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Abstract

It is important to study the wave impact and slamming problems, involving break-

ing free surface, which can cause high impact pressure and therefore structural damage

on ship hulls and offshore platforms.

An improved higher-order moving particle semi-implicit (MPS) method was devel-

oped to solve 2-D water entry problems. To overcome the inconsistency in the original

MPS methods, a pressure gradient model was modified to guarantee the first-order

consistency and to satisfy the conservation of momentum simultaneously. A particle

shifting technique was also applied to improve the numerical stability. Validation

studies were carried out for water entry of a rigid wedge with a deadrise angle of

30◦ and the tilt angles of 0◦, 10◦ and 20◦ and two rigid ship sections. Convergence

studies were conducted on domain size, particle spacing and time step. A Particle

Convergence Index (PCI) method was proposed to evaluate numerical uncertainties

in solutions by the Lagrangian particle-based methods. Uncertainties of the numer-

ical solutions due to spatial discretization were calculated. The predicted impact

pressures and forces by the present method are in good agreement with experimental

data and other published numerical results.

The improved higher-order MPS method has also been applied to study fluid-

structure interactions (FSI) for an elastic wedge entering calm water. The structural

responses of the wedge with a reinforce tip were computed during the water entry. In

the present method, different particle spacings and time steps were used for the fluid

and the structure. Convergence of solutions on the particle spacings for the fluid and

the structure and time step were investigated. Uncertainties of the numerical solutions
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due to spatial discretization of both the fluid and the structure were evaluated based

on the proposed PCI method. Validation studies were carried out to two wedges with

deadrise angles of 20◦ and 30◦ entering water at various velocities. Numerical solutions

were compared with the results based on the original higher-order MPS model and

the experimental data. The present improved higher-order MPS method led to better

agreement with experimental data than the original one, and significantly reduced the

oscillations in numerical solutions.
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General Summary

The present research is motivated by solving the wave impact and slamming prob-

lems that are closely relevant to ocean and naval architectural engineering. Struc-

tures can be deformed and even damaged due to the high impulsive pressures. The

structural safety matters for the design and construction of both ship and offshore

platforms.

Despite the experimental and theoretical studies, computational fluid dynamics

(CFD) have been developed over years, among which particle-based methods have

advantages for solving the highly non-linear problems including highly deformed in-

terfaces. In the present work, the predictions of slamming loads with fluid-structure

interactions were numerically studied with the development of an improved higher-

order moving particle semi-implicit (MPS) method. The developed model demon-

strated high stability and improved accuracy in predicting reasonable solutions in-

cluding pressures and forces, as well as the structural responses. The coupling of

the fluid and the structure was proved to be effective. Verification and validation

studies were carried out through 2-D numerical simulations. Uncertainty analysis

was proposed for the solutions by particle-based methods. The best-practice settings

could be useful for the application of the methodology in the hydroelastic analysis

and further study of the wave impact and slamming problems.
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Chapter 1

Introduction

1.1 Background

Slamming is a physical phenomenon characterized by high impulsive pressures/loads

of relative short-time durations on a body. Complicated physical effects are involved.

For example, the free surface could be highly deformed or breaking during the impact.

Air entrapment, air cushion and cavitation bubbles can be formed between the water

surface and the body. The compressibility of the water also influences the interactions

of air and water flow [1].

Slamming problems for ships and ocean structures are introduced as follows. Slam-

ming on ships can be categorized as bottom, bow-flare, bow-stem and wet-deck slam-

ming [2]. For example, bottom slamming could happen for ships suddenly plunged

into the water [3]. A ship sailing in rough seas can be subjected to bow slamming

[4] due to large-amplitude ship motions and wave impact on ship hull, i.e., green

water on deck [5]. Wet-deck slamming may occur at the underside of inter-hull struc-
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tures of multi-hull ships in waves [6]. Wave impacts can lead to transient ship hull

girder vibration called slamming-induced whipping [7]. Another example of slamming

is launching lifeboats or torpedoes into water [8]. Offshore structures operating in

harsh environments could also be exposed to plunging breaking waves with violent

impact, which leads to slamming forces [9]. Accidents happened if slamming loads on

structures were underestimated. As reported by Attfield (1975) [10], wave slamming

caused the failure of structural members in the splash zone of the British Petroleum’s

West Sole offshore platform in the southern North Sea.

Slamming can cause local structural deformation and damages. It is important

to solve the highly-nonlinear water entry problem involving free surface breaking and

the problem of fluid-structure interactions (FSI) for ships under impulsive loads due

to slamming. The hydroelastic effects under certain conditions must be examined to

accurately predict the impact pressures/loads and the structural responses [1]. For

example, when the angle between the water surface and body surface is small, signif-

icant local dynamic hydroelastic effects can be observed [11]. An overview of studies

on impact pressures/loads and structural responses using experiments, analytical so-

lutions, and numerical simulations is given in the next section.

1.2 Literature Review

1.2.1 Experimental Studies

Experimental studies on slamming-induced pressures/loads and physical mechanisms

relevant to slamming have been conducted over years.
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One of the typical slamming problems is the water entry of a flat plate. Chuang

(1966) [3] performed several dropping tests with free-falling flat bottom panels impact

the free surface of the water at the David Taylor Model Basin. A linear relationship

between the maximum pressure and the impact speed was found. The effect of the

trapped air between the falling body and the water was analyzed on the measured

maximum impact pressure.

The phenomena occurring during the impact of a flat plate on a water surface were

investigated by Verhagen (1967) [12] both theoretically and experimentally. The

compression of the trapped air cushion was mathematically modelled. The results

showed that the influence of the compressible air layer caught between the falling

plate and the water surface should be properly considered.

In terms of the data acquisition system in experimental studies, which is important

for the uncertainty analysis and the reliability of the experimental data, Lin and Shieh

(1997) [13] utilized a high-speed charge coupled device (CCD) camera and a digital

particle tracking velocimeter (DPTV) to simultaneously measure the pressure and

flow field during the water entry of a flat-bottom body and a cylinder.

Okada and Sumi (2000) [14] carried out precise pressure and strain measurements

by dropping a plate with the different deadrise angles from 0◦ to 4◦. Different impact

patterns were studied during the impact process. It was observed that the Wagner-

type pressure pattern was initially occurred near the keel, followed by the trapped-air

pressure pattern toward the edge of the plate. It was also indicated that the maximum

strain measured in the plate was not sensitive to the impact angle in the range studied.

The structural response can be estimated by using the average pressure at impact.

Experiments on sandwich panel structures subjected to water slamming have been

4



also carried out in the work of Battley et al. (2005) [15]. The impact pressure and

panel displacement during the impact were measured and structural responses of the

panel were predicted by using the modal transient finite element analysis.

Huarte et al. (2011) [16] carried out a series of experiments on flat panels at

different entry velocities up to 5 m/s and for deadrise angles in the range from 0.3◦

to 25◦. The trapped air between the plate and the free surface was observed at high

impact speeds and small deadrise angles. It was concluded that the effects of trapped

air and air cushions are significant for the flat plate impacts with angles less than 5

degrees.

To study the ship bow slamming, numerous drop tests have been performed on

wedge sections and bow-flare sections entering the water. For example, Bisplinghoff

and Doherty (1952) [17] carried out a series of experiments for free-fall V-shaped

wedges with different deadrise angles. The shape of the free surface of piled-up water

was recorded by means of a high-speed motion-picture camera. Accelerations during

drop tests were measured by a strain-gage type accelerometer.

Greenhow and Lin (1983) [18] conducted water entry experiments of wedges with

large deadrise angles, i.e., over 25 degrees. They also studied the high speed entry of

a cylinder into calm water and then exiting the water. It was observed that the free

surface was breaking and the vortices shed by the cylinder interacted with the free

surface and likely caused a pressure inversion across the free surface.

Troesch and Kang (1986) [19] also studied experimentally the water entry of a

sphere at both vertical and oblique impact angles and a cusped body with only

vertical motion. The experimental data of impact loads was applied to a validation

of the results by using the three-dimensional theoretical solutions.
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Tveitnes et al. (2008) [20] firstly investigated the water entry of a wedge section

at a constant velocity, with deadrise angles from 5◦ to 45◦, at a constant entry speed.

In these experiments, the hydrodynamic forces on the body during impacts can be

directly measured at velocities of higher than 1 m/s, using the axial force load cells.

The changes in added mass after chine wetting were quantified, which was important

for planing craft predictions.

Maneuvering of vehicles or ship motions in waves can cause asymmetric wa-

ter entry. Judge et al. (2004) [21] performed systematic experimental tests on the

asymmetric-oblique water entry of a wedge. Both horizontal and vertical impact ve-

locities were taken into account. The initial separation-ventilation of the flow from

the apex due to asymmetric impact was visualized in their work.

Wedges with different tilt angles were also tested by Barjasteh et al. (2016) [22].

Parameters including initial deadrise angle, inclination angle and impact speed were

investigated. The comparison of results by asymmetric and symmetric tests showed

that even a small inclination angle can significantly increase the pressure at the side

with a smaller deadrise angle.

Zhao et al. (1996) [23] carried out drop tests of a wedge section with 30◦ deadrise

angle and a typical ship bow section at constant vertical velocity at Norwegian Marine

Technology Research Institute (MARINTEK). The effects of flow separation and jet

flows at the intersection between the body surface and the free surface were detailed.

Comparison between the theoretical solutions and the experimental data was given.

Hermundstad and Moan (2005) [24] conducted model tests of a 120 m Ro-Ro

vessel in regular head and oblique waves. Two slamming panels in the bow flare at

station 9.5 on the port side were installed to obtain the average slamming pressure
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on the panel. It was observed that slamming pressures in a flared area were sensitive

to small variations in the roll angle. In their tests, the effect of the forward speed

of the ship was also analyzed, which led to a pile-up of water around the bow. It

was concluded that the pile-up of water significantly increased the impact pressure

on the panels in the upper part of the flare, particularly for the lower waves. The

slamming loads can induce a large sagging moment in the hull girder with subsequent

vibrations.

A series of model tests, i.e., Wave Induced Loads on Ships Joint Industry Project

(WILS JIP-I, II and III, 2006-2014), was conducted by Korea Research Institute of

Ships & Ocean engineering (KRISO). An extensive experimental database on slam-

ming, springing and whipping was provided. As a focused session of ISOPE-2016,

Rhodes by the International Hydrodynamic Committee (IHC) of the International

Society of Offshore and Polar Engineers (ISOPE), a comparative study [25] on water

impact problem for ship sections and wedges entering the water was carried out. The

experimental data can be found in the work of Hong et al. (2017) [26].

Kim et al. (2017) [27] investigated the characteristics of the pressure sensor for the

measurement of the water impact load. The measured peak pressures, rise times, and

pressure impulses were compared by couples of different pressure sensors, involving

different types, sensing areas, and sensitivities.

In the project of WILS JIP-III, Hong et al. (2014) [28] studied the bow-flare

slamming loads on a 10,000TEU containership. The containership model was made

up of six segments connected by a U-shape steel backbone. The temporal and spatial

distribution of slamming load during tests were recorded using a number of force

and pressure sensors. The stern slamming loads on the same containership was also
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studied by Kim et al. (2015) [29] by towing a ship model in regular and irregular

waves. Head and following sea conditions with various ship speeds were involved.

The characteristics of the bow-flare slamming and the stern slamming were presented

in their work.

To further address the hydroelastic slamming problems, a series of experiments on

deformable wedges freely falling into water considering different structural stiffness,

deadrise angles, impact velocities and masses of wedges were conducted by Panciroli

et al. (2012) [30]. High hydroelastic effects can be observed at high impact speed

as the body was made by composite lightweight structures. The hydroelasticity was

found to be critical if the ratio (R) between the wetting time and the natural period

of the structure was small, e.g., lower than 1. Two novel fluid-structure interaction

phenomena were found in the water entry tests of deformable wedges by Panciroli

(2013) [31], including the repetition of impacts and separation between the fluid and

the structure in the region of jet flow during slamming, and a tendency to cavitation

in the underwater fluid-structure interface.

Luo et al. (2012) [32] performed an experimental study of slamming load and

elastic response of a free-drop steel wedge made up of 9 longitudinal stiffeners and 5

transverse frames. The acceleration, slamming pressures, and stress responses were

measured. Some high-frequency oscillations (around 100) of the stress responses on

the longitudinal stiffeners due to the hydroelastic impact.

Stenius et al. (2013) [33] studied the significance of hydroelasticity for slamming

loaded marine panels. The impact pressures for both rigid panels and the flexible

panel were compared with varying impact velocities. Substantial kinematic hydroe-

lastic effects were indicated for the strains in the upper panel edge.
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Recently, the technique of particle image velocimetry (PIV) has been adopted

in the tests of water entry. For example, Shams et al. (2015) [34] applied PIV to

characterize the water entry of an asymmetric wedge with varying heel angles falling

into a quiescent fluid. The pressure field in the fluid can be reconstructed from PIV

data by integrating the Poisson equation. PIV was subsequently employed to measure

the flow characteristics for the hydroelastic slamming of flexible wedges entering and

exiting calm water by Shams et al. (2017) [35].

Russo et al. (2018) [36] also presented experimental dataset for the water entry

of a wedge with 37◦ by using a PIV system and a complementary array of sensors

including position sensors, accelerometers, and pressure sensors. Asymmetric and

oblique impact were investigated for small deadrise angles. The results from PIV-

based pressure reconstruction were validated by comparison to the traditional sensor-

based data collected by pressure sensors.

Experiments continue to be important to predict the slamming loads, reveal the

flow characteristics, and provide benchmark data for the validation of analytical solu-

tions and numerical simulations. However, experimental studies are costly and limited

to model scale.

1.2.2 Analytical Solutions

Analytical solutions for water entry problem were pioneered by von Kármán (1929)

[37]. The motivation was to analyze the maximum impact pressures acting on sea-

plane floats during landing, which can be treated approximately as a wedge-shaped

body striking a horizontal surface of the water. An asymptotic theory was first de-
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veloped to solve the flat impact problems with the linearized free surface and wall

boundary conditions. The calculated force acting between the body and water was

validated by experimental data.

The von Kármán’s solution was improved by considering the effect of water splash

on the body by Wagner (1932) [38]. Dobrovol’skaya (1969) [39] derived an analytic

solution for the case of uniform symmetrical entry of a wedge into a half-plane of

fluid at a constant velocity. As a extension of Wagners theory, Oliver (2007) [40]

developed the second-order Wagner’s theory for solving water entry problems at small

deadrise angles. The second-order corrections were made for the locations of the

higher-pressure jet-root regions and the impact force on the body using a systematic

matched-asymptotic analysis.

Howison et al. (1991) [41] also applied Wagners theory and derived the analytic

solution of water-entry problems for both two-dimensional and two-dimensional flows.

The effects of jet separation and the air cushion between the body and the water were

discussed.

Mei et al. (1999) [42] derived the analytic solution of the water impact problem

based on Wagners theory for general two-dimensional bodies entering initially calm

water, including wedges of arbitrary deadrise angles, a circular cylinder and a bow-

flare section. The results were not restricted to shallow body submergence or small

body deadrise angles.

Despite the fact that three-dimensional slamming forces can be usually approxi-

mated using a series of 2-D sections, Scolan and Korobkin (2001) [43] presented the

exact analytical solutions for three-dimensional water entry based on Wagner’s theory

by the inverse method.
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Most of the analytical solutions were however limited to the assumption of shallow

body submergence and simple geometries.

1.2.3 Numerical Simulations

In terms of numerical methods to solve water-entry problems, methods based on

the potential-flow theory and the computational fluid dynamics (CFD) have been

developed over years.

A numerical solution based on the boundary element method (BEM) was first

proposed by Zhao and Faltinsen (1993) [44] for the water entry of a two-dimensional

body of arbitrary cross-section. For wedges with deadrise angles varying from 4◦ to

81◦, their numerical results of the slamming loads and pressure distributions on the

body agreed with the similarity solution results. Issues existed when the deadrise

angle was smaller than 4◦. Zhao et al. (1996) [23] applied linearized free-surface

boundary conditions and solved the problem numerically using a boundary integral

equation method. The numerical results were in agreement with the experimental

data. Recently, Wang and Faltinsen (2017) [45] further improved the BEM developed

by Zhao and Faltinsen (1993) [44] and investigated the water entry of wedges with

small deadrise angles. The results were obtained for deadrise angles down to 1◦ and

compared to the asymptotic solutions.

Hermundstad and Moan (2005) [24] applied a nonlinear strip theory method with

a generalized 2-D Wagner formulation solved by the BEM to obtain the slamming

loads on a Ro-Ro vessel. The numerical results were validated by experimental results.

One of the difficulties in the BEM methods is due to the boundary conditions
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on the intersection of the body surface and the free surface. To satisfy the two

boundary conditions exactly and simultaneously, Chuang et al. (2006) [46] developed

a boundary element method based on the desingularized Cauchys formula to solve

the two-dimensional water entry problems. The corner singularity at the intersection

point of the body and the water surface was removed by a numerical approach. The

results agreed well with the analytical solutions of Dobrovol’skaya (1969) [39].

A simplified method based on the Wagner theory and the boundary element

method was proposed by Tassin et al. (2012) [47] to predict impact loads acting

on three-dimensional bodies during water entry. The hydrodynamic pressure acting

on the body surface was calculated using the modified Logvinovich model (MLM).

Experimental impact tests and CFD simulations were also carried out for validation.

Three specimens involving an elliptic paraboloid, a wedge with conical ends and a

square pyramid were studied. The proposed numerical method was found to be able

to accurately predict slamming forces.

Since the potential-flow based methods have difficulties in dealing with highly

deformed or breaking free surface, many CFD methods have been developed to ad-

dress highly nonlinear problems, including mesh-based, particle-based and hybrid ap-

proaches. Among mesh-based CFD methods, the level-set (LS) method [48], the vol-

ume of fluid (VOF) [49] and the constrained interpolation profile (CIP) [50] methods

have been employed to capture highly nonlinear free surfaces and to solve slamming

problems.

In the work of Kleefsman et al. (2005) [51], dam breaking and water entry problems

were studied by the numerical method based on the Navier-Stokes equations. The free

surface was captured using the VOF method together with a local height function with
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strict mass conservation. Schellin and El Moctar (2007) [52] studied the slamming

loads with a Reynolds-averaged Navier Stokes (RANS) solver, in which the interfaces

were captured by the VOF method.

Yang and Qiu (2012) [53] employed the CIP method to solve both 2-D and 3-

D slamming problems. The free surface and the body boundaries were captured

using density functions. For wedges with small deadrise angles, the compressibility

of air was studied. Wen and Qiu (2016) [54] further developed the CIP method by

implementing a parallel computing scheme to solve 2-D slamming problems. A high-

order upwind scheme was employed to capture the advection of a profile. In the work

of Wen and Qiu (2018) [55], the advection of the water phase was solved by applying

the THINC/WLIC scheme, i.e., tangent of hyperbola for interface capturing with

weighted line interface calculation. Typical slamming problems involving the water

entry of a 3-D wedge with prescribed velocities, the free-fall water entry of a modified

Wigley hull and an inclined circular cylinder were studied.

The dynamic overset grid technique [56] has been developed for efficiently simulat-

ing the large-amplitude body motions. For example, Shen et al. (2016) [57] applied a

dynamic overset method to predict large-amplitude ship motions and slamming loads

and used the VOF method to capture the free surface. The slamming loads on a

10K TEU container ship model at different speeds operating in wave conditions were

numerically investigated and compared to the experimental data.

Considering the structural responses during the slamming, Piro and Maki (2013)

[58] developed a coupled solver using the finite volume method (FVM) for the fluid

analysis and the finite element method (FEM) for the structural analysis. The water

entry and the water exit of both rigid and flexible wedges were investigated.
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Despite the success with traditional mesh-based CFD methods, it is still challeng-

ing to simulate violent flow involving breaking free surfaces and moving boundaries

due to the numerical diffusion and topological failures. The Lagrangian particle-

based methods, which benefit from their mesh-free characteristics, have advantages

in treating highly deformed interfaces and moving boundaries. Among the mesh-free

methods, the smoothed particle hydrodynamics (SPH) method [59] and the mov-

ing particle semi-implicit (MPS) method [60] have been used to solve water entry

problems. For example, Farsi and Ghadimi (2015) [61] studied both symmetric and

asymmetric water entries of wedges with a wide range of deadrise angles using a

weakly compressible SPH (WCSPH) method. To address the issue of high-frequency

pressure oscillations in the conventional SPH methods, various improvements have

been made. Lee et al. (2008) [62] developed the incompressible SPH (ISPH) method

to improve the pressure calculation for incompressible flows. Yokoyama et al. (2014)

[63] investigated the splash induced by a spherical object using the MPS method. The

interface particles between the falling object and the fluid surface were examined. A

two-phase incompressible-compressible SPH method (ICSPH) was developed by Lind

et al. (2015) [64] to predict the pressure on a horizontal plate impacting waves. Sun et

al. (2016) [65] developed a coupled MPS-modal superposition method to study water

entry of a flexible wedge and fluid-structure interactions. Nair and Tomar (2017) [66]

applied the ISPH method to simulate the evolution of cavity during the water entry

of cylinders in various shapes. The transfer of kinetic energy in different phases of

the cavity formation was examined. Rao and Wan (2018) [67] developed the MPS-

FEM coupled method which was applied to study the solitary wave impacting onto

a horizontal plate. Comparison between the cases with elastic and the rigid plate
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interacting with the solitary wave was given.

In the weakly compressible SPH methods, pressure can be solved using the equa-

tion of state. Different from the explicit method in SPH, the pressure is computed

by the projection method with a semi-implicit process in the MPS method. A sys-

tem of Poisson equations for pressure is formulated and greater accuracy in pressure

computation can be obtained by using a relatively large time step. Progress has

been made to deal with numerical issues in the original MPS method, which is only

in first-order accuracy, such as nonphysical high-frequency pressure oscillations and

numerical instabilities. For example, Akimoto (2013) [68] studied a 2-D wedge and a

3-D cylinder with a modified MPS method, in which improvement was made to treat

smooth body boundaries. The pressure oscillations can be generally suppressed by

using an improved identification of the free surface and a mixed source term in the

Poisson equations for pressure [69].

It should be noted that among the Eulerian methods, the immersed boundary (IB)

method has been widely used to solve the FSI problems on Cartesian grids. Mov-

ing body boundaries are determined by cutting Cartesian grid cells. Grid generation

is therefore straightforward even for complex geometry. Non-boundary conforming

grids are needed and no re-meshing is required for moving boundaries. As a result,

less computer memory and CPU resources [70] are needed. An IB method has been

developed to improve the sharpness of the moving fluid-structure interface [71]. How-

ever, it is required to refine the grid resolution in the vicinity of the boundaries. In

comparison with the IB method, one of the advantages of the MPS method is that

the fluid-structure interfaces can be defined and resolved with greater accuracy. As

another advantage of the MPS method, the governing equations in Lagrangian form
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free of convective terms. Numerical errors caused by solving the convective transport

in Eulerian methods can be avoided [72].

Another mesh-based method to solve FSI is the arbitrary LagrangianEulerian

(ALE) method, which was reviewed by Barone and Payne (2005) [73]. In the ALE

method, the mesh inside the computational domains can move arbitrarily and there-

fore the quality of elements can be improved in comparison with the mesh deformation

technique. The ALE method also has advantages in treating complex boundaries and

interfaces of multi-physics fields and multi-materials since meshes can be body-fitted

and move along with the deformation of boundaries and interfaces [74, 75]. The gov-

erning equations in the moving domains need to be mapped to a fixed computational

domain, and then the transformed equations are solved. The mapping leads to issues

on solving problems with large deformation, and re-meshing might be required in

case of mesh distortion, which could impair computational efficiency and effective-

ness. Compared to the ALE method, the governing equations in Lagrangian form can

be solved directly by the MPS method without involving any mapping and re-meshing

for highly deformed boundaries and free surface [76]. Since fluid and structure are

both discretized into particles, the interpolations on interfaces are straightforward.

MPS methods have been employed with various degrees of improvement to solve

water entry problems. For example, Akimoto (2013) [68] studied a 2-D wedge and

a 3-D cylinder with a modified MPS method, in which improvement was made to

treat smooth body boundaries. Yokoyama et al. (2014) [63] investigated the splash

induced by a spherical object using the MPS method. The interface particles between

the falling object and the fluid surface were examined. Sun et al. (2016) [65] developed

a coupled MPS-modal superposition method to study water entry of a flexible wedge
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and fluid-structure interactions.

In spite of the progress, the accumulated error due to the discretization of deriva-

tives both in space and in time remains an issue in the first-order models. For ex-

ample, the calculation of the time variation of the particle number density in the

source term of the Poisson equations for pressure was only in first-order accuracy for

the traditional MPS methods, which led to pressure fluctuations and therefore large

numerical errors. To address this problem, a higher-order source term, called the

CMPS-HS method, was developed by Khayyer and Gotoh (2011) [77]. In their work,

the Poisson equations for pressure were derived based on the direct calculation of the

time differentiation from the kernel function. Compared with the results by using

the first-order source term, a considerable improvement was indicated in their 2-D

simulations of wave impact.

Another issue in the first-order MPS methods is the inconsistency in pressure

gradient. For particles which are disorderly distributed or near the boundary, the

first-order model for the gradient is not satisfactory. Based on the Taylor series expan-

sion, a higher-order gradient model, called MPS-HS-HL-ECS-GC, was proposed by

Khayyer and Gotoh (2011) [77]. The accuracy can be in second-order when particles

are distributed regularly and in first-order when particles are distributed irregularly

in the interaction region. A review of various improvements in pressure computations

was given by Gotoh and Khayyer (2016) [78].
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1.3 Present Work

The present research focuses on the development of an improved MPS method to

solve water entry problems with fluid-structure interaction. The main objectives and

contributions of this thesis are summarized as follows:

• Improvement of MPS method. There are numerical issues in the original MPS

method, which is only in first-order accuracy, such as nonphysical high-frequency

pressure oscillations and numerical instabilities. For the first-order gradient

models, the first-order consistency cannot be satisfied. To address this prob-

lem, a corrected pressure gradient model based on the Taylor series expansion

was proposed by Khayyer and Gotoh [77]. However, the model does not sat-

isfy the conservation of momentum, which leads to pressure oscillations. In this

thesis, the improved model for pressure gradient in symmetrical form was devel-

oped [79, 80, 81]. Consequently, the first-order consistency for pressure gradient

can be guaranteed and the conservation of momentum is satisfied. A combined

scheme for the identification of the free surface particles was developed [82],

where the non-symmetry criteria [83] was used for the fluid particles and the

density criteria [60] was used for the wall particles separately. A particle shift-

ing technique [84] was also applied to improve the numerical stability. It was

found that some particles could continue to clump together leading to the onset

of instability. [84]. The issue of particles with highly anisotropic distributions

in violent flows can be avoided with the application of particle shifting. For

example, a slamming simulation could crash within 2 ms without using the par-

ticle shifting. For the present method, it can be run more than 30 ms without
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numerical instabilities.

• Solving FSI problems. Challenges remain in the prediction of the impact pres-

sures/loads during slamming with fluid-structure interaction. The improved

MPS method has been employed to solve the two-dimensional water entry prob-

lems. Validation studies were carried out for the free-fall water entry of rigid

bodies, including a 2-D wedge with various tilt angles and two different ship sec-

tions [80]. The convergence of numerical solution to the size of computational

domain, the particle spacing and the time step was investigated. The predicted

impact pressures/loads were compared with the experimental data, the numer-

ical results by the first-order gradient model in symmetrical form and those by

the original higher-order gradient model. Further studies were carried out to

elastic bodies with different deadrise angles entering the water at a couple of

drop velocities [81]. Numerical solutions were compared with the results based

on the original higher-order gradient model and the experimental data.

• Uncertainty analysis. Uncertainties in CFD solutions with mesh-based meth-

ods have been extensively studied. However, uncertainties in solutions with

particle-based methods are relatively rare. For mesh-based methods, the spa-

tial discretization errors can be evaluated by using the Grid Convergence Index

(GCI) method [85]. A similar approach, i.e., the Particle Convergence Index

(PCI) method, is proposed in this work to evaluate uncertainties with respect

to the particle resolution in solutions with Lagrangian particle-based methods

[80, 81]. In this method, the particle spacing represents the spatial resolution.

Uncertainty levels in the present simulations were examined using the proposed
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PCI method.

1.4 Outline of the Thesis

This thesis is organized into six chapters as follows.

In Chapter 1, the research background on slamming problems in marine applica-

tions is briefly described. A literature review on solving slamming problems by using

experimental studies, analytical solutions and numerical approaches is detailed. The

improvements of MPS methods are reviewed. The objectives and the scope of this

research are also presented.

Chapter 2 presents the details of the research methodologies. The numerical meth-

ods are introduced and mathematical formulations of the improved higher-order MPS

method are derived. Firstly the governing equations for the incompressible viscous

flow and the elastic structure are given. The particle interaction method in the present

MPS method is introduced, which is followed by the gradient model and Laplacian

model. The Poisson equations for pressure are then derived and the boundary con-

ditions are given. The particle shifting technique is also presented. In addition, the

particle models for structural analysis are introduced. Different particle spacings are

used ensuring accurate prediction of fluid and structural responses. The coupling

scheme for fluid-structure interaction used in the present work is explained. The

parallel computing scheme and domain decomposition are further discussed. Sub-

sequently, the uncertainty analysis regarding the numerical solutions by Lagrangian

particle methods is proposed.

Chapter 3 focuses on solving the two-dimensional dam breaking problems to pre-
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liminarily validate the present method. The water impact pressures and free surface

simulated by the present method were studied and compared to the experimental

data.

Chapter 4 shows the numerical simulations of the vibration of a two-dimensional

thin plate to verify the present structural model. Convergence studies on the particle

spacing and time steps are conducted. The results showed improvement in comparison

to the analytical solutions and the results by using other numerical methods.

In Chapter 5, the numerical methods are validated by simulating two-dimensional

water entry problems including wedges with various tilt angles and ship sections with

different drop heights. Convergence studies on domain sizes, particle spacing and

time steps are detailed. Discussions on the solutions on the impact pressures and

forces are presented.

The present method is then extended to the free-fall water entry of a two-dimensional

deformable wedge with different deadrise angles and two dropping heights as pre-

sented in Chapter 6. The structural responses due to wave-structure interactions

were predicted and analyzed. The improved higher-order MPS methods led to better

agreement with experimental data than the original one, and significantly reduced

the oscillations in numerical solutions.

In Chapter 7, this thesis ends with conclusions and a summary of future perspec-

tives. The extension of the present two-dimensional method to three-dimensional

method is commented.
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Chapter 2

Methodology

2.1 Governing Equations

For hydrodynamic analysis, the incompressible viscous flow is governed by the conti-

nuity equation and the momentum equation:

∇ ·Uf = 0 (2.1)

DUf

Dt
= −

1

ρf
∇p+ νf∇ · ∇Uf + g +

1

ρf
Fs−f (2.2)

where ρf , Uf , p, νf , g and Fs−f represent the density of fluid, fluid velocity, fluid

pressure, viscosity of fluid, the gravitational acceleration, and the force on fluid due

to structure, respectively. The subscripts s and f stand for the structure and fluid,

respectively. Note that turbulence models are not considered in this thesis.

Governing equations for the isotropic linear elastic structure are given as:

DUs

Dt
=

1

ρs
∇ · (λstr(εmn)δmn + 2µsεmn) + g +

1

ρs
Ff−s (2.3)

D

Dt
(Isωs) =

D

Dt
[rs × (msUs)] (2.4)
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where Us is the structural velocity, ρs is the density of structure, εmn is the strain

tensor, m = 1, 2, n = 1, 2 for 2-dimensional problems, δmn is the Kronecker’s delta

and λs and µs are the Lame constants. Note that Ff−s is the fluid force on structure.

Is is the moment of inertia of structure, ms is the mass of structure, ωs is the angular

velocity, and rs is the position vector of structure.

2.2 Particle Interaction Model

In the present method, the fluid and structure are discretized by fluid particles and

structural particles, respectively. For the particle interaction model, a widely used

kernel function in many first-order MPS methods [86] was written as:

wij =















re
rij

− 1, 0 < rij < re

0, rij > re

(2.5)

where re and rij denote radii of the interaction region and the distance between

particle i and particle j, respectively. The interaction region for particle i is defined

as a space in which particles can interact with particle i, as shown in Fig 2.1.

In comparison with the Gaussian kernels, the Wendland kernel performs better in

the simulation of free surface viscous flow based on the work of Macia et al. (2011)

[87] In addition, a clustering of neighboring particles due to the onset of the tensile

instability can be generally avoided by using the Wendland kernel. The C2 Wendland

kernel function [88] as follows was adopted in the present higher-order MPS method:

wij =











(1−
rij
re

)4(1 +
4rij
re

), 0 6 rij < re

0, rij > re

(2.6)
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Interaction region 

Figure 2.1: Interaction region in 2-D simulations

Class 2 (C2) denotes the ratio of the radius of interaction region to particle spacing

is 2, which is close to 2.1. Note that 2.1 is the value of the widely used kernel function

in the original MPS method. Compared with the original kernel function in Eq. (2.5),

smoother results without singularity can be obtained for the estimation of derivatives.

The first and second derivatives of the kernel function can be calculated by:

∂wij

∂r
=















−
20rij
r2e

(1−
rij
re

)3, 0 6 rij < re

0, rij > re

(2.7)

∂2wij

∂r2
=















−
20

r2e
(1−

rij
re

)2(1−
4rij
re

), 0 6 rij < re

0, rij > re

(2.8)

It is assumed that all particles have the same mass. The density of fluid at the
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location ri is proportional to the particle number density, ni, which is defined as the

sum of kernel functions of particles within the interaction region of a particle i:

ni =
∑

j 6=i

wij (2.9)

2.3 Gradient Model

The gradient operator can be calculated as the weighted average gradient of all neigh-

boring particles in the interaction region. Many studies have been carried out to

improve the modelling of pressure gradient in the literature.

In the original MPS method [60], the pressure gradient was given by:

< ∇p >i=
d

n0

∑

j 6=i

[

(pj − pi)
~rj − ~ri

|~rj − ~ri|2
wij

]

(2.10)

where d = 2 is the number of spatial dimensions, the normalization factor, n0, is

the initial particle number density, pi and pj are pressures of particle i at ~ri and of

the neighboring particle j at ~rj , respectively. n0 is a simplified form of n0
i , which

should be constant for uniformly distributed particles. Note that <> denotes the

approximation of a variable in the interaction region of a particle. In this model,

the conservation of momentum is not satisfied and pressure oscillations are therefore

enlarged. This model also leads to numerical instabilities. Effort has been made

to improve the pressure gradient model. One of improved models for the pressure

gradient is the first-order gradient model in symmetrical form proposed by Lee et al.

(2011) [89], which can be written as:

< ∇p >i=
d

n0

∑

j 6=i

[

(pj + pi)
~rj − ~ri

|~rj − ~ri|2
wij

]

(2.11)
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This method however does not satisfy the first-order consistency if particles are

disorderly distributed or near the boundary [90]. To overcome this problem, a cor-

rected pressure gradient model was proposed by Khayyer and Gotoh (2011) [77]. In

their work, based on the Taylor series expansion, the pressure of a particle j can be

written as:

pj = pi +

(

∂p

∂x

)

i

xij +

(

∂p

∂y

)

i

yij +O(r2) (2.12)

where xij and yij are the components of the position vector, ~rij. Since the standard

kernel function was used in the original higher-order MPS method, it was derived

−∂wij

∂rij
=

wij

rij
. The pressure gradient at particle i can be directly computed from:

∇pi =

∫

pj∇wijd~r

=

∫

pj

(

wij

rij

xij

rij
dx+

wij

rij

yij
rij

dy

)

=pi

∫
(

wij

rij

xij

rij
dx+

wij

rij

yij
rij

dy

)

+

(

∂p

∂x

)

i

∫
(

xij
wij

rij

xij

rij
dx+ xij

wij

rij

yij
rij

dy

)

+

(

∂p

∂y

)

i

∫
(

yij
wij

rij

xij

rij
dx+ yij

wij

rij

yij
rij

dy

)

+O(r2)

(2.13)

where
∫

xij
wij

rij

xij

rij
dx = 1

∫

xij
wij

rij

yij
rij

dy = 0

∫

yij
wij

rij

xij

rij
dx = 0

∫

yij
wij

rij

yij
rij

dy = 1

(2.14)
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Conditions specified in Eq. (2.14) can be satisfied through the normalization pro-

cedure proposed by Oger et al. (2007) [91]. Therefore, the original model of the

pressure gradient in the work Khayyer and Gotoh (2011) [77] can be modified as:

< ∇p >i=
d

n0

∑

j 6=i

(pj − pi)

|~rj − ~ri|2
(~rj − ~ri)Cijwij (2.15)

where the corrective matrix Cij is calculated by:

Cij =











∑

Vij

wijx
2
ij

r2ij

∑

Vij
wijxijyij

r2ij
∑

Vij
wijxijyij

r2ij

∑

Vij

wijy
2
ij

r2ij











−1

(2.16)

and

Vij =
d

∑

wij
(2.17)

This modified pressure gradient model ensures the first-order consistency for pres-

sure gradient, but not satisfying the conservation of momentum.

In the present work, Eqs. (2.15) and (2.16) were further modified to satisfy the

conservation of momentum. In the work of the original high-order MPS method [77],

it was considered that
wij

rij
=

∂wij

∂r
with using the standard kernel function. In the

present work, the standard kernel function is replaced by the C2 Wendland kernel

function. By changing the term,
wij

rij
, to

∂wij

∂r
, Eq. (2.15) can be written as:

< ∇p >i=
d

n0

∑

j 6=i

(pj − pi)

|~rj − ~ri|
(~rj − ~ri)Cij

∂wij

∂r
(2.18)

where the corresponding corrective matrix Cij is given by:

Cij =









∑

Vij
∂wij

∂r

xij

rij
xij

∑

Vij
∂wij

∂r

xij

rij
yij

∑

Vij
∂wij

∂r

yij
rij

xij

∑

Vij
∂wij

∂r

yij
rij

yij









−1

(2.19)
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where
∂wij

∂r
can be obtained using Eq. (2.7). The pressure gradient in Eq. (2.18) is

further modified to obtain the higher-order gradient model in symmetrical form as

follow:

< ∇p >i=
d

n0

∑

j 6=i

(pj + pi)

|~rj − ~ri|
(~rj − ~ri)Cij

∂wij

∂r
(2.20)

By using the modified pressure gradient model with the corrective matrix, the first-

order consistency for pressure gradient can be guaranteed and the conservation of

momentum can be satisfied.

2.4 Laplacian Model

In the present work, the higher-order Laplacian model, proposed by Khayyer and

Gotoh (2010) [92], was employed to compute the Laplacian of velocity and pressure:

< ∇2φ >i=
1

n0

∑

j 6=i

∇· < φij∇wij >i

=
1

n0

∑

j 6=i

∇φij · ∇wij + φij∇
2wij

=
1

n0

∑

j 6=i

φij(
∂2wij

∂r2
−

1

rij

∂wij

∂r
)

(2.21)

where
∂wij

∂r
and

∂2wij

∂r2
are obtained from Eqs. (2.7) and (2.8), respectively.

2.5 Poisson Equations for Pressure

The Poisson equations for pressure can be derived by implicitly correcting the inter-

mediate particle number density n∗
f to the initial value n0

f . The continuity equation

can thus be satisfied. The Poisson equations for pressure in higher-order MPS method
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are written as:

< ∇2pk+1 >i=
ρf

n0
f∆t

(

Dn∗
f

Dt

)

i

+ ECS (2.22)

The term of

(

Dnf

Dt

)∗

i

is calculated by:

(

Dnf

Dt

)∗

i

= −
∑

j 6=i

1

rij

∂wij

∂r

(

x∗
iju

∗
ij + y∗ijv

∗
ij

)

(2.23)

where x∗
ij and y∗ij are the components of the intermediate position vector r∗

ij, u
∗
ij and

v∗ij are the components of the intermediate velocity vector U ∗
ij, ECS denotes the

error-compensating part in the source term given by Khayyer and Gotoh (2011) [77].

2.6 Particle Shifting

A particle shifting technique was applied for particle regularization based on Fick’s

laws of diffusion, which describes the diffusive flux from a high concentration area to

a low concentration area of molecules. It has been widely applied in the improved

WCSPH [93] and ISPH [94] methods. In the present method, the shifting vector for

the particle i is defined as:

δ~ri = −D′∇Ci (2.24)

where D′ is a diffusion coefficient and Ci is the particle concentration at the location

of the particle i, which can be calculated by:



























D′ = Cshifth
2

∇Ci =
∑

j 6=i

2

ni + nj
∇wij

(2.25)
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where the smoothing length h is set as 1.05l0 and the shifting coefficient Cshift is set

as 0.01. l0 is the initial particle spacing between two adjacent particles. The position

of the particle i can be updated by:

~rnewi = ~ri + δ~ri (2.26)

Note that the particles on the free surface have less neighboring particles. This leads

to a truncated-kernel error when applying the particle shifting technique. A simple

solution is to set zero shifting displacement in the normal direction of the free surface

[84], i.e., the particle shifting technique was applied to the fluid particles other than

the free surface particles.

2.7 Structural Analysis

The structural analysis is based on the work by Kondo et al. (2007) [95] and Hwang et

al. (2014) [96] The volumetric strain of the ith structural particle < εV >k
i in Eq. (2.4)

at the kth time step can be calculated using the following equation:

< εV >k
i=

d

n0
i

∑

j 6=i

(

|rk
ij| − |r0

ij|

|r0

ij|
wij

)

(2.27)

where n0
i represents the initial number density of the structural particle i, |r0

ij| is

the initial particle spacing between particles i and j, |rk
ij| is the distance between

particles i and j at the kth time step.

The divergence term of the isotropic pressure and the stress tensor in Eq. (2.4)
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can be discretized as follows:

1

ρs
<∇ · (λstr(εmn)δmn) >

k
i=

λs

ρs

d

n0
i

∑

j 6=i

(

< εV >k
i + < εV >k

j

|r0

ij|

rk
ij

|rk
ij|

wij

) (2.28)

1

ρs
<∇ · (2µsεmn) >

k
i=

2µs

ρs

d

n0
i

∑

j 6=i

(

2rk
ij −Rir

0

ij − Rjr
0

ij

|r0

ij|
2

wij

) (2.29)

where Ri and Rj denote the rotational matrices of the particle i and the neighboring

particle j, respectively, at the kth time step, and Ri is defined as:

Ri =







cos θi − sin θi

sin θi cos θi






(2.30)

where θi is the rotational angle of the particle i. The discretization of equations for

conservation of angular momentum can be obtained using Eq. (2.31).

Is <
D

Dt
ωs >

k
i= −

ms

2

∑

j 6=i

Rir
0

ij ×

(

2µ

ρs

d

n0
i

2rk
ij −Rir

0

ij − Rjr
0

ij

|r0

ij|
2

)

(2.31)

2.8 Boundary Conditions

Various types of particles, as shown in Fig. 2.2, are used in the computations, including

the free surface particles, fluid particles, wall particles, and dummy particles. Note

that there is no air phase in the present method. Dummy particles are used to make

the neighboring particles of wall particles sufficient. To obtain an accurate solution of

the pressure gradient, it is important to avoid the misidentification of the free surface

particles. A combination of density and non-symmetry criteria were developed in the

present high-order MPS method to identify the free surface particles. The density
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criteria in the original MPS method [60] was employed for the wall particles, and

the non-symmetry criteria, proposed by Khayyer et al. (2009) [97] and improved by

Zhang et al. (2013) [83], was used for the fluid particles. The combined criteria led to

improved numerical stability [82]. Details of these criteria are illustrated as follows.

As shown in Fig. 2.2, considering a fluid particle and the four neighboring particles

inside its interaction circle, q1, q2, q3 and q4. At the initial condition and assuming

uniform particle distribution, q1 and q4 as well as q2 and q3 are symmetric about

the fluid particle. Introducing a vector ~F as defined in Eq. (2.35) to describe the

level of non-symmetry, a zero amplitude of ~F means all the neighboring particles

are symmetric about a fluid particle. A small amplitude of ~F for a fluid particle

indicates its neighboring particles are more symmetrically distributed. For a free

surface particle, as an example, q1, q2, q3 and q4 are not symmetric and its amplitude

of ~F will be larger. For the free surface with an arbitrary shape, the value could be

larger. Particles satisfying Eq. (2.34) are identified as the free surface particles. On

the free surface, since the pressure of a free surface particle is equal to the atmospheric

pressure, the zero-pressure boundary condition is imposed on free surface particles.

nk
i < βn0 (2.32)

Ni < βN0 (2.33)

< |~F | >i > α|~F |0 (2.34)
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Figure 2.2: Free surface identification and boundary conditions

< ~F >i=
d

n0

∑

j 6=i

~ri − ~rj
|~ri − ~rj|

wij (2.35)

where |~F |0 is the initial value of a free surface particle and α is typically set as 0.9, β

is generally set as 0.97.

The improved scheme, however, often misidentifies the free surface particles for

wall particles, which could lead to numerical divergence. In the present study, mod-

ifications were made to improve the numerical stability, where the non-symmetry

criteria Eq. (2.34) was used for the fluid particles and the density criteria Eq. (2.32)

was used for the wall particles separately. As it was tested and compared with other

methods, the modified scheme was proved to be more efficient.

The wall boundary condition can be simulated by using three layers of particles, as
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shown in Fig. 2.2. One layer of wall particles was distributed along the wall boundary,

and the other two layers of dummy particles were placed outside the wall boundary

along the normal directions of the wall particles. Pressures of all fluid particles and

wall particles are solved from the Poisson equations, while pressures of the dummy

particles are extrapolated using those of their neighboring particles. Zero-velocity

conditions are imposed on no-slip fixed wall boundaries. For moving-wall boundaries,

velocities must be prescribed or computed.

2.9 Particle Spacings for Fluid and Structure

Fluid particle

Wall particle

Dummy particle

Fluid-structure interface

Structural particle

lf0

lf0 / ls0 = 2 

Example:

ls0

Figure 2.3: Different particle spacings for the fluid and the structure

Since the properties of fluid and structures are different, different particle spac-

ings are used to ensure accurate predictions of fluid and structural responses. As

35



shown in Fig. 2.3, lf0 and ls0 represent the initial particle spacings for the fluid and

the structure, respectively. A small circle represents a structural particle and larger

circles denote fluid particles, wall particles and their dummy particles. Consequently,

the pressures on the fluid-structure interface can be interpolated from pressures of

their adjacent wall particles, which are obtained by solving the Poisson equations for

pressure in the hydrodynamic analysis.

With applying the technique of varying particle spacings for the fluid and the

structure, the structural particles can be extremely refined so that an accurate solu-

tion for the structural responses can be achieved.

2.10 Searching Neighbouring Particles

As shown in Fig. 2.4, background cells are used to search neighbouring particles. The

cell size is constant, which equals the radius of interaction region of particles. After

initialization, all particles are assigned to cells with indices. For example, the particle

i is in the cell P . Generally, 9 cells including P itself and the neighbouring cells are

used to search particles. The distance between the particle i and a particle j inside

these cells are calculated. If the distance is less than the radius of interaction region,

the particle j will be counted as a neighbouring particle of the particle i. This process

is repeated for all the particles. Neighbouring particles are in pair. If a particle j has

been identified as a neighbouring particle of a particle i, then the particle i can be

skipped when searching the neighbouring particles of the particle j.

Practically, only 5 cells, i.e., P , E, NE, N and NW as shown in Fig. 2.4 are

necessary for the searching. After searching the five cells , i.e., P , E, NE, N and
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Figure 2.4: Searching neighbouring particles

NW, for the particle i, the neighbouring particles of i are obtained, e.g., j. A pair of

i-j can be recorded since i is also one of the neighboring particle of j. Considering

searching the cells for j. Now the E cell in the figure is called P cell for j, and the P

cell in the figure is called W for j. In the figure, searching the cell E to P for particle

i is the same as searching the cell W to P for particle j. Thus it is not necessary to

repeat the searching W cell for j. Note that it is required to search cell by cell in

order, e.g., towards the direction X > 0 and then the direction Y > 0 so that only

five cells are sufficient for searching.

This searching approach has been proved to be very efficient in the present study.
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2.11 FSI Coupling

Fluid

Structure

Figure 2.5: The CSS coupling scheme for FSI computation

In the present work, the conventional serial staggered (CSS) procedure, a weak

two-way coupled scheme, was employed for the coupling of fluid and structure, as

shown in Fig. 2.5. The horizontal arrows denote the time marching. Different time

steps can be used for the fluid particles and the structural ones. For example, the

time step for structural analysis is ∆ts =
1

3
∆tf . In this case, three yellow points

would interact with the blue points while the rest four yellow points are used only for

structural analysis for time marching.

In the FSI computation, the hydrodynamic analysis was carried out first to obtain

the forces on the fluid-structure interface. The interface information was then updated

according to the structural analysis results. The the flow chart for the proposed

algorithm of MPS method is given in Fig. 2.6. The FSI solution procedure at each

step is summarized below:
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1. Generating fluid and structure particles and setting initial conditions.

2. Calculating the intermediate velocity V ∗
f of fluid particles.

3. Calculating the velocity divergence term ∇ · V ∗
f of fluid particles.

4. Identifying particles on the free surface.

5. Solving the Poisson equations for pressure using the parallel bi-conjugate gra-

dient stabilized method (BiCGSTAB) to obtain pk+1

f .

6. Computing forces ~Ff−s on the particles on the fluid-structure interface and

starting the structural analysis.

7. Searching the neighboring particles of the structure particles.

8. Computing the strain εk+1, the stress σk+1, the translational and angular accel-

erations, the velocity V k+1
s , and the angular velocity ωk+1

s .

9. Updating the displacement rk+1
s and the rotational angle θk+1

s . The interface

particles are updated and used as new boundary conditions for the fluid analysis.

10. Computing pressure gradient ∇pk+1

f for the fluid particles.

11. Updating the velocity V k+1

f and displacement rk+1

f of fluid particles.

12. Advancing to the next step by repeating Step 2.
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Figure 2.6: The flow chart for the proposed algorithm of MPS method
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2.12 Parallel Computing Scheme and Domain De-

composition

Figure 2.7: Parallel computing scheme and domain decomposition

A parallel scheme was developed based on the message passing interface (MPI)

method. Particles were grouped by using virtual background cells, shown in Fig.

2.7. Every cell size is equal to the radius of interaction region of particles. Note

that this background mesh is the same one used to search the neighbouring particles.

As illustrated in the figure for an example, four decomposed domains were used to

achieve balanced load for each processor and the information is exchanged on the

domain interfaces. Since particles can move arbitrarily, the size of the decomposed

domains will also change. After initialization, the main processor will collect all

particles information and decompose domains for all particles. Computations are
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independent in each domain and only the adjacent cells at the boundary of two

decomposed domains are used for information exchange. Finally, results are sent

back to the main processor and the simulation advances to the next time step.

With respect to the computing cost, for a typical case with 1 million particles,

the required memory is about 4 GB per CPU core. Using Intel(R) Xeon(R) CPU

E5-2683 v3 for the present simulations, the computing time was about 2.5 days for

one FSI case using 40 cores. Note that the physical time for a typical slamming case

with FSI is about 30 ms.

2.13 Uncertainty Analysis

Based on the Grid Convergence Index (GCI) method [85], a similar approach, i.e., the

Particle Convergence Index method (PCI), is developed to evaluate uncertainties in

solutions with Lagrangian particle-based methods. In this method, the initial particle

spacing represents the spatial resolution. The procedure for calculating PCI based

on Richardson extrapolation (RE) method is given below.

Considering three sets of particle resolutions with particle spacings, l1, l2 and l3,

where l1 is the smallest one, numerical solutions of an interested variable φ for the

three cases are denoted as φ1, φ2 and φ3, respectively. In 2-D simulations, particle

spacings, lj (j = 1, 2, 3), are defined as:

lj =





1

Nj

Nj
∑

i=1

(∆Vi)





1/2

(2.36)

where ∆Vi is the volume of particle i, and Nj is the total number of particles.

The refinement factors are defined as r21 = l2/l1 and r32 = l3/l2. The apparent
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order, p, can be calculated by:

p =
1

ln(r21)

∣

∣

∣

∣

ln |ε32/ε21|+ ln(
rp21 − s

rp32 − s
)

∣

∣

∣

∣

(2.37)

where ε32 = φ3 − φ2, ε21 = φ2 − φ1, and s = sgn(ε32/ε21). Equation (2.37) can

be solved by the fixed-point iteration method. After p is obtained, the extrapolated

values are calculated by:

φ21
ext =

rp21φ1 − φ2

rp21 − 1
(2.38)

The approximate relative error and the extrapolated relative error can be deter-

mined by:

e21a =

∣

∣

∣

∣

φ1 − φ2

φ1

∣

∣

∣

∣

(2.39)

e21ext =

∣

∣

∣

∣

φ21
ext − φ1

φ21
ext

∣

∣

∣

∣

(2.40)

The uncertainty in the solutions with the smallest particle spacing due to spatial

discretization is then estimated as:

PCI21fine =
1.25e21a
rp21 − 1

(2.41)

Therefore, the interval that covers the exact solution with a high confidence level

is given as:

φ1 − PCI21fineφ1 ≤ φexact ≤ φ1 + PCI21fineφ1 (2.42)
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Chapter 3

Solving 2-D Dam Breaking

The present numerical method was first validated by its application to solve a 2-D dam

breaking problem of a water column. The experiments on a dam breaking flow over a

horizontal dry bed and impacting a vertical wall were investigated by Lobovsky et al.

(2014) [98]. The computational domain, the boundary conditions and the coordinate

system are presented in Fig. 3.1. The initial width and height of the water column

were 0.6 m and 0.3 m, respectively. The length and the height of the tank is set as

1.61 m and 0.9 m, respectively. To study the wave impacting, a pressure sensor is set

on the right wall at the point P, which is 3 mm above the bed. Water elevations were

recorded at the locations of H1, H2 and H3.

For the boundary conditions in the present simulations, no-slip wall boundary

conditions were applied on the bed and walls. The kinematic and dynamic boundary

conditions were imposed on the free surface, as defined in Eqs. (3.1) and (3.2). The

kinematic boundary condition means there is no flow through the free surface. For

the dynamic boundary condition, since the pressure on the free surface equals to the
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atmospheric pressure, it was set as zero in the present work since only the water phase

is considered.

Uf · n = 0 (3.1)

p = 0 (3.2)

Figure 3.1: Computational domain for 2-D dam breaking

3.1 Convergence Studies

The sensitivity of numerical solutions to the particle spacing was first investigated by

using three sets of particles as presented in Table 3.1. The time steps were chosen

based on the Courant-Friedrichs-Lewy (CFL) condition. In all the three cases, the

CFL number, defined as CFL = V∆t/l0, was set as 0.2. Time histories for pressures
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Table 3.1: Case matrix of convergence studies for 2-D dam breaking

Case No.
Total number Particle spacing, Time step,

CFL
of particles l0 (m) ∆t (s)

1 7,324 6.0× 10−3 2.8× 10−4 0.2

2 13,036 4.2× 10−3 2.0× 10−4 0.2

3 24,600 3.0× 10−3 1.4× 10−4 0.2

4 45,616 2.1× 10−3 1.0× 10−4 0.2

5 45,616 2.1× 10−3 1.4× 10−4 0.28

6 45,616 2.1× 10−3 2.0× 10−4 0.4

at P(1.61,0.003) based on four particle spacings are presented in Fig. 3.2. The pressure

fluctuations were reduced by using smaller particle spacing. It can be observed that

the numerical solutions converged as the particle spacing was reduced. Furthermore,

uncertainties in the peak pressures due to spatial resolution by the present method

were evaluated. The PCI’s and the intermediate details are presented in Table 3.2.

It can be seen that uncertainties due to spatial resolution are small. Time histories

for the water level elevations measured at H1, H2 and H3 are also shown in Fig. 3.4.

It is indicated that the numerical results of the water level converged to the particle

spacing. Therefore, the particle spacing of l0 = 2.1 × 10−3 m was employed in the

following studies.

The study of temporal convergence was then carried out, also listed in Table 3.1.

The total number of particles was set as 45,616. The corresponding CFL numbers
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Table 3.2: Uncertainties in predicted peak pressure due to spatial resolution l0 for

2-D dam breaking

Item Uncertainties due to l0

h1 2.1× 10−3

h2 3.0× 10−3

h3 4.2× 10−3

φ1 2.810

φ2 2.974

φ3 3.792

p 4.84

φ21
ext 2.774

e21a 5.85%

e21ext 1.28%

PCI21fine 1.59%

were 0.2, 0.28 and 0.4, respectively. The time histories for pressures at P(1.61,0.003)

with different time steps are presented in Fig. 3.3 and for the water level elevations

measured at H1, H2 and H3 are shown in Fig. 3.5. The pressure fluctuations were

reduced by using smaller time steps. It can be observed that the numerical solutions

converged as the time step was decreased. The time step, ∆t = 1.0 × 10−4 s, was

then adopted.
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Figure 3.2: Spatial convergence of impact pressure for 2-D dam breaking
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Figure 3.3: Temporal convergence of impact pressure for 2-D dam breaking
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Figure 3.4: Spatial convergence of water level elevations for 2-D dam breaking
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Figure 3.5: Temporal convergence of water level elevations for 2-D dam breaking
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3.2 Numerical Results of Impact Pressure

The results presented below were obtained using 45,616 particles with a particle

spacing of l0 = 2.1 × 10−3 m and a time step of ∆t = 1.0 × 10−4 s. The predicted

time history of the impact pressure at P(1.61,0.003) is given in Fig. 3.6. The result

by the present method is also compared with the experimental data Lobovsky et al.

(2014) [98], the numerical results obtained using the first-order gradient model in

symmetrical form [89], and those by the original higher-order gradient model [77].

The pressure fluctuations were suppressed by the present model. The peak values are

listed in Table 3.3 as well as their relative errors in comparison with the experimental

data. It can be observed that the predicted value agrees well with the experimental

data Lobovsky et al. (2014) [98].
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Figure 3.6: Comparison of impact pressure at the point P(1.61,0.003) for 2-D dam

breaking
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Table 3.3: Results of peak impact pressure for 2-D dam breaking

Methods
Peak pressure

p/ρgh Error

Experimental data [98] 3.046 -

First-order gradient model [89] 2.181 28.4%

Higher-order gradient model [77] 2.453 19.5%

The present method 2.810 7.7%

3.3 Free Surface Elevation

The predicted time histories of water level elevations are shown in Fig. 3.7. The

results are also compared with the experimental data by Lobovsky et al. (2014) [98],

the numerical results obtained using the first-order gradient model in symmetrical

form [89], and those by the original higher-order gradient model [77]. The predicted

water level elevations at the locations H1, H2, and H3 were improved by using the

present higher-order gradient model. The numerical results agreed well with the

experimental data [98].

The pressure fields and the free surface at t = 1.17 s are also compared in Fig. 3.8.

The unphysical noises shown in the results of using the first-order gradient model and

the original higher-order gradient model are reduced in those by applying the present

higher-order method. The pressure fields and free surface at t = 0.28 s, 0.57 s, 0.86

s and 1.17 s are compared in Fig. 3.9. The results of the free surface are generally in

good agreement with those by Lobovsky et al. (2014) [98].
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In summary, the present higher-order method with the improved gradient model

led to improved predictions of the impact pressures and the free surface for simulations

of the two-dimensional dam breaking flow.
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Figure 3.7: Comparison of water level elevations for 2-D dam breaking
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(a) First-order gradient model [89]

(b) Higher-order gradient model [77]

(c) The present method

Figure 3.8: Comparison of pressure fields and free surface for 2-D dam breaking
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(a) The present method (t = 0.28 s) (b) Experimental snapshot [98] (t = 0.28 s)

(c) The present method (t = 0.57 s) (d) Experimental snapshot [98] (t = 0.57 s)

(e) The present method (t = 0.86 s) (f) Experimental snapshot [98] (t = 0.86 s)

(g) The present method (t = 1.17 s) (h) Experimental snapshot [98] (t = 1.17 s)

Figure 3.9: Pressure fields and free surface for 2-D dam breaking
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Chapter 4

Solving 2-D Vibration of a Thin

Plate

The structure model was verified by applying it to the vibration of a two-dimensional

thin plate clamped at the left end and free at the right end, as shown in Fig. 4.1.

Figure 4.1: Set-up of 2-D vibration of a thin plate

Based on the work of Gray et al. (2001) [99], the length and thickness of the

plate were set as L = 0.2 m and H = 0.02 m. The density, bulk modulus and the

shear modulus of the plate were ρs = 1.0 × 103 kg/m3, K = 3.25 × 106 N/m3 and
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µ = 7.15 × 105 N/m3, respectively. The corresponding Young’s modulus and the

Poisson ratio are E = 2.0 × 106N/m2 and νs = 0.3975, respectively. The following

initial velocities were imposed on the plate:

vx = 0

vy = Vfc0
[M(cos(kx)− cosh(kx))−N(sin(kx)− sinh(kx))]

Q

(4.1)

where

c0 =

√

K

ρs

M = sin(kL) + sinh(kL)

N = cos(kL) + cosh(kL)

Q = 2(cos(kL) sinh(kL)− sin(kL) cosh(kL))

(4.2)

where the k is determined by the solutions of

cos(kL) cosh(kL) = −1 (4.3)

The lowest natural vibration frequency at which the structural deformation occurs

is the first mode or the fundamental mode. The first mode usually defines the highest

loads in a structure. In the present study, the fundamental mode, i.e., kL = 1.875,

was simulated. The corresponding initial velocity of the free end is Vfc0 = 0.57 m/s.

The spatial convergence study involved five sets of particle spacings, ls0 = 2.0× 10−3

m, 1.4×10−3 m, 1.0×10−3 m, 0.7×10−3 m and 0.5×10−3 m. The number of particles

were 1,050, 2,030, 4,100, 7,980 and 16,200, respectively. The time steps were chosen

based on the CFL condition. The maximum CFL number, Vmax · ∆t/l0, was set as

4× 10−3 for all the five cases. Time histories of the displacement of the free end are

presented in Fig. 4.2. It can be seen that numerical results converged as the particle
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spacing was decreased. The particle spacing ls0 = 0.5× 10−3 m was therefore used in

the following simulations.

Three cases with different time steps were employed to investigate the temporal

convergence, i.e., ∆tf = 5.0 × 10−6 s, 3.5 × 10−6 s and 2.5 × 10−6 s. The particle

spacing was fixed as ls0 = 0.5 × 10−3 s and the corresponding particle number was

16,200. The predicted displacements of the plate free end are presented in Fig. 4.3.

It is indicated that the time step has little impact on the amplitude of displacement

and the period of vibration in the range studied.

Table 4.1: Comparison of the non-dimensional period and amplitude for the displace-

ment of the plate free end

Method Non-dimensional Non-dimensional

period, T0 = Tc0/L amplitude, A0 = A/L

SPH (Gray et al. [99]) 82.00 0.125

SPH (Sabahi and Nikseresht [100]) 80.95 0.125

Analytical solution (Hwang et al. [96]) 72.39 0.115

Present method 71.52 0.113

The final structural responses were obtained by using 16,200 structural particles

with a particle spacing of ls0 = 0.5× 10−3 m and the time step of ∆t = 2.5× 10−7 s.

The strain contours of the elastic plate at various time instants are shown in Fig. 4.5.

As presented in Fig. 4.4, the predicted time history of the deformation of the free

end is in good agreement with the analytical solution by Hwang et al. (2014) [96]
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Figure 4.2: Spatial convergence of displacement at the plate’s free end
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Figure 4.3: Temporal convergence of displacement at the plate’s free end

Improved results were obtained by the present method in comparison with solutions

by the WCSPH method [100]. The non-dimensional period and amplitude are also

listed in Table 4.1. It can be seen that the present results are in good agreement
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Figure 4.4: Comparison of the displacement at the plate’s free end

with the analytical solutions. The structural analysis was improved by the present

method.
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(a) t = 0.00 s

(b) t = 0.06 s

(c) t = 0.12 s

(d) t = 0.18 s

Figure 4.5: Strain contours of the elastic plate at four time instants
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Chapter 5

Solving 2-D Slamming of Wedges

and Ship Sections

Validation studies were carried out for the free-fall water entry of a 2-D wedge with

three tilt angles (see θ in Fig. 5.2 for the definition of the tilt angle) and two different

ship sections. Convergence of numerical solution to the size of computational domain,

the particle spacing and the time step was investigated. Uncertainties in the numerical

results with respect to the particle resolution were quantified. The predicted impact

pressures and forces by the present method are in good agreement with experimental

data. In comparison with results by the first-order gradient model in symmetrical

form and those by the original higher-order gradient model, numerical solutions were

improved by the present method.
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5.1 2-D Wedge with Different Tilt Angles

In this section, water entry of a 2-D wedge with different tilt angles was first investi-

gated using the improved higher-order MPS method. Experiments were conducted by

the Korea Research Institute of Ships and Ocean Engineering (KRISO) and the ex-

perimental data were presented in the work of Hong et al. (2017) [26]. In the present

simulations, the deadrise angle of the wedge was α = 30◦ and its width was 0.6 m.

The tilt angles θ were set as 0◦, 10◦ and 20◦. As shown in Fig. 5.1, two pressure

sensors were installed at P1 and P2 in the experiments and a load cell was located at

F for force measurement.

P 2

P 1
    50 m

m
  50 m

m

F

600 mm

Figure 5.1: Sensors on the wedge surface

The computational domain with the width, L, and the depth, D, is illustrated

in Fig. 5.2. The height of the side walls was set as 1.5D. The drop velocities,

i.e., the velocities of the body during its dropping, were prescribed according to the

experimental ones as shown in Fig. 5.3.
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Convergence studies in terms of domain size, total number of particles, particle

spacing and time step were carried out for each water entry condition. A summary

of convergence study cases is given in Table 5.1.

5.1.1 2-D Wedge with Tilt Angle of θ = 0◦

As shown in Table 5.1, the sensitivity of numerical solution to the domain size was

examined by using three domain widths and three domain depths. Time histories of

the predicted pressures at P1 and P2 and the force at F are presented in Fig. 5.4. It

can be seen that the numerical solutions converged as the domain size was increased.

The domain width and depth, L and D, were subsequently set as 3.0 m and 1.0 m,

respectively, in the following simulations.

For the sensitivity of numerical solution to particle spacing, four sets of particle

spacing were investigated. The time step for these four cases was kept as ∆t =

1.5 × 10−4 s. Figure 5.5 presents time histories of pressures at P1 and P2 and the

force at F. It is shown that numerical solutions converged and the pressure fluctuations

were suppressed as the particle spacing was reduced. Furthermore, uncertainties due

to spatial resolution by the present MPS method were evaluated. The results of

PCI and the intermediate details are presented in Table 5.2. It can bee seen that

uncertainties due to spatial resolution are small. Therefore, the particle spacing of

l0 = 2.72× 10−3 m was employed in the following studies.

In terms of convergence to time step, three time steps were used (see cases in

Table 5.1). The total number of particles for each case was kept as 414,108. Time

histories of pressures at P1 and P2 and force at F are presented in Fig. 5.6. It can
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Table 5.1: Case matrix of convergence studies for the 2-D wedge

Tilt angle Domain size Total number Particle spacing Time step

θ L (m) D (m) of particles l0 (m) ∆t (s)

0◦

2.5 1.0 184,066 3.75 × 10−3 1.5× 10−4

2.8 1.0 205,746 3.75 × 10−3 1.5× 10−4

3.0 0.8 177,428 3.75 × 10−3 1.5× 10−4

3.0 0.9 199,308 3.75 × 10−3 1.5× 10−4

3.0 1.0 221,188 3.75 × 10−3 1.5× 10−4

3.0 1.0 57,534 7.48 × 10−3 1.5× 10−4

3.0 1.0 113,122 5.29 × 10−3 1.5× 10−4

3.0 1.0 414,108 2.72 × 10−3 1.5× 10−4

3.0 1.0 414,108 2.72 × 10−3 2.0× 10−4

3.0 1.0 414,108 2.72 × 10−3 1.0× 10−4

10◦

2.5 1.0 184,066 3.75 × 10−3 1.5× 10−4

2.8 1.0 205,746 3.75 × 10−3 1.5× 10−4

3.0 0.8 177,428 3.75 × 10−3 1.5× 10−4

3.0 0.9 199,308 3.75 × 10−3 1.5× 10−4

3.0 1.0 221,188 3.75 × 10−3 1.5× 10−4

3.0 1.0 57,534 7.48 × 10−3 1.5× 10−4

3.0 1.0 113,122 5.29 × 10−3 1.5× 10−4

3.0 1.0 437,460 2.65 × 10−3 1.5× 10−4

3.0 1.0 437,460 2.65 × 10−3 2.0× 10−4

3.0 1.0 437,460 2.65 × 10−3 1.0× 10−4

20◦

3.0 1.0 221,612 3.75 × 10−3 1.5× 10−4

4.0 1.0 292,890 3.75 × 10−3 1.5× 10−4

5.0 0.8 293,740 3.75 × 10−3 1.5× 10−4

5.0 0.9 328,684 3.75 × 10−3 1.5× 10−4

5.0 1.0 364,544 3.75 × 10−3 1.5× 10−4

5.0 1.0 92,224 7.56 × 10−3 1.5× 10−4

5.0 1.0 207,708 5.00 × 10−3 1.5× 10−4

5.0 1.0 687,156 2.72 × 10−3 1.5× 10−4

5.0 1.0 687,156 2.72 × 10−3 2.1× 10−4

5.0 1.0 687,156 2.72 × 10−3 1.0× 10−4
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be observed that the pressures/force converged as the time step was decreased. The

time step, ∆t = 1.0× 10−4 s, was then adopted.

The results given below were obtained using a particle spacing of 2.72×10−3 m and

a time step of ∆t = 1.0× 10−4 s. Time histories of pressures at P1 and P2 and force

at F are presented in Fig. 5.7. They are also compared with the experimental data by

KRISO [26]), the numerical results obtained using the first-order gradient model in

symmetrical form proposed by Lee et. al [89], and those by the original higher-order

gradient model by Khayyer and Gotoh [77]. For both pressures and force, oscillations

are suppressed by the present model. The peak values are compared in Table 5.3

as well as their relative errors in comparison with the experimental data. The local

pressure at P2 for θ = 0◦ was over-predicted in comparison with the experimental

data ([26]). The errors were reduced by applying the present method with the higher-

order gradient model in symmetrical form. However, the predicted pressures and load

after the peak were slightly higher than the experimental data, which is likely caused

by the fact that the air phase and the surface roughness of the wedge were neglected

in the present numerical model. The pressure fields are also compared in Fig. 5.8.

The noise in the contour by using the first-order gradient model can be observed, and

the higher-order model improved the solution. In summary, the present higher-order

method with the improved gradient model led to improved predictions of pressures

and force.
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Table 5.2: Uncertainties in predicted peak pressures and force for the wedge with

θ = 0◦

Peak pressure at P1 Peak pressure at P2 Peak force at F

h1 2.72× 10−3 2.72× 10−3 2.72× 10−3

h2 3.75× 10−3 3.75× 10−3 3.75× 10−3

h3 7.48× 10−3 7.48× 10−3 7.48× 10−3

φ1 35.53 25.18 55.37

φ2 37.04 24.93 50.32

φ3 44.48 33.54 68.40

p 3.40 8.13 3.05

φ21
ext 34.78 25.20 58.39

e21a 4.24% 0.98% 9.11%

e21ext 2.18% 0.08% 5.19%

PCI21fine 2.67% 0.10% 6.84%

69



1.00 1.02 1.04 1.06 1.08 1.10

t (s)

0

10

20

30

40

50

60

70

p
(k

P
a
)

D=1.0m, L=2.5m

D=1.0m, L=2.8m

D=1.0m, L=3.0m

1.03 1.04 1.05
10

20

30

40

50

(a) Pressures at P1 with different domain widths

1.00 1.02 1.04 1.06 1.08 1.10

t (s)

0

10

20

30

40

50

60

70

p
(k

P
a
)

D=0.8m, L=3.0m

D=0.9m, L=3.0m

D=1.0m, L=3.0m

1.03 1.04 1.05
10

20

30

40

50

(b) Pressures at P1 with different domain depths

1.00 1.02 1.04 1.06 1.08 1.10

t (s)

0

10

20

30

40

50

60

70

p
(k

P
a
)

D=1.0m, L=2.5m

D=1.0m, L=2.8m

D=1.0m, L=3.0m

1.03 1.04 1.05
10

20

30

40

50

(c) Pressures at P2 with different domain widths

1.00 1.02 1.04 1.06 1.08 1.10

t (s)

0

10

20

30

40

50

60

70

p
(k

P
a
)

D=0.8m, L=3.0m

D=0.9m, L=3.0m

D=1.0m, L=3.0m

1.03 1.04 1.05
10

20

30

40

50

(d) Pressures at P2 with different domain depths

1.00 1.02 1.04 1.06 1.08 1.10
t (s)

0

10

20

30

40

50

60

70

80

F
(N

)

D=1.0m, L=2.5m

D=1.0m, L=2.8m

D=1.0m, L=3.0m

1.04 1.06
20

30

40

50

60

(e) Force at F with different domain widths

1.00 1.02 1.04 1.06 1.08 1.10

t (s)

0

10

20

30

40

50

60

70

80

F
(N

)

D=0.8m, L=3.0m

D=0.9m, L=3.0m

D=1.0m, L=3.0m

1.04 1.06
20

30

40

50

60

(f) Force at F with different domain depths

Figure 5.4: Sensitivity of pressures and force to domain size for the wedge with θ = 0◦
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Figure 5.5: Spatial convergence of pressures and force for the wedge with θ = 0◦
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Figure 5.6: Temporal convergence of pressures and force for the wedge with θ = 0◦
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Figure 5.7: Comparison of pressures and force for the wedge with θ = 0◦
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Table 5.3: Results for the 2-D wedge with θ = 0◦

Methods
Peak pressure Peak pressure Peak force

P1 (kPa) Error P2 (kPa) Error F (N) Error

Experimental data [26] 35.45 - 20.73 - 59.21 -

First-order gradient model [89] 24.12 31.97% 25.06 20.86% 46.17 22.04%

Higher-order gradient model [77] 29.85 15.80% 25.55 23.22% 54.01 8.80%

The present method 32.35 8.75% 23.84 15.01% 54.98 7.16%
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(a) First-order gradient model [89]

(b) Higher-order gradient model [77]

(c) The present method and the comparison with experimental snap-

shot [26]

Figure 5.8: Comparison of pressure fields for the wedge with θ = 0◦
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5.1.2 2-D Wedge with Tilt Angle of θ = 10◦

Time histories of pressures at P1 and P2 and force at F are presented in Fig. 5.9 for

different domain sizes. Results were converged as the domain size was increased. The

domain width and depth, L = 3.0 m and D = 1.0 m, which are the same as those for

the wedge with the tilt angle of θ = 10◦, were adopted in the following simulations.

Similarly, four sets of particles as shown in Table 5.1 were used in convergence

studies with the time step of ∆t = 1.5 × 10−4 s. As shown in Fig. 5.10, numerical

solutions converged as the particle spacing was decreased. Uncertainties in predicted

peak pressures and force with respect to particle spacing were presented in Table 5.4

and they are less than 5.0%. Therefore, the particle spacing of l0 = 2.65 × 10−3 m

was employed in the following studies.

Three time steps as listed in Table 5.1 were used to examine the sensitivity of

solution to time step. The total number of particles for each case was kept as 437,460.

Time histories of pressures at P1 and P2 and force at F are presented in Fig. 5.11. It

can be observed that the numerical solutions converged as the time step was decreased.

The smallest time step, ∆t = 1.0× 10−4 s, was therefore adopted.

The results given below were based on the particle spacing of 2.65× 10−3 m and

the time step of ∆t = 1.0× 10−4 s. Time histories of pressures at P1 and P2 and the

impact force at F are presented in Fig. 5.12. For both pressures and force, oscillations

were suppressed by using the present method with the higher-order pressure gradient

model in symmetrical form. The peak values and their relative errors in comparison

with the experimental data are compared in Table 5.5. Errors were reduced by the

present higher-order model. The pressure fields are compared in Fig. 5.13. The noise
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Table 5.4: Uncertainties in predicted peak pressures and force for the wedge with

θ = 10◦

Peak pressure at P1 Peak pressure at P2 Peak force at F

h1 2.65 × 10−3 2.65× 10−3 2.65× 10−3

h2 3.75 × 10−3 3.75× 10−3 3.75× 10−3

h3 7.48 × 10−3 7.48× 10−3 7.48× 10−3

φ1 48.90 40.07 77.14

φ2 52.74 40.60 74.78

φ3 75.47 55.27 101.25

p 3.63 7.04 5.28

φ21
ext 47.38 40.02 77.59

e21a 7.86% 1.33% 3.05%

e21ext 3.22% 0.13% 0.58%

PCI21fine 3.90% 0.16% 0.73%

in the pressure field was suppressed by employing the higher-order gradient model.

Therefore, the predictions of pressures and force for the asymmetric water entry of

the wedge were generally improved.
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Table 5.5: Results for the 2-D wedge with θ = 10◦

Methods
Peak pressure Peak pressure Peak force

P1 (kPa) Error P2 (kPa) Error F (N) Error

Experimental data [26] 50.69 - 41.56 - 87.52 -

First-order gradient model [89] 56.30 11.06% 63.62 53.09% 69.39 20.72%

Higher-order gradient model [77] 58.76 15.92% 51.33 23.52% 84.39 3.58%

The present method 46.41 8.45% 42.15 1.43% 80.85 7.62%
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(f) Force at F with different domain depths

Figure 5.9: Sensitivity of pressures and force to domain size for the wedge with θ = 10◦
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Figure 5.10: Spatial convergence of pressures and force for the wedge with θ = 10◦
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(c) Temporal convergence of force at F

Figure 5.11: Temporal convergence of pressures and force for the wedge with θ = 10◦
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Figure 5.12: Comparison of pressures and force for the wedge with θ = 10◦

82



(a) First-order gradient model [89]

(b) Higher-order gradient model [77]

(c) The present method and the comparison with experimental snap-

shot [26]

Figure 5.13: Comparison of pressure fields for the wedge with θ = 10◦
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5.1.3 2-D Wedge with Tilt Angle of θ = 20◦

The water entry of the wedge with a larger tilt angle θ = 20◦ was also studied. As

presented in Table 5.1, domain investigation involved three widths and three depths.

Time histories of pressures and force are presented in Fig. 5.14. As expected, results

converged as the domain size was increased. For a larger tilt angle, L and D of the

chosen domain were 5.0 m and 1.0 m, respectively. The domain width was larger

than those for wedges with smaller tilt angles.

As for convergence studies on the particle spacing, Table 5.1 lists four sets of

particle spacings with a constant time step of ∆t = 1.5 × 10−4 s. Time histories of

pressures and force are shown in Fig. 5.10. The convergence can be observed. The

corresponding uncertainty levels with respect to particle spacing are summarized in

Table 5.6 with values less than 5%. The smallest particle spacing of l0 = 2.72× 10−3

m was chosen in the following studies.

For the convergence studies on the time step, three time steps were used as pre-

sented in Table 5.1. The predicted time histories of pressures at P1 and P2 and

force at F are presented in Fig. 5.16. It can be observed that the numerical solutions

converged as the time step was decreased. The time step, ∆t = 1.0 × 10−4 s, was

therefore adopted.

The results given below were based on a particle spacing of 2.72 × 10−3 m and

a time step of ∆t = 1.0 × 10−4 s. The comparison of pressures at P1 and P2 and

the impact load at F are presented in Fig. 5.12. Oscillations in time histories of

predicted pressures and force were suppressed by the present method. The peak

values and associated errors in comparison with experimental results were presented
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Table 5.6: Uncertainties in predicted peak pressures and force for the wedge with

θ = 20◦

Peak pressure at P1 Peak pressure at P2 Peak force at F

h1 2.72 × 10−3 2.72× 10−3 2.72× 10−3

h2 3.75 × 10−3 3.75× 10−3 3.75× 10−3

h3 7.56 × 10−3 7.56× 10−3 7.56× 10−3

φ1 68.82 71.00 147.91

φ2 63.37 66.43 134.92

φ3 88.18 108.37 220.59

p 3.56 5.11 4.38

φ21
ext 71.36 72.10 152.12

e21a 7.92% 6.44% 8.78%

e21ext 3.57% 1.52% 2.77%

PCI21fine 4.62% 1.93% 3.56%

in Table 5.7. The pressure fields are further compared in Fig. 5.18. Comparing with

other methods, the present higher-order model shows improvement.
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Table 5.7: Results for the 2-D wedge with θ = 20◦

Methods
Peak pressure Peak pressure Peak force

P1 (kPa) Error P2 (kPa) Error F (N) Error

Experimental data [26] 70.09 - 62.65 - 160.37 -

First-order gradient model [89] 56.30 19.67% 63.62 1.54% 132.82 17.18%

Higher-order gradient model [77] 58.76 16.16% 51.33 18.07% 138.27 13.78%

The present method 68.10 2.83% 66.49 6.12% 148.45 7.43%
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(c) Pressures at P2 with different domain widths
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(d) Pressures at P2 with different domain depths
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(e) Force at F with different domain widths
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(f) Force at F with different domain depths

Figure 5.14: Sensitivity of pressures and force to domain size for the wedge with

θ = 20◦ 87
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(c) Spatial convergence of force at F

Figure 5.15: Spatial convergence of pressures and force for the wedge with θ = 20◦
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Figure 5.16: Temporal convergence of pressures and force for the wedge with θ = 20◦
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Figure 5.17: Comparison of pressures and force for the wedge with θ = 20◦
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(a) First-order gradient model [89]

(b) Higher-order gradient model [77]

(c) The present method and the comparison with experimental snap-

shot [26]

Figure 5.18: Comparison of pressure fields for the wedge with θ = 20◦
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5.2 2-D Ship Sections

Validation studies were further carried out for 2-D ship sections (Model A and Model

B) tested by KRISO (Hong et al. (2017) [26]). The drop height was h = 0.3 m.

Figure 5.19 shows the locations of three pressure sensors, P1, P2 and P3, and those

of three load cells, F1, F2 and F3. The radius of each load cell was 50 mm. The

computational domain and the initial settings of 2-D simulations are presented in

Fig. 5.20. The prescribed drop velocities measured in the experiments are given in

Fig. 5.21. Convergence studies on the domain size, the particle spacing, and the

time step were carried out in a similar way to the wedge. Table 5.8 summarized the

parameters in convergence studies for ship sections, Model A and Model B.
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Figure 5.19: Sensors on the ship sections

5.2.1 2-D Ship Section (Model A)

For studies on domain size, the particle spacing was kept the same as l0 = 3.75×10−3

m and the corresponding time step was set as ∆t = 1.5 × 10−4 s. The predicted
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Figure 5.20: Computational domains for the water entry of the ship sections

pressures at P1, P2, P3 and the predicted forces at F1, F2, F3 for Model A are

shown in Fig. 5.22 and Fig. 5.23, respectively. It can be seen that numerical solutions

converged as the domain size was increased. In the following studies, the domain
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Figure 5.21: Drop velocities for the water entry of the ship sections

width and depth were chosen as L = 3.0 m and D = 1.0 m, respectively.

The sensitivities of numerical solutions to the particle spacing was then examined.

Table 5.8 lists four sets of particle spacing with the same time step ∆t = 1.5×10−4 s.

Time histories of pressures at P1, P2 and P3 and forces at F1, F2 and F3 for Model

A are given in Fig. 5.10. Numerical solutions converged with a decreased particle

spacing. Uncertainties due to particle spacing were given in Table 5.9. The largest

numerical uncertainty of the results was within 3.0%, and the particle spacing of

l0 = 2.50× 10−3 m was employed in the following studies.

For the sensitivity study on time step, time histories of pressures and forces for

Model A are presented in Fig. 5.25 with various time steps shown in Table 5.8. A

smaller time step led to converged solution with less oscillations in the time series.

The time step, ∆t = 1.5× 10−4 s, was chosen for the following simulations.
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Table 5.8: Case matrix of convergence studies for the ship sections

Geometry
Domain size Total number Particle spacing Time step

L (m) D (m) of particles l0 (m) ∆t (s)

Ship section (Model A)

2.5 1.0 185,164 3.75 × 10−3 1.5 × 10−4

2.8 1.0 206,844 3.75 × 10−3 1.5 × 10−4

3.0 0.8 178,438 3.75 × 10−3 1.5 × 10−4

3.0 0.9 200,366 3.75 × 10−3 1.5 × 10−4

3.0 1.0 222,286 3.75 × 10−3 1.5 × 10−4

3.0 1.0 57,534 7.48 × 10−3 1.5 × 10−4

3.0 1.0 113,122 5.29 × 10−3 1.5 × 10−4

3.0 1.0 222,286 3.75 × 10−3 2.1 × 10−4

3.0 1.0 222,286 3.75 × 10−3 3.0 × 10−4

3.0 1.0 493,030 2.50 × 10−3 1.5 × 10−4

Ship section (Model B)

3.0 1.0 57,440 7.48 × 10−3 1.5 × 10−4

3.0 1.0 112,888 5.29 × 10−3 1.5 × 10−4

3.0 1.0 221,762 3.75 × 10−3 1.5 × 10−4

3.0 1.0 221,762 3.75 × 10−3 2.1 × 10−4

3.0 1.0 221,762 3.75 × 10−3 3.0 × 10−4

3.0 1.0 437,894 2.65 × 10−3 1.5 × 10−4

Based on a particle spacing of 2.50× 10−3 m and a time step of ∆t = 1.5× 10−4

s, time histories of the numerical solutions are presented in Fig. 5.26. In comparison
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with other numerical methods, oscillations in pressures and forces were suppressed by

the present higher-order method in symmetrical form. Furthermore, their peak values

were summarized in Table 5.10 and Table 5.11 along with their relative errors. The

predicted pressures and forces by the present method are in good agreement with

the experimental data. The over-predictions of pressures/forces after the peak are

potentially caused by the air entrapment and bubbles. Note that the present model

does not account for air. The pressure fields at t = 0.28 s are compared in Fig. 5.27,

which shows the improvement by the present higher-order method.
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Figure 5.22: Sensitivities of pressures to domain size for the ship section (Model A)
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Figure 5.23: Sensitivities of forces to domain size for the ship section (Model A)
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Figure 5.24: Spatial convergence of pressures and forces for the ship section (Model

A) 99



Table 5.9: Uncertainties in predicted peak pressures and forces for the ship section

(Model A)

Peak pressures Peak forces

P1 P2 P3 F1 F2 F3

h1 2.50 × 10−3 2.50 × 10−3 2.50 × 10−3 2.50 × 10−3 2.50 × 10−3 2.50× 10−3

h2 3.75 × 10−3 3.75 × 10−3 3.75 × 10−3 3.75 × 10−3 3.75 × 10−3 3.75× 10−3

h3 7.48 × 10−3 7.48 × 10−3 7.48 × 10−3 7.48 × 10−3 7.48 × 10−3 7.48× 10−3

φ1 8.23 7.89 7.09 20.48 19.66 16.74

φ2 8.37 7.76 7.08 20.20 20.47 16.58

φ3 8.72 8.14 7.57 21.45 17.29 15.54

p 1.45 2.14 7.23 2.97 2.73 3.40

φ21
ext 8.06 7.99 7.09 20.60 19.25 16.80

e21a 1.71% 1.64% 0.16% 1.36% 4.14% 0.98%

e21ext 2.19% 1.18% 0.01% 0.58% 2.09% 0.33%

PCI21fine 2.68% 1.49% 0.01% 0.73% 2.56% 0.41%
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Figure 5.25: Temporal convergence of pressures and forces for the ship section (Model
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Figure 5.26: Comparison of pressures and forces for the ship section (Model A)
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Table 5.10: The predicted pressures for the ship section (Model A)

Methods
Peak pressure Peak pressure Peak pressure

P1 (kPa) Error P2 (kPa) Error P3 (kPa) Error

Experimental data [26] 6.10 - 6.30 - 5.81 -

First-order gradient model [89] 8.81 44.50% 8.46 34.23% 7.16 23.27%

Higher-order gradient model [77] 8.80 44.39% 8.38 33.02% 7.55 29.91%

The present method 8.23 35.07% 7.89 25.31% 7.09 22.03%

Table 5.11: The predicted forces for the ship section (Model A)

Methods
Peak force Peak force Peak force

F1 (N) Error F2 (N) Error F3 (N) Error

Experimental data [26] 17.94 - 18.49 - 15.68 -

First-order gradient model [89] 20.99 16.98% 21.20 14.68% 17.22 9.81%

Higher-order gradient model [77] 20.78 15.80% 21.47 16.11% 17.46 11.33%

The present method 20.48 14.15% 19.66 6.32% 16.74 6.76%
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(a) First-order gradient model [89]

(b) Higher-order gradient model [77]

(c) The present method and the comparison with experimental snap-

shot [26]

Figure 5.27: Comparison of pressure fields for the ship section (Model A)
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5.2.2 2-D Ship Section (Model B)

Validation studies were extended to a 2-D ship section (Model B) (Hong et al. (2017)

[26]). The drop height was h = 0.17 m. According to the previous studies of the

2-D ship section (Model A), the domain depth and width were set as 1.0 m and

3.0 m, respectively, which were sufficiently large to eliminate the wall effect. Spatial

and temporal convergence studies were also conducted. The results of convergence

studies for Model B are shown in Figure 5.28 and Fig. 5.29. It can be concluded

that a particle spacing of 2.65 × 10−3 m and a time step of ∆t = 1.5 × 10−4 s were

adopted. The PCI values and the intermediate details for pressures and forces are

given in Table 5.12.

The predicted pressures and forces are presented in Fig. 5.30 and compared with

the experimental data (Hong et al. (2017) [26]). The oscillations were generally sup-

pressed and the peak pressures and forces were improved when the higher-order gra-

dient model in symmetrical form was applied. The predicted peak values are sum-

marized in Table 5.13 and Table 5.14 along with their relative errors. The pressures

and forces after the peak and up to t = 0.42 s were over-predicted due to the fact

that air entrapment was not considered in the present method. After t = 0.42 s,

the predictions were in good agreement with the experimental data. The pressure

fields at t = 0.22 s are also compared in Fig. 5.31. The pressure field by the present

method with higher-order gradient model in symmetrical form is smoother than that

by the first-order model and that by the original higher-order model. In summary, the

present method with the higher-order gradient model in symmetrical form generally

improved the prediction of pressures and forces for the 2-D ship section (Model B).
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The following conclusions are made from the 2-D studies on rigid wedges and ship

sections:

1. A higher-order MPS method with an improved pressure gradient model was

developed to solve 2-D water entry problems. The pressure gradient model

was modified to guarantee the first-order consistency and the conservation of

momentum simultaneously. A particle shifting technique has been employed

for further improvement. A particle convergence index (PCI) method was de-

veloped to evaluate the uncertainties in solutions by Lagrangian particle-based

methods.

2. The present method with the higher-order gradient model in symmetrical form

was validated by its applications to the water entries of a 2-D wedge with three

tilt angles and two ship sections. The predicted pressures and forces converged

as the domain size was increased, and as the particle spacing and the time step

were decreased.

3. The PCI’s of the predicted pressures and forces are less than 7%. Numerical

results by the present method were generally in good agreement with the exper-

imental data. In comparison with the first-order gradient model by Lee et al.

(2011) [89], and the higher-order gradient model by Khayyer and Gotoh [77],

the present method led to reduced relative errors in the predicted peak pressures

and loads. Noises in the time histories of pressure and force and in the pres-

sure fields were also suppressed by the present method. The over-predictions

after the impact are likely caused by air entrapment and bubbles, which are

not considered in the present method. As a summary, the present method with
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the higher-order gradient model in symmetrical form improved the prediction

of pressures and forces for wedges and ship sections during water entry.

4. Based on the convergence studies, the following parameters are recommended

for 2-D simulations of water entry with the present higher-order method. The

domain width should be 4-5 times of the width of wedge or ship section. The

CFL number should be less than 0.15 for numerical stability, where V , ∆t and

l0 are the velocity when the object touches the water surface, the time step,

and the particle spacing, respectively. For uniform distribution of particles in

the computational domain, the number of particles per meter should be at least

360. In the present studies, the number of particles over the wedge width was

220 and the number of particles over the width of ship section was 270.
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Figure 5.28: Spatial convergence of pressures and forces for the ship section (Model
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Table 5.12: Uncertainties in predicted peak pressures and forces for the ship section

(Model B)

Peak pressures Peak forces

P1 P2 P3 F1 F2 F3

h1 2.65 × 10−3 2.65 × 10−3 2.65 × 10−3 2.65 × 10−3 2.65 × 10−3 2.65× 10−3

h2 3.75 × 10−3 3.75 × 10−3 3.75 × 10−3 3.75 × 10−3 3.75 × 10−3 3.75× 10−3

h3 7.48 × 10−3 7.48 × 10−3 7.48 × 10−3 7.48 × 10−3 7.48 × 10−3 7.48× 10−3

φ1 8.26 6.24 5.37 20.74 16.17 12.57

φ2 8.28 6.44 5.52 20.54 16.26 12.40

φ3 9.68 7.40 6.35 21.93 16.87 13.85

p 9.66 3.24 3.57 4.35 3.95 4.746

φ21
ext 8.26 6.15 5.32 20.79 16.14 12.61

e21a 0.19% 3.09% 2.67% 0.93% 0.55% 1.32%

e21ext 0.01% 1.51% 1.10% 0.26% 0.19% 0.31%

PCI21fine 0.008% 1.86% 1.36% 0.33% 0.23% 0.39%
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Figure 5.29: Temporal convergence of pressures and forces for the ship section (Model
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Figure 5.30: Comparison of pressures and forces for the ship section (Model B)
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Table 5.13: The predicted pressures for the ship section (Model B)

Methods
Peak pressure Peak pressure Peak pressure

P1 (kPa) Error P2 (kPa) Error P3 (kPa) Error

Experimental data [26] 7.88 - 6.16 - 4.97 -

First-order gradient model [89] 8.84 12.20% 6.45 4.74% 5.50 10.74%

Higher-order gradient model [77] 8.02 1.74% 6.87 11.60% 6.05 21.69%

The present method 8.26 4.85% 6.24 1.39% 5.37 8.12%

Table 5.14: The predicted forces for the ship section (Model B)

Methods
Peak force Peak force Peak force

F1 (N) Error F2 (N) Error F3 (N) Error

Experimental data [26] 19.41 - 16.30 - 12.89 -

First-order gradient model [89] 21.30 9.78% 16.09 1.30% 13.40 3.95%

Higher-order gradient model [77] 20.25 4.35% 17.50 7.33% 13.27 2.96%

The present method 20.74 6.85% 16.17 0.82% 12.57 2.48%
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(a) First-order gradient model [89]

(b) Higher-order gradient model [77]

(c) The present method and the comparison with experimental snap-

shot [26]

Figure 5.31: Comparison of pressure fields for the ship section (Model B)
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Chapter 6

Solving 2-D Slamming of a

Deformable Wedge with FSI

To further validate the present method, numerical simulations were conducted for

water entry of the elastic wedge tested by Panciroli et al. (2012) [30]. The wedge was

made of two composite panels (300 mm long, 250 mm wide and 2 mm thick) with

connection only at the reinforced tip, which was considered as rigid in the numerical

simulations. The composite panels were made by fibreglass. The density of structure

was ρs = 2, 015 kg/m3, Young’s modulus was E = 30.3 GPa, and the Poisson ratio

was νs = 0.28.

As shown in Fig. 6.1, the deadrise angle of the wedge was denoted as α and

a strain gauge was located at 120 mm from the reinforced tip. The length of the

computational domain was set as L = 1.2 m and the water depth was D = 0.6 m

according to experimental set-ups. The numerical simulation started from the time

instant of impact with an initial entry velocity, V , relative to the calm water, which
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is corresponding to the drop height, H . As summarized in Table 6.1, two deadrise

angles, α = 30◦ and α = 20◦, were investigated. For α = 30◦, two initial entry

velocities/drop heights for the free-fall motion were examined.

Note that since the elastic panel is ultra thin (2 mm), a much smaller particle

spacing for the structure than that for the fluid was used.

O

1
.8

 D

Strain gauge

Reinforced tip

aluminum wedge

L

2 mm

D

Mass

H

Figure 6.1: Computational domain for the hydroelastic impact

6.1 2-D Deformable Wedge with Deadrise Angle

of α = 30
◦

Convergence studies on particle spacing and time step for the deadrise angle α = 30◦

and the drop height H = 0.39 m were listed in Table 6.2. The spatial convergence
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Table 6.1: Summary of cases for the hydroelastic impact

Deadrise angle, Drop height, Entry velocity,

α (◦) H (m) V (m/s)

30 0.39 2.770

30 0.50 3.132

20 0.50 3.132

Table 6.2: Convergence studies on particle spacing and time step for the fluid (α = 30◦

and H = 0.39 m)

No. Fluid particle Structural particle Time step for Time step for

spacing, lf0 (m) spacing, ls0 (m) fluid, ∆tf (s) structure, ∆ts (s)

1 4.00 × 10−3 0.50 × 10−3 1.00 × 10−4 0.33 × 10−7

2 2.00 × 10−3 0.50 × 10−3 0.50 × 10−4 0.33 × 10−7

3 1.00 × 10−3 0.50 × 10−3 0.25 × 10−4 0.33 × 10−7

4 1.00 × 10−3 0.50 × 10−3 0.50 × 10−4 0.33 × 10−7

5 1.00 × 10−3 0.50 × 10−3 0.75 × 10−4 0.33 × 10−7

study for the fluid involved three sets of particles. The fluid particle spacings were

lf0 = 4.0 × 10−3 m, 2.0 × 10−3 m and 1.0 × 10−3 m, respectively, and the structural

particle spacing was set as ls0 = 0.5× 10−3 m for all cases. In all the three cases, the

CFL number was set as 0.14 for the fluid and 0.18 × 10−3 for the structure. Figure
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Table 6.3: Convergence studies on the number of particle layers across the thickness

of the plate (α = 30◦ and H = 0.39 m)

No. Fluid particle Structural particle Ratio of spacing, Number of

spacing, lf0 (m) spacing, ls0 (m) lf0/ls0 particle layers

1 1.00 × 10−3 1.00 × 10−3 1.00 2

2 1.00 × 10−3 0.50 × 10−3 2.00 4

3 1.00 × 10−3 0.33 × 10−3 3.00 6

4 1.00 × 10−3 0.25 × 10−3 4.00 8

6.2 presents the time histories of the predicted strain at the strain gauge. It can be

seen that the numerical solutions converged and the fluctuations were suppressed as

the particle spacing was reduced. The numerical oscillations in structural strain were

due to the oscillations of the pressure on the fluid-structure interface. In Fig. 6.2,

the numerical oscillations were caused by a coarse spatial discretization. Note that

the number of particles needs to be adequate. if not, the flow field and the interfaces

cannot be described accurately, and numerical errors will therefore be relatively large.

As concluded from the spatial convergence study, the numerical oscillations can be

suppressed by using a smaller particle spacing.

Furthermore, three cases with different time steps for the fluid were employed

to investigate the temporal convergence, i.e., ∆tf = 7.5 × 10−5 s, 5.0 × 10−5 s and

2.5 × 10−5 s. The time step for the structure was fixed as ∆ts = 3.3 × 10−8 s. The

predicted local strains are presented in Fig. 6.3. The fluctuations were suppressed and
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the solutions converged as the time step was reduced. In Fig. 6.3, the oscillations were

resulted from large time steps. For time marching with a large time step, particles

move inaccurately and non-physical collisions between particles and boundaries might

occur. Therefore, a decrease in the time step helps suppress the numerical oscillations

and improves the numerical stability.

As presented in Table 6.3, convergence studies on the number of particle layers

across the thickness of the plate were also carried out. Four sets of particle layers

were set as 2, 4, 6 and 8. The structural particle spacings were ls0 = 1.0 × 10−3

m, 0.5 × 10−3 m, 0.33 × 10−3 m and 0.25 × 10−3 m, respectively. The fluid particle

spacing was lf0 = 1.0×10−3 m for all cases. The predicted local strains are presented

in Fig. 6.4, which converged as the number of particle layers was increased.
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Figure 6.2: Convergence of local strains to particle spacing (α = 30◦ and H = 0.39

m)
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Figure 6.3: Convergence of local strains to time step (α = 30◦ and H = 0.39 m)
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Figure 6.4: Convergence of local strains to the number of particle layers across the

thickness of the plate (α = 30◦ and H = 0.39 m)

Uncertainties in the maximum strain magnitude, |ε|max, due to the spatial res-

olutions of fluid and structure were evaluated. The corresponding PCI’s and the
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intermediate details are presented in Table 6.4. It can bee seen that uncertainties

in solutions due to spatial resolution are small. Therefore, the particle spacings of

lf0 = 1.0× 10−3 m and ls0 = 0.33× 10−3 m were employed in the following studies.

Table 6.4: Uncertainties in maximum strain magnitude due to spatial resolution in

terms of lf0 and ls0 for the elastic wedge (α = 30◦ and H = 0.39 m)

Item Uncertainties due to lf0 Uncertainties due to ls0

h1 1.0× 10−3 0.3× 10−3

h2 2.0× 10−3 0.5× 10−3

h3 4.0× 10−3 1.0× 10−3

φ1 3.66× 10−4 3.69× 10−4

φ2 3.74× 10−4 3.66× 10−4

φ3 3.64× 10−4 3.30× 10−4

p 0.39 3.31

φ21
ext 3.42× 10−4 3.70× 10−4

e21a 2.05% 0.82%

e21ext 7.01% 0.29%

PCI21fine 8.19% 0.36%

Numerical results based on the particle spacings of lf0 = 1.0 × 10−3 m, ls0 =

0.33 × 10−3 m are presented below. The corresponding number of fluid particles

is 737,124 and the number of structural particles is 10,806. The CFL number was
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fixed as 0.14 for the fluid and 0.18 × 10−3 for the structure. As shown in Fig. 6.7,

the predicted strains for the deadrise angle of α = 30◦ are in a good agreement

with the experimental data [31]. They are also compared with the numerical results

obtained using the original higher-order gradient model proposed by Khayyer and

Gotoh (2011) [77]. The errors were reduced and the oscillations were suppressed by

the present method with the higher-order gradient model in symmetrical form. The

contours of fluid pressure and strain of the elastic panel are shown in Fig. 6.5 and

Fig. 6.6. For the far field region, the pressure contours obtained by the present method

are generally the same as the results by the original higher-order gradient model. For

the near field region, i.e., close to the wedge surface, the pressure distributions by the

original higher-order gradient model are not symmetrical about the tip in Fig. 6.5,

while it was improved for the results obtained by the improved higher-order model

as shown in Fig. 6.6. The numerical noises in the results by the original higher-order

gradient model [77] were reduced with the present model.

Another drop height, H = 0.5 m, was also investigated. The numerical results

were obtained using the same particle spacings and the CFL numbers as those for

the cases with H = 0.39 m. As shown in Fig. 6.8, the predicted strains generally

agree with the experimental data [31]. A larger structural deformation was observed

because of the higher impact velocity. The frequencies of vibration were similar for the

two drop heights for the wedge with the deadrise angle of α = 30◦. The discrepancy

for the maximum strain between 10 to 20 seconds is relatively large. The discrepancy

between numerical results and experimental data is likely caused by air entrapment

and bubbles. In experiments, air could be entrapped in waters. In present work, air

phase was not considered. The impact pressures measured in experiment are therefore
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Figure 6.5: Contours by the original higher-order gradient model (α = 30◦ and H =

0.39 m)

a little smaller than the numerical solutions. Consequently, the maximum structural

strain measured in experiment is smaller than the numerical one. The structural

deformation was reaching the maximum in the period between 10 to 20 seconds.

The drop height and the impact velocity were higher in Fig. 6.8 in comparison with

Fig. 6.7. There could be more air entrapment and bubbles. Numerical results could

be improved by using the multi-phase solver to consider the effect of air phase to the

fluid-structural interaction.
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Figure 6.6: Contours by the present higher-order gradient model in symmetrical form

(α = 30◦ and H = 0.39 m)
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Figure 6.7: Comparison of local strains (α = 30◦ and H = 0.39 m)
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Figure 6.8: Comparison of local strains (α = 30◦ and H = 0.5 m)

Table 6.5: Convergence studies on particle spacing and time step for the fluid (α = 20◦

and H = 0.5 m)

No. Fluid particle Structural particle Time step for Time step for

spacing, lf0 (m) spacing, ls0 (m) fluid, ∆tf (s) structure, ∆ts (s)

1 4.00× 10−3 0.50× 10−3 1.00× 10−4 0.33× 10−7

2 2.00× 10−3 0.50× 10−3 0.50× 10−4 0.33× 10−7

3 1.00× 10−3 0.50× 10−3 0.25× 10−4 0.33× 10−7

4 1.00× 10−3 0.50× 10−3 0.50× 10−4 0.33× 10−7

5 1.00× 10−3 0.50× 10−3 0.75× 10−4 0.33× 10−7
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Table 6.6: Convergence studies on the number of particle layers across the thickness

of the plate (α = 20◦ and H = 0.5 m)

No. Fluid particle Structural particle Ratio of spacing, Number of

spacing, lf0 (m) spacing, ls0 (m) lf0/ls0 particle layers

1 1.00× 10−3 1.00× 10−3 1.00 2

2 1.00× 10−3 0.50× 10−3 2.00 4

3 1.00× 10−3 0.33× 10−3 3.00 6

4 1.00× 10−3 0.25× 10−3 4.00 8
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Figure 6.9: Convergence of local strains to particle spacing (α = 20◦ and H = 0.5 m)
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Figure 6.10: Convergence of local strains to time step (α = 20◦ and H = 0.5 m)
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Figure 6.11: Convergence of local strains to the number of particle layers across the

thickness of the plate (α = 20◦ and H = 0.5 m)

6.2 2-D Deformable Wedge with Deadrise Angle

of α = 20
◦

For a smaller deadrise angle of the wedge (α = 20◦), convergence cases with respect

to particle spacing and time step for the drop height of H = 0.5m are presented in
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Table 6.5. In the spatial convergence study, three sets of fluid particle spacings were

lf0 = 4.0× 10−3 m, 2.0 × 10−3 m and 1.0 × 10−3 m. The structural particle spacing

was ls0 = 0.5 × 10−3 m for all cases. The CFL number was 0.14 for the fluid and

0.18× 10−3 for the structure. Figure 6.9 presents the time histories of the predicted

strain at the strain gauge. It can be seen that the numerical solutions converged and

the fluctuations were suppressed as the particle spacing was reduced.

Furthermore, three cases with different time steps for the fluid were used to in-

vestigate the temporal convergence, including ∆tf = 7.5 × 10−5 s, 5.0 × 10−5 s and

2.5 × 10−5 s. The time step for the structure was kept as ∆ts = 3.3 × 10−8 s. The

predicted local strains are presented in Fig. 6.10, which converged as the time step

was reduced. It can be observed that the fluctuations were also suppressed with the

decreased time step.

As presented in Table 6.6, four numbers of particle layers across the thickness of

the plate were used, i.e., 2, 4, 6 and 8. The corresponding structural particle spacings

are ls0 = 1.0× 10−3 m, 0.5× 10−3 m, 0.33× 10−3 m and 0.25× 10−3 m, respectively.

The particle spacing for the fluid was kept as lf0 = 1.0 × 10−3 m for all cases. The

predicted local strains are presented in Fig. 6.11, which converged as the number of

particle layers was increased.

Uncertainties in the maximum strain magnitude, |ε|max, due to spatial resolutions

of fluid and structure are presented in Table 6.7. It can bee seen that uncertainties

due to spatial resolution are small. Therefore, the particle spacings of lf0 = 1.0×10−3

m and ls0 = 0.33× 10−3 m were employed for the following simulations.

Furthermore, larger deformations occurred for the deadrise angle α = 20◦ of the

wedge with the same drop height, as presented in Fig. 6.12. Compared with the results
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Table 6.7: Uncertainties in the maximum strain magnitude due to spatial resolution

in terms of lf0 and ls0 for the elastic wedge (α = 20◦ and H = 0.5 m)

Item Uncertainties due to lf0 Uncertainties due to ls0

h1 1.0× 10−3 0.25× 10−3

h2 2.0× 10−3 0.33× 10−3

h3 4.0× 10−3 0.50× 10−3

φ1 6.47× 10−4 7.45× 10−4

φ2 6.89× 10−4 6.92× 10−4

φ3 6.77× 10−4 6.47× 10−4

p 1.83 2.26

φ21
ext 6.31× 10−4 8.03× 10−4

e21a 6.44% 7.11%

e21ext 2.59% 7.19%

PCI21fine 3.16% 9.69%

using the original higher-order model (MPS-HS-HL-ECS-GC) proposed by Khayyer

and Gotoh (2011) [77], the errors were reduced and oscillations were suppressed by

the present method with the higher-order gradient model in symmetrical form. The

predicted results by the present method are in good agreement with the experimental

data.

To analyze the mechanism of the structural deformation and cavitation due to

128



0 5 10 15 20 25

t (ms)

−0.00100

−0.00075

−0.00050

−0.00025

0.00000

0.00025

0.00050

0.00075

0.00100

S
tr

ai
n

Experimental data (Panciroli, 2013)
Higher-order gradient model (Khayyer and Gotoh, 2011)
Higher-order gradient model in symmetrical form (the present method)

Figure 6.12: Comparison of local strains (α = 20◦ and H = 0.5 m)
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Figure 6.13: Numerical results of local strains for different deadrise angles and drop

heights

slamming, numerical results for the two drop heights and the two deadrise angles are

compared in Fig. 6.13. The pressure and strain contours are shown in Figs. 6.14 to

129



6.22. The high impact pressure occurs around the wedge tip when the object touches

the water surface. Afterwards, the location of local high pressure moves along the jets

over time. Large structural deformations occur near the position of the local high

pressure, which further affect the fluid pressure field. The structural deformation

led to a low pressure around the wedge tip. If the local pressure is lower than the

vapor pressure of water, cavitation will occur. For a smaller deadrise angle, a larger

structural deformation during the water entry can be seen in Fig. 6.21.

Figure 6.14: Contours of fluid pressure and strain of the elastic panel at t = 0.1 s

(α = 30◦ and H = 0.39 m)
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Figure 6.15: Contours of fluid pressure and strain of the elastic panel at t = 0.15 s

(α = 30◦ and H = 0.39 m)
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Figure 6.16: Contours of fluid pressure and strain of the elastic panel at t = 0.2 s

(α = 30◦ and H = 0.39 m)

Figure 6.17: Contours of fluid pressure and strain of the elastic panel at t = 0.1 s

(α = 30◦ and H = 0.5 m)
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Figure 6.18: Contours of fluid pressure and strain of the elastic panel at t = 0.15 s

(α = 30◦ and H = 0.5 m)

Figure 6.19: Contours of fluid pressure and strain of the elastic panel at t = 0.2 s

(α = 30◦ and H = 0.5 m)
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Figure 6.20: Contours of fluid pressure and strain of the elastic panel at t = 0.1 s

(α = 20◦ and H = 0.5 m)

Figure 6.21: Contours of fluid pressure and strain of the elastic panel at t = 0.15 s

(α = 20◦ and H = 0.5 m)
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Figure 6.22: Contours of fluid pressure and strain of the elastic panel at t = 0.2 s

(α = 20◦ and H = 0.5 m)
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis presents an improved higher-order MPS method to solve 2-D water en-

try problems with fluid-structure interaction. The model of pressure gradient was

modified to guarantee the first-order consistency and the conservation of momentum

simultaneously. A particle shifting technique has been employed for further improve-

ment. A particle convergence index (PCI) method was developed to evaluate the

uncertainties in solutions by Lagrangian particle-based methods. Different particle

spacings were applied for the hydrodynamic and structural analysis.

The present MPS method was first validated by solving 2-D dam breaking and

2-D vibration of a thin plate. Verification and validation studies were also carried

out for rigid wedges and ship sections as well as elastic wedges entering the calm

water. Convergence studies on particle spacing, time step and the number of particle

layers across the thickness of the plate indicate that the numerical results converged
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well. The PCI’s of the predicted strain of the elastic wedge were less than 10%. Good

agreement was achieved between the numerical predictions and the experimental data.

Based on the convergence studies, the following best-practice parameters are rec-

ommended for 2-D simulations of hydroelastic slamming with the present higher-order

method. To keep numerical stability, the CFL number should be less than 0.14 for the

fluid and 0.18×10−3 for the structure. For the uniform distribution of particles in the

computational domain, the number of particles per meter should be at least 1,000 for

the fluid and 4,000 for the structure. In the present studies, the number of particles

over the wedge panel was 300 and the number of particles across the thickness of the

plate was 8.

For the same deadrise angle of the wedge, the drop height has limited influence

on the frequency of vibration, in spite of the magnitude was increased for a large

drop height. For the same drop height, a greater hydroelastic effect was observed

for the small deadrise angle of the wedge. A larger structural deformation and a

higher frequency of vibration of the elastic panel occurred during the slamming due

to greater impact velocity and smaller deadrise angle. The local low pressure due to

structural deformation was analyzed, which could result in cavitation. Consequently,

it is important to study the hydroelastic deformation of the wedge with a small

deadrise angle and high impact velocity during the water entry. More validation

studies will be carried out in the future on cavitation.

The limitations of the presented method are also discussed. Firstly, the comput-

ing efficiency is limited by the large memories consumed for the parallel computa-

tion. Another limitation is the present method did not consider the air phase in the

fluid-structure interaction. Air bubbles / cushions could have certain effects on the

137



slamming loads for the cases with complex geometries and deformable structures.

7.2 Recommendations for Future Work

The present 2-D method can be extended for 3-D simulations. The interaction region

of particles will be changed from a circle to a sphere. Note that a smaller CFL number

should be applied in 3-D simulations rather than that in 2-D cases since the particles

could move through a wall boundary. The improved higher-order MPS method has

advantages in solving wave impact problems due to its good capacity to deal with the

highly deformed / breaking free surface in 3-D simulations. Due to the 3-D effects,

the deformation of the fluid-structure interface could be very complicated, leading to

bad qualities of 3-D grids in grid-based methods. Numerical errors caused by grid

failures can be avoided in the Lagrangian particle methods. Therefore, the improved

higher-order MPS method has great potential to solve the 3-D FSI problems with

large deformations.

However, there are several potential challenges as follows that need to be ad-

dressed:

Free surface. It could be difficult to identify the free-surface particles with

the present combined density and non-symmetry criteria in 3-D simulations. The

identification of particles on free surfaces in 3-D simulations needs to be addressed.

Computing resources. 3-D simulations will require large computer memory.

For example, the radius of the particle interaction region typically equals to 2.1 times

the particle spacing. There are 12 neighbouring particles within the interaction region

for 2-D simulations. For 3-D simulations, the number of neighbouring particles will
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be at least 32. In addition, boundaries will require much more memory since more

dummy particles are needed in 3-D simulations.

Computing efficiency. The computing efficiency in 3-D MPS methods remains

a challenge. With the increase of the neighbouring particles in 3-D simulations, the

bandwidth of the matrix in the linear equations for pressure is therefore increased.

Searching neighbouring particles and solving the Poisson equations are much more

time-consuming in 3-D simulations. In terms of the parallel computing, computing

speed-up based on MPI/OpenMP schemes is limited. Recently, GPUs have been used

to improve the computing efficiency in 3-D simulations.

Note that progress has been made to overcome these difficulties in 3-D simulations

using improved MPS methods [101, 102, 103]. It is promising to extend the present

2-D method to 3-D in future work.
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