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Abstract  

Regime shifts in marine ecosystems may result in abrupt changes in fish population dynamics, and 

not accounting for such shifts could have potentially large and far-reaching consequences for 

fisheries assessment and management decisions. In this work, I develop a methodology to model 

abrupt shifts in recruitment and somatic growth, which are two key processes in controlling fish 

population dynamics. In Chapter 1, I review the impacts of regime shifts on fish populations and 

find that abrupt shifts in productivity are very common among global fish species. In Chapter 2, I 

introduce the approach of modelling recruitment and regime shifts. The methodology includes a 

hidden Markov model for the unobserved environmental regimes, a stock-recruitment (SR) model 

for the regime-specific SR function, the maximum likelihood approach for evaluating the marginal 

likelihood, and the corrected Akaike information criterion (AICc) for the model selection. I 

conduct simulation tests to evaluate the performance of the method and results indicate that our 

method can objectively identify the unobserved environmental regimes and estimate regime-

specific SR model parameters well. In Chapter 3, I extend the hidden Markov approach to model 

abrupt shifts in fish growth using a von Bertalanffy growth model (VBGM). Simulation results 

demonstrate that the method can accurately identify abrupt shifts in growth and estimate regime-

specific growth parameters well. I apply both the hidden Markov stock-recruit model (HMSM) 

and the hidden Markov growth model (HMGM) to an Atlantic cod stock on the southern Grand 

Bank off Newfoundland, Canada. Results indicate that the cod stock has two distinct recruitment 

regimes and two distinct growth regimes, and our method identify one abrupt shift in recruitment 

and four abrupt shifts in somatic growth. I consider the methodology proposed in this thesis as a 

useful tool to model regime-like changes of fish population dynamics. In Chapter 4, I discuss the 

management implications of abrupt shifts in fish population dynamics and present the current 
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challenges of managing fish stocks under marine ecosystem regime shifts. I consider the conditions 

under which our method might be useful to better assess and manage fish populations under 

changing environmental regimes.  
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Chapter 1  

Abrupt shift in fish population dynamics 

1.1 Regime shift in marine ecosystems  

It has been increasingly recognized that it is possible for marine ecosystems to exist in more than 

one environmental state (Folke et al., 2004; Wooster and Zhang, 2004; Munch and Kottas, 2009). 

Different environmental states are characterized with different environmental conditions, such as 

sea surface temperature, salinity, and food availability (deYoung et al., 2008). Sometimes dramatic 

changes might occur among these different environmental states (Munch and Kottas, 2009). I term 

the prolonged periods of time where the ecosystem stays in a relatively stable environmental state 

‘regimes’, and the transition between one environmental state and another as a regime shift. 

Regime shifts are often sudden, dramatic and persistent changes that may occur over a short period 

of time and may not be detected for several years (Scheffer et al., 2001; Peterson and Schwing, 

2003; Jiao, 2009; Munch and Kottas, 2009).  

Regime shifts in marine ecosystems are typically assumed to be caused by natural forcing, 

e.g. climate oscillations (Hare and Mantua, 2000), by human activities, e.g. overfishing (Myers et 

al., 1997) or more commonly by some combination of the two (deYoung et al., 2008). Climate-

driven regime shifts have been extensively documented (Minobe, 2000; Overland et al., 2008; Jiao, 

2009; Levin and Möllmann, 2015; Möllmann et al., 2015; Zhang et al., 2018). Large scale 

atmospheric oscillations, including NAO (North Atlantic Oscillation), PDO (Pacific Decadal 

Oscillation) and El Niño Southern Oscillation (ENSO) can induce abiotic changes, such as changes 

in temperature, salinity, wind, ocean currents, and upwelling (Jiao, 2009), and biotic changes, such 
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as internal foodweb dynamics and structural habitat changes (deYoung et al., 2008) in marine 

ecosystems. Changes in biotic and abiotic variables contribute to oscillations in environmental 

conditions and thus shifts among environmental regimes. Intensive fishing is regarded as another 

key driver of regime shifts in marine ecosystems (Myers et al., 1997; Reid, 2000; Jackson, 2001; 

Daskalov, 2002; Harvey et al., 2003; Jiao, 2009). Overfishing can reduce the resilience of the 

current state of an ecosystem, making the marine ecosystem more vulnerable to changes in 

environmental conditions and easier to flip to an alternative environment state (deYoung et al., 

2008). Under the pressure of overfishing, subtle changes in key environmental variables such as 

temperature and food availability may also directly or indirectly cause a regime shift.  

Regime shifts in marine ecosystems can result in substantial alterations to fish population 

dynamics (Mueter et al., 2007; A’mar et al., 2009). Regime-like changes of recruitment, somatic 

growth, and recruit-per-spawner have been observed in many fish stocks and are believed to be 

cause by marine ecosystem regime shifts (Munch and Kottas, 2009a; Echave et al., 2012; 

Möllmann et al., 2015; Perälä and Kuparinen, 2015; Stawitz et al., 2015; Perälä et al., 2017). Meta-

analyses have suggested that regime shifts in stock productivity are very common among global 

fisheries species (Mueter et al., 2007; A’mar et al., 2009; Vert-pre et al., 2013; Szuwalski and 

HolloId, 2016; Zhang et al., 2020b). The rapid and alternate nature of regime shifts present 

formidable challenges for fisheries assessment and management (Steele, 1996; deYoung et al., 

2008; Crépin et al., 2012; Klaer et al., 2015; Rocha et al., 2015), because fish stocks tend to be 

overestimated (or underestimated) at the beginning of a low-productivity (or high-productivity) 

period when regime shifts are not included in fisheries assessment and management. Hence, a 

method that can detect and account for abrupt shifts in fish population dynamics under changing 
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environmental regimes could be of great use in providing scientific advice to fisheries management 

and setting regime-based management strategies.  

 

1.2 Abrupt shift in stock-recruitment dynamics 
 

The stock–recruitment relationship (SRR) describes recruitment as a function of spawning stock 

biomass (SSB). It is a fundamental concept in fisheries science. Classical forms of SRRs include 

Ricker and Beverton–Holt models and their numerous extensions. These parametric SRRs involve 

the idea that the annual number of recruits to a fish stock is positively related to the parental 

spawning stock biomass at low SSB (Gilbert, 1997), but the rate of recruitment decreases as SSB 

increases. SRRs are critical to predict future stock dynamics (Britten et al., 2016), and the ability 

to accurately model recruitment is essential to determine appropriate management strategies 

(Plagányi et al., 2019). In particular, SRRs are crucial to identify various biological reference 

points, e.g. B0 (unfished biomass), SSB0 (unfished SSB), BMSY (biomass leading to maximum 

sustainable yield) and FMSY (the rate of fishing mortality leading to maximum sustainable yield) 

(Mangel et al., 2013; Zhang et al., 2020b). SRRs are often assumed to be time-invariant, but it has 

been recently demonstrated that SRRs may show abrupt shifts over time (e.g., Britten et al., 2016; 

Szuwalski et al., 2019). Abrupt changes in the parameters of stock-recruitment models have been 

detected in Japanese sardine (Sardinops melanostictus) in the Pacific Ocean (Wada and Jacobson, 

1998; Munch and Kottas, 2009). Both Wada and Jacobson (1998) and Munch and Kottas (2009) 

identified two recruitment regimes for the Japanese sardines. The recruitment of the Japanese 

sardines was detected in a high level from 1971 to 1987 and in a low level from 1988 to 1995. The 

similar regime-like recruitment patterns have also been detected in Atlantic cod, thorny skate, 
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American plaice, and white hake in the Gulf of St. Lawrence (Perälä et al., 2017). For example, an 

exceptionally high recruitment regime was identified for the cod in the Gulf of St. Lawrence 

beginning in the mid-1970s and lasting throughout the 1980s, then the cod recruitment rates 

declined and returned to more normal levels in the 1990s and remained until 2013. These abrupt 

changes in SRRs are believed to be related to marine ecosystem regime shifts (Perälä and 

Kuparinen, 2015; Zhang et al., 2018). When regime shifts occur in fish stocks, the egg production 

and early life stage survival may change, and further translate into shifts in SRRs (Perälä et al., 

2017). Consequently, the S-R models fitted to observations before such a shift may not describe 

the recruitment after the shift. As regime shifts in marine ecosystems are common (Vert-pre et al., 

2013; Möllmann et al., 2015; Zhang, 2020), not including regime shifts in stock-recruitment 

dynamics will increase the uncertainty in stock assessment and management.  

 

1.3 Abrupt shift in somatic growth 
 

Somatic growth describes how body size changes with time. There is substantial evidence that 

growth is highly variable (Stawitz et al., 2015). Variability in growth can have substantial 

consequences for survival, natural mortality, age at sexual maturity, and reproductive output 

(Deriso, 1987; Frater et al., 2019). Temporal variation in fish growth has been extensively studied 

(Jiao et al., 2010; Stawitz et al., 2015; Thorson et al., 2015; Thorson and Minte-Vera, 2016). 

However, abrupt, regime-like changes in fish growth caused by changing environmental regimes 

have received less attention. Much research has sought to model abrupt shifts in recruitment 

(Munch and Kottas, 2009; Britten et al., 2016; Perälä et al., 2017; Szuwalski et al., 2019), but 

there is a lack of studies accounting for regime-like fish growth, although existing evidence 

suggests fish could experience dramatic and persistent changes of somatic growth. For example, 
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the growth of Pacific halibut (Hippoglossus stenolepis) was slow in the 1920s and 1930s, then 

suddenly changed to fast growth in the middle years, and then slowed down again between the 

mid-1970s and the mid-1990s (Clark et al., 1999). Moreover, the Alaskan sablefish (Anoplopoma 

fimbria) stocks in the northeast Pacific Ocean, the Pacific halibut (Hippoglossus stenolepis) in the 

Gulf of Alaska, and the Pacific hake (Merluccius productus) in the California Current  also showed 

regime-like growth patterns (Echave et al., 2012; Stawitz et al., 2015). Somatic growth is one of 

the primary demographic mechanisms contributing to dynamics of populations. Changes in fish 

growth can affect a range of population and fishery metrics, such as recruitment success, 

maturation schedules, stock biomass, and fisheries yield (Morrongiello et al., 2021), and hence is 

critical to fisheries stock assessment and management procedures (Shackell, 1997; Thorson and 

Minte-Vera, 2016; Frater et al., 2019). A method that can account for abrupt shifts in fish growth 

is needed to provide reliable estimates for long-term growth trends and decide upon appropriate 

fisheries management strategies under changing environmental regimes (Dortel et al., 2015; Mion 

et al., 2020). However, we need to acknowledge that the variation in weight at age could reflect 

both variation in growth and variation in fish condition (i.e. health condition) but that only 

variation in growth was assumed in this work. 

 

 

1.4 summary  
 

Fluctuations in demographic processes such as recruitment, somatic growth, and mortality 

contribute to fish population dynamics. Understanding demographic variability in these processes 

and their corresponding effects on production can help us understand and forecast changes in 

marine fish populations (Stawitz et al., 2015). There is substantial evidence that population 
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dynamics such as recruitment and growth could experience regime-like changes due to changing 

environmental regimes (Clark et al., 1999; Munch and Kottas, 2009; Echave et al., 2012; Perälä 

and Kuparinen, 2015; Perälä et al., 2017). While regime shifts in marine ecosystems are very 

common  (Vert-pre et al., 2013; Möllmann et al., 2015; Zhang, 2020), not accounting for abrupt 

changes in fish population dynamics can have potentially large and far-reaching consequences for 

fisheries assessment and management decisions (Rice, 2011; Frater et al., 2019). Therefore, a 

method that can detect abrupt shifts in fish population dynamics, infer year-specific environmental 

regime, and provide estimations of regime-specific population dynamic parameters could be of 

great value. In the following chapters, I introduce the hidden Markov stock-recruitment model 

(HMSM) for modeling abrupt shifts in stock-recruitment dynamics, and the hidden Markov 

Growth model (HMGM) for modeling abrupt shifts in somatic growth. I first conduct simulation 

tests to evaluate the performances of these two methods, such as the ability to specify the true 

number of regimes, and the reliability of the model estimation results. Next, I apply HMSM and 

HMGM to an Atlantic cod stock (Gadus morhua) on the southern Grand Bank off Newfoundland, 

Canada. Finally, in Chapter 4, I discuss potential causes of abrupt shifts in fish population 

dynamics and potential management implications. 
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Chapter 2  

Hidden Markov stock-recruitment model (HMSM) 

 

2.1 Introduction 
 

Recent studies have shown that stock–recruitment relationships (SRRs) can show abrupt shifts 

(Perälä and Kuparinen, 2015; Britten et al., 2016; Perälä et al., 2017; Szuwalski et al., 2019), and 

such abrupt changes in stock-recruitment dynamics will have great impacts on fisheries 

management (Rice, 2011; Frater et al., 2019). There have been earlier attempts to account for 

regime-like changes of recruitment dynamics. For example, Peterman et al. (2003) used the 

Kalman filter which includes a time-varying Ricker 𝛼 parameter (i.e. 𝛼 evolves as a random walk 

process) to model potential long-term, persistent changes in productivity (recruits per spawner at 

a given spawner abundance) of eight Bristol Bay, Alaska, sockeye salmon (Oncorhynchus nerka) 

stocks. Their Kalman filter random-walk (KF-RW) model detected large temporal changes in 

productivity of the eight Bristol Bay sockeye salmon stocks. Similarly, Minto et al. (2014) 

proposed a multivariate stock–recruitment state-space model which assumes auto-correlated (i.e. 

AR(1)) state variables to estimate time-varying stock productivity across 21 North Atlantic cod 

(Gadus morhua) populations. They found clear productivity regimes across neighboring 

populations, especially in the Northeast Atlantic. The state-space models might be a good approach 

for quantifying the variables that are continuous. However, for discrete variables (i.e. recruitment 

regimes), the state-space models may not be able to model the sudden “shifts” in regimes very 

well. Munch and Kottas (2009) introduced a Bayesian modeling approach which incorporates a 

two-regime-based hidden Markov model for determining recruitment regime shifts based on a 
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Ricker SRR. They assume that there are two environmental regimes characterized by distinct 

productivities and use a hidden Markov model to describe the unobserved environmental regimes. 

Within each regime, they assume that recruitment follows a Ricker model with multiplicative 

lognormal errors. Munch and Kottas (2009) applied their method to recruitment data for Japanese 

sardine (Sardinops melanostictus) and successfully identified two distinct recruitment regimes for 

the Japanese sardine. In general, regime shift studies (e.g., Nisbet and Bence, 1989; Wada and 

Jacobson, 1998; Munch and Kottas, 2009) have typically assumed the existence of two 

environmental regimes, and a Bayesian approach is predominantly used to estimate model 

parameters (Munch & Kottas, 2009; Perälä et al., 2017).  

In this chapter, I develop a Hidden Markov Stock-recruitment Model (HMSM) to model 

abrupt changes in stock-recruitment dynamics. In a vein similar to Munch and Kottas (2009), I 

combine a hidden Markov model for unobserved environmental regimes and a stock-recruitment 

model to describe the regime-specific recruitment. Unlike Munch and Kottas (2009), I choose a 

Beverton–Holt SRR instead of a Ricker model and assume that the number of regimes is unknown. 

We chose to use a Beverton-Holt model rather than a Ricker model because the latter can be written 

in a linear form and thus is, in general, easier to handle than the former. We adopted the Beverton-

Holt model to demonstrate the flexibility of the proposed approach to the functional forms of the 

stock-recruitment models. A model selection method is used to determine the optimum number of 

regimes. Different from the previous endeavors with a Bayesian approach, I use the maximum 

likelihood (ML) method, which is more flexible to implement and amenable to simulation studies. 

In this regard I developed an efficient algorithm to calculate the marginal likelihood with Template 

Model Builder (TMB) (Kristensen et al., 2020). In the following sections, I first describe the 

structure of the HMSM. I conduct simulation tests to evaluate whether the method is able to 
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correctly identify the underlying regimes. Finally, I apply the HMSM to an Atlantic cod (Gadus 

morhua) stock on the southern Grand Bank off Newfoundland, Canada.  

 

2.2 Model structure of HMSM 
 

The HMSM incorporates a hidden Markov model (Scott, 2002) for the unobserved environmental 

regimes and a Beverton-Holt model for regime-specific SRR. Since the environmental regime in 

the ecosystems can hardly be directly observed, in the HMSM, I treat the unobserved regimes as 

latent random effects and assume that these environmental regimes evolve as a Markov chain. 

Based on the Markov property, the probability distribution of future regimes conditional on both 

past and present regimes depends only upon the present regime. It greatly facilitates the fast 

evaluation of the likelihood function, as explained later. 

The number of regimes in the environment is unknown. Let K denote the total number of regimes. 

Let t ∈ {1,2, … , 𝑇} denote the index of year, where 𝑇 is the final year in which recruitment was 

observed. The regime in year t is denoted by  𝑟𝑡 ∈ {1,2, . . 𝐾}. The regime in year t depends on the 

regime in year t-1 through 𝑞𝑖𝑗which are the probabilities of transitions into regime j from regime 

i; that is,  

 

𝑞𝑖𝑗 = 𝑝(𝑟𝑡 = 𝑗 | 𝑟𝑡−1 = 𝑖) . 

I assume that 𝑞𝑖𝑗 are stationary, i.e., they do not vary over time. The denotations of all the model 

variables are given in Table 2.1. 

I applied a commonly used stock-recruitment model defining the relationship between spawning 

stock biomass (S) and recruitment (R): Beverton–Holt model  
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𝑅 = 𝑎𝑆/(𝑏 + 𝑆) , 

where 𝑎 > 0 and 𝑏 > 0. In order to simplify subsequent inference procedures, I adopted a form of 

the Beverton–Holt model close to a linear model 

𝑦 = 𝛼 − log (1 + 𝛽𝑆) , 

               (2.1) 

where 𝑦 = log (𝑅/𝑆), 𝛼 = log (𝑎/𝑏) and 𝛽 = 1/𝑏. The parameter 𝑎 is the density-independent 

parameter that is proportional to fecundity, and the parameter 𝑏 is the density-dependent parameter 

that is proportional to both fecundity and density-dependent mortality.  

The regime-specific model of the SRR, conditional on regime  𝑟𝑡 = 𝑗, is given by 

𝑦𝑡 = Ϝ(𝑆𝑡 , 𝜃𝑗) + 𝜀𝑡,   

where the error term 𝜀𝑡 is modeled as an independent normal random variable with mean 0 and 

standard deviation 𝜎𝑗 , 𝜃𝑗 = (𝛼𝑗 , 𝛽𝑗) , and Ϝ(𝑆𝑡 , 𝜃𝑗) = 𝛼𝑗 − log (1 + 𝛽𝑗𝑆𝑡) . 𝜀𝑡  involves both 

process error and the measurement error in observing 𝑦𝑡. Here the subscript j indexes the regime. 

Let 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝐾)′ , 𝑄 = (𝑞11, … , 𝑞𝐾𝐾)′ , and 𝜎 = (𝜎1, … , 𝜎𝐾)′.    is further defined as a 

vector of all the elements of 𝜃, 𝑄 and 𝜎.  

The joint likelihood function of 𝑦1:𝑇 and hidden regimes 𝑟1:𝑇 for the HMSM is thus given by 

𝑝( 𝑦1:𝑇 , 𝑟1:𝑇 |  )   =  𝜋(𝑟1) ∏  𝑝(𝑟𝑡 | 𝑟𝑡−1)𝑇
𝑡=2 ∏  𝑝(𝑦𝑡 | 𝑟𝑡 ,)𝑇

𝑡=1 , 

(2.2) 

 

where I abbreviate {𝑦1, 𝑦2, … , 𝑦𝑇} and {𝑟1, 𝑟2, … , 𝑟𝑇} respectively as  𝑦1:𝑇 and 𝑟1:𝑇. The marginal 

likelihood is evaluated by summing out all the latent random effects 𝑟1:𝑇; that is,  

 

𝑝(𝑦1:𝑇 | )    = ∑  𝜋(𝑟1) ∏  𝑝(𝑟𝑡 | 𝑟𝑡−1)𝑇
𝑡=2 ∏  𝑝(𝑦𝑡 | 𝑟𝑡 ,)𝑇

𝑡=1𝑟1:𝑇
, 

(2.3) 
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A straightforward evaluation of (2.3) involves enumerating all the KT routes from year 1 to year T 

and summing all the joint likelihoods (2.2) along these routes. The computational cost of this 

method increases exponentially with the sample size T, which is unfeasible even for moderate T. 

For ease of reference, I hereafter refer to this approach as the “brute-force method”. Instead of 

using the brute-force method, I applied an efficient algorithm with computational cost proportional 

to T based on the Markov property of the model. A major advantage of this algorithm is that any 

transition route between two regimes of two consecutive years is evaluated only once, while the 

brute-force method redundantly evaluates each of these transition routes KT-2 times. The use of the 

efficient algorithm greatly reduces the computational cost. The details of the efficient algorithm 

are provided in Appendix A  For the purpose of comparison and validation, I also implemented 

the brute-force method with the flexible method of recursion (Graham et al., 1990). Our numerical 

tests indicated that both methods give exactly the same marginal likelihood evaluations, but the 

efficient method takes much less time (see Appendix E).  

Eq. (2.3) involves multiplications of many probably tiny probabilities, which can lead to 

computer overflow and loss of numerical accuracy. Chib (1996) and Scott (2002) also noticed that 

directly evaluating and maximizing the likelihood is unstable. To solve this problem, Scott (2002) 

proposed a solution to evaluate the log-likelihood by always working with the logarithms of the 

intermediate probabilities because log-transformation can effectively scale very large or small 

numbers into an amenable range. This solution requires the log-space summation, which can be 

easily done using the logspace_add function in TMB (Template Model Builder; Kristensen et al., 

2020). Although the Laplace approximation used in TMB for the integrations over continuous 

random effects cannot be applied to discrete latent variables (e.g., 𝑟𝑡) in this HMSM, the efficient 

algorithm for evaluating the marginal log-likelihood can be coded up in TMB. Then I am able to 
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use TMB to calculate the marginal log-likelihood and the gradients. This can be combined with 

the R function nlminb (Gay, 1990) to find the MLEs and their standard errors. The gradient 

function of 𝜃 that TMB automatically provides can greatly improve estimation of 𝜃 using nlminb. 

As mentioned before, the modelling approach provides statistical inference for the unknown 

environmental regimes. The regime for each year is estimated by maximizing their conditional 

distributions given the data. That is  

𝑝 (𝑟𝑡 = 𝑗 |  𝑦1:𝑇 , ) =
𝑝(𝑟𝑡 = 𝑗,  𝑦1:𝑇 |  )

𝑝(𝑦1:𝑇 | )
, 

where 

𝑝(𝑟𝑡 = 𝑗,  𝑦1:𝑇 |  ) =  ∑  𝑝(𝑟1:(𝑡−1), 𝑟𝑡 = 𝑗 , 𝑟(𝑡+1):𝑇 ,  𝑦1:𝑇 |  )𝑟1:(𝑡−1),𝑟(𝑡+1):𝑇
. 

 

The fast evaluation of 𝑝 (𝑟𝑡 = 𝑗 |  𝑦1:𝑇 , ) is presented in Appendix B. 

Predicting the recruitment for year t has 2 steps: 1) predict the regime in year t by 

maximizing the conditional distribution of all regimes given the data; 2) calculate the recruitment 

using the regime-specific SRR model given the estimated regime. I use a “missing data” approach 

for future recruitment predictions.  

In the case of missing data where recruitment in the past and/or future years are not available, the 

marginal likelihood can be rewritten as 

𝑝({𝑦𝑡 , 𝑡 ∈ 𝐷𝑇 }| )    = ∑  𝜋(𝑟1) ∏  𝑝(𝑟𝑡 | 𝑟𝑡−1) ∏ 𝑝(𝑦𝑡 | 𝑟𝑡 ,)𝑡∈𝐷𝑇
𝑇
𝑡=2𝑟1:𝑇

, 

       (2.4) 

where 𝐷𝑇 denotes all the years with recruitment data. The formula for the conditional distribution 

of the regimes can be similarly written as 

𝑝 (𝑟𝑡 = 𝑗 | {𝑦𝑡 , 𝑡 ∈ 𝐷𝑇  } , ) =
𝑝(𝑟𝑡 = 𝑗, {𝑦𝑡 , 𝑡 ∈ 𝐷𝑇 } |  )

𝑝({𝑦𝑡 , 𝑡 ∈ 𝐷𝑇 } | )
, 
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where 

𝑝(𝑟𝑡 = 𝑗, {𝑦𝑡 , 𝑡 ∈ 𝐷𝑇 } |  ) =  ∑  𝑝(𝑟1:(𝑡−1), 𝑟𝑡 = 𝑗 , 𝑟(𝑡+1):𝑇 , {𝑦𝑡 , 𝑡 ∈ 𝐷𝑇 } |  )𝑟1:(𝑡−1),𝑟(𝑡+1):𝑇
. 

 

The procedures to evaluate the marginal likelihood (2.4) and the regime conditional probabilities 

are the same as for the complete data case.  

 

2.3 Simulation 
 

I validate the HMSM by first simulating data time series with known numbers of regimes, based 

on recruitment parameters derived from empirical data for real fish populations. I then test the 

ability of our method to 1) specify the correct number of regimes, 2) identify the exact regime for 

each year, and 3) precisely estimate the regime-specific parameters.  

Theoretically, the maximum number of regimes does not have an upper bound. However, 

in most cases, the SRR time series are not long enough to support the existence of more than three 

regimes. The length of the recruitment time series of most fish stocks from the RAM legacy 

database is around 35 to 60 years, while the number of parameters for the two-regime HMSM, 

three-regime HMSM, and four-regime HMSM is nine, 17, and 27, respectively. Using 27 or even 

more parameters to estimate 60 data points could be overfitting. Thus, I conducted simulation tests 

under three scenarios, i.e.  single regime, two regimes, and three regimes (Figure 2.1). Each 

scenario is repeated 1000 times, and each repetition generates 50 years of stock-recruitment data. 

In order to make the simulation tests more realistic, the recruitment parameters used for data 

generation under scenarios 2 and 3 were derived from the empirical data for the golden redfish 

from International Council for the Exploration of the Sea (ICES) subareas V, VI, XII, and XIV 

(Iceland and Faroes grounds, West of Scotland, North of Azores, East of Greenland) and the 
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Acadian redfish from the Gulf of Maine / Georges Bank, respectively. The SR data of these two 

real red fish stocks were obtained from the RAM legacy database (RAM Legacy Stock Assessment 

Database, 2018). I described how to analyze the SR data and use their recruitment parameter 

estimates for our simulation tests in Appendix C . 

I generated 𝑦𝑡 using the re-parametrized BH model 

𝑦𝑡 = 𝛼𝑡 − log(1 + 𝛽𝑡 𝑆𝑡) + 𝜀𝑡,  

where 𝑡 = 1, 2, … , 𝑇 is the index of year.  𝜀𝑡 are independent normal random variables with mean 

0 and standard deviation 𝜎𝑡 .  

Under scenario 1 with a single regime (i.e. no regime shift), the parameters 𝛼𝑡 , 𝛽𝑡  and 𝜎𝑡  are 

constant (Table 2.2). I let  𝑆𝑡 follow a uniform distribution with the boundary (0,500).  

Under scenario 2 with two regimes, the generated time series {𝑦1, 𝑦2, … 𝑦𝑡 , … 𝑦𝑇}  were 

characterized by two underlying regimes with parameters 𝛼𝑡 𝜖 { 𝛼1, 𝛼2 } , 𝛽𝑡 𝜖 { 𝛽1, 𝛽2 } , and 

𝜎𝑡 𝜖 { 𝜎1, 𝜎2 } depending on the regime in year t (Table 2.2).  These regime-specific parameters 

{𝛼1, 𝛼2}, {𝛽1, 𝛽2}, and {𝜎1, 𝜎2} are the corresponding estimated parameters from fitting the 2-

regime HMSM to the SRR data of the golden redfish stock from ICES (International Council for 

the Exploration of the Sea) subareas V, VI, XII, and XIV (Iceland and Faroes grounds, west of 

Scotland, North of Azores, East of Greenland) (RAM Legacy Stock Assessment Database, 2018). 

The time series of the latent random effects (i.e. the temporal variation of regimes), {𝑟1,  𝑟2, … ,  𝑟𝑇}, 

are specified to follow a step-wise change among two regimes (Figure 2.1).  I let 𝑆𝑡  follow a 

uniform distribution with the same range as the SSB of the golden redfish, which is (0,45).  

Under scenario 3 with three regimes, the generated time series {𝑦1, 𝑦2, … 𝑦𝑡 , … 𝑦𝑇} were 

characterized by three underlying regimes with parameters 𝛼𝑡 𝜖 { 𝛼1, 𝛼2, 𝛼3 }, 𝛽𝑡 𝜖 { 𝛽1, 𝛽2, 𝛽3}, 

and 𝜎𝑡 𝜖 { 𝜎1, 𝜎2, 𝜎3 } depending on the regime in year t (Table 2.2). Similar to scenario 2, the 
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regime-specific parameters {𝛼1 , 𝛼2, 𝛼3}, {𝛽1 , 𝛽2, 𝛽3}, and {𝜎1 , 𝜎2, 𝜎3} were derived from the 

empirical data for Acadian redfish from the Gulf of Maine / Georges Bank (RAM Legacy Stock 

Assessment Database, 2018). The underlying regimes {𝑟1,  𝑟2, … ,  𝑟𝑇} follow step-wise changes 

among three regimes (Figure 2.1). 𝑆𝑡 were randomly sampled from the SSB of the Acadian redfish. 

I fitted three models to each of the generated data sets, i.e. single-regime model (BHM), 

two-regime HMSM (HMSM-2), and three-regime HMSM (HMSM-3). I then compared model 

performance using the Akaike information criterion with a correction for small sample sizes 

(AICc). The reason for using AICc instead of AIC is that the length of the recruitment time series 

is usually low when compared to the number of parameters for HMSM. Let n be the number of 

parameters in the model, and 𝑇 be the sample size, namely, the total number of years observed. 

AICc is given by 

𝐴𝐼𝐶𝑐 = 2𝑛 − 2 log(𝐿̂Θ) + (2𝑛2 + 2𝑛)/(𝑇 − 𝑛 − 1) 

Finally, I evaluated the simulation performance of the parameter estimates of the selected model 

under each scenario by root-mean-squared error (RMSE), relative root-mean-squared error 

(RRMSE), and bias,  

 

𝑅𝑀𝑆𝐸 = √∑ (𝜃̂𝑧 − 𝜃)
21000

𝑧=1

1000
 

 

𝑅𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

|𝜃|
 

 

𝑏𝑖𝑎𝑠 =
∑ (𝜃̂𝑧−𝜃)1000

𝑧=1

1000
 , 
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where 𝜃 denotes the true parameter values, and the hat denotes the parameter estimates. 

 

 

2.4 Case study 
 

After verifying the ability of our modeling approach to accurately identify regime shifts in 

simulated data, I applied the three models (BHM, HMSM-2 and HMSM-3) to identify potential 

regime shifts in stock-recruitment dynamics based on empirical data for the Atlantic cod stock on 

the southern Grand Bank (Northwest Atlantic Fisheries Organization (NAFO) Divisions 3NO)  

(Rideout et al., 2018). The Grand Bank is a large offshore bank to the southeast of the island of 

Newfoundland. Catches of cod from this stock peaked during the late 1960s – early 1970s, with 

annual totals from 100 000 t to more than 200 000 t, but declined sharply thereafter. Estimates of 

spawning stock biomass declined from the mid-1960s to the mid-1970s due to high fishing 

mortality (Hutchings and Myers, 1994), and recruitment started to decline in the mid-1960s and 

reached very low levels in the 1990s. The cod stock collapsed in the early 1990s and was placed 

under a moratorium to all directed fishing in February 1994  (Brander, 2005). Despite more than 

25 years under a fishing moratorium, the stock has shown little to no signs of recovery (Nogueira 

et al., 2013).  

The 3NO cod SR data (1962 to 2017) were taken from the most recent assessment of this 

stock (Rideout et al., 2018) and the age of recruitment is considered to be 3 years old.  Before 

fitting models to these data, I divided 𝑆𝑆𝐵 by 10^4 to keep it in the same order of magnitude as 

𝑦𝑡, and I denoted 𝑆𝑆𝐵/10^4 as 𝑆𝑡. I fit the BHM, HMSM-2, and HMSM-3 to the 𝑆𝑡  𝑎𝑛𝑑 𝑦𝑡+3 data. 

For the HMSM-2, the total number of regimes 𝐾 = 2. The initial values for 𝛼’s of the 𝐾 regimes 

were set at the 𝐾 points evenly spread across the range of 𝑦𝑡 for small 𝑆𝑡 values. I used 2/(range 
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of 𝑆𝑡) as the initial values of 𝛽’s. The 𝜎′𝑠 were assigned the same initial value of 1. The initial 

2 Χ 2 matrix of 𝑞𝑖𝑗 was assigned equal values summing to 1 for each row. The initial values of 𝛼’s, 

𝛽’s, and 𝜎′𝑠 for HMSM-3 were derived similar to those of HMSM-2, and the initial 3 Χ 3 matrix 

of 𝑞𝑖𝑗 of HMSM-3 was similarly given the same values with row-sums equal to 1. The starting 

values of parameters for BHM were fixed at 𝛼 = 1.8, 𝛽 = 0.02, and 𝜎 = 0.1. The models were 

compared with AICc, and the selected model was used to identify the abrupt shifts of SRRs for 

3NO cod. In order to demonstrate that the estimates for the HMSM are not very sensitive to starting 

values, some fitting examples of different initial values are provided in Appendix H .  

 

2.5 Results 

2.5.1 Simulation results 

 

Our results confirmed that fitting multiple HMSM to recruitment data and comparing model 

performance via AICc is an effective and objective way of identifying regime shifts in fish 

populations. For single regime scenarios (i.e. scenario 1), the BHM outperformed HMSMs 

(HMSM-2 and HMSM-3) across all 1000 trials, and for 2-regime scenarios (i.e. scenario 2) the 

HMSM-2 outperformed BHM and HMSM-3 in all 1000 iterations (Table 2.3). For 3-regime 

scenarios (i.e. scenario 3), HMSM-3 specified the correct number of regimes in almost all the 1000 

iterations (Table 2.3). The estimates of parameters 𝛼, 𝛽, and 𝜎 for the selected BHM and HMSMs 

were close to the true parameter values that were used to simulate the data (Figure 2.2). The 

precision of parameter estimates for each selected model across three scenarios was evaluated by 

root-mean-squared error (RMSE), relative root-mean-squared error (RRMSE), and bias (Table 

2.4). The RMSEs, RRMSEs and bias of parameters for BHM were very close to zero, which 

indicated the high precision of parameter estimates. The parameters of HMSM-2 were also 

estimated very well given their low RMSEs, RRMSEs and bias. The bias in 𝛼2  and 𝛽2  was 
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probably due to the uniform distribution of  𝑆𝑡. Compare to 𝛼1 and 𝛽1, 𝛼2 and 𝛽2 are relatively 

greater. In order to estimate 𝛽2 well, more data points with smaller 𝑆𝑡 are required. However, in 

scenario 2, 𝑆𝑡 is uniformly distributed, and I cannot make sure that the data points in regime 2 have 

smaller 𝑆𝑡. The parameter estimates for HMSM-3 were mostly good with some exceptions (i.e. 

some RMSEs and RRMSEs > 1), but the precision was acceptable. For the multi-regime scenarios, 

both HMSM-2 and HMSM-3 were effective at correctly identifying the true regime for individual 

years. For the 2-regime scenario, 839 out of the 1000 trials accurately predicted the year-specific 

regime for all of the years in the time series (Figure 2.3). For the 3-regime scenario, the accurate 

regime was predicted for all years in 746 out of 1000 trials (Figure 2.3).  

 

 

2.5.2 Simulation examples for HMSM-2 and HMSM-3  

 

Under scenario 2, taking one of the 1000 trails as an example, the AICc values of HMSM-2, 

HMSM-3, and BHM were 56.553, 73.017, and 107.526 respectively. The predicted 𝑟𝑡 ’s of 

HMSM-2 were the same as the true 𝑟𝑡’s (Figure 2.4). The parameter estimates of HMSM-2 were 

close to true parameter values (Figure 2.5). HMSM-2 fits the data better than BHM: the true SR 

data points were relatively evenly distributed on the upper and lower sides of the stock-recruitment 

curves fitted by HMSM-2 (Figure 2.6). HMSM-2 can predict recruitment for each year much more 

reliably than BHM (Figure 2.6). The standardized residuals of HMSM-2 fitting were between -2 

and 2 with the mean value zero, and there were no obvious temporal correlations (Figure 2.7). The 

standardized residuals for BHM fitting showed obvious temporal correlations, indicating the bad 

fitting of BHM (Figure 2.7). 

Under scenario 3, taking one of the 1000 repetitions as an example, the AICc values of 

HMSM-2, HMSM-3 and BHM were 167.822, 0.064 and 350.203 respectively. The predicted 𝑟𝑡′𝑠 
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of HMSM-3 was the same as the true 𝑟𝑡′𝑠 (Figure 2.8). The parameter estimates of HMSM-3 were 

close to the true parameter values (Figure 2.5). The fit of BHM was obviously not as good as that 

of HMSM-3. The fitted stock-recruitment curves for HMSM-3 described the original data points 

substantially better than BHM, and HMSM-3 can provide much more reliable recruitment 

predictions for each year (Figure 2.6). There were no obvious temporal patterns in the standardized 

residuals for HMSM-3 fitting (Figure 2.9). In contrast, the standardized residuals of BHM fitting 

exhibited obvious temporal correlations within each of the three regimes (Figure 2.9). 

 

2.5.3 Case study results 

 

Fitting the three models to empirical SR data for cod in Divs. 3NO suggested the existence of two 

distinct regimes for this stock. The HMSM-2 outperformed the other two models with better fit to 

data (Figure 2.10a) and lower AICc (Table 2.5).A regime shift in 1986 was detected, which 

divided the time series into a favorable regime (regime 2) from 1962 to 1985 and an unfavorable 

regime (regime 1) from 1986 to 2017 (Figure 2.10b). Compared to the favorable regime, the 

unfavorable regime was characterized with lower reproduction rate 𝛼, greater impact of density-

dependent parameter 𝛽, and greater standard deviation 𝜎 (Table 2.5). Furthermore, the estimated 

low transition probability (𝑞12) suggested that once the cod stock entered the unfavorable regime, 

it was very unlikely to return to the previous favorable regime (Table 2.5). The two regimes had 

substantially different SRRs, which led to drastically different levels of recruitment at the same 

level of SSB (Figure 2.10c). 

 



 20 

2.6 Discussion  

2.6.1 Model SRR using HMSM 

 

Regime shifts have been observed in marine ecosystems around the globe (Hare and Mantua, 2000; 

Overland et al., 2008; Vert-pre et al., 2013; Möllmann et al., 2015), and their impacts on the 

productivity of marine fish stocks present formidable challenges for the assessment and 

management of fisheries resources (Steele, 1996; Crépin et al., 2012; Klaer et al., 2015; Rocha et 

al., 2015). The methodology I proposed here was able to correctly identify the number of regimes, 

predict the regime for each year with high precision, and provide precise parameter estimates for 

S-R models. It provides an objective and effective way to account for abrupt changes in SRRs 

under regime shifts and I believe that the ML approach has several advantages over Bayesian 

methods that have previously been used. The ML method may be more flexible than the Bayesian 

method in seeking suitable specifications for S-R models. To be specific, in Bayesian methodology, 

each time the S-R model is changed, the corresponding posterior distributions of the model 

parameters need to be derived, and when analytical posterior distributions of the model parameters 

are not available (e.g. Beverton–Holt model), the approximate and typically more complicated 

numerical methods need to be included ( e.g., Perälä et al., 2017). Unlike the Bayesian method, 

the ML approach can easily incorporate various S-R models without extensive programming 

changes and with no need for approximations. For example, before identifying equation (2.1) as 

the optimal form of the Beverton–Holt model, the flexibility of the ML approach allowed us to 

test various alternatives where the recruitment follows a lognormal or gamma distribution with 

mean given by the Beverton–Holt formula.  

Another advantage of the ML method is that it allows for regime flexibility. Earlier studies 

pre-supposed the existence of two environmental regimes (e.g., Slatkin, 1978; Nisbet and Bence, 
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1989; Wada and Jacobson, 1998; Hare and Mantua, 2000). However, this may not always be the 

case. For example, the white hake (Urophycis tenuis) stock in the southern Gulf of St. Lawrence, 

has been characterized as having three distinct recruitment regimes (Perälä et al. 2017), shifting 

from a high to a low level in the 1970s, and then changing to a relatively high level in the mid-

1990s (but not as high as pre-1970 conditions). Regime flexible models like HMSM should be 

better able to identify and model these complicated regime scenarios by not putting a priori 

restrictions on the number of regimes. Last but not least, the ML method allowed us to easily 

validate the proposed inference approaches by conducting simulation tests. The performance of 

the ML approach in the simulation studies gave us confidence that the HMSM could be applied to 

identify and characterize abrupt shifts in empirical recruitment data.  

 

2.6.2 Abrupt shifts of stock-recruitment dynamics 

 

The causes of abrupt shifts in fish populations are not always known, but are generally attributed 

to changing environmental and anthropogenic conditions, such as changes in atmospheric and 

ocean circulation, increasing water temperature, as well as changes in fishing pressure (deYoung 

et al., 2008; Overland et al., 2008; Bundy et al., 2009; Möllmann et al., 2015; Frank et al., 2016; 

Karp et al., 2019). I identified two distinct SRR regimes for 3NO cod, with a regime shift in 1986. 

The recruitment shift I identified for 3NO cod is a little earlier than the commonly assumed period 

for the climate-driven regime shift off Newfoundland and Labrador, which is in the early-1990s, 

characterized by the collapse of cod, capelin and other commercial and non-commercial finfish 

species (Dempsey et al., 2017; Buren et al., 2019). This may imply that the abrupt shift identified 

in recruitment for 3NO cod could be more attributable to anthropogenic factors such as overfishing 

than to climate oscillations. From 1962-1985, 3NO cod was in a high recruitment regime, and then 
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in 1986 the cod stock shifted to, and has since remained in, a low recruitment regime. The 1986 

recruitment shift of 3NO cod may be associated with overfishing of recruits and pre-recruits, 

particularly outside Canada’s exclusive economic zone (EEZ)  (Myers et al., 1997). The 

overexploitation of these young fish may have directly led to the dramatic recruitment decline, and 

the transition from a high productivity regime to a low productivity regime. Furthermore, the low 

recruitment regime I identified beginning in the late 1980s coincided with depleted recruitment, 

increased fishing mortality, and extended period of cold surface water temperatures (Pedersen et 

al., 2017). Ocean temperatures around Newfoundland and Labrador were below normal from the 

early-1980s to the mid-1990s, with a particularly cold period in the early-1990s (Lilly et al., 2000). 

There is little reason to assume that the collapse of cod stock in the early 1990s would not correlate 

with the below-normal ocean temperatures (Buren et al., 2019). It is also possible that fishing-

induced changes in the size and age structure of the population increased the vulnerability of the 

stock to environmental changes (e.g., colder water temperature) that previously could be absorbed 

(Folke et al., 2004; Lindegren et al., 2010). Collectively, these anthropogenic and environmental 

factors may have caused the cod stock to shift to an unfavorable regime. The systematic changes 

of population traits and ecological conditions associated with regime shifts may prevent stocks 

from rapidly returning to a previous high productivity regime (Perälä and Kuparinen, 2015). In the 

case of 3NO cod, the stock remains in the poor recruitment regime to this day and has shown little 

to no evidence of stock recovery, despite being under a fishing moratorium since 1994, and fishing 

mortality (from by-catch in other fisheries) being very low. 

 

2.7 Tables 
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Table 2.1 Variables included in HMSM model structure. 

Variable Denotation 

t The index of year, 𝑡 ∈ {1, 2, … , 𝑇} 

T The final year in which recruitment was observed 

K The number of possible regimes 

𝑟𝑡 The regime state in year t, 𝑟𝑡 ∈ {1, 2, … , 𝐾} 

𝑞𝑖𝑗 The probabilities of transitions into regime j from regime i 

𝑆𝑡 The Spawning stock biomass in year t 

𝑅𝑡  The number of recruits in year t 

𝑦𝑡 𝑦𝑡 = log (𝑅𝑡/𝑆𝑡) 

𝛼𝑗 𝛼 in regime 𝑗, 𝑗=1, 2, …K 

𝛽𝑗 𝛽 in regime 𝑗, 𝑗=1, 2, …K 

𝜀𝑡 The process error and the measurement error of 𝑦𝑡 

𝜎𝑗 The standard deviation of error term 𝜺𝒕 in regime 𝑗, 𝑗=1, 2, … K 
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Table 2.2 The true values of the parameters 𝛼𝑡, 𝛽𝑡, and 𝜎𝑡 used for data generation under the three scenarios. 

  Scenario 1 Scenario 2 Scenario 3 

𝛼𝑡 2 𝛼1 = 7.78 𝛼2 = 10.20 𝛼1 = 3.04 𝛼2 = 6.35 𝛼3 = 7.12 

𝛽𝑡 0.025 𝛽1 = 0.38 𝛽2 = 1.54 𝛽1 = 0.09 𝛽2 = 0.93 𝛽3 = 1.21 

𝜎𝑡 0.2 𝜎1 = 0.31 𝜎2 = 0.40 𝜎1 = 0.43 𝜎2 = 0.04 𝜎3 = 0.75 
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Table 2.3 The counts of each model selected by AICc under three scenarios 

scenario  HMSM-2 HMSM-3 BHM 

1 #Best Model 0 0 1000 

2 #Best Model 1000 0 0 

3 #Best Model 88 912 0 
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Table 2.4 The bias, Root Mean Squared Error (RMSE) and Relative Root Mean Squared Error (RRMSE) of the 

parameter estimates for the selected model under three scenarios. 

 Parameters True value RMSE RRMSE Bias 

Scenario 1 

BHM 

𝛼 2 0.14 0.07 0.008 

𝛽 0.025 0.01 0.19 0.001 

𝜎 0.2 0.02 0.1 -0.01 

Scenario 2 

HMSM-2 

𝛼1 7.78 0.38 0.05 0.02 

𝛼2 10.20 0.67 0.07 -0.41 

𝛽1 0.38 0.24 0.63 0.05 

𝛽2 1.54 0.69 0.45 -0.41 

𝜎1 0.31 0.05 0.15 -0.02 

𝜎2 0.40 0.06 0.16 -0.03 

Scenario 3 

HMSM-3 

𝛼1 3.04 0.16 0.05 0.03 

𝛼2 6.35 0.26 0.04 0.003 

𝛼3 7.12 0.69 0.1 0.23 

𝛽1 0.09 0.23 2.66 0.08 

𝛽2 0.93 0.41 0.44 0.05 

𝛽3 1.21 1.9 1.56 0.69 

𝜎1 0.43 0.07 0.17 -0.03 

𝜎2 0.04 0.08 1.87 0.03 

𝜎3 0.75 0.27 0.35 -0.14 
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Table 2.5 The AICc values and parameter estimates of BHM, HMSM-2, and HMSM-3 for 3NO cod. 

 BHM HMSM-2 HMSM-3 

AICc 186.51 150.64 167.27 

𝛼 𝛼 = -1.02 𝛼1 = -1.44 𝛼2 = 0.38 𝛼1 = -1.01 𝛼2 = -0.27 𝛼3 = 0.40 

𝛽 β = 2.16 × 10−10 𝛽1 = 0.19 𝛽2 = 0.07 𝛽1 = 2.57 𝛽2 = 0.76 𝛽3 = 0.08 

𝜎 𝜎 = 1.21 𝜎1 = 0.88 𝜎2 = 0.55 𝜎1 = 0.56 𝜎2 = 0.48 𝜎3 = 0.55 

𝑞𝑖𝑗  NA 𝑞11 = 1 𝑞12 = 2.38 × 10−10 𝑞11 = 0.83 𝑞12 = 0.17 𝑞13 = 2.17 × 10−10 

  𝑞21 = 0.04 𝑞22 = 0.96 𝑞21 = 0.17 𝑞22 =0.83 𝑞23 = 2.23 × 10−12 

    𝑞31  = 1.37 ×

10−10 

𝑞32 =0.04 𝑞33 =0.96 

  



 29 

 

2.8 Figures 
 

 

Figure 2.1 The simulation framework. 
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Figure 2.2 The bias of parameter estimates based on 1000 simulation trials with BHM, HMSM-2, and HMSM-3 for 

scenarios 1, 2 and 3, from top to bottom. 
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Figure 2.3 The regime detection accuracy of HMSM-2 (left column) and HMSM-3 (right column) simulations. Zero 

indicates that the predicted time series of regimes are exactly the same as the true dynamics, and 10 indicates that 

there are 10 years where the regime is mis-identified in one iteration, and so on. The vertical axis shows the count of 

each inaccurate estimate level across the 1000 trials.  
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Figure 2.4 The regime state of each year for the true dynamics (left) and HMSM-2 predictions (right). 
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Figure 2.5 The estimated and true parameter time series for the selected model HMSM-2 and HMSM-3 under 

scenarios 2 and 3 from top to bottom. The solid lines denote true dynamics, and the dashed lines denote estimates. 
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Figure 2.6 The fitted stock-recruitment curves (left column) and the predicted recruitment time series (right column) 

for HMSM-2 and HMSM-3 in one of the 1000 simulations. The solid dots in the left column denote the stock-

recruitment observations, and the solid dots in the right column denote the observed recruitment time series. Regimes 

are denoted with different colors. The estimated BHM model are shown in gray lines. 
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Figure 2.7 The standardized residuals versus year for HMSM-2 (left) and BHM (right). 
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Figure 2.8 The regime state of each year for the true dynamics (left) and HMSM-3 predictions (right). 
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Figure 2.9 The standardized residuals versus year for HMSM-3 fitting (left) and BHM fitting (right). 
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Figure 2.10 (a) The observed recruitment time series of 3NO cod (solid dots) and predicted recruitment for BHM 

(grey) and HMSM-2 (green and orange). The two coloured lines denote the HMSM-2 fit for the two regimes. (b) The 

predicted regime time series of HMSM-2 for 3NO cod. (c) Stock-recruitment relationships of 3NO cod (solid dots) 

and fitted stock-recruitment curves of BHM and HMSM-2.   
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Chapter 3  

Hidden Markov Growth model (HMGM) 

 

3.1 Introduction  
 

Individual growth (i.e. somatic growth) is fundamentally important throughout the whole life 

history of fish species (Huang et al., 2021). As a key factor regulating early life-stage survival, 

growth is highly related to natural mortality, recruitment, and fish productivity (Vert-pre et al., 

2013; Furuichi et al., 2020), and is hence essential for fisheries stock assessment and management 

procedures (Shackell, 1997; Thorson and Minte-Vera, 2016; Frater et al., 2019). There is an 

increasing number of studies supporting that fish somatic growth could also experience regime-

like changes (Echave et al., 2012; Perälä and Kuparinen, 2015). However, no previous works have 

ever attempted to model such abrupt changes in fish growth. The majority of the literature 

accounting for temporal variations in fish somatic growth either relate fish somatic growth to 

environmental variables using regression models (Dzul et al., 2017; Mullowney et al., 2019 

Campana et al. 1995; Kimura 2008; Sigourney et al. 2012) or use the state-space models which 

assume continuous variables (e.g., Stawitz et al., 2015). In this chapter, I am aimed to introduce a 

Hidden Markov Growth Model (HMGM) to account for abrupt changes in fish growth (i.e. 

relationship between body weight and age). The HMGM assumes discrete variables (i.e. 

environmental regimes) and may be better for describing the “discrepancies” between discrete 

regimes. The HMGM combines a hidden Markov model for unobserved environmental regimes 
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and a von Bertalanffy growth model to describe the regime-specific growth curves. I applied the 

maximum likelihood (ML) method and used the efficient algorithm (see Appendix A ) to calculate 

the marginal likelihood with Template Model Builder (TMB) (Kristensen et al., 2020). In the 

following sections, I first describe the structure of the HMGM. I conduct simulation tests to 

evaluate whether the method can correctly identify the underlying regimes and provide precise 

estimates for long-term growth trends. Finally, I apply the method to the annual weight-at-age data 

of an Atlantic cod (Gadus morhua) stock on the southern Grand Bank off Newfoundland, Canada.  

 

3.2 Model structure of HMGM 

The HMGM incorporates a hidden Markov model (Scott, 2002) for the unobserved environmental 

regimes and a von Bertalanffy growth model (VBGM) for regime-specific growth (weight-at-age). 

I treat the unobserved regimes as latent random effects and assume that these environmental 

regimes evolve as a Markov chain; in each regime, fish growth follows a VBGM with regime-

specific model parameters.  

The total number and occurrences of regimes in the environment are all unknown. Let K denote 

the total number of regimes. Let t ∈ {1,2, … , 𝑇} denote the index of year, where 𝑇 is the final year 

in which the time-series of weights-at-age were observed. The regime in year t is denoted by  𝑟𝑡 ∈

{1,2, . . 𝐾}. The regime in year t depends on the regime in year t-1 through 𝑞𝑖𝑗, the probabilities of 

transitions into regime j from regime i; that is,  

𝑞𝑖𝑗 = 𝑝(𝑟𝑡 = 𝑗 | 𝑟𝑡−1 = 𝑖) . 

 

I assume that 𝑞𝑖𝑗 are stationary; that is, they do not vary over time. The 𝑞𝑖𝑗 represent the Markov 

property of the model, namely, the probability distribution of future regimes conditional on both 
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past and present regimes depends only upon the present regime. The notations of all the model 

parameters and variables are given in Table 3.1. 

 

I applied the VBGM defining the relationship between weight (w) and age (a):  

 

𝑤𝑎 =  𝑤∞ { 1 −  𝑒−𝑘(𝑎−𝑡0) }
3

 .  

           (3.1) 

 

When 𝑎 = 0, 

 

𝑤0 =  𝑤∞ { 1 −  𝑒𝑘𝑡0  }3. 

Hence, 

 𝑒𝑘𝑡0 =  1 − (
𝑤0

𝑤∞
)

1

3
, 

              (3.2) 

and Equation (3.1) can also be written 

𝑤𝑎 =  𝑤∞  { 1 − [1 − (
𝑤0

𝑤∞
)

1

3
] 𝑒−𝑘𝑎 }

3

, 

(3.3) 

where 𝑤∞ is asymptotic maximum weight, 𝑘 is growth rate, and 𝑤0 indicates the weight at age 

zero. Here, I use 𝑤0  instead of 𝑡0 for the following reasons. First of all, 𝑡0, namely the age at 

weight 0, is an unrealistic parameter that cannot be measured, whereas 𝑤0 has been well studied 

in the literature as the larvae weight. In this case I can fix 𝑤0 based on the measurements of the 

weight of larvae. Secondly, in general 𝑡0 is a hard parameter to estimate. In order to estimate 𝑡0 
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well, sufficient weight data at age 1 and 2 are required. However, the sampling of fish at age 1 and 

age 2 may be poor in a survey due to the size selectivity of the fishing gear. Insufficient weight 

data at younger ages will lead to unrealistic estimations of  𝑡0. Fixing 𝑤0 is a good solution to this 

𝑡0-estimation issue. Finally, Equation (3.2) indicates that 𝑡0  is highly correlated with k. If the 

growth rate k varies substantially for different regimes then 𝑡0 should also have regime-specific 

parameters, and hence increasing the number of model parameters. In contrast, 𝑤0 can be assumed 

identical for all the regime because 𝑤0 is negligibly small relative to the weight of a mature fish, 

and variation in 𝑤0 has little effect on model fitting. In Appendix J , I provided an example to 

demonstrate that different values of 𝑤0 within a reasonable range have little effect on the model 

performance.  

Given that the variation in weight for some fish populations tends to increase with weight (or 

equivalently age; i.e. Figure 3.1), I took the logarithm of Eq. (3.3) to stabilize the variability of 

data. Taking the logarithm of a response variables is a common method to achieve homogeneity 

of variance. 

E(log(𝑤𝑎)) = Ϝ(𝑎, 𝜃) = log( 𝑤∞ ) + 3 log (1 − [1 − (
𝑤0

𝑤∞
)

1
3

]  𝑒−𝑘𝑎), 

(3.4) 

Eq. (3.4) is the form of VBGM I use, and the parameters are 𝜃 = (𝑤∞, 𝑘).  

 

The data in year t is 𝑦𝑡 = (𝑦𝑡,𝑎=3, 𝑦𝑡,𝑎=4, … , 𝑦𝑡,𝑎=12)′, where 𝑦𝑡,𝑎 is the logarithm of the average 

survey weight at age a. The regime-specific VBGM, conditional on regime  𝑟𝑡 = 𝑗, is given by 

𝑦𝑡,𝑎 = Ϝ(𝑎, 𝜃𝑗) + 𝜀𝑡,  



 43 

where 𝜃𝑗 = ( 𝑤∞𝑗
, 𝑘𝑗) . Here the error term 𝜀𝑡  is modeled as an independent normal random 

variable with mean 0 and standard deviation 𝜎𝑗. 𝜀𝑡 involves both process error (i.e. variations in 

environmental conditions) and the measurement error in data. Here the subscript j indexes the 

regime. Let 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝐾)′, 𝑄 = (𝑞11, … , 𝑞𝐾𝐾)′, and 𝜎 = (𝜎1, … , 𝜎𝐾)′.  is further defined 

as a vector of all the elements of 𝜃, 𝑄 and 𝜎.  

 

The joint likelihood function of 𝑦1:𝑇 and hidden regimes 𝑟1:𝑇 for HMGM is thus given by 

 

𝑝( 𝑦1:𝑇 , 𝑟1:𝑇 |  )   =  𝜋(𝑟1) ∏  𝑝(𝑟𝑡 | 𝑟𝑡−1)𝑇
𝑡=2 ∏  𝑝(𝑦𝑡 | 𝑟𝑡 ,)𝑇

𝑡=1 , 

       (3.5) 

 

I abbreviate {𝑦1, 𝑦2, … , 𝑦𝑇}  and {𝑟1, 𝑟2, … , 𝑟𝑇}  respectively as  𝑦1:𝑇  and 𝑟1:𝑇 . The marginal 

likelihood is evaluated by summing out all the latent random effects 𝑟1:𝑇; that is,  

𝑝(𝑦1:𝑇 | )    = ∑  𝜋(𝑟1) ∏  𝑝(𝑟𝑡 | 𝑟𝑡−1)𝑇
𝑡=2 ∏  𝑝(𝑦𝑡 | 𝑟𝑡 ,)𝑇

𝑡=1𝑟1:𝑇
. 

       (3.6) 

 

Recall from Chapter 2 that the modelling approach provides statistical inference about the 

unknown environmental regimes. The regime for each year is predicted by maximizing their 

conditional distributions given the data. That is,  

𝑝 (𝑟𝑡 = 𝑗 |  𝑦1:𝑇 , ) =
𝑝(𝑟𝑡 = 𝑗,  𝑦1:𝑇 |  )

𝑝(𝑦1:𝑇 | )
, 

where 

𝑝(𝑟𝑡 = 𝑗,  𝑦1:𝑇 |  ) =  ∑  𝑝(𝑟1:(𝑡−1), 𝑟𝑡 = 𝑗 , 𝑟(𝑡+1):𝑇 ,  𝑦1:𝑇 |  )𝑟1:(𝑡−1),𝑟(𝑡+1):𝑇
. 
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The fast evaluation of 𝑝 (𝑟𝑡 = 𝑗 |  𝑦1:𝑇 , ) is presented in Appendix B. 

 

 

3.3 Simulation 
 

I validate the method by first simulating time series of weights-at-age with known patterns of 

regimes. I then test the ability of our method to 1) determine whether there is regime shift in fish 

growth, 2) identify the exact regime for each year, and 3) precisely estimate the regime-specific 

parameters.  

I conducted simulation tests for two scenarios: 1) single regime (no regime shift), and 2) two 

regimes (regime shift; Figure 3.2). The time series of weight-at-age data were simulated for 60 

years, and each scenario is repeated 1000 times.  

I generated time-series of weights-at-age 𝑦𝑡,𝑎 using the re-parametrized VBGM: 

𝑦𝑡,𝑎 = log( 𝑤∞𝑡
 ) + 3 log (1 − [1 − (

𝑤0

 𝑤∞𝑡

)

1

3
]  𝑒−𝑘𝑡𝑎) + 𝜀𝑡, 

 

where age a ranged from 3 to 12 years old and 𝑤0 was fixed at the larvae weight of Atlantic cod 

(Gadus morhua). To be more realistic, I used the weight of the larvae in the later stage where the 

larvae have absorbed all the yolk sac and are about to become juveniles. In this paper 𝑤0 was fixed 

at the value of 0.27 × 10−3 g (Penglase et al., 2013).  

Under scenario 1 with a single regime (i.e. no regime shift), the parameters  𝑤∞𝑡
 , 𝑘𝑡 and 𝜎𝑡 are 

constant (Table 3.2). Under scenario 2 with two regimes, the generated 𝑦𝑡,𝑎 are characterized by 

two underlying regimes with parameters  𝑤∞𝑡
𝜖 { 𝑤∞1

,  𝑤∞2
} , 𝑘𝑡 𝜖 { 𝑘1, 𝑘2 } , and 𝜎𝑡 𝜖 { 𝜎1, 𝜎2 } 
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depending on the regime in year t (Table 3.2). The time series of the latent random effects (i.e. the 

temporal variation of regimes), {𝑟1,  𝑟2, … ,  𝑟𝑇}, are specified to follow a step-wise change among 

two regimes (Figure 3.2). 

I fitted two models to each of the generated data sets, i.e.  a model without regime shift (VBGM), 

and a model with regime shift (HMGM). I compared model performance using the Akaike 

information criterion with a correction for small sample sizes (AICc).  

 

Let n be the number of parameters in the model, and 𝑆 be the sample size (i.e. the total number of 

data points observed). AICc is given by 

 

𝐴𝐼𝐶𝑐 = 2𝑛 − 2 log (𝐿̂Θ) + (2𝑛2 + 2𝑛)/(𝑆 − 𝑛 − 1) 

 

Finally, I evaluated the simulation parameter estimates of the selected model under each scenario 

by root-mean-squared error (RMSE), relative root-mean-squared error (RRMSE), and bias,  

 

𝑅𝑀𝑆𝐸 = √∑ (𝜃̂𝑧 − 𝜃)
21000

𝑧=1

1000
 

 

𝑅𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝜃
 

 

𝑏𝑖𝑎𝑠 =
∑ (𝜃̂𝑧−𝜃)1000

𝑧=1

1000
 , 
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where hat denotes the parameter estimates, and 𝜃 denotes the true parameter values.  

 

 

 

3.4 Case study 

After verifying the ability of our modeling approach to accurately identify regime shifts in 

simulated data, I applied the two models (VBGM and HMGM) to identify potential abrupt shifts 

in growth based on empirical annual weight-at-age data for the Atlantic cod stock on the southern 

Grand Bank (Northwest Atlantic Fisheries Organization (NAFO) Divisions 3NO)  (Rideout et al., 

2018). The beginning-of-year mean weights-at-age data during 1959-2018 and ages 3-12 were 

calculated from commercial catches of cod in Divs. 3NO (Figure 3.1). The overall trend of weights 

at age for the cod stock increased in the mid-1960s and remained high throughout the 1970s and 

1980s, then dramatically decreased in the early 1990s, accompanied by the population collapse. 

The weights at age increased again in early 2000s but declined quickly in the late 2000s and 

remained low until the present (Rideout et al., 2018). The interannual trend of mean weights-at-

age is especially apparent for cod at age 8-12 (Figure 3.10). The stock declined dramatically during 

the mid-1980s and the 2018 estimate of spawner stock biomass is 18,537 t, which is still well 

below the Blim (60,000 t) (Rideout et al., 2018). This stock has been under a fishing moratorium 

since February 1994 and fishing mortality has been declining since 2006. However, the cod stock 

has shown little recovery despite severe restrictions on directed fishing.   

I fitted the VBGM and HMGM to the mean weight-at-age data for the cod stock. The 

starting values of parameters for the VBGM were fixed at 𝑤∞ = 47.76, 𝑘 = 0.065, and 𝜎 =

0.086. For the HMGM, 𝑤∞’s, 𝑘’s, and 𝜎′𝑠 were assigned the same initial values of 100, 0.1, and 
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0.5, respectively. The initial values of the VBGM and HMGM were set randomly. I fixed 𝑤0 at 

the value of 0.27 × 10−3 𝑔, which is the empirical weight of the Atlantic cod (Gadus morhua) 

larvae after 30 days post hatch (Penglase et al., 2013). The initial 2 Χ 2 matrix of 𝑞𝑖𝑗 was assigned 

equal values summing to 1 on each row. The models were compared using AICc and the selected 

model was used to identify abrupt shifts in the growth for 3NO cod. I tried different initial values 

for the HMGM and found that the estimates for 𝑤∞ and 𝑘 are somewhat sensitive to starting values. 

However, the model means predicted by the HMGM were almost the same even with different 

initial values. The estimated parameters and model means for the HMGM with different starting 

values are provided in Appendix I.  

 

3.5 Results 

3.5.1 Simulation results 

 

Results confirmed that fitting the HMGM to the weight-at-age time series data and comparing 

model performance using AICc is an effective and objective way of identifying abrupt shifts in 

weight-and-age relationships. For single regime scenarios (i.e. scenario 1), the VBGM 

outperformed HMGM across almost all 1000 trials, and for 2-regime scenarios (i.e. scenario 2) the 

HMGM outperformed VBGM in almost all the 1000 iterations (Table 3.3). The estimates of 

parameters 𝑤∞, 𝑘, and 𝜎 for the selected VBGM and HMGM were close to the true parameter 

values that were used to simulate the data (Figure 3.3). The relatively poor estimate of 𝑤∞2 could 

be attributed to insufficient weight data at older ages (the simulated age ranged from 3 to 12 years 

old). The precision of parameter estimates for each selected model across two scenarios was 

evaluated by root-mean-squared error (RMSE), relative root-mean-squared error (RRMSE), and 

bias. The RRMSEs and bias of parameters for VBGM were very close to zero, which indicated the 
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high precision of parameter estimates. The parameter estimates for HMGM were also good with 

some exceptions (i.e. the RMSEs of 𝑤∞1, 𝑤∞2 > 1), but the precision was acceptable (Table 3.4). 

Although the bias and RMSEs of the parameter estimates for 𝑤∞1 and 𝑤∞2 were a bit high, the 

HMGM can fit the model mean very well. For both regimes, the simulated model means fell 

between the first and third quartiles of the estimated model means across all ages, indicating the 

good performance of HMGM to predict the model mean (Figure 3.4). The HMGM was effective 

at correctly identifying the true regime for individual years. For the 2-regime scenario, 949 out of 

the 1000 trials accurately predicted the year-specific regime for all of the years in the time series 

(Figure 3.5).  

 

3.5.2 One example of HMGM fit 

 

Taking one of the 1000 trials as an example, the AICc values of HMGM and VBGM were -145.906 

and -29.7973, respectively. The predicted 𝑟𝑡’s of HMGM were the same as the true 𝑟𝑡’s (Figure 

3.6). The parameter estimates of HMGM were close to true parameter values (Figure 3.7). The 

HMGM fits the simulated weight-at-age data better than VBGM (Figure 3.8).  

 

 

3.5.3 Case study results 

Fitting the two models to empirical time-series of average weight-at-age data for cod in Divs. 3NO 

suggested the existence of two distinct growth regimes for this stock. The HMGM outperformed 

VBGM with better fit to data (Figure 3.9a) and lower AICc (Table 3.5). Four regime shifts taking 

place in 1967, 1993, 2001, and 2009 were identified for the cod stock, dividing the time series into 

a favorable regime (regime 2) and an unfavorable regime (regime 1) (Figure 3.9b). Compared to 
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the favorable regime, the unfavorable regime was characterized with lower growth rate k and lower 

asymptotic weight 𝑤∞ (Table 3.5). The two regimes had substantially different growth curves, 

which led to different levels of weight at the same age (Figure 3.9a). The estimated interdecadal 

trend in weights across all ages was consistent with the observed pattern, with weight in a higher 

level during the 1970s, 1980s, and 2000s, and in a lower level in the 1990s, 2010s, and before the 

mid-1960s (Figure 3.10). The standardized residuals for the HMGM by year, age, cohort, and 

predicted log mean weights did not show obvious patterns, and the means of these standardized 

residuals are quite close to zero (Figure 3.11). Furthermore, according to the estimated probability 

of transition from the low growth regime to the high growth regime (𝑞12 = 0.082), I predicted that 

the cod stock was very likely to shift back to the high growth regime with a probability more than 

0.5 within 9 years, and with a probability of 0.95 within 35 years (Table 3.6).  

 

3.6 Discussion  

 

3.6.1 Model somatic growth using HMGM 

The growth of fish is highly variable and remarkably plastic (Jorgensen, 1992; King and Mcfarlane, 

2006a; King et al., 2015). Interannual variations in weight-at-age have been thoroughly 

documented (Krohn, 1997; King and Mcfarlane, 2006a; Mullowney et al., 2019; Mion et al., 2020). 

However, fish growth might change in a dramatic way, instead of changing slowly. I proposed an 

objective and effective way to account for abrupt shifts in fish growth under changing 

environmental regimes. The methodology I proposed was able to correctly identify abrupt shifts 

in fish growth, predict the year-specific regime for all of the years in the time series with high 

precision, and provide good estimates for VonB growth model and especially for the mean weights 

at ages in the data age range. Moreover, the method can be easily extended to multiple HMGM 
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(i.e. three-regime HMGM, and four-regime HMGM) if three or even more different levels of 

weight-at-age in the time series were observed. One thing to be aware of when applying our 

method to empirical data is that the  𝑤∞ and k parameters may not be estimated very well when 

weights at older ages are not available. For example, the weight-at-age data for the cod stock in 

Divs. 3NO is limited at age of 12. The absence of weights at older ages could lead to unreliable 

estimates for the maximum weight 𝑤∞ , and hence imprecise estimates for the growth rate k, 

because k is highly correlated with 𝑤∞. However, simulation tests showed that even the biased 

estimates of 𝑤∞ and k will not affect the model predicted mean weight-at-age, which indicated the 

capability of the method to provide scientific information for fisheries stock assessment and 

management. I describe this part of simulation in Appendix D . 

 

3.6.2 Abrupt shifts in growth of 3NO cod 

 

The weight-at-age of the cod stock on the southern Grand Bank was estimated to alternate between 

low and high levels in the time series of 1959 to 2018, with four abrupt shifts in growth taking 

place in 1967, 1993, 2001, and 2009. Variations in weights at age are generally attributed to 

changes in growth rate attributable to environmental variables (i.e. temperature), food availability, 

size-selective effects of fishing, and to their combinations (Sinclair et al., 2002; Brander, 2007; 

Kuriyama et al., 2016). Many studies suggested that annual variations in weight-at-age of North 

Atlantic cod (Gadus morhua) populations might be largely controlled by water temperature 

(Brander, 1995; Rätz et al., 1999; Sinclair et al., 2002). Our findings are consistent with these 

previous studies, and I conclude that the growth of the cod stock on the southern Grand bank is 

highly correlated with water temperature. The four growth shifts I identified throughout these 
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decades coincided with changes in water temperature on the southern Grand Bank. The 1967 

abrupt shift coincided with the arrival of the maximum temperature in the mid-to-late 1960s 

(Colbourne, 2004), the 1993 shift was concomitant with the extreme cold water temperature in the 

early 1990s, the 2001 shift was concurrent with the recovered warm water temperature in 2000, 

and the 2009 shift coincided with the decreased temperature after a notable 61-year high in 2006 

(Templeman, 2010). There is apparently a positive relationship between the cod growth and water 

temperature on the southern Grand Bank. The cod growth seems to be very vulnerable to variations 

in water temperature and will react immediately once water temperature changes. Although there 

are other factors that are responsible for changes in the growth of 3NO cod, water temperature 

seems to be a key factor causing the observed temporal variation of growth pattern.  

The cod stock was in the low growth regime before the mid-1960s, then suddenly shifted 

to the high growth regime in 1967, concomitant with the maximum water temperature in the mid-

to-late 1960s (Colbourne, 2004). Throughout the 1970s and 1980s, the stock has remained in the 

high growth regime, with higher growth rate and higher weights at age. There was a dramatic 

decline in weights-at-age of the cod stock in 1993. This abrupt shift in cod growth was expected 

as it is well known that there was a large-scale regime shift in the marine ecosystem off 

Newfoundland during the late-1980s and early-1990s (Lilly et al., 2000; Dempsey et al., 2017; 

Buren et al., 2019), with the marine ecosystem shifting to an environmental regime where 

conditions (i.e. temperature, and food availability) are unfavorable for fish populations. Fish 

growth is generally considered to be strongly dependent on temperature, and low temperatures 

could depress growth (Millar et al., 1990; Brander, 1995; Dwyer et al., 2003; Thorsen et al., 2010). 

The ocean temperatures on the southern Grand Bank generally started to decline in 1984 and 

reached the minimum of record since 1950s at the end of 1980s (Templeman, 2010). In addition, 
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capelin off Newfoundland (Mallotus villosus) suffered an order of magnitude decline in biomass 

in the early 1990s (Buren et al., 2014; Buren et al., 2019; Mullowney et al., 2019). While cod diet 

was historically dominated by capelin (Rose and O’Driscoll, 2002), the unavailability of prey 

could directly result in the dramatic decline in cod growth. The marked decline in cod growth in 

1993 could be the consequence of the joint effects of cold water temperature and absence of capelin. 

After the 1993 growth shift, the cod stock has generally remained in the low growth regime, with 

only a brief respite from 2001 to 2008. The brief rebounding of cod growth could be attributed to 

a general warming in oceanographic conditions from 1995 to 2010 (Murphy, 2018). After the mid-

1990s, a slight recovery of water temperatures commenced on the Grand Bank, and water 

temperatures had returned to warmer conditions and are closer to the long term average in 2000 

(Dwyer et al., 2003; Drinkwater, 2005). The ocean temperature in the Grand Bank region 

continues to increase, with a notable 61-year high in 2006 (Templeman, 2010). It is very likely 

that increased water temperature accelerated the growth rate of the cod stock, leading to higher 

weights at age during 2001 and 2008. However, water temperature on the southern Grand Bank 

showed a downward trend after 2006, when temperature cooled but remained above normal from 

2007 to 2011 and decreased significantly in the following four years to below normal in 2015 

(Colbourne et al., 2016). The cooling water temperature after 2006 seems to be the only plausible 

explanation for the sharp decline in weights at age of the cod stock in 2009. The effect of fishing 

mortality on the growth of this stock was weak and not even in the same direction as the changes 

in weight at age. For example, although the cod stock in Divs. 3NO has been under a fishing 

moratorium since February 1994, fishing mortality has not declined until 2006 (PoIr et al., 2010; 

Rideout et al., 2018). The weight at age of 3NO cod increased in 2001 when fishing mortality was 

high and declined in 2009 while fishing mortality was reduced. Hence, I conclude that rather than 
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fishing mortality, environmental forcing such as water temperature and food availability are 

important causes of the abrupt changes in the growth of the cod stock. 

 

 

3.6.3 Is there an evolutionary impact of fishing mortality on fish growth? 

 

Since the regime shift in 2009, despite imposition of severe catch restrictions (PoIr et al., 2010; 

Rideout et al., 2018), the cod stock in Divs. 3NO has remained in the low growth regime and 

showed no appreciable signs of recovery. The probable causes of this are mainly two, one is 

unfavorable environmental conditions, including cold water temperatures and poor feeding 

conditions, and another is the commonly assumed evolutionary impacts of size-selective fishing 

mortality. Interest in the impact of size-selective fishing on the evolution of growth rates is long 

standing (Hilborn and Minte-Vera, 2008).Numerous studies suggested that the cumulative size-

selective mortality will result in long-term changes in population growth characteristics (e.g., 

growth potential 𝑤∞) (Sinclair et al., 2002; Hutchings 2005; Shelton et al., 2006). For example, 

Swain et al. (2007) suggest that high size-selective fishing mortality has caused genetic changes 

in growth of the Atlantic cod stock in the southern Gulf of St Lawrence. Similarly, Sinclair et al. 

(2002) propose that the selective removal of large (or small) individuals would result in the 

surviving population having a lower (or higher) growth potential. On the contrary, others argue 

that environmental rather than evolutionary factors are far more likely to have affected growth of 

cod stocks (Brander, 2007; Hilborn and Minte-Vera, 2008). Here, in the case of 3NO cod, the 

rebound in the cod growth during 2001 and 2008 provided strong evidence that the cod stock in 

Divs. 3NO may not be strongly affected by evolutionary changes in growth despite the intensive 

size-selective fishing throughout the 1970s and 1980s. Moreover, our method predicted that the 

cod stock will return to the high growth regime in nine years with a probability of more than 0.5, 
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and in 35 years with a probability of 0.95. Hence, I concluded that the lack of recovery of the cod 

stock somatic growth rates is more attributable to the adverse environmental conditions than to 

size-selective fishing mortality. Cold water temperature could be one impediment to the recovery 

of the cod growth. Capelin would be another key factor which delayed the cod growth recovery. 

Capelin off Newfoundland waters collapsed in the early-1990s and have showed no evidence for 

recovery over the subsequent three decades (Rose and O’Driscoll, 2002; Buren et al., 2019; Zhang 

et al., 2020a). More than a dozen studies have suggested that interannual variability in capelin 

abundance plays an important role in growth changes in individual cod stocks off Newfoundland 

and Labrador, and cod rebuilding requires capelin (Rose and O’Driscoll, 2002; Brander, 2007). 

The absence of capelin could be a big contributor to the prolonged slow growth for the cod stock. 

Overall, the changes in growth of this stock are more likely to be plastic variations rather than 

evolutionary changes. It is very likely that the cod stock will shift back to the high growth regime 

when the marine ecosystem shifts to a favorable environmental regime.  
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3.7 Tables 
 

Table 3.1 Variables included in the model structure. 

Variable Denotation 

t The index of year, 𝑡 ∈ {1, 2, … , 𝑇} 

T The final year in which average weight-at-age data was observed 

A The maximum age 

K The number of possible regimes 

𝑟𝑡 The regime state in year t, 𝑟𝑡 ∈ {1, 2, … , 𝐾} 

𝑞𝑖𝑗 The probabilities of transitions into regime j from regime i 

𝑤𝑎 The weight at age a 

𝑤0 The weight at age zero 

𝑡0 The age when the weight is zero 

𝜃 𝜃 = (𝑤∞, 𝑘) 

𝜃𝑗 𝜃𝑗 = (𝑤∞𝑗, 𝑘𝑗) 

𝑤∞𝑗 The asymptotic weight in regime 𝑗, 𝑗=1, 2, …K 

𝑘𝑗 The growth rate in regime 𝑗, 𝑗=1, 2, …K 

𝜀𝑡 The process error and the measurement error of 𝑦𝑡,𝑎 

𝜎𝑗 The standard deviation of error term 𝜺𝒕 in regime 𝑗, 𝑗=1, 2, … K 

𝑦𝑡 The average weights-at-age in year t 

𝑦𝑡,𝑎 The logarithm of average weight at age a, in year t 
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Table 3.2 The true values of the parameters 𝑤∞𝑡  , 𝑘𝑡, and 𝜎𝑡 used for data generation for the two scenarios. 

 

 

Scenario 1 Scenario 2 

 𝑤∞𝑡
 15 𝑤∞1 = 10 𝑤∞2 = 15 

𝑘𝑡 0.35 𝑘1 = 0.45 𝑘2 = 0.4 

𝜎𝑡 0.08 𝜎1 = 0.06 𝜎2 = 0.06 
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Table 3.3 The counts of each model selected by AICc for the two simulation scenarios. 

Scenario  VBGM HMGM 

1 #Best Model 999 1 

2 #Best Model 0 998 
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Table 3.4 The bias, Root Mean Squared Error (RMSE) and Relative Root Mean Squared Error (RRMSE) of the 

parameter estimates for the selected model and two scenarios. 

Scenario 1 

VBGM 

 

Scenario 2 

HMGM 

 𝑤∞ 𝑘 𝜎  𝑤∞1 𝑤∞2 𝑘1 𝑘2 𝜎1 𝜎2 

True value 15 0.35 0.08  10 15 0.45 0.40 0.06 0.06 

RMSE 0.16 0.004 0.007  1.91 1.90 0.11 0.14 0.0079 0.0081 

RRMSE 0.011 0.013 0.09  0.19 0.13 0.26 0.36 0.132 0.135 

Bias -0.023 0.0008 -0.001  0.88 -0.80 -0.02 0.07 -0.0013 -0.0018 
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Table 3.5 The AICc and parameter estimates of the VBGM and HMGM for 3NO cod. 

 VBGM  HMGM  

𝐴𝐼𝐶𝑐 -39.68  -84.97  

𝑤∞ 51.90  𝑤∞1 = 42.44 𝑤∞2 = 53.07  

𝑘 0.06  𝑘1 = 0.06 𝑘2 = 0.07  

𝜎 0.17  𝜎1 = 0.08 𝜎2 = 0.09  

𝑞𝑖𝑗 NA  𝑞11 = 0.92 𝑞12 = 0.08  

   𝑞21 = 0.06 𝑞22 = 0.94  
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Table 3.6 The probability of transition from the low growth regime (regime 1) to the high growth regime (regime 2) 

within the following T years. 

Year T 1 2 3 4 5 6 7 8 

Probability 0.082 0.157 0.226 0.290 0.348 0.401 0.450 0.495 

Year T 9 10 11 12 13 14 15 16 

Probability 0.537 0.575 0.609 0.641 0.671 0.698 0.723 0.745 

Year T 17 18 19 20 21 22 23 24 

Probability 0.766 0.785 0.803 0.819 0.834 0.847 0.860 0.871 

Year T 25 26 27 28 29 30 31 32 

Probability 0.882 0.892 0.900 0.909 0.916 0.923 0.929 0.935 

Year T 33 34 35 36 37 38 39 40 

Probability 0.940 0.945 0.950 0.954 0.958 0.961 0.964 0.967 
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3.8 Figures 

 

 

Figure 3.1 The annual weights-at-age of an Atlantic cod stock on the southern Grand Bank, Newfoundland. 

 

  



 62 

 

 

 
Figure 3.2 Simulation framework. 
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Figure 3.3 The bias of parameter estimates in all the 1000 simulation trials with the VBGM and HMGM for scenarios 

1 and 2 from top to bottom. 

  



 64 

 

Figure 3.4 Boxplots are estimated model means versus age across 1000 repetitions, and the two red curves are 

simulated model means for the two regimes. 
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Figure 3.5 The regime detection accuracy of the HMGM-2 simulation. Zero indicates that the predicted time series 

of regimes are exactly the same as the true dynamics, and two indicates that there are two years where the regime is 

mis-identified in one iteration, and so on.  The vertical axis shows the count of each estimate level across 1000 trials. 
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Figure 3.6 The regime state of each year for the true dynamics (left) and the HMGM predictions (right). 
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Figure 3.7 The time series of 𝑤∞, k, and σ for the true dynamics (gray lines) and the HMGM (black lines). The true 

values of 𝑤∞1  and 𝑤∞2  were 10 and 15 respectively, and the estimated 𝑤̂∞1  and 𝑤̂∞2  were 9.31 and 14.03 

respectively. The true values of 𝑘1 and 𝑘2 were 0.45 and 0.4 respectively, and the estimated 𝑘̂1 and 𝑘̂2 were 0.55 and 

0.47 respectively. The true 𝜎1 and 𝜎2 were assigned the same value of 0.06, and the estimated 𝜎̂1 and 𝜎̂2 were 0.055 

and 0.054 respectively.  
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Figure 3.8 The fitted growth curves for the VBGM and HMGM. The gray lines are simulated annual weights-at-age. 

The VBGM fit is shown as a black line. The colored lines denote the HMGM fit in two regimes.  
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Figure 3.9 (a) The annual weight-at-age data of 3NO cod (gray dots) and fitted growth curves of the VBGM and 

HMGM. (b) The predicted regime time series of the HMGM for 3NO cod. 
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Figure 3.10 a) Empirical mean weight at ages 3 to 12 for southern Grand Bank cod (Gadus morhua; 1959–2018). b) 

weight at ages 3 to 12 estimated by the HMGM. The lines are for ages 3 to 12 are from bottom to top. 
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Figure 3.11 The standardized residuals of the HMGM for the 3NO cod. 
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Chapter 4  

Manage abrupt shift in fish population dynamics 

 

4.1 Management implications of abrupt shift in fish population dynamics 

 

Biological reference points are important tools that facilitate assessing the status of fish stocks in 

relation to management objectives (Heino et al., 2013). Reference points are most commonly 

derived from stock-recruitment relationships, yield-per-recruit relationships, or production models 

(Heino et al., 2013), and hence depend on key population traits such as recruitment, growth, and 

mortality. Numerous studies suggest that changes in fish productivity caused by regime shifts, 

intensive fishing, or other environmental fluctuations could cause shifts in management reference 

points (Haltuch et al., 2009; Köster et al., 2009; Heino et al., 2013; Morgan et al., 2014; Zhang et 

al., 2020b). Such shifts, if not accounted for, are likely to lead to reference points that lose their 

intended meaning and utility for fisheries management (Heino et al., 2013).  

The MSY (maximum sustainable yield) based reference points, such as BMSY (biomass 

leading to maximum sustainable yield), FMSY (the rate of fishing mortality leading to maximum 

sustainable yield), and limit reference points Blim (the biomass threshold below which there is an 

increased probability of impaired recruitment) and Flim (the fishing mortality leading to Blim) are 

based on stock-recruitment relationships (Brunel et al., 2010; Maunder, 2012; Zhang et al., 2018). 

If recruitment changes drastically, these reference points that depend on recruitment may change 
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accordingly, and unaccounted shifts will lead to management decisions that become either more 

or less precautious than originally intended. For example, if the management limit BMSY is based 

on a higher recruitment regime, the risk of overfishing will increase when recruitment shifts to a 

lower productivity phase. Conversely, BMSY based on a lower recruitment regime will lead to 

overly cautious harvest at the beginning of a higher recruitment regime, which is safe, but 

potentially costly (Vert-pre et al., 2013).  

Similar to these reference points that depend on a SRR, yield-per-recruit (YPR) reference 

points, including fishing mortality thresholds FMAX (the rate of fishing mortality that maximizes 

yield per recruit) (Cooper, 2006) and F0.1 (the fishing mortality rate corresponding to 10% of the 

slope of the yield-per-recruit curve at the origin) (Gabriel and Mace, 1999) could also change 

drastically for changing growth regimes. YPR reference points are determined by individual fish 

growth rate (Morgan et al., 2014). While there is substantial evidence that fish somatic growth can 

experience abrupt shifts, the use of fishing mortality reference points that do not incorporate abrupt 

shifts in growth is likely to result in unexpected population decline or even collapse when 

productivity is low (Morgan et al., 2014). Taking FMAX as an example, the FMAX estimated from 

YPR analysis based on rapid growth rate could be much higher than the FMAX based on slow 

growth rate. If the fish stock suddenly shifts to a slow-growth regime while the fishing mortality 

rate remains unchanged, it is very likely that the fishing mortality will exceed the “true” FMAX of 

the slow-growth regime, which may lead to growth overfishing (Cooper, 2006). Moreover, 

Morgan et al. (2014) reported that the level of FMAX during low productivity was actually much 

greater than FMSY. They found that when productivity was low, FMSY was zero for 2J3KL and near 

zero for 3NO cod, whereas FMAX was 0.54 and 0.27, respectively. Fishing at FMAX under this 
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condition would lead to unsustainable harvest levels. Given the dramatic impacts that regime shifts 

have on fish productivity, traditional approaches of calculating reference points that assume 

constant population traits cannot maintain sustainable fisheries when productivity is greatly 

reduced. Sustainable management of fisheries resources calls for adjusted reference points that 

take regime shifts in fish productivity into account.  

 

4.2 Regime-specific management strategies and challenges 

The population productivity may have changed systematically and may remain at this level for a 

long time after a regime shift has occurred (Yatsu et al., 2005). In such cases, the stock may be 

better managed at its new level of productivity using corresponding biological reference points 

(Polovina, 2005; Karp et al., 2019). Several recent studies suggest regime-based Harvest Control 

Rules (HCRs) for marine fish stocks that undergo marine ecosystem regime shifts (Freon, 2005; 

King and Mcfarlane, 2006b; Mohn and Chouinard, 2007; Szuwalski and HolloId, 2016), and 

various adaptive management practices have been examined. For example, the application of 

regime-specific harvest rates is one possible approach, in which fisheries managers apply a higher 

exploitation rate during the high productivity regime and a lower exploitation rate during the low 

productivity regime (Rothschild and Shannon, 2004; deYoung et al., 2008).  

Applying regime-based HCRs in regime-based systems could be an effective management 

strategy to incorporate the inferred productivity changes (Szuwalski and Punt, 2013). However, 

despite the considerable attention of regime-based management strategies, the implementation has 

languished. A major impediment to implementing regime-specific HCRs is the difficulty in 

determining whether the population dynamics are truly regime-based. Population processes such 
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as recruitment and growth are highly variable, and the underlying mechanisms behind their 

fluctuations are extremely complicated. It is difficult to determine whether the changes in fish 

productivity is caused by marine ecosystem regime shifts or such changes are just temporal 

variations induced by fishing. Punt et al. (2014) suggest that the regime-based HCRs may be useful 

only when fish population dynamics are truly regime-based and could actually lead to greater risk 

when there are no regime shifts in fish productivity. Szuwalski and Punt (2013) conducted a 

management strategy evaluation for the snow crab (Chionoecetes opilio) fishery in the eastern 

Bering Sea, an ecosystem influenced by regime shifts. They found that the regime-based HCR did 

increase yield in regime-based systems, but slightly decrease yield and actually increase the 

probability of overfishing in non-regime-based systems. A’mar et al. (2009) also reported that 

overfishing of walleye pollock in the Gulf of Alaska actually increased under regime-based HCRs. 

They attributed this to the incorrect detection of regime shifts, which was believed to be caused by 

a high amount of variance in their recruitment data. Consequently, determining whether changes 

in fish productivity are definitely driven by regime shifts rather than temporal fish-induced 

variations is an essential step before the implementation of regime-based HCRs (Szuwalski and 

Punt, 2013; Szuwalski and HolloId, 2016).  

The methodology I proposed in this work could be a useful tool to determine whether the 

population dynamics are truly regime-based because our method can accurately identify the 

environmental regime for each individual year in time series, and hence may improve the 

performance of regime-based HCRs. Another hurdle in implementing regime-based HCRs could 

be the challenge of calculating biological reference points under changing environmental regimes 

because the stock must be projected into the future (Szuwalski and HolloId, 2016). As a reliable 

tool to account for regime shifts in fish productivity, our method has the capability of informing 
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short-to-medium term stock dynamics in the future. Our method can estimate the transition 

probabilities among different productivity regimes, which allows us to project future stock 

dynamics. It should be noted that the transition probability estimated by our method is non-

mechanistic and based purely on historical data, and mechanistic modelling with ecological 

forecast may provide better prediction of future stock dynamics. However, when such mechanistic 

knowledge and ecological data are unavailable or unreliable, our method could be a useful tool to 

inform fisheries managers about potential future stock dynamics. Meanwhile, with the transition 

probability, I will know whether the fish productivity will revert to the previous high or low state 

soon, or the fish productivity will remain at the present state for an extended period of time. This 

may benefit the calculation of appropriate reference points for fisheries management (Szuwalski 

and HolloId, 2016). 

 

 

4.3 Future research 

  
As suggested by King and Mcfarlane (2006b), regime-specific management strategies can be 

useful for ecosystem-based fisheries management, only if the regime shifts can be detected soon 

after they occur. Our method might be useful for identifying abrupt shifts in population dynamics 

and projecting future stock dynamics. However, I need to admit that our method may not be able 

to detect regime shifts immediately after they occur. Regime shifts will not be recognized until 

several years after these regime changes have taken place. The lag between the occurrence and 

detection of regime shifts makes it unrealistic to immediately adjust the management strategy to 

match the new level of stock status, and thus could be a big challenge to the notion of regime-

specific management strategies.  



 77 

Given the fact that regime shifts are not detectable in the year they occurred, it might be 

useful to know how long it will take for regime shifts to be detectable. In future research, I will 

apply retrospective analysis to determine how long after a regime shift that the shift can be detected. 

If our method is able to detect such changes close to the real-year regime shifts occurred, it would 

make management actions more effective by providing a quantitative way to determine whether 

and when regime-specific strategies may be adopted (Rothschild and Shannon, 2004; King and 

Mcfarlane, 2006b; King et al., 2015). Additionally, in future research, I will apply our 

methodology to other collapsed fish stocks (i.e. Canadian cod stocks) to explore potential regime-

like growth or recruitment patterns, and to predict the probability of recovery of these fish stocks 

according to the estimated transition probability, because the probability of recovery is a key 

parameter of interest to fisheries management (Lindegren et al., 2010; Costello et al., 2016; Britten 

et al., 2017), and may help to inform short-to-medium term stock dynamics in the future and affect 

the corresponding fisheries anticipations and management strategies. Moreover, I am also 

interested in applying our methodology to multi-species to explore large-scale regime shift patterns 

in fish populations.  

A limitation of our methodology is that it does not take account of the uncertainties 

associated with the parameters in each regime. I assume that the regime-specific model parameters 

are constant over time. However, it might not be realistic in reality. In future research, I will try to 

include a hierarchical structure on regime-specific parameters to allow for uncertainties in these 

model parameters. For example, I will allow the regime-specific parameters involve as random 

walk processes or auto-correlated (e.g. AR1) processes.  
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4.4 summary 
 

The objective of our work was to introduce a novel methodology for modeling fish population 

dynamics under changing environmental regimes. I used simulations to demonstrate the ability of 

our method to model regime-like changes of SRRs and somatic growth, and then applied the 

method to the cod stock on the southern Grand Bank off Newfoundland, Canada. Although our 

study focusses on abrupt shifts in recruitment and growth, the proposed approach can also be 

applied to detect abrupt shifts in other population dynamics, such as shifts in recruit-per-spawner 

time series (Perälä and Kuparinen, 2015), carrying capacity, and natural mortality, or any other 

key population parameters that may experience regime-like changes. Systematic changes of any 

population traits and ecological conditions could be indicative of abrupt changes in fish population 

dynamics, which if not accounted for, can lead to inaccurate perceptions and predictions regarding 

stock status and ultimately ineffective management decisions (Benson and Trites, 2002; Yatsu et 

al., 2005; Perretti et al., 2017). There is now growing evidence for regime shifts in marine 

ecosystems (Beaugrand, 2004; Wooster and Zhang, 2004; Alheit et al., 2005), calling for 

development of more flexible and adaptive management practices (Hughes et al., 2005; deYoung 

et al., 2008). Meanwhile, more effective analytic tools (e.g., the HMSM), which are useful in 

enhancing our ability to detect, predict and manage regime shifts, are needed to explore the utility 

and effectiveness of potential regime-specific management measures. 
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Appendix A An efficient method for evaluating marginal likelihood 

  
In this efficient method, I conducted the summations in eq. 2.2) year by year as follows. The 

likelihood function is given by summing out all the random effects 𝑟1:𝑇, 

𝑝(𝑦1:𝑇 | ) = ∑  𝜋(𝑟1) ∏  𝑝(𝑟𝑡 | 𝑟𝑡−1)𝑇
𝑡=2 ∏  𝑝(𝑦𝑡 | 𝑟𝑡 ,)𝑇

𝑡=1𝑟1:𝑇
  

                     = ∑  ∑ 𝜋(𝑟1)𝑝(𝑦1 | 𝑟1,)𝑟1𝑟2:𝑇
 ∏  𝑝(𝑟𝑡 | 𝑟𝑡−1)𝑇

𝑡=2  𝑝(𝑦𝑡 | 𝑟𝑡 ,). 

Let Sr1= 𝜋(𝑟1)𝑝(𝑦1 | 𝑟1,). I now make the summation over 𝑟1. The Markov property allows us 

to rearrange the terms involving  𝑟1 as  

𝑝(𝑦1:𝑇 | ) = ∑  ∑ 𝑆𝑟1𝑟1𝑟2: 𝑇  ∏  𝑝(𝑟𝑡 | 𝑟𝑡−1)𝑇
𝑡=2  𝑝(𝑦𝑡 | 𝑟𝑡 ,) 

                      = ∑  { ∑ 𝑆𝑟1𝑟1𝑟2: 𝑇 𝑝(𝑟2 | 𝑟1) } 𝑝(𝑦2 | 𝑟2,) ∏  𝑝(𝑟𝑡 | 𝑟𝑡−1)𝑇
𝑡=3  𝑝(𝑦𝑡 | 𝑟𝑡 ,). 

In this step, the summation in the curly bracket ∑ 𝑆𝑟1 𝑝(𝑟2 | 𝑟1)𝑟1
  finishes the summation over 𝑟1. 

Defining 𝑆𝑟2 = {∑ 𝑆𝑟1 𝑝(𝑟2 | 𝑟1)}𝑝(𝑦2 | 𝑟2,)𝑟1
 and using Markov property again, I can rearrange 

the terms involving 𝑟2 as 

𝑝(𝑦1:𝑇 | ) = ∑  { ∑ 𝑆𝑟2𝑟2𝑟3: 𝑇 𝑝(𝑟3 | 𝑟2) } 𝑝(𝑦3 | 𝑟3,) ∏  𝑝(𝑟𝑡 | 𝑟𝑡−1)𝑇
𝑡=4  𝑝(𝑦𝑡 | 𝑟𝑡 ,). 

The summation in the curly bracket ∑ 𝑆𝑟2 𝑝(𝑟3 | 𝑟2)𝑟2
  finishes the summation over 𝑟2. Based on 

Sr2 , I define Sr3 = { ∑ 𝑆𝑟2 𝑟2
𝑝(𝑟3 | 𝑟2)} 𝑝(𝑦3 | 𝑟3,), and  

𝑝(𝑦1:𝑇 | )    = ∑  { ∑ 𝑆𝑟3𝑟3𝑟4: 𝑇 𝑝(𝑟4 | 𝑟3) } 𝑝(𝑦4 | 𝑟4,) ∏  𝑝(𝑟𝑡 | 𝑟𝑡−1)𝑇
𝑡=5  𝑝(𝑦𝑡 | 𝑟𝑡 ,), 

where the summation in the curly bracket finishes the summation over 𝑟3 . This procedure 

continues until summing out all the T random effects.  
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Appendix B Efficient prediction of the regime probabilities 
 

For the conditional distribution of 𝑟𝑡 = 𝑗 given the data, 

𝑝 (𝑟𝑡 = 𝑗 |  𝑦1:𝑇 , ) =
𝑝(𝑟𝑡 = 𝑗,  𝑦1:𝑇 |  )

𝑝(𝑦1:𝑇 | )
. 

The denominator is just the marginal likelihood, which I have evaluated efficiently in Appendix 

A. Therefore, here I just discuss the calculation of the numerator. 

𝑝(𝑟1:(𝑡−1), 𝑟𝑡 = 𝑗 , 𝑟(𝑡+1):𝑇 ,  𝑦1:𝑇 |  ) = 𝜋(𝑟1)𝑝(𝑦1 | 𝑟1,) ×  𝑝(𝑟2 | 𝑟1)𝑝(𝑦2 | 𝑟2,) × 

        … 𝑝(𝑟𝑡−1 | 𝑟𝑡−2)𝑝(𝑦𝑡−1 | 𝑟𝑡−1,) × 𝑝(𝑟𝑡 = 𝑗 | 𝑟𝑡−1)𝑝(𝑦𝑡 | 𝑟𝑡 ,) ×  

  𝑝(𝑟𝑡+1 | 𝑟𝑡 = 𝑗 )𝑝(𝑦𝑡+1 | 𝑟𝑡+1 ,) ×… × 𝑝(𝑟𝑇 | 𝑟𝑇−1)𝑝(𝑦𝑇 | 𝑟𝑇 ,) 

                                  = 𝑝( 𝑟1:(𝑡−1), 𝑦1:(𝑡−1), 𝑟𝑡 = j | ) × 𝑝(𝑦𝑡 | 𝑟𝑡 ,) × 𝑝(𝑟𝑡 = j, 𝑟(𝑡+1):𝑇 ,

𝑦(𝑡+1):𝑇 , | ), 

where 

𝑝(  𝑟1:(𝑡−1), 𝑦1:(𝑡−1), 𝑟𝑡 = j| ) =  𝜋(𝑟1)𝑝(𝑦1 | 𝑟1,) ×  𝑝(𝑟2 | 𝑟1)𝑝(𝑦2 | 𝑟2,) × 

        … 𝑝(𝑟𝑡−1 | 𝑟𝑡−2)𝑝(𝑦𝑡−1 | 𝑟𝑡−1,) × 𝑝(𝑟𝑡 = 𝑗 | 𝑟𝑡−1)  

and 

𝑝(𝑟𝑡 = j, 𝑟(𝑡+1):𝑇 , 𝑦(𝑡+1):𝑇 , | ) =  𝑝(𝑟𝑡+1 | 𝑟𝑡 = 𝑗 )𝑝(𝑦𝑡+1 | 𝑟𝑡+1 ,) × …  ×

𝑝(𝑟𝑇 | 𝑟𝑇−1)𝑝(𝑦𝑇 | 𝑟𝑇 ,). 

𝑝(𝑟𝑡 = 𝑗,  𝑦1:𝑇 |  ) =  ∑  𝑝(𝑟1:(𝑡−1), 𝑟𝑡 = 𝑗 , 𝑟(𝑡+1):𝑇 ,  𝑦1:𝑇 |  )𝑟1:(𝑡−1),𝑟(𝑡+1):𝑇
 

= {∑ 𝑝( 𝑟1:(𝑡−1), 𝑦1:(𝑡−1), 𝑟𝑡 = j | )𝑟1:(𝑡−1)
} × 𝑝(𝑦𝑡 | 𝑟𝑡 ,) × {∑ 𝑝(𝑟𝑡 =𝑟(𝑡+1):𝑇

j, 𝑟(𝑡+1):𝑇 , 𝑦(𝑡+1):𝑇 , | )}  

The two summations in the curly brackets can be evaluated efficiently with the same methods 

presented in Appendix A. 
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Appendix C The method of setting true regime-specific parameters 

{𝜶, 𝜷, 𝝈}for HMSM simulation tests 
 

Under scenario 2 with two regimes, the regime-specific parameters {𝛼1, 𝛼2}, {𝛽1, 𝛽2}, and {𝜎1, 

𝜎2} were derived from the empirical SRR data of the golden redfish stock from ICES (International 

Council for the Exploration of the Sea) subareas V, VI, XII, and XIV (Iceland and Faroes grounds, 

west of Scotland, North of Azores, East of Greenland). The SR data of the golden redfish stock 

were fitted to BHM, HMSM-2, and HMSM-3, and then I compared their model performance using 

AICc. The results indicated that the HMSM-2 had the lowest AICc, outperforming the other two 

models (Table 1). I applied the estimated regime-specific parameters of HMSM-2 to the data 

generation under the simulation scenario 2.  

 

Table 1. The AICc values and estimated parameters of BHM, HMSM-2, and HMSM-3 for the golden redfish stock. 

 BHM HMSM-2 HMSM-3 

AICc 97.61 

 

94.57 

 

127.43 

 

𝜶 α = 7.39 

 

α1 = 7.78 

 

α2 = 10.20 

 

𝛼1 = 5.16 

 

𝛼2 = 7.78 

 

𝛼3 = 10.20 

 

𝜷 β =0.12 

 

β1 = 0.38 

 

β2 = 1.54 

 

𝛽1 = 0.53 

 

𝛽2 = 0.38 

 

𝛽3 = 1.54 

 

𝝈 σ = 0.65 

 

σ1 = 0.31 

 

σ2 = 0.40 

 

𝜎1 = 0.41 

 

𝜎2 = 0.31 

 

𝜎3 = 0.40 

 

 

Under scenario 3 with three regimes, the regime-specific parameters {𝛼1, 𝛼2, 𝛼3}, {𝛽1, 𝛽2, 𝛽3}, and 

{𝜎1, 𝜎2, 𝜎3} were derived from the empirical data of Acadian redfish from Gulf of Maine / Georges 

Bank in USA. Similar to the steps in scenario 2, I applied BHM, HMSM-2, and HMSM-3 to the 

SR data of the Acadian redfish from Gulf of Maine / Georges Bank, and compared AICc values. 
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According to the results, the HMSM-3 outperformed BHM and HMSM-2 (Table 2). Thus, the 

estimated regime-specific parameters for HMSM-3 were used for the data generation under 

scenario 3.  

 

Table 2. The AICcs value and estimated parameters of BHM, HMSM-2, and HMSM-3 for the Acadian redfish from Gulf of 

Maine/Georges Bank. 
 BHM HMSM-2 HMSM-3 

AICc 323.94 

 

219.22 

 

43.96 

 

𝜶 α = 6.57 

 

 

α1 = 3.04 

 

 

α2 = 7.44 

 

 

𝛼1 = 3.04 

 

 

𝛼2 = 6.35 

 

 

𝛼3 = 7.12 

 

 

𝜷 β = 1.49 

 

 

β1 = 0.09 

 

 

β2 = 2.84 

 

 

𝛽1 = 0.09 

 

 

𝛽2 = 0.93 

 

 

𝛽3 = 1.21 

 

 

𝝈 σ = 1.185 

 

 

σ1 = 0.43 

 

 

σ2 = 0.55 

 

 

𝜎1 = 0.43 

 

 

𝜎2 = 0.04 

 

 

𝜎3 = 0.75 
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Appendix D Simulation tests in the absence of weights at older ages 

I first fitted the annual weight-at-age data of the cod stock in Divs. 3NO using HMGM assuming 

two regimes. Then I used the estimated transition probabilities and regime-specific parameters 

{𝑤∞1, 𝑤∞2}, {𝑘1, 𝑘2}, and {𝜎1, 𝜎2} for HMGM to simulate weight-at-age dynamics for simulation 

tests. I conducted simulation tests under two scenarios, i.e.  single regime (no regime shift), and 

two regimes (regime shift). The parameters used for data generation are listed in Table 3. The time 

series of weight-at-age data were simulated for 60 years, and each scenario is repeated 1000 times.  

I generated the time-series of weights-at-age 𝑦𝑡,𝑎 using the re-parametrized VBGM: 

𝑦𝑡,𝑎 = log( 𝑤∞𝑡
 ) + 3 log (1 − [1 − (

𝑤0

 𝑤∞𝑡

)

1

3
]  𝑒−𝑘𝑡𝑎) + 𝜀𝑡, 

 

where age a was simulated from 3 to 12 years old. 𝑤0 was fixed at the larvae weight of Atlantic 

cod (Gadus morhua). To be more realistic, I used the weight of the larvae in the later stage where 

the larvae have absorbed all the yolk sac and are about to become juveniles. In this paper 𝑤0 was 

fixed at the value of 0.27 × 10−3 kg (Penglase et al., 2013).  

 

Under two regimes, the generated 𝑦𝑡,𝑎  were characterized by two underlying regimes with 

parameters 𝑤∞𝑡
𝜖 { 𝑤∞1

,  𝑤∞2
}, 𝑘𝑡  𝜖 { 𝑘1, 𝑘2 }, and 𝜎𝑡 𝜖 { 𝜎1, 𝜎2 } depending on the regime in year 

t (Table 3). The time series of the latent random effects (i.e. the temporal variation of regimes), 

{𝑟1,  𝑟2, … ,  𝑟𝑇}, are specified to follow a step-wise change among two regimes (Figure 1). I fitted 
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two models to each of the generated data sets, i.e.  model without regime shift (VBGM), and model 

with regime shift (HMGM). I compared model performance using AICc. 

 

The simulated weight-at-age data is limited at the age of 12 (Figure 2). The absence of larger 

weights could lead to unreliable estimates for the maximum weight 𝑤∞ , and growth rate k. 

According to simulation results, the estimates of parameters 𝑤∞ were biased (Figure 3), and thus 

the estimates for 𝑘 were unreliable either. However, despite the biased parameter estimates for 

𝑤∞1 and 𝑤∞2, HMGM can correctly identify regime shifts, accurately predict the year-specific 

regime, and fit the model mean very well. Under 2-regime scenario, the HMGM outperformed 

VBGM in 998 out of 1000 iterations. The HMGM was effective at correctly identifying the true 

regime for individual years; 721 out of the 1000 trials accurately predicted the year-specific regime 

for all of the years in the time series (Figure 4). For both regimes, the simulated model means fell 

between the first and third quartiles of the estimated model means across all ages, indicating the 

good performance of HMGM to predict the model mean (Figure 5).  

 

Table 3. The values of the parameters used for data generation under the two scenarios. 

 

 

Scenario 1 Scenario 2 

 𝑤∞𝑡 15 𝑤∞1 = 42.44 𝑤∞2 = 53.07 

𝑘𝑡 0.35 𝑘1 = 0.06 𝑘2 = 0.07 

𝜎𝑡 0.08 𝜎1 = 0.08 𝜎2 = 0.09 

𝑞𝑖𝑗 NA 𝑞11 = 0.92 𝑞12 = 0.08  

  𝑞21 = 0.06 𝑞22 = 0.94  
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Figure 1. The simulated regime for each year.  
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Figure 2. One example of simulated weight-at-age data.  
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Figure 3. The bias of parameter estimates in all the 1000 simulation trials for HMGM.   
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Figure 4. The display of the regime detection accuracy of HMGM simulation. The level zero 

indicates that the predicted time series of regimes are exactly the same as the true dynamics, and 

the level two indicates that there are two regime estimates that are different from the true regime 

time series in one iteration, and so on. The vertical axis shows the count of each inaccurate estimate 

level across 1000 trials.  
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Figure 5. Boxplots are estimated model means via ages across 1000 repetitions, and the two red 

curves are simulated model means for two regimes.   
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Appendix E The comparison of brute-force method and the efficient 

algorithm 
 

Coding: 

library(distr) 

library(TMB) 

library(FSA) 

sample_size<-6 

compile("hidden_Markov.cpp") 

dyn.load( "hidden_Markov" ) 

compile("hidden_Markov_brutal_force.cpp") 

dyn.load( "hidden_Markov_brutal_force" ) 

set.seed(888) 

sigma = c(1,sqrt(2),sqrt(3),2) 

alpha = 1:4 

beta = c(1,4,7,10) 

pi1 = rep(1/4,4) 

qij = matrix(c(0.7,0.3,0.15,0.1,0.2,0.4,0.15,0.2,0.1,0.1,0.2,0.2,0,0.2,0.5,0.5), nrow=4,ncol=4) 

yt = rep(0,sample_size) 

rt_save = rep(0,sample_size) 

st = runif(sample_size, min = 0, max = 30) 

rt = rmultinom(1, 1, pi1) 

rt = which(rt==1) 

f_now = alpha[rt] - beta[rt]*st[1] 

yt[1] = rnorm(1,f_now,sigma[rt]) 

rt_save[1] = rt 

for(i in 2:sample_size){ 

rt = rmultinom(1, 1, qij[rt,]) 

rt = which(rt==1) 

f_now = alpha[rt] - beta[rt]*st[i] 

yt[i] = rnorm(1,f_now,sigma[rt]) 

rt_save[i] = rt 

} 

plot(st,yt) 

 

      k_regime = 4 

 

       tmb.data = list( 

          yt = yt, 

          st = st 

        ) 
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        parameters <- list(  

          alpha = c(0.5,0.8,1,2), 

          lbeta = c(1,1,1,1), 

          lsigma = rep(log(1),k_regime), 

          pi1_tran = rep(0,k_regime-1), 

          qij_tran = matrix(0,nrow=k_regime,ncol=k_regime-1)           

        )  

error_r<-try((obj< 

MakeADFun(tmb.data,parameters,DLL="hidden_Markov",inner.control=list(maxit=50000,trace

=F)) ),silent=TRUE ) 

         

obj$env$tracemgc <- FALSE 

         

 obj$fn(obj$par) 

         

 error_r<-try((obj_brutal<- 

MakeADFun(tmb.data,parameters,DLL="hidden_Markov_brutal_force",inner.control=list(maxit

=50000,trace=F)) ),silent=TRUE ) 

  

obj_brutal$env$tracemgc <- FALSE 

  

 obj_brutal$fn(obj_brutal$par)  

 

    

         

         

      

results:     

 

The brute-force method and the efficient algorithm gave exactly the same marginal likelihood 

evaluations, which was 1157.176.         
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Appendix F Template Model Builder (TMB) code for hidden-Markov Stock-

recruit Model (HMSM) 
 

 

#include <TMB.hpp>  

#include <iostream> 

 

template<class Type> 

vector<Type> segment_1(vector<Type> yt, vector<Type> st, matrix<Type> qij,vector<Type> 

pi1,vector<Type> alpha,vector<Type> beta,vector<Type> sigma,int t){ 

  int k_regime = beta.size();    

  Type small = pow(10,-300);  

 

      vector<Type> sr = log(pi1 + small); 

  for(int j = 0;j < k_regime;++j){ 

     Type f_now = alpha(j) - beta(j)*st(0); 

     sr(j) += dnorm(yt(0), f_now, sigma(j),true); 

  } 

 

  for(int i = 1;i <= t;++i){ 

      

     vector<Type> sr_new = sr; 

     for(int j = 0;j < k_regime;++j){ 

         sr_new(j) = sr(0) +qij(0,j);  

         for(int jj = 1;jj < k_regime;++jj){   

            Type temp = sr(jj) +qij(jj,j); 

            sr_new(j) =  logspace_add(sr_new(j),temp); 

         } 

     } 

 

     sr = sr_new; 

 

     for(int j = 0;j < k_regime;++j){ 

        Type f_now = alpha(j) - beta(j)*st(i); 

        sr(j) += dnorm(yt(i), f_now, sigma(j),true); 

     } 

 

  }  

 

  return sr; 

} 

 

template<class Type> 
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Type segment_2(vector<Type> yt, vector<Type> st, matrix<Type> qij,vector<Type> 

pi1,vector<Type> alpha,vector<Type> beta,vector<Type> sigma,int rt,int t){ 

  int k_regime = beta.size();    

  int n = yt.size();   

 

  vector<Type> sr = qij.row(rt); 

  for(int j = 0;j < k_regime;++j){ 

     Type f_now = alpha(j) - beta(j)*st(t+1); 

     sr(j) += dnorm(yt(t+1), f_now, sigma(j),true); 

  } 

 

  for(int i = t+2;i < n;++i){ 

      

     vector<Type> sr_new = sr; 

     for(int j = 0;j < k_regime;++j){ 

         sr_new(j) = sr(0) +qij(0,j);  

         for(int jj = 1;jj < k_regime;++jj){   

            Type temp = sr(jj) +qij(jj,j); 

            sr_new(j) =  logspace_add(sr_new(j),temp); 

         } 

     } 

 

     sr = sr_new; 

 

     for(int j = 0;j < k_regime;++j){ 

        Type f_now = alpha(j) - beta(j)*st(i); 

        sr(j) += dnorm(yt(i), f_now, sigma(j),true); 

     } 

 

  }  

 

  Type seg2 = sr(0);  

  for(int j = 1;j < k_regime;++j){ 

     seg2 = logspace_add(seg2,sr(j)); 

  } 

 

  return seg2; 

} 

 

//main ////////////////////////////////////////////// 

 

template<class Type> 

  Type objective_function<Type>::operator() () 

{   

   

  DATA_VECTOR(yt);   
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  DATA_VECTOR(st); 

  DATA_SCALAR(alpha_u); 

  DATA_SCALAR(alpha_l); 

  DATA_SCALAR(beta_u); 

  DATA_SCALAR(sigma_u); 

   

  PARAMETER_VECTOR(lalpha);   

  PARAMETER_VECTOR(lbeta); 

  PARAMETER_VECTOR(lsigma); 

  PARAMETER_VECTOR(pi1_tran); 

  PARAMETER_MATRIX(qij_tran); 

   

 

  int k_regime = lbeta.size();    

 

//  vector<Type> alpha = alpha_tr; 

//  for(int i = 1;i < k_regime;++i){ 

//   alpha(i) = alpha(i-1) + exp(alpha_tr(i));   

//  } 

 

  vector<Type> beta = beta_u/(1+exp(-lbeta));// when lbeta is negative infinity, beta=0; when lbeta 

is positive infinity, beta=beta_u 

 

  vector<Type> alpha(k_regime); 

  alpha(0) = (alpha_u-alpha_l)/(1+exp(-lalpha(0)))+alpha_l; 

  for(int i = 1;i < k_regime;++i){ 

    alpha(i) = alpha(i-1) + (alpha_u-alpha(i-1))/(1+exp(-lalpha(i)));   

  } // alpha(1) from alpha(0) to alpha_u 

   

  vector<Type> sigma = sigma_u/(1+exp(-lsigma)); 

 

  vector<Type> pi1(k_regime); 

 

  for(int i = 0;i < k_regime-1;++i){ 

    pi1(i) = exp(pi1_tran(i)); 

  }  

  pi1(k_regime-1) = 1; 

  pi1 = pi1/(pi1.sum()); 

 

  Type small = pow(10,-300);  

 

  matrix<Type> qij(k_regime,k_regime); 

  for(int i = 0;i < k_regime;++i){ 

    for(int j = 0;j < k_regime-1;++j){ 

      qij(i,j) = exp(qij_tran(i,j)); 

    } 
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    qij(i,k_regime-1) = 1; 

    vector<Type> qij_row = qij.row(i); 

    Type row_sum = qij_row.sum(); 

    for(int j = 0;j < k_regime;++j){ 

      qij(i,j) = qij(i,j)/row_sum; 

      qij(i,j) = log(qij(i,j)+small); 

    } 

  }  

 int n = yt.size();   

vector<Type> sr = segment_1(yt, st, qij,pi1,alpha,beta,sigma,n-1); 

  Type nll = sr(0);  

  for(int j = 1;j < k_regime;++j){ 

     nll = logspace_add(nll,sr(j)); 

  } 

  nll = -nll; 

// predict r_t /////////////////////////////////// 

 

  matrix<Type> r_pred(k_regime,n); 

 

  for(int i = 0;i < n-1;++i){ 

     sr = segment_1(yt, st, qij,pi1,alpha,beta,sigma,i);     

     for(int j = 0;j < k_regime;++j){ 

         Type tempt = sr(j) + segment_2(yt, st, qij,pi1,alpha,beta,sigma,j,i) + nll; 

         r_pred(j,i) = exp(tempt); 

     } 
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  }  

 

  sr = segment_1(yt, st, qij,pi1,alpha,beta,sigma,n-1);     

  for(int j = 0;j < k_regime;++j){ 

      Type tempt = sr(j) + nll; 

      r_pred(j,n-1) = exp(tempt); 

  } 

  qij = exp(qij.array()); 

  REPORT(beta);      

  REPORT(alpha);   

  REPORT(sigma);              

  REPORT(pi1);              

  REPORT(qij);           

  REPORT(r_pred);      

   

  ADREPORT(alpha);   

  ADREPORT(beta);   

  ADREPORT(sigma);    

  ADREPORT(pi1);              

  ADREPORT(qij);           

   

  return nll; 

  } 
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Appendix G Template Model Builder (TMB) code for hidden-Markov Growth 

Model (HMGM) 
 

#include <TMB.hpp>  

#include <iostream> 

 

template<class Type> 

vector<Type> segment_1(matrix<Type> yt,int n, vector<Type> st, matrix<Type> 

qij,vector<Type> pi1,vector<Type> alpha,Type w0, vector<Type> beta,vector<Type> sigma,int 

t){ 

  int k_regime = beta.size();    

  Type small = pow(10,-300);  

 

      vector<Type> sr = log(pi1 + small); 

  for(int j = 0;j < k_regime;++j){ 

     vector<Type> f_now = log(alpha(j)) + 3*log(1 - ( 1-pow(w0/alpha(j),Type(1)/Type(3)) )*exp(-

beta(j)*st) ); 

//     f_now = exp(f_now); 

     vector<Type> yt_now = yt.row(0); 

     yt_now = yt_now - f_now; 

     sr(j) += dnorm(yt_now.mean(), Type(0), sigma(j),true); 

  } 

 

  for(int i = 1;i <= t;++i){ 

      

     vector<Type> sr_new = sr; 

     for(int j = 0;j < k_regime;++j){ 

         sr_new(j) = sr(0) +qij(0,j);  

         for(int jj = 1;jj < k_regime;++jj){   

            Type temp = sr(jj) +qij(jj,j); 

            sr_new(j) =  logspace_add(sr_new(j),temp); 

         } 

     } 

 

     sr = sr_new; 

 

     for(int j = 0;j < k_regime;++j){ 

        vector<Type> f_now = log(alpha(j)) +3*log(1-(1-pow(w0/alpha(j),Type(1)/Type(3)) )*exp(-

beta(j)*st) ); 

//        f_now = exp(f_now); 

        vector<Type> yt_now = yt.row(i); 

        yt_now = yt_now - f_now; 

        sr(j) += dnorm(yt_now.mean(), Type(0), sigma(j),true); 

     } 
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  }  

 

  return sr; 

} 

 

template<class Type> 

Type segment_2(matrix<Type> yt,int n, vector<Type> st, matrix<Type> qij,vector<Type> 

pi1,vector<Type> alpha,Type w0, vector<Type> beta,vector<Type> sigma,int rt,int t){ 

  int k_regime = beta.size();    

//  int n = yt.array().rows();   

 

  vector<Type> sr = qij.row(rt); 

  for(int j = 0;j < k_regime;++j){ 

     vector<Type> f_now = log(alpha(j)) + 3*log(1 - ( 1-pow(w0/alpha(j),Type(1)/Type(3)) )*exp(-

beta(j)*st) ); 

//     f_now = exp(f_now); 

     vector<Type> yt_now = yt.row(t+1); 

     yt_now = yt_now - f_now; 

     sr(j) += dnorm(yt_now.mean(), Type(0), sigma(j),true); 

  } 

 

  for(int i = t+2;i < n;++i){ 

      

     vector<Type> sr_new = sr; 

     for(int j = 0;j < k_regime;++j){ 

         sr_new(j) = sr(0) +qij(0,j);  

         for(int jj = 1;jj < k_regime;++jj){   

            Type temp = sr(jj) +qij(jj,j); 

            sr_new(j) =  logspace_add(sr_new(j),temp); 

         } 

     } 

 

     sr = sr_new; 

 

     for(int j = 0;j < k_regime;++j){ 

        vector<Type> f_now = log(alpha(j))+3*log(1-( 1-pow(w0/alpha(j),Type(1)/Type(3)) )*exp(-

beta(j)*st) ); 

//        f_now = exp(f_now); 

        vector<Type> yt_now = yt.row(i); 

        yt_now = yt_now - f_now; 

        sr(j) += dnorm(yt_now.mean(), Type(0), sigma(j),true); 

     } 

 

  }  
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  Type seg2 = sr(0);  

  for(int j = 1;j < k_regime;++j){ 

     seg2 = logspace_add(seg2,sr(j)); 

  } 

 

  return seg2; 

} 

 

//main ////////////////////////////////////////////// 

 

template<class Type> 

  Type objective_function<Type>::operator() () 

{   

   

  DATA_MATRIX(yt);   

  DATA_INTEGER(nobs); 

  DATA_VECTOR(st); 

  DATA_SCALAR(alpha_u); 

  DATA_SCALAR(alpha_l); 

  DATA_SCALAR(beta_u); 

  DATA_SCALAR(sigma_u); 

  DATA_SCALAR(w0); 

  DATA_VECTOR(pi1); 

   

  PARAMETER_VECTOR(lalpha);   

//  PARAMETER(log_w0); 

  PARAMETER_VECTOR(lbeta); 

  PARAMETER_VECTOR(lsigma); 

//  PARAMETER_VECTOR(pi1_tran); 

  PARAMETER_MATRIX(qij_tran); 

   

 

  int k_regime = lbeta.size();    

 

  vector<Type> alpha = exp(lalpha); 

//  alpha(0) = exp(lalpha(0)); 

//  for(int i = 1;i < k_regime;++i){ 

//    alpha(i) = alpha(i-1) + exp(lalpha(i));   

//  }  

 

//  Type w0 = exp(log_w0); 

 

  vector<Type> beta = exp(lbeta);  // beta_u/(1+exp(-lbeta));// when lbeta is negative infinity, 

beta=0; when lbeta is positive infinity, beta=beta_u 

 

//  vector<Type> alpha(k_regime); 
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//  alpha(0) = (alpha_u-alpha_l)/(1+exp(-lalpha(0)))+alpha_l; 

//  for(int i = 1;i < k_regime;++i){ 

//    alpha(i) = alpha(i-1) + (alpha_u-alpha(i-1))/(1+exp(-lalpha(i)));   

//  } // alpha(1) from alpha(0) to alpha_u 

   

  vector<Type> sigma = exp(lsigma);  //sigma_u/(1+exp(-lsigma)); 

 

//  vector<Type> pi1(k_regime); 

 

//  for(int i = 0;i < k_regime-1;++i){ 

//    pi1(i) = exp(pi1_tran(i)); 

//  }  

//  pi1(k_regime-1) = 1; 

//  pi1 = pi1/(pi1.sum()); 

 

  Type small = pow(10,-300);  

 

  matrix<Type> qij(k_regime,k_regime); 

  for(int i = 0;i < k_regime;++i){ 

    for(int j = 0;j < k_regime-1;++j){ 

      qij(i,j) = exp(qij_tran(i,j)); 

    } 

    qij(i,k_regime-1) = 1; 

    vector<Type> qij_row = qij.row(i); 

    Type row_sum = qij_row.sum(); 

    for(int j = 0;j < k_regime;++j){ 

      qij(i,j) = qij(i,j)/row_sum; 

      qij(i,j) = log(qij(i,j)+small); 

    } 

  }  

 

  int n = nobs;   

 

  vector<Type> sr = segment_1(yt,n, st, qij,pi1,alpha,w0,beta,sigma,n-1); 

 

  Type nll = sr(0);  

  for(int j = 1;j < k_regime;++j){ 

     nll = logspace_add(nll,sr(j)); 

  } 

 

  nll = -nll; 

 

// predict r_t /////////////////////////////////// 

 

  matrix<Type> r_pred(k_regime,n); 
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  for(int i = 0;i < n-1;++i){ 

     sr = segment_1(yt,n, st, qij,pi1,alpha,w0,beta,sigma,i);     

     for(int j = 0;j < k_regime;++j){ 

         Type tempt = sr(j) + segment_2(yt,n, st, qij,pi1,alpha,w0,beta,sigma,j,i) + nll; 

         r_pred(j,i) = exp(tempt); 

     } 

  }  

 

  sr = segment_1(yt,n, st, qij,pi1,alpha,w0,beta,sigma,n-1);     

  for(int j = 0;j < k_regime;++j){ 

      Type tempt = sr(j) + nll; 

      r_pred(j,n-1) = exp(tempt); 

  } 

 

  qij = exp(qij.array()); 

   

  REPORT(beta);      

  REPORT(alpha);   

  REPORT(w0);   

  REPORT(sigma);              

  REPORT(pi1);              

  REPORT(qij);           

  REPORT(r_pred);      

   

  ADREPORT(alpha);   

  ADREPORT(w0);   

  ADREPORT(beta);   

  ADREPORT(sigma);    

  ADREPORT(pi1);              

  ADREPORT(qij);           

   

  return nll; 

  } 

 

  



 118 

 

Appendix H Different initial values and their corresponding parameter 

estimates for the HMSM-2 
 

I conducted several trials of fitting the SR data of 3NO cod using the BHM, HMSM-2, and HMSM-

3. In each trial, BHM, HMSM-2, and HMSM-3 were assigned different initial values. Results 

showed that HMSM-2 outperformed BHM and HMSM-3 in all the trials, with the lowest AICc 

(Table 1), and the parameter estimates for HMSM-2 were not sensitive to starting values (Table 

2).  

 

Table 1. The AICc values of the three models in four trials. 

Trial   HMSM-2 HMSM-3 BHM 

1 AICc 150.64 159.43 186.51 

2 AICc 150.64 159.43 186.51 

3 AICc 150.64 159.43 186.51 

4 AICc 150.64 159.43 186.51 
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Table 2. The starting values and parameter estimates for the HMSM-2 in four trials. 

Trial  Parameters Starting values Estimates  

 𝛼1 1 -1.44 

 𝛼2 1.5 0.38 

Trial #1 𝛽1 0.6 0.19 

 𝛽2 0.6 0.07 

 𝜎1 0.5 0.88 

 𝜎2 0.5 0.55 

 𝑞11 0.5 1 

 𝑞12 0.5 1.74 × 10−10 

 𝑞21 0.5 0.04 

 𝑞22 0.5 0.96 

    

Trial #2 𝛼1 0.1 -1.44 

 𝛼2 0.8 0.38 

 𝛽1  1 0.19 

 𝛽2  1 0.07 

 𝜎1  1 0.88 

 𝜎2  1 0.55 

 𝑞11 0.5 1 

 𝑞12 0.5 1.38 × 10−10 

 𝑞21 0.5 0.04 

 𝑞22 0.5 0.96 

    

Trial #3  𝛼1 -3 -1.44 

 𝛼2 3 0.38 

 𝛽1  1.4 0.19 

 𝛽2  1.4 0.07 

 𝜎1  1 0.88 

 𝜎2  1 0.55 

 𝑞11 0.5 1 

 𝑞12 0.5 1.34 × 10−10 

 𝑞21 0.5 0.04 

 𝑞22 0.5 0.96 

    

Trial #4 𝛼1 -2.5 -1.44 

 𝛼2 0.4 0.38 

 𝛽1  0.05 0.19 

 𝛽2  0.05 0.07 

 𝜎1  0.6 0.88 

 𝜎2  0.6 0.55 

 𝑞11 0.5 1 

 𝑞12 0.5 7.75 × 10−12 

 𝑞21 0.5 0.04 

 𝑞22 0.5 0.96 
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Appendix I Fit the SR data of 3NO cod using the HMGM with different 

starting values 
 

I fit the SR data of 3NO cod using VBGM and HMGM. The VBGM and HMGM were assigned 

different initial values in each trial. The HMGM outperformed the VBGM in all trials with lower 

AICc (Table 1). The parameter estimates for the HMGM changed according to different starting 

values (Table 2). However, changing starting values did not significantly affect the predicted 

model mean for the HMGM (Fig. 1).  

 

Table 1. The AICc values of the two models in four trials. 

Trial   HMGM VBGM 

1 AICc -84.97 -39.68 

2 AICc -84.97 -39.68 

3 AICc -84.97 -39.68 

4 AICc -84.97 -39.68 
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Table 2. The starting values and parameter estimates for the HMGM in four trials. 

Trial  Parameters Starting values Estimates  

 𝑤∞1 47.76 44.21 

 𝑤∞2 47.76 46.16 

Trial #1 𝑘1 0.07 0.06 

 𝑘2 0.07 0.07 

 𝜎1 0.09 0.08 

 𝜎2 0.09 0.09 

 𝑞11 0.5 0.92 

 𝑞12 0.5 0.08 

 𝑞21 0.5 0.06 

 𝑞22 0.5 0.94 

    

Trial #2 𝑤∞1 40 25.46 

 𝑤∞2 40 23.14 

 𝑘1 0.15 0.08 

 𝑘2 0.15 0.10 

 𝜎1  0.4 0.08 

 𝜎2  0.4 0.09 

 𝑞11 0.5 0.92 

 𝑞12 0.5 0.08 

 𝑞21 0.5 0.06 

 𝑞22 0.5 0.94 

    

Trial #3  𝑤∞1 42 38.43 

 𝑤∞2 42 41.57 

 𝑘1 0.05 0.07 

 𝑘2 0.05 0.07 

 𝜎1  0.2 0.08 

 𝜎2  0.2 0.09 

 𝑞11 0.5 0.92 

 𝑞12 0.5 0.08 

 𝑞21 0.5 0.06 

 𝑞22 0.5 0.94 

    

Trial #4 𝑤∞1 45 33.87 

 𝑤∞2 45 50.24 

 𝑘1 0.05 0.07 

 𝑘2 0.05 0.07 

 𝜎1  0.2 0.08 

 𝜎2  0.2 0.09 

 𝑞11 0.5 0.92 

 𝑞12 0.5 0.08 

 𝑞21 0.5 0.06 

 𝑞22 0.5 0.94 
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Fig. 1. In each trial, the back lines denote the regime-specific model mean predicted by the HMGM with the original 

starting values (𝑤∞1 = 𝑤∞1 = 100, 𝑘1 = 𝑘2 = 0.1, 𝜎1 = 𝜎2 = 0.5). The red dashed lines denote the regime-specific 

model mean predicted by the HMGM with new starting values.  

  

Trial 1 Trial 2 

Trial 3 Trial 4 
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Appendix J  Fit the SR data of 3NO cod using the HMGM with different 

values of 𝒘𝟎  

The weight of the Atlantic cod (Gadus morhua) larvae after 30 days post hatch is estimated at 

(0.27 ± 0.07) × 10−3 𝑔 (Penglase et al., 2013). I tried two different values for 𝑤0 at 2 standard 

errors from the estimate 0.27 mg, which were ( 0.27 + 0.14) × 10−3 𝑔  and ( 0.27 − 0.14) ×

10−3 𝑔. Results showed that the estimates for 𝑤∞ and k varied according to different 𝑤0. However, 

I cannot draw a conclusion that the parameter estimates for the HMGM are sensitive to 𝑤0 because 

the weight-at-age data for this stock is limited at the age of 12, and the absence of weights at older 

ages could lead to unreliable estimates for 𝑤∞ and k. To determine whether 𝑤0  variations will 

affect the model performance of the HMGM, I compared the predicted mean weights at age at 

different values of 𝑤0. Results indicated that different values of 𝑤0 within 2 standard errors of the 

estimated value do not significantly affect the estimated mean weights at age within the data age 

range (Figure 1). Thus, I concluded that different but reasonable values for 𝑤0  will not 

significantly affect the model performance.  
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Fig.1 Black, green, and red lines denote the predicted mean weights at age for the original 𝑤0, 𝑤0 + 0.14, and 𝑤0 −
0.14, respectively.  

𝒘𝟎 = 𝟎. 𝟐𝟕/𝟏𝟎𝟎𝟎 g 𝒘𝟎 = (𝟎. 𝟐𝟕 + 𝟎. 𝟏𝟒)/𝟏𝟎𝟎𝟎 g 

𝒘𝟎 = (𝟎. 𝟐𝟕 − 𝟎. 𝟏𝟒)/𝟏𝟎𝟎𝟎 g 
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