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ABSTRACT

This thesis tackles the development of herders as marine oil spill treating &geasirst
section of the thesis, biosurfactantbased bioherdewas generated and examined for
marine oil spill respons&he biosurfactanvasproduced byRhodococcus erythropolia
strain isolated from the North Atlantic Oce#&commercial chemical herder, USN cold
water blend, was used for performance comparisactors affectingperding effectiveness
includingtemperaturgesalinity, and oil/herderatio, were investigatedsing theDesign of
Experimentmethodology Statistical analysis was employed to study the interagtion
amongthe factors on herding abilitfExperimental esultsconfirmedthat the developed
bio-herder can serve as an effective marine oil spill treating agenteanmératureand

herder/oil ratio are significant factoaffectingoil herdingeffectiveness

In the second section of the thesisolecular design was conducted to obtain
environmentally friendly herder produdisr marine oil spill responséThe quantitative
structureactivity relationship betweemolecular structures of herders ahéir activities
(herding ability andtoxicity) was firstly established using 3QSAR modeling. Span
surfactants were selected as the model key components of h@uwlerQSAR CoMFA
and CoMSIA modelswere constructedand ten molecularlymodified spancompounds
wereobtained Molecular dockg wascarried outo further examinghe biodegradability

of onenewly designed molecular.

Through both studies, new herders {berder and molecular modified herdevgre
generated which areuseful in herd production In addition, the associated hergi
performance and environmental impacts were evaluaiacerall, this thesis work



contributes newknowledgeto the field and providemore sustainable options for marine

oil spill response operations.
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CHAPTER 1 INTRODUCTION



1.1 Background

Oil spills have drawn concern globally due to their impacts on the marine environment. In
1989, over 36,000 seabirds died immediately after the Exxon Valdez oil spill, and the
majority of rescued 1,800 living oiled seabirds died after they were brougiioilitation
centergPiatt & Ford, 1996)In 2010,the Deepwater Horizon oil spill was claimed the
largest record in the history of the petroleum indu@ty, 2011) Over 700 thousand tons

of crude oil verereleasedCommission, 2011)This oil spill has caused over $5.5 billion
loss to fishing and tourism industriesjillions of seabirds and libns of fish eggs were
killed, and population shift of microorganisms, phytoplankton, and other florasw
observedCorn, 2010; Hagerty, 2010; Widger et al., 2014)2004, between 10,000 and
16,000 birds died in the Terra Nova oil sgWilhelm et al., 2007)With the estimated
undiscovered potential oftfillion barrelsof oil, Newfoundland and Labradtakeup about
40% of Canadads c¢ ohoutpubhwith grameing ptospegctEurnercet u d e

al., 2010) The province thus neetisbewell prepared for any potential accidental oil spills.

A variety of response technologies,cliding physical/mechanical and chemical
countermeasures, have been developed to help to take prompt actions once any accidental
oil spill happens to reduce the associated impact on marine systems, fisheries and local
communities. The boom is a mechanidavice used to prevent spilled oil from spreading

to surrounding areas. Once being constrained within a specific area by the boom, the oil
can be recovered, processed, or concentrated so that it can be recovered, burned, or
otherwise treate¢Fingas, 201Q)The oil skimmer is a mechanical device consisting of a

disc, a belt, a drum, and a brush. It is designed to be combined with a boom to remove oil



from the water surface without ainging its performance so that it can be reprocessed and
reused(Schwartz, 1979; Scheg, 1998; Hammoud, 20Q6In-situ burning is a thermal
method for oil spill repair, which can achieve a higher oil removal efficiency with minimal
special equipmen(Dave & Ghaly, 2011) About 250,000 barrels of floating oil were
mitigated during 411 separate burn events (DWRDA, 2015). However, these
traditional mechanical/physical countermeasures have the shortcomings such as narrow
operating timewindows, fire protection requirements for boonwsl, slick thickness
requirements for ignitioninterference caused by currency and wihdat loss during

burning,and insufficient separation (US EPA, 2012).

Mechanical countermeasures usually recover just a small fraction of the spilled oil and
other techniques, such as chemical treating agents, are available to enhance oil spill
response capabiliti€gValker et al., 1995)Awareness of employing oil spill treating agents
with surfactants asritical components has been raised, leadingh® production and
application of dispersants and herding agents. As a promising alternative response
technique, the application of dispersants has been well recogeseekcially after the
Deepwater Horizon oil spill evefivalker et al., 2003)During the Deepwater Horizon oll

spill, about 1.84 million gallons of Corexit 9500 and 9527 dispersants were applied from
the sea surfacend the subsea to disperse the(@itaham et al., 2011Herding agents are
another group of oil spill treating agents, sometimes reféorad oil collecting agents. It

can be sprayed onto the waseirrounding an oil spill to thicken the spilled oil layer so as

to further facilitate the wsitu burning treatmer{Buist et al., 2008a)



1.2 Statementof Problems

Currently availablechemicalherders aremixtures ofsynthesizedsurfactants (including
hydrocarborbasedsiliconebasedand fluoresurfactantsandsolventgBuist et al., 2010a;
Fingas, 2014)The ingredients of chemical herders are considered tof Begnificant
toxicity and/or persistencin the environmen{imai et al., 1994; Mullin et al., 2016;
Niedobova et al., 2016; Barron et al., 20ZDhe negative impacts of surfactdrased
chemical oil treating agents on marine life and the environment raiseégmng concerns,
especially after the Deepwater Horizon oil sgleyer et al., 2016; Li et al., 2016)
Chemical herding agents used in enhancingitin burning mainly remain in the water
columnafter usageCorexit 9580, as one of the common commercialized herdersased
the toxicity of the oil in the water colun{Bhattacharyya et al., 2003)ue to its tendency

to remain in the water, the risk of marine species intake is rishmg72hEC50(median
effective concentrationyalue of Corexit 9580 on marine espesSkeletonema costatum
was 135.3mg/L(Hansen et al.,, 201450rbitan monolaurate, part of the sorbitan ester
family, is the main ingredient of one chemical named Thickslick 6B3%as found that
sorbitan ester could increadeetmortality rates imats and potentiallyinduce cutaneous
irritation in humangFitzhugh et al.1960; Elder, 1985)Hence, more environmentally
friendly and biodegradable surfactants need to be generated as marine oil spill treating
agents.Biosurfactants has been used in various intessaas analternateto chemical

surfactants.

Biosurfactarbased herding agents(Bio-herders) have significant potential asan

alternative herder with better overall performance.Biosurfactants are surfaeetive



materials produced by microorganis(@eorgeAres et al., 1999)Theycan be applied in
various industries asletergents solubilizing agets, wetting and spreading agents,
oil/water emulsifying agent®r antifoaming agents based on their hydropHipophilic
balance (HLB) and chemical structur@ai et al., 2014)Some biosurfactantsave high
spreading pressures since theyranetures of congeners withylrophobic moietie¢Cai

et al., 2014)Due to this high spreading force, they can spread rapidlyemmater surface
into a molecular layer and contact spilled oil slicksrdnent years, biosurfactants have
been attrachg a broad interest since they are biodegradable, less toxic, and stable in harsh
environments(Al-Bahry et al., 2013; Alvarez et al.,, 2015; Patel et al., 20T%e
commercialized biosurfactant Rhamnolipids has lower toxicity than chesudactans
(Lang & Wagner, 1987)According to Lang and Wagner (1987jhe Rhamnolipids
surfactantshave a lower 1Gso value than chemical surfactantsn marine flagellates
microalgaeGlycolipids biosurfactants produced Bynodococcuspecies were reportéd
haveless aqueous toxicity than Twe8f (Kanga et al., 1997As studiedby Marqués et
al. (2009) trehaloseetraester (THLproduced byRhodococcuspeciesvasless irritating
thansodium dodecyl sulfate (SDSJ is thus desired to develop biosurfactaased bie
herding agents withetter performance and mdr&ndlinesgo the environmentowever,
bio-herders have rarely been studied with extremely limited publications emelder

production and the associated herding effectiveness evaluation.

On the other hand, greener cheahiberders can also be obtained through chemical
structure modification using tools like 3PSAR modeling and molecular dockingp-

QSAR studied the relationship between chemical properties and their molecular structures


https://www-sciencedirect-com.qe2a-proxy.mun.ca/topics/chemistry/trehalose
https://www-sciencedirect-com.qe2a-proxy.mun.ca/topics/biochemistry-genetics-and-molecular-biology/rhodococcus

(Akamatsu, 2002)It is a widely used tool in predicting environmental performance
parameters of chemicals and desmnenvironmentally friendly moleculatMolecular
docking is & essentialtool in computerassisted drug desigand structural molecular
biology (Morris & Lim-Wilby, 2008) It can be usetb predict the predominant bindiod

a ligand with a proteifrom aknown threedimensional structur@D-QSAR and molecular
docking have the potential to be applicable for generatiagvironmentdy friendly
chemicals Four environmentallyriendly ditridecyl phthalate derivativeseregenerated
from the constructe@D-QSAR modeby evaluating their toxicity and estrogen combined
activities(Du et al., 2020; Li et al., 202Qa)wo environmentdy friendly polychlorinated
naphthalenes (PCNs) with lower toxicity were selected from established QSAR (tdels
et al., 2020h And then the biodegradation ability of these two PCNs derivatiuether
analyzedby binding the molecular with selected PAH degradation enzyy@socarbon
based chemical herder Span series are commonlyfas@asitu burning enhancement
(Buist et al., 2006)Herding agents are mainly detected on water surface post burning; this
could cause concern for using chemical herder in the marine envirof@naptet al., 2014;
Place et al., 2016)Greener chemical herdarth molecular structure improvetirough
computerassisted modeling and molecular docking has not been repbi@ade,this
studyis amied at fillingthe knowledge gap by generating more environmigniiaendly,

biodegradable chemical herders as marine oil spill treating agents.
1.3 Objectives

To fill the research gaps identified in section 1.2, this thesis aims to develop

environmenrglly friendly herders as marine oil spill treating agents. It entails two tasks: (1)



generation of a bierder using diosurfactant produciniRhodococcustrain and (2)
development of green chemical herding agents improved molecular structuresing

3D-QSAR modeling and molecular docking.

Rhodococcus erythropoli25, a strain obtaineflom mutation of an isolated species from
the North Atlantic OceariCai et al., 2016; Lv et al., 2016)vas used to produce the
biosurfactanbased bioherder. A commercial chemical herder, USN cold water blend, was
used for performance comparison. Factors affecting herding effectiveness, including
temperature, salinity, and oil/herder ratio, were investjausing the Design of
Experiment methodology. Statistical analysis was employed to study the interactions

among the factors on herding ability.

The nolecular design was conducted to obtain green chemical herder products for marine
oil spill response.Quantitative structuractivity relationshig between molecular
structures of herders and their activities (herding ability and toxieigrke established

using 3ADQSAR modeling. Span surfactants were selected as thené&dglcomponents

of herders. Two QSARCoMFA and CoMSIA) models were constructed to obtain
molecularly modified span compounds. Molecular docking was then adopted to further
examine the biodegradability of any newly designed moleclitas.is the first study using

QSARonN herder structure naification and performance improvement.

Through both tasks, herder production wagected to badvanced with new herders (bio
herder and molecular modified herder) generated. In addition, the associated herding

performance and environmental impacts wevaluated. The thesis outputs would help



contribute to knowledge in the field and provide mop&ions forsustainable marine oil

spill response
1.4 Thesis Structure

This thesis consists of five chapters. Chapter 2 describes the backgriwendiof agents,

as well as their structusend applicatioras biosurfactants oil spill response, including
physicochemical properties and applicationsil pollution mitigation In this chapterthe
QSAR modelingslassification, model desigand enwonmental applicatioare reviewed.
Chapter 3 is a study of the development of biosurfadiaséd bieherders byRhodococcus
erythropolis strain M25. This chapter also investigates the significant environmental
factors affectinghe performance of herders. Chaptedescribeshe 3DQSAR studies to

aid the production of green chemical herders with better herding performance through
molecula modification. Finally, Chapter 5 presents the conclusions, research
accomplishmentsand contributions to knowledge, as well as recommendations for future

work.



CHAPTER 2 LITERATURE REVIEW



2.1 Herding Agents for Marine Oil Spill Response
2.1.1Herding theory

Herding agnts usually consist of surfactants and solvéntdealing with oil spill, lerding
agentsfacilitate in-situ burning technique by increasing the oil slick thickness. The
chemical surfactant in the herding agent prevents oil from spreading with a chafacte
larger spreading pressure than cruddBilist et al., 2010a)Spilled oil forms an oil slick

on the watesurface and has the tendency to spread into the sheen slick. Sprayed herding
agents can prevent the olil slick from spreadingkeepthe thickness greater tharBthm.

This critical oil slick thicknesss key to the implementation afi-situ burning respnse

(Buist et al., 2011a)
2.1.2Chemical surfactants

Surfactants aremphiphilic moleculeghat can lower the surface tension between two
liquid phass or & the liquid-solid interfac€Schramm, 2000)Surfactants are chemical
compounds with both hydrophobic groups (or tails) and hydrophilic groups (or heads). As
surfaceactive compounds, effective surfactants can reduce the surface tensiearbttey

air and water from 72 to 30 mN/m or low@&chramm, 2000)The aility of surfactants to
influence the properties of surfaces and interfaces could béredipplication in various

fields.

Surfactants have been applied in many fieldsiging from food industry, agriculture,
pharmaceuticals, personal care produatsl, @nvironmental remediatiqiDziezak, 1988;

Schueller & Romanowski, 1998; Schramm et al., 2088)factantsan be added as food

10



coatirg modifiers inthe food production and processing indusfigr example surfactants

such as polysorbate &hd sorbitan monostearateere used tdlend and stabilizéne fat

and cocoa butter in chocolate coatfBgiezak, 1988)Surfactants can be usidncreasing

the production rate of commercially grown vegetable crops in sandysgdéctantused

in sandy soikanenhance the water retentiand nutritioncapacityby reducing thesandy

soil water repellency Sar vag, 200 3; .Sufaetand also cart be askd in 200
pharmaceutical suspensioes sodium lauryl sulfateand docusate sodium avsed to

lower the surface tension between the suspended agent and suspending medium
(Kulshreshtha et al., 2009)n the cosmeticsindustry, surfactants such as alkyl
polyglyosides wereused to improvethe stability of micreemulsionsto reduce skin
irritation and to create the formulation oil-in-water emulsionRieger, 2017)Another
applicationof surfactants in the petroleum industry, where surfactant ¢sused to form
oil-in-water emulsification, differential sticking prevention, skaleelling inhibitors,and
foaming/ defoaming additio(Quintero, 2002)Surfactants also have potential in oil spill
remediation for both marine and ssbrface environmea{Owoseni et al., 2014; Li et al.,

2016)

Chemical surfactants can be classifetording to their chemical structuiato four main
categories anionic, cationi¢ nonanoi¢ and amphoteric or zwitterioniqMyers, 1991,
Schramm eal., 2003) Anionic surfactantgan réease an amphiphilic anion and a cation
which is generallyan alkaline metal Anionic surfactants include sulphonatssiphates,
phosphate esterand carboxylatetStache, 1995)Cationic surfactants release amphiphilic

catiorsand aniosin water(Rubingh, 199Q)Nonionic surfactants do not releasesonan

11



agueous solution. The types of hydrophilic guguallyincludealcohok, phenaos, ethes,

estes, and amides. Nonionic surfactants mainly include ethoxylated linear alcohols,
ethoxylated alkyl phenols, fatty acid esters, amine derivatwesamide derivativg€ross,

1987) Amphoteric or zwitterionic surfactants display both anionic and cationic
dissociations. This is because they have two functional groups, both anionic and cationic
(Lomax, 1996)Anionic surfactants are generally with negative charges while the cationic
surfactants are usually carrying positive chargegy usually contaithefollowing types:

betaines, amino acidand phospholipidsChe classification has been listed in Tahle.

12



Table2.1 Classification of chemical surfactants

Class Type Example Molecular structure formula

. (0}
Sodium dodecyl sulfate \\S/O\/\/\/\/\/\/CH
0?\

Sulfate o
(SDS) Na*
Anionic
[ )
Sodium dodecyl benzen Qﬁ,”
Sulfonate ’C’W
sulfonate )
Na*
Carboxyl Sodium stearate O'\r\/\/\/\/\/\/\/\/CHJ
0
Cetyltrimetylammonium |
+
AN
bromide (CTAB) Br~
o Quaternary
Cationic
ammonium
+
[*] halides )
Laurylamine
. HiIN NN NN e Hl
hydrochloride
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Fatty Acid

Decyl Oleate
Alkyl Esters e NP
Polyoxyethylen 5 ‘?g\g
Alkylpolyoxyethylenes = T E L
e alcohol of MINVINGT & 3
Non-ionic * =y
[O] /\O O
Polyol ester ”°"Hg)ﬁﬂoik/\/“/\/\\
OH
Spans 80 \\\\L
|
(o] H
\E/\OEI;
Polyethylene  Triton X-100
= /'."."
'\.\‘ -G
Lauramidopropyl L o
Amphoteric 0
betaine +
or NH f,N\
zwitterionic
/1 Cocamidopropyl /\N\/\AJ\ _
) AN

betaine
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2.1.3Chemical herders

Commercial herding agenhave been used for over 30 yeafBuist et al., 2008b)
Hydrocarborbased (i.e., Corexit 9580, original U.S. Navy cold water blend, weaater
herderblend, OG5), siliconesurfactant based (i.e., Silsurf A108, Silsurf AOO4BN)d
secondggener ation fl uor os urafedhe mash popul® cchemiBab x E P
herdes (Buist et al., 2010a; Fingas, 2014).S. Navy cold water blend was succedgful

usedn thickening oil slick excess of 3 mm and worked in the presence @utst, 2010)

Silsurf A004D is another propriety silicone surfactant mixture that has beenttesteniv

higher herding efficiencyBuist et al., 2010ajGupta et al. (2015ttempted to develop an
ecofriendly green herder, resulting0%rom r ¢
( 2 0 B9nheyo et al. (201 #eported thadggregatorgould be used both as sorption and
herdersin oil spill responseZhou (2020)recently proposed that phytanic acid and
monogalactosyldiacylglycerol (MGDG) cae used as eemiendly herders under calm sea

conditions. Figur.1 shows the structure of selected chemical herders.
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Figure2.1 Exemplarstructure of predominant chemical herder
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2.1.4Applications of herdersin oil spill response

In general, booms, skimmers, andsitu burning are widely adapted in oil spill response
through physical mechanisr(stkin & Tebeau, 2003However, only 3% of the spilled oil

was collected by booms and skimmers, and 5% was burned in the Deepwater Horizon oil
spill responsgLubchenco et al., 2013As a matter of fact, booms, skimmers, andita

burning can only be applied in calm weatleenditions, and they are hindered by rough
weather, winds, and oil sligkee et al., 2016 For instance, an oil slick can only be ignited
when its thickness is greater tha3 2am in order to keep the heat. Abot8% of the heat
generated by the combustion is returned to the oil layer, where it causes additional vapors
to escape and buriWhen the oil layer is thinner thar2Lmm, the heat is lost to the water

As suchnot enough vapors are released and combustion (Bais¢ et al., 1994)Hence,

researchor developing imsitu burning enhancemetechnique isvarranted

Chemical herdexhave been widely tested as oil collecting agents to improve in situ burning
in the marine environmentlerding agents can increase the oil slick thickness by lowering
the water and air interfacial tensioh.series of laloratorialand infield tests havéeen
conducted tgrove the ISBenhancemersbility of chemical herder For instanceBuist et

al. (2010b}ested the herder (USN) in the fieldsitu burning test aheBarents Sea (Arctic
Ocean). More than 90% of oil recovery efficiency was reached in the burning trial.
Aggarwal et al. (2017yompared two herding agents (OP40/%538®) during the irsitu
burning study in Alaska (Pacific Oceaiihe enhanced burning efficiency was up to 84%.
Rojas et al. (2020)as recently studied the two commonly chemical herders (OP40/TS6535)

in a labscale setting. SL Ross lab and Ohmissttedtheherding ability and isitu burning
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for multiple years with multi@ testing scale@Buist et al., 2006; Buist et al., 2007; Buist
et al., 2008a)Some of the current applicati®im the past decade wesemmarizedh Table

2.2.
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Table2.2 Examples of current herder studies

Location Year Herders Oils Scare Key points
SL Ross 2003 EC 9580 ANS 1m? 2-4 mm
Lab
SL Ross 2004/2005 EC 9580 ANS 1/ 3-4 mm/ Burning
Lab USN GasOil  10n? test
0G5 wave
tank
CRREL 2005 UNS Hydrocal 81 n? USN effective up to
Basin 70% ice cover
Ohmsett 2006 UNS Blend Ewing 1000 nt 3-4 mm
Bank/
Arab
Medium
Prudhoe 2006 USN Kupurak 25 n? Burning test/USN
Bay Pool effective in brash
SL Ross 2007/2008 PF151N ANS 1 e/ Silsurf best both
Lab Silsurf Kuparuk static/ dynamic test
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Siltech No.2Fuel oil 10 n¥
DFP
SL Ross 2008 USN ANS 1n? Best solvent i-
Lab ethyl 1-butanol
Barents 2008 USN Heidrun 1700 nf  Burning test 90+%
Sea removal efficiency
SL Ross/ 2008/2009 USN ANS 2-4000 Improves
B o
Ohmsett Kupruk m weir skimmer
recovery rates
Oseberg
SL Ross 2010 USN Spray SSC 0002 nozzle
Lab test selected
SL Ross 2011 USN ANS 1 Silicone herders
Lab 0G5 Kuparuk 10 n? retained small
burning slicks
Silsurf No.2 Fuel DFP
Oil 4000 ri?
DESMI- 2013 Water Spray Helicopter
AFTI &Canola test application
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Surrogates

Alaska 2017 OP40 ANS Field- 73%t0 84%
TS6535 scale
Denmark 2017 OP-04 DUC crude 1m?  Burning test 4285%
oil 19 m?
Arctic 2017 Aggregators  Crude oll 1100L Herding and
Lab tank absorption together
BSEE 2018 TS6535 ANS 1m? 1-3 mm
OP-04
Denmark 2019/2020 TS6535 ANS 1i5 mm
OP-04 Grane

CCNY 2020 Phytanic acid Crude oil 0.09m? Potential herding

MGDG agents
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2.2 Biosurfactants for Oil Spill Mitigation
2.2.1Biosurfactants

Biosurfactants are surfa@etive compounds produced extracellularly by microorganisms
(GeorgeAres et al., 1999)Such surfacactive biomolecules are superior alternatives for
chemical surfactants due to their unique propeftidskherjee et al., 2006; Geys et al.,
2014) Biologically based surfactarfgll in categories containing giplipids, lipopeptides

and lipoproteins, phospholipids and fatty acids, polymeric surfactants, and particulate
surfactantgDesai & Banat, 1997; Gudifia et al., 20Hipsurfactants can be classified into
two grous based on their molecular weighLow-moleculammass biosurfactants, such as
lipopeptides, glycolipidsand proteins, can effectively reduce the surface/interfacial tension
Those with high molecular masscan stabilize emulsions but usuallynot redue surface
tension (e.g.polysaccharides, lipopolysaccharides proteandipoproteinsYRosenberg &
Ron, 1999)Biosurfactants can also beharacterizedhased on the nature of the charge on
individual polar moiety. For instance, negatively charged biosurfactants are haéntg
sulphur or sulphonate grosiCationic biosurfactantsontainpositive chargethatcome

from cationic groups such amaternary ammoniurdmphoteric biosurfactants have both
positively and negatively charged moieties in the same mok(&ddman & Gakpe, 2008)
Some of these classified common bioaatants and their corresponding producers are

summarized in Table 23/Aulligan & Giggs, 1993; Silva et al., 201
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Table2.3 Classificationand examplesf biosurfactants

Head Group Biosurfactant Molecular Structure

Microorganism

Glycolipids Rhamnolipids
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aeruginosa
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Bacillus subtilis,
Bacillus pumilus
A

Corynebacterium
lepus

Acinetobacter
calcoaceticus

23



2.2.2 Applications of Biosurfactantsin oil pollution remediation

Marine oil spillsoften occurduring onshore or offshore activitiesausing serious ocean
pollution. Oil pollutionscan be foundn variousoil operation stages, ranging from muds,
produced waste discharge, accident oil spills by ship, and leaking feqoiptine, storage
tanks. Those spilled olas a massie impacton human, surrounding environment, and
ecosystemlvshina et al. (2013)ointed outthat oil spill responses are sustainable physical,
chemical, and biological procedures &muatic and no@aquatic phase Spilled oilon the
water surface could be removed physically ugsibpgomer and skimmePart of spilled oll
can be removed by-situ burning Weathering is a complex process forthatis expogd
longer in the air under sunshine, including spreading, evaporation, dispersion,
emulsification, oxidation, dissolution, biodegradation, and sedimentatieathafed oil
can be foundt bottom sediment, sandy beach, rocky shoreline, and coagtlewet al.,
2015; Fingas, 2016)Biosurfactants haveattracted considerable interest in the
environmental biotechnologies and industriesluding potentialoil recovery applications

oil spills control and bioremediation of contaminated ¢Mbkkar & Rockne, 2003; Patel

et al., 2019)

Offshore oil spills can be treated hysing dispersants. Dispersants are chemically
synthesized and can be defined as a blend of surfactaitgnts, and additives
(Kujawinski et al., 2011)Biosurfactants are environmentally friendly since they can also
be readily biodegraded and less damaging to the a@mant than the more recalcitrant
chemical surfactantgPacwaP g o c i ni ¢ z a k. Ramnolipid isa contn@rdial )

purified biosurfactanthat has been studieds an alternative dispersanHolakoo (2001)
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tested thedasibility of Rhamnolipids for dispersing oil slicks atZ5anda salinity of 35
ppt. It was found thathe dispersion efficiency decreasadhentemperatures and salinity
were loweredSaeki et al. (2009¢xamined the dispersion ability tife culture broth of
Gordonia sp. strain JELO58 through baffled flask testing. Ishoweda potetial to be
applied as an oil spill dispersant and stimulated the degradation of weathered crude oil
(ANS 521) Glycolipids produced byRhodococcuspecies HIA have the ability to
enhancehe solubility of naphthalene and its methstibstituted derivates(Kanga et al.,
1997) Trehaleselipid is a nonreducing disaccharide in which the two glucose units are
linked and an 4.,1-glycosidic structurgFranzetti et al., 2010Yrehalose lipid produced
by Rhodococcuspecies hagotential applications in oil recovery, contrdlail spills, and
bioremediation of contaminated s¢Makkar & Rockne, 2003; Patel et al., 201%he

application oftrehalose lipidin oil spill responseavas summarized in Table 2.4.
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Table2.4 Trehalose lipid production and application

Microorganism

Type of

Biosurfactant

Application

Rhodococcus erythropolis 3€

Rhodococcus ruber strain IEGM AC21

Rhodococcus erythropolis P&

Rhodococcus Erythropolis SP. 3B

R. wratislaviensis BN38

Micrococcus luteus BN56

Nocardiopsis lucentensis MSA04

Pseudozyma hubeiensis

Mycobacterium flavescens strain X

Rhodococcus strain H18

Gordonia spstrain BS29

Trehalose lipid

Trehalose lipids

Trehalose lipid

Trehalose lipid

Trehalose tetraeste

Trehalose tetraeste

Glycolipid

Glycolipid

Glycolipids

Glycolipids

Glycolipids

Oil spill cleanup operations
Bioremediation of crude oil
contaminated soil
Biodispersant of crude oil spil
Biodispersant of crude oil spil
Bioremediation applications
Bioremediation of oH
contaminateenvironments
Bioremediation of marine
environment

Bioremediation of marine oil
pollution

Bioremediation of oH
contaminated wastewater
Bioremediation of polycyclic
aromatic hydrocarbons (PAH:s
Bioremediation of enhancin

crude oil contaminated soil
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Oil pollutants in soil systensanbe controlled by biosurfactantsrttugh enhanced soil
washing or bioremediatiouring a soil washing processhesurfactant cabe applied

to improve the mobilizatiofsolubilizationof hydrocarbongncrease the contact angéend
reduce the capillary force between soil andDegshpande et al., 1999; Luna et al., 2009)
The number of surfactant micelles in water increases with the solubilization increases,
because theontaminandg partitioning into thehydrophobic core of surfactant micelles
Thus, sirfactant conaatrations well above theritical micelle concentrationQMC) are
critical for this solubilizationenhancement to be significantsoil washingDeshpande et

al., 1999) Biosurfactants hae been reported as soil washing agents in soil remediation by
Kavitha et al. (2014); Zhu et al. (2016); Mulani et al. (20&andArelli et al. (2018) In

these reportdyiosurfactants were uséd treatoil pollution and showeadvantages such

as biodegradability and low toxicity. As soil washing agehissurfactants ere also
characterized into groups by different molecular weights and functions. The low
molecularweight compounds calower the surface tensiorOn the other hand, high
molecularweight compoundsiereused as stabilizing ager{Daset al., 2017)Chemical
dispersargwere deemed toxic totheenvironment in the studies Byetroski et al. (2015)

And Pi et al. (2017)studied the contribution ofchemical dispersaston crude oil
biodegradation and concluded that biosurfactants were more effective at bioremediation of

oil-contaminated marine environment.

Soil remediation has been widely used to remove heavy metal, petroleum hydrocarbons,
and volatile organic mattefsom the contaminated sifguerin, 2015; Koshlaf & Ball,

2017) Forenhanced bioremediation, biosurfactants can interact with bacterssbctier
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cell hydrophobicity, and facilitate the access of the cells to veatebilized hydrocarbons,
large oil droplets, and pseudolubilized or emulsified oil{Franzetti et al., 2010)
Rhamnolipids, lichenysins, and surfactin dre tew biosurfactants found to baccessful
in the remediation of oil contaminatigiMulani et al., 2017)Biosurfactant generated
microbars have been reported isolated by scientists from various locafiozs.et al.
(2009)isolateda new biosurfactanproduced byCandida glabratafornin Indiana castal
area. A new biosurfactant produdexiguobacteriunsp. Strain N4LP was first published
by Cai et al. (2014)Malavenda et al. (2015jsolatedthe Arctic and Antarctic bacteria
producingbiosurfactarg using hydrocarbons as carbon soarcehe application of soil
recovery intheArctic area is limitedsignificantly affectedoy temperature, sea ice, sunlight
regime, suspended sediment plur(désrgeynst et al., 2018The contaminated soil type,
contaminant, remediation methodbjosurfactant produer, and remowal rate are

summarizedn Table 2.5.
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Table2.5 Summery of biosurfactant applicationthre soil environment

Contaminant Remediation Biosurfactant/ Remove  Reference

Site/soil types
Methods Producer efficiency

Sand from shore of intermediate Soil washing Rhamnolipids/ 97% Arelli et al.
Ravenna (Italy) fuel oil 180 sophorolipids (2018)

(IFO-180)
Shoreline sediment petroleum Soil flushing Dispersant Guerin

hydrocarbon (2015)
Oil industrial zones Pyrene Bioremediation Pseudomonas 84.6% (Jorfi et al.,
Soil aeruginosa SP4 2013)
Sandy/ find sand Crude oll Soil washing B.lichenifoETW >85% (Kavitha et
soil/ clay/ clay loam 5Prmis al., 2014)
Contaminated soil Crude oll Biodegradation Achromobacte 53% (Kazemzadeh
with wastewater of r kerstersii etal., 2020)
oil refinery plant LMG3441
Soil slurry Crude olil Bioremediation rhamnolipid (Kumari et

(JBR425) al., 2018)
Beach sand Motor oil Soil washing Candida 84% (Luna et al.,
(flask scale) glabrataUCP 2009)
1002

Saoll petroleum Bioremediation Aspergillus 90% (Martins et

hydrocarbon fumigatus al., 2009)
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Sea sand

Soll

saline marsh soil

Marine sediments

Loam soil

Soil (silty loam)

Weathered
crude oll
(ANS 521)

Crude oill

Crude oill

Crude oill

Crude oill

Crude oill

Soil washing

Bioremediation

Biodegradation

In-situ

bioremediation

(Field study)

Bioremediation

Soil washing

glycolipidtype

mussel shells
(BioaugSC)
Proteobacteria
and

Bacteroidetes

Rhamnolipid

B. subtilisN3-

4P

80%

80.9%

50%

86.97%

58%

165.2 %

Saeki et al.

(2009)

Sheppard et
al. (2014)
Wei et al.

(2020)

Zhao et al.

(2018)

Zhang et al.
(2011)
Zhu et al.

(2016)
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2.2.3Potentials of biosufactant based bioherders

The negative impacts of surfactdodsed chemical oil treating agents on magicesystems

and environmesthaveraised increasing concerns, especially after the Deepwater Horizon
oil spill (Beyer et al., 2016; Li et al., 201&hemical herding agents used in enhancing in
situ burning mainly remain in theater columnpost applicationDue tothe tendencyof
chemical herdetowardsremairnng in the water, the risk of marine species intake is rising.
The acute toxicity of one common chemical herder (Corexit 9580) was sensifivicto
marine species andareased the toxicity of the oil in the water colugBhattacharyya et

al., 2003; Hansen et al., 201&prbitanmonolaurates the main ingredient ahechemical
herdernamed Thickslick 653%As thepart of the sorbitan ester familyne use osorbitan
monolaurate could increase the mortality matteatsduring an oral feeding period &3

days (Fitzhugh et al., 1960)Sorbian esters also have the potential to induce cutaneous
irritation in humans, and they can cause sensitization in patients with damagédlgkm
1985) As reported, sorkan laurate is a tuar promoter in mouse skin wittD percent or
greater concentration®\s discussed above, current surfactants have significant toxic
effects and they remain persistent in the environment for an undesirably long period.

Therefore, development safer anddss toxiclternative surfactants is needed.

Biosurfactantsthat are produced by microorganisms during their growth have been
suggested as a promising and renewable soBresurfactants are found to be less toxic,

more effective, and stable extreme pHle.g., pH 1.0 or 14.0 at 40), temperatureand

salinity, and letter at enhancing biodegradat{#retschmer et al., 1982; Muthusamy et al.,

2008) It was found that the&oxicity of Rhamnolipids biosurfactamd lower thanthoseof
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chemical surfactantsaccording tothe tests ofiCso on marine flagellates microalgae
(Elucidation et b, 1987) According toKanga et al. (1997)he Tweer80 system was
approximately 50% more toxic dh the biosurfactant system. It was reported that
Glycolipids produced by Rhodococcus species-AMith a higher EGo exhibitedlower
aqueous toxicitythan Tween80. As studiedtrehalosdetraester (THL) produced by
Rhodococcusp. 51T7 is less irritating than thensmercial chemical surfactant. The
cellular toxicity testing results sh@athat 1Go of THL is higher than those obtained with
sodium dodecyl sulfate (SDS) for both keratinocytes and fibrofNestqués et al., 2009)

It is thus desired to develop biosurfactaased bieherding agents with better performance

and more friendhessto the environment.

Biosurfactants have gained considerable interest in environmental biotechnolodjies a
industries Thepotential applicationsf biosurfactants arm oil recovery, biodegradation
and detoxification of industrial effluentsontrol of oil spill, and bioremediation of
contaminated soil, and other areas like cosmetibarmaceuticaland bod applications
(Makkar & Rockne, 2003; Patel et al., 2018)was reported in 22D that the global
biosurfactants market was estimated taJ$$4.5 billion ands expected to readdS$6.5
billion by 2027.The anmal growth rateis 3.5%, significantly higher than the overall
surfactant market (2%)Scenario, 2011) They had shown a potentidbr unique
applicationsincluding the biological control of pests in medejpharmaceutics, cancer
treatment, and wound healii8tipcevic et al., 2006; Piljac et al., 200Pyevious studies
have proved the capability of producing biosurfactants with great potential for future

applicationgCai et al., 2014; Cai et al., 2013)dditionally, biosurfactantsan bgroduced
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from industrial wastedy-products, and cheap raw materials such as fish and shrimp wastes

(Luna et al., 2017; Zhu et al., 2020)

As reviewed inSection 2.2, biosurfactants Vebeen usedn generatingdispersantgor
marine oilspill responseHowever, bieherders have rarely been studiedrticularly in
terms ofbio-herder productio and the associated herding effectiveness evaludtien.
timely andimportantto develo bio-herdersas better alternatives. Biosurfactamased
herding agentwith the prospedve features of high effectiveness, low toxigitgnd

persistencyan be gromising option.
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2.33-D QSAR Aided Molecular Design and Its Environmental Applications
2.3.1Introduction

Quantitative structuii@ctivity relationship (QSAR)modeling is a welkstablished
computational approach teonduct chemical data analysifQSAR modelscan be
developed by establishing empirical, linear nortlinear relationships between chemical
descriptorsvalues and properties or bioactivities of molec(Nagatov et al., 2020)
Chemical descriptor valuesan be computed based onmolecular structure, while
properties and bioactivities can be obtained throtighexperimental measuremeruf
those moleculeDeveloped models can be appliedpredict or design novel chemicals
with desired propertie$he QSAR approach provides a rapidalytical toolto fill data
gaps for limited or absent experimental informat{@®arden, 2017)A brief history of

early QSAR methodolagswassummariedy Verma et al. (2010)

According toVerma et al. (2010)QSAR models can beassifiedby dimensionality or
types of chemometric method¥he QSAR methods are ofteategorized into 6 classes
(from 1D to 6D-QSAR) based on the structural representation oth@way descriptor
values are derived. QSAR models can also be categanizetinear methodge.g., linear
regression, multiple linear regression, partial lsastares, principal component
analysis/regressignand norlinear methodge.g., artificial neural networks, Hearest
neighbors, andayesian neural nets)t dependson thetype of employed correlation
technique which establisbs a relationship between structural properties and biological

activity.

34



The 3D-QSAR methods can be classified by various criteria (Table €@nparative
Molecular Field Analysis (CoMFA)s a powerful methad modified from the DYnamic
Lattice-Oriented Molecular Modeling System (DYLOMMS)y combining the two
existing techniques, GRID and partial least squares (RC&mer et al., 1988)To
overcome certain limitations of CoMFAComparative Molecular Similarityndices
Analysis (CoMSIA) wasthen develope. CoMSIA can simultaneously consider steric,
electrostatic, hydrophohiand hydrogen bonding properti€oMSIA can overcome the
prerequisiteof involving complete ligand training sets bytalor-made scorindgunction.
CoMSIA use atom-type specific interaction fields ease the interpretation of PLS results
In additionto the enthalpic contribution, the methodology is also expected to include the
entropic effects resulting from (geolvation since structuda knowledge from
experimentally determined complexes is converted into statistical pair poteDoMEA

and CoMSIA are two commonly used methods for@BAR modeling.
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Table2.6 3D-QSAR classification

Basedon Classification examples

. CoMFA, CoMSIA, COMPASS,
Ligandbased 3BQSAR

Intermolecular GERM, COMMA, SoMFA
modeling
Receptotbased 3BQSAR COMBINE, AFMoC, HIFA, CoRIA
_ CoMFA, CoMSIA GERM,
Alignmentdependent 3BQSAR
Alignment COMBINE, AFMoC, HIFA, CoRIA
criterion _ | COMPASS, COMMA, HQSAR,
Alignmentindependent 3EBQSAR
WHIM, EVA/CoSA, GRIND
_ CoMFA, CoMSIA, AFMoC, GERM,
Chemometric Linear 3ADQSAR COMMA. SOMFA
technique

Non-linear 3DQSAR COMPASS, QPLS

36



2.3.2QSAR aided molecular design

The process of QSAR modeling can be divided into three stateh aredevelopment,

model validationandapplication(Muhammad et al., 2018)

Development 3D-QSAR model design starts with gatheringpbdel compoundgrom
literature sourcefor bothtraining and testg ses. The training set is used to constrile
model, whilethe testing set is used to validatee model. The 2D molecularstructure of
chemicas$ obtainedrom thedatabase such &ibMed.These 2D structures are turriatb

3D modes using softwaresuch asSybyl or GaussianThe generated 3D structurgem

the softwareof the complex were then subjected to energy minimization and geometry
optimization.Molecular descriptorsan bephysicochemical propertiesalculated by the
computational softwaresuch as congtitional, electronic, geometrical, hydrophobic,
lipophilicity, solubility, steric, quantum chemigaind topological descriptors. Multivariate
analysis(e.g, multi linear regressiorpartial leastsquarg canbe carried outo correlate

molecular descriptors with observed activity.

Model validation The developed models are inteipavalidated bythe leaveoneout
(LOO) crossvalidation techniqguemplementedin the software. The LOO technique
eliminates one compound from the data setloanly in each cycle and buildise model
using the rest of the compound$wus, he model formed is used for predicting the activity
of the eliminated compoundlhis process is repeatedntill all the compounds are
eliminated. Meanwhile, developednodelscan bevalidated externally by judgg the

prediction of test set activity values.
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Application QSARanalysis is a liganthased drug design method developed more than 50
years ago byHansch and Fujita (1964Lonstructed 3BQSAR modelis usedto find a
statistically significant correlation between the chemical structure and continuous or
categorical/binarybiological/toxicological property using regression and classifinat
techniques. This computational methioals beerapplied successfully in different areas
such as drug development, pharmacy, and toxstitglieg Abramenko et al., 2020QSAR
methods are typically applied in predictipgtential toxicity outcomes for in vitro cell
cultures or in vivo animal test systems. It is used to well understand the toxicity end point
(e.g., mutagenicity, developmental toxicity, cancbipkinetic, andencompass multiple
mechanisms and pathwafidostragSzlichtyng & Worth, 2010; Cherkasov et al., 2014)
Many function annotation proteins aréeneant for pharmaceutical design because they may
be enzymes of different classes that could become drug targets. QSAR modeling thus can
be used to predict the enzyme classification on drug téCgeicu et al., 2010Pne QSAR
model was developed with 794 compounds to predigtltsama protein binding for drug
developmen{Ghafourian & Amin, 2013)The plasma protein binding causes significant
changs inthe volume of distributionclearanceand drug haHife for pharmacokinetics
characterization of drug®esides, the relationstihetween molecular structwend
physical/chemical properties areaigidely studied in other fiekj such apredicing acute

and chromic toxicity, genotoxicity and carcinogenicityf pollutants and organic

compounds adsorptiqiapenna et al., 2010; Serafimova et al., 2010; Gui et al., 2021)
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2.3.3QSAR in environmental applications

3D-Quantitative Structuréctivity Relationship (3DQSAR) studies the relationship
between chemical properties and their molecular structureQS£R is a widely used
tool in predicting environmental performance parameters hefmacals and design

environmentally friendlychemicas.

As a powerful technique, the QSAR method iheen widely applied in toxicology by many
researchers. For example, Devillers (2004) predicted the acute toxicity of
organophosphorus pesticides ors tegingthe developed QSAR modelhe QSAR model
was developedavith 51 chemicals as the training sehd the partialeast squares and
artificial neural network analysis methoegere usedfor rate LDy value prediction.
Toropov et al. (2017¢stablished a QSAR model for predicting #cute toxicity of 116
pesticides on rainbow trouEurthermore researcherslso developed linear regression
QSAR modelgso evaluatethe acute toxicity (E€) of a set of biocides collected from
different sources on the freshwater crustad@aphnia magn@Marzo et al., 2020)Zhao
et al. (2004)precited thepolycyclic aromatic hydrocarbons solubilitising 3DQSAR
modelsLu et al. (2001ronstructed QSAR models using hgphobicity parameter logl

to determine the substituted benzene toxicity on algas.al. (2020b)studied the toxicity
of quinolone antibiotics by & 3D-QSAR modeling. Toxicity and biological enhniment
for polychlorinated naphthalene (PCNs) were studied QAR modeling(Gu et al.,

2017; Gu et al., 2020a)

QSAR models canlsobe used to study thaigration and allocation behaviors afganic

pollutions Khan et al. (2019 stablished the QSA&cotoxicity modefor the fish mortality
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endpoint using 112drganic compoundssui et al. (2021designed the QSAR model to
predict the adsorption affinity @rganic compounds @lasticsin theaquaticenvironment.

The adsorpon affinity of 13 organic compounds opolyethylene and chlorinated
polyethylene was compared.Two QSAR models were developed to preéigs
(Osreaction rate constants) of various organic chemicals with multiple linear regression
and support vector macte methodgHuang et al., 2020)Chen et al. (2016)sed the
established model to preditite mitigation ability for PCBsThe octanotair partition
coefficient (Kogcan also be used along withoW(octanolwater partitionto study the
bioaccumulation antlioconcentration for POPs in aquatic and identifying biomagnifying
chemicals in terrestrial foechains(Arnot & Gobas, 2003; Gobas et al., 2008n the
other handRoberts (1991%tudied the acute lethal toxicity data for a range of anionic and
nonionic surfactants by QSAR modeling to predict by calculated ag&ues As studied

by Liu et al. (2020b)the toxicity of 20 amine surégants orDaphnia magnaastested to
completethe toxicity data of amine surfactants. Limitsttidieson 3D-QSAR have been
focused orbacteria's surfactant attachment to the memb{@aenpbell et al., 1999No

study on using 3BRSAR wasconductedn predicting kw and Keafor herdes.

Furthermore QSAR can beused to develop a globallyarmonized system (GH)y
predictingthe hazardous properties for selected hazard classes within theeGiH&ion
(Quintero et al.,, 2012and assessg risks (Pradeep et al., 201.6The QSAR model
developed byrandey et al. (202@}udied the acut@xicity and keystructurerelaiedto the

toxicity of 85 environmental transformation product pesticiddsre importary, this
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model ca alsoprovidean early warning of their potentially detrimental efssat fishes

for regulatory purposes.

The developed QSAR modean be usedfor designing newchemicas. Hydrophobicity
electronic and steric effects have been identified ashyhigiportart parameters for the
modeled toxicity which can provide structure modification substrate position as
modification guidelinegLapenna et al., 2010For example, phthalic acid ester (PAE)
which is often used aa plasticizer to provide staliy for plastic productgs ubiquitous
environmental pollutan{Singh et al., 2017)Four environmentally friendly ditridecyl
phthalate derivatives were screened out by evaluating their toxicity and estrogen combined
activities pedicted bythe3D-QSAR modelDu et al., 2020; Li et al., 20208s a typical
persistent organic pollutant,olychlorinated naphthalenes (PCNaje toxic to the
environment.Gu et al. (2020a)establisheda multiactivity 3D-QSAR based on the
comprehensive evaluation index BCNs andselected2 derivatives with significantly
comprehensive evaluation index reduced as envirotiynerriendly PCNs.
Fluoroquinolonds the most widely usedynthetic antibacterial agent atinical practice
which has led to a series of toxic side effects on organ{&ims 2010) Hou et al. (2020)
usedthe CoMISA method to construct a 3RSAR model with the plasma protein binding
rate as the dependent variable for prediction. It was found that a variety of eretirtaly
friendly trovafloxacin derivatives with lower plasma protein bindingsate designedt
wasreported thaQSAR modeling can alsmodify enzyme molecules, suchagsacetylate
enzyme histone deacetylase &nd humads 4-hydroxyphenylpyruvate dkygenas€Chu

et al., 2020; Liu et al., 202Qa)
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2.4 Summary

This chapter started with a literature reviewhending agents for marine @ipill response
Background information of herding agentacluding definition, herding theory, and
commonly used herding agem®re introducedProperties of chemical surfactants were
alsosummarized. Chemical surfactants can be classified based cstitheiure properties,
molecular mass into different groupBhe wide applications of chemical surfactants to
food industry oil recovery and environmental remediation waiszussedSubsequently,
the review extended to the chemiterdersand their woking principles. The current
studies of chemicaherdingagentsin oil spill mitigation andtheir herdingperformance

evaluation weréntroduced

Biosurfactantsincluding their physiochemical properties, classification, and their special
advantages copared with chemicadurfactantsvere then summarizedhe feasibility of
biosurfactants for oil spill response was supported by a review of current experimental
studies using biosurfactants suchTashalosdipids andRhamnolipids Applications of
biosurfactantsfor oil pollution remediation and the need fpeneratinghovel bioherdes

were discussedPotential and knowledge gam thebioherdedevelopmenivere identified

Finally, this chaptemcludeda comprehensive review of QSAR modeling. QSAR models
are designed to predict complicated physicochemical /biological properties of chemicals
from their experimental or calculated properti€se mathematical modelf quantitative
structureactivity relaticship was reviewed, including classifications amemplarmodel
methods Then, the QSAR modeling development, validatiand application were

discussedas modeling design stage3D-QSAR moded were widely applied in drug
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development, prediction of toxtg, prediction of metabolism, and biokinetics studies.
Recentapplicatiors of QSAR modeling in environmental studi®sre summarizedt was
demonstrated tha®D-QSAR modellingcould be used for molecular design tibtain
greener chemical The challengesof using computationatools for chemical herder
structuraldesignand improvement werglentified. Based on the literature reviewhis
thesis workwasfocuson fill ing the knowledge gagby generating more environmeriyal
friendly, biosurfactanbasederdersandbiodegradable chemical herders as marine oil spill

treating agents.
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CHAPTER 3 BIOHERDER GENERATED FROM RHODOCOCCUS

AS MARINE OIL SPILL TREATING AGENTS
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3.1Introduction

Marine oil spills can causeceanpollutions during oil operation onshore and offshore
activities(Li et al., 2016) Oil pollution happenatvarious operational stages, ramgfrom
crude oil releaséanks, offshore platforms, drilling rigs, and wellscan also happen as
crude oil spills of refined petroleum products and thewphyducts, bunker fuel used by
large ships, and oily white refuse or waste oil sgilsang et al., 2019)0il spills might
also occur due to many reasahsough the exploration, extraction, and transportation
processing(Lee et al., 2015)Most oil spills were caused by leaking tankers, &mal
majority of total oil release occurrences were at small s¢glagas, 2011)In the past
decade, the overall amountgyilled oil worldwidehas surpassetbillion gallons with 6
million tons of oil released into the oceans per year (Abddaimid etal., 2013).The
Deepwater Horizon oil spilhapp@ed in 2010claimed the largest record in the history of
the petroleum industrythere wereover 700 thousand gallons of crude oil releadd,

2011; Commission, 2011)

Marine oil spills have negative impacts on bshiorelineand offshore environmentEhe
selectionof properresponseptionscan helpto reduce the impacts caused by incidents
wherealarge volumeof oil is releasd into the ocearA previous study indicated thablky

5% of the released oilvas burnedduring the Deepwater Horizon oil spill response
(Lubchenccet al., 2013)When the oil layer is thinner tharZlmm, the heat is lost to the
water There isno enough vapors releasé¢a facilitate combustion(Buist et al., 1994)

Henceatechnique assistingsitu buning by increasing the oil slick thickness is needed.
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Herding agents cahickenoll slicks by reducing the surrounding water surface tension.
The mostpopularcommercializecherders are hydrocarbdrased herdsr(e.g., Corexit
9580, original U.S. Bvy cold water blend, warwater herder blend, G6), silicone
surfactant basederds (e.g, Silsurf A108, Silsurf A004D),and seconegeneration
fluorosur f act a(Buisté& all 20Pa KirfasP2B1H )% kffectiveness of
herding agents can be defined as the percerthgege inthe oil slick area uter a
sufficient period (Buist et al., 2008a)The operatioal conditiors of herding agersthave
been investigated among various environrakfactors, including oil type, herder type,
temperature, water salinjtpndthe wave and ice prese(Buist et al., 2006; Buist, 2010;

Buist et al., 2010a)

An environmental concerimas beerraised based on the properties and fate of herding
agents irthewater column(Gray et al., 2014)To face the challenge, this studyfocused

on the generation of a biosurfactdr@sed biobrderproduced byRhodococcuspeciegor
marine oil spill response. Thbioherderwas generatedising the microorganisms
Rhodococcud25 strainscreenedrom North Atlantic Oceaand genetially modified in

the NRPOP lab(Cai et al., 2014; Lv et al., 2016\fter generation usinghis hypef
production RhodococcusM?25 strain the bioherder was characterized. Herding
effectiveness was comparedth the chemical herdeto demonstratets performance
Further, we tested its feasibilitgr oil herdingunder differenbperational condition This
study demonstratedhat biosurfactarbased herder can be used as an alternative marine

oils pill treating agent.
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3.1 Methodologies
3.1.1Biosurfactant production and characterization

The biosurfactant producinBhodococcudi25 strain is genetically mutated I§§ai et al.
(2016) The dock strain was frozeandpreserved at-8 0 Marine Broth.The grain
was cultured on Marine Broth Agar for 3dayhen bacteria were cultivated in the
Production Medium (PM) composed of Mg§0.2 g; CaGl 2H:0, 0.05 g; KHPQy, 3.4

g; K:HPQyw 3H:0, 4.4 g; (NH)2NOs, 1 g; Fed, 0.05 g; Glucose, 1g; N4, 26 g in 1L of
distilled water, with 3% (v/v) dieseéhcubation was maintained at 30 °C while shaking at

200 rpm(Cai et al., 2014)

The crude biosurfactant product was generated following thelgueloped protocol
(Kuyukina et al., 2001; Cai et al., 2018)ter sevendaysof cultivation, a tick emulsion
layerwasformed on the surface. All bratincluding the water phase and oil phaseas
collected for freezandthaw treatmentto break the emulsiorhe ypper organic phase
and the lower water phase eve stored at -20 °C for further extradbn. Separated
biosurfactarg including bacteria cells was collectedThe ®lution that contairs
biosurfactant was first washed pgtroleumetherto remove oil, and thesodium sulfate
was added to absovimter.This stepvas repeatedt least three times until no oil and water
were left. Then biosurfactant was extracted with chloroform and meth@nal v/v).
Sonicationwvas performed tdetachcellsfrom biosurfactarg This procedurevas repeated
several timesantil a clear solutionappeaed in the lower phase. All lowegphass were
collected combined, and subjected tmncentrationby rotary evaporabn. The crude

biosurfactant products were collected and stored®tC for furtheranalysis and testing
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The biosurfactantextraction schematic was shown in Fig 1. Fourier transform infrared
(FT-IR) spectroscop analysis of the bioerder was conducted on a Bruker Alph

instrument
3.1.2Herding experiments

A customized plastic tray was filled with water up toiLBcm, and crude oil was poured
into the center of the water surfadéne oil was allowedto spreadon water surfacéo
equilibriumin 20 min,forminga thin film of oilon water The overhead dital camera was
mountedin a customized rig to take photos for further analysis automatically. The
experiment setup described irFig. A-1 inthe Appendix. Crude biosurfactant was added
into the system gently from the cornPhotographs were taken evamjinute for at least

20 min. Herding performanceas evaluatedt three salinityandthree temperaturso as

to investigate the impact of these conditiamsthe herded oil slick thickness over time.
The captured images were processed using ImageJ sofondetermine an oil slick area
which was used to calculate the change rate in thickness with(Biuist et al., 2008a;

Gupta et al., 2015)

Change rate: (Initial AreaFinal aredInitial area*100% Q)
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Break Emulsion Remove Non-poplar Phase Remove Water Phase Solvent Extraction
(Freeze & Thaw) (Petroleum Ether) (Sodium Sulfate) (Chloroform: Methanol= 2:1)

Sonication

. ; nd i
Crude Biosurfactant Harvest Rotary Evaporation 2"d Round Extraction | (Cell Bound Bs Removal)

Figure3.1 Biosurfactant extraction process
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As mentioned previously, this experiment relies closely on a stabdenalenvironment.
An experiment chamber may be considered for further experidertrding to the results
of a preliminary testthe cameravill lose focus after a long period of overhead hanging.
By setting the camera themanual focus mode wisinga fixedlens this problemcan be
solved Since the focus of the cameray changelue to various reasons.g.,changen

rig location, changef the battery, remal of theSD card, and seng the camera to manual
focus mode, etc.}Jhesize of the object in the photoay be different This may impact the
scale length in Image Jo ensurghe objective is the same sjzbe camera must be in the
same settingndeach set of photassethe same scal@.he herding effectiveness of bio
hercerwasexamined and further compared witydrocarborbasecchemical herdefSpan)

andsilicon-based chemical herde®i(surf).
3.1.3DOE analysis

Design of experiments (DOE) & statistical approach tplan, conduct, analgz and
interpretcontrolled testsard to evaluate the factotbat control the value of a parameter
or a group of parameters. Factorial factor design is used to evaluaieplaets and

interactiors of thevariables on the response.

The response of thdesignis the herding effectivenesslculatedas the changeteof the

oil slick thickness over experimeatime. Input variables arthose factorshatimpact the
herding performangencluding water temperature (A), water salinity (B), oil (C), herder
dose(D), and Approach (E)Therange otemperatur€A) was selected betweerf@ and

24 °C Low temperature waappliedexam if the bioherder can work effectively in cold

seawater The higher level was set as room temperat@ecause of the equipment
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limitation in thelab, temperatures lower than 0 °C cannot be achieved. Sow4s@Qsed
to representing the cold environmeand 24°C as the room temperatuieor factor B
(salinity), a lower value of 0% represents freshwater, while a higher value of 3.5% is
artificial seawaterDistilled waterwas used to prepare artificiaeawaterANS (Arctic
North Slope) crude oil was selected as testinglTbié amount of oil (Cyvasscaled down
from a smalscale bench test (Buist et al., 201Djtferent initial oil dick thicknesswas
obtained by adding different amosiof ANS (Arctic North Slope) crude oiHowever, the
minimal amount of oil poured onto thexperiment's water surfageas200 pl. Sincethe
image process software cannot calculate oil slicktleass this thicknessumeric factors
were sefat the middle level wheaxperimenting wittcenter pointsThe herder dose (D)
wasset according ttheprevious study. The adding appro&hdesigned to see if the herder
adding techniquéasimpacton the exerimenal resuls. Adding point "1"waslocated at
the right lower corner of a pert dish, while "2" incldd®irrent corner "1" and its diagonal
corner. Adding herder at 2 locations reqditiee coordinationof hands anayes. Selected

factors aresummarzedin Table3.1.

Since the performance of herding agentesaln the calnness ofweather conditions, all
experiments were carried datthe room witho wind ordraft The surface ahebenchtop
was leveled to eliminate the effect of gravitySince he amount of oil used here was
relatively small, experiments were conducted under an-apegnvironmentithout the
need for a fumehood\l experiments were conductethenno other peopleere around.

The doorof the lab wasopento reducethe air vapor concentratiolA steady room
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temperaturavas kept, and healeasefrom surroundingoperating machines (e.g., oven)

was avoided
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Table3.1 Factorssummary

Unites Low High Low High
Factor Name
Actual Actual Coded Coded
A Temperature °C 4 24 -1 1
B Salinity % 0 3.5 -1 1
C Oil amount pl 360 720 -1 1
D Herder Dose pl 5 15 -1 1

E Approach 1 2 -1 1
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3.2 Results andDiscussion
3.2.1Bioherder production and characterization

Bioherder harvested froPM mediacultivatedaftersevendaysand extracted by mixture
solventof chloroform and methanol hE bioherder produced IBhodococcus erythropolis
M25 was identified agrehalose lipid¢Cai et al., 2016)According tothe compogion of
the productthe hydrophobic tails of trehalose lipidseprimarily consisted of fatty acid

chains of C16: 0, (C@il2619)FETRanalysisdFigB2P 8oftdiscrade

bioherdemwas conducted to examitiee function grouppresent in the molecular structure
The FTIR spectrunshows the characteristic vibrational modes of differfemnictional
groups, includingsarboxylic groups3506-2500 cmt (br), carboxyl GH stretch,1649.84
cm' 1, carboxyli C=0O stretch;1063.76~990.48carboxyli Ci O stretch) and alkyl groups

(2922.37~2852.1&m' %, alkyl Ci H stretch;1432.83~1302.6&m' %, alkyl i Ci H bending).
3.2.2Bioherder performance evaluation

Bioherder performanceasevaluated based on the herding effectiveness and efficiency.
The herding effectiveness is the area change rate between time 0 and time 20 min. The
herdirg efficiency is the area change rate within 1 min after introdubi@gioherderinto

the system. The herding effectiveness was calculated using Equafioeal/alues were
measured from photos captured by the overhead caBaaiaphotowasconvertedo black

and whiteimages and the pixed were measured using the software Image J. Every
measurement is based on the same scale setting (10 mm) marked on the side of the testing

pan. The initial area is the measurement of the picture shot right befoteraddi
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bioherder. Original and black and white images inF8show an example of the image
process by Image J. The measurement of this oil slick for run # 8 is 447023 henarea

of the oil slick at time t is measured and calculated followed the same procedures.

The herding effectiveness of bioherder under different temperatures, salinity,-dierder
ratio (HOR) wasexamined The change inherding effectivenestor different HORIn

artificial seawater antteshwaterareillustrated in Fig.3.4 and Fig.3.5, respectivelyFor

the different water salinity under the same temperature, both figures indicate the same trend
that herding effectively goes up with the increasél®R. The herdingeffectiveness for

both fresh and saltwater increased sharply at the first 3 min, and then graturalged.

As can be seefrom Fig. 3.4, the difference in area change rate with large HOR is smaller
than that between the lower HOR. Arrdin, the oil slick area change ratasdeclined by

3.5% (from 86.82% to 83.82%) when H@Rsdecreasetly half(from 1:24 to 1:48). The

oils lick change ratevaslowered by 25% when HORasdecreasedb 1/3 of its original

level (from 1:24 to 1:72). Simitaneously, the change ratesdropped by 56% when HOR
wasdecreasetb 1/4 of its original leve(from 1:24 to 1:144). On the other hand, the impact

of HOR on herding effectiveness on freshwatasslightly different (Fig.3.5). At 20min,

the oil slickarea change ratgasdeclined by 7% (from 89.33% to 82.32%) when HOR
wasdecreased from 1:24 to 1:72. It seems that there was no significant change in herding
effectiveness when the HORasdropped by 1/3 or ¥4 . This indicatisitthe performance

of the terder itself has a higher impact on the herding effectiveness. When using a higher

performance herder, only a small amount is needed.
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Fig. 3.6 shows the impact of salinity on herding effectiveness for a different level of HOR.
The most effective herdingte for 20 min is 89.33%t room temperature for freshwater.
The most rapid bioherder reaction at the first minute is 65% on saltwater at room
temperaturelt seems that the herding increased withdecreasingHOR. There is no
significant difference in change rate when changing HOR from 1:24 2oriiothfresh

and saltwater. The impact of the herder itself is higher than the impact of sdlhetg. is

a significant change of salinity on the change ratermthe HOR is lowIt was observed

that slinity has a significant impact athe performancevhena smaller herder dose
applied to the systenihis indicates that when using herding agents in saltwater, the

amount of herd per unit ashould be increased
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(@) (b)

Figure3.3 Example of calculating oil slick area using Image=Z0min).
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Performance of botthe bioherder andhe chemical herder were compared using the same
lab setting and procedures. Hydrocarb@sed chemical herder span, 2dicon-based
chemical herder silsyrindcrudebioherder produced brhodococcusvereused athe
same dosfollowing the standardprotocols According toBuist et al. (2010a)the herder
dose applied tthewater surface is 150g/m2. This dose converted this tamized testing
systenmto 2.16ul, makingthe HOR is 1:338Table3.2). ThisHOR is not sefor bioherder
performance in the last session, because it reqaiegge scalepan to allow oil spreading.
This serie®f experimens wascarriedout under thesteadyroom conditios, with no wind

or heat interpretatio he performance evaluation perwds shortenedincethechemical
herder reacted rapidly.HE chemical herdencreased the oil slick thicknegsiickly and
tenced to push the oitoward the wallof testing panslt can beassumd that chemical
herder reacts quitk and interactsvith oil slick before it forms a monolayer on the water
surface. This neesto beprovenby testing ona largescalesystem.As can beseen fom
Table3.2, the change rate of silsurérderis higher than span anlde bioherderDetailed

experimenresults are listeth the Appendix.
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Table3.2 Performance comparison of chemical and bioherder uhdeame

condition
Span Silsurf Bioherder
Temperature °C 24 24 24
Herder dose ul 2.16 2.16 2.16
HOR 1:333 1:333 1:333
Water salinity % 3.5 3.5 3.5
Change rate % 89 93 74
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3.2.3Bioherder applications for marine oi spill response

The impacts of envimmmentd factors on herding perfmance and their interactions are
evalwatad using DOE results. Five factors ofpeximent dsign and results assimmarized

in Table 3.3. Two leve$ of factors design analysisene carried out for both 1 min
(efficiency) and 20 min (efféweness).This ANOVA analysisvasperformed under a 0.05
confidence level. According to Tab4, significant effects are A (Temperature), D
(Herder dose)andtheir interaction AD Main factors C (oil amount), E (adding location),

the other two factor interactions, and other quadric terms are not significant. The lack of fit
is not significant indicaing the model is a good fitBesides the difference between
adjusted R (0.879Q and predicted R0.8059 is less than 0.2. Adeq precisionli8.0870

which indicates an adequate signal. Since a sigmabise ratio of greater than 4 is

desirable. This model can be used to navigate the design space.

According to Tale 3.5, significant effects are A (Temperature), D (Herder dose). Main
factors B (salinity), factors C (oil amount), E (adding location), the other two factor
interactions, and other quadric terms are not significant. The lack of fit is not significant
indicaing the model is a good fit. In addition, the difference between adjustgigs33

and predicted R(0.7344)is less than 0.2. Adeq precisionli4.0966 which indicates an
adequate signal. Since a sighahoise ratio of greater than 4 is desirable. This model can

be used to navigate the design space.

In order to verifythatthe ANOVA is reliable severalrequirementsnust be met. 1The

sample is normally distributed; 2) variances are constant; 3) exgdainruns are
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randomized and independenhe Design Expert provides all the necessary diagnosis plots

which areshown in Fig 3.7 and Fig.3.8.
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Table3.3 DOE experiment variables and results

Levels of Variables

Response

Standard Actual Temperature Salinity Qil  Herder Change Rate (%)
Approach

Order run () T% (el (e ]) 1min 20 mins
19 1 14 1.75 540 10 1 24.31 81.75
20 2 14 1.75 540 10 2 34.02 87.06
3 3 4 3.5 360 5 1 4.16 17.25
12 4 24 35 360 15 1 65.16 86.82
5 5 4 0 720 5 1 5.37 22.34
18 6 14 1.75 540 10 2 20.24 69.77
4 7 24 3.5 360 5 2 27.86 65.36
6 8 24 0 720 5 2 16.65 58.35
11 9 4 3.5 360 15 2 16.55 56.00
2 10 24 0 360 5 1 34.02 59.74
7 11 4 3.5 720 5 2 5.99 40.92
17 12 14 1.75 540 10 1 35.68 75.24
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Table3.4 ANOVA table for factorial design sign at 1min

Source Sum of df Mean F- p-value
Squares Square value

Model 9015.30 5 1803.06 28.61 <0.0001 significant
A-Temperature 4675.69 1 4675.69 74.18 <0.0001
B-salinity 24321 1 243.21 3.86 0.0697
D-herder dose 2695.71 1 2695.71 42.77 <0.0001
AD 1016.21 1 1016.21 16.12 0.0013
BD 384.48 1 384.48 6.10 0.0270
Residual 882.43 14 63.03
Lack of Fit 723.02 12 60.25 0.7559 0.6974 not significant
Pure Error 15941 2 79.71
Cor Total 9897.73 19
Adjusted R? 0.8790
Predicted R2 0.8059
Adeq precision 16.0870
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Table3.5 ANOVA table for factor design at 280in

Source Sum of df Mean F- p-value
Squares Square value

Model 6461.82 4 1615.45 27.85 <0.0001 significant
A-Temperature 294592 1 294592 50.79 <0.0001
D-herder dose 2930.08 1 2930.08 50.51 <0.0001
E-Locatiuon 300.00 1 300.00 5.17  0.0406
DE 346.96 1 346.96 5.98 0.0295
Curvature 1541.61 2 770.81 13.29 0.0007
Residual 754.08 13 58.01
Lack of Fit 583.55 11 53.05 0.6222  0.7559 notsignificant
Pure Error 170.53 2 85.27
Cor Total 8757.51 19
Adjusted R? 0.8633
Predicted R? 0.7344
Adeq precision 14.0966
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3.3Summary

This study hagdemonstratethatthe biosurfactant can be used as herding af@msarine
oil spill responseTemperature and herder/oil rati@re found to exettigh impacts on the
herding performancd he biosurfactant produced dyhodococcus erythropold25 asa
herding agentvasexaminedandthe influences oénvironmental and operatiorfalctors
(including, temperature, herder dose, spilled oil amount, water salinity, and operation
location)onits performancevere investigated five-factor fractional desigwasapplied
to investigatelte mportane ofthesefactors and theiimpacton herding effectiveness and
efficiency. The esultsof this studyshowedthata higher temperature aradarger amount
of herdercould result ira higher oil slick thickness changing rafferent water salinity
under the same temperatled tothe same trendhatis, the herding effectivly goes up
with the increase of HOR.argescale testingneed to be further conductéat evaluating

the appicability of the developed bioherder in the field
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CHAPTER 4 3D-QSAR AIDED DEVELOPMENT OF HERDING

AGENTS FOR MARINE OIL SPILL RESPONSE
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4.1 Introduction

In situ burning(ISB) is an efficient physical oil spill response technique, winak been

used toremove 410% of spilled oil(Lee et al., 2015)Physicalconditionssuch as wind

speed (windspeed8 2 m/ s), wave hei gh3mm)bihypethehi cknes :
degree ofveathered oil, anthedegree of emulsifiedil can limit theapplicability of ISB.

A strategy to enhancdSB is to increasethe oil slick thickness byherderor boomers.

Boomers can contain burning biocking breaking waveandloose ice. Chemical herder

has been widely tested as oil collecting agents to img@Ben the marine envinement.

A series of lab and Hfield tess hasshownthatchemical herderenhanced ISBitvarious

locations,such as Barents S€Buist et al., 2010h)Alaska(Aggarwal et al., 2017)SL

Ross laband Ohmset{Buist et al., 2006; Buist et al., 2007; Buist et al., 2008a)

The nost popular chemical herders are hydrocasbased herdsr(i.e., Corexit 9580,
original US. Navy cold water blend, warmater herder blend, G6), siliconesurfactant
based (i.e., Silsurf A108, Silsurf A004D), seceamé& ner at i on fl uorosurfac
PF151(Buist et al., 2010a; Fingas, 2014he chemical surfactamin the herding agent
prevent oil from spreadindue to their ability tqprovidelarger spreading pressure than
crude oil(Buist et al., 2011b)Span series is the most common key component found in
hydrocarborbased chemical herders, such as the original U.S. Navy cold water blend
(Span20), ThickSlick 653@pan 20), and warm water blend (Spar(®)gas, 2014)The
surfactantcanreduce the surface tension of surrounding watan f70 mNm to 2630

mN/m (SLRossEnvironmental, 201&ihd the best herdiragents have spreading pressures

in the mid40 mN/m range, which is higher than the spreading pressw20(htN/m) in

most crude oil(Buist et al., 2011b)Critical micellar concentration (CMC) is another
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important parameter for surfactant penfi@nce; with the lower CMC of surfactant in the
water, less surfactant will be required to reduce the system's free energy toifefias

Standard free energy of micellizatiod"¥ ) can be calculated as the CMC's natural
logarithm (Peltonen et al., 2001; Bhardwaj et al., 2018¢nce, standard free energy is

used to represent the herding ability.

The distribution of chemical herder after burning can cause environmental cncern
According to variou$SB tests conducted byBuist et al. (2008h)more than 90% of the oil
was combusted in herdenhanced burninggsting The herder was mainly detectedtbe
water surface, antthere washo significant increase in smoke plume analyBigist et al.,
2018) The herder after burning sti#tainsthe ability to reherder oi) but cannobe ignited
again. Studies have shawhe burning residual from ISB is not as toxic as the weathered
oil itself (Daykin et al., 1994; Blenkinsopp et al., 199B8pwever, herders in water after
burning hae the potentiato remainin water for a longer period; the concertation will
increase with dissation in water.A more environmeutly friendly herding agentvith
lower solubility, lower migration ability, higher herding performance, and higher

biodegradation potentiéd needed

3D-QSAR studis the relationship between chemical properties and their molecular
structures. 3BRSAR is a widely used tool in preting environmental performance
parameters of chemicals and design environmentally friendly mekeciihe octanal
water partition (kw) canpredictthe solubility of organic compourglandtheir toxicity in
water and soilZhao et al. (2004garried oua QSAR moetling studyto predictpolycyclic
aromatic hydrocarbons solubilitf.u et al. (2001)constructed QSAR models using

hydrophobicity parameter loglto determine theoxicity of substituted benzesen algae.
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Li et al. (2020b}¥tudiedthe toxicity of quinolone antibiotidsy establishindlow 3D-QSAR
modek. Toxicity and biological enrichment for polychlorinated naphthalene (PCNs) were
studied by 3BPQSAR (Gu et al.,, 2017; Gu et al.,, 2020a)he octanchir partition
coefficient (Kg) can beused asan independent variablén 3D-QSAR modelingfor
mobility and bioactivity Chen et al. (2016)redicted the mitigigon ability for PCBsThe

Koa value can also be used along withoKto study the bioaccumulation and
bioconcentration for POPs in aquasigstemsand identiication andbiomagnifcation of
chemicals in terrestrial foechains(Arnot & Gobas, 2003; Gobas et al., 2003mited
papershave been reported tze3D-QSAR to study bacteria's surfactant attachment to the
membran€Campbell et al., 1999) Therehas been nstudyreportedon using 3BQSAR

to predictKow, Koa for herdes.

The work in ths chapter wagsimedto study the quantitative structdaetivity relationship
between surfactanibxicity and its molecular structure. In this study, QSAR models were
constructed with 3D descriptors according to the values of J@tg§Koa for 22 span
surfactants. Two typesf QSAR method$ CoMFA and CoMSIA were used to predict

the logkow/logKoavalues of the remaining 9 span surfactant and investigate the relationship
between the span surfactant structures and their ability. Furthermore, eight modified
compounds were designéased on SpaBl. Molecular docking was used to study the

biodegradability of the newly designed molessul
4.2 Methodologies
4.2.1Construction of 3D-QSAR models for predicting Kow and Koa

Predicion of Kow Vvaluesfor spanbased bhemicalherdes: The Sybylx 2.0 softwarevas

used to establishthe 3D-CoMFA and 3DCoMSIA modek. Those target physical
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characteristicgKow & Kog) Of the spanbased cheral herdersrelated to environmental
pollution were obtained from the research EPIWEB¥#& chose to use tHegarithm of

Kow (logKow) as experimentahput data. To establish the 3QSAR models, structural
parameters and loglk values were used as independent and dependent variables. The
whole dataset contains 31 compounds, including 22 compounds as the satrfmg3D

QSAR model generation and 9 compounds as the testing set for model validation. The
selection of the training set and testing set is based on the ratio of 3:1. Compounds have
the capacity to represent the structural diversity and cowade range of logkow values

to be chosen as a training set.

Molecular structure modeling and alignment of Sparise 3DQSAR and molecular

alignment were performed using the ASyly2.0 molecular modeling software package.
The comparative molecular field analig (CoMFA) andthe comparative molecular
similarity index analysis (CoMSIA) models were selected for conducting thR@ SBR
analysis. The 3D structure of each compound in the datasgewestedising the Sketch
Molecule module in SybyGu et al., 2017)The generated structures were not the most
stable conformationsso minimized structures were used as initial conformations for
molecular alignment. The geomies of these compoundsere subsequently optimized
usingthe Tripos force fieldClark et al., 1989ith GasteigéHuckel chargeqGasteiger

& Marsili, 1980) Repeated minimizations were performed using the Powell method with
a maximum of 10,00@erationsto acheve an energy convergence gradient value of 0.005
kJ.mof'. To derive the best possible IPSAR statistical model, ligarbased alignment

was employed in this study. In this process, the Sdanolecule, which has the most
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complex structure, was used as tamplate to align the otheompoundsising the Align

Database command in Sybglll of the moleculesvere wellaligned.

Evaluation and validation of the CoMFA and CoMSIA maddhe model stability and

predictive ability can be evaluated both internahd externally. Sybyl software offers
LOO crossvalidation, necrossvalidation, and scrambling stability text procedures, where
o?, R?, @, and cSDEP values can represent the internal predictive ability and robustness
of the modelsLinear regressioandysis using Originvas used aan external predictive
ability evaluation, whiclprovidedthe R and slope asvaluatiorcriteria According to the
modek, the 3D-QSAR contour mapf descriptorsan provide the guideline for molecular
modification (structure modification substrate position). Modiffedlecuks providing

lower predicted logkw, and logka valueswere chosen to confirm substitute functional
groups.The relationship between chemidgldrophobicity and toxicity has been shown

for nearly 100 years in both mammals and fish, using the log of the octanol: water partition
coefficient Kow). The modelghatpredictand evaluathe Koa were constructetbllowed

the same procedures discussed above.
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Table4.1 Molecular field contribution of the CoMFA and CoMSIA models

S E H D A

Kow CoMFA 0.779 0.221 - - -

CoMSIA 0.262 0.157 0.360 0.068 0.152

Koa CoMFA 1

CoMSIA 0.144 0.254 0.342 0.058 0.2

79



4.2.2Molecular modification of Span derivatives

Contour maps for two models can be obtained from Ssdijvare. Two descriptor fields
(steric and electrostatic field) frothe COMFA contour map were selected to determine
substitution sites and groups that affect the lpgiid logkoavalue for Spandit the same
time, five descriptor fields were selectit CoMSIA model contour maps, including steric,
electrostatic, hydrophobic, hydrogen bonds, and danoeptor fields. According to this

analysis, the Span derivatives were designed using-&bas template moleasd
4.2.3Evaluation of the modified Span31 derivatives

Gibbsfree energy Two environmental parametersplubility (predicted by logkw) and

mobility and bioactivity(predicted by logks) of the SparB1 derivatives, were evaluated
using the multiactivity 3D-QSAR model. The total energy 8pan31 and its derivatives
were calculated by Gaussian 09 software as a stability paramkeecalculatedsibbs
free energywas used as the functional characteristicevaluate the herding ability of
Span31 and its derivative§Vith the lower CMC of surfactant in the water, less surfactant
is required to reduce the system's free energy to forocelles Standard free energy of

micellization YO was calculated according to the ClausDipeyron equation.
yd Y'Y e o )

Biodegradable potential' he total score of Molecular docking will be used to evaluate the

biodegradable potential of modified molecules. The molecular docking method was carried
out using Discovery Studio 4.0, and the S@3anderivatives were loaded into the same
software. PAH lbmdegrading enzymes dioxygenase were tdsethe molecular docking

performance, where the LibDock store (total score) functions were obtained. The template
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proteins (1O7P and 4J5I) were defined as the receptor madassiley the LibDock
module. Protein @fining, Potential binding sits editing, and Dock Ligands (LibDock)
functions werdghenselected as describedthre literaturgGu et al., 2020b)The LibDock

scores rank the various binding capacities of the Span31 molecule to the proteins; the

higher totalscore valueorresponds to astronger the binding force.
4.3 Results and Discussion
4.3.1Performanceevaluation of CoMFA and CoMSIA models for Kow prediction

Tables4.1 and4.2 represent the molecular field's contribution rate and the statistical results
of the obtained models, respectively. The internal predictive ability and robustness of the
developed models were evaluated by LOO ecradiglation, necrossvalidation, and
scrambling stability text procedures. Th& &, @, and cSDEP values represent the
models' internal predictive ability and robustness. The CoMFA model is considered
reliable and acceptable if ¢ greater than 0.50, afRf is greater than 0.9@olbraikh &
Tropsha, 2002)Generally, the Rof the model will be larger than the interaction cross
validated value ). The model is considered to overfit the data wheéis Rirger than

by more than 25%Leach, 2001) The overall predictive ability of the CoMFA and
CoMSIA models vasexternally validated by predicting thetaity of an independent test

set of compounds (the compounds not included in the original training set). The predictive
ability of the models wapresentedby the predicted R(R?pred > 0.6), the standard error

of prediction (SEP) of the test g€ olbraikh & Tropsha, 2002 0ur CoMFA model for
logKow had an optimumumber(n) of 9, a crossvalidated g of 0.816 (>0.5), a NeOross
validated R of 1.000 (>0.9), a SEE of 0.510, an F value of 44842.404)%0f 0.638, a

cSDEP of 5.538, and a d@r?yy of 1.608, illustrating that this modeassuitable fitting
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predictive abilities. CoOMFA analysisdicatal that the corresponding percentages of the
variance explained by steric and electrostatic fields were 79.90% and 21.1%, verifying

electrostatic interacti@werethe major contribution to the logiof Spans.

The CoMSIA defines explicit hydrophobic ang/dnogen bond donor and acceptor
descriptors in addition to the steric and electrostatic fields in CoMSIA. Our CoMSIA model
had an optimum n of 10, a cresalidated g of 0.839(>0.5), a noerossvalidated R of 1
(>0.9), an SEE of 0.027, an F value of 12%2.408, &’ of 0.555, a cSDEP of 6.645, and

a d@/dr?yy of 2.083. These statistical indexes were reasonably high, indicating that the
CoMSIA model haa strong predictive ability. It was also found that the electrostatic field
makes a higher contributior{26.2%) to the Spans logi values than that of the steric
(15.7%) but smaller than the hydrophobic field (36.08@)ernatively, the steric field's

impacton Span logkw valueswasreduced when the hydrophobic field was introduced.
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Table4.2 Statistical parameters of the CoMFA and CoMSIA models

Kw n ¢ SEE R? F RZesc SEP Q2 CcSDEP dQ¥dr?yy

CoMFA 9 0.816 0.51 1 44842404 0927 139 0.638 5.538 1.608

CoMSIA 10 0.839 0.027 1 142752.408 0.887 1.731 0.553 6.645 2.083

Koa

CoMFA 6 0.843 0.152 1 5848.310 0.935 1.129 0.672 4.703 1.014

CoMSIA 8 0.862 0.066 1 22811417 0.934 1.136 0.530 5.538 1.311
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4.3.2Performanceevaluation of CoMFA and CoMSIA modelsfor K oa prediction

Tables4.1 and4.2 represent the contribution rate of the molecular field and the statistical
results of the obtained models, respectively. The CoMFA model is considered reliable and
acceptable if §is greater than 0.50, and® R greater than 0.90Golbraikh & Tropsha,
2002) Generally, the Rof the model will be larger than the interaction creakdated
value (). The model is considered to ovethe data when Ris larger than gby more

than 25% (Leach 2001). Our CoMFA model for lgegKas an optimum n of 6, a cross
validatedg? of 0.843 (>0.5), a nonrossvalidatedR? of 1.000 (>0.9), aSEE of 0.152, an

F value of 5848.31, a?®f 0.672, a cSDEP of 4.703, and@/dr?yy of 1.014, illustrating

that this model h@both suitable fitting predictive abilities. CoMFA analysidicatesthat

the corresponding percentages of the variance exquldiy steric and electrostatic fields
were 100%, verifying electrostatic interaction was the major contribution to thgalofK

Spans.

The CoMSIA defines explicit hydrophobic and hydrogen bond donor and acceptor
descriptors in addition to the steric adctrostatic fields in CoMSIA. Our CoMSIA model

has an optimum n of 10, a crosslidated ¢ of 0.862(>0.5), a nowrossvalidatedR? of 1
(>0.9), an SEE of 0.066, an F value of 22811.417,%060.53, a cSDEP of 5.538, and a
dQ¥dr?yy of 1.311. Thesetatistical indexes were reasonably high, indicating that the
CoMSIA model had a strong predictive ability. It was also found that the hydrophilic made
a higher contribution (34.2%) to the Spans legkalues than that of the steric (14.4%)

and electrostati(25.4%).
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4.3.3Validation of CoMFA and CoMSIA models

According toGolbraikh and Tropsh2002) ¢ alone is not a suitable parameter to estimate
the prediction capability of QSAR models, and external validation should be applied.
External validation was also conducted to assess further the reliabilities and the predictive
ability of the buit model(Li et al., 2013) The test setontaining9 compounds was used

for this validation. According to Tabk?2, Rpred values of 0.927 (>0.6) and 0.887 (>0.6),
SEP values of 1.39, and 1.731 were acéd, verifying the good external predictive ability

of the two models for K. Meanwhile,R?predvalues of 0.935 (>0.6) and 0.934 (>0.6),
SEP values of 1.129and 1.136, verifying the good external predictive ability of the two

models for Ka

Further analsis of the logkw predicted by the CoMFA and CoMSIA models revealed a
fine linear dependence {Rf 0.99995 and 0.99999, respectively) among calculated values
and predicted values. Figu& shows that the slopes of the linear equations for calculated
and predicted values were 0.9997 and 0.99998, respectively. External validatierfar
model can also be found in Figus4, R? of 0.99956 and 0.99992, and the slopes of the
linear equatins for calculated and predicted values were 0.99932 and 0.99997,

respectively.

Both CoMFA and CoMSIA models were used to predasults and the calculated and

predicted logkw / logKoavalues Table.3.

From the statistical parameters and fitting degfeeerification, the CoMFA and CoMSIA
models were considered reliable and acceptable (Ad)leFurther analysis of the logi
predicted by the CoMFA and CoMSIA models revealed a fine linear dependence among

experimental values and predicted values. S$tatistical indexes of the CoMFANnd
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CoMSIA models were reasonably high, indicating that the two models reached the internal
inspection and external validation standard of models. The validations suggested that the
models exhibit optimum stability and gbpredictive power. Thus, the two models can be
used to predict the logl of the same types of compoundscording to thecontribution

rates of the descriptor fields, the two models mutually verified and proved that electronic
effects primarily influenceéhe logkow. According to the 3D isogram of the CoMFA and
CoMSIA models, the information for the modification of Spans was consistently obtained.
Even thoughthe models exhibited a satisfactory fitting ability and acceptable predictive
ability, only the C&MMFA model contained two descriptor fields (steric and electrostatic
fields), presenting certain limitations in analyzing the effect of the descriptor field and the
modification of the information on the compounds. The CoMSIA model contained five
descriptoffields, which provided a more comprehensive understanding of the effect on the
physical and chemical properties of Spans. It is noted that in this model, the five descriptor
fields play an important role in renovating Spans and designing new types afwwinp
molecules. For example, an analysis of the hydrophobic field extedt hydrophobic

groups on the head and tail would decrease theolpgK
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Table4.3 Predicted logkw / logKoa values of Span from the CoMFA and CoMSIA

models.
logKow logKoa
Pred Pred
No. Obs Obs

CoMFA CoMSIA CoMFA CoMSIA
Span22 3.15 3.16 3.15 14.07 14.14 14.09
Span3? 3.15 3.10 3.13 14.07 14.14 14.08
Span42 3.15 3.10 3.13 14.07 14.14 14.08
Spanb5? 3.15 3.16 3.15 14.07 14.14 14.09
Span—6b 3.15 8.81 6.37 14.07 14.14 14.09
Span72 3.92 4.08 3.95 14.59 14.55 14.57
Span8? 5.12 5.16 5.13 15.55 15.47 15.46
Span9? 5.12 511 511 15.55 15.47 15.45
Spanl1(® 5.12 511 511 15.55 15.47 15.45
Span-11° 5.10 8.81 7.40 15.55 15.47 15.45
Spanl2? 2.39 2.39 2.39 16.93 16.95 16.95
Spanl3? 6.10 6.12 6.11 16.28 16.27 16.35
Span-14? 6.10 6.12 6.11 16.28 16.27 16.35

Spanl1% 6.10 6.12 6.11 16.28 16.27 16.35
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Span16° 6.00 8.81 7.97 16.28 16.27 16.37
Span17° 6.10 8.81 7.97 16.28 16.27 16.35
Spanl18 5.81 5.73 5.75 15.99 15.75 16.02
Span1%? 4.35 4.34 4.37 15.97 16.23 15.97
Span2@® 7.62 8.81 8.04 19.93 22.08 21.97
Span21?2 8.86 8.86 8.86 19.74 19.62 19.72
Span22® 11.93 8.81 10.24 21.82 21.94 21.85
Span23 13.52 13.57 13.52 24.35 24.26 24.37
Span-24° 14.60 8.81 9.67 24.00 22.73 22.56
Span25 6.00 8.81 7.97 23.30 23.38 23.29
Span26® 16.46 16.41 16.44 26.55 26.60 26.49
Span27 17.83 8.81 11.29 26.25 26.60 26.49
Span28 19.41 19.41 19.44 28.76 29.06 28.84
Span2% 28.25 28.25 28.24 35.39 35.16 35.36
Span3® 22.35 22.35 22.35 30.97 31.02 30.97
Span-31 8.33 8.81 9.18 18.57 18.62 18.57

Note: a=training set, b= testing set, = template moleca
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4.3.4Molecular modification and enzyme docking for evaluating biodegradability of

the developed herders

Analysis of the substitution characteristics based on the contour maps obtained for the

multi-effect 3DQSARmodels.

Figure4.3 Kow Contour maps of the CoMHFB0MSIA model, electrostatic fieldS-

2/3-4), static fieldg3-3/3-5), andhydrophobiq(3-6).
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Figures4.3 displays the contour maps of the CoMFA and CoM8lédels based on the
template molecule Sp&dil for Kow prediction The diagrams were helpful in identifying

the important regions where variations in the steric, electrostatic, hydrophobic around the
compound explain differences in the lagkalues of Spas. In the steric field¥3/3-5),

the sterically favored region is shown in green, and the sterically unfavored region is in
yellow. In the electrostatic field3{2/3-4), bluecolored contours represent regions where
the positive charge increases the legKalues. In contrast, recblored regions display
areas where the negative charge enhanceslogiues. Moreover, the yellow and white

contours depict hydrophobic and hydrophilic favored reg{8r&), respectively.

The CoMFA steric contour map issgilayed in Fig4.3. The region A (10- position) and

end of the tail (Region G3how larger yellow contours, suggesting that if large volume
groups were introduced at these positions, the JegKlues would decrease. A blue block
above the 90 (Region A)and 5C- position (Region B) was observed in the contour maps
(Fig.4.3(3-3)), which means that the negative charge located there will decrease thg logK
values. Besides, the contour map (H@(3-2)) of the electrostatic field of the CoMFA
model showed that the red region was mainly distributed at positi®agRegion A) and
5-C- (RegionB). This indicates that introducing positive substituents at these positions was
conducive to reducing the logivalues for Spans. In the C&VA steric contour mafFig.

4.3 (35)), the yellow area was near 1(Region A), 5C (Region B), and tail (Region C)
Therefore, the introduction of large groups at the-Iand 5C- positions will reduce the
logKow. Fig4.3 (3-6) shows the 10-, 5-C, andthetail wascovered by hydrophilic favored

white contour, so hydrophilic groups will lower the lagkalue.
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By comparing contour maps of the CoMFA and CoMSIA models, we found that the
modified information generated by thea models was consistent. A synthetic analysis of
the effect of steric, electrostatic, and hydrophobic fields in the CoMSIA model showed that
the common 40- and 5C-were covered by yellow contours of the steric contour map, blue
contours of the electrogta contour map, and white hydrophobic contour map. Based on
these findings, the 10 and 5C atoere affected by steric, electrostatic, and hydrophobic
fields; that is,it was conducive to reducing thesKvalue of larger volume, negative
electrophilic, ® hydrophobic groups introduced at this position. Lower water solubility
function groups , -Cl, -Br), Hydrocarbyl {CH, -CH,, -CHs), Nitro (-NO), and
hydrophobic hydroxyl{OH) group were selected as modified groupbéembeddedh

the target congengSpan31). The replacement groups and prediction results are shown in

Table4.4.

Similarly, the counter maps of logkCoMFA/CoMSIA models (Fig4.4) showthatthe
same regions coveed by static field (42/4-4), electrostatic field (8), and hydrophilic
field (4-5). Large volume hydrophilic function groups with negative chares will be

introduced to minimize the logKvalue.
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Figure4.4 Koa Contour maps of CoMFA modaedteric fields(4-2); COMSIA model,

steric fields 4-4); electrostatic fields4t3); hydrophobic4-5).
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4.3.5Evaluation of practicability and biodegradability of selectedSpan31derivatives

Ten span31 derivatives were designed using this technique to calvalatesolubility
(predicted by logkw), mobility and bioactivity(predicted by logks), stability parameter
(predicted by Total energy), herding ability (predicted by Gibbs free eneeagy
biodegradability (predicted by LibDock score). Based on these ressiitand1 derivatives
(1-ClI-31, 5SH-31, 1:CH>-31, 1-S-31) hadlogKow values lower than those of the target
molecule Bioconcentration, transportand fate values decreasedyhile their
biodegradability increased (Tallel). Predicted Kavalue decreased by CdM/CoMSIA
were the molecels 31-Cl, 31-F, 31Br, 31-CHy, 31-NH, and 31SH (5C). Predicted &y
value decreasefdr molecues31-Cl, 31-F, 31-CH2, 31-NH, 31-SH (5C), and 345. Total
energy decreasddr molecular31-Cl, 31-F, and 31SH (5C). Increasefbr molecukes31-
CH2. Gibbs free energy decreaded 31-Cl, butincreasedor 31-SH (5C) and 31CH..
The derivatives of1-Cl-31, 5SH-31, :CH2-3, 1-S-31 were more easily degraded than

span3landwerethereforeselected using the scoring functions.

As can be seen in Table4, the CoMSIA model predicted that when th®4position was
replaced byCl, -S, and-CH,, the 5C position waseplaced with-SH, the logkow values

of modified SparSH compounds decreased significantly compared wjpanr31,
indicating that the introduction déinctionalgroups is the reason for the descending K
values of the modified compounds. When the 10 osivas replaced with the halogen
atom SH, the K value increased significantly. This is consistent with the 10 atom being
affected by steric, electrostatic, and hydrophobic fields and is also consistent with the
electrostatic interaction being the magamtributor to the logky of Spans, meaninthat

the steric fielchas little influence thatanbe ignored.
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The total energy (stability paramet€Ru et al., 206) and Gibbs free energjunctional
parameter(Peltonen et al., 2000f Span3lderivatveswere calculated using Gaussian
09. Table4.4 shows that when the 10 position of Span31 was replaced by the CI group
(31-ClI), the total energy of 31 decreased significantly. However, the Gibbs free energy
decreased only byl.311% compared with 31. Whehe 10 position of span31 was
replaced with-CHy, -NH, and-Si, the total energy decrease of the modified compounds
was 16.407~48.918%he change rate of the Gibbs Free energy was 4.596%70%,

thus explaining that the effect on the degree of totlgnand the energy gap of modified

compounds was smaller.

Molecular docking was performed between B¥eH degrading enzyme and tispan31
derivatives, and scoring functions were obtained. §@n31derivatives that were more
easily degraded thaspan3lwere selected using the scoring functions. The molecular
docking method was used to calculate the tetake values for the interaction between 4

of the span3l derivatives and 107P (Pseudomonas putida) /4J51 (Mycobacterium) to
determine the degradabilitf these compound€ompared with the target molecule, the
solubility, mitigation and allocation behavioralues associated with the new span31
derivatives were observed to decrease. However, the biodegradability increased by 1.35%

- 8.88%.

96



4.4 Summary

This study successfully created the environmental parameter prediction model for herding
agentsspan31. For K, the obtained CoMFA and CoMSIA models exhibité0.816

and 0.839,%of 1 and 1, SEP of 1.39 afad731, and4pred of 0.927 and 0.887, respectively,
indicating satisfactory fitting ability and acceptable predictive ability for thep&ns.
Similarly, the obtained CoMFA and CoMSIA models can successfully preglietith o

of 0.843 and 0.8622pf 1 and 1, SEP of 1.129 and 1.136, ahdred of 0.935 and 0.934.

The two models externally verified and proved that the electrostatic field plays a
dominating role in Spans logk values. In an electrostatic field, the introduction of
electropositive groups in theQ and 5C positions of Span31 can significantly reduce the
logKow and logKoa valuesandincrease the hydrophobic strength. Modified compounds
based on contour maps éxited smaller logkw values compared with targeted span31.

At the same time, there was no significant difference between the calculated total energy
and the energy gap of span31. Biodegradability of new molecular is increased, increasing
the ability to bun residue recovery in oil spill response. The increased Giebsnergy

of modified molecuk indicates the newly designedolecuk has lower CMC. Using a

lower concentration of these new herding agents can provide the same performance level

in the oil ill response.
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Table4.4 Structural modification of new Spna31 molecules, derivatredicted values of the logl;, l0gKos, total energy,

Gibbs free energy, totalcore by CoMFA/CoMSIA modules and molecudacking

Docking Change Docking Change

Predicted values of Predicted values of total score rate of total score rate of
Change
logKoa logKow Total rate of Change total score total score
Compounds energy ener Gibbs rate of (%) (%)
(@u.) o )gy Gibbs (%)
CoMF CoMSIA CoMF CoMSIA 107P 435I
A A
31 18.624  19.654 8.810 9.180  -1392.371 0 0.586 - 114.495 0 135.643 0

1-Cl-31 17.081  17.800 8.760 7.378  -1777.285  -27.64 0.578 -1.311 - - - -

1-F-31 17.039  16.325 7.309 4.509 - - - -

1-Br-31 15.689 17.028 8.832 5905 -3888.809 -179.29 0.577 -1.511 - - - -

5-CHs-31 19.579  20.093 8.810 9.604

1-CH2-31 16.756  16.833 6.253 5.622  -1356.456 2.58 0.613 4.596 124.657 8.88 133.264 -1.75

1-NH-31 18.105 16.414 7.548 5.357

5-SH-31 16.609  18.097 5.421 6.937 -1317.161 5.40 0.587 0.183 116.036 1.35 128.511 -5.26
1-Si-31 16.586 21.376 2.809 10.577 -1606.610 -15.39 0.580 -1.070 117.042 2.22 136.005 0.27
1-§31 19.168  16.457 6.329 5359 -1715.345 -23.20 0.583 -0.518 118.151 3.19 149.141 9.95
5-NH2-31 19.109  18.037 9.004 7.393  -1372.497 1.42 0.602 2.667 119.431 0.043 140.677 0.037
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CHAPTER 5 CONCLUSION AND RECOMMENDATIONS
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5.1 Conclusions

This thesidocused on the generationeivironmentally friendly surfactattased herding
agents for marine oil spill response. It includes the production of an alternative
biosurfactantased bieherder and a green sphased chemical herdérhe dfectiveness

of these newly developed herdingeats for marine oil spill response has also been

demonstrated under various conditions.

The first study began witlthe usage ofRhodococcus erythropoliM25 to form a
biosurfactant based biverder. Five operati@fenvironmental factors based on the
literature review and previous trial tests were identified and tested usinglaha®b
fractional design. Results indicated that the oil slick thickness change rate increases with
the increasing temperature under both higher and lower herder dose leweshious

that the change rate increases more rapidly with the increasing temperature when the herder
dose is at a higher level. This indicatedta highertemperatureand agreateramount of

herder ould provide a higher oil slick thickness changingerathe results proved the
hypothesis that the biosurfactdrdsed product can be used as an effective herding agent,

and the temperature and herder/oil ratio helvigh impact on the biberding effectiveness.

The second study successfully created therenmental parameter prediction model for
molecular modification of the herding agent SpanT3to QSAR (CoMFA and CoMSIA)
models were constructed to predict sodubility andmobility and bioactivityof span series
herders. The 3D structures of thiage model compounds were gathered from literature
sources for training (22) and testing (9) sets. The octaatdr partition (lw) can be used

astheindependent variable to predicate organic compound solubility and toxicity in water.
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And the octanehir partition coefficient (Koa) is used as independent variablas &dnility

and bioactivity Both the CoMFA and CoMSIA models were validated as reliable and
acceptable with good predictive pow8y comparing contour maps of the CoMFA and
CoMSIA modelsjt was found that the modified information generated by the two models
was consistent, and electronic effects primarily influence thedpgKd logksa. Through
molecular designten molecularly modified span compounds were obtaiwith lower
logKow and logkea. Gibbs free energgan beused to evaluate the herding ability of span
derivativesThe increase@ibbsfreeenergy of modified molecular indicatémtthe newly
designedmolecule hasa lower CMC. Using a lower concentration of these new herding
agents can provide the same performance level in the oil spill respboiseular docking
wasthen undertaketo examine the biodegradability aihewly designedpan derivative
Biodegradability of newmolecuk is increasedwith the increasing the ability to burn
residue recovery in oil spill response. Tigighe first study using QSAR for herder structure

modification and performance improvement.

Through both tasks, herder production was advanced with new herdefte(tér and
molecular modified herder) generat@&ksides the associated herding perf@nte and
environmental impacts were evaluated. The thesis outpatabuteknowledgeto the field

and provide more sustainable marine oil spill response operations opti@ensestitts of
this thesispoint to opportunites to find effective and green hdling agents with less
negative environmental impacts orarine oil spill response. The research would benefit

governments, oil industries, and oil spill respondeysproviding promising oil spill
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herding options. The outputs would also benefit coastalnaamties by controlling

environmental risk$o preservea healthy living environment.

5.2 Research Contributions

(1) This study, for the first time, used genetically modified biosurfactant producers to
generate a biberders product. The product was proved to be capable of herding crude oll

slick effectively.

(2) This study constructed an efteendly structure of fanbased herder with improved
herding performance ammbtentialbiodegradaitity . This is the first study using 3QSAR

integrated molecular docking for herder structural modification
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5.3Recommendations for Future Work

(1) This studyhasexplored the ptential of using biosurfactants producedRfyodococcus
erythropolisto form bioherding agents under calm conditions. Howevie, herding
effectiveness in harsh marine environmemtdercomplicated conditions (e.g., with rough

waves, under low tempetaes, with iceshouldbefurther examined.

(2) It is worth studying the relationships between structures of-fbeévders and the
associated herdingffectiveness througkurther identification of bieherder functional
groupsusing high-performancdiquid chromatographynass spectrometrfHPLC-MS),
gas chromeography- mass spectrometfC-MS), andnuclearmagnetic resonance (NMR)

analysis

(3) Pilot-scale (e.g., wave tlh examination of the biberding effectiveness should be

conducted.

(4) The stability and effectiveness of the -bierder during enhancing -8itu burning
operations should be conducted. The integration of herding asitiiiburning would help
to demongate the applicability of the biberder as the treating agent to deal with-real

world marine oil spills.
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FigureA.1 Experiment Setup
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FigureA.2 Biosurfactant before extraction
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FigureA.3 Biosurfactantultivation intheflask
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