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Abstract

Our primary focus in this thesis is to investigate the stability vs rigidity of marginally

outer trapped surfaces (MOTS) in four-dimensional Reissner-Nordström (RN) space-

time. This is connected to studying the first-order derivative of the stability operator

(and hence the second derivative of the outgoing null expansion). Stability means that

the principal eigenvalue is non-negative, and rigidity means that we cannot deform

MOTS. The question we have addressed in this thesis is distinguishing between stabil-

ity and rigidity. We study the special case of the inner horizon of Reissner-Nordström

spacetimes for specific values of charge and mass is horizons can be unstable, and we

ask questions whether they unstable is still rigid. To approach this question we use

a technique to reduce an infinite-dimensional second variation calculation to a finite-

dimensional one. We start with a brief introduction to general relativity and review

some fundamental aspects of black holes. We then define the stability of MOTS in

terms of the principal eigenvalue. Since the stability operator has a zero eigenvalue in

our case, the MOTS admits infinitesimal deformations. In the rest of the work we use

Lyapunov-Schmidt reduction to investigate whether these infinitesimal deformations

can be made finite. We give evidence that suggests that the inner horizon is stable.

Keywords 1. MOTS, RIGIDITY AND STABILITY, LYAPUNOV-SCHMIDT RE-

DUCTION
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Lay Summary

In 1915, general relativity was first introduced by Albert Einstein. The study of black

holes is the vital part of general relativity. A black hole is a region of spacetime

from where nothing can escape, not even light. In this thesis we will deal with two

interesting questions that arise in the analysis of black holes. Marginally outer trapped

surfaces (MOTS) are black hole horizon proxies. We start our problem by studying

unstable MOTS in four dimensional Reissner-Nordström spacetime. Then we address

questions about rigidity vs stability of MOTS and under which conditions is it rigid

or not rigid.

The geometric properties of marginally outer trapped surface are very closely

related to minimal surfaces in Riemannian geometry (trace of extrinsic curvature

is zero). For a more precise discussion, we can define the stability and rigidity of

MOTS in more general way. A MOTS is not rigid if it can be deformed to a nearby

surface which is still a MOTS. We know there are examples of stable MOTS that are

rigid (outer horizon). We also know of examples of unstable MOTS that are not-rigid

(the cosmological horizon in pure de Sitter spacetimes). In this thesis we examine

unstable MOTS (inner RN horizons) whose rigidity is not yet known. We examine

the rigidity via a Lyapunov-Schmidt reduction of the stability operator.
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3.1 MOTS in Painlevé-Gullstrand coordinates for RNdS spacetime . . . . . 27

3.1.1 Reissner-Nordström-de Sitter spacetime and coordinates . . . . 28

3.1.2 MOTS in PG coordinates . . . . . . . . . . . . . . . . . . . . . 29

3.2 Locating Unstable MOTS in RNdS spacetime . . . . . . . . . . . . . . 32

4 Lyapunov-Schmidt Reduction and MOTS 36

4.1 The Lyapunov-Schmidt Reduction for MOTS . . . . . . . . . . . . . . 37

4.2 The Reduced equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Higher derivatives of the expansion evaluated on RN spacetime . . . . . 40

4.3.1 Identities for Integrals involving three Eigenfunctions . . . . . . 42

4.3.2 The l = 0 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.3 The l = 1 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.4 The l = 2 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.5 The l = 3 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.6 The l = 4 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



5 Conclusion 53

Bibliography 54

A Horizons 56

viii



List of tables

A.1 Classification of different types of surfaces in terms of null expansion

(outward and inward) . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ix



List of figures

2.1 Two dimensional hypersurface embedded in a four dimensional manifold 11

2.2 A Penrose-Carter diagram of collapsing star to form a black hole . . . . 14

2.3 Deformation of a surface . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Location of black hole horizons in RNDS spacetime. . . . . . . . . . . . 28

3.2 The values of principle eigenvalue for all horizons in RNDS spacetime. . 34

x



List of symbols

(−,+,+,+) metric signature
(M, g) General spacetime

Σ 3-dimensional spacelike hypersurface of M
S 2-dimensional closed, smooth hypersurface embedded in Σ

gαβ Metric tensor in M
ds2 corresponding Riemannian metric on Σ
qab induced metric on Σ
q̃AB induced metric on S
∇α Covariant derivative on M
Da Covariant derivative on Σ
dA covariant derivative on S
Λ Cosmological Constant

Kab Extrinsic curvature on Σ
kAB Extrinsic curvature on S
k trace of extrinsic curvature on S

Rαβ Ricci tensor in 4-dimensional spacetime
R Scalar curvature for (M, g)

Tαβ Stress energy tensor
I ± Future/past null infinity
i± Future/past timelike infinity
io corresponding spacelike infinity
θ` outward null expansion
θn inward null expansion
ra outward pointing spacelike unit normal to S
ua timelike unit normal to Σ
L stability operator
∇2 Laplace operator
ωa connection of normal bundle on S

xi



List of abbreviations

MOTS Marginally Outer Trapped Surfaces
EH Event Horizon
AH Apparent Horizon
IH Inner Horizon

OH Outer Horizon
CH Cosmological Horizon
RN Reissner-Nordström

RNDS Reissner-Nordström-de Sitter

xii



Chapter 1

Introduction

1.1 Overview of General Relativity, Black holes

and MOTS

The four dimensional geometry of spacetime is determined by the metric gαβ, which

defines the distance between two infinitesimally close events in spacetime and can be

written as

ds2 = gαβdx
αdxβ. (1.1)

The simplest example is flat spacetime where geometry is determined by the Minkowski

metric which has components ηαβ = diag(−1, 1, 1, 1) in Cartesian coordinates x0 =

t, x1 = x, x2 = y, x3 = z.

Einstein’s theory of gravitation states that gravity is the result of curvature in

spacetime. In 1915, Einstein published his equations relating the curvature of space-

time to the stress-energy-momentum tensor of matter. We use [1–3] as references.

These field equations can be written as

Rαβ −
1

2
gαβR + Λgαβ = 8πTαβ. (1.2)
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Here

Rαβ −
1

2
gαβR = Gαβ (1.3)

is the symmetric Einstein tensor, Rαβ = Rγ
αγβ is Ricci curvature and R = Rγ

γ is the

Ricci scalar. Ricci curvature and scalar both are contractions of the Riemann tensor

Rα
βγδ = Γαβγ,δ − Γαβδ,γ + ΓαµγΓ

µ
βδ − ΓαµδΓ

µ
βγ and Γαβγ represents the Christoffel symbols,

Tαβ is the stress-energy tensor describing all forms of matter and energy and Λ is the

cosmological constant. The conservation of energy and momentum is written as

∇βT
αβ = 0. (1.4)

and for the pure vacuum spacetime

Tαβ = 0 (1.5)

Black holes are solutions to the Einstein equations that are characterized by a

region from which even light cannot escape. The black hole spacetime is divided into

two regions, named the interior and the exterior region. The boundary between the

interior and exterior regions is called the event horizon. Nothing can escape from the

interior of a black hole.

The simplest black hole is the Schwarzschild (1916) solution to the vacuum Einstein

equations. This black hole solution was also the first non-trivial solution that was

found for the Einstein equations. The line element can be written in standard static

spherical co-ordinates (t, r, θ, φ) as

ds2 = −F (r)dt2 +
1

F (r)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
. (1.6)

Here F (r) = 1 − 2M
r

, where M has the interpretation as the total mass contained

in the spacetime. If r grows large then the Schwarzschild metric approaches ds2 =

−dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
, which is flat metric; the Schwarzschild solution is

asymptotically flat. This coordinate form of the metric becomes singular at both

r = 0 and r = 2M , which are a true singularity and event horizon, respectively.

As is well known, the event horizon singularity can be removed by an appropriate

coordinate transformation [2].
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A more general black hole is the Reissner-Nordström-de Sitter black hole, which

describes an asymptotically de Sitter, static, spherically symmetric black hole of mass

M carrying an electric charge Q on background with cosmological constant Λ [4]. In

spherical cordinates (t, r, θ, φ) the metric can again be written as

ds2 = −F (r)dt2 +
1

F (r)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
, (1.7)

here F (r) = 1 − 2M
r

+ Q2

r2
− Λ

3
r2. In the case of cosmological constant Λ = 0, the

Reissner-Nordström-de Sitter spacetime reduces to the Reissner-Nordström spacetime

and roots of F (r) are r = r0, r1, where

r0 = M −
√
M2 −Q2 and r1 = M +

√
M2 −Q2. (1.8)

Now there are two horizons: r1 is the outer horizon and r0 is the inner horizon. The

outer horizon is the location of the black hole event horizon and the inner horizon is

referred to as the Cauchy horizon [1, 5, 6].

1.2 Geodesics and Minimal surfaces

In general relativity marginally outer trapped surfaces (MOTS) are a natural candi-

date for quasi-local black hole boundaries. We are going to be talking about MOTS

but these are closely related to minimal surfaces. In particular lots of analysis involves

the stability operator, which is related to the variation of area. Before talking about

minimal surfaces we will talk a little bit about geodesics. Geodesics are critical points

of the length functional and minimal surfaces are critical points of the area functional.

The analogue of the acceleration of a curve is exactly the mean curvature of a surface.

If the curve is a critical point of the length then the acceleration vanishes, i.e. it is

a geodesic, and if the surface is a critical point of the area then its mean curvature

vanishes, i.e it is a minimal surface.
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1.2.1 Geodesics

A geodesic is sometimes thought of as the curve of shortest distance between two

fixed points on a surface. But this is not a satisfactory definition. The most common

examples, the geodesics on a plane, are straight lines whereas the geodesics between

two points on a sphere are arcs of a great circle. There are two arcs of a great circle

between two such points and only one provides the shortest path between those two

points. There may exist more than one geodesic between two points on a surface.

Now mathematically define geodesics in a following way.

Consider a continuously differentiable curve γ : I → M on Riemannian manifold

M with metric tensor g, where I = [a, b] is some closed interval of R. The length L
of γ is defined by

L(γ) =

∫ b

a

√
gµν γ̇µγ̇νdt. (1.9)

Here any two points γ(a) = p and γ(b) = q are the starting point and endpoint of the

curve, respectively.

Now given a curve γ : I → M , V a variation field and Γ a proper variation of γ,

then we can write the derivative of length functional as

d

ds

∣∣∣∣
s=0

L(Γs) = −
∫ b

a

gµνV
µγ̈νdt. (1.10)

So if γ is the critical point of the length functional then this is the geodesic. Here γ̈

is the acceleration of a curve and it is defined by

γ̈ =
D

dt

(dγ
dt

)
. (1.11)

Here D
dt

is the associated covariant derivative along γ [7]. In local coordinates this can

be written as

γ̈µ =
d2γµ

dt
+ Γµαβ

dγα

dt

dγβ

dt
. (1.12)
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If γ is a critical point of L then the variation of L vanishes i.e.∫ b

a

gµνV
µγ̈νdt = 0 (1.13)

with respect to any vector field V . This is possible only if the acceleration of the

curve is zero, hence

γ̈ =
D

dt

(dγ
dt

)
= 0. (1.14)

This is the geodesic equation and in coordinates form it can be written as

d2γµ

dt
+ Γµαβ

dγα

dt

dγβ

dt
= 0. (1.15)

Here

Γµαβ =
1

2
gνµ
(
∂αgβν + ∂βgαν − ∂νgαβ

)
(1.16)

are the Christoffel symbols associated with the metric tensor. The critical points of

the first variation of length are specifically the geodesics and the second variation

along a geodesic γ is said to be a Jacobi field if it satisfies Jacobi equation:

D2Jα

dt2
+Rα

βδηγ̇
βJδγ̇η = 0. (1.17)

Here Jα is a vector and Rα
βδη is the Riemann curvature tensor. The Jacobi equation

is essentially the linearized version of the deviation equation describing how nearby

geodesics behave. The points along a geodesic where the Jacobi field vanishes are

called conjugate points. A geodesic between two points is of minimal length if

there is no conjugate point between the end points. Conversely, a geodesic is not of

minimal length if there is a conjugate point between the end points. In other words,

conjugate points tell us whether or not geodesic is the minimal length [8].

1.2.2 Minimal Surfaces

Intuitively a minimal surface is a surface that locally extremizes its area. This is

exactly the same concept as a geodesic just in one higher dimension. This is equivalent
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to having vanishing mean curvature. One simple example is a flat surface in R3 and

the other easy example is the catenoid which is simplest non-trivial minimal surface

in 3-dimensional Euclidean space. The catenoid has parametric equations:

x = c cosh
v

c
cosu

y = c cosh
v

c
sinu

z = v

here the equations are parameterized by u ∈ (−π, π) and v ∈ (−∞,∞), and c is a

non-zero real constant.

Minimal surfaces are the critical points of the area functional. Consider a closed

surface S sitting inside Σ, where Σ is a 3-dimensional Riemannian manifold and we

are calculating the area of S. One way of writing the area is

Area(S) =

∫
S

1dA. (1.18)

Now take the surface S and deform it in the outward normal direction by amount

tψ, where ψ is a smooth function on S (which is exactly the calculation we do for

variation of expansion in section 2.5). Now take the derivative of the area of the

deformed surface, called St, at t = 0 then we can prove

d

dt
Area(St)

∣∣∣∣
t=0

=

∫
S

kψdA. (1.19)

Here k is the mean curvature of S (trace of the extrinsic curvature of S). The amount

by which the area changes is some number that will be positive, negative or zero,

depending on ψ. If S is a critical point of this area function then the first derivative

of area is 0. That is the derivative of area in any direction is 0, i.e∫
S

kψdA = 0, (1.20)

for any function ψ. That means k itself is 0. By definition if k = 0 then S is a

minimal surface. So this variation of area expression shows the connection between

critical points of the area functional and surfaces of zero mean curvature.



7

We mentioned earlier that minimal surface can be defined as critical points (min-

ima or saddles) of the area functional. The critical points of a function are distin-

guished by the second derivative test. Similarly, minimal surfaces can also be classified

by the second variation of the area functional.

Now take the second derivative or second variation of area

d2

dt2

(
Area(St)

)∣∣∣∣
t=0

=
d

dt

∫
St

kψdA =

∫
S

ψLψdA. (1.21)

Here the stability operator L = −d2ψ − 1
2
ψ
(
R − (2)

R+kABk
AB + k2

)
where d2

is the Laplacian on S and R is Ricci scalar on Σ. This is a special case of the

MOTS stability operator which is derived in section 2.5. From calculus we know

that if d2

dt2

(
Area(St)

)∣∣∣
t=0

> 0 then S is a local minimum of the area function.

Hence we say that the minimal surface S is strictly stable if the second varia-

tion of area d2

dt2

(
Area(St)

)∣∣∣
t=0

> 0 for all possible variation families St, stable if

d2

dt2

(
Area(St)

)∣∣∣
t=0
≥ 0 and unstable otherwise.

1.3 Outline

In this research work we will present the proof of certain cases of the rigidity of

marginally outer trapped surfaces in static spherically symmetric spacetimes. In par-

ticular, we will distinguish between stability and rigidity. This section is organized

with a synopsis of subsequent chapters.

In Chapter 2 we will discuss the geometric background and notations which will be

required for the rest of the thesis. The chapter starts with establishing the notation

and sign conventions. Then we will describe the stability and rigidity of MOTS in

terms of the principal eigenvalue.

In Chapter 3, we will deal with unstable MOTS in RNdS spacetime. The de-

scription in this chapter will start with MOTS in Painleve-Gullstrand coordinates for

RNdS spacetime. We review various horizons such as the outer black hole horizon and

cosmological horizon (pure de-Sitter case) which are strictly stable. We will describe

an infinite number of Reissner-Nordström spacetimes with different parameter values

for which the inner black hole horizon is unstable. We will apply the formalism to
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unstable MOTS to examine whether or not it can be deformed.

We present our original results in Chapter 4. The new results presented in this

chapter use the Lyapunov-Schmidt reduction for solving nonlinear equations. We

showed that if 0 is an eigenvalue of the stability operator then rigidity can be checked

by solving a system of polynomial equations. We solved them in some cases.

In Chapter 5 we summarize our results and suggest future works.



Chapter 2

Background

The existence of black holes is one of the most fundamental predictions in General

Relativity. A spacetime said to contain a black hole if it has regions from which no null

curve reaches to future null infinity. The idea of a horizon can be used to characterize

black holes in a spacetime. It forms the boundary between two causally disconnected

regions of a spacetime. The boundary of the region of spacetime is called an event

horizon as the black hole cannot interact with the outside universe. The event horizon

is a 3-dimensional hypersurface in spacetime traced by null geodesics that are neither

ingoing nor outgoing [3].

The boundary separating the regions from which outward oriented light rays actu-

ally move outwards towards the asymptotically flat region instead of being forced by

gravity to move inwards is a surface called the apparent horizon. More properly, it is

defined as the boundary of the union of all trapped regions in an asymptotically flat

Cauchy surface. There the outgoing null expansion vanishes [1,2]. In general it is dis-

tinct from the event horizon. These two horizons do coincide for Reissner-Nordström

or other stationary black holes but do not coincide for non-stationary black holes such

as the Vaidya spacetime. For a more complete discussion about black hole horizons

see [5, 9].

In this chapter we will highlight the most important aspects of black holes on

which the rest of the thesis will play. We begin with the various geometric quantities

that we will use in rest of the thesis.
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2.1 Geometric background

In this section we will define a variety of geometric quantities that will be used ex-

tensively in the rest of the thesis. For general references on the geometry see [10–12].

Here we use Greek letters {α, β, γ, . . . } as abstract indices on the 4-dimensional

spacetime M but when working with a coordinate chart switch to {α̂, β̂, γ̂, . . . }. Sim-

ilarly we use lower-case latin letters {a, b, c, . . . } as abstract indices for tensors in

3-dimensional surfaces Σ while using {â, b̂, ĉ, . . . } for coordinates and tensor compo-

nents relative to coordinates. Finally upper-case latin letters {A,B, . . . } are used as

abstract indices on two dimensional surfaces S.

Let (Σ, qab, Da) be a spacelike 3-dimensional hypersurface embedded in a (3+1)

dimensional time orientable spacetime (M, gαβ,∇α) with signature (−,+,+,+). Here

∇α is the covariant derivative in (3+1) dimensional spacetime and Da is the covariant

derivative in 3-dimensional spacetime.

Let (S, q̃AB, dA) be a closed two-surface in the 3-dimensional slice Σ. Here q̃AB is

the induced metric on S and dA is the covariant derivative on S. Since M is time

oriented, at each point p ∈ S we can assemble a pair of future pointing null vectors

normal to S. Consider such a pair of future pointing null vector fields `α and nα which

point outward and inward, respectively.

The pull-back operator between surfaces will be written as an e with indices indi-

cating which spaces it operates between. If we wish to switch to coordinate charts in

a particular hypersurface, which has parametric equations of the form,

xα̂ = xα̂(yâ), (2.1)

where yâ (â = 1, 2, 3) are coordinates intrinsic to the hypersurface, then eα̂â = ∂xα̂

∂yâ
is

the pullback/pushforward operator for one forms/vectors.

The induced metric on Σ as embedded in a spacetime M is

qab = eαae
β
b gαβ, (2.2)
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Figure 2.1: The figure shows a smooth two dimensional hypersurface S in a three
dimensional slice Σ embedded in a four dimensional spacetime M . The unit outward
normal to S is ra, and ua is a timelike normal to Σ. The outgoing and ingoing null
vectors are `α, nα (Figure taken from [13]).

and the induced metric on S is

q̃AB = eαAe
β
Bgαβ. (2.3)

The direction of the two null vectors is fixed and they can be normalized as

` · n = −1, (2.4)

which leaves a single degree of rescaling freedom by an arbitrary non-zero function f :

`→ `f and n→ n/f. (2.5)

However, independent of that particular choice of scaling we have

q̃αβ = eαAe
β
B q̃

AB = gαβ + `αnβ + `βnα. (2.6)

Now we can define the outward pointing spacelike unit normal to S lying in Σ as ra

and let uα be the future pointing timelike unit normal to Σ for each point on S. So

for a particular choice of f now we can define the inward and outward null vectors to
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S as

nα =
1

2
(uα − rβ), (2.7)

`β = (uα + rβ). (2.8)

By construction we have `α`α = nαnα = 0 and q̃αβ`
β = q̃αβn

β = 0.

Now the extrinsic curvature on Σ is defined by

Kab = eαae
β
b∇αuβ, (2.9)

where uβ is the future-oriented unit normal to Σ which satisfies uβuβ = −1. The

extrinsic curvature on S is defined by the rate of change of null normal vectors (`α, nα)

along the surface:

k
(`)
AB = eαAe

β
B∇α`β

k
(n)
AB = eαAe

β
B∇αnβ.

(2.10)

These extrinsic curvature are symmetric in A and B since `α and nα are, by definition,

surface forming.

Also, these extrinsic curvatures can be decomposed into their trace and trace free

parts respectively so that

k
(`)
AB =

1

2
θ(`)q̃AB + σ

(`)
AB,

k
(n)
AB =

1

2
θ(n)q̃AB + σ

(n)
AB.

(2.11)

Here θ(`) and θ(n) are respectively the outward and inward expansion of null geodesics:

θ(`) = q̃ABk
(`)
AB,

θ(n) = q̃ABk
(n)
AB,

(2.12)

while

σ
(`)
AB = (q̃αAq̃

β
B −

1

2
q̃AB q̃

αβ)∇α`β,

σ
(n)
AB = (q̃αAq̃

β
B −

1

2
q̃AB q̃

αβ)∇αnβ,
(2.13)
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are shears (trace free parts).

2.2 Gauss-Codazzi equations

The Gauss-Codazzi equations are the fundamental equations in the theory of embed-

ded hypersurfaces of Riemannian manifolds. By [5] the 3-dimensional Riemann tensor

for Σ is

Rd
abc = Γdac,b − Γdab,c + ΓdebΓ

e
ac − ΓdecΓ

e
ab. (2.14)

By the Gauss equation it is determined in terms of the extrinsic curvature and the

4-dimensional Riemann tensor of M

Rαβγδe
α
ae

β
b e

γ
c e
δ
d = Rabcd −

(
KadKbc −KacKbd

)
. (2.15)

Next the Codazzi equation tells us that

Rµαβγu
µeαae

β
b e

γ
c = DcKab −DbKac. (2.16)

Here uµ is the future oriented unit normal to Σ. From these equations we can obtain

the Hamiltonian constraint [5]:

Gαβu
αuβ =

1

2

(
R +K2 −KabK

ab
)
, (2.17)

and the diffeomorphism constraint:

Gαβe
α
au

β = DbK
b
a −DaK, (2.18)

here R is the 3-dimensional scalar curvature of Σ and K = habK
ab. Applying the Ein-

stein equations (Gαβ = 8πTαβ) in Eqn.(2.17) and Eqn.(2.18) constrains the intrinsic

and extrinsic curvatures of Σ by the stress energy content of the spacetime.
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Figure 2.2: A Penrose-Carter diagram showing a spacetime of a spherically symmetric
star collapsing into a black hole. Null curves are depicted with slopes ±1, i± is fu-
ture/past timelike infinity, i0 is corresponding spacelike infinity and I ± is future/past
null infinity (Figure based on [9, 14]).

2.3 Event Horizon

In General Relativity the conventional approach to horizons which came from the

study of static or stationary black holes is that of the event horizon. The event

horizon is a null hypersurface in spacetime and its definition is restricted to the asymp-

totically flat or anti-de Sitter spacetimes. The reason why it is a null hypersurface is

that it is generated by null geodesics. By [5, 9] since the event horizon is null and so

coincides with a congruence of null geodesics, the Raychaudhuri equation determines

its expansion:

dθ(`)

dλ
= −1

2
θ2

(`) − σ
(`)
ABσ

AB
(`) −Rαβ`

α`β. (2.19)

Here λ is an affine parameter of these geodesics, θ(`) is the outgoing null expansion

which was defined earlier and σ
(`)
AB is the symmetric tracefree part as defined in section

2.1. Also Rαβ is the Ricci tensor in 4-dimensional spacetime. An interesting thing

we can see from the Raychaudhuri equation is that if the null energy condition holds,

then the last term on the right hand side of Eqn.(2.19) will always be non-positive

and this gives rise to the second law of black hole mechanics: the area of an event
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horizon is non decreasing [1].

Figure 2.2, which is based on [9], shows 3-dimensional future/past null infinity,

labeled by I ±, which contains the future/past endpoints of all outgoing/ingoing null

geodesics. Where future null infinity (I +) and past null infinity (I −) meet is called

two dimensional spacelike infinity and labelled by i0, which contains the endpoints

of all spacelike geodesics. In the same way, the two dimensional future/past timelike

infinity denoted by i± contains future/past endpoints of timelike geodesics.

If the complement of the causal past of future null infinity (I +) is non-empty

then the spacetime contains a black hole and the event horizon is the boundary of

that region. An example is shown in Fig.2.2

The event horizon forms a causal boundary between the interior and exterior

spacetime so that no geodesic can escape from the interior to exterior spacetime. As

we mentioned earlier, the region inside the event horizon is a trapped region [1, 9]

for stationary spacetimes.

2.4 Trapped Surfaces

In section 2.1 we considered two-dimensional, spacelike and closed surfaces S embed-

ded in 4-dimensional spacetime M . We also considered that at a point p on a spacelike

2-surface S there are exactly two distinct future null directions `α (outward), nα (in-

ward) normal to the surface.

A closed two dimensional surface S is called future trapped if both null expan-

sions (inward and outward) are strictly negative everywhere. That is for S:

θ(n) < 0

θ(`) < 0.
(2.20)

θ(n) and θ(`) are defined in Eqn.(2.12). This leads to a considerably different behaviour

of the 2-surface when compared with a 2-surface embedded in Minkowski space. For

a sphere (in Minkowski) an ingoing set of null rays would decrease (θ(n) < 0) in area

while the outgoing set would increase (θ(`) > 0)

From the Raychaudhuri equation in (2.19) as well as some extra consideration
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[1, 2, 15], if the null energy condition holds then the existence of a trapped surface

in a spacetime implies the existence of singularity somewhere in its causal future. A

closed 2-surface is called a marginally trapped surface if the inward null expansion

is negative and outward null expansion vanishes i.e.

θ(n) < 0 and θ(`) = 0, (2.21)

and the surface is called a marginally outer trapped surface (MOTS) if

θ(`) = 0. (2.22)

In general relativity MOTS provide the most intuitive characterization for quasi-local

black hole boundaries and for those MOTS the expansion θ(n) of inward null normal nα

is strictly negative. Also the surface is called outer trapped or outer untrapped

respectively if

θ(`) < 0 or θ(`) > 0. (2.23)

i.e. the outward null expansion is strictly negative or positive, respectively. For details

of trapped surfaces see the references [10,16].

2.5 Deriving the variation of expansion

In this section we now consider how the expansion changes if we deform the surface S.

Let the extrinsic curvature of S be defined by null normals `α and nα, as in Eqn.(2.11).

Let ra be the spacelike unit normal vector to the hypersurface and the trace of

extrinsic curvature of S with respect to ra is

k(r) = q̃ABk
(r)
AB, (2.24)

and the trace of the extrinsic curvature of S with respect to the timelike unit normal

ua is

k(u) = q̃abK
(u)
ab . (2.25)
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Figure 2.3: Deformation of a surface generated by a covariant vector field ∂
∂ρ

Kab is defined in Eqn.(2.9). In order to make these equations more readable we will

drop the ˆ from ûa for timelike unit normal and r̂a for spacelike unit normal in this

section. Now to find the variation of the trace of extrinsic curvature k
(r)
AB, consider

how k(r) varies if S is deformed. The simplest way to do this is imagine a deformation

generated by a covariant vector field ∂
∂ρ

. Imagine S as the ρ = 0 surface of a family

yâ = Y â(θÂ, ρ), (2.26)

here Â label coordinates on S. Then under a deformation S → S ′

Y â(θÂ, 0)→ Y â(θÂ,∆ρ) ≈ Y â + ∆ρ
∂yâ

∂ρ
, (2.27)

this is Taylor approximation where every component is evaluated at ρ = 0.

In particular we can always write ∂
∂ρ

= ψr for some ψ, since rb is always perpen-

dicular to the surfaces of constant ρ. Such a deformation is depicted in figure 2.3.

Then because r is always perpendicular:

eaALψrra = 0. (2.28)
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Here Lψrra is the Lie derivative of ra along ψr. Then we can write

eaA

(
ψrcDcra + rcDa[ψr

c]
)

= 0

=⇒ ψeaAr
cDcra + dAψ = 0.

Hence,

rcDcra = − 1

ψ
daψ, (2.29)

since rarcDcra = 0.

Now consider the variation of the trace of extrinsic curvature k(r) i.e.

∂

∂ρ
(k(r)) = ψrcDc(q̃

abDarb)

= ψrcDc

(
[qab − rarb]Darb

)
= ψqabrcDcDarb

= ψqabrc
(
Rcabdr

d +DaDcrb

)
,

where in the last line we used the fact that for the 3-dimensional Riemann tensor

Rcabdr
d = DcDarb −DaDcrb. (2.30)

Then

∂

∂ρ
(k(r)) = ψqabrc

(
Rcabdr

d +DaDcrb

)
. (2.31)

Now from (2.31) we can write

ψqabrcRcabdr
d = −ψqacrbrdRabcd. (2.32)

We know that the three-dimensional Ricci scalar is

R = qacqbdRabcd. (2.33)
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Then it follows that:

R =
(
q̃ac + rarc

)(
q̃bd + rbrd

)
Rabcd

= q̃acq̃bdRabcd + 2q̃acrbrdRabcd

= q̃acq̃bdRabcd + 2qacrbrdRabcd.

Hence

qacrbrdRabcd =
1

2

(
R− q̃acq̃bdRabcd

)
, (2.34)

and from section 2.2 we can apply the Gauss equation to get

qacrbrdRabcd =
1

2

(
R− (2)

R−k(r)
ab k

ab
(r) + k2

)
. (2.35)

Hence from Eqn. (2.32) we get,

ψqabrcRcabdr
d = −1

2
ψ
(
R− (2)

R−k(r)
ab k

ab
(r) + k2

)
. (2.36)

Now again from Eqn.(2.31)

ψqabrcDaDcrb = ψq̃abrcDaDcrb + ψrarbrcDaDcrb

= ψq̃abDa

(
rcDcrb

)
− ψq̃ab

(
Dar

c
)(
Dcrb

)
+ ψrarcDa

(
rbDcrb

)
− ψrarc

(
Dar

b
)(
Dcrb

)
= ψq̃abda

(
− 1

ψ
daψ

)
− ψk(r)

ab k
ab
(r) − ψ

(
raDar

b
)(
rcDcrb

)
= −d2ψ +

1

ψ

(
dAψ

)(
dAψ

)
− ψk(r)

ABk
AB
(r) −

1

ψ

(
dAψ

)(
dAψ

)
.

Hence

ψqabrcDaDcrb = −d2ψ − ψk(r)
ABk

AB
(r) . (2.37)

From Eqn.(2.31) combining Eqn.(2.36) and Eqn.(2.37) we get

∂

∂ρ
(k(r)) = −d2ψ − ψk(r)

ABk
AB
(r) −

1

2
ψ
(
R− (2)

R−k(r)
ABk

AB
(r) + k2

(r)

)
, (2.38)
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i.e.

∂

∂ρ
(k(r)) = −d2ψ − 1

2
ψ
(
R− (2)

R+k
(r)
ABk

AB
(r) + k2

(r)

)
. (2.39)

Next the variation of the extrinsic curvature of S with respect to timelike unit normal

u is

∂

∂ρ
(k(u)) = ψrcDc

(
q̃abKab

)
. (2.40)

This implies that

∂

∂ρ
(k(u)) = ψrcDc

(
K −Kabr

arb
)

= ψ
(
rcDcK − rarbrcDcKab −Kabr

arcDcr
b −Kabr

brcDcr
a
)

= ψ
(
rcDcK − ra

[
qbc − q̃bc

]
DcKab − 2ψKabr

a
[
rcDcr

b
])

i.e.

∂

∂ρ
(k(u)) = ψrc

(
DcK −DbK

b
c

)
+ ψraq̃bcDcKab − 2ψKabr

a
(
− 1

ψ
dbψ
)
. (2.41)

Then from Eqn.(2.41) we get

∂

∂ρ
(k(u)) = −ψGαβu

αrβ + ψq̃bcDc

(
Kabr

a
)
− ψq̃bcKabDc

(
ra
)

+ 2
[
q̃baKbcu

c
]
daψ

= −ψGαβu
αrβ + ψq̃bcDc

(
q̃dbKdar

a + rb

[
Kdar

dra
])

− ψq̃bcKba

[
q̃ad + rdr

a
]
Dcr

d + 2ω̃AdAψ.

This implies

∂

∂ρ
(k(u)) = −ψGαβu

αrβ + ψdCω̃
C + ψ

(
Kabr

arb
)
k(r) − ψk(u)

ABk
AB
(r) + 2ω̃AdAψ, (2.42)
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where ω̃A is the connection of normal bundle defined by

ω̃A = eβANα∇β`
α

= −1

2
eβA

(
uα − rα

)
∇β

(
uα + rα

)
= eβAr

α∇αuβ,

and so in terms of the extrinsic curvature,

ω̃A = eβAKβαr
α. (2.43)

Now going back to Eqn.(2.39), viewing Σ as a hypersurface and applying the Hamil-

tonian constraint we have

1

2
R = Gαβu

αuβ − 1

2

(
K2 −KabK

ab
)
. (2.44)

Also,

Kab = k
(u)
ab + ω̃arb + ω̃bra +Krrrarb,

=⇒ K = k(u) +Krr

and

KabK
ab = k

(u)
ab k

ab
(u) + 2ω̃Aω̃A +K2

rr.

Combining K and KabK
ab we can write

K2 −KabK
ab = k2

(u) + 2Krrk
(u) − k(u)

ABk
AB
(u) − 2‖ω̃‖2, (2.45)

where ‖ω̃‖2 = ω̃Aω̃A. By using Eqn.(2.45) in Eqn.(2.44) we get

1

2
R = Gαβu

αuβ − 1

2

(
k2

(u) + 2Krrk
(u) − k(u)

ABk
AB
(u) − 2‖ω̃‖2

)
. (2.46)
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Therefore looking back to Eqn.(2.39)

∂

∂ρ

(
k(r)
)

= −d2ψ +
ψ

2

(
(2)
R−k2

(r) − k
(r)
ABk

AB
(r)

)
− ψ

(
Gαβu

αuβ +
1

2

[
kAB(u) k

(u)
AB − k

2
(u)

]
−Krrk

(u) + ‖ω̃‖2
)

(2.47)

we know that outward null vector is ` = u+ r and outward null expansion

θ(`) = k(u) + k(r), (2.48)

we defined θ(`) in Eqn.(2.12). Then the variation of outward null expansion is

∂

∂ρ

(
θ(`)

)
=

∂

∂ρ

(
k(u)

)
+

∂

∂ρ

(
k(r)

)
. (2.49)

By adding Eqn.(2.42) and Eqn.(2.47) then Eqn.(2.48) becomes

∂

∂ρ

(
θ(`)

)
= −ψGαβu

αrβ + ψdCω̃
C + ψ

(
Kabr

arb
)
k(r) − ψk(u)

ABk
AB
(r) + 2ω̃AdAψ − d2ψ

+
ψ

2

(
(2)
R−k2

(r) − k
(r)
ABk

AB
(r)

)
− ψ

(
Gαβu

αuβ +
1

2

[
kAB(u) k

(u)
AB − k

2
(u)

]
−Krrk

(u) + ‖ω̃‖2
)
,

(2.50)

and this becomes

∂

∂ρ

(
θ(`)

)
= −d2ψ + 2ω̃AdAψ + ψ

(1

2
(2)
R−‖ω̃‖2 + dAω̃

A −Gαβu
α`β
)

+ψKrr

(
k(u) + k(r)

)
+ ψ

(
− k(u)

ABk
AB
(r) −

1

2
k2

(r) −
1

2
k

(r)
ABk

AB
(r)

+
1

2
k2
u −

1

2
kAB(u) k

(u)
AB

)
,

(2.51)
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but θ(`) = k(u) + k(r) so we can write Eqn.(2.51) as

∂

∂ρ

(
θ(`)

)
= −d2ψ + 2ω̃AdAψ + ψ

(1

2
(2)
R−‖ω̃‖2 + dAω̃

A −Gαβu
α`β
)

+ ψKrrθ(`)

+ψ
(1

2

(
k2

(u) − k2
(r)

)
−
[
k

(u)
AB + k

(r)
AB

][
kAB(u) + kAB(r)

])
,

(2.52)

here k2
(u) − k2

(r) = θ(`)θ(r) and
[
k

(u)
AB + k

(r)
AB

][
kAB(u) + kAB(r)

]
= k

(`)
ABk

AB
(`) = 1

2
θ2

(`) − σAB(`) σ
(`)
AB.

Hence Eqn.(2.52) becomes

∂

∂ρ

(
θ(`)

)
= −d2ψ + 2ω̃AdAψ + ψ

(1

2
(2)
R−‖ω̃‖2 + dAω̃

A −Gαβu
α`β
)

+ ψKrrθ(`)

+ψ
(
θ(`)θ(r) −

1

2
θ2

(`) − σAB(`) σ
(`)
AB

)
.

(2.53)

Now, θ(`) = 0 if S is a marginally outer trapped surface (MOTS). The details of MOTS

are explained in section 2.4 . Hence finally the variation of outward null expansion of

a MOTS can be written as

∂

∂ρ

(
θ(`)

)∣∣∣∣
ρ=0

= −d2ψ + 2ω̃AdAψ + ψ
(1

2
(2)
R−‖ω̃‖2 + dAω̃

A − σAB(`) σ
(`)
AB −Gαβu

α`β
)
,

(2.54)

and we will use this to define the stability operator. We want to know whether a

MOTS can be deformed or not and this differential operator tells us how θ(`) changes

as S is deformed. This is the topic of the next section.

2.6 Principal eigenvalues and the Stability Opera-

tor

The derivative ∂
∂ρ
θ(`) is a second order elliptic operator for ψ on S. We define the

stability operator as:

Lψ =
∂

∂ρ

(
θ(`)

)∣∣∣∣
ρ=0

(2.55)
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Note that if a MOTS can be continuously deformed then under the deformation

Lψ =
∂

∂ρ

(
θ(`)

)
= 0. (2.56)

Hence the existence of a ψ for which Lψ = 0 is a necessary condition for such a

deformation to exist. Equivalently L must have a vanishing eigenvalue for such a

deformation to exist [10, 17–19]. Hence let us consider the operator in more detail.

From 2.54.

Lψ = −d2ψ + 2ω̃AdAψ + ψ
(1

2
(2)
R−‖ω̃2‖+ dAω̃

A − σAB(`) σ
(`)
AB +Gαβ`

αnβ
)
. (2.57)

As a result of the presence of the first-order term in (2.57), L is not self-adjoint

in general. Seeing that L is linear and elliptic and S is compact, the correspond-

ing eigenfunction are regular with discrete eigenvalues, however in general they are

complex [18]. The following definition arises from the above discussion:

Definition 1. The eigenvalue of L with smallest real part is called the principal

eigenvalue.

Recall minimal surfaces in Euclidean geometry. A minimal surface is one for which

the mean curvature vanishes. Equivalently, since this trace is rate of change of the

area if the surface is deformed in the normal direction, this is a critical point of the

area functional. Then the derivative of the trace of the extrinsic curvature is the

second derivative of the area. Then a stable surface has non-negative eigenvalues (it

is a minimum of the area) while an unstable one has one or more negative eigenvalues.

There is a closely related notion of stability for MOTS. In this case the direction

of vanishing expansion ` is different from that of deformation (r̂) but otherwise things

are very similar. We proceed as follows starting with the eigenvalues of L [16]. Hence

we are very interested in the eigenvalues of L.

The following lemma holds for second order elliptic operators of the form of L.

Lemma 1 ( [20]). The principal eigenvalue λ of L is real and the corresponding eigen-

function (the principal eigenfunction) ψ is either everywhere positive or everywhere

negative.

The following definition given by [20] determines if the variation of expansion can

be everywhere non-negative or somewhere positive.
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Definition 2. A marginally outer trapped surface S is called stably outermost if

there exists a function ψ ≥ 0, ψ 6= 0 on S such that Lψ ≥ 0. S is called strictly

stably outermost if Lψ 6= 0 somewhere on S.

Note that this is equivalent to saying that there is an (infinitesimal) variation

generated by ψr̂ for which S becomes outer untrapped and another, generated by −ψr̂
for which it becomes outer trapped. Now to describe the relation between stability

and the sign of principal eigenvalue the following lemma holds:

Lemma 2 ( [20]). Let S be a MOTS and λ be the principal eigenvalue of the op-

erator L. Then S is stably outermost if and only if λ ≥ 0, and strictly stably

outermost if and only if λ > 0.

Definition 3. The marginally outer trapped surface S is stable if the principal eigen-

value λ ≥ 0 and strictly stable if the principal eigenvalue is positive (λ > 0).

The MOTS is stably outermost if and only if it is stable and it is strictly stably

outermost if and only if it is strictly stable. So that we can say the above definition 2

and definition 3 are equivalent. The following definition given in [20] is motivated by

above discussion:

Definition 4. A marginally outer trapped surface S is called locally outermost in

Σ iff there exists a two sided neighbourhood U of S such that the outer part of U does

not contain a weakly outer trapped surface .

The proposition below from [20] describes the association between definition 3 and

definition 4.

Proposition 1. 1. If the principal eigenvalue λ > 0 then the surface S is locally

outermost.

2. A locally outermost surface S is stably outermost (which is λ ≥ 0).

2.7 Stability Vs Rigidity

We now define rigidity. This is essentially the finite version of invertibility of L.
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Definition 5. A MOTS S is rigid if there exists an ε > 0 such that the only MOTS

of the form S + ψ, with ‖ψ‖C2,α < ε, is S itself.

In the above definition ‖ψ‖C2,α is αth-Hölder norm and the space function C2,α

consists of those functions ψ that are second derivative continuous and whose second

partial derivatives are bounded and Hölder continuous with exponent α [21]. Here

S + ψ represents the surface deformed in the normal direction by the function ψ. In

section 2.6 we defined the stability of a MOTS in terms of the principal eigenvalue.

Also Eqn(2.56) says that, if there is a solution to Lψ = 0, then L is not invertible, so

S may or may not be rigid. But an unstable MOTS could be rigid or not rigid.

We can write the eigenvalue equation with corresponding eigenfunction ψ i.e

Lψ = λψ. (2.58)

From the eigenvalue equation, Lψ = 0 has a solution precisely if any of the eigenvalues

are zero.

We can prove something about rigidity: when 0 is not an eigenvalue of the stability

operator L then the marginally outer trapped surface (MOTS) is rigid and hence strict

stability implies rigidity. See theorem 1 in chapter 4 for a more precise statement.

Also the MOTS is strictly stable if the principal eigenvalue λ is positive. In particular

positive means that all of the eigenvalues have positive real parts and hence are non

zero.



Chapter 3

Marginally Outer Trapped Surfaces

in RNdS spacetime

As we discussed earlier in section 2.6 and section 2.7, the stability of a marginally outer

trapped surface is defined in terms of its principal eigenvalue. In this chapter first we

begin with reviewing some equations for unstable marginally outer trapped surface

(MOTS) in RNdS spacetime which can be infinitesimally deformed and develop the

formalism to understand whether or not these deformations can be made finite. We

use the formalism based on the results of [10,22].

3.1 MOTS in Painlevé-Gullstrand coordinates for

RNdS spacetime

In this section we consider the stability of marginally outer trapped surfaces in RNdS

spacetime. We look at the horizons in RNdS spacetime and discover that most are

stable (outer black hole horizon, cosmological horizon M 6= 0 case). However, there

are also an infinite number of spacetimes with inner horizons that are unstable MOTS.

We will start with introducing RNdS spacetime in Painlevé-Gullstrand coordinates.
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Figure 3.1: F (r) vs r
M

for typical cosmological black hole solution. IH, OH, CH denote
the inner horizon, outer horizon and cosmological horizon of black hole respectively.

Figure taken from [10]

3.1.1 Reissner-Nordström-de Sitter spacetime and coordinates

The 4-dimensional RNdS spacetime including cosmological constant Λ in terms of

Painlevé-Gullstrand coordinates (T, r, θ, φ) is described by the metric [10,23]

ds2 = −F (r)dT 2 + 2
√

1− F (r)dTdr + dr2 + r2(dθ2 + sin2 θdφ2), (3.1)

where

F (r) = 1− 2M

r
+
Q2

r2
− Λ

3
r2, (3.2)

with M > 0, electric charge Q > 0 and cosmological constant Λ > 0. This metric

represents a spherically symmetric charged black hole. One of the most important

characteristics of PG coordinates is that the spatial slices T= constant are intrinsically

flat [23] in these coordinates. To see this note that a surface at constant T has dT = 0.

Then Eqn.(3.1) becomes

ds2
3 = dr2 + r2(dθ2 + sin2 θdφ2) (3.3)

which is the three dimensional Euclidean metric in spherical coordinates (r, θ, φ).
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3.1.2 MOTS in PG coordinates

We will look for MOTS in surfaces of constant T . For that it will be useful to have

the extrinsic curvature of S with respect to û and r̂.

First consider that the future-oriented unit timelike normal to Σ is

ûa∂a = ∂T −
√

1− F (r)∂r. (3.4)

The extrinsic curvature of Σ is then

Kab =


F ′(r)

2
√

1−F (r)
0 0

0 −r
√

1− F (r) 0

0 0 −r sin2 θ
√

1− F (r)

 , (3.5)

where F ′(r) represents the derivative of F with respect to r.

Next consider a surface in Σ that is defined by:

r = r0 + ρψ (3.6)

for some function ψ. Here r0 is inner horizon and ρψ is the finite perturbation with

ρ parameterized in magnitude. Hence

r0 = r − ρψ. (3.7)

and a spacelike normal to S in Σ is

d(r − ρψ) = dr − ρψθdθ − ρψφdφ, (3.8)

which can be normalized as:

r̂a =
r sin θ√

ρ2ψ2
θ sin2 θ + ρ2ψ2

φ + r2 sin2 θ

[
1, ρψθ,−ρψφ

]
. (3.9)
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Now by q̃ab = hab − r̂ar̂b the induced metric on S is

q̃âb̂ =
1

ρ2ψ2
θ

r2
+

ρ2ψ2
φ

r2 sin2 θ
+ 1


ρ2ψ2

θ

r2
+

ρ2ψ2
φ

r2 sin2 θ
ρψθ ρψφ

ρψθ r2 +
ρ2ψ2

φ

r2 sin2 θ
−ρ2ψθψφ

ρψφ −ρ2ψθψφ sin2 θ(ρ2ψ2
θ + r2)

 (3.10)

and note that by substituting ρ = 0 we get the induced two metric in the expected

form,

q̃âb̂ =

0 0 0

0 r2 0

0 0 r2 sin2 θ

 . (3.11)

Meanwhile, the trace of the extrinsic curvature of S in Σ with respect to r̂ is

k(r̂) ≡ q̃abDar̂b. (3.12)

It follows that

k(r̂) :=
1

r
(
ρ2
(

sin2 θψ2
θ + ψ2

φ

)
+ r2 sin2 θ

) 3
2

[
− ρ sin2 θ cos θψθ

(
ρ2 + r2

)
−ρr2 sin θ

(
ψφφ + sin2 θψθθ

)
+ ρ3 sin θ

(
2ψθψφψφθ − ψ2

φψθθ

−ψ2
θψφφ

)
+ 2r3 sin3 θ + 3rρ2 sin θ

(
sin θψ2

θ + ψ2
φ

)]
.

(3.13)

Again checking the ρ = 0 case, we find the expected

k(r̂) =
2

r
. (3.14)

The trace of extrinsic curvature of S with respect to û is

k(û) ≡ q̃abDaub = q̃abKab, (3.15)
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and computing k(û), we find that

k(û) :=
rρ2F ′(r)

[
ψ2
θ sin2 θ + ψ2

φ

]
+ 2
(

1− F (r)
)[
− 2r2 sin2 θ − ρ2

(
ψ2
φ + sin2 θψ2

θ

)]
2r
√

1− F (r)
(
ρ2ψ2

θ sin2 θ + ρ2ψ2
φ + r2 sin2 θ

) .

(3.16)

For ρ = 0 this reduces to

k(û) = −
2
√

1− F (r)

r
. (3.17)

The outward null expansion is θ(`) = k(r̂) + k(û) and we get

θ(`) =
rρ2F1(r)

(
ψ2
θ sin2 θ + ψ2

φ

)
− 2
(

1− F (r)
)[

2r2 sin2 θ + ρ2
(
ψ2
θ + ψ2

φ

)]
2r
√

1− F (r)
[
ρ2
(
ψ2
θ sin2 θ + ψ2

φ

)
+ r2 sin2 θ

]
+

1[
r
(
ρ2
(
ψ2
θ sin2 θ + ψ2

φ

)
+ r2 sin2 θ

) 3
2
]
[
ρ sin θ

(
− ρ2ψ2

φ − r2 sin2 θ
)
ψθθ

+2ρ3ψφψφθψθ sin θ − ρψφφ sin θ
(
ρ2ψ2

θ + r2
)
− ρ3ψ3

θ cos θ sin2 θ

+3rρ2ψ2
θ sin3 θ + ρ cos θ

(
− r2 sin2 θ − 2ρ2ψ2

φ

)
ψθ

−2r sin θ
(
− r2 sin2 θ − 3

2
ρ2ψ2

φ

)]
(3.18)

By substituting r = r0, ρ = 0 in Eqn.(3.18) the outward null expansion θ(`) becomes

θ(`)

∣∣
r=r0

=
−2
√

1− F (r0) + 2

r0

. (3.19)

Hence we have a MOTS when F (r0) = 0.

In this case we can also directly find the stability operator by differentiating

Eqn.(3.18) with respect to ρ as

Lψ =
∂

∂ρ

(
θ(`)

)∣∣∣∣
r=r0

=
F ′(r0)ψ

r0

− ψθθ
r2

0

− ψθ cos θ

r2
0 sin θ

− ψφφ
r2

0 sin2 θ
. (3.20)
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The last three terms of Eqn.(3.20) can be combined to give

∂

∂ρ

(
θ(`)

)∣∣∣∣
r=r0

=
F ′(r0)

r0

ψ − 1

r2
0

∆ψ, (3.21)

where ∆ψ is the Laplacian on the unit sphere and Eqn.(3.21) is a general formula for

L, whether or not ∂
∂ρ

(
θ(`)

)
= 0.

Later on we will also find it useful to know the second variation of outgoing null

expansion. So by differentiating Eqn.(3.18) two times we get the second variation of

outgoing null expansion which takes the form:

∂2

∂2ρ

(
θ(`)

)∣∣∣∣
ρ=0

=
2ψ2

θ

r0
3

+
4

r0
3
∆ψ +

F ′(r0)ψ2
θ

r0
2

+
F ′(r0)2ψ2

2r0

+
ψ2F ′′(r0)

r0

− 2ψ2F ′(r0)

r0
2

+
4ψθψ cos θ

r0
3 sin θ

+
1

sin2 θ

(
2ψ2

φ

r0
3

+
ψ2
φF
′(r0)

r0
2

+
4

r0
3
∆ψ

)
.

(3.22)

Now (3.22) can be simplified assuming ∂
∂ρ

(
θ(`)

)∣∣∣
ρ=0

= 0:

∂2

∂2ρ

(
θ(`)

)∣∣∣∣
ρ=0

=

(
F ′(r0)2

2r0

+
2F ′(r0)

r0
2

+
F ′′(r0)

r0

)
ψ2 +

( 2

r0
3

+
F ′(r0)

r0
2

)
ψ2
θ

+
1

sin2 θ

(
2

r0
3

+
F ′(r0)

r2
0

)
ψ2
φ.

(3.23)

All of these calculations were obtained using Maple.

3.2 Locating Unstable MOTS in RNdS spacetime

We now consider the stability of MOTS in RNdS. In general F (r) from Eqn.(3.2)

has three roots, as shown in figure.(3.1). There are the inner black/white hole (rIH),

outer black/white hole (rOH) and cosmological future/past (rCH) horizon shown in

increasing order. From Eqn.(3.20) the stability operator evaluated at constant r0 is

∂

∂ρ

(
θ(`)

)∣∣∣∣
ρ=0

= Lψ = −∆ψ

r2
0

+
F ′(r0)

r0

ψ. (3.24)
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The eigenfunctions and eigenvalues of this operator can be found directly. The eigen-

functions here are the usual spherical harmonics which have real and imaginary parts.

But for the deformation of MOTS we will consider only real valued eigenfunctions.

Hence instead of standard spherical harmonics (Y m
l ) we will use associated Legendre

polynomial (Pm
l ) multiplied by trigonometric function of φ. For any non-negative

value l and one for each integer m with −l ≤ m ≤ l, then the general form for

eigenfunctions can be written as

ψ = Pm
l (cos θ)(Alm cos(mφ) +Blm sin(mφ)) (3.25)

where Alm, Blm are constants. Later on in our calculations we will choose a particular

basis of eigenfunctions which is defined by

Sml (θ, φ) =

{
cos(mφ)Pm

l (cos θ) m ≥ 0

sin(mφ)Pm
l (cos θ) m < 0

(3.26)

Now the corresponding eigenvalues of the stability operator L are l(l+1)
r2

+ F ′(r)
r

for

l = 0, 1, 2, . . . . Then if F ′(r) > 0 all eigenvalues are positive. Negative eigenvalues

can only occur if F ′(r) < 0. Refering to Fig.3.1 this means that the outer horizon

is always stable while the inner horizon and cosmological horizon could be unstable

depending on the magnitude of F ′(r).

The family of (l,m) eigenfunctions have vanishing eigenvalues if

l(l + 1) + rF ′(r) = 0 (3.27)

for some l = 0, 1, 2, . . . . The possible values of −rF ′(r) are shown for all possible

RNdS spacetimes are shown in figure.3.2. Then it is again clear that for rOH all

eigenvalues are positive and so all outer horizons are strictly stable.

The cosmological horizon is more interesting. In that case we can see that all

l > 1 eigenvalues are positive. However for l = 1 we can have vanishing eigenvalue if

M = 0, Q = 0 (the top of the blue sheet). In l = 1, the only case is −rF ′(r) = 2 along

with M = 0, this corresponds to pure-de Sitter case where the cosmological horizon

is neither stable nor rigid: this cosmological horizon may be “translated” anywhere

in this homogeneous spacetime.
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Figure 3.2: The values of −rF ′(r) for outer horizon (grey), cosmological horizon
(blue), inner horizon (purple). For −rF ′(r) = l(l + 1), l positive integer hold when
potential instabilities exist.

Figure taken from [10]

In earlier section 3.1.2 we have calculated the extrinsic curvature Kab at T =

constant surfaces in Painlevé-Gullstrand coordinates (pure-de Sitter case). For that

spacetime

F (r) = 1− Λ

3
r2. (3.28)

Now from Eqn.(3.17) we get the trace of extrinsic curvature is

k(û) = q̃abKab = −2

√
Λ

3
(3.29)

which is constant for any surface with same k(r̂) and it is MOTS i.e θ(`) = 0. Also in

T = constant surface, any sphere of radius r =
√

3
Λ

has

k(r̂) = 2

√
Λ

3
. (3.30)

Then any such sphere has θ(`) = k(û) + k(r̂) = 0. Hence none of these are rigid: the

non rigidity shows up as the ability to move the spheres around while leaving θ(`) = 0.
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Even more interesting is rIH . There since rIHF
′(rIH) can be arbitrarily large

we can make any eigenvalue vanish with a careful choice of physical parameter. In

particular for

−rIHF ′(rIH) = l(l + 1) (3.31)

0 is an eigenvalue of L of multiplicity 2l+1, with eigenfunctions of the form Eqn.(3.25)

for −l ≤ m ≤ l. Hence we now have concrete examples of horizons that are stable

and rigid (outer horizons) and as well as unstable and not rigid (cosmological in pure

de-Sitter). However we also have a family of MOTS (the inner horizons) that are

unstable but we don’t know whether or not they are rigid. It turns out that this

family continues to exist for Reissner-Nordström spacetime with vanishing Λ, so for

simplicity we reduce to that case. We will investigate these cases in the next chapter.



Chapter 4

Lyapunov-Schmidt Reduction and

MOTS

The previous chapter found a class of RN spacetimes for which the stability operator

on the inner horizon has a 0 eigenvalue. This is essentially the first derivative test with

0 eigenvalue, i.e., the derivative of expansion is zero. However, in this chapter, we are

interested in the second derivative of the expansion. We will introduce the Lyapunov-

Schmidt reduction to study the differential operator to a finite system of polynomial

equations. Lyapunov-Schmidt reduction is used for solving non-linear equations, i.e

θ(`) = 0, when the implicit function theorem does not work.

Let S ⊂ Σ be a MOTS so that θ(`) = 0. For any function ψ on S from (2.55) we

have

Lψ =
∂

∂ρ

(
θ(`)

)∣∣∣∣
ρ=0

, (4.1)

which defines the stability operator L. If L is invertible, i.e does not have 0 as an

eigenvalue, then S will be rigid in Σ. Thus one can prove the following theorem [20]

Theorem 1. Let S be a MOTS and assume that the stability operator L is invertible

then there exists ε > 0 such that the only MOTS of the form S +ψ, with ‖ψ‖C2,α < ε,

is S itself.

The theorem does not apply if L has a zero eigenvalue.
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4.1 The Lyapunov-Schmidt Reduction for MOTS

To examine the rigidity we will introduce Lyapunov-Schmidt reduction beyond looking

at the stability operator. The Lyapunov-Schmidt reduction is applied to solve non

linear equations when the inverse function theorem does not work.

Now consider the case that L is formally self adjoint (does not contain first deriva-

tive term); this will be the case when the spacelike hypersurface M is time symmetric.

Later we view L as a bounded linear operator such that L : C2,α(S)→ Cα(S). Assume

kerL is non trivial so that for some smooth functions {ψi}

kerL = span{ψ1, ψ2, . . . , ψN}. (4.2)

Suppose X ⊂ C2,α(S) denotes the L2- orthogonal complement of kerL. Since all

functions in kerL are smooth, we get the decomposition C2,α(S) = X ⊕ kerL [17].

Also let Y ⊂ Cα(S) is the range of L, and P be the orthogonal projection operator

onto Y then

X =
{
φ ∈ C2,α(S) :

∫
S

φψi = 0 for all i
}
, (4.3)

By construction PL|X : X → Y is invertible. The implicit function theorem for

Banach spaces guarantees that there exist neighbourhoods 0 ∈ U ⊂ kerL and 0 ∈
V ⊂ X and a map g : U → V such that

Pθ
(
ψ + g(ψ)

)
= 0 (4.4)

for all ψ ∈ U . Note that Pθ is a nonlinear map from C2,α(S) → Cα(S), and its

linearization is precisely PL. Moreover the inverse function theorem guarantees that

every solution to Pθ(φ) = 0 near 0 (i.e in the neighbourhood U × V ) must be of the

form φ = ψ + g(ψ).

We can see that θ(φ) = 0 if and only if Pθ(φ) = 0 and (I−P )θ(φ) = 0. Therefore

there will be a small solution to θ(φ) = 0 if and only if there exists ψ ∈ U ⊂ kerL for

which

(I − P ) θ (ψ + g(ψ)) = 0. (4.5)
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Since kerL is N dimensional and the projection (I−P ) maps onto (ranL)⊥ = kerL∗ =

kerL, (4.5) can be written as N ×N system of equations.

4.2 The Reduced equation

We now study the reduced system of equations (4.5) and identify kerL with RN by

mapping

(
t1, t2, . . . , tN

)
7→ t1ψ1 + · · ·+ tNψN . (4.6)

Therefore we can write g(ψ) = g(t), where t =
(
t1, . . . , tN

)
hence (4.5) becomes

(I − P )θ
(
t1ψ1 + · · ·+ tNψN + g(t)

)
= 0. (4.7)

Our goal is to prove the rigidity of MOTS and for that it is sufficient to show (4.7)

has no non-trivial solutions in a neighbourhood of t = 0 ∈ RN .

Now for further study define a map α : RN → RN by

(t1, . . . , tN) 7→(∫
S

ψ1θ
(
t1ψ1 + · · ·+ tNψN + g(t)

)
, . . . ,

∫
S

ψNθ
(
t1ψ1 + · · ·+ tNψN + g(t)

))
(4.8)

observe that α(0) = 0 and from the above construction we have the following result:

Theorem 2. The MOTS S is rigid if and only if t = (t1, . . . , tN) = 0 is an isolated

solution of the equation α(t) = 0 (i.e in a neighbourhood of the origin there is no

solution of α(t) = 0 other than t = 0).

The equation α(t) = 0 (finite dimensional but nonlinear) gives a necessary and

sufficient condition for MOTS S to be rigid. Now for any j we can compute the first

derivate

∂α

∂tj

∣∣∣∣
t=0

=

(∫
S

ψ1Lψj, . . . ,

∫
S

ψNLψj

)
= 0 ∈ RN (4.9)

as Lψj = 0 and the t derivative of g(t) vanishes at t = 0. For the second derivative
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we find

∂2α

∂tj∂tk

∣∣∣∣
t=0

=

(∫
S

ψ1Q(ψj, ψk), . . . ,

∫
S

ψNQ(ψj, ψk)

)
, (4.10)

here Q denotes the second variation of expansion θ and it can be written as

Q(ψ, ψ) =
d2

dρ2

∣∣∣∣
ρ=0

θ(ρψ) (4.11)

and Q(ψ, φ) can be obtained using the polarization identity as

Q(ψ, φ) =
Q(ψ + φ, ψ + φ)−Q(ψ − φ, ψ − φ)

4
. (4.12)

In particular for the ith component of α Eqn.(4.10) written as:

∂2αi
∂tj∂tk

∣∣∣∣
t=0

=

∫
S

ψiQ(ψj, ψk). (4.13)

We can view this as a family of N ×N matrices, one for each i.

Hence the MOTS S will be rigid if there do not exist numbers (t1, . . . , tN) not iden-

tically zero, that simultaneously satisfy the system of N quadratic equations

N∑
j,k=1

tjtk

∫
S

ψiQ(ψj, ψk) = 0, 1 ≤ i ≤ N. (4.14)

Now if we are looking back to Eqn.(3.27) the first order condition −rF ′(r) =

l(l + 1), we can say that in spherical harmonic form for a given value of l there are

2l + 1 independent solutions of the eigenvalue equations.
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4.3 Higher derivatives of the expansion evaluated

on RN spacetime

Now in this section we evaluate Eqn.(3.23) at the inner horizon in Reissner-Nordström

spacetime. Writing the metric function F (r) as

F (r) =
(r − r0)(r − r1)

r2
, (4.15)

where in terms of physical quantities

r0 = M −
√
M2 −Q2 and r1 = M +

√
M2 −Q2. (4.16)

Here r0 is the inner horizon and r1 is the outer horizon. We have

F ′(r0) =
r0 − r1

r2
0

(4.17)

and

F ′′(r0) =
2

r0
2
− 4(r0 − r1)

r0
3

, (4.18)

so that

r0F
′(r0) =

−2
√
M2 −Q2(

M −
√
M2 −Q2

) . (4.19)

Now we can write Eqn.(3.27) explicitly in terms of M and Q as

l(l + 1) = − −2
√
M2 −Q2(

M −
√
M2 −Q2

) . (4.20)

Now L has 0 eigenvalue exactly when M and Q satsify this equation for some integer

l.
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So that Eqn.(3.23) becomes

∂2

∂2ρ

(
θ(`)

)∣∣∣∣
ρ=0

=

(
(r0 − r1)2

2r5
0

+
2(r0 − r1)

r4
0

+
2

r3
0

− 4(r0 − r1)

r4
0

)
ψ2

+

(
2

r3
0

+
(r0 − r1)

r4
0

)
ψ2
θ +

1

sin2 θ

(
2

r3
0

+
(r0 − r1)

r4
0

)
ψ2
φ.

(4.21)

This equation is the second variation of outgoing null expansion. Now from equation

(4.21) we have the second variation of expansion Q
(
ψ, ψ

)
is

Q
(
ψ, ψ

)
=
(r0 − r1

r3
0

)(r0 − r1

2r2
0

+
2

r0

+
2

r0 − r1

− 4

r0

)
ψ2

+

(
2

r3
0

+
r0 − r1

r4
0

)
ψ2
θ +

1

sin2 θ

(
2

r3
0

+
r0 − r1

r4
0

)
ψ2
φ.

(4.22)

Hence from this equation we can write the second variation of expansion as

Q
(
ψj, ψk

)
=

(r1 + r0)2

2r5
0

ψjψk +
3r0 − r1

r4
0

∇ψj · ∇ψk (4.23)

Here ∇ψj · ∇ψk is an inner product with respect to the metric on a unit sphere. Now

from Eqn.(3.21) we can write,

−∆ψ +
F ′(r)

r
ψ = 0 (4.24)

By factoring the metric function F (r), from Eqn.(4.15) we have

F (r) =
(r − r0)(r − r1)

r2
(4.25)

For further progress now we combine Eqn.(3.27) and Eqn.(4.25) which gives us

r1 − r0

r0

= l(l + 1) (4.26)

this implies

r1 = (l2 + l + 1)r0. (4.27)
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Using the relation between r0 and r1 in Eqn.(4.23) we can write the second variation

of expansion as

Q
(
ψj, ψk

)
=

(l2 + l + 2)2

2r3
0

ψjψk −
(l2 + l − 2)

r3
0

∇ψj · ∇ψk. (4.28)

Therfore,

Q(ψ1, ψ2) =
−(l2 + l − 2)

r3
0

(
∇ψ1 · ∇ψ2 −

(l2 + l + 2)2

2(l2 + l − 2)
ψ1ψ2

)
. (4.29)

4.3.1 Identities for Integrals involving three Eigenfunctions

Lemma 3. Let S be a compact manifold without boundary, and suppose ψi is a set

of eigenfunctions for the same eigenvalue λ > 0, i.e.−∆ψi = λψi for each i. Then

I =

∫
S

ψi
(
∇ψj · ∇ψk

)
=
λ

2

∫
S

ψiψjψk (4.30)

for all i, j, k

Proof. Integrating by parts in different ways, we get

I = −
∫
S

ψj
(
∇ψi · ∇ψk

)
+ λ

∫
S

ψiψjψk (4.31)

and

I = −
∫
S

ψk
(
∇ψi · ∇ψj

)
+ λ

∫
S

ψiψjψk (4.32)

Comparing Eqn.(4.31) and Eqn.(4.32) we see that the left-hand side of Eqn.(4.30) is

symmetric in the indices i, j, k and hence∫
S

ψi
(
∇ψj · ∇ψk

)
= −

∫
S

ψi
(
∇ψj · ∇ψk

)
+ λ

∫
S

ψiψjψk (4.33)

which proves the result.
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Now applying this to Smil (θ, φ) we can see that∫
S2

Smil (θ, φ)
[
∇Smil (θ, φ) · ∇Smkl (θ, φ)

]
dΩ =

l(l + 1)

2

∫
S2

Smil (θ, φ)S
mj
l (θ, φ)

Smkl (θ, φ)dΩ,

(4.34)

here dΩ = sin θdθdφ. Now compute the integrals

M i
jk =

∫
S2

SilQ(Sjl S
k
l )dΩ, (4.35)

here

Q(ψ1, ψ2) =
−(l2 + l − 2)

r3
0

(
∇ψ1 · ∇ψ2 −

(l2 + l + 2)2

2(l2 + l − 2)
ψ1ψ2

)
, (4.36)

which we get from Eqn.(4.29). Now from lemma 3 we get∫
S2

SilQ(Sjl S
k
l )dΩ =

−(l2 + l − 2)

r3
0

[∫
S2

Sil (∇S
j
l · ∇S

k
l )dΩ− (l2 + l + 2)2

2(l2 + l − 2)

∫
S2

SilS
j
l S

k
l dΩ

]
.

This implies

M i
jk =

−(l2 + l − 2)

r3
0

[
l(l + 1)

2
− (l2 + l + 2)2

2(l2 + l − 2)

]∫
S2

SilS
j
l S

k
l dΩ (4.37)

For real value of l the term in bracket never vanishes so that we can write Eqn.(4.37)

as

M i
jk = c(l)

∫
S2

SilS
j
l S

k
l dΩ (4.38)

here c(l) is a nonzero constant that depends only on l. Next by solving Eqn.(4.38) we

will get system of polynomial equations and we will solve the polynomial equations

to check the rigidity of inner horizon.
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4.3.2 The l = 0 case

Consider kerL= span {ψ} is one dimensional and in Eqn.(4.8) we defined the map

α : R→ R,

α(t) =

∫
S

ψθ(tψ + g(t))dΩ (4.39)

with α(0) = α′(0) = 0 and

α′′(0) =

∫
S

ψQ(ψ, ψ)dΩ. (4.40)

Now by using Eqn.(4.38) for l = 0 in the case of real eigenfunction Sml , the MOTS

will be rigid if M1
11 is non-zero and we get by direct calculations

M1
11 = c(l)

∫
S2

S0
0S

0
0S

0
0dΩ (4.41)

= c(l)(S0
0)3 · 4π (4.42)

6= 0 (4.43)

since the function S0
0(θ, φ) is a non-zero constant. Therefore the inner horizon is rigid

in this case.

4.3.3 The l = 1 case

From Eqn.(4.38) now we are checking for ` = 1 hence we get

M1 = M2 = M3 =

0 0 0

0 0 0

0 0 0

 . (4.44)

The above solutions obtained by using Maple. From this solution and checking for

different values of l we can find that by using symmetry argument (in symmetric level

−l to +l is always zero) for all odd cases of l we always have M i
jk = 0, ∀i, j, k. So

that the solution is trivial and method is inconclusive for all l odd cases.
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Now for all even values of l we will get non-trivial system of polynomial equations.

In the next sections we will check for l even cases.

4.3.4 The l = 2 case

In the case l = 2 we will get 2l + 1 = 5 independent eigenfunctions. Hence from

Eqn.(4.38) we can write directly for the rigidity of MOTS, the N ×N matrix for the

single value of i becomes,

M i
jk = c(l)

∫
S2

SilS
j
l S

k
l dΩ (4.45)

Now by direct computation using Maple, solving Eqn. (4.45) we can get 5×5 matrix.

Here Sml (θ, φ) associated with Legendre polynomial for the real valued eigenfunctions

which are defined earlier in Eqn.(3.26)

Then Eqn.(4.45) becomes

M1 =


0 0 π

42
0 0

0 0 0 π
14

0
π
42

0 0 0 0

0 π
14

0 0 0

0 0 0 0 0

 (4.46)

Similarly we can find

M2 =


0 0 0 π

14
0

0 0 − π
21

0 2π
7

0 − π
21

0 0 0
π
14

0 0 0 0

0 2π
7

0 0 0

 , (4.47)
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M3 =



π
42

0 0 0 0

0 − π
21

0 0 0

0 0 −8π
7

0 0

0 0 0 −12π
7

0

0 0 0 0 96π
7

 , (4.48)

M4 =


0 π

14
0 0 0

π
14

0 0 0 0

0 0 0 −12π
7

0

0 0 −12π
7

0 −72π
7

0 0 0 −72π
7

0

 , (4.49)

and

M5 =


0 0 0 0 0

0 2π
7

0 0 0

0 0 0 0 96π
7

0 0 0 −72π
7

0

0 0 96π
7

0 0

 . (4.50)

To find the solution for Eqn.(4.45) now consider

t =


t1

t2

t3

t4

t5

 (4.51)
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This yields the system of quadratic equations

tTM1t =
π

7

(1

3
t3t1 + t4t2

)
= 0 (4.52)

tTM2t =
π

7

(
t4t1 +

(
− 2

3
t3 + 4t5

)
t2

)
= 0 (4.53)

tTM3t =
π

7

(1

6
t21 −

1

3
t22 − 8t23 − 12t24 + 96t25

)
= 0 (4.54)

tTM4t =
π

7

(
t2t1 − 24t4

(
t3 + 6t5

))
= 0 (4.55)

tTM5t =
2π

7

(
t22 + 96t5t3 − 36t24

)
= 0 (4.56)

The above five equations are polynomial equations with five unknowns. Now to ex-

amine the rigidity of MOTS, we will solve those five system of equations for unknown

t1, t2, t3, t4, t5.

We start with considering the case t3 = 0. If t3 = 0 then from Eqn.(4.52) we get

either t2 = 0 or t4 = 0. Now consider the case for t2 = 0, t3 = 0 then from Eqn.(4.56)

we get t4 = 0. Similarly if t4 = 0, t3 = 0 then Eqn.(4.56) shows t2 = 0. Now by

substituting t2 = t3 = t4 = 0 in Eqn.(4.54) we get

1

6
t21 + 96t25 = 0. (4.57)

So the only real solution to that is t1 = t5 = 0. Hence in case of t3 = 0 we find that

everything vanishes.

Next we consider t3 6= 0, then from Eqn.(4.52) and Eqn.(4.56) respectively we get

t1 =
−3t4t2
t3

(4.58)

t5 =
−t22 + 36t24

96t3
(4.59)

Now substitute t1 and t5 in Eqn.(4.53) we get

t4

(
−3t4t2
t3

)
− 2

3
t3t2 + 4

(
−t22 + 36t24

96t3

)
t2 = 0, (4.60)

this implies

t2
(
t22 + 16t23 + 36t24

)
= 0 (4.61)
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which shows either

t2 = 0 or t22 + 16t23 + 36t24 = 0. (4.62)

Similarly by substituting t1, t5 in Eqn.(4.55) we get either t4 = 0 or same as Eqn.(4.62).

For Eqn.(4.62) we can say that it has complex roots for t2, t3, t4 but the only real roots

are t2 = t3 = t4 = 0.

In our case we are looking for real solution as we cannot deform MOTS in complex

direction and the only real solution is t1 = t2 = t3 = t4 = t5 = 0. Here we can conclude

by saying that there is no real solution apart from the trivial one and this is enough

to tell us that we cannot deform this unstable MOTS.

4.3.5 The l = 3 case

Now in case of l = 3, we will get 7×7 matrix and all the entries of the matrix become

zero which is true for all odd cases of l.

4.3.6 The l = 4 case

Now check for l = 4 we will get 9× 9 matrix and it becomes

M1 =
π

286



0 0 0 0 1
2520

0 0 0 0

0 0 0 0 0 1
252

0 0 0

0 0 0 0 0 0 1
14

0 0

0 0 0 0 0 0 0 0 1
1

2520
0 0 0 0 0 0 0 0

0 1
252

0 0 0 0 0 0 0

0 0 1
14

0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0


. (4.63)



49

M2 =
π

143



0 0 0 0 0 1
504

0 0 0

0 0 0 0 − 1
420

0 0 0 0

0 0 0 0 0 − 1
126

0 0 0

0 0 0 0 0 0 1
7

0 4

0 − 1
420

0 0 0 0 0 0 0
1

504
0 − 1

126
0 0 0 0 0 0

0 0 0 1
7

0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 4 0 0 0 0 0


. (4.64)

M3 =
π

143



0 0 0 0 0 0 1
28

0 0

0 0 0 0 0 − 1
126

0 0 0

0 0 0 0 − 143
8190

0 0 0 −4

0 0 0 0 0 −2
7

0 2 0

0 0 − 143
8190

0 0 0 0 0 0

0 − 1
126

0 −2
7

0 0 0 0 0
1
28

0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0

0 0 −4 0 0 0 0 0 0


. (4.65)

M4 =
π

143



0 0 0 0 0 0 0 1
2

0

0 0 0 0 0 0 1
7

0 4

0 0 0 0 0 −2
7

0 2 0

0 0 0 0 9
35

0 −36
7

0 0

0 0 0 9
35

0 0 0 0 0

0 0 −2
7

0 0 0 0 0 0

0 1
7

0 −36
7

0 0 0 0 0
1
2

0 2 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0


. (4.66)
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M5 =
9π

143



1
45360

0 0 0 0 0 0 0 0

0 − 1
3780

0 0 0 0 0 0 0

0 0 − 143
73710

0 0 0 0 0 0

0 0 0 1
35

0 0 0 0 0

0 0 0 0 16
7

0 0 0 0

0 0 0 0 0 80
7

0 0 0

0 0 0 0 0 0 −22880
91

0 0

0 0 0 0 0 0 0 −6720 0

0 0 0 0 0 0 0 0 35840


. (4.67)

M6 =
π

143



0 1
504

0 0 0 0 0 0 0
1

504
0 − 1

126
0 0 0 0 0 0

0 − 1
126

0 −2
7

0 0 0 0 0

0 0 −2
7

0 0 0 0 0 0

0 0 0 0 0 720
7

0 0 0

0 0 0 0 720
7

0 14400
7

0 0

0 0 0 0 0 14400
7

0 14400 0

0 0 0 0 0 0 14400 0 −403200

0 0 0 0 0 0 0 −403200 0


.

(4.68)

M7 =
π

143



0 0 1
28

0 0 0 0 0 0

0 0 0 1
7

0 0 0 0 0
1
28

0 0 0 0 0 0 0 0

0 1
7

0 −36
7

0 0 0 0 0

0 0 0 0 0 0 −205920
91

0 0

0 0 0 0 0 −14400
7

0 14400 0

0 0 0 0 −205920
91

0 0 518400 0

0 0 0 0 0 14400 0 0 0

0 0 0 0 0 0 518400 0 0


. (4.69)
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M8 =
π

143



0 0 0 1
2

0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0
1
2

0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 −60480 0

0 0 0 0 0 0 14400 0 −403200

0 0 0 0 0 14400 0 0 0

0 0 0 0 −60480 0 0 0 0

0 0 0 0 0 −403200 0 0 0


. (4.70)

M9 =
4π

143



0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 80640

0 0 0 0 0 0 0 −100800 0

0 0 0 0 0 0 129600 0 0

0 0 0 0 0 −100800 0 0 0

0 0 0 0 80640 0 0 0 0


. (4.71)
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Now the system of quadratic equations in that case are:

tTM1t =
1

180
t5t1 +

1

18
t6t2 + t7t3 + 14t8t4 = 0 (4.72)

tTM2t =
1

36
t1t6 −

1

30
t5t2 −

1

9
t3t6 + 2t4t7 + 56t4t9 = 0 (4.73)

tTM3t =
1

2
t1t2 −

1

9
t6t2 −

143

585
t5t3 − 56t3t9 − 4t4t6 + 28t4t8 = 0 (4.74)

tTM4t = 7t1t8 + 2t7t2 + 56t9t2 − 4t6t3 + 28t3t8 +
18

5
t5t4 − 72t4t7 = 0 (4.75)

tTM5t =
1

720
t21 −

1

60
t22 −

143

1170
t23 +

9

5
t24 + 144t25 + 720t26 − 15840t27

− 423360t28 + 2257920t29 = 0 (4.76)

tTM6t =
1

36
t1t2 −

1

9
t3t2 − 4t4t3 + 1440t5t6 + 28800t6t7 + 201600t7t8

− 5644800t8t9 = 0 (4.77)

tTM7t =
1

14
t1t3 +

1

7
t2t4 −

36

7
t24 −

411840

91
t5t7 +

14400

7
t26 + 28800t6t8

+ 1036800t7t9 = 0 (4.78)

tTM8t = t1t4 + 4t3t4 − 120960t5t8 + 28800t6t7 − 806400t6t9 = 0 (4.79)

tTM9t = 8t2t4 − 4t23 + 645120t9t5 − 806400t6t8 + 518400t27 = 0 (4.80)

So in l = 4 we can find the polynomials (from the matrices above), but so far we

have not been able to solve these equations (i.e can not prove l = 4 case, there are

no non-zero solutions) Hence for l = 0, 2 cases we analyze explicitly and proved there

are no solutions, so that MOTS is rigid but not stable.
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Conclusion

In this chapter, we summarize our results. This thesis examines the rigidity of

marginally outer trapped surfaces. We study this in the case of the Reissner-Nordström

spacetime. Our analysis indicated that in the case of the outer black hole horizon, all

eigenvalues of the stability operator are positive so the horizon is strictly stable and

hence rigid. The case of the cosmological horizon is more subtle. This has vanishing

eigenvalues for the l = 1 mode and in the pure de-Sitter case this horizon is neither

stable nor rigid. The more interesting case here is the inner horizon which is unstable

and we have looked here for the rigidity of the unstable inner horizon. To study this,

we introduced Lyapunov-Schmidt reduction. This method works when the inverse

function theorem doesn’t. We have conclusively proved that spacetimes for which the

l = 0 or l = 2 eigenvalues vanish are unstable but still rigid. For odd values the

method does not work at all and for even values (> 2) it works in principle but we

did not do it yet algebrically. Given these matrices M1 to M9 we can write down the

polynomial equations analogous to the previous chapter, but it is too complicated to

prove. It is still an open problem to resolve this for bigger even values of l and all odd

values of l. However we conjecture that all of these unstable cases are still rigid. Note

that, in axisymmetry many of these cases were dealt with ad-hoc methods in [10].
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Appendix A

Horizons

Name θ(`) θ(n)

Trapped < 0 < 0
Marginally
Trapped

0 < 0

Outer trapped < 0 anything
Marginally outer
trapped

0 anything

Weakly trapped ≤ 0 ≤ 0

Table A.1: Classification of different types of surfaces in terms of null expansion
(outward and inward)
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