02 0.01 0.01 0.01 0.08 0.04 

Ratio 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 

Ratio 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PC7 0.02 -0.03 -0.02 -0.03 -0.06 -0.04 0.05 0.00 -0.02 0.00 0.00 1.00 0.00 0.01 -0.01 0.00 0.02 -0.03 

PC6 0.03 -0.05 -0.02 -0.07 -0.08 -0.05 0.05 0.00 -0.02 0.00 0.00 0.00 1.00 0.01 -0.02 0.01 0.03 -0.06 

PC5 -0.04 -0.15 -0.06 -0.16 -0.18 -0.15 -0.15 0.01 0.01 0.00 0.00 0.01 0.01 1.00 -0.06 0.02 0.07 -0.13 

PC4 0.03 0.24 0.11 0.27 0.30 0.23 0.21 0.00 0.01 0.00 0.00 -0.01 -0.02 -0.06 1.00 -0.03 -0.11 0.22 

PC3 -0.01 -0.01 0.03 -0.04 -0.09 -0.12 -0.05 -0.01 0.01 0.00 0.00 0.00 0.01 0.02 -0.03 1.00 0.03 -0.07 

PC2 0.02 -0.54 -0.45 -0.18 -0.39 -0.43 -0.16 0.00 0.08 0.01 0.00 0.02 0.03 0.07 -0.11 0.03 1.00 -0.27 

PC1 0.09 0.90 0.39 0.71 0.72 0.47 0.48 -0.02 0.04 0.00 0.00 -0.03 -0.06 -0.13 0.22 -0.07 -0.27 1.00 

Figure 5.3. Correlation matrix of features selected for the final classification. 
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5.2 Classification 

This Chapter presents the detailed description of results obtained during the object-based 

classification. Several classification scenarios were tested, and the model that produced the highest 

classification score was used to create the coastal land classification map. Finally, the results 

obtained from the coastal land classification map were further used to create a shoreline cover 

map. As a result, two classification maps were created: shoreline and coastal land cover maps. The 

coastal land cover map shows the polygons representing the surface types of the area within a two-

km buffer from the shoreline, including foreshore and backshore zones. The shoreline cover map 

depicts the types of coastline, i.e., a line where land meets the ocean.  

5.2.1 Segmentation 

Setting the segmentation parameters has a major influence on the classification results. 

Several combinations of parameters were examined to find the optimal model with the best 

classification results. A two‐level nested objects network was created using the MRS segmentation 

algorithm in the Trimble eCognition Developer 9.5.0. DEM and slope parameters were used for 

the first level segmentation, while the second level was generated based on the 10 m resolution 

VNIR bands.  

Several parameter combinations were investigated to find the best model that allowed for 

creating the most meaningful real-world objects and ensuring the objects are internally 

homogenous, i.e., all pixels within an object should belong to one class.  

In this research, the first segmentation level was constructed at a very fine scale, with the 

scale, shape, and compactness parameters of 10, 0.1, and 0.1, respectively. These parameters were 

determined by visual interpretation of the image segmentation results. It was essential to identify 

the borders of the shoreline zone, which allowed coastal zone separation from the other areas 
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during the next segmentation step. As an example, the superiority of using smaller scale parameters 

is demonstrated in Figure 5.4 (a) and (b). When the scale parameter was set to 20, the segments 

were too large and included not only the coastline zone but water and backshore zone. When the 

scale parameter of 10 was used, the polygons were narrower and followed the shoreline better. 

However, the second level of segmentation was still necessary to ensure that a segment belonged 

to a shoreline class and did not include water. 

For the second segmentation level, the lowest values for shape and contrast parameters 

were chosen because Newfoundland’s coastal zone is generally narrow. In some cases, it might be 

less than one pixel (10 m), especially for cliffs. As an example, Figure 5.4 (c) demonstrates the 

results when shape and compactness were set equal to 0.5. In this case, the objects become less 

extruded, which contradicts the nature of the shoreline feature. The use of weighting equal to 0.1 

for these parameters produced better results (Figure 5.4 f). 
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Segmentation 

Level 
Variables 

Scale, 

Shape, and 

Compactness 

Parameters 

a) 1 
DEM, 

Slope 
10, 0.1, 0.1 

b) 1 
DEM, 

Slope 
20, 0.1, 0.1 

c) 2 

DEM, 

Slope 
10, 0.1, 0.1 

VNIR 35, 0.5, 0.5 

d) 2 

DEM, 

Slope 
10, 0.1, 0.1 

VNIR 10, 0.1, 0.1 

e) 2 

DEM, 

Slope 
10, 0.1, 0.1 

VNIR 50, 0.1, 0.1 

f) 2 

DEM, 

Slope 
10, 0.1, 0.1 

VNIR 35, 0.1, 0.1 
 

Figure 5.4. Sentinel-2 image segmentation results obtained by applying various variables and parameters. 
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During visual image interpretation, it was found that the scale parameters between 30 and 

40 produced the most meaningful results. Figure 5.4 (d) shows that the scale parameter of 10 results 

in too small objects, while the parameter of 50 (Figure 5.4 e) produces too large features, which 

may include several classes. The scale parameter of 30 demonstrates more acceptable results 

(Figure 5.4 f). Several classifications with various scale values were tested to find the combination 

of segmentation parameters leading to the best classification accuracy. As a result, the values of 

35, 0.1, and 0.1 were chosen for scale, shape, and compactness, respectively.  

Table 5.4. Shoreline classification accuracy and Kappa coefficients of segmented images with 

various scale parameters 

Segmentation Scale Parameter Overall Accuracy Kappa Coefficient 

10 0.522 0.454 

15 0.612 0.554 

20 0.705 0.660 

25 0.731 0.692 

30 0.773 0.740 

35 0.774 0.741 

40 0.741 0.703 

 

5.2.2 Classification Scenarios 

Table 5.5 shows various classification scenarios tested to find the best combination of input 

variables producing the highest classification results. The effect of principal components was 

explored by testing the scenarios with and without principal components (scenarios 2 and 1). The 

effect of using textural measures was assessed in scenarios 3 (when only the measures remained 

after the feature selection process) and 5 (when texture measures were applied along with the 

spectral indices, principal components, and Sentinel-1 data). Spectral indices were included in 

scenarios 4 (where the selected indices were used along principal components and terrain 

parameters), 6 and 7 (where indices were utilized along with texture features and Sentinel-1 data), 

and 10 (where only a reduced amount of indices were used). The effect of adding Sentinel-1 data 
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to the classification model was also investigated in scenarios 8 (where only HH data were used) 

and 10 (where only HV data were utilized). Also, it should be noted that since a DEM and slope 

parameters play a crucial role in defining shoreline class, these variables were used in all of the 

scenarios.  
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Table 5.5. Classification scenarios tested in this research 

Classification 

Scenario  
Description 

Predictor variables 

Mean St. dev. 

Scenario 1 
Sentinel-2 bands 

Terrain parameters 

B2-B8a, B11-B12; 

DEM, slope 
B2-B4 

Scenario 2 

Sentinel-2 bands 

Principal components  

Terrain parameters 

B2-B8a, B11-B12; 

PC1-PC10; 

DEM, slope 

B2-B4, 

PC1-PC3 

Scenario 3 

Principal components  

Terrain parameters 

Texture measures 

PC1-PC10; 

DEM, slope; 

B2 CON, E, VAR, ENT; B3 CON, ASM, DISS; B4 

COR, ASM 

PC1-PC3 

Scenario 4 

Principal components  

Terrain parameters 

Spectral indices 

 

PC1-PC10; 

DEM, slope; 

NDPI, MNDWI, IRECI, GNDVI, IPVI, NDWI, CI 

PC1-PC3 

Scenario 7 

Principal components  

Terrain parameters 

Spectral indices 

Texture measures 

SAR 

PC1-PC10; 

DEM, slope; 

NDPI, MNDWI, IRECI, GNDVI, IPVI, NDWI, CI; 

B2 CON, E, VAR, ENT; B3 CON, ASM, DISS; B4 

COR, ASM; 

𝜎𝐻𝐻
° , 𝜎𝐻𝑉

°  

PC1-PC3 

Scenario 6 

Principal components  

Terrain parameters 

Spectral indices 

SAR 

PC1-PC10, 

DEM, slope, 

NDPI, MNDWI, IRECI, GNDVI, IPVI, NDWI, CI; 

𝜎𝐻𝐻
° , 𝜎𝐻𝑉

°  

PC1-PC3 

Scenario 5 

Principal components  

Terrain parameters 

Texture measures 

SAR 

PC1-PC10; 

DEM, slope; 

B2 CON, E, VAR, ENT; B3 CON, ASM, DISS; B4 

COR, ASM; 

𝜎𝐻𝐻
° , 𝜎𝐻𝑉

°  

PC1-PC3 

Scenario 9 

PC1-PC10, 

DEM, slope, 

B2 CON, E, VAR, ENT; B3 ASM; B4 COR; 

 𝜎𝐻𝑉
°  

PC1-PC3 

Scenario 8 

PC1-PC10, 

DEM, slope, 

B2 CON, E, VAR, ENT; B3 ASM; B4 COR; 

 𝜎𝐻𝐻
°  

PC1-PC3 

Scenario 10 

Principal components  

Terrain parameters 

Spectral indices 

Texture measures 

SAR 

PC1-PC7, 

DEM, slope; 

NDBI, 
𝐵4−𝐵8𝑎

𝐵4+𝐵8𝑎
, 

𝐵8𝑎−𝐵2

𝐵8𝑎+𝐵2
, MNDWI; 

B2 CON, E, VAR, ENT; B3 ASM; B4 CORR; 𝜎𝐻𝐻
°  

PC1-PC3 

 

Error matrices were created for each model to assess the results and to determine the most 

accurate model. The lowest OA of 77.42% was achieved using a DEM and Sentinel- 2 bands, 
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including VIS, two NIR, three RE, and two SWIR bands (scenario 1). The lowest UA and PA were 

found for the bedrock platform and man-made classes. As seen in Table 5.6, the man-made class 

was misclassified with sand, bedrock platform, and pebble/cobble. High omission errors were also 

found for bedrock cliff and pebble/cobble, which were misclassified with bedrock platform and 

sand, respectively. 

Table 5.6. Confusion matrix obtained from the classification scenario 1 

Classified \  

Reference Data 
Water Forest Sand 

Man-

Made 
Grass 

Pebble 

Cobble 

Bedrock 

Cliff 

Bedrock 

Platform 
Total 

Water 340 0 0 0 0 3 3 0 346 

Forest 0 158 0 0 1 0 3 11 173 

Sand 0 0 279 83 0 78 0 15 455 

Man-Made 0 0 3 132 3 1 9 0 148 

Grass 0 0 0 15 291 0 17 3 326 

Pebble Cobble 0 0 0 22 6 140 3 0 171 

Bedrock Cliff 0 0 8 16 4 11 161 15 215 

Bedrock Platform 0 33 0 32 3 0 82 155 305 

Total 340 191 290 300 308 233 278 199  

 

PA 1 0.827 0.962 0.440 0.945 0.601 0.579 0.779  

UA 0.983 0.913 0.613 0.892 0.893 0.819 0.749 0.508  

OA 0.774 

KIA 0.741 

PA represents the Producer’s Accuracy, 

UA represents the User’s Accuracy 

OA is Overall Accuracy,  

KIA is the Kappa index of agreement. 

 

Scenario 1 results were improved by adding the principal components to input variables 

(scenario 2). In this case, the achieved OA was 79.66%. Although most of the PAs were slightly 

improved, the PA of bedrock cliff was decreased, and this class appeared to have the highest 

omission error. Bedrock cliff was misclassified with bedrock platform mostly as well as sand and 

man-made. 
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Table 5.7. Confusion matrix obtained from the classification scenario 2 

Classified \ 

Reference Data 
Water Forest Sand 

Man-

Made 
Grass 

Pebble 

Cobble 

Bedrock 

Cliff 

Bedrock 

Platform 
Total 

Water 340 0 0 0 0 0 6 0 346 

Forest 0 184 0 0 1 0 0 6 191 

Sand 0 0 279 66 0 71 21 0 437 

Man-Made 0 0 3 148 0 12 25 0 188 

Grass 0 0 0 11 294 0 15 3 323 

Pebble Cobble 0 0 0 35 6 150 4 0 195 

Bedrock Cliff 0 0 8 4 4 0 134 15 165 

Bedrock Platform 0 7 0 36 3 0 73 175 294 

Total 340 191 290 300 308 233 278 199  

 

PA 1 0.963 0.962 0.493 0.955 0.644 0.482 0.879  

UA 0.983 0.963 0.638 0.787 0.910 0.769 0.812 0.595  

OA 0.797         

KIA 0.767         

PA represents the Producer’s Accuracy, 

UA represents the User’s Accuracy 

OA is Overall Accuracy,  

KIA is the Kappa index of agreement. 

 

Scenarios 3 and 4 were tested to assess the importance of textural and spectral indices along 

with principal components and DEM. The use of texture measures (scenario 3) resulted in an 

increased OA, achieving 81.90%. In this case, the following texture variables were used: CON, E, 

VAR, ENT of the red band; CON, ASM, DISS of the green band; and COR and ASM of the blue 

band. The greatest improvement of PAs was found for forest and pebble/cobble classes, which 

were 17% and 20% higher, respectively, compared to that of scenario 1 (Table 5.8). This indicates 

that adding textural features to input variables improves the resulting accuracy. However, the use 

of more textural images cannot further improve classification accuracy because of the high 

correlation between them. In contrast, the score was even lower (81.40%) when attempting to 

incorporate all 30 texture measures for the visible bands (scenario 3). 
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Table 5.8. Confusion matrix obtained from the classification scenario 3 

Classified \ 

Reference Data 
Water Forest Sand 

Man-

Made 
Grass 

Pebble 

Cobble 
Bedrock Cliff 

Bedrock 

Platform 
Total 

Water 340 0 0 0 0 0 10 0 350 

Forest 0 191 0 0 2 0 0 0 193 

Sand 0 0 277 70 0 34 27 0 408 

Man-Made 0 0 3 165 27 12 0 0 207 

Grass 0 0 0 8 267 0 0 0 275 

Pebble Cobble 0 0 0 16 11 187 4 0 218 

Bedrock Cliff 0 0 0 0 0 0 186 60 246 

Bedrock Platform 0 0 10 41 1 0 51 139 242 

Total 340 191 290 300 308 233 278 199  

 

PA 1 1 0.955 0.550 0.867 0.803 0.669 0.698  

UA 0.971 0.990 0.679 0.797 0.971 0.858 0.756 0.574  

OA 0.819  

KIA 0.792         

PA represents the Producer’s Accuracy, 

UA represents the User’s Accuracy 

OA is Overall Accuracy,  

KIA is the Kappa index of agreement. 

 

Scenario 4, containing spectral indices along with principal components and DEM data, 

also demonstrated improved results (Table 5.9). However, the obtained OA of 81.25% was lower 

than that of scenario 3, in which texture measures were used. The most significant omission error 

in scenario 4 was achieved by the man-made class, which was misclassified with sand and 

pebble/cobble. The highest omission error was obtained for the bedrock platform, which was 

misclassified with the bedrock cliff. 

The incorporation of SAR data with texture measures resulted in the OA of 84.20% (Table 

5.10), while the combination of SAR data and spectral indices led to the OA of 84.71% (Table 

5.11). In both scenarios 5 and 6, the lowest PA was obtained for the man-made class, which was 

mainly misclassified with bedrock cliff and pebble/cobble, while the lowest UAs were found for 

bedrock cliff and platform.  
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Table 5.9. Confusion matrix obtained from the classification scenario 4 

Classified \ 

Reference Data 
Water Forest Sand 

Man-

Made 
Grass 

Pebble 

Cobble 

Bedrock 

Cliff 

Bedrock 

Platform 
Total 

Water 340 0 0 0 0 1 10 0 351 

Forest 0 184 0 0 15 0 0 0 199 

Sand 0 0 269 79 0 17 0 9 374 

Man-Made 0 3 11 157 0 12 0 0 183 

Grass 0 0 0 8 279 0 0 0 287 

Pebble Cobble 0 0 0 44 7 203 4 0 258 

Bedrock Cliff 0 4 10 4 1 0 172 56 247 

Bedrock Platform 0 0 0 8 6 0 92 134 240 

Total 340 191 290 300 308 233 278 199  

 

PA 1 0.963 0.928 0.523 0.906 0.871 0.619 0.673  

UA 0.969 0.925 0.719 0.858 0.972 0.787 0.696 0.558  

OA 0.813 

KIA 0.785         

PA represents the Producer’s Accuracy, 

UA represents the User’s Accuracy 

OA is Overall Accuracy,  

KIA is the Kappa index of agreement. 

Table 5.10. Confusion matrix obtained from the classification scenario 5 

Classified \ 

Reference Data Water Forest Sand 

Man-

Made Grass 

Pebble 

Cobble 

Bedrock 

Cliff 

Bedrock 

Platform Total 

Water 340 0 10 0 1 0 10 0 361 

Forest 0 188 0 0 2 0 0 0 190 

Sand 0 0 269 0 0 0 1 0 270 

Man-Made 0 0 11 168 27 12 0 0 218 

Grass 0 0 0 19 267 0 0 0 286 

Pebble Cobble 0 0 0 26 6 218 5 0 255 

Bedrock Cliff 0 0 0 46 0 3 212 60 321 

Bedrock Platform 0 3 0 41 5 0 50 139 238 

Total 340 191 290 300 308 233 278 199  

 
PA 1 0.984 0.928 0.560 0.867 0.936 0.763 0.698 

 
UA 0.942 0.989 0.996 0.771 0.934 0.855 0.660 0.584 

 
OA 0.842 

 

KIA 0.819 
        

PA represents the Producer’s Accuracy, 

UA represents the User’s Accuracy 

OA is Overall Accuracy,  

KIA is the Kappa index of agreement. 
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Table 5.11. Confusion matrix obtained from the classification scenario 6 

Classified \ 

Reference Data Water Forest Sand 

Man-

Made Grass 

Pebble 

Cobble 

Bedrock 

Cliff 

Bedrock 

Platform Total 

Water 340 0 10 0 1 0 10 0 361 

Forest 0 184 0 0 0 0 0 0 184 

Sand 0 0 269 20 0 0 1 0 290 

Man-Made 0 0 11 203 0 12 0 0 226 

Grass 0 0 0 8 294 0 0 0 302 

Pebble Cobble 0 0 0 27 6 221 5 0 259 

Bedrock Cliff 0 7 0 34 0 0 171 69 281 

Bedrock Platform 0 0 0 8 7 0 91 130 236 

Total 340 191 290 300 308 233 278 199 
 

 
PA 1 0.963 0.928 0.677 0.955 0.948 0.615 0.653 

 
UA 1 0.960 0.916 0.638 0.947 0.941 0.557 0.610 

 
OA 0.847  

KIA 0.825 
        

PA represents the Producer’s Accuracy, 

UA represents the User’s Accuracy 

OA is Overall Accuracy,  

KIA is the Kappa index of agreement. 

 

Adding all features, including spectral indices, texture, SAR data, Principal components, 

and DEM data, to the classification scheme lead to OA of 83.54% (Table 5.12), which was less 

than the ones obtained from scenario 6 and 5 (84.71% and 84.20%, respectively).  
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Table 5.12. Confusion matrix obtained from the classification scenario 7 

Classified \ 

Reference Data 
Water Forest Sand 

Man-

Made 
Grass 

Pebble 

Cobble 

Bedrock 

Cliff 

Bedrock 

Platform 
Total 

Water 340 0 10 0 1 0 10 0 361 

Forest 0 184 0 0 0 0 0 0 184 

Sand 0 0 269 29 0 0 1 0 299 

Man-Made 0 0 11 172 9 12 0 0 204 

Grass 0 0 0 8 285 0 0 0 293 

Pebble Cobble 0 0 0 45 6 221 5 0 277 

Bedrock Cliff 0 0 0 46 0 0 186 69 301 

Bedrock Platform 0 7 0 0 7 0 76 130 220 

Total 340 191 290 300 308 233 278 199  

 

PA 1 0.963 0.928 0.573 0.925 0.948 0.669 0.653  

UA 0.942 1 0.900 0.843 0.973 0.798 0.618 0.591  

OA 0.835  

KIA 0.811         

PA represents the Producer’s Accuracy, 

UA represents the User’s Accuracy 

OA is Overall Accuracy,  

KIA is the Kappa index of agreement. 

 

Scenarios 8 and 9 used HH and HV separately. The overall accuracies were 85.60% (Table 

5.13) and 84.34% (Table 5.14), respectively. It is worth noting that the result was lower when both 

HH and HV data were used (scenario 5) compared to the results obtained by using HH channel 

data. It might be explained by that HH and HV contain similar information and the exclusion of 

HV could reduce the degree of correlation amongst individual trees in the RF, which improved the 

classification OA.  
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Table 5.13. Confusion matrix obtained from the classification scenario 8 

Classified \ 

Reference Data 
Water Forest Sand 

Man-

Made 
Grass 

Pebble 

Cobble 

Bedrock 

Cliff 

Bedrock 

Platform 
Total 

Water 340 0 10 0 1 0 10 0 361 

Forest 0 188 0 0 2 0 0 0 190 

Sand 0 0 269 0 1 0 1 0 271 

Man-Made 0 0 3 190 27 1 0 0 221 

Grass 0 0 0 12 267 0 0 0 279 

Pebble Cobble 0 0 8 26 6 229 5 0 274 

Bedrock Cliff 0 0 0 50 0 3 212 64 329 

Bedrock Platform 0 3 0 22 4 0 50 135 214 

Total 340 191 290 300 308 233 278 199  

 

PA 1 0.984 0.928 0.633 0.867 0.983 0.763 0.678  

UA 0.942 0.989 0.993 0.860 0.957 0.836 0.644 0.631  

OA 0.856  

KIA 0.834         

PA represents the Producer’s Accuracy, 

UA represents the User’s Accuracy 

OA is Overall Accuracy,  

KIA is the Kappa index of agreement. 

Table 5.14. Confusion matrix obtained from the classification scenario 9 

Classified \ 

Reference Data 
Water Forest Sand 

Man-

Made 
Grass 

Pebble 

Cobble 

Bedrock 

Cliff 

Bedrock 

Platform 
Total 

Water 340 0 0 0 1 0 10 0 351 

Forest 0 187 0 0 2 0 0 0 189 

Sand 0 0 279 31 1 0 26 0 337 

Man-Made 0 0 3 183 27 1 0 0 214 

Grass 0 0 0 19 267 0 0 0 286 

Pebble Cobble 0 0 8 26 6 232 5 0 277 

Bedrock Cliff 0 0 0 0 0 0 186 69 255 

Bedrock Platform 0 4 0 41 4 0 51 130 230 

Total 340 191 290 300 308 233 278 199  

 

PA 1 0.979 0.962 0.610 0.867 0.996 0.669 0.653  

UA 0.969 0.989 0.828 0.855 0.934 0.838 0.729 0.565  

OA 0.843  

KIA 0.820         

PA represents the Producer’s Accuracy, 

UA represents the User’s Accuracy 

OA is Overall Accuracy,  

KIA is the Kappa index of agreement. 
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The best results were obtained by applying scenario 10, which included the following input 

layers: PC1-PC7, spectral indices (NDVI, MNDWI, Ratio 1, and Ratio 2), texture measures (CON, 

E, VAR, ENT of red; ASM of green; and CORR of blue bands), 𝜎𝐻𝐻
° . In this case, the OA reached 

87.10%.  

Table 5.15 demonstrated the error matrix of the classification scenario 10, achieving the 

highest OA score. The minor omission errors were obtained for the water class, while commission 

errors were minimal for vegetated classes, including grass and forest. PA for the man-made class 

was low, achieving only 64.7%. This indicated the misclassification of man-made class with other 

classes, mostly with bedrock cliff, pebble/cobble, and sand. 

Table 5.15. Confusion matrix obtained from the classification scenario 10 

Classified\  

Referenced data 
Water Forest Sand 

Man-

Made 
Grass 

Pebble 

Cobble 

Bedrock 

Cliff 

Bedrock 

Platform 
Total 

Water 340 0 10 0 1 0 10 0 361 

Forest 0 184 0 0 0 0 0 5 189 

Sand 0 0 269 31 0 0 0 0 300 

Man-Made 0 0 11 194 0 12 0 0 217 

Grass 0 0 0 8 296 0 0 0 304 

Pebble Cobble 0 0 0 10 6 221 1 0 238 

Bedrock Cliff 0 0 0 48 0 0 212 47 307 

Bedrock Platform 0 7 0 9 5 0 55 147 223 

Total 340 191 290 300 308 233 278 199  

 

PA 1 0.963 0.928 0.647 0.961 0.948 0.763 0.739  

UA 0.942 0.974 0.897 0.894 0.974 0.929 0.691 0.659  

OA 0.871  

KIA 0.852         

PA represents the Producer’s Accuracy, 

UA represents the User’s Accuracy 

OA is Overall Accuracy,  

KIA is the Kappa index of agreement. 
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The final coastal land classification map is presented in Figure 5.5, and the subsets of 

zoomed areas can be seen in Figure 5.6.
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Figure 5.5. Coastal land classification. 
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Figure 5.6. The subsets of coastal land cover map and shoreline classification on aerial 

photography.
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Summarizing the results obtained from all the scenarios (Figure 5.7 and Figure 5.8), water 

and forest classes were classified best by all the models. In contrast, man-made and bedrock 

platform features had the lowest PAs (57.06%) and UAs (58.5%), respectively, on average in all 

the models. The average PAs and UAs of all classes varied from 76.66% to 86.86% and 79.63% 

to 87%. The lowest OA (74.42%) was obtained in scenario 1, while the highest OA (87.10%) was 

achieved by scenario 10. 

Figure 5.7. PAs for coastal land cover types obtained in different scenarios. 
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Figure 5.8. UAs for coastal land cover types obtained in different scenarios. 

 

The evaluation of whether the differences between classification accuracies obtained from 
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Table 5.16. 𝑧 score obtained from comparison accuracies from different classification scenarios 

 Classification scenario 

1 2 3 4 5 6 7 8 9 10 

C
la

ss
if

ic
at

io
n
 s

ce
n
ar

io
 

1 
          

2 4.75 
         

3 7.16 3.60 
        

4 6.33 2.64 1.67 
       

5 9.26 6.22 5.82 6.75 
      

6 10.38 7.31 5.11 8.07 1.01 
     

7 8.98 5.71 3.84 6.49 1.75 3.37 
    

8 10.36 7.53 7.51 8.54 4.77 1.82 4.84 
   

9 9.44 6.40 5.89 6.67 0.35 0.86 2.34 3.61 
  

10 13.28 10.37 9.35 11.18 7.41 6.14 8.72 4.37 5.70 
 

  
 

- the null hypothesis of no significant difference is rejected 
 

- the null hypothesis of no significant difference is not rejected 

 

 

The results obtained from scenario 10 were used to create the shoreline classification map. 

The polyline shape file representing the shoreline was divided into 50 m long segments. Each 

segment was then assigned to a class based on the information of the closest polygon of the 

previously obtained coastal land classification map shown in Figure 5.5. 

Since forest and grass are located over the cliffs, technically, these classes' intertidal zones 

are represented by cliffs, not vegetation. Therefore, these classes were collapsed and assigned as 

the bedrock cliff class. As a result, a map depicting five shoreline types was created (Figure 5.9). 

These classes included bedrock cliff, bedrock platform, man-made, sand, and pebble/cobble. OA 

of the final shoreline classification map achieved 84.75% (Table 5.17).  
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Figure 5.9 Shoreline classification map. 
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Table 5.17 Shoreline classification confusion matrix 

Classified\  

Referenced data 
Bedrock Cliff Bedrock Platform Man-Made Sand Pebble Cobble Total 

Bedrock Cliff 105 6 0 0 0 111 

Bedrock Platform 7 26 0 0 0 33 

Man-Made 0 0 36 0 0 36 

Sand 0 0 0 25 4 29 

Pebble Cobble 6 0 9 13 58 86 

Total 118 32 45 38 62 295 

 

PA 0.890 0.813 0.800 0.658 0.935  

UA 0.946 0.788 1.000 0.862 0.674  

OA 0.847  

KIA 0.795      

PA represents the Producer’s Accuracy, 

UA represents the User’s Accuracy 

OA is Overall Accuracy,  

KIA is the Kappa index of agreement. 

 

The lowest PA (65.79%) and UA (67.44%) were obtained by sand and pebble/cobble 

classes Table 5.17, which were misclassified with each other due to the similarity of their spectral 

characteristics and were discussed in Figure 5.1. 

According to the shoreline classification map, the bedrock cliffs and platform were found 

to be the most dominating shoreline types in the study area (Figure 5.10). They covered around 

387 km and 369 km out of a total of 1089 km of the shoreline. In contrast, sand and man-made 

were the least common, covering only 49 km and 57 km respectively. 
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Figure 5.10. The distribution of classified shoreline classes along the study area. 
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6. Discussion 

The following chapters discuss the findings of this research, with special emphasis on 

classification scheme, feature extraction and selection, and classification results. 

6.1 Classification Scheme 

In this research, two classification maps were created: shoreline and coastal land cover 

maps. The coastal land cover map depicts the polygons representing different types of surfaces 

within a two km buffer from the shoreline. This area covers foreshore and backshore zones. The 

shoreline cover map depicts the line representing various sediment types of a coastline, i.e., a line 

that forms the boundary between the land and the ocean. 

For both maps, the ECCC SCAT classification scheme was adapted. The ECCC 

classification scheme includes 25 shoreline types representing the full range of substrates and 

shoreline form (Demers et al., 2015; Wynja et al., 2014). Since satellite data have a coarser spatial 

resolution compared to helicopter videography data, such detailed discrimination used in SCAT 

was not possible for the satellite-based discrimination in this research. The more general classes 

had to be adapted from the SCAT to avoid interclass confusion while maintaining a useful level 

of shoreline type’s differentiation in terms of their sensitivity to oil spills. As was demonstrated in 

previous studies (Y. Chen et al., 2007; Banks et al., 2014b, 2015; Demers et al., 2015), the number 

of classes that can be extracted from satellite data depends on the spatial and spectral 

characteristics of the sensor and the nature of the shoreline. Since this research is the first attempt 

at using Sentinel-1 and -2 data for shoreline classification for oil spill response in Newfoundland, 

the SCAT classification scheme was adapted based on the exploratory analysis of spectral 

signatures of shore and near-shore features. 
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Additional classes, such as water, forest, and grass, were added to the classification 

scheme. The intertidal zone for bedrock cliffs is generally narrow in the study area. Therefore, the 

forest and the grass classes were used as proxies for the cliffs as vegetation layers are located over 

the cliffs intertidal zone. The decision to keep vegetation classes for a coastal zone classification 

was made because the difference between these land cover types affects the choice of an 

appropriate oil spill response technique and provides valuable information about backshore areas. 

However, the forest and grass classes were merged with the bedrock cliff class for the final 

shoreline classification.  

Also, man-made and roads were used as separate subclasses for building learning 

databases, as they have different spectral characteristics, as shown in Figure 5.1. However, they 

were later combined for the final classification due to the similarity of oil spill response techniques 

(ECCC, 2018). Similarly, bedrock high and low cliffs were merged into one category. Also, 

bedrock platforms having flat and rough surfaces forming the bedrock platform class. 

In total, the coastal land classification map included eight classes, such as man-made, 

bedrock platform, bedrock cliff, pebble/cobble beach or bank, sand beach or bank, forest, grass, 

and water. The final shoreline classification map depicts five classes, including bedrock cliff, 

bedrock platform, man-made, sand, and pebble/cobble. 

6.2 Feature Extraction & Selection 

The analysis of Sentinel-2 bands box-and-whiskers plots demonstrated the similarity of 

non-vegetation classes’ pixel distribution in one band. Also, large variability of man-made features 

was observed in all the bands. This happened because the man-made class was not spectrally 

homogeneous and includes features, e.g., roofs, with different colors. The water class was the most 

easily distinguished from all the other classes due to its small variability and low pixel values. 
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The smallest variability in the visible spectral bands was found for forest class with low 

pixel values due to chlorophyll's properties. Chlorophyll strongly absorbs light at blue and red; 

therefore, the lowest forest pixel values were found in B2 and B4. The reflection of chlorophyll is 

higher in a green light, which can also be seen with Figure 5.3. However, healthy plants have a 

high reflectance in the near-infrared. This agrees with Figures 5.8. and 5.9, which presents the 

distribution of pixels in NIR and near-NIR, where the pixel values of the forest are much higher 

than in visible bands shown in Figures 5.2-5.4. 

As a result of the spectral profile and box-and-whisker plots investigation, it was found 

that the man-made category had a different response than the road class. An increased difference 

between these features' responses may be observed in visible and SWIR bands (Figures 5.1, 5.10, 

and 5.11). This is likely due to different spectral characteristics of features that represent these 

classes: the man-made class includes mostly buildings and structures having roofs of various 

colors, while the road is represented by homogenous gray asphalt. 

In general, the box-and-whisker plots demonstrated that Sentinel-2 bands did not provide 

a good capability to separate between non-vegetated classes. The largest separability potential 

among these classes was found between the high bedrock cliff and bedrock platform. Therefore, 

the generation of additional features, including spectral indices and band ratios, was implemented. 

This suppresses the topographic variation and enhances the spectral difference between bands 

(Rajendran et al., 2012; Jensen, 2016). 

The correlation matrix (Appendix B) demonstrates a high correlation between the Sentinel- 

2 visible bands. This agrees with the box-and-whisker plots, which demonstrate similar pixel 

distribution of coastal land classes. A high correlation was also observed between the bands 5-8a 

and 11-12. Such an extensive inter-band correlation problem frequently occurs in multispectral 
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image data analysis due to the similarity of information generated from various wavelength bands 

(Lillesand & Kiefer, 2000). Therefore, PCA was applied to address the problem of inter-band 

correlation and generate additional features that might be useful for further classification. 

In total, 40 texture features, 29 spectral indices, and four band ratios were extracted. 

Analysis of these features' correlation matrices (Figures B1 and B2) showed that many of them 

were highly correlated. This may be explained by the similar calculation methods used to generate 

these measures as it agrees with Hall-Beyer (2016). Therefore, the high correlation measures with 

an absolute correlation value higher than 0.9 were excluded. 

Only four out of all extracted spectral indices and band ratios (NDBI, MNDWI, Ratio 1, 

and Ratio 2) were left for the final classification. NDBI was left for further analysis as it 

demonstrated the potential to differential pebble/cobble from other classes (Figure 5.12 a). Good 

separability potential for sand and platform classes also was shown by the box-and-whisker plots 

of Ratio 1 and 2 (Figure 5.12 a and d). The MNDWI product was left for further steps due to its 

ability to discriminate water features from other classes, as shown in Figure 5.12 d. 

The texture is considered one of the most valuable characteristics used to extract 

meaningful information for different purposes (Haralick et al., 1973). In this research, GLCM 

texture characteristics were found more useful than spectral indices for shoreline type 

discrimination, as the overall accuracy obtained from scenario 3 (82.25%) was higher than the one 

from scenario 4 (81.9%).  

Most of the extracted GLCM texture features were highly correlated. This was expected 

because of the similarity of calculation of these measures. Some studies claim that correlation is 

usually expected to be high between entropy and the angular second moment,  dissimilarity and 
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contrast, homogeneity and contrast, and homogeneity and dissimilarity (Hall-Beyer, 2016). 

However, the correlation cannot be predicted as it also depends on the features’ characteristics in 

a particular area. In this study, while a high correlation between dissimilarity and contrast was 

found in each band, no correlation was observed between entropy and the angular second moment, 

homogeneity and contrast, and homogeneity and dissimilarity, which disagrees with Hall-Beyer 

(2016). Since it is impossible to predict which texture measures are highly correlated, it was 

decided to extract all ten measures for four VNIR bands; then, remove highly correlated measures 

based on the correlation matrix and consider the analysis of box-and-whisker plots. In this study, 

a high correlation was generally found between: 

- Homogeneity, energy, GLCM maximum values, and variance; 

- Mean, correlation, and variance; and 

- Contrast and dissimilarity (Appendix B). 

31 out of 40 measures were excluded after correlation matrix and box-and-whisker 

analysis, as demonstrated in Table 5.4. The box-and-whisker plots of the remaining measures are 

represented in Figure C.25 - Figure C.30.  These measures were left for further analysis as they 

demonstrated the potential for discrimination between various classes. For example: 

- Bedrock high cliff and platform have different pixel distribution in B2 entropy 

measure; 

- Bedrock platform and ramp have the potential to be differentiated using B2 entropy 

and B2 variance; 

- Good separability of sand from other non-vegetated classes may be observed in B2 

energy and B2 entropy; and 
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- B3 contrast and B3 dissimilarity demonstrated the potential to differentiate between 

road and pebble coble. 

However, not all of these measures were included in the final classification. It was found that the 

classification OA was improved (from 84.2% in scenario 5 to 85.6% in scenario 8) when B3 

contrast, B3 dissimilarity, and B4 angular second moment were not used. As a result, only six 

texture features, including B2 contrast, B2 energy, B2 variance, B2 entropy, B4 correlation, and 

B3 contrast (Table 5.4), were left in the final classification.  

The extraction of PCA components solved the inter-band correlation problem (Appendix 

B); however, similarly to the visible bands, principal components did not provide a strong 

separability between non-vegetated classes, as shown in Figure 5.14. The trial and error approach 

was implemented to decide what components should remain for the final classification. It was 

observed that the classification results were slightly improved from 85.50% when all the principal 

components were used to 85.97% when the principal components 8-10 products were removed.  

6.3 Classification 

Various classification scenarios (Table 5.5) were tested to find the best combination of 

input variables producing the highest classification results. In general, the use of additional inputs, 

including spectral indices, texture measures, and principal components, improves the resulting 

classification accuracy and is in agreement with other previous studies (Coburn & Roberts, 2004; 

Dash et al., 2007; Lu et al., 2008; Jolliffe & Cadima, 2016; Yengoh et al., 2016; Lever et al., 2017). 

Several studies proved the enhancement of land cover classification by incorporating a 

DEM and its derivatives (Ricchetti, 2000; Geerling et al., 2007; Sluiter & Pebesma, 2010; 

Hoshikawa & Umezaki, 2014). Moreover, elevation and slope information are considered highly 
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important for coastal mapping (Demers et al., 2015). Therefore, a DEM and slope data were used 

in all classification scenarios in this research.  

The lowest overall accuracy was obtained in scenario 1 when only Sentinel-2 spectral 

bands were used. The incorporation of additional features allowed for the improvement of results 

from 77.4% (scenario 1) to 87.1% (scenario 10). This difference was found to be statistically 

significant, as demonstrated in Table 5.17. 

It was found that texture characteristics are more useful for shoreline type discrimination 

in comparison with spectral indices. This was found by comparing the results from scenarios 4 and 

3, where spectral indices and texture measures were used, respectively. These results agree with 

the other studies that demonstrated the effectiveness of using textures in optical imagery (Coburn 

& Roberts, 2004; Dell’Acqua & Gamba, 2006; Lu et al., 2008; Singh et al., 2014) 

HH and HV variables were found to be of high importance. The incorporation of SAR data 

with texture measures resulted in increased results from 81.90% (scenario 3) to 84.20% (scenario 

10.4). In comparison, the combination of SAR data and spectral indices led to improved results 

from 81.25% (Scenario 4) to 84.71% (Scenario 6) (Table 5.11). These results agree with the ones 

obtained by Banks et al. (2014a), who found that the use of a combination of both SAR and optical 

data resulted in better scores. 

Although the results of scenarios 6 and 5 demonstrate the superiority of using combined 

data (SAR with spectral indices and SAR with texture measures, respectively, along with PCs and 

DEM data), the use of all the measures together, including spectral indices, texture, SAR data, 

principal components, and DEM data, in scenario 7 leads to the lower overall accuracy of 83.54% 

(Table 5.12) than the ones obtained from scenario 6 and 5 (84.71% and 84.20%, respectively). The 
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reason for this may be an insufficient number of input variables overfitting the model. Therefore, 

a further feature selection step was performed using the trial and error method. 

The results of scenarios 8 and 9 demonstrated the superiority of using HH data over that of 

HV. Thus, the overall accuracies were 85.60% (Table 5.13) and 84.34% (Table 5.14) when 

incorporating the HH and HV data, respectively. This agrees with other studies that suggested HH 

is the best single-polarization for discriminating soil and rock types (P. Dong & Leblon, 2004; 

Holah et al., 2005).  

Scenario 10 achieved the highest overall accuracy score of 87.10%. The following input 

layers were used: PC1-PC7, NDVI, MNDWI, Ratio 1, Ratio 2,  B2 CON, B2 E, B2 VAR, B2 

ENT, B3 ASM, B4 COR, and 𝜎𝐻𝐻
° .  This result is comparable with the other satellite-based 

shoreline classification studies (Demers et al., 2013; Banks et al., 2014a; Demers et al., 2015). 

Bedrock platform and cliff achieved comparable low PA and UA. These bedrock classes were 

misclassified, which can be explained by the similar spectral response of these classes. Also, as 

was discussed earlier, the shoreline in the study area is very narrow. Thus, it was often impossible 

to collect the training samples with an appropriate width, especially for the bedrock cliff class. 

Therefore, the spectral mixing of pixels could occur and cause a large portion of errors. 

The overall accuracy of the final shoreline classification map was less than the one obtained 

for the final coastal land classification map. There may be several reasons for this. First, the water 

class used in coastal land classification obtained a high PA and UA as this class has different 

spectral and backscatter characteristics from all the land classes used in the study. That is why 

having a water class leads to the higher overall accuracy of the resulted coastal land map compared 

to one of the shoreline maps. Also, the final polyline consisted of segments with a length of 50 m. 

Therefore, one segment of the shoreline could correspond to several coastal land polygons. To 
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assign a particular class to a segment, the data of the closest classified polygon were used. 

Therefore, the shoreline classification map results are generally coarser than those of the coastal 

land classification map, and this affected the final overall accuracy results. 
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7. Conclusions 

This research presents the first efforts to implement a shoreline classification using Sentinel 

satellites for oil spill response in Newfoundland. The high potential of using freely available 

Sentinel-1 and Sentinel-2 satellite data for coastal land and shoreline classifications was 

demonstrated. As a result of the implementation of the object-based approach, high accuracies of 

87.10% and 84.75% were achieved. 

A significant gap was found in the literature in assessing the potential of optical data for 

shoreline classification. Most of the research focused on assessing the potential of using SAR data, 

while no research investigating various parameters extracted from optical data was found. This 

study addressed the existing gap in the literature. One hundred and four features were extracted 

from Sentinel-2 data and analyzed using box-and-whisker plots, correlation matrices, and a 

classification accuracy assessment. A comparative assessment of the various classification models 

with different combinations of input variables was conducted. The optimal classification model 

includes the following input variables: PC1-PC7, spectral indices (NDVI, MNDWI, normalized 

difference between B4 and B8a, and the normalized difference between B8a and B2), GLCM 

texture measures (contrast, energy, variance, the entropy of red; the angular second moment of 

green; and correlation of blue bands), terrain features (DEM and slope), and SAR imagery (𝜎𝐻𝐻
° ). 

However, some confusion occurred between the classes. The lowest producer’s accuracy was 

obtained by the man-made class, which was misclassified with bedrock cliff, pebble/cobble, and 

sand due to similar spectral characteristics and the spatial resolution of satellite data. In contrast, 

water and vegetated classes were classified with the highest accuracies. 

The optimal amount of shoreline types that can be discriminated by using Sentinel-1 and -

2 images were found. Seven types were identified for coastal land classification, and five classes 
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were used to create the final shoreline classification map. The effect of incorporating multi-

features and multi-source data was investigated. It was found that the use of both principal 

components, spectral indices, GLCM texture measures, and SAR data improved the resulting 

accuracy. 

The major limitation of the study is the shoreline width relative to image resolution, which 

hinders the discrimination of classes. For example, it was often impossible to collect training 

samples with an appropriate width, especially for the bedrock cliff class. As a result, the spectral 

mixing of pixels occurred, which caused a high misclassification between bedrock cliff and 

platform classes. 
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8. Future Work 

The developed algorithm demonstrated promising results for automated shoreline 

classification. Further work should focus on implementing the developed method for shoreline 

classification in other areas across the Canadian coastline.  

This study incorporated optical and SAR data for shoreline classification. However, it was 

primarily focused on the extraction and analysis of Sentinel-2 features. Therefore, future work 

needs to explore the potential of predictor variables extracted from Sentinel-2. It is recommended 

to investigate the effect of incorporating polarimetric decomposition and backscatter band ratio 

features along with the most important predictor variables identified in this study. 

One of the major limitations of this work is shoreline width relative to image resolution. 

Future work should address this challenge by implementing fusion techniques on Sentinel-2 

images in order to obtain an image with higher resolution. 

In this study, the enhanced Lee adaptive filter was used to suppress the effect of speckle 

noise in SAR imagery. It was selected due to its ability to preserve edges, linear features, and 

texture information. However, the effect of the Lee filter was not compared to other filters. 

Moreover, the size of the filter's window was set to 5 x 5, which correspond to the area of 2500 m² 

on the ground. Considering the nature of coastal zones, which are generally narrow, especially for 

cliffs, a smaller window size could be beneficial and maintain the boundaries between various land 

cover types better. The effect of using different windows sizes and filtering techniques might be 

investigated in further work as well. 
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Finally, one of the challenges during the field collection phase was the inability to access 

shorelines due to their remoteness and safety reasons. Due to these difficulties, not all of the sites 

could be visited. Instead, the classes at some locations were manually interpreted from Google 

Earth imagery and aerial photography. However, it was not always possible to distinguish between 

the different shoreline types due to the image resolution. Therefore, collecting more field samples 

in the future will be beneficial and will lead to more accurate results. 
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Appendix A: Spatial Resolution Enhancement Results 

 

 

Figure A.1. Original B5 and B11 20m-resolution images (a, d) and the corresponding 10-m resolution products obtained after 

resampling (d, e) and super-resolution (c, f) algorithms. 
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Appendix B : Correlation Matrices 

 

 Figure B.1. Matrix of correlation between Sentinel-2 bands, principal components, and spectral indices. 

B2 B3 B4 B8 B11 B12 B5 B6 B7 B8a PC1 BI2 BI CI DVI GNDVI IPVI IRECI MNDWI MSAVI NDPI NDTI NDWI2 NDWI

B2 1.00 0.94 0.93 0.57 0.66 0.74 0.77 0.60 0.58 0.57 0.62 0.67 0.94 -0.06 0.39 0.29 0.57 0.30 0.00 0.38 -0.14 -0.06 -0.29 0.00

B3 0.94 1.00 0.98 0.81 0.86 0.90 0.93 0.84 0.82 0.81 0.84 0.88 1.00 -0.12 0.68 0.54 0.75 0.56 -0.01 0.67 -0.25 -0.12 -0.54 0.01

B4 0.93 0.98 1.00 0.77 0.86 0.91 0.93 0.80 0.78 0.77 0.81 0.84 0.99 -0.02 0.62 0.51 0.70 0.48 -0.01 0.61 -0.25 -0.02 -0.51 0.01

B8 0.57 0.81 0.77 1.00 0.96 0.91 0.95 1.00 1.00 1.00 1.00 0.99 0.80 -0.18 0.98 0.82 0.86 0.85 -0.02 0.97 -0.38 -0.18 -0.82 0.01

B11 0.66 0.86 0.86 0.96 1.00 0.99 0.97 0.96 0.95 0.96 0.97 0.96 0.87 -0.09 0.89 0.76 0.84 0.73 -0.02 0.88 -0.37 -0.09 -0.76 0.01

B12 0.74 0.90 0.91 0.91 0.99 1.00 0.97 0.92 0.92 0.92 0.94 0.94 0.91 -0.07 0.82 0.70 0.82 0.67 -0.02 0.81 -0.35 -0.07 -0.70 0.01

B5 0.77 0.93 0.93 0.95 0.97 0.97 1.00 0.96 0.95 0.95 0.97 0.97 0.94 -0.10 0.86 0.73 0.83 0.71 -0.02 0.85 -0.34 -0.10 -0.73 0.01

B6 0.60 0.84 0.80 1.00 0.96 0.92 0.96 1.00 1.00 1.00 1.00 0.99 0.82 -0.18 0.97 0.81 0.86 0.84 -0.02 0.96 -0.37 -0.18 -0.81 0.01

B7 0.58 0.82 0.78 1.00 0.95 0.92 0.95 1.00 1.00 1.00 1.00 0.99 0.81 -0.18 0.97 0.82 0.86 0.85 -0.02 0.97 -0.38 -0.18 -0.82 0.01

B8a 0.57 0.81 0.77 1.00 0.96 0.92 0.95 1.00 1.00 1.00 1.00 0.99 0.80 -0.17 0.98 0.82 0.86 0.85 -0.02 0.97 -0.38 -0.17 -0.82 0.01

PC1 0.62 0.84 0.81 1.00 0.97 0.94 0.97 1.00 1.00 1.00 1.00 1.00 0.84 -0.16 0.96 0.81 0.86 0.83 -0.02 0.95 -0.38 -0.16 -0.81 0.01

BI2 0.67 0.88 0.84 0.99 0.96 0.94 0.97 0.99 0.99 0.99 1.00 1.00 0.87 -0.18 0.94 0.79 0.87 0.82 -0.02 0.94 -0.36 -0.18 -0.79 0.01

BI 0.94 1.00 0.99 0.80 0.87 0.91 0.94 0.82 0.81 0.80 0.84 0.87 1.00 -0.08 0.66 0.53 0.74 0.53 -0.01 0.64 -0.25 -0.08 -0.53 0.01

CI -0.06 -0.12 -0.02 -0.18 -0.09 -0.07 -0.10 -0.18 -0.18 -0.17 -0.16 -0.18 -0.08 1.00 -0.22 0.14 -0.37 -0.25 -0.01 -0.23 -0.06 1.00 -0.14 0.00

DVI 0.39 0.68 0.62 0.98 0.89 0.82 0.86 0.97 0.97 0.98 0.96 0.94 0.66 -0.22 1.00 0.84 0.83 0.90 -0.02 1.00 -0.38 -0.22 -0.84 0.01

GNDVI 0.29 0.54 0.51 0.82 0.76 0.70 0.73 0.81 0.82 0.82 0.81 0.79 0.53 0.14 0.84 1.00 0.66 0.74 -0.02 0.85 -0.38 0.14 -1.00 0.01

IPVI 0.57 0.75 0.70 0.86 0.84 0.82 0.83 0.86 0.86 0.86 0.86 0.87 0.74 -0.37 0.83 0.66 1.00 0.73 -0.02 0.84 -0.34 -0.37 -0.66 0.01

IRECI 0.30 0.56 0.48 0.85 0.73 0.67 0.71 0.84 0.85 0.85 0.83 0.82 0.53 -0.25 0.90 0.74 0.73 1.00 -0.02 0.90 -0.33 -0.25 -0.74 0.01

MNDWI 0.00 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 1.00 -0.02 0.02 -0.01 0.02 0.21

MSAVI 0.38 0.67 0.61 0.97 0.88 0.81 0.85 0.96 0.97 0.97 0.95 0.94 0.64 -0.23 1.00 0.85 0.84 0.90 -0.02 1.00 -0.38 -0.23 -0.85 0.01

NDPI -0.14 -0.25 -0.25 -0.38 -0.37 -0.35 -0.34 -0.37 -0.38 -0.38 -0.38 -0.36 -0.25 -0.06 -0.38 -0.38 -0.34 -0.33 0.02 -0.38 1.00 -0.06 0.38 0.00

NDTI -0.06 -0.12 -0.02 -0.18 -0.09 -0.07 -0.10 -0.18 -0.18 -0.17 -0.16 -0.18 -0.08 1.00 -0.22 0.14 -0.37 -0.25 -0.01 -0.23 -0.06 1.00 -0.14 0.00

NDWI2 -0.29 -0.54 -0.51 -0.82 -0.76 -0.70 -0.73 -0.81 -0.82 -0.82 -0.81 -0.79 -0.53 -0.14 -0.84 -1.00 -0.66 -0.74 0.02 -0.85 0.38 -0.14 1.00 -0.01

NDWI 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.21 0.01 0.00 0.00 -0.01 1.00

PSSRA 0.18 0.33 0.27 0.51 0.42 0.39 0.42 0.50 0.51 0.51 0.49 0.49 0.31 -0.28 0.54 0.47 0.52 0.52 -0.01 0.55 -0.22 -0.28 -0.47 0.00

PVI 0.39 0.68 0.62 0.98 0.89 0.82 0.86 0.97 0.97 0.98 0.96 0.94 0.66 -0.22 1.00 0.84 0.83 0.90 -0.02 1.00 -0.38 -0.22 -0.84 0.01

TNDVI 0.58 0.76 0.71 0.85 0.83 0.82 0.83 0.85 0.85 0.85 0.85 0.85 0.74 -0.37 0.81 0.64 1.00 0.71 -0.02 0.82 -0.34 -0.37 -0.64 0.01

WDVI 0.50 0.76 0.71 1.00 0.93 0.88 0.91 0.99 0.99 0.99 0.99 0.98 0.74 -0.20 0.99 0.84 0.85 0.88 -0.02 0.99 -0.38 -0.20 -0.84 0.01

AFRI 0.60 0.72 0.68 0.71 0.72 0.74 0.73 0.72 0.71 0.71 0.72 0.74 0.71 -0.37 0.65 0.40 0.94 0.56 -0.02 0.65 -0.29 -0.37 -0.40 0.00

AFRI21 0.60 0.72 0.68 0.71 0.72 0.74 0.73 0.72 0.71 0.71 0.72 0.74 0.71 -0.37 0.65 0.40 0.94 0.56 -0.02 0.65 -0.29 -0.37 -0.40 0.00

CIRedEdge 0.39 0.68 0.62 0.98 0.89 0.82 0.86 0.97 0.97 0.98 0.96 0.94 0.66 -0.22 1.00 0.84 0.83 0.90 -0.02 1.00 -0.38 -0.22 -0.84 0.01

EVI2 0.60 0.72 0.68 0.71 0.72 0.74 0.73 0.72 0.71 0.71 0.72 0.74 0.71 -0.37 0.65 0.40 0.94 0.56 -0.02 0.65 -0.29 -0.37 -0.40 0.00

EVI 0.60 0.72 0.68 0.71 0.72 0.74 0.73 0.72 0.71 0.71 0.72 0.74 0.71 -0.37 0.65 0.40 0.94 0.56 -0.02 0.65 -0.29 -0.37 -0.40 0.00

GEMI 0.60 0.72 0.68 0.71 0.72 0.74 0.73 0.72 0.71 0.71 0.72 0.74 0.71 -0.37 0.65 0.40 0.94 0.56 -0.02 0.65 -0.29 -0.37 -0.40 0.00

GI 0.38 0.67 0.61 0.97 0.88 0.81 0.85 0.96 0.97 0.97 0.95 0.94 0.65 -0.23 1.00 0.86 0.84 0.89 -0.02 1.00 -0.39 -0.23 -0.86 0.01

GRVI 0.37 0.66 0.60 0.97 0.87 0.80 0.84 0.96 0.97 0.97 0.95 0.93 0.64 -0.24 1.00 0.85 0.83 0.90 -0.02 1.00 -0.38 -0.24 -0.85 0.01

GVI 0.46 0.71 0.66 0.94 0.89 0.84 0.86 0.93 0.94 0.94 0.93 0.92 0.69 -0.20 0.94 0.80 0.84 0.83 -0.02 0.94 -0.37 -0.20 -0.80 0.01

LAI -0.42 -0.12 -0.22 0.43 0.20 0.05 0.13 0.39 0.42 0.42 0.36 0.33 -0.17 -0.24 0.60 0.52 0.29 0.63 -0.01 0.61 -0.20 -0.24 -0.52 0.01

MCARI2 0.60 0.72 0.68 0.71 0.72 0.74 0.73 0.72 0.71 0.71 0.72 0.74 0.71 -0.37 0.65 0.40 0.94 0.56 -0.02 0.65 -0.29 -0.37 -0.40 0.00

MCARI 0.39 0.67 0.60 0.97 0.87 0.80 0.84 0.96 0.97 0.97 0.95 0.94 0.65 -0.25 1.00 0.83 0.83 0.90 -0.02 1.00 -0.37 -0.25 -0.83 0.01

MSAVI2 0.38 0.66 0.60 0.97 0.88 0.81 0.85 0.96 0.97 0.97 0.95 0.94 0.64 -0.23 1.00 0.85 0.84 0.90 -0.02 1.00 -0.39 -0.23 -0.85 0.01

MTVI 0.60 0.72 0.68 0.71 0.72 0.74 0.73 0.72 0.71 0.71 0.72 0.74 0.71 -0.37 0.65 0.40 0.94 0.56 -0.02 0.65 -0.29 -0.37 -0.40 0.00

NDNI 0.60 0.72 0.68 0.71 0.72 0.74 0.73 0.72 0.71 0.71 0.72 0.74 0.71 -0.37 0.65 0.40 0.94 0.56 -0.02 0.65 -0.29 -0.37 -0.40 0.00

NDVI 0.37 0.66 0.59 0.96 0.87 0.80 0.84 0.95 0.96 0.96 0.94 0.93 0.63 -0.24 0.99 0.87 0.85 0.88 -0.02 0.99 -0.39 -0.24 -0.87 0.01

NMDI 0.60 0.72 0.68 0.71 0.72 0.74 0.73 0.71 0.71 0.71 0.72 0.73 0.70 -0.37 0.65 0.40 0.94 0.56 -0.02 0.65 -0.29 -0.37 -0.40 0.00

OSAVI 0.61 0.73 0.69 0.72 0.73 0.75 0.74 0.72 0.72 0.72 0.73 0.74 0.71 -0.37 0.65 0.40 0.93 0.57 -0.02 0.66 -0.29 -0.37 -0.40 0.00

PSRI 0.35 0.64 0.56 0.95 0.83 0.76 0.81 0.94 0.95 0.95 0.93 0.92 0.61 -0.29 0.99 0.83 0.83 0.91 -0.02 0.99 -0.37 -0.29 -0.83 0.01

RENDVI 0.60 0.72 0.68 0.71 0.72 0.74 0.73 0.72 0.71 0.71 0.72 0.74 0.71 -0.37 0.65 0.40 0.94 0.56 -0.02 0.65 -0.29 -0.37 -0.40 0.00

RVI 0.57 0.68 0.64 0.67 0.68 0.70 0.69 0.67 0.67 0.67 0.68 0.69 0.67 -0.35 0.61 0.38 0.89 0.53 -0.02 0.61 -0.27 -0.35 -0.38 0.00

SAVI 0.60 0.72 0.68 0.71 0.72 0.74 0.73 0.72 0.71 0.71 0.72 0.74 0.71 -0.37 0.65 0.40 0.94 0.56 -0.02 0.65 -0.29 -0.37 -0.40 0.00
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Figure B.1. Matrix of correlation between Sentinel-2 bands, principal components, and spectral indices [continue]. 

PSSRA PVI TNDVI WDVI AFRI AFRI21CIRedEdge EVI2 EVI GEMI GI GRVI GVI LAI MCARI2 MCARI MSAVI2 MTVI NDNI NDVI NMDI OSAVI PSRI RENDVI RVI SAVI

B2 0.18 0.39 0.58 0.50 0.60 0.60 0.39 0.60 0.60 0.60 0.38 0.37 0.46 -0.42 0.60 0.39 0.38 0.60 0.60 0.37 0.60 0.61 0.35 0.60 0.57 0.60

B3 0.33 0.68 0.76 0.76 0.72 0.72 0.68 0.72 0.72 0.72 0.67 0.66 0.71 -0.12 0.72 0.67 0.66 0.72 0.72 0.66 0.72 0.73 0.64 0.72 0.68 0.72

B4 0.27 0.62 0.71 0.71 0.68 0.68 0.62 0.68 0.68 0.68 0.61 0.60 0.66 -0.22 0.68 0.60 0.60 0.68 0.68 0.59 0.68 0.69 0.56 0.68 0.64 0.68

B8 0.51 0.98 0.85 1.00 0.71 0.71 0.98 0.71 0.71 0.71 0.97 0.97 0.94 0.43 0.71 0.97 0.97 0.71 0.71 0.96 0.71 0.72 0.95 0.71 0.67 0.71

B11 0.42 0.89 0.83 0.93 0.72 0.72 0.89 0.72 0.72 0.72 0.88 0.87 0.89 0.20 0.72 0.87 0.88 0.72 0.72 0.87 0.72 0.73 0.83 0.72 0.68 0.72

B12 0.39 0.82 0.82 0.88 0.74 0.74 0.82 0.74 0.74 0.74 0.81 0.80 0.84 0.05 0.74 0.80 0.81 0.74 0.74 0.80 0.74 0.75 0.76 0.74 0.70 0.74

B5 0.42 0.86 0.83 0.91 0.73 0.73 0.86 0.73 0.73 0.73 0.85 0.84 0.86 0.13 0.73 0.84 0.85 0.73 0.73 0.84 0.73 0.74 0.81 0.73 0.69 0.73

B6 0.50 0.97 0.85 0.99 0.72 0.72 0.97 0.72 0.72 0.72 0.96 0.96 0.93 0.39 0.72 0.96 0.96 0.72 0.72 0.95 0.71 0.72 0.94 0.72 0.67 0.72

B7 0.51 0.97 0.85 0.99 0.71 0.71 0.97 0.71 0.71 0.71 0.97 0.97 0.94 0.42 0.71 0.97 0.97 0.71 0.71 0.96 0.71 0.72 0.95 0.71 0.67 0.71

B8a 0.51 0.98 0.85 0.99 0.71 0.71 0.98 0.71 0.71 0.71 0.97 0.97 0.94 0.42 0.71 0.97 0.97 0.71 0.71 0.96 0.71 0.72 0.95 0.71 0.67 0.71

PC1 0.49 0.96 0.85 0.99 0.72 0.72 0.96 0.72 0.72 0.72 0.95 0.95 0.93 0.36 0.72 0.95 0.95 0.72 0.72 0.94 0.72 0.73 0.93 0.72 0.68 0.72

BI2 0.49 0.94 0.85 0.98 0.74 0.74 0.94 0.74 0.74 0.74 0.94 0.93 0.92 0.33 0.74 0.94 0.94 0.74 0.74 0.93 0.73 0.74 0.92 0.74 0.69 0.74

BI 0.31 0.66 0.74 0.74 0.71 0.71 0.66 0.71 0.71 0.71 0.65 0.64 0.69 -0.17 0.71 0.65 0.64 0.71 0.71 0.63 0.70 0.71 0.61 0.71 0.67 0.71

CI -0.28 -0.22 -0.37 -0.20 -0.37 -0.37 -0.22 -0.37 -0.37 -0.37 -0.23 -0.24 -0.20 -0.24 -0.37 -0.25 -0.23 -0.37 -0.37 -0.24 -0.37 -0.37 -0.29 -0.37 -0.35 -0.37

DVI 0.54 1.00 0.81 0.99 0.65 0.65 1.00 0.65 0.65 0.65 1.00 1.00 0.94 0.60 0.65 1.00 1.00 0.65 0.65 0.99 0.65 0.65 0.99 0.65 0.61 0.65

GNDVI 0.47 0.84 0.64 0.84 0.40 0.40 0.84 0.40 0.40 0.40 0.86 0.85 0.80 0.52 0.40 0.83 0.85 0.40 0.40 0.87 0.40 0.40 0.83 0.40 0.38 0.40

IPVI 0.52 0.83 1.00 0.85 0.94 0.94 0.83 0.94 0.94 0.94 0.84 0.83 0.84 0.29 0.94 0.83 0.84 0.94 0.94 0.85 0.94 0.93 0.83 0.94 0.89 0.94

IRECI 0.52 0.90 0.71 0.88 0.56 0.56 0.90 0.56 0.56 0.56 0.89 0.90 0.83 0.63 0.56 0.90 0.90 0.56 0.56 0.88 0.56 0.57 0.91 0.56 0.53 0.56

MNDWI -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

MSAVI 0.55 1.00 0.82 0.99 0.65 0.65 1.00 0.65 0.65 0.65 1.00 1.00 0.94 0.61 0.65 1.00 1.00 0.65 0.65 0.99 0.65 0.66 0.99 0.65 0.61 0.65

NDPI -0.22 -0.38 -0.34 -0.38 -0.29 -0.29 -0.38 -0.29 -0.29 -0.29 -0.39 -0.38 -0.37 -0.20 -0.29 -0.37 -0.39 -0.29 -0.29 -0.39 -0.29 -0.29 -0.37 -0.29 -0.27 -0.29

NDTI -0.28 -0.22 -0.37 -0.20 -0.37 -0.37 -0.22 -0.37 -0.37 -0.37 -0.23 -0.24 -0.20 -0.24 -0.37 -0.25 -0.23 -0.37 -0.37 -0.24 -0.37 -0.37 -0.29 -0.37 -0.35 -0.37

NDWI2 -0.47 -0.84 -0.64 -0.84 -0.40 -0.40 -0.84 -0.40 -0.40 -0.40 -0.86 -0.85 -0.80 -0.52 -0.40 -0.83 -0.85 -0.40 -0.40 -0.87 -0.40 -0.40 -0.83 -0.40 -0.38 -0.40

NDWI 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00

PSSRA 1.00 0.54 0.51 0.52 0.42 0.42 0.54 0.42 0.42 0.42 0.55 0.55 0.51 0.39 0.42 0.55 0.55 0.42 0.42 0.56 0.42 0.42 0.57 0.42 0.40 0.42

PVI 0.54 1.00 0.81 0.99 0.65 0.65 1.00 0.65 0.65 0.65 1.00 1.00 0.94 0.60 0.65 1.00 1.00 0.65 0.65 0.99 0.65 0.65 0.99 0.65 0.61 0.65

TNDVI 0.51 0.81 1.00 0.83 0.94 0.94 0.81 0.94 0.94 0.94 0.82 0.81 0.83 0.26 0.94 0.81 0.82 0.94 0.94 0.83 0.94 0.94 0.81 0.94 0.89 0.94

WDVI 0.52 0.99 0.83 1.00 0.68 0.68 0.99 0.69 0.68 0.68 0.99 0.99 0.95 0.51 0.68 0.99 0.99 0.68 0.68 0.98 0.68 0.69 0.97 0.68 0.65 0.68

AFRI 0.42 0.65 0.94 0.68 1.00 1.00 0.65 1.00 1.00 1.00 0.65 0.65 0.69 0.08 1.00 0.65 0.65 1.00 1.00 0.65 1.00 0.99 0.64 1.00 0.94 1.00

AFRI21 0.42 0.65 0.94 0.68 1.00 1.00 0.65 1.00 1.00 1.00 0.65 0.65 0.69 0.08 1.00 0.65 0.65 1.00 1.00 0.65 1.00 0.99 0.64 1.00 0.94 1.00

CIRedEdge 0.54 1.00 0.81 0.99 0.65 0.65 1.00 0.65 0.65 0.65 1.00 1.00 0.94 0.60 0.65 1.00 1.00 0.65 0.65 0.99 0.65 0.65 0.99 0.65 0.61 0.65

EVI2 0.42 0.65 0.94 0.69 1.00 1.00 0.65 1.00 1.00 1.00 0.65 0.65 0.69 0.08 1.00 0.65 0.65 1.00 1.00 0.65 1.00 0.99 0.64 1.00 0.94 1.00

EVI 0.42 0.65 0.94 0.68 1.00 1.00 0.65 1.00 1.00 1.00 0.65 0.65 0.69 0.08 1.00 0.65 0.65 1.00 1.00 0.65 1.00 0.99 0.64 1.00 0.94 1.00

GEMI 0.42 0.65 0.94 0.68 1.00 1.00 0.65 1.00 1.00 1.00 0.65 0.65 0.69 0.08 1.00 0.65 0.65 1.00 1.00 0.65 1.00 0.99 0.64 1.00 0.94 1.00

GI 0.55 1.00 0.82 0.99 0.65 0.65 1.00 0.65 0.65 0.65 1.00 1.00 0.94 0.61 0.65 0.99 1.00 0.65 0.65 1.00 0.65 0.66 0.99 0.65 0.62 0.65

GRVI 0.55 1.00 0.81 0.99 0.65 0.65 1.00 0.65 0.65 0.65 1.00 1.00 0.94 0.62 0.65 1.00 1.00 0.65 0.65 0.99 0.65 0.65 0.99 0.65 0.61 0.65

GVI 0.51 0.94 0.83 0.95 0.69 0.69 0.94 0.69 0.69 0.69 0.94 0.94 1.00 0.47 0.69 0.94 0.94 0.69 0.69 0.94 0.69 0.70 0.93 0.69 0.65 0.69

LAI 0.39 0.60 0.26 0.51 0.08 0.08 0.60 0.08 0.08 0.08 0.61 0.62 0.47 1.00 0.08 0.62 0.62 0.08 0.08 0.61 0.08 0.08 0.65 0.08 0.08 0.08

MCARI2 0.42 0.65 0.94 0.68 1.00 1.00 0.65 1.00 1.00 1.00 0.65 0.65 0.69 0.08 1.00 0.65 0.65 1.00 1.00 0.65 1.00 0.99 0.64 1.00 0.94 1.00

MCARI 0.55 1.00 0.81 0.99 0.65 0.65 1.00 0.65 0.65 0.65 0.99 1.00 0.94 0.62 0.65 1.00 1.00 0.65 0.65 0.99 0.65 0.66 0.99 0.65 0.61 0.65

MSAVI2 0.55 1.00 0.82 0.99 0.65 0.65 1.00 0.65 0.65 0.65 1.00 1.00 0.94 0.62 0.65 1.00 1.00 0.65 0.65 1.00 0.65 0.66 0.99 0.65 0.61 0.65

MTVI 0.42 0.65 0.94 0.68 1.00 1.00 0.65 1.00 1.00 1.00 0.65 0.65 0.69 0.08 1.00 0.65 0.65 1.00 1.00 0.65 1.00 0.99 0.64 1.00 0.94 1.00

NDNI 0.42 0.65 0.94 0.68 1.00 1.00 0.65 1.00 1.00 1.00 0.65 0.65 0.69 0.08 1.00 0.65 0.65 1.00 1.00 0.65 1.00 0.99 0.64 1.00 0.94 1.00

NDVI 0.56 0.99 0.83 0.98 0.65 0.65 0.99 0.65 0.65 0.65 1.00 0.99 0.94 0.61 0.65 0.99 1.00 0.65 0.65 1.00 0.65 0.66 0.99 0.65 0.62 0.65

NMDI 0.42 0.65 0.94 0.68 1.00 1.00 0.65 1.00 1.00 1.00 0.65 0.65 0.69 0.08 1.00 0.65 0.65 1.00 1.00 0.65 1.00 0.99 0.64 1.00 0.94 1.00

OSAVI 0.42 0.65 0.94 0.69 0.99 0.99 0.65 0.99 0.99 0.99 0.66 0.65 0.70 0.08 0.99 0.66 0.66 0.99 0.99 0.66 0.99 1.00 0.65 0.99 0.93 0.99

PSRI 0.57 0.99 0.81 0.97 0.64 0.64 0.99 0.64 0.64 0.64 0.99 0.99 0.93 0.65 0.64 0.99 0.99 0.64 0.64 0.99 0.64 0.65 1.00 0.64 0.61 0.64

RENDVI 0.42 0.65 0.94 0.68 1.00 1.00 0.65 1.00 1.00 1.00 0.65 0.65 0.69 0.08 1.00 0.65 0.65 1.00 1.00 0.65 1.00 0.99 0.64 1.00 0.94 1.00

RVI 0.40 0.61 0.89 0.65 0.94 0.94 0.61 0.94 0.94 0.94 0.62 0.61 0.65 0.08 0.94 0.61 0.61 0.94 0.94 0.62 0.94 0.93 0.61 0.94 1.00 0.94

SAVI 0.42 0.65 0.94 0.68 1.00 1.00 0.65 1.00 1.00 1.00 0.65 0.65 0.69 0.08 1.00 0.65 0.65 1.00 1.00 0.65 1.00 0.99 0.64 1.00 0.94 1.00
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Figure B.2. Correlation matrix of GLCM texture measures obtained from Sentinel-2 VNIR bands. 

Band
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measure

CON DISS HOM ASM E MAX ENT MEAN CORR VAR CON DISS HOM ASM E MAX ENT MEAN CORR VAR CON DISS HOM ASM E MAX ENT MEAN CORR VAR CON DISS HOM ASM E MAX ENT MEAN CORR VAR

CON 1.00 0.92 0.27 0.04 0.22 0.10 0.74 0.53 0.46 0.50 0.70 0.78 0.37 0.13 0.30 0.20 0.70 0.58 0.55 0.53 0.80 0.84 0.31 0.08 0.24 0.14 0.73 0.57 0.53 0.53 0.50 0.55 0.46 0.40 0.45 0.43 0.24 0.58 0.55 0.53

DISS 0.92 1.00 0.45 0.10 0.36 0.19 0.94 0.73 0.62 0.73 0.62 0.83 0.58 0.27 0.48 0.37 0.83 0.78 0.74 0.76 0.73 0.90 0.52 0.18 0.41 0.28 0.87 0.77 0.71 0.75 0.44 0.57 0.67 0.59 0.64 0.61 0.26 0.78 0.74 0.75

HOM 0.27 0.45 1.00 0.82 0.97 0.90 0.50 0.72 0.65 0.91 0.19 0.39 0.95 0.86 0.95 0.90 0.34 0.71 0.66 0.90 0.23 0.42 0.97 0.84 0.95 0.89 0.36 0.70 0.64 0.91 0.16 0.26 0.90 0.82 0.87 0.85 -0.03 0.68 0.63 0.90

ASM 0.04 0.10 0.82 1.00 0.92 0.98 0.03 0.38 0.38 0.58 0.05 0.10 0.69 0.83 0.77 0.79 -0.04 0.33 0.31 0.56 0.05 0.09 0.73 0.85 0.80 0.83 -0.04 0.34 0.32 0.57 0.06 0.08 0.60 0.59 0.60 0.59 -0.16 0.31 0.28 0.57

E 0.22 0.36 0.97 0.92 1.00 0.97 0.35 0.63 0.58 0.83 0.17 0.32 0.90 0.89 0.92 0.90 0.23 0.61 0.57 0.82 0.20 0.33 0.92 0.88 0.94 0.91 0.23 0.60 0.55 0.82 0.15 0.22 0.83 0.77 0.81 0.79 -0.08 0.58 0.53 0.82

MAX 0.10 0.19 0.90 0.98 0.97 1.00 0.15 0.49 0.46 0.69 0.09 0.18 0.79 0.87 0.84 0.85 0.06 0.44 0.41 0.67 0.11 0.18 0.82 0.88 0.87 0.88 0.06 0.44 0.41 0.68 0.10 0.14 0.70 0.67 0.69 0.68 -0.13 0.42 0.38 0.67

ENT 0.74 0.94 0.50 0.03 0.35 0.15 1.00 0.78 0.65 0.80 0.48 0.76 0.64 0.28 0.52 0.39 0.84 0.85 0.79 0.81 0.59 0.85 0.58 0.18 0.44 0.29 0.90 0.83 0.75 0.81 0.33 0.51 0.72 0.63 0.69 0.65 0.26 0.84 0.79 0.81

MEAN 0.53 0.73 0.72 0.38 0.63 0.49 0.78 1.00 0.97 0.88 0.32 0.57 0.80 0.58 0.74 0.65 0.59 0.95 0.94 0.87 0.39 0.62 0.78 0.50 0.69 0.59 0.63 0.96 0.95 0.87 0.22 0.40 0.80 0.70 0.76 0.73 0.16 0.91 0.87 0.87

CORR 0.46 0.62 0.65 0.38 0.58 0.46 0.65 0.97 1.00 0.77 0.26 0.47 0.71 0.55 0.67 0.61 0.47 0.88 0.90 0.76 0.32 0.51 0.70 0.50 0.65 0.57 0.49 0.91 0.93 0.76 0.19 0.34 0.70 0.62 0.67 0.64 0.13 0.84 0.81 0.75

VAR 0.50 0.73 0.91 0.58 0.83 0.69 0.80 0.88 0.77 1.00 0.32 0.60 0.95 0.73 0.89 0.81 0.61 0.89 0.83 1.00 0.40 0.65 0.93 0.67 0.86 0.75 0.65 0.88 0.80 1.00 0.22 0.39 0.95 0.85 0.91 0.88 0.09 0.86 0.81 1.00

CON 0.70 0.62 0.19 0.05 0.17 0.09 0.48 0.32 0.26 0.32 1.00 0.88 0.16 0.03 0.13 0.07 0.64 0.29 0.24 0.32 0.90 0.76 0.17 0.03 0.14 0.07 0.55 0.30 0.24 0.32 0.83 0.82 0.19 0.09 0.16 0.12 0.52 0.29 0.24 0.33

DISS 0.78 0.83 0.39 0.10 0.32 0.18 0.76 0.57 0.47 0.60 0.88 1.00 0.38 0.11 0.30 0.19 0.91 0.55 0.47 0.60 0.86 0.92 0.39 0.12 0.30 0.19 0.81 0.55 0.45 0.60 0.71 0.86 0.43 0.29 0.38 0.33 0.61 0.53 0.46 0.60

HOM 0.37 0.58 0.95 0.69 0.90 0.79 0.64 0.80 0.71 0.95 0.16 0.38 1.00 0.88 0.98 0.93 0.36 0.83 0.80 0.95 0.24 0.47 0.97 0.78 0.93 0.85 0.45 0.82 0.77 0.95 0.11 0.20 0.97 0.92 0.96 0.94 -0.14 0.82 0.78 0.95

ASM 0.13 0.27 0.86 0.83 0.89 0.87 0.28 0.58 0.55 0.73 0.03 0.11 0.88 1.00 0.95 0.98 -0.03 0.58 0.57 0.72 0.07 0.18 0.86 0.88 0.89 0.89 0.09 0.58 0.57 0.73 0.02 0.03 0.79 0.79 0.80 0.80 -0.28 0.56 0.55 0.72

E 0.30 0.48 0.95 0.77 0.92 0.84 0.52 0.74 0.67 0.89 0.13 0.30 0.98 0.95 1.00 0.98 0.22 0.76 0.73 0.89 0.19 0.38 0.96 0.84 0.94 0.89 0.33 0.75 0.72 0.89 0.09 0.15 0.93 0.90 0.92 0.91 -0.20 0.74 0.72 0.89

MAX 0.20 0.37 0.90 0.79 0.90 0.85 0.39 0.65 0.61 0.81 0.07 0.19 0.93 0.98 0.98 1.00 0.07 0.67 0.66 0.80 0.12 0.26 0.91 0.86 0.92 0.89 0.20 0.66 0.65 0.80 0.05 0.08 0.86 0.85 0.86 0.86 -0.26 0.65 0.64 0.80

ENT 0.70 0.83 0.34 -0.04 0.23 0.06 0.84 0.59 0.47 0.61 0.64 0.91 0.36 -0.03 0.22 0.07 1.00 0.59 0.50 0.62 0.69 0.87 0.35 0.00 0.22 0.09 0.89 0.57 0.46 0.61 0.49 0.73 0.44 0.27 0.37 0.31 0.62 0.56 0.48 0.61

MEAN 0.58 0.78 0.71 0.33 0.61 0.44 0.85 0.95 0.88 0.89 0.29 0.55 0.83 0.58 0.76 0.67 0.59 1.00 0.99 0.90 0.41 0.67 0.77 0.44 0.66 0.54 0.71 0.99 0.96 0.89 0.19 0.32 0.87 0.81 0.85 0.82 0.01 0.99 0.97 0.89

CORR 0.55 0.74 0.66 0.31 0.57 0.41 0.79 0.94 0.90 0.83 0.24 0.47 0.80 0.57 0.73 0.66 0.50 0.99 1.00 0.84 0.36 0.60 0.73 0.43 0.63 0.53 0.63 0.99 0.98 0.84 0.15 0.24 0.83 0.80 0.83 0.81 -0.08 0.98 0.98 0.84

VAR 0.53 0.76 0.90 0.56 0.82 0.67 0.81 0.87 0.76 1.00 0.32 0.60 0.95 0.72 0.89 0.80 0.62 0.90 0.84 1.00 0.41 0.67 0.93 0.65 0.84 0.74 0.67 0.88 0.81 1.00 0.22 0.39 0.96 0.86 0.92 0.89 0.08 0.88 0.82 1.00

CON 0.80 0.73 0.23 0.05 0.20 0.11 0.59 0.39 0.32 0.40 0.90 0.86 0.24 0.07 0.19 0.12 0.69 0.41 0.36 0.41 1.00 0.89 0.21 0.02 0.15 0.07 0.68 0.40 0.33 0.41 0.79 0.79 0.29 0.20 0.26 0.23 0.46 0.41 0.37 0.41

DISS 0.84 0.90 0.42 0.09 0.33 0.18 0.85 0.62 0.51 0.65 0.76 0.92 0.47 0.18 0.38 0.26 0.87 0.67 0.60 0.67 0.89 1.00 0.40 0.07 0.29 0.15 0.93 0.64 0.55 0.66 0.62 0.76 0.53 0.41 0.49 0.45 0.47 0.66 0.60 0.67

HOM 0.31 0.52 0.97 0.73 0.92 0.82 0.58 0.78 0.70 0.93 0.17 0.39 0.97 0.86 0.96 0.91 0.35 0.77 0.73 0.93 0.21 0.40 1.00 0.87 0.98 0.92 0.35 0.76 0.72 0.93 0.12 0.21 0.94 0.88 0.92 0.90 -0.10 0.74 0.70 0.93

ASM 0.08 0.18 0.84 0.85 0.88 0.88 0.18 0.50 0.50 0.67 0.03 0.12 0.78 0.88 0.84 0.86 0.00 0.44 0.43 0.65 0.02 0.07 0.87 1.00 0.95 0.99 -0.08 0.46 0.46 0.66 0.02 0.04 0.71 0.71 0.72 0.71 -0.24 0.42 0.39 0.66

E 0.24 0.41 0.95 0.80 0.94 0.87 0.44 0.69 0.65 0.86 0.14 0.30 0.93 0.89 0.94 0.92 0.22 0.66 0.63 0.84 0.15 0.29 0.98 0.95 1.00 0.98 0.19 0.67 0.64 0.85 0.09 0.16 0.88 0.84 0.87 0.85 -0.16 0.63 0.60 0.85

MAX 0.14 0.28 0.89 0.83 0.91 0.88 0.29 0.59 0.57 0.75 0.07 0.19 0.85 0.89 0.89 0.89 0.09 0.54 0.53 0.74 0.07 0.15 0.92 0.99 0.98 1.00 0.02 0.55 0.55 0.74 0.05 0.08 0.79 0.77 0.79 0.78 -0.22 0.51 0.49 0.74

ENT 0.73 0.87 0.36 -0.04 0.23 0.06 0.90 0.63 0.49 0.65 0.55 0.81 0.45 0.09 0.33 0.20 0.89 0.71 0.63 0.67 0.68 0.93 0.35 -0.08 0.19 0.02 1.00 0.67 0.56 0.66 0.42 0.62 0.53 0.40 0.48 0.43 0.45 0.70 0.64 0.66

MEAN 0.57 0.77 0.70 0.34 0.60 0.44 0.83 0.96 0.91 0.88 0.30 0.55 0.82 0.58 0.75 0.66 0.57 0.99 0.99 0.88 0.40 0.64 0.76 0.46 0.67 0.55 0.67 1.00 0.98 0.88 0.19 0.32 0.85 0.79 0.83 0.81 0.02 0.98 0.96 0.88

CORR 0.53 0.71 0.64 0.32 0.55 0.41 0.75 0.95 0.93 0.80 0.24 0.45 0.77 0.57 0.72 0.65 0.46 0.96 0.98 0.81 0.33 0.55 0.72 0.46 0.64 0.55 0.56 0.98 1.00 0.81 0.15 0.23 0.80 0.77 0.80 0.78 -0.07 0.95 0.95 0.81

VAR 0.53 0.75 0.91 0.57 0.82 0.68 0.81 0.87 0.76 1.00 0.32 0.60 0.95 0.73 0.89 0.80 0.61 0.89 0.84 1.00 0.41 0.66 0.93 0.66 0.85 0.74 0.66 0.88 0.81 1.00 0.22 0.38 0.96 0.87 0.93 0.89 0.07 0.87 0.82 1.00

CON 0.50 0.44 0.16 0.06 0.15 0.10 0.33 0.22 0.19 0.22 0.83 0.71 0.11 0.02 0.09 0.05 0.49 0.19 0.15 0.22 0.79 0.62 0.12 0.02 0.09 0.05 0.42 0.19 0.15 0.22 1.00 0.88 0.10 0.00 0.07 0.04 0.51 0.18 0.14 0.21

DISS 0.55 0.57 0.26 0.08 0.22 0.14 0.51 0.40 0.34 0.39 0.82 0.86 0.20 0.03 0.15 0.08 0.73 0.32 0.24 0.39 0.79 0.76 0.21 0.04 0.16 0.08 0.62 0.32 0.23 0.38 0.88 1.00 0.16 0.00 0.10 0.04 0.80 0.28 0.19 0.37

HOM 0.46 0.67 0.90 0.60 0.83 0.70 0.72 0.80 0.70 0.95 0.19 0.43 0.97 0.79 0.93 0.86 0.44 0.87 0.83 0.96 0.29 0.53 0.94 0.71 0.88 0.79 0.53 0.85 0.80 0.96 0.10 0.16 1.00 0.97 0.99 0.98 -0.21 0.86 0.84 0.96

ASM 0.40 0.59 0.82 0.59 0.77 0.67 0.63 0.70 0.62 0.85 0.09 0.29 0.92 0.79 0.90 0.85 0.27 0.81 0.80 0.86 0.20 0.41 0.88 0.71 0.84 0.77 0.40 0.79 0.77 0.87 0.00 0.00 0.97 1.00 0.99 1.00 -0.41 0.82 0.83 0.87

E 0.45 0.64 0.87 0.60 0.81 0.69 0.69 0.76 0.67 0.91 0.16 0.38 0.96 0.80 0.92 0.86 0.37 0.85 0.83 0.92 0.26 0.49 0.92 0.72 0.87 0.79 0.48 0.83 0.80 0.93 0.07 0.10 0.99 0.99 1.00 1.00 -0.30 0.85 0.84 0.93

MAX 0.43 0.61 0.85 0.59 0.79 0.68 0.65 0.73 0.64 0.88 0.12 0.33 0.94 0.80 0.91 0.86 0.31 0.82 0.81 0.89 0.23 0.45 0.90 0.71 0.85 0.78 0.43 0.81 0.78 0.89 0.04 0.04 0.98 1.00 1.00 1.00 -0.37 0.83 0.84 0.89

ENT 0.24 0.26 -0.03 -0.16 -0.08 -0.13 0.26 0.16 0.13 0.09 0.52 0.61 -0.14 -0.28 -0.20 -0.26 0.62 0.01 -0.08 0.08 0.46 0.47 -0.10 -0.24 -0.16 -0.22 0.45 0.02 -0.07 0.07 0.51 0.80 -0.21 -0.41 -0.30 -0.37 1.00 -0.05 -0.16 0.07
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Appendix C: Box-and-Whiskers Plots 

 

Figure C.1. Pixel distributions of the shoreline classes in Sentinel-2 B2. 

 

Figure C.2. Pixel distributions of the shoreline classes in Sentinel-2 B3. 
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Figure C.3. Pixel distributions of the shoreline classes in Sentinel-2 B4. 

 

Figure C.4. Pixel distributions of the shoreline classes in Sentinel-2 B5. 
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Figure C.5. Pixel distributions of the shoreline classes in Sentinel-2 B6. 

 

Figure C.6. Pixel distributions of the shoreline classes in Sentinel-2 B7. 
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Figure C.7. Pixel distributions of the shoreline classes in Sentinel-2 B8. 

 

Figure C.8. Pixel distributions of the shoreline classes in Sentinel-2 B8a. 
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Figure C.9. Pixel distributions of the shoreline classes in Sentinel-2 B11. 

 

Figure C.10. Pixel distributions of the shoreline classes in Sentinel-2 B12. 
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Figure C.11. Pixel distributions of the shoreline classes in MNDWI. 

 

Figure C.12. Pixel distributions of the shoreline classes in NDBI. 
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Figure C.13. Pixel distributions of the shoreline classes in Ratio 1. 

 

Figure C.14. Pixel distributions of the shoreline classes in Ratio 2. 
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Figure C.15. Pixel distributions of the shoreline classes for PC1. 

 

Figure C.16. Pixel distributions of the shoreline classes for PC2. 
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Figure C.17. Pixel distributions of the shoreline classes for PC3. 

 

Figure C.18. Pixel distributions of the shoreline classes for PC4. 
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Figure C.19. Pixel distributions of the shoreline classes for PC5. 

 

Figure C.20. Pixel distributions of the shoreline classes for PC6. 
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Figure C.21. Pixel distributions of the shoreline classes for PC7. 

 

Figure C.22. Pixel distributions of the shoreline classes for PC8. 



175 

 

 

Figure C.23. Pixel distributions of the shoreline classes for PC9. 

 

Figure C.24. Pixel distributions of the shoreline classes for PC10. 
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Figure C.25. Pixel distributions of the shoreline classes for B2 GLCM ASM measure. 

 

Figure C.26. Pixel distributions of the shoreline classes for B2 GLCM contrast measure. 
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Figure C.27. Pixel distributions of the shoreline classes for B2 GLCM E measure. 

 

Figure C.28. Pixel distributions of the shoreline classes for B2 GLCM VAR measure. 
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Figure C.29. Pixel distributions of the shoreline classes for B4 GLCM contrast measure. 

 

Figure C.30. Pixel distributions of the shoreline classes for B4 GLCM ENT measure. 
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Appendix D: Principal Components 

 

Figure D.1. Principal components obtained from Sentinel-2 red, green, blue, NIR, narrow-NIR, RE 1-3, SWIR-1, and SWIR-2 band. 
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