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Abstract 

Prevention of safety hazards plays an important role in the offshore and maritime industries, 

especially in offshore ice management operations as the safety of these operations depends on the 

judgment and decision making of experienced captains and their bridge teams. To address safety 

challenges that may arise in the context of ice management operations, this study focused on a 

human-centered approach to develop an early-stage decision support system (DSS) for offshore 

ice management operations by applying a case-based reasoning (CBR) method. The aim of this 

research is to (i) capture knowledge from expert seafarers to be used in the development of a DSS; 

and (ii) propose a DSS employing a CBR model to be used onboard ships in a real-time basis for 

ice management operations. To capture seafarers’ experience, this study employed semi-structured 

interviews and bridge simulator exercises. The results of the knowledge capture exercises were 

translated into an ice management DSS using a CBR model. The case-based reasoning (CBR) 

model develops solutions to new problems by using similar problems in the past. The DSS employs 

a decision tree algorithm to retrieve a case to match observations from the current situation with 

an unknown outcome to a case base with known outcomes. This thesis describes the methods used 

in the development of the onboard DSS to provide tactical guidance for ice management 

operations. It also outlines the methods used to test the DSS software’s suggested ice management 

strategies and adjustments during a series of simulator exercises.  
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Chapter 1: Introduction 

1.1. Overview 

People deal with different decision-making problems every day. They have to decide how to 

overcome challenges that regularly arise in their lives, including personal choices or more 

complicated decisions regarding the economy, business management, or medicine. Assisting 

people with making the best decision regarding complicated situations has been an objective of 

researchers for years. A decision support system (DSS), which is a computer-based system, is one 

method that has been developed to fulfill this goal (Bohanec & Rajkovič, 1990). 

Ice management is complex in nature and often takes place under challenging circumstances. 

Dynamic conditions in ice management operations cause some degree of uncertainty for making a 

safe and effective decision in a high-risk situation. This research proposes the development of a 

decision support system (DSS) to provide ad-hoc advisory services to the operators to make non-

trivial decisions during an ice management operation. To address safety challenges that may arise 

in the context of ice management operations, this study focused on a human-centered approach to 

develop an early-stage decision support system (DSS) for offshore ice management operations by 

applying a case-based reasoning (CBR) method. The aim of this research is to (i) capture 

knowledge from expert seafarers to be used in the development of a DSS; and (ii) propose a DSS 

employing a CBR model to be used onboard ships in a real-time basis for ice management 

operations. 

A DSS may have various definitions in different research areas. That means that a DSS’s definition 

may vary based on its characteristics to solve different problems (Sprague, 1980). Although DSS 
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can be described in several forms, Power (2002) provides three characteristics that decision 

support systems have in common (Power, 2002): 

1. DSS facilitates the decision-making process, 

2. DSS does not automate an action. It only helps decision-makers to make a decision, 

3. DSS should help and respond quickly to the decision-makers’ needs in changing situations. 

Due to knowledge engineering growth, knowledge-based technologies are mostly used in 

advanced decision support systems to assist decision-makers (Babka & Whar, 1997). Among 

different reasoning methodologies that can be implemented in the knowledge-based DSS, Case-

Based Reasoning (CBR) is a practical and effective method of solving complicated problems that 

cannot be managed using traditional reasoning models like model-based reasoning (Y. Liu, Yang, 

Yang, Lin, & Du, 2009). 

Most people think that they can avoid repeating some mistakes that they have made before in a 

new similar situation. They think that their previous experiences help them to have a better 

performance in the similar situation. Although using the previous experience seems to be easy, it 

is difficult in practice. History shows that many unfortunate occurrences are repeated after some 

years (Virkki-Hatakka & Reniers, 2009). People are not like a computer to memorize every aspect 

and detail of an experience and they forget some points in the future. Consequently, similar 

accidents occur while they should be prevented using the previous experiences (Virkki-Hatakka 

& Reniers, 2009). Having a case base that keeps all experiences related to a specific problem may 

be effective to be used in similar situations to solve problems. Case-based Reasoning is a 

methodology that can be used to develop such a case base. 
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The CBR uses a ‘remember and compare’ cycle. Experiences stored in the CBR case base as cases 

are used to assist in new situations to make a recommendation. To bring out a suggestion, matching 

cases to the problem are retrieved and analyzed to prevent poor solutions. Once feedback is 

evaluated in CBR, cases are modified, and their outcomes are chosen to solve the problem. Finally, 

if the solution is valid, it will be added to the case base for future use (Leake & Plaza, 1997). 

1.2. Offshore Ice Management Operations 

Ice management operations are approaches that consider environmental, design, and operational 

elements to secure platforms and facilities in ice-covered waters. Activities off the coast of 

Newfoundland, like offshore oil operations, require ice management operations to maintain the oil 

platforms’ safety (Smith, Yazdanpanah, Thistle, Musharraf, & Veitch, 2020). Different activities 

are performed in ice management operations, such as (Keinonen, 2008) 

1. observing and predicting ice conditions, 

2. identifying and tracking icebergs and pack ice, 

3. reporting ice conditions and, 

4. avoiding, breaking, and deflecting ice threats. 

Among the operations mentioned above, this thesis focuses on the operations that deflect or 

disperse encroaching pack ice from the area close to the oil platforms. Common techniques for 

moving the ice using the support vessels are linear, sector, circular, stationary/propeller wake, and 

pushing (Dunderdale & Wright, 2005). A combination of these techniques deflects and disperses 

the pack ice around the offshore platforms. Due to the changing environments during maritime 

operations (e.g., wind, current, response time), predicting the situations to manage the pack ice is 
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a complicated task. Consequently, many strategies need to be adapted based on the current 

circumstances. 

Basic and advanced training for ships operating in polar waters are required to be completed for 

ice management training. This regulation developed by IMO in collaboration with the Marine 

Institute’s Centre for Marine Simulation and the professional organization Master Mariners of 

Canada (International Maritime Organization, 2017b, 2017a). In addition to these training, cadets 

with less experience rely on experienced operators in ice management operations and learn from 

seafarers once they are conducting these operations. On-the-job training lacks standardization and 

may cause some problems in practice. First, applying new rules and regulations is time-consuming. 

Second, many of the standard criteria for ice management training were established for the 

navigation of Arctic waters and may not be directly applicable for ice operations around offshore 

oil platforms. 

To be an ‘ice navigator’, a master should spend 50 days serving at the vessel (30 days of this time 

should be in Arctic waters and performing ice advice or ice-breaking maneuvers) according to 

Canada’s ASPPR (Arctic Shipping Pollution Prevention Regulations) (Canadian Coast Guard, 

2012), and 90 days navigating in ice-covered water within 5 years (e.g., six trips with the duration 

of 15 days for each)(Transport Canada Joint Industry-Government Guidelines for the Control of 

Oil Tankers and Bulk Chemical Carriers in Ice Control Zones of Eastern Canada (JIGs) TP15163, 

2015). As a result, to be an ‘ice navigator’ and consequently an advisor for offshore ice 

management vessels, many ice seasons are required for a seafarer to obtain enough expertise to be 

able to manage a situation in which a platform is surrounded by ice. On-the-job training may not 

be an entirely adequate means of knowledge exchange from experienced captains to new cadets. 
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Besides, transferring experience from captains to the cadets builds an inherited knowledge. That 

means that the cadet’s ability to adapt ice management strategies strongly depends on the captain 

and their teams’ experiences. This aspect of the on-the-job training causes variation in the domain 

of ice operations. Veitch et al.’s (2019) research results show this variation, where experienced 

seafarers performed emergency ice management scenarios in a bridge simulator (Veitch, 

Molyneux, Smith, & Veitch, 2018). According to the findings, a considerable difference in ice 

management effectiveness was observed once seafarers implemented scenarios. 

 

1.3. Purpose 

For several nations, operations in ice-covered waters are an ongoing need (Lehtola, Montewka, 

Goerlandt, Guinness, & Lensu, 2019). The decreasing ice amount and thickness in the Arctic has 

increased traffic and ship operations in the Arctic (Zhang, Zhang, Fu, Yan, & Goncharov, 2017). 

Increasing these operations requires some planning to ensure the safety of operations in ice-

covered waters. For this purpose, two aspects that could be considered in maritime technologies 

are 

1.  reducing the hazards that threaten people’s lives, and 

2. using autonomous vessels to assist with decision-making (Lehtola et al., 2019). 

Automation should be designed for the benefit of people instead of replacing them. This idea stems 

from the realization that completely automated services is impractical for certain tasks. The safety 

of offshore ice management operations depends on the decisions that experienced seafarers and 

bridge teams make. Also human error is one of the most important factors in maritime accidents 

(Y. Liu et al., 2009). Therefore, to increase the capabilities of seafarers and support them in their 
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responsibilities, designing a human-centered system will be advantageous (Spath, Braun, & Bauer, 

2009). 

To implement ice management operations safely, seafarers need to have structured plans for ice 

management. To address this requirement, two fundamental knowledge gaps should be 

highlighted: 

1. On-the-job training for cadets is a time-consuming process because seafarers are required 

to spend so many days in the ice. Due to the variable seasons of ice, it can be time-

consuming to acquire the necessary experience to meet the regulatory requirement of on-

the-job training for ice management. 

2. There is not a unique strategy to conduct ice management operations securely, because ice 

management tactics from experienced seafarers may not be captured in the specific context 

of pack ice management. 

Collecting expert knowledge and giving uniformity to ice management training is needed for 

addressing these two gaps. To do so, realizing how experienced seafarers approach ice clearing 

techniques and how they adapt their strategies in new situations is required (Smith et al., 2020). 

Capturing safety knowledge should not rely solely on ‘storytelling’ and should include 

constructive procedures using training simulations.  Simulation exercises can be conducted to 

capture the actions of participants and learn from them without any risk. It has been shown that 

using such a training simulation can be highly efficient (Virkki-Hatakka & Reniers, 2009). This 

research employs a simulator to collect expert knowledge on ice management scenarios. Using the 

data gathered from the simulation exercises, an expert-informed decision support system were 
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developed to provide expert guidance to seafarers. Case-based reasoning stores this expert 

knowledge into its case base and then feeds them into the decision support system. CBR is an 

appropriate approach to store well-described and analyzed experiences (cases) and assist cadets 

and other seafarers using organized strategies. 

The purpose of this research was as follow: 

1. To capture expert knowledge from experienced seafarers 

2. To transfer this knowledge into a case-based reasoning case base 

3. To develop a decision support system for ice management operations 

1.4. Research Questions 

For this research, the hypotheses were: 

1. How to integrate knowledge extracted from different data sources (questionnaires, audio 

files, etc.) to create one comprehensive case base containing consistent, accurate, and 

useful information? 

2. What features do experienced seafarers pay attention to when performing ice management 

operations, and how can these features be captured and integrated into a decision support 

system to inform the guidance it provides?  

3. Can the human decision-making process be imitated using CBR and ML methods that 

provide both accuracy and transparency? 

4. Does the DSS’s suggested strategies adequately reflect the experienced seafarers’ 

heuristics/ decision-making strategies? 
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1.5. Hypothesis 

For this research, the hypotheses were: 

1. The bridge simulator used in this study would be a useful human laboratory for both 

knowledge capture and testing a decision support system. 

2. Capturing expert knowledge would allow for the classification of ice management 

strategies, detection of important ice management factors, and identification of the 

relationships between them. 

3. The CBR decision support system would be capable of recommending ice management 

strategies or offering adjustments during the implementation of a technique. 

This thesis focuses on the development of a CBR decision support system. The remainder of this 

thesis is organized as follows. Chapter 2 presents an overview of different types of decision support 

systems and their applications, different reasoning methods especially case-based reasoning, case 

memory model, and methods for case retrieval such as decision trees. Chapter 3 describes the 

procedure used for capturing contextual knowledge from expert seafarers (e.g., data collection). 

Also, this chapter focuses on the methods used and the insights gained from translating interview 

data and expert performance from a bridge simulator into a case base that can be referenced by the 

CBR model. This includes indexing and matching data gathered from the simulator to cases in the 

case base, and developing the retrieval algorithm for the CBR model. Chapter 4 presents and 

discusses the results of the research and evaluation of the CBR decision support system in a 

simulator setting. Chapter 5 presents changes applied to the DSS after testing the DSS in the 

simulator setting, and in Chapter 6 limitations and future works is described.  
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Chapter 2: Literature Review 

Decision support systems (DSS) are computer-based programs or algorithms used to guide people 

in making decisions and solving complicated problems. Researchers started to support people in 

solving complex problems and situations by developing a computer technology-based solution in 

the 1970s. In recent decades, technologies for developing such systems have grown rapidly 

(Felsberger, Oberegger, & Reiner, 2017). Today, DSSs are used in a variety of domains, such as 

business (Chan & Ip, 2011) and management (Asemi, Safari, & Asemi Zavareh, 2011), agricultural 

production (Rupnik et al., 2019), forecast management (Sayed, Gabbar, Fouad, & Ahmed, 2008), 

medical diagnosis (Ani, Jose, Wilson, & Deepa, 2018), ship navigation (Perera, Carvalho, & 

Guedes Soares, 2011; Perera, Rodrigues, Pascoal, & Soares, 2011), and offshore operations (Lee, 

Aydin, Choi, Lekhavat, & Irani, 2018). 

While a DSS should provide decision-makers with some key factors to guarantee their success, it 

cannot suggest a good solution in all situations or for all users. The efficiency of a DSS is related 

to its compatibility with both the decision-maker and the nature of the decision. If the DSS is well 

matched to the task and the decision maker’s capabilities, receiving benefits from the DSS can be 

expected. For this reason, the first step in matching the DSS technology with the intended 

application and user is knowing the benefits and the limitations of a DSS. Alexander (2002) in 

their literature review of decision support systems, highlight the benefits and limitations of these 

systems. The following list provides a summary of some of the benefits of a DSS outlined by 

(Alexander, 2002): 

1. Improving the user’s ability to process and understand information 

2. Improving the user’s ability to solve complicated problems and situations  
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3. Facilitating and accelerating the decision-making process 

4. Making the outputs or results of a decision more reliable 

5. Suggesting a new approach or strategy that the user may not have thought about before. 

Alexander (2002) also provide a good summary of the limitations of decision support systems: 

1. DSS suffer from the lack of some human characteristics in decision making such as 

imagination and creativity  

2. The usefulness of the DSS can vary based on the computer system that a DSS is running, 

or the amount and validity of data it is using, and also the effectiveness of its design 

3. DSS has some difficulties for using natural language processing while receiving the user’s 

entries in the command interfaces 

4. Generally, DSS has some difficulties generating multiple decision-making processes, and 

they are usually developed in a narrow range of frameworks (Alexander, 2002). 

This section provides an overview of decision support systems theory and frameworks and 

describes the examples and methods used for each type of decision support system. Then, it is 

explained why a knowledge-based decision support system is suitable for this research purpose. In 

the following, among different reasoning models in the knowledge-based DSS, case-based 

reasoning and its role in ice management operations are defined. Then, two important parts of case-

based reasoning, including the case memory model, and the case retrieval and similarity 

assessment are described in detail. 
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2.1.Decision Support Systems Definitions and Types 

Decision Support Systems (DSS) are computer-based systems that can support complicated 

problems. Such a framework integrates and analyzes raw data to identify challenges and determine 

their solutions to assist decision-makers (Shim et al., 2002). 

There are three types of problems to be solved. They include structured, unstructured, and semi-

structured problems (Power, 2001). In structured problems, the decision is routine and the solution 

can be predicted in advance. Unstructured problems are the opposite of structured problems, and 

the procedures for solving the problem cannot be easily formulated in advance. Semi-structured 

problems are something between two other problems, which means that some procedures can be 

pre-defined. 

DSS is not required for all three types of problems, for example, there is no need for structured 

problems to have a DSS because they tend to be straightforward and predictable. Most DSS 

applications support semi-structured problems, while a few assist decision-makers in unstructured 

challenges (Mashli Aina, 2015).  

The literature categorized decision support systems based on three aspects and each will be briefly 

described: 

1. the relationship with the user, 

2. the scope, and 

3. the mode of assistance it offers. 
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A DSS can be classified based on its relationship with users and can be passive, active, or 

cooperative (Aqel, Nakshabandi, & Adeniyi, 2019). A passive DSS helps and supports decision-

makers but cannot suggest explicit solutions, while an active DSS provides decision guidelines. 

The cooperative DSS allows the decision-maker to modify or refine the suggested decision. 

Based on the scope as the criterion, DSSs consist of Enterprise-wide DSS and the desktop DSS. 

An enterprise is linked to a large database, and many users can use it. In contrast, a desktop DSS 

is a small system that can serve an individual user (Felsberger et al., 2017; Jain, 2016). 

Power (2002) distinguishes between DSSs based on the mode of assistance and has categorized 

the following modes: model-driven, data-driven, communication-driven, document-driven, or 

knowledge-driven DSS (Power, 2002). This is the most general categorization taxonomy (Nizetic, 

Fertalj, & Milasinovic, 2007) and will be discussed in detail in the DSS applications section. 

2.2.DSS Models 

2.2.1. Model-driven DSS 

A model-driven DSS utilizes different models, such as statistical, financial, mathematical, 

analytical, or optimization models, to find solutions for problems and help users (Power & Sharda, 

2007). According to the users’ needs, this type of DSS uses either a single model to solve basic 

problems or a combination of models to deal with more complex situations. Some examples of a 

model-driven DSS are a spreadsheet with formulas, a statistical forecasting model, or an optimum 

routing model. Optimization and analytical methods (Afshin Mansouri, Gallear, & Askariazad, 

2012) and operational research methods (quantitative methods) are some methods used in the 

literature to build a model-driven DSS (Nizetic et al., 2007). 
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2.2.2. Data-driven DSS 

The most common type of DSS is data-driven DSS. A data-driven DSS analyzes the time-series 

of data and helps decision-makers by creating new information based on the evaluated data. A 

large amount of data is required for the analyzing process in a data-driven DSS. For example, some 

data-driven DSS applications include accessing the INTERPOL database for crime investigations 

and accessing the border patrol database for all incidents in a sector. Data warehouses and online 

analytical processing (OLAP) are common methods in data-driven DSSs (Power, 2008). 

2.2.3. Communication-driven DSS 

Communications-driven DSS helps decision-makers to come up with a new solution by providing 

a situation in which two or more people can communicate with each other and share important 

data and information. Some features of a communications-driven DSS are allowing 

communication between groups of people, facilitating knowledge or information sharing, 

supporting people’s cooperation and teamwork, and supporting group decision making. Some 

examples of these system are video conferencing, audio conferencing, document sharing, 

electronic mail, computer-supported face-to-face meeting software, and interactive video. 

Network technologies are commonly used to develop a communication-driven DSS (Nizetic et al., 

2007). 

2.2.4. Document-driven DSS 

A document-driven DSS retrieves documents using processing technologies to analyze them and 

suggest a decision. These documents may contain unstructured information in various electronic 

types such as images, sound, video, scanned documents, and hypertext documents. A document-
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driven DSS aims to find and retrieve an appropriate document based on specified keywords or 

defined terms. They are also able to convert documents into important data. A search engine is an 

example of a document-driven DSS that helps its users by searching web pages and retrieving 

desired documents (Felsberger et al., 2017).  

2.2.5. Knowledge-driven DSS 

A knowledge-driven DSS collects specific expert knowledge in a particular field and helps 

decision-makers solve specific problems. A knowledge-driven DSS uses different reasoning 

methods such as rule-based reasoning (Cesario & Esposito, 2012), case-based reasoning (Smith et 

al., 2020), narrative-based reasoning (Wang & Cheung, 2011), ontology-based reasoning, and 

genetic algorithms (Zaraté, Kersten, & Hernández, 2014) to assist decision-makers based on expert 

knowledge. Intelligent decision support methods, data mining (Lee et al., 2018), artificial 

intelligence methods, fuzzy logic (Perera, Carvalho, et al., 2011), knowledge discovery methods, 

and heuristic methods are other common methods for developing a knowledge-based DSS. 

2.3.Reasoning Technologies in knowledge-driven DSS 

The core component in the knowledge-driven DSS is the knowledge base (Nizetic et al., 2007). 

As this research aimed to gather knowledge in a specific domain, and its central part is knowledge 

captured from experienced seafarers in ice management operations, a knowledge-driven decision 

support system is most suited for this study. 

Five reasoning or inference methods for knowledge-driven DSS include (S. Liu & Zaraté, 2014): 
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1. Rule-based reasoning (RBR): this reasoning method is used for reasoning that is based on 

a set of rules (Jiang, Qiu, Xu, & Li, 2017). In rule-based reasoning, expert knowledge is 

coded into some rules. These rules are presented as “if-then” sentences (Ribino, Augello, 

Lo Re, & Gaglio, 2011). 

2. Case-based reasoning (CBR): case-based reasoning uses human experiences to solve a 

problem. It relies on the past and similar cases and reuses them to suggest a solution for a 

new problem.  

3. Narrative-based reasoning (NBR): this approach deals with unstructured data. This 

reasoning method uses stories to assist the decision-making process by sharing what is 

learned from narratives (Wang & Cheung, 2011). 

4. Ontology-based reasoning (OBR): using ontology some concepts are defined in a specific 

domain and then relationships between these concepts are represented (Riaño et al., 

2012). Ontologies are used in applications that are required to process the content of 

information not just presenting data to humans (Valls, Gibert, Sánchez, & Batet, 2010). 

5. Genetic algorithms (GA):  The GAs are based on Darwinian evolution. GAs produce a 

population of chromosomes and each chromosome in the population can be considered as 

a solution. The chromosomes evolve using a fitness function and after several generations, 

the final chromosome would be the best solution to the problem (Aouadni & Rebai, 2017). 

The genetic algorithm is widely applied in different types of problems and provides 

appropriate solutions to those problems (Aouadni & Rebai, 2017). 

In a knowledge-driven DSS, the decision-making process is conducted by an inference engine. 

Among reasoning technologies in knowledge-driven DSS, case-based reasoning theory utilizes 

past experiences to find solutions for new problems. It gives an automatic ranking to the previous 
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cases and recommends the most suitable ones (Zaraté et al., 2014). Since experiences of seafarers 

in ice management operations were collected during this research for decision making, case-based 

reasoning is the most suitable reasoning method in the current thesis. More details of the case-

based reasoning technique are described in the next section. 

2.4.Case-Based Reasoning Theory 

Case-based reasoning (CBR) is a problem solving methodology and is used in artificial intelligence 

applications. This type of reasoning is mostly used when the previous experiences are useful in 

solving a new problem. To solve the new problem, CBR methodology searches to find the solution 

from a similar problem that occurred in the past and then uses the same solution or adapts it for 

the new problem (Su, Yang, Liu, Hua, & Yao, 2019). Accordingly, most CBR applications follow 

a basic approach to solve a new problem. They search in a case base to capture a solution from 

past experiences and take it as an initial point to guide the discovery of the solution for the new 

problem. The case base is a collection of cases into which the previous experiences are stored. So, 

each case contains some information about the past solution of problems similar to the new 

problem. Sometimes the cases store fully or partially solved problems, and sometimes they record 

unsuccessful attempts (Kurbalija & Budimac, 2008). 

Figure 1 illustrates a CBR lifecycle. As shown in Figure 1, there are four main steps (Aamodt & 

Plaza, 1994; Begum, Ahmed, Funk, Xiong, & Von Schéele, 2009): 

1. Retrieve 

2. Reuse 

3. Revise 
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4. Retain 

At the starting point, the new problem is considered as a new case. At the retrieve procedure, the 

most similar case to the new problem is retrieved. To find the matching case, features from all 

cases in the case base are compared to the new case, and their similarity metrics are computed. 

The case with the highest similarity metric is the closest experience to the new case (Hua Tan, 

Peng Lim, Platts, & Shen Koay, 2006). While the retrieved case may match the new problem 

perfectly, it may have some different aspects. The reuse procedure checks the reusable features 

and differences between the new case and the retrieved case. If the two cases are fully matched, a 

copy of the retrieved case is reused to solve the new problem. Otherwise, if they are partially 

matched, an adaptation is necessary before using the retrieved case in the new situation. In the 

revise procedure, the effectiveness of the suggested solution is examined. To evaluate the solution, 

the application can be tested in the simulator or in real life. Also, subject matter experts are another 

source to confirm or decline the solution. If the solution fails and needs to be fixed, it is repaired 

in the revise phase to prevent the same error in the future. Finally, in the retain phase, the learned 

case, which is the successful or repaired case, is indexed and stored in the case base. 
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Figure 1 Case-based Reasoning Cycle (Aamodt & Plaza, 1994) 

 

Case-based reasoning relies on expert and domain knowledge to improve the decision support 

applications using an intelligent way with less time, effort, and cost. Therefore, creating a case 

base with expert and domain knowledge, experience, and solutions is vital to develop a CBR model 

(Ali, Iqbal, & Hafeez, 2018; Kolodner et al., 2003). The specific domain knowledge in CBR is 

gathered from the experts’ explanations about their domain and experiences in a specific situation. 

The specific domain knowledge is used to generate example solutions for the case base (Althoff 

& Bartsch-Spörl, 1996). The general domain knowledge is used to develop the reasoning structure 

of the CBR model. The general knowledge used within a CBR system guides the case feature 

matching, retrieval, and indexing by defining the similarities in the case-base network. It also helps 

to minimize the number of cases required to solve problems, enhance the reliability of possible 
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solutions, increase the system’s efficiency to manage the situations, and adapt to a new 

environment quickly (Aamodt & Plaza, 1994; Althoff & Bartsch-Spörl, 1996). 

 

2.5.Case-Based Reasoning for Ice Management Decision Support 

Developing an onboard DSS to support ship operation, in particular on decisions about ship 

handling in sea ice, will contribute to vessel safety (Perera, Rodrigues, et al., 2011). The CBR 

solves a new problem by remembering a past similar situation and reusing what was learned from 

that situation (Aamodt & Plaza, 1994). Therefore, it would be an appropriate reasoning method to 

implement an onboard decision support system to assist the seafarers. The way that CBR works 

for problem solving is by offering some advice based on the expert knowledge that is stored in its 

case base. This approach is similar to the training that seafarers provide on-the-job. That means 

that the CBR works similar to methods used by seafarers when they train others by transferring 

their experiences on-the-job, through storytelling. The following example is a good illustration of 

this similarity for solving a problem. 

Consider a situation in which a captain is dealing with clearing pack ice around an offshore oil 

platform. This captain sees the situation as similar to their past trip working on the vessel in ice-

covered waters. In the previous ice management maneuver, the captain used the pushing technique 

to clear medium and large ice floes from the drift line. In fact, they decided not to break the ice 

and instead push a large floe to remove the threat from the drift-line. Because they believed that if 

they break the ice up-drift, the broken pieces may still cause damage. But the captain did not 

forecast the change to the ice drift-line due to the unpredictable environmental conditions, and the 

situation became complicated and became a threat at a later time. Remembering the same 
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operational situation and sudden change in weather conditions makes the captain avoid repeating 

the same mistake in the current situation. 

The CBR model can be used to develop an onboard decision support system and assist a cadet in 

various maritime conditions similar to the way that a captain provides them with problem solving 

guidance based on their experiences. To inform the reasoning part of the CBR, providing the CBR 

with solved problems in its case base, and collecting experiences of a group of expert seafarers in 

ice management operations is needed (Smith et al., 2020). 

2.6.Case Memory Model 

The case base should be arranged in a manageable structure to support efficient case matching and 

retrieval techniques. The content of a case can be organized as a set of attribute-value pairs (Flat 

Memory Model), a part-subpart relationship (Hierarchy Memory Model), or as a network of 

attributes (Network-based Memory Model). These three types of organizations are illustrated in 

Figure 2. 

 

Figure 2 Organization of a Case in Case Memory (Maher, Balachandran, & Zhang, 1995) 
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Accordingly, several case memory models for organizing the case base include: 

1. Flat Memory Model: all the cases in the flat memory are categorized at the same level. In 

this model, for each case retrieval, all cases in the case base should be compared with the 

new case. Therefore, the flat memory is not optimized for large data sets because the 

retrieval time would be very high. On the other hand, the high accuracy and easy retention 

are advantages of this memory model (Soltani & Martin, 2013). 

2. Hierarchy Memory Model: in the hierarchy model, only a few cases are considered for the 

similarity matching based on a selective search in the hierarchy structure. Therefore, the 

similarity matching and retrieval time are efficient in this memory model, and it can be 

beneficial when the number of cases is very large. On the other hand, optimal cases may 

be neglected in the retrieval process if the wrong area of the hierarchical memory is selected 

for the search (Malek, 1995). 

3. Network-based Memory Model: the network-based model represents cases with multiple 

attribute-value pairs at each node and shows additional types of relationships (Maher et al., 

1995). Models of this category support complex attributes, but their construction is costly 

(Soltani, Martin, & Elgazzar, 2014). 

Figure 3 illustrates different kinds of memory models. Some common memory models for the 

reasoning structure of the CBR are the flat memory model, the category-exemplar model (Porter, 

Bareiss, & Holte, 1990), and the case retrieval nets (CRN)(Lenz & Burkhard, 1996). 
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Figure 3 Hierarchy of Memory Models (Soltani & Martin, 2013) 

Among memory models that are feasible for organizing the case base in this research, the flat 

memory best fits the case base. The flat organization is the simplest and most appropriate model 

to design and implement small case bases. Table 1 illustrates an example of cases organized using 

the flat memory model.  This table consists of a list of attributes and different values for six cases. 

As is shown in the table, there are no relationships between the cases. That means that no one case 

has any relationship to another that needs to be represented, and the representation is complete. 

 

Table 1 Flat Memory Model Example for Identifying Route Selection Strategies in 

Offshore Emergency Situations (Musharraf, Smith, Khan, & Veitch, 2020) 

Attributes 
Case ID 

Case1 Case2 Case3 Case4 Case5 Case6 

Scenario LE2 LE3 TE1 TE3 LA2 LA3 

Final destination  MS1  LB2 LB MS MS LB 

Lights On Off On Off Off On 

Presence of hazard No No No No No No 

Alarm None None None None GPA3 PAPA4 
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Route direction in 

PA announcement 
Primary Secondary None None None None 

Obstructed route None None None None None None 

Previous Route 

taken 
N/A Primary Secondary Primary Primary Primary 

Action Primary Secondary Primary Primary Primary Primary 
1 Muster Station 
2 Lifeboat Station 
3 General Platform Alarm 
4 Prepare to Abandon Platform Alarm 

 

2.7.Case Retrieval and Similarity Assessment 

The effectiveness of a case-based reasoning system depends on the retrieval of appropriate past 

cases to find the solution to a new case. To find the degree of similarity between the candidate 

cases and the new case, a similarity assessment is used. Figure 4 shows the similarity matching 

procedure. If the problem descriptor considers cases as a set of attribute-value pairs, the matching 

involves evaluating the similarity of the past cases’ schema with the new case. This similarity can 

be evaluated using domain knowledge in the form of heuristics and domain-specific matching 

rules.  To find the overall similarity (i.e., aggregation of attribute-value pairs), a matching function 

is utilized, and different methodologies like Tversky’s matching function and Nearest-Neighbor 

(NN) have been proposed (Gupta & Montazemi, 1997). 
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Figure 4 Process of CBR Retrieval (Gupta & Montazemi, 1997) 

The literature categorizes different retrieval methods based on the similarity assessment. Some 

retrieval techniques are illustrated in Figure 5. 

 

Figure 5 Hierarchy of Retrieval Methods (Soltani & Martin, 2013) 

Among all retrieval techniques, the similarity-based methods use the similarity in the features or 

the structure of the cases to retrieve the most relevant case in the case base. The attributes used for 
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comparison could be the surface attributes provided using the problem descriptor or derived 

attributes inferred from the domain knowledge (De Mantaras et al., 2005). This literature review 

focuses on the flat structure to organize the case base, and each case is described with attribute-

value pairs. Hence, similarity-based algorithms are suitable for similarity matching. Among the 

various similarity-based methods, classification by similarity algorithms could be used for 

decision-making purposes (McKenzie & Forsyth, 1995; Trstenjak & Donko, 2016). Support vector 

machine method (SVM), logistic regression (LR), decision tree (DT), and random forest (RF) are 

some of these classification models (Al-hadhrami & Mohammed, 2021; Chao, Yu, Cheng, & Kuo, 

2014).  

1. SVM: this technique is a supervised machine learning (ML) algorithm that is utilized for 

decision making and data classification and regression problems. SVM uses a maximized 

margin to classify data into different groups. It can also handle non-linear problems by 

employing several support vectors. 

2. LR: it is a statistical decision support tool that fits a model using a logistic function 

(sigmoid) to predict the probability of a class. LR makes a relationship between 

independent and dependent variables and could be considered as a multivariable method. 

3. DT: with the growth of data mining, DT, which is a supervised learning technique, is 

getting lots of interest for classification and regression problems. It is a tree-like model that 

consists of different rules to divide independent features into variant zones. 

4. RF: this method is a nonparametric technique that uses a large number of decision trees to 

build an accurate classification model. Each set of decision trees in this algorithm gives a 

vote to a class, and then the class that wins the most votes is chosen as the predicted result 

(Chao et al., 2014). 
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Although LR is easy to implement and effective to train, it tries to fit the best model on the training 

dataset that causes overfitting sometimes. Another disadvantage of logistic regression is that it 

makes a linear relationship between dependent and independent variables while a non-linear 

decision boundary is required. On the other hand, SVM is difficult to understand and interpret the 

final model and takes a long training time for a large database. Unlike LR, SVM generates more 

complicated decision boundaries and is appropriate for both linear and non-linear solutions. DT 

supports non-linearity and is popular due to its simplicity in interpreting the model. Although RF 

is more accurate than DT, a large number of trees makes the algorithm very slow. Therefore there 

would be a trade-off between time and accuracy specially when it comes to real-time predictions. 

Also, RF is more appropriate for large datasets. Since the scope of this research is limited to a 

small number of datasets and also suggesting a real-time solution is important for the DSS, DT 

would be an advantageous choice to have reasonable accuracy. 

 

2.7.1. Decision Tree 

A decision tree is a machine learning algorithm and builds a tree structure flowchart consisting of 

three items: 

1. decision node: the internal node that represents the features or attributes of a case base 

2. branch: that represents the decision rules, and 

3. leaf node: that represents the decision or outcome. 

The topmost node in a decision tree is known as the root node. The root uses recursive partitioning 

to partition the tree based on the attribute’s value. A decision tree is easy to understand and 
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interpret and can visualize human-level thinking, so it can be useful in decision-making processes 

(Patel & Prajapati, 2018). Figure 6 illustrates a basic decision tree flowchart. 

 

Figure 6 Basic Decision Tree Flowchart 

 

According to Figure 7, a case base is divided into a training and test data set. Then the training 

data and attribute lists are given to the following algorithm to build a decision tree (Musharraf et 

al., 2020). 

1. Use Attribute Selection Measures (ASM) to choose the best attribute to branch the current 

node. 

2. Consider that attribute as a decision node and break the dataset into smaller subsets 

3. To construct a tree, repeat this procedure for each child until one of the following 

conditions match. 

a. All the attribute values belong to the same class. 
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b. No attributes are left for further classification. 

c. No more instances are left. 

After generating a decision tree, the generated model is evaluated using the test data, and 

performance measures are calculated. 

 

 

Figure 7 DT Algorithm Procedure 

 

2.7.2. Attribute Selection Measures 

Attribute selection is a critical step to develop a tree. An attribute selection measure (ASM) is used 

to partition the dataset by selecting the best splitting criterion. Different decision tree algorithms 

employ different types of ASM, such as information gain, gain ratio, and Gini index (Devi & 

Nirmala, 2018). All of these attribute selection methods can be used for building a decision tree 

because although the choice of the attribute selection measure affects the size of the tree, it does 



 29 

not change its accuracy. That means the classification accuracy of decision trees is not sensitive to 

the chosen feature selection method (Mingers, 1989; Tangirala, 2020). 

 

2.7.2.1.Information Gain 

Information gain uses entropy as the impurity measure and splits a node to build a tree. Consider 

node N represents or holds the tuple of partition D. To choose the splitting attribute at node N, the 

attribute with the highest information gain would be selected (Tangirala, 2020). Information gain 

is measured based on the following equations (Berrar & Dubitzky, 2013). First, the entropy is 

calculated to identify the class label of a tuple in D using Equation 1. 

 
𝐼𝑛𝑓𝑜(𝐷) = − ∑ 𝑃𝑖𝑙𝑜𝑔2𝑃𝑖

𝑚

𝑖=1
 Equation 1 Entropy 

 

Pi is the probability of an element in D being classified for a distinct class (Ci) and is calculated 

using Equation 2. 

 |𝐶𝑖,𝐷| |𝐷|⁄  Equation 2 Probability of 

an Element 

Then the average entropy based on the partitioning by attribute A is calculated by Equation 3. 

 

𝐼𝑛𝑓𝑜𝐴(𝐷) = ∑
|𝐷𝑗|

|𝐷|

𝑉

𝑗=1

 𝑋 𝐼𝑛𝑓𝑜(𝐷𝑗) Equation 3 Average 

Entropy 

Finally, Information gain computes the difference between the entropy before the split and the 

average entropy after the split of the dataset based on given attribute values by Equation 4. 

 𝐺𝑎𝑖𝑛(𝐴) = 𝐼𝑛𝑓𝑜(𝐷) − 𝐼𝑛𝑓𝑜𝐴(𝐷) Equation 4 Information 

Gain 
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2.7.2.2.Gain Ratio 

The gain ratio is used to decrease the bias that information gain may cause (Shouman, Turner, & 

Stocker, 2010), and is measured using the following equations (Rizka, Efendi, & Sirait, 2018). 

Information gain prefers to select attributes that have a large number of values and consequently 

is biased. The gain ratio (Equation 6) handles this problem by splitting the information gain on 

split info (Equation 5). 

 

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷) = − ∑
|𝐷𝑗|

|𝐷|

𝑉

𝑗=1

 × 𝑙𝑜𝑔2 (
|𝐷𝑗|

|𝐷|
) Equation 5 

Split Info 

 

 
𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) =

𝐺𝑎𝑖𝑛(𝐴)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷)
 Equation 6 Gain Ratio 

 

2.7.2.3.Gini Index 

Gini index uses a binary split for each attribute and is calculated using the following equations 

(“Gini Index,” 2008). It measures the impurity of each data partition or set of training tuples (D) 

using Equation 7. 

 
𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑃𝑖

2
𝑚

𝑖=1
 Equation 7 Impurity 

 

Pi is the probability of an element in D being classified for a distinct class (Ci) and is calculated 

using Equation 2. 

Gini index computes a weighted sum of the impurity of each resulting partition. For example, if a 

partition is divided into two partition D1 and D2 the Gini index would be as follow (Equation 8). 
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𝐺𝑖𝑛𝑖𝐴(𝐷) =

|𝐷1|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷1) +

|𝐷2|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷2) 

Equation 8 Gini 

Index 

 

An attribute with the least Gini index is preferred as the root node while making a decision tree 

(Devi & Nirmala, 2018). 

 

2.7.3. Different Types of Decision Tree 

Different algorithms are performed to construct decision-tree algorithms, including ID3, C4.5, and 

classification and regression trees (CART). ID3 is a very simple decision tree and is built in a top-

down fashion. It builds the fastest and shortest tree and maybe over-fitted in a small data set. Also, 

it only handles the categorical attributes. C4.5 is the evolution of ID3 and uses a depth-first strategy 

to develop a tree. One of the advantages of C4.5 over ID3 is that it can handle both numerical and 

categorical attributes. Although C4.5 is tolerable for missing values, there are some empty or non-

informative nodes in its tree, which makes it bigger and causes more complexity. CART constructs 

a binary tree and has the same characteristic as C4.5. Unlike C4.5, CART identifies the most 

relevant features and eliminates irrelevant ones, it also can easily handle outliers (Sonia Singh, 

2014). Since the data set used in this research consisted of both numerical and categorical features, 

and there was a concern of missing data points, the CART algorithm was chosen to support these 

two criteria and to choose the best and most relevant features to build the tree model. 

 

2.7.4. Distance Similarity 

After applying the decision tree and finding a class that a new problem belonged to, a similarity 

metric could be used to detect which sample or case in the selected class was the best match to the 

new case (Cunningham, 2009; Feuillâtre et al., 2017; Richter, 2008). Measuring similarity between 
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objects can be performed in several ways. Generally, similarity metrics can be divided into two 

categories:  

1. Similarity-based metrics: similarity-based methods determine the most similar objects with 

the highest values indicating that they exist in the same neighborhood. Such algorithms are 

Pearson’s correlation, Spearman’s correlation, Kendall’s Tau, Cosine similarity, and 

Jaccard similarity. 

2. Distance-based metrics: distance-based methods prioritize objects with the lowest values 

to detect similarity amongst them. These methods include Euclidean distance and 

Manhattan distance. 

Choosing an appropriate distance metric plays an important role in retrieval applications (Hoi, Liu, 

& Chang, 2010). Since distance-based metrics are like using a ruler to exactly measure a distance, 

they are more appropriate for numerical data, while similarity-based metrics are more suitable 

when the data set contains categorical attributes. Since the data set used in this research consisted 

of both numerical and textual features, similarity-based metrics were preferred to use in this 

research. Among similarity-based metrics, Cosine similarity is generally employed for measuring 

distance when the magnitude of the vectors is not a concern (Xia, Zhang, & Li, 2015). For example, 

Cosine can be used in document similarity and text data (Shirkhorshidi, Aghabozorgi, & Ying 

Wah, 2015; Tata & Patel, 2007). Cosine similarity is defined as follows (Equation 9). 

 
𝐶𝑜𝑠𝑖𝑛𝑒(𝑥, 𝑦) =

∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1

‖𝑥‖2‖𝑦‖2
 Equation 9 Cosine 
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Where, 
‖𝑦‖2 = √𝑦1

2 + 𝑦2
2 + ⋯ + 𝑦𝑛

2 
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Chapter 3: Methodology 

This chapter contains the steps followed to develop a DSS for ice management operations. First, 

two experimental studies were conducted to gather expert knowledge to be integrated into the DSS. 

The collected data during the experiments was processed and converted to a CBR case base. The 

case base was stored in the form of a two-dimensional matrix and was divided into training and 

testing data sets. The training data set was used as input to the decision tree algorithm for case 

retrieval purposes. Section 3.1 describes the experimental design and data collection in detail. 

Section 3.2 discusses the data processing and creation of the CBR case base. Section 3.3 illustrates 

the development of the DSS and decision trees using the case base. Finally, to determine the 

stability of the DSS, the evaluation of the DSS in a simulator setting is discussed in section 3.4. 

 

3.1.Experimental Design 

This research aimed to address challenges in providing an assistant system in maritime operations 

related to the growing use of autonomous systems onboard maritime vessels. The study began with 

a pilot program intended to strengthen ice management operations by gaining a deeper 

understanding of how seafarers’ strategies and emerging technologies impact these operations. 

The result was to develop an on-board decision support system (DSS) that provided tactical 

guidance for complex ice management operations. This research used experienced seafarers to 

capture expert knowledge to inform a DSS and improve the ice management performance when 

real-time decision support is offered. Two experiments were conducted to capture the expert 

knowledge: 

1. Pre-pilot: Semi-Structured Interview 
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2. Pilot: Simulation exercises 

As experienced vessel operators were needed to participate in this project, the potential number of 

available people that could be recruited was limited. Previously, two experiments were conducted 

to study the effects of experience (Veitch, 2018) and training (Thistle, 2019) on ice management 

performance (the results from these two studies were used to develop a DSS in this study). Based 

on these previous works, it was known that there exists a limited number of experienced vessel 

operators who could possibly be approached to participate. 

Two groups of participants were used to benefit from their expert knowledge. The groups were: 

G1- experienced seafarers who shared their expertise through an interview, and G2- experienced 

seafarers who shared their knowledge by executing the ice management scenarios in the simulator. 

In total there were five participants, and they were free to choose one or both sessions. Three 

participants attended both sessions, while two participants completed just one session each. The 

knowledge captured from the two groups was fed to the DSS to help seafarers or cadets while 

implementing ice management scenarios. 

The semi-structure interview included six parts (the session outline is provided in Appendix A: 

Interview Session Outline): 

1. Briefing: the participant was given an explanation of the research and was asked to 

complete the Informed Consent Form (Appendix B: Informed Consent Form). Then, the 

information about the participant’s experience at sea was collected using the Experience 

Questionnaire (Appendix C: Experience Questionnaire). 
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2. Experience Interview: the researchers asked questions to expand the participant’s 

responses to the Experience Questionnaire. 

3. Ice Management Factor: the researchers asked questions related to factors the participant 

may consider during ice management. 

4. Planned Approach Exercise: the participant was asked to explain their planned approach 

for ice management scenarios (leeway, pushing, and emergency scenarios). 

5. Cadet Training Examples: the participant was shown examples of cadets managing ice in 

a bridge simulator (these examples came from the previous experiment (Thistle, 2019)). 

After each example, the participant was requested to give their opinions on the cadet’s 

performance. 

6. Feedback and Closing: before the completion of the session, the participant was asked to 

give feedback on the interview. 

The interview was semi-structured. This meant some of the questions were pre-determined and 

others arose based on the participants’ answers to previous questions. 

Like the semi-structured interview, the simulation exercise started with a briefing and experience 

interview, and then the following steps were completed: 

1. Simulator Sickness Questionnaire (SSQ): researchers asked the participant to fill out an 

SSQ (Appendix D: Simulator Sickness Questionnaires) to establish a baseline score. 

Researchers administered the SSQ to the participant throughout the tests to see if they were 

developing simulator sickness, which was indicated by a higher score. 

2. Planning Exercise: this exercise consisted of an overhead diagram of the upcoming ice 

management scenario that the participant could use to draw and plan their movements. 
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3. Simulator Exercise: the participant was asked to enter the ice management simulator and 

perform the ice management scenarios (leeway, pushing, propwash, and emergency 

scenarios). 

4. Debriefing: the participant was then shown a sped-up video replay of their current scenario, 

where researchers again asked them questions about their ice management techniques. 

The interview and the simulator exercise were audio recorded and transcribed by the research team. 

A few weeks after the session, the researchers sent participants a copy of the results from the study 

and allowed them to add, change, or delete information as they saw fit. 

After holding all sessions and gathering all required information, data collected from this study 

was used in the development of a case-based reasoning decision support system, and machine 

learning algorithms were used to develop autonomous systems onboard maritime vessels. 

 

3.1.1. Experimental Overview 

A pre-pilot study, a pilot study, and results from two previous experiments (Thistle, 2019; Veitch, 

2018) were used in this research. All of these studies were approved by the Interdisciplinary 

Committee on Ethics in Human Research (ICEHR) at Memorial University of Newfoundland 

(MUN), and they followed an ethics protocol. The pre-pilot and pilot studies, which are the main 

focus of this research, were used to collect seafarers’ experiences in managing pack ice offshore. 

Experiment 1 studied the effects of experience on ice management performance and was conducted 

by Veitch (2018). The results were reported in (Veitch, 2018; Veitch, Molyneux, Smith, & Veitch, 

2019). In that research, participants with a range of seafaring experience levels were asked to 

execute different ice management scenarios. Each participant’s performance was recorded as a 
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replayable video in Experiment 1 and used in the current study as a case to develop a case base for 

the case-based reasoning decision support system. 

Experiment 2 studied the effects of training on ice management performance and was conducted 

by Thistle (2019). This experiment’s results were reported in (Thistle, 2019) and used in the pre-

pilot study of the current research to gather the participants’ evaluations on the cadets’ 

performance. In Experiment 2, one group of inexperienced cadets were trained through one 

training session, and another group was taught in two training sessions in the bridge simulator. 

After training, each participant was asked to complete two of the same ice management scenarios. 

As a result, on average, the cadets’ performance improved with each training session, and a method 

for assessing the amount of training needed to meet an ideal performance was introduced (Thistle 

& Veitch, 2019). 

The pre-pilot and pilot studies were performed from January to March 2020. The pre-pilot study 

was conducted in two different phases: 

1. Using semi-structured interviews, participants were asked to describe how they would 

approach three different ice management scenarios. These scenarios were: 

a. The leeway scenario, 

b. The pushing scenario, and 

c. The emergency ice management scenario. 

Then experienced seafarers described what factors they would consider while performing 

the scenarios and explained why those would be important. 
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2. In phase two, six examples of the cadet’s performance from Experiment 2 (two examples 

for each scenario) were shown to participants to collect their advice, recommendations, and 

feedback on the cadets’ performance. 

The pilot study was operated in two phases as well. The first part was conducted like the first part 

of the pre-pilot study, while an additional scenario was added. The pilot study phases were: 

1. Asking participants to describe their approaches for four different ice management 

scenarios. These scenarios were: 

a. The leeway scenario, 

b. The pushing scenario, 

c. The prop-wash scenario, and 

d. The emergency ice management scenario. 

2. Requesting participants to execute these suggested approaches in the bridge simulator to 

see their procedure in practice. 

 

3.1.2. Description of Participants 

Since experienced vessel operators were needed, researchers contacted potential participants 

directly to inform them about the study. If they expressed interest, a copy of the informed consent 

was sent to them for their review. After reviewing the form, the potential participant could get 

back in touch with the researcher and let them know they wanted to participate. 

The only criterion to exclude participants from the pilot study was if they were prone to suffering 

from simulator sickness, and participants were asked to self-disclose if they felt any symptom. 

Also, participants were allowed to withdraw from the study at any time without reason. 
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At the beginning of each session, participants were given an experience questionnaire, which 

provided information about participant’s years of experience and vessels they used in sea 

operations. The range of seafarers’ experience operating at sea was between 10 to 30 years, while 

this range decreased in the presence of ice from 2 to 7 years. These participants had the experience 

of operating in different regions, such as coastal Newfoundland and Labrador, the Arctic/ North 

of 60, the Gulf of Saint Lawrence, and the Great Lakes. They also worked on various types of 

vessels including ice breakers, offshore supply vessels (OSVs), anchor handling tug supply 

(AHTS) vessels, tanker/ bulk/ cargo vessels, and coastal ferries. Among different operation types, 

three seafarers had experience conducting operations in the presence of ice, like watch keeping, 

ice management in open water and confined water, maneuvering a ship to escort another vessel, 

towing or emergency response, and maneuvering a ship while being escorted, whereas two other 

participants had experience watch keeping when passing through ice. In terms of the amount of 

training each participant had for operation in the ice, two participants had no formal training while 

three other seafarers had advanced training (Smith et al., 2020). 

 

3.1.3.  Description of Simulator 

Figure 8 shows the ice management bridge simulator that was used in the simulation exercise (pilot 

study) for evaluating experienced seafarers’ performances. This marine simulator’s design consists 

of an instructor station and a debriefing station outside the simulator, and a 360-degree panoramic 

projection display surrounding a basic bridge console, which is located at the center of the 

simulator (Musharraf, Smith, Veitch, & Khan, 2019). The software for implementing physics in 

the simulator is called PhysX (Thistle, 2019).  
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For the pilot study, the anchor handling tug supply (AHTS) vessel was modeled in the simulation 

exercise. The reason why the AHTS was selected for this study was that these kinds of vessels are 

commonly used for offshore operations and supporting pack ice management in offshore 

Newfoundland. This virtual ship was 75 meters in length with ice-class ICE-C. Different features 

of the virtual ship are shown in Table 2. The ship consisted of two 5369 kilowatt engines and an 

896 kilowatt tunnel thruster in both the fore and aft (Thistle, 2019). 

Table 2 Virtual Vessel Elements (Thistle, 2019) 
 

Parameter Value 

Length Overall 75 m 

Length Between Perpendiculars 64 m 

Moulded Breadth 18 m 

Moulded Depth 8 m 

Draft 6 m 

Gross Tonnage 3157 tonnes 
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Figure 8 Ice Management Simulator 

The simulator configuration that was used for the expert seafarers in pilot and pre-pilot 

experiments was the same configuration that was used for the cadets in the previous experiments. 

A simplified bridge console was built for the simulator to minimize task complexity and reduce 

some difficulties that may occur for cadets who are not very familiar with ships’ controls and 

instructions. Although working with a more complicated simulator closer to the real ships’ 

environment can result in a more realistic output, providing an easy-to-use interface for 

participants, especially non-experts, can have more benefits due to the lower cognitive load on 

them (Haji, 2015). 
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Figure 9 shows a bridge console with (2 m x 2 m) dimensions. Fore and aft consoles were 

embedded in the bridge console, so participants could switch between them any time they wanted. 

Different bridge simulation controls were: 

a. two controls for the fore and aft tunnel thrusters, 

b. two controls for the starboard and port engines, and 

c. a steering wheel to control the angle of the two rudders. 

The indicator screen embedded in the bridge simulator displayed different information to 

participants, such as the vessel’s speed over ground, heading, heading change, rudder angle, and 

engine and thruster power. As participants could not see their exact distances from the objects due 

to the lack of radar in the simulator, they could use the Very High Frequency (VFH) radio to 

communicate with the instructor station and ask their distance from other objects or vessels when 

they needed it. 
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Figure 9: Simulator Bridge Console Design (Thistle, 2019) 

 

3.1.4. Familiarization of the Simulator Through Habituation Scenarios 

In the pilot study, the participants were asked to do the three habituation scenarios (shown in 

Appendix E:  Habituation Scenario Instructions) before executing other main scenarios to 

familiarize themselves with the simulator and its bridge console. The purpose of the habituation 

scenarios was to decrease errors that could occur while performing scenarios due to participants’ 

unfamiliarity with the simulator. During the implementation of these scenarios, participants could 

use the VHF radio to call the bridge officer and communicate with them. They could also make 

sense of how the controls and other parts of the virtual environment worked. 

In Habituation 1, participants were asked to round the iceberg from the vessel’s port side with a 

distance of 100 meters and then return to their starting location. This scenario was intended to take 

ten minutes, and if participants did not complete it within twenty minutes, the scenario was 
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stopped. Participants also had the option of asking the bridge officer about the distance between 

the vessel and the iceberg. 

In Habituation 2, seafarers were asked to make a parallel position with the port side of a Floating 

Production Storage Offloading facility (FPSO). The distance between the FPSO and the vessel 

was allowed to be 30 meters. The time allocated to this scenario, similar to the first scenario, was 

ten to twenty minutes. Practicing slow maneuvers and operating close enough to another vessel 

was the purpose of this scenario. 

The last scenario was Habituation 3, in which participants used the propeller wash to clear small 

floes of ice from the aft of their vessel by pushing them away. At the starting point, the vessel’s 

bow faced large pack ice, so for clearing the vessel’s aft, participants were required to switch 

between the fore and aft console. The main goal of Habituation 3 was to teach seafarers how to 

switch between two consoles and how the prop wash could be implemented in the simulator. 

Approximately one to two minutes was enough to finish this scenario successfully. 

Before seafarers’ participation began in the simulator, they were asked to fill the simulator sickness 

questionnaires provided from Experiment 2 (Thistle, 2019). After performing each scenario, they 

filled out the questionnaires again to see if there were any severe simulator sickness symptoms. 

There were no signs of severe symptoms during any experiments; otherwise, they would have 

ended immediately. Whenever mild symptoms were identified, the experiment was stopped for a 

while until all symptoms went away. 
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3.1.5. Offshore Ice Management Scenarios 

This research was designed to develop a DSS to improve ice management operations by providing 

expert advice to the bridge crew. For data acquisition, four scenarios were used in this study and 

designed to be similar to Newfoundland’s offshore operations (Thistle, 2019). Appendix F:  

Scenario Instructions shows the instructions used to explain the scenarios to the participants. 

All scenarios in the experiment were simply designed to avoid distracting factors for participants 

during execution. For simplicity, multi-year ice was not modeled in the scenarios, and the drift 

direction and the speed did not change during the scenario. First-year ice with 0.3 to 0.7 meter 

thickness was used in all scenarios. While the shape and size of the ice floes were randomized, 

they were kept the same in each scenario run. 

Before explaining each scenario and technique, for making distinctions between them, Sc.1 is 

referred to the leeway scenario, Sc.2 is referred to the pushing scenario, Sc. 3 is referred to the 

emergency ice management scenario, and Sc.4 is referred to the prop-wash scenario. Techniques 

are mentioned as leeway, pushing, and prop-wash techniques. 

In Sc.1, shown in Figure 10, a stationary tanker is located in five-tenths first-year ice with a 1 knot 

drift to the south. The stand-by vessel’s support is required to clear the tanker’s mid-ship port side 

from the ice to make the area suitable for launching a pilot ladder or reducing the damage risk for 

the equipment that the crew may want to launch. The time allocated for participants to perform 

their approaches in Sc.1 was fifteen minutes. 
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 Figure 10 Leeway Scenario (Thistle, 2019) 

Sc.2 is shown in Figure 11. In this scenario, participants were asked to clear the area around a 

stationary platform at a distance of 75 meters from each side using the pushing technique. As 

shown in the figure, the platform with 57 m x 57 m dimensions was located in the middle of the 

desired area that should be cleared. Therefore, in total, 207 meters on each side should be cleared 

of four-tenths of its first-year ice so that lifeboats can be launched in emergencies. In this scenario, 

the current is 0.4 knots drifting to the south, and fifteen minutes were given to each participant to 

do their best to decrease the ice load on the platform. 
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Figure 11 Pushing Scenario (Thistle, 2019) 

Sc.3 is illustrated in Figure 12. In this scenario, a moored FPSO was turned to its starboard side, 

so that starboard side’s lifeboat launch area was clear of ice to launch lifeboats. The participants’ 

concentration should have been on the FPSO’s port side lifeboat launch zone, indicated in grey, 

and they were allowed to utilize a single method or combination of any approaches or techniques 

they were comfortable with or thought were the most effective ones to make the target area free of 

ice. The ice concentration in Sc.3 was seven-tenths drifting from north to south at a speed of 0.5 

knots, and it was first-year ice. This scenario was longer than the two other scenarios, and seafarers 

were given thirty minutes to show their expertise. 
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Figure 12 Emergency Ice Management Scenario (Thistle, 2019) 

Sc.4 can be found in Figure 13. In this scenario, the starboard side of the stationary tanker was free 

of ice, while participants were required to clear the port side of the vessel for another ship to dock 

alongside the tanker. The purpose of clearing the pack ice was to reduce the risk of damage due to 

ice for the other vessel while docking. The tanker’s port side is located in the seven-tenths first-

year ice concentration, and there is no drift in the scenario. Using the propeller wake wash 

technique, participants were asked to clear 75 meters along the vessel’s port side. This scenario 

took 15 minutes to complete. 
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Figure 13 Prop-wash Scenario (Thistle, 2019) 

 

3.1.6. Data Acquisition 

In both interview and simulation exercise sessions, data gathered from seafarers was labelled 

randomly in an alphanumeric code, for example N12, to keep the participants’ identities 

confidential. 

Different types of data were recorded in both experiments. At the beginning of both sessions, 

participants were asked to fill out the experience questions in order to know the amount of their 

experience in the sea in the presence of ice. Also, the scenario diagram was given to the participants 

in both experiments to draw out their strategies for each scenario. The scenario diagrams are shown 

in Appendix G: Scenario Diagram Pages. The length of these sessions varied from person to 

person, but on average they took about three to four hours. Since the data gathered from the 

experiments was confidential and it should be protected from unauthorized access, researchers did 
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not use any software for the transcription. Therefore, the researchers transcribed the audio files 

manually. Guidelines followed for transcribing are shown in Appendix H: Transcribing Guide. 

In the pre-pilot sessions, the whole session was audio recorded and all parts including the 

participant’s ice management approaches and comments on the cadet’s replay videos were 

transcribed after each session. 

In the pilot sessions, the participant’s planned approach exercises and debriefing part were audio 

recorded for transcribing afterward. Also, in this experiment, data from the simulator was recorded 

for the main scenarios, while data related to the habituation scenarios were not recorded. Recorded 

data from the simulator had two forms: 

1. a log file consists of information such as the vessel’s speed over ground, course over 

ground, longitude, latitude, and heading at each time step and 

2. a replay file that gives researchers, in the instructor station, the opportunity of reviewing 

the scenario at real speed when the scenario was completed. To calculate the ice 

concentration and make a sped-up replay video for each scenario’s implementation, 

researchers could later capture screenshots of this replay file. 

 

3.1.7. Experimental Procedure 

Participants in this research were recruited based on a protocol that has been reviewed by the 

ICEHR at MUN and is in compliance with MUN’s ethics policy. The recruitment process consisted 

of a call for subject recruitment email, which included information on contacting the researchers 

for those who were interested in participating in the experiment. The recruitment email was 

distributed to colleagues to recruit volunteers for the study by the research coordinators. Research 
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coordinators were responsible for recruiting the potential participants and were the main point of 

contact for participants. They screened interested volunteers to ensure they are eligible to 

participate, ensure the potential participants were properly informed, and guided individuals 

through the informed consent process. 

The experiment’s informed consent form was sent to volunteers when they were contacted to set 

a participation schedule. After scheduling and assigning pre-pilot, pilot, or both sessions to the 

participants, they were randomly given an alphanumeric code. 

3.1.7.1.Interview Session (Pre-pilot) 

Figure 14 illustrates the procedure followed in Interview sessions. In these sessions, four people 

attended for holding the interview: 

1. an interviewer, 

2. two observers, and 

3. a participant. 

The pre-pilot sessions’ outline was shown in Appendix A: Interview Session Outline. 
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Figure 14 Experimental Procedure Flow Chart for Pre-pilot 

At the beginning of the session, the informed consent form was reviewed by the interviewer to 

make sure that the participant was aware of every detail of this participation. After the agreement 

of the seafarer, both the participant and the interviewer signed the form. In the next step, the 

participant completed the experience questionnaire, and researchers asked them some questions if 

more details were required for clarification. During the interview, researchers used interviewer and 

observers’ notes to take notes of the participant’s comments and approaches. These forms are 

shown in Appendix I: Interviewer Notes and Appendix J: Observer Notes. The whole session was 

audio recorded. 

Next, a list of important factors in ice management operations was provided for the participant, 

and they were asked to add any factor that they thought was missing from the list. For each of 

these factors, the researchers asked why these factors are important and why they should be 

considered during ice management operations in general. The list of provided factors is shown in 
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Appendix K: Factor Cards. After completing the list of factors and describing reasons for 

consideration, the participant was asked to rank them based on the overall importance. According 

to the Factor headings shown in Appendix L: Factor Headings, the participant gave a number 

between 1 to 5 to each factor, in which 1 was not important, and 5 was very important. This section 

aimed to understand what information is more valuable and has more priority in the participant’s 

decision-making process. 

There were three types of ice management scenarios that the participant was required to be familiar 

with. First, the interviewer explained the Sc.1 and asked the participant to describe how they 

approach this scenario. The scenario diagram was given to the participant, and they were requested 

to draw out a sketch of their approaches and explain every step of their decisions. The researchers 

asked the participant to use multiple colors in each decision point not to have difficulties while 

matching the audio recording with the drawn approaches. Decision points were any time in ice 

management plans that the participant went from one step to another. Figure 15 shows a sample 

of a participant’s sketch of approach. 
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Figure 15 Sketch of Approach 

 

After identifying all decision points and asking questions for clarifying all aspects of the drawn 

strategies, the participant was shown two pre-recorded examples of cadets’ performance on the 

same scenario in the bridge simulation. This phase aimed to collect the seafarer’s advice, 

recommendations, and feedback on the cadet’s performance. The cadet examples came from 

Experiment 2 (Thistle, 2019). These examples were anonymized top-down replay videos, like what 

is shown in Figure 16, which were sped up to thirty-times real speed. The replay video represented 

an ice management operation using an offshore supply vessel, and the interviewer explained what 

the symbols in the replay video mean. 
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Figure 16 Replay Video Still Shot 

The participant reviewed replay files once or more and mentioned their opinion about how 

effective the cadet performance was. They also gave some advice at critical stages where some 

changes were needed to have better performance (some changes in course, speed, technique, etc.). 

Then the seafarer was requested to identify any violation of rules in the cadets’ performance. At 

the end of the cadet example section, the participant gave a rating between 1 to 5 to the cadet’s 

performance. 

In the last part of the scenario, the seafarer ranked the ice management factors again, according to 

the Sc.1. Using the factor ranking label, as shown in Appendix M: Factor Ranking Label, 

researchers categorized the factors’ importance for the specific scenario. 

Similarly, for Sc.2 and Sc.3, the participant drew their approaches, evaluated two cadet examples, 

and ranked factors for the two specific scenarios. 
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In total, the participant demonstrated their strategies for three scenarios and evaluated six cadet 

examples (two examples for each scenario) in the pre-pilot session. The order of scenarios and 

examples were determined in the scenario order sheet, as shown in Appendix N: Scenario Order 

Sheet. Each pre-pilot session took approximately three to four hours. 

 

3.1.7.2.Simulation Exercise (Pilot) 

The procedure followed in the pilot Experiment is demonstrated in Figure 17. In these experiments, 

four people attended the sessions: 

1. an interviewer, 

2. two observers, and 

3. a participant. 

The outline of the pilot sessions is shown in Appendix O: Simulation Session Outline. In addition 

to the steps mentioned in the procedure, one of the observers was responsible for loading and 

initiating scenarios in the simulator, screen capturing scenarios every three minutes, saving data 

collected from the scenarios, and communicating with seafarers during the simulation exercise via 

VFH radio. 

Like the pre-pilot session, at the beginning, the informed consent form was reviewed by the 

interviewer, and both the participant and the interviewer signed the form. Then, the participant 

completed the experience questionnaire. In the next step, the interviewer gave a brief description 

of the simulator sickness questionnaire, and the participant was asked to fill it out to see if there 

was any symptom before implementing scenarios in the simulator. Once all forms were completed, 

the observer showed the simulator’s environment and controls to the participant and explained 
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different parts of the simulator’s bridge console and the way they worked. The script related to the 

simulator’s explanation can be seen in Appendix P: Introduction to Controls Script. These steps, 

which consisted of filling out the forms and introducing controls to the seafarer, lasted about fifteen 

minutes. 

 

Figure 17 Experimental Procedure for Pilot Experiment 

As shown in Figure 17, the next step was explaining the first habituation scenario in the training 

station and then asking the participant to execute it in the simulator. After completing the first 

attempt in the simulator by the participant, the observer introduced the second habituation scenario 

in the training station and again asked them to complete it in the simulator. The same procedure 

was repeated for the third habituation scenario as well. The habituation section took approximately 
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45 minutes to complete, and at the end of this section, the participant’s sickness symptoms were 

checked by filling out the second simulator sickness questionnaire. Meanwhile, a break time was 

given to the seafarer if they needed any rest. 

Next, similar to the tabletop exercise in the pre-pilot sessions, the first ice management scenario 

was described to the participant, and they were asked to draw a sketch of their strategies on the 

scenario diagram and explain their decision points. However, unlike pre-pilot sessions in which 

the participant was asked to complete three scenarios (Sc.1, Sc.2, and Sc.3), in the pilot sessions, 

the participant completed four scenarios (Sc.1, Sc.2, Sc.3, and Sc.4). All information provided 

from the participant in this step was audio recorded. 

In the next step, the participant entered the simulator and completed the first scenario. The 

participant was allowed to perform their exact approaches described before or change the strategies 

if that was necessary. After completing the first scenario, the participant returned to the training 

station and filled out the simulator sickness questionnaire. Then, the debriefing section was 

performed. 

In the debriefing section, researchers showed the screen captures of the scenario (captured by 

researchers during execution) to the participant and asked the seafarer to explain their strategies 

and any changes in their execution compared to their planned approach, if there were any. They 

were also requested to determine their decision points and compare the performed scenario to the 

real ice management scenarios. Debriefing was also audio recorded. 

At the end of this phase, the participant rated their performance on a scale from 1 to 5, where one 

was not very successful, three was somewhat successful, and five was very successful. After 
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completing each scenario, researchers asked if the participant wanted to have a break and help 

themselves with the available refreshments. 

Similarly, all steps, including planned approached exercises, simulator exercises, and debriefing 

repeated for the other three scenarios. The pilot session lasted approximately four hours. 

3.2.Data Processing and Developing the CBR Case Base 

Developing a CBR case base for the DSS involved two main steps: 

1. Knowledge capture - using the expert knowledge for building a case base to inform the 

DSS, and 

2. Knowledge representation - organizing the information using the flat model. 

All information gathered in the pre-pilot and pilot experiment, including the participant’s ice 

management approaches, feedback on the cadets’ examples, and strategies on the simulation 

exercises, was transcribed from the audio recording files. At the next step, these transcriptions 

were used to develop a case-based reasoning case base. Some parts of knowledge gathered from 

the participants, such as factor ranking and comments on ice management approaches, were used 

in similarity matching and the retrieval part of the DSS, while other information, such as the 

participants’ verbal explanations of their ice management approaches and their feedback on the 

cadets’ ice management performance, were used to build cases in the CBR case base. Next, for 

matching similar cases with the future scenarios’ conditions, common features and characteristics 

of cases in the case base were categorized and indexed using the flat memory model. Finally, In 

order for the DSS to suggest a similar case, the DSS extracts common features from the simulation 
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data and retrieves an expert solved case that matches the new situations using a similarity-based 

method. 

This section describes every step of data processing for the DSS development in more detail. 

 

3.2.1. Knowledge Capture—Gathering Cases to Populate the CBR Case Base 

The transcribed data from the pre-pilot and pilot studies were used to develop cases to populate 

the CBR case base and develop the CBR reasoning structure. All transcriptions including verbal 

explanations of strategies and important factors were categorized using the Navicat Data Modeler 

software. Figure 18 illustrates the CBR knowledge representation that was developed using the 

transcriptions. As shown in the figure, the important factors were classified into different 

categories (e.g., ‘task objectives’, ‘target vessel properties’, ‘weather conditions’, etc.). Also, 

based on participants’ comments during pre-pilot and pilot studies, additional factors were added 

to the list of factors and were assigned to different categories (e.g., separate categories for ‘scenario 

attributes’, ‘target vessel properties’ and splitting the ‘operator characteristics and actions’ 

category into two: operator characteristics and the operator’s actions represented by the label ‘ice 

management technique’). Important comments about each factor were also stored in the ‘ice 

managements factor rank description’ table for further use in DSS to show the decision-maker the 

reason of importance. Each case connected pre-programmed characteristics of the scenario (e.g., 

the scenario objective, the environmental conditions, and features of the ship), factor rankings and 

explanations of their importance, and the attributes of the participants’ strategies to each other. 

 



 62 

 

Figure 18 CBR Class Diagram for Ice Management Operations (Smith et al., 2020) 

Based on the specific domain knowledge, a list of techniques (and corresponding features) were 

extracted for ice management scenarios. The specific knowledge included: 

1. the participants’ verbal explanations of their strategies and decision points, 

2. the participants’ observations and feedback on the cadets’ performances, and 

3. the participants’ execution of scenarios in the simulator and their comments on their own 

performance. 

These techniques are described in section 3.2.1.1. 

Using the general domain knowledge captured from the participants, the reasoning structure of the 

CBR was developed. The reasoning part consists of the way the case-base data were indexed for 
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similarity matching and case retrieval. The general domain knowledge was captured from three 

sources: 

1. list of important ice management factors generated by participants and their rankings, 

2. seafarers’ comments about general ice management techniques, and 

3. participants’ comments about the rules that cadets followed or violated while performing 

scenarios. 

A list of factors and their rankings is illustrated in section 3.2.1.2. 

3.2.1.1.Ice Management Techniques Described by Participants 

A list of techniques can be distinguished from the approaches that the participants used in the ice 

management scenarios. These techniques are shown in Table 3. A single technique or combination 

of these techniques was used by participants in each scenario in all experiments. For example, 

most participants in pilot and pre-pilot experiments preferred to use the combination of the leeway 

and prop-wash techniques in Sc.1 (leeway scenario). 

 

Table 3 Ice Management Techniques Employed by Participants (Smith et al., 2020) 

Technique Diagram Description 

Pushing 

 

Using the vessel’s bow or 

broadside to clear ice 

around the indicated zone. 
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Sector 

 

Using the vessel’s bow or 

broadside and having a 

back and forth motion at 

the same time to clear the 

ice up-current from the 

zone. 

Prop-wash 

 

Maintaining a position 

above the zone and 

flushing the ice from the 

target using the vessel’s 

propeller wake wash. 

Leeway 

 

Keeping the position 

above the target area and 

blocking the flowing ice 

using the vessel’s 

broadside. 
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Circular 

 

Using the combination of 

pushing and prop-wash 

techniques while having a 

circular motion above or 

around the target area. 

 

3.2.1.2.Key Ice Management Factors and Rankings 

As described in the method section, in the pre-pilot study, seafarers generated a list of important 

factors they consider during the ice management operations. They were also asked to explain the 

reason why those factors are important and rank them based on their priorities in different ice 

management scenarios. The list of some important factors and their ranks are shown in Table 4. 

Table 4 Important Ice Management Factors and Their Ranks Based on Participants’ 

Comments (Smith et al., 2020) 

Category Factors 
Average Rankings 

Initial Sc.1 Sc.2 Sc.3 

Task/ 

Objective 

Area to be Cleared 4.0 4.0 4.0 4.5 

Level of Urgency 4.3 4.5 4.3 5.0 

Acceptable Level of Risk 3.8 3.8 4.0 4.0 

Vessel Properties 

Location Relative to Target Vessel 3.5 3.8 3.8 4.3 

Vessel Heading 2.8 4.0 4.3 4.5 

Vessel Speed 4.0 4.0 4.0 4.0 

Vessel Ice Class 4.0 4.0 4.0 4.0 

Weather Conditions 
Visibility and Weather Conditions 4.3 4.3 4.5 3.8 

Drift Speed (Current) 4.0 4.0 4.3 4.0 

Ice Conditions 

Floe Size 3.3 3.3 3.3 3.5 

Ice Type 3.5 3.5 3.5 3.5 

Ice Thickness 4.0 4.7 4.0 4.3 

Ice Loads 4.3 4.3 4.3 4.0 
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Ice Concentration 4.3 4.8 4.3 4.0 

Operator 

Characteristics and 

Actions 

Experience 3.3 3.8 3.8 3.8 

Strategy 3.8 3.8 3.8 3.8 

 

3.2.2. Knowledge Representation—Indexing Cases for Matching and Retrieval Using the 

Flat Memory Model 

The flat memory model was used for the case memory knowledge representation. The purpose of 

indexing features and extracting common attributes that happened in the case base was to match 

similar cases with the attributes of future scenarios. 

In total, five sources were used to build cases for the CBR case base. These sources include: 

1. the participants’ verbal explanations of their strategies and decision points from the pre-

pilot and pilot experiments, 

2. the participants’ observations and feedback on the cadets’ performances from the pre-pilot 

experiment, 

3. the participants’ execution of scenarios in the simulator and their comments on their own 

performance from the pilot experiment, 

4. seafarers and inexperienced cadet’s execution of scenarios in the simulator from 

Experiment 1, and 

5. inexperienced cadets’ execution of scenarios in the simulator from Experiment 2. 

Among all these sources, number 4 and 5 contain the inexperienced cadets’ execution. These 

sources were used because even if the cadets’ performance is not as effective as experienced 

seafarers, a failed solution is an important piece of information. Using both successful and failed 
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solutions could state what should be followed and what has to be avoided. Positive or successful 

experiences (cases) state ‘do it again’, and negative or failed experiences (cases) state ‘avoid this’ 

(Richter & Weber, 2013). The problems with inappropriate solutions (cases) were solved by 

adding a not recommended label to them and providing some tips to improve the approaches. 

These cases were explained in the result and discussion sections in more detail. 

Considering all sources for building the case base of the DSS resulted in 180 cases. Table 5 shows 

the number of cases extracted, and the techniques used in each scenario and phase of experiments. 

As shown in this table, 30 cases from the pre-pilot study (24 cases from the interview and 6 cases 

from the evaluation and recommendations on the cadet examples), 10 cases from the pilot study, 

18 cases from Experiment 1, and 122 cases from Experiment 2 were extracted. 

Each case was an approach suggested by a participant or executed by them in the simulation to 

solve a specific scenario. For example, in the pre-pilot experiment, four participants attended and 

each of them suggested one or more approaches for Sc.1. As a result, in the pre-pilot study, 8 cases 

were extracted from four participants in Sc.1. Considering Sc.1, pre-pilot study, and interview 

approach section, the table shows that one approach appears to have consensus among the 

seafarers. The technique involved positioning the support vessel ahead of the tanker (or alongside 

ahead of the zone) using the vessel to create a leeway to block the pack ice from drifting into the 

zone and also using prop-wash to flush the pack ice (3 seafarers outlined 5 approaches using 

predominately this technique). Although all these five approaches have used a combination of 

leeway and prop wash techniques, they were considered as five different cases because these 

approaches are different in other attribute values (different values for aspect, area of focus, vessel 

heading, orientation, etc.). Three other approaches were suggested that followed conventional 
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definitions of the techniques. One seafarer suggested the stationary/prop-wash technique, which 

involves maintaining a stationary position ahead of the tanker and using prop-wash to flush the 

pack ice (without any other techniques). Two other suggested approaches used the support vessel 

to block (lee) pack ice from drifting into the zone (without any other techniques). 

All techniques that were used by participants in ice management scenarios were introduced before 

in Table 3. 

Table 5 Summaries of Cases Collected from all Experiments 

Phase Technique Total Case 

Sc.1 

Ice management alongside vessel to allow lowering of research equipment 

Pre-pilot 

Interview Approach 

Prop wash 

Leeway (x2) 

Leeway + Prop wash (x5) 

8 

Cadet Example 
Leeway + Prop wash 

Leeway 
2 

Pilot Simulator Exercise 

Prop wash 

Leeway 

Leeway + Prop wash 

3 

Experiment 2 Cadet Example 

Prop wash (x2) 

Leeway (x33) 

Leeway + Prop wash (x8) 

Pushing + Prop wash (x6) 

Pushing (x4) 

53 

Sc.2 

Ice management support for pack ice from around a platform 

Pre-pilot 

Interview Approach 

Pushing 

Prop wash 

Circular 

Sector 

Pushing + Prop wash (x3) 

Leeway + Prop wash 

8 

Cadet Example 
Circular 

Pushing 
2 

Pilot Simulator Exercise 

Pushing 

Prop wash 

Sector + Prop wash 

Leeway + Prop wash 

4 

Experiment 2 Cadet Example 

Pushing + Prop wash (x7) 

Pushing (x20) 

Circular (x27) 

54 
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Sc.3 

Emergency Ice Management of FPSO create ice-free Lifeboat Launch zone 

Pre-pilot 

Interview Approach 

Pushing 

Leeway (x2) 

Prop wash 

Leeway + Pushing 

Leeway + Prop wash (x3) 

8 

Cadet Example 
Leeway + Prop wash 

Pushing + Leeway 
2 

Pilot Simulator Exercise 
Pushing 

Leeway + Prop wash (x2) 
3 

Experiment 1 
Seafarer and Cadet 

Example 

Pushing (x5) 

Leeway 

Leeway + Prop wash 

Pushing + Prop wash (x11) 

18 

Experiment 2 Cadet Example 

Pushing (x4) 

Leeway (x3) 

Leeway + Prop wash 

Pushing + Leeway 

Pushing + Prop wash (x6) 

15 

 Total Cases 180 

 

To design the real world situation, considering all aspects of a problem is not required, rather the 

aim is to find aspects that are relevant and helpful to find the problem’s solution. Each experience 

as a case can be divided into two parts (Richter & Weber, 2013): 

1. a problem part: describes a problem condition, and 

2. a solution part: describes the way a person has reacted to solve the problem. 

A solution can be described in various ways: 

1. defining the solution in a narrow concept, or 

2. defining the solution with additional detail, such as: 

a. comments, examples, and explanations, 

b. guidance on how to use the solution, 

c. mentioning effects of the solution used in the past, or 
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d. stating the strategies used to offer the solution. 

The flat memory was used to represent a case using attribute-value (or feature-value) pairs. To 

present a case, a set of relevant attributes or features should be selected. For matching similar cases 

with the future scenarios’ conditions, common features and characteristics of cases in the case base 

were categorized and indexed. Among all important factors collected from participants in pilot and 

pre-pilot experiments (Table 4 and Figure 18) The following features were extracted from the 

seafarer’s verbal explanations in the interviews and their feedback on the cadets’ examples: 

• (F1) setting the aspect, 

• (F2) area of focus for the ice clearing, 

• (F3) approximate vessel heading, 

• (F4) orientation of vessel to the target vessel, 

• (F5) the specific vessel maneuvers for the technique, 

• (F6) an estimate of the vessel speed 

• (F7) an approximate distance from the platform, 

• (F8) setting the vessel’s controls (Rudder Angle, Engine, Thruster) 

• (F9) the participant’s priority ranking of the technique for the scenario and their rating of 

the cadets’ performance in the examples. 

Depending on the source of the data (i.e., interviews, simulation exercises, Experiment 1, or 

Experiment 2), details about the case features could vary. Some cases from the simulation 

exercises contained more information about features of a case than cases in the interviews. That 

means that participants in the interviews explained their strategies based on a static and ideal 
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environment, while information from the simulator events is based on some parameters that cannot 

be considered in detail in interviews. Such features are 

• (*F3) vessel heading, 

• (*F5) vessel maneuvers, 

• (*F6) vessel speed, 

• (*F7) distance from target during clearing and the size of the clearing zone, and 

• (*F8) setting the vessel’s controls. 

Also, two other features were considered important to evaluate the result of each performance in 

the simulator. These features are 

• (*F10) the change in ice concentration in the target zone and 

• (*F11) estimate of the ice loads endured by the vessel. 

There is no value available for the ice load feature in the cases. Also, the ice concentration feature 

was calculated based on the simulation exercise outcome when they were analyzed. Cases captured 

from the interview did not contain this feature. Therefore, these two features were not used for 

case retrieval purposes, but they could be used in the CBR retain procedure (Figure 1) when a case 

should be added to the case base as a positive or negative case. 

To illustrate the indexing, two cases of the Sc.1 described by participants were illustrated in Figure 

19.As shown in the figure, the approach that the participant defined in the interview (N12) 

represents the technique under static and ideal circumstances and provides an approximate value 

for some features like the vessel speed and heading. However, the simulator data (NR49) provides 

the exact amount of some features that cannot be explained in detail during the interview. 
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Figure 19 Case Indexing for the Leeway Scenario 

 

The indexing process was repeated for all cases, and they were saved as a CSV file. After creating 

all cases, they were classified based on the important factor ranks (Table 4), participants’ verbal 

explanation, and the technique used to approach a scenario. In fact, each case was divided into a 

problem part and a solution part. For each case, the technique was considered as the solution part, 

and the rest of the features were assigned to the problem part. Therefore, the vessel maneuvers or 

techniques were considered as the class labels, and samples were grouped for which participants 

used the same technique. For example in Sc.1, ‘L+PW’ (which was a vessel maneuver or technique 

and considered as a solution) was assigned to Class ID = 1, ‘P+PW’ was assigned to Class ID = 3, 

and so on. In total, 5 classes for Sc.1, 7 classes for Sc.2, and 6 classes for Sc.3 were detected. Table 
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6 illustrates an example of cases organized using the flat memory model.  This table consists of a 

list of attributes of a problem and their values and solutions for six cases. 

 

Table 6 Flat Model Representation of CBR Case Base 

Attributes Sc.1 Sc.2 Sc.3 

Participant/case ID V05-12 A48-1 NM81-2 G69-22 Z11-3 Y93-3 

Aspect Direct Direct Upcurrent Direct J-approach J-approach 

Area of focus AV Z AZ Z Z Z 

Vessel heading Angle Perpendicular Angle Angle Angle Stem 

Orientation Stern Stern Stern Rotating Bow Bow 

Vessel speed Safe 0.74 Safe 1.44 1.16 0.78 

Distance 30 34.56 112.5-150 29.8 59.13 36.97 

Vessel’s controls 

Port 

engine 

+ 

Rudder 

Thruster N/A 
Engine + 

Rudder 
N/A Engine 

Priority Ranking/ 

performance rating 
2 N/A 3 N/A N/A N/A 

Vessel maneuver 

(solution) 
L+PW P+PW L+PW C P P+PW 

Class ID 1 3 3 6 1 4 

 

3.3.DSS Development 

The information gathered from expert knowledge was transformed into a case base to develop a 

decision support technology. This information was integrated into a decision support system to 

provide seafarers with onboard guidance in real-time. To provide real-time assistance to a 

participant while implementing a scenario in the training simulator, the DSS should extract 

common features (F1-F4, and F6-F8) from the simulation data to retrieve a similar case and suggest 

a solution. Also, after completion of the execution F10 and F11 should be analyzed for further 

evaluation (retain a case). Figure 20 provides a depiction of the procedural steps for the DSS. As 
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shown in the figure, there are two important steps for retrieving similar cases to new problems. 

The key steps include 

1. feature extraction, and 

2. applying a retrieval method (similarity matching). 

The following subsections will describe the development of DSS in more detail. 

 

 

Figure 20 DSS Procedure 
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3.3.1. Feature Extraction 

The DSS assists decision-makers by providing them with similar cases that have already been 

solved by experienced seafarers. In order for the DSS to suggest a similar case, the DSS extracts 

common features from the simulation data and retrieves an expert solved case that matches the 

conditions of the new situation. 

The DSS requires real-time data from the simulator to extract or calculate the common features. 

So, As shown in Figure 20,  the real-time data from the simulator will be stored to be used for 

feature extraction. The data collected from the simulator log file include the follow metrics: 

• Scenario Time, 

• Speed Over Ground (SOG), 

• Longitude, 

• Latitude, 

• Heading, 

• Coarse Over Ground (COG), 

• Port and Starboard Rudder Angle, 

• Port and Starboard Engine, 

• Fore and Aft Thruster, and 

• Ice Load. 

As shown in Table 7, some of the parameters recorded in the simulator can be used directly by the 

DSS and others must be converted to features that the DSS can interpret. These features and how 

they were extracted from the real-time data were explained in detail in the following sections. 
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Table 7 Features to Extract from Simulator Log Files 

Feature 
Simulator output needed for 

calculation of a feature 
Conversion 

Features can be input directly from the simulator log files 

F3-Vessel Heading Vessel Heading 

Vessel heading in relation to target 

(Stem, Perpendicular, Angle, 

Rotating) 

F6-Vessel Speed Speed Over Ground (SOG) 
Identify if seafarer is using safe 

speed (<3knots) 

F8-Vessel’s Controls 

Control Outputs 

Fore/Aft Thruster 

Port/Star Engine 

Port/Star Rudder 

Identify if seafarer is using 

thruster, engine, and/or rudder 

F11-Ice Loads Ice loads on ‘Ownship’ Ice load 
Features must be calculated from the simulator log files 

F1-Aspect 
Latitude/ Longitude 

Vessel Heading 

Vessel pathway in relation to 

target (J-approach, Direct, 

Upcurrent) 

F2-Area of Focus Latitude/ Longitude 
Where seafarer is focusing most of 

the ice clearing time (AZ, AV, Z) 

F4-Orientation of Vessel 
Latitude/ Longitude 

Vessel Heading 

Vessel orientation in relation to 

target (Bow, Stern, Parallel, 

Changing) 

F7-Distance from Target Latitude/ Longitude Vessel distance from target vessel 

F10-Ice concentration 
Instructor Station View of 

Zone 

Screen captures of zone before ice 

management and during ice 

management 

 

3.3.1.1.Features from Simulator Log Files 

The DSS can use four parameters from the simulator log files directly as features (Table 7). 

Features for the DSS that can be input directly from the log file include 

• F3- Vessel Heading: Based on the cases in the case base that have already been solved by 

experienced seafarers, the vessel heading can have four different options: 

a. Stemming the condition (making headway against the current) (0 degrees) 



 77 

b. Perpendicular to the target (90 degrees) 

c. Angle (all other degrees but not changing during the execution) 

d. Rotating (in the case of the circular technique, the heading changes constantly, so 

it was converted to the rotating option) 

Since the vessel heading is accessible directly from the log file, the only needed processing is to 

convert the continuous heading values into categorical outputs. Figure 21 shows all headings 

options. 
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Figure 21 Heading Options 

 

• F6- Vessel Speed: The only thing that should be considered about speed is identifying if 

seafarers are using a safe speed (<3 knots) because not all of the cases in the case base 

have a specific value for the speed feature. Consequently, the continuous value of the 

speed should be converted to the safe or dangerous speed. 

• F8- Vessel’s Controls: This feature could be used directly from the log file to see what 

vessel’s properties are using for the vessel’s maneuver. For example, rudders are used to 

turn the vessel to either side. 
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• F11- Ice Load: Ice load could be used directly from the log file. This feature was not used 

for retrieval purposes and did not need more processing. It will be considered as a 

threshold to identify if a case should be considered positive or negative in the retain 

procedure. 

 

3.3.1.2.Converting Features 

According to Table 7, some features needed to be calculated from the simulator log files (aspect, 

area of focus, orientation of vessel, vessel maneuver, distance from target, and ice concentration). 

Before extracting these features, two other features that were beneficial to compute were identified 

and are explained in sections 3.3.1.2.1 and 3.3.1.2.2. The two features are 

1. ownship vessel’s position, and 

2. threshold for the heading. 

 

3.3.1.2.1. Ownship Vessel’s Position in Relation to the Target and the Zone 

To calculate many of the DSS features the position of the ‘Ownship’ was required to be detected. 

Therefore, the position of the ‘Ownship’ vessel with respect to the target and the identified zone 

that needed to be clear was calculated using their latitude and longitude. Table 8 shows constant 

points extracted from the simulator to detect the ‘Ownship’ vessel’s position. Using these points, 

different areas were detected for each scenario (Figure 22 and Figure 23). The ‘Ownship’ vessel’s 

position then was used to calculate other common features more accurately. 
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Table 8 Simulator Points to Calculate the Ownship Vessel’s Position 

 Points for the Target  Points for the Zone 

 Latitude Longitude  Latitude Longitude 

Sc.1 

 1 60.51039 146.35159  60.50914 146.35285 

2 60.51039 146.35074 60.50914 146.35162 

3 60.50790 146.35074 60.50853 146.35162 

4 60.50790 146.35159 60.50853 146.35285 

Sc.2 

 1 60.51049 146.35544  60.51117 146.35678 

2 60.51049 146.35435 60.51117 146.35299 

3 60.50997 146.35435 60.50930 146.35299 

4 60.50997 146.35544 60.50930 146.35678 

Sc.3 

 1 60.51833 146.35961  60.51773 146.36102 

2 60.51833 146.35749 60.51731 146.35900 

3 60.51614 146.35749 60.51624 146.35993 

4 60.51614 146.35961 60.51667 146.36194 

 

3 4 

2 1 

 

3 4 

2 1 

3 4 

2 1 

4 

1 

3 

2 

 

4 3 

1 2 
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Figure 22 Determining the Ownship Vessel’s Position Relative to the Target 

 

Figure 23 Determining the Ownship Vessel’s Position Relative to the Zone 

 

3.3.1.2.2. Threshold for the Heading 

Some of the DSS features require a threshold to indicate if the heading of the ‘Ownship’ vessel is 

between the threshold. Figure 24 indicates down range and up range of the threshold. 𝛼 is an angle 

between the own vessel and a point located on the top of the target according to the trigonometric 

circle, and 𝜃 is an angle between the own vessel and a point located on the bottom of the target 
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according to the trigonometric circle. As shown in Table 9, different points of the target were 

considered to calculate 𝛼 and 𝜃 according to the position of the ownship in relation to the target. 

 

Figure 24 Heading Thresholds 

 

Table 9 Different Points to Calculate Alpha and Betta 
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As shown in Figure 25, to calculate 𝛼 and 𝜃, Equation 10 and Equation 11 were used. 

 

 𝛽 = tan−1 𝑌𝑏−𝑌𝑎

𝑋𝑏−𝑋𝑎
 , 𝛼 = 90 − 𝛽 Equation 10 Angle between 

the own vessel and a point 

located on the top of the 

target 

 

 𝛾 = tan−1 𝑌𝑑−𝑌𝑐

𝑋𝑑−𝑋𝑐
 , 𝜃 = 90 − 𝛾 Equation 11 Angle between 

the own vessel and a point 

located on the bottom of the 

target 
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Figure 25 calculation of Angles 

 

Different values for 𝛼 and 𝜃 depending on the ownship’s position in relation to the target are listed 

in Table 10. As shown in the table, once the ownship is located in the target’s aft, 𝜃 is downrange, 

and 𝛼 is up range. 

 

Table 10 Different Ranges for 𝜶 and 𝜽 to Calculate the Heading Threshold 

Ownship’s position in 

relation to the target 

𝛼 𝜃 Downrange Up range 

Sc.1 and Sc.2 

Port 90 − 𝛽 90 + 𝛾 𝛼 𝜃 

Starboard 270 − 𝛽 270 + 𝛾 𝛼 𝜃 

Fore 90 + 𝛽 270 − 𝛾 𝛼 𝜃 

Aft 270 + 𝛽 90 − 𝛾 𝜃 𝛼 

Fore-Port 90 + 𝛽 90 + 𝛾 𝛼 𝜃 

Fore-Starboard 270 − 𝛽 270 − 𝛾 𝛼 𝜃 

Aft-Port 90 − 𝛽 90 − 𝛾 𝛼 𝜃 

Aft-Starboard 270 + 𝛽 9270 + 𝛾 𝛼 𝜃 
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Sc.3 

    Alongside 90 − 𝛽 270 − 𝛾 𝛼 𝜃 

 

𝛼 and 𝜃 in the simulator had different values than the amounts that were calculated by the 

equations. Equation 10 and Equation 11 required (x, y) coordinates of two points for calculating 

the angle, while the longitude and latitudes of the points were available in the simulator. Using 

longitude and latitudes of the points in the equation resulted in some differences in the angles. So 

the differences between angles calculated by the equation and the simulator was due to the different 

metric units. Table 11 illustrates the angle differences in the equations and the simulator. Using 

these angles, a cubic equation in Figure 26 was calculated for translation of angle differences. 

Based on Equation 12, the angles were converted to desired ones, and appropriate 𝛼 and 𝜃 were 

computed. Then these thresholds were used to extract some common features. 

 

Table 11 Difference Between Angles in Simulator and Equations 

Angle in the simulator Angle according to the equation 

89.20 88.45 

88.39 86.90 

83.53 78.34 

69.98 53.47 

56.77 36.93 

43.53 25.10 

32.69 17.60 

22.53 11.57 

14.22 7.15 

2.86 1.47 

1.74 0.85 

0.70 0.38 
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Figure 26 Cubic Equation Using Angles in Simulator and Equations 

 
 

𝑦 = 10−4𝑥3 − 0.0228𝑥2 + 2.2484𝑥 − 0.3535 

 

Equation 12 Cubic 

Equation for 

Changing Angles 

 

The DSS should convert some parameters from the simulator log files into features (Table 7). 

Features for the DSS that should be calculated from the log file include 

• F1- Aspect: this feature shows the vessel pathway in relation to the target. Based on cases 

in the case base that were obtained from the participants’ techniques in the interview or 

participants’ action in the simulation exercises, three values were assigned to the aspect: 

1. J-approach: getting close to the target from below the zone 

2.  Direct: getting close to the target directly 
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3. Up-current: getting close to the target from up-current of the target (Figure 27) 

 

 

Figure 27 Aspect Options 

 

To calculate this feature from the log files, the heading of the ownship vessel was compared 

to the thresholds (𝛼 and 𝜃) that were calculated in section 3.3.1.2.2 using latitude and 

longitude of the vessels. Since the aspect shows how the ownship is moving toward the 

target, this feature will be calculated at the beginning of each participant’s performance 

and does not change during the operation. Based on the starting position of the ownship 

vessel in each scenario, the aspect will be calculated in the first 3 minutes of each operation 

and will be used until the end of the scenario. Accordingly, If the heading of the ownship 

was more than the up range of the threshold (mostly 𝜃 and in some cases 𝛼), the aspect 

was considered as J-approach. If the heading of the ownship was between 𝛼 and 𝜃, the 

aspect was considered as Direct. Finally, if the heading of the ownship was less than the 

downrange of the threshold (mostly 𝛼 and in some cases 𝜃), the aspect was considered as 

Up-current. 
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• F2- Area of focus: this attribute was considered for identifying where the seafarers are 

spending most of their time clearing the ice. Based on cases in the case base, the values for 

this attribute can vary, including: 

1. above the zone (alongside the target), 

2. above the vessel or target, and 

3. in the zone (Figure 28). 

 

 

Figure 28 Area of Focus Options 

The latitude and longitude of the ownship vessel were utilized to calculate this feature from 

the log file. First, based on the explanation in section 3.3.1.2.1, the ownship vessel’s 

position with respect to the target and the zone was considered in each timestamp. Then, 

the position that occurred more than others during the operation was detected and assigned 

to above the zone (AZ), above the vessel (AV), or in the zone (Z). 

• F4- Orientation to the target vessel: this feature determines the ownship vessel’s orientation 

in relation to the target. Based on cases in the case base, this attribute has four options: 

1. ownship vessel’s bow facing the target 
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2. ownship vessel’s stern facing the target 

3. ownship is parallel with the target, 

4. ownship’s orientation is constantly changing (this case occur when the circular 

technique is used) (Figure 29). 

 

 

Figure 29 Orientation of Vessel’s Options 

 

The heading, latitude, and longitude of the ownship vessel from the log file were utilized 

to calculate this feature. If the circular technique was used by the participant, the orientation 
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was assigned to Changing. The parallel option was checked using the vessel heading, the 

scenario type, and the vessel’s position. Finally, using the explanation in section 3.3.1.2.2, 

𝛼 and 𝜃 thresholds were calculated to create an interval. If the ownship vessel’s heading is 

in between this interval, the ownship vessel’s bow is facing the target. Otherwise, the vessel 

orientation will be assigned to Stern. 

• F7- Distance from the vessel: this feature shows how far the ownship vessel is from the 

target. For calculating this feature, the latitude and longitude of the target and ownship 

vessel were used. Using the position of the ownship vessel in relation to the target several 

points were used to calculate the distance. 

For example, as shown in Figure 30, if the ownship vessel is near the top of the target, its 

distance from the top point is calculated. If it is in the middle of the target, its distance from 

the center point of the target is considered. Otherwise, if the ownship vessel is close to the 

bottom of the target, its distance from a bottom point on the target is used. 

 

 

Figure 30 Distance from the Target Example 

 

• F10- Ice Concentration: This feature was not used for retrieval purposes. It was considered 

as a threshold to identify whether a case should be considered positive or negative in the 
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retain procedure.  So, this step could be seen as a post-processing step for the retaining 

process in the CBR and was obtained using Experiment 2 scripts (Thistle, 2019). For 

computing this feature, screen captures of the zone before ice management and during ice 

management scenarios were taken. Using these images, the amount of ice that was 

removed from the indicated area was calculated automatically using the MATLAB scripts. 

3.3.2. Decision tree development as a retrieval method used in the DSS 

A decision tree generates a tree from the case base with defined classes characterized in terms of 

certain attributes (Musharraf et al., 2020). Given the case base shown in Table 6, for each case, the 

technique was considered as the solution part, and the rest of the features were assigned to the 

problem part. Therefore, the vessel maneuvers or techniques were considered as the class labels, 

and samples were grouped for which participants used the same technique.  

The training case base was fed to the decision tree algorithm to fit a model. Considering these data 

as a set of attributes (A1, A2,…, An), values ([V11, V12, …, V1k], [V21, V22, …, V2k], …, [Vn1, Vn1, 

…, Vnk]), and classes (ID1, ID2, …, IDm), the decision tree model could be shown in Figure 31. 

 

Figure 31 Classifying Cases Based on the Characteristic of Attributes (Musharraf et al., 

2020) 
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This model could be used any time to retrieve the most similar class to a new case. To create such 

a model, the CART algorithm - a classification and regression tree - was utilized. As shown in 

Table 6, the case base consisted of numerical and categorical variables. The CART algorithm is 

capable of handling these two kinds of variables. 

Once the generated model determined the class of the new case, it is time to specify which sample 

of the class is the most similar paired attribute-value to the new case using a similarity metric. 

Cosine similarity was used in this thesis among different similarity metrics, such as Euclidean and 

Manhattan. Since the magnitude of the new case vector does not matter in this study, Cosine 

similarity is an appropriate metric for measuring distance. 

In the next chapter, more details about generating the decision tree using the training data set and 

prediction accuracy using the test data set are discussed. 

 

3.4.Smoke testing 

Smoke testing is a software testing process to evaluate software functionalities, and it involves a 

number of tests run to confirm the stability of the software. In fact, the purpose of smoke testing 

is to reveal if the software has functionality and works properly to be used for further works by the 

research team (Gerardi, 1984). To determine whether the designed DSS is stable or not, smoke 

testing was implemented in the ice management simulator. 

The procedure followed for testing the DSS is demonstrated in Figure 32. The outline of this 

experiment is shown in Appendix Q: DSS Testing Session Outline. 
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In addition to the steps mentioned in the procedure, one of the researchers was responsible for 

loading and initiating scenarios in the simulator, screen capturing scenarios every three minutes, 

saving data collected from the scenarios, and communicating with seafarers during the simulation 

exercise via VFH radio. 

The whole process of this test was somewhat similar to the pilot session, but the DSS was added 

to it. At the beginning, the participant completed the experience questionnaire (Appendix R: 

Experience Questionnaire) to collect information about the participant’s experience at sea and/or 

sea ice. This data was used later to see whether the DSS causes a considerable difference in ice 

management effectiveness once participants have different amounts of experience. In the setup, 

the simulator’s environment and controls were shown to the participant, and different parts of the 

simulator’s bridge console were explained to them (Appendix P: Introduction to Controls Script). 

Then, the participant was shown the DSS user interface and how it works. A description of the 

user interface used in the experiment was explained in section 3.4.1. The setup lasted about twenty 

minutes. 
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Figure 32 Experimental Procedure Flow Chart for the DSS Testing 

As shown in Figure 32, the next step was explaining the habituation scenarios and asking the 

participant to conduct them in the simulator. The habituation scenarios took approximately 15 

minutes to complete. 

In the next step, the participant entered the simulator and completed the first exercise using the 

DSS. Anytime that the participant asked for assistance, the time of the request and the suggested 

cases were saved into the DSS for further analysis. After completing the first exercise, the 

participant returned to the debriefing station, and the debriefing was performed. 

During the debriefing, researchers showed the screen captures of the scenario (captured by 

researchers while execution) to the participant and asked the seafarer to explain their strategies 

and any changes in their execution based on the DSS suggestion, if there were any. The debriefing 

questionnaire is provided in Appendix S: Debriefing Questionnaire for the DSS Testing. 
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At the end of this phase, the participant rated their performance using the DSS on a scale from 1 

to 5, where one was not very successful, three was somewhat successful, and five was very 

successful. 

Similarly, all steps, including simulator exercises, and debriefing were repeated for the other two 

scenarios. At the end of the session, the participant answered some closing questions about the 

user-friendliness of the DSS and how the system could be improved (Appendix T: Exit Interview 

for the DSS Testing). The whole session lasted approximately two hours. 

 

3.4.1. DSS User Interface 

The user interface of the DSS is shown in Figure 33. To operate the DSS, the participant was first 

asked to choose the scenario that they planned to complete.  In the first frame of the DSS, the user 

is provided with some information about the available scenarios, such as a diagram of each 

scenario, each scenario’s objectives, and the allocated time for executing each scenario. 
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Figure 33 DSS User Interface 

 

After choosing a scenario, the participant is shown a second frame, as illustrated in Figure 34. The 

following are the different components in the second frame: 

• Back to Main Menu: this button lets the participant return to the first frame to choose a 

different scenario. 

• Ownship Properties: in this section, the ownship vessel’s features will be shown. These 

features are used to retrieve similar cases from the case base. At the beginning of the 

participation, some of the feature values are null, but they can be calculated during the 

scenario. As such, the values of these features will be updated after a few minutes of 

running the scenario. 
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• Assist button: this button activates the Suggested Solution and Suggested Approach frame, 

meaning that the features and the diagram of the most similar case will be shown on the 

screen. 

• Suggested Solution: the features of the most similar case will be displayed. 

• Suggested Approach: the suggested diagram of the retrieved case will be shown. 

• More Info: this button provides a more detailed description of each solution and the 

suggested approach. 

 

 

Figure 34 DSS User Interface After Choosing a Scenario 

 

Each feature has a question mark icon displayed next to it. As shown in Figure 35, whenever the 

cursor hovers over the icon, the description of that feature is provided. 
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Figure 35 Description of features in DSS User Interface 

 

Figure 36 and Figure 37 illustrate the information the DSS provides a participant when they seek 

assistance for the selected emergency scenario. As an example, using the retrieval method, the 

DSS searched for a solution to the new situation (case Z25-3 in this example), and case Y21-3 was 

predicted as the most similar case to Z25-3. As shown in Figure 36, all information about Z25-3 

and Y21-3 was illustrated in Ownship Properties and Suggested Solution boxes, respectively. The 

suggested diagram for Y21-3 was shown in the Suggested Approach box for more clarification as 

well. By clicking on the More Info bottom, all tips about implementing the solution could be 

retrieved (Figure 37). 
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Figure 36 Example of the Case Retrieval in the DSS 

 

 

Figure 37 An Example of a Suggested Solution Details 
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Chapter 4: Results 

This section provides a description of the analysis used to select the similarity matching algorithm, 

describes the decision tree method used, and finally explains the smoke testing used to evaluate 

the DSS functionality. 

 

4.1. Analysis of results 

After gathering all the common features from the simulator log file, the DSS can retrieve the most 

similar case. Among the various similarity-based methods, classification by similarity algorithms 

were performed in this study for retrieval purposes. The cross-validation algorithm was used to 

evaluate machine learning models on the case base. Using the same data for training and testing a 

model causes overfitting and would fail to suggest the useful prediction of yet-unseen data. To 

have a better performance, cross-validation was used to divide data into training and testing data 

sets. 

K-fold cross-validation randomly splits data into K approximately equal-sized subgroups (Berrar, 

2018). It uses K-1 parts to fit the model and the remaining parts for testing the performance of the 

generated model. This process is repeated K times, and in each iteration, a different group or fold 

is considered as the test data. Finally, using Equation 13, the average performance would be 

calculated. In this equation, K represents the number of folds, and P represents the performance of 

the test data using a given fold (Delen, Topuz, & Eryarsoy, 2020). 

 

𝐴𝑃 =
1

𝐾
∑ 𝑃𝑖

𝑘

𝑖=1

 
Equation 13 Cross-

validation’s Average 

Performance 
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As an example, Figure 38 shows a schematic display of 5-fold cross-validation by Berrar (2018). 

In this figure, n observations (1, 2, 3,…, n) were randomly split into five groups. In each fold, the 

group shown in beige was considered the testing data and the remaining parts shown in blue were 

considered training sets. 

 

 

Figure 38 5-fold Cross-Validation (Berrar, 2018) 

In the optimal selection of K, both training and test datasets would properly contain a complete 

description of conditions. Also, the best value of K would depend on a number of attributes of the 

dataset (Marcot & Hanea, 2020). To evaluate the generalizability and stability of the machine 

learning models, the k-fold cross-validation with different sizes of training and test sets was 

examined in this research. The ratios of 67:33% (k=3), 80:20% (k=5), and 90:10% (k=10) were 

tested as the size of the training and test data set. The value of K=5 resulted in better precision. 

Therefore, to evaluate the similarity-matching performance of the DSS a 5-fold cross validation 

was used. 

Table 12 shows the total number of samples in each class for different scenarios in the case baes. 

Based on different solutions or vessel maneuvers, class IDs were assigned to each scenario. 

Overall, 5 solutions for Sc.1, 7 solutions for Sc.2, and 6 solutions for Sc.3 resulted in 5, 7, and 6 
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class IDs for each scenario, respectively. As it is illustrated in Table 12, the data is imbalanced and 

the classes are not represented equally. That means that some classes have only one sample, 

whereas some others have more. 

Table 12 Number of Samples in Each Class for Scenarios 

Class 

ID 

Sc.1 Sc.2 Sc.3 

Solutions/vessel 

maneuver 

Number 

of 

samples 

Solutions/vessel 

maneuver 

Number 

of 

samples 

Solutions/vessel 

maneuver 

Number 

of 

samples 

1 L+PW 15 S 1 P 11 

2 L 37 P+PW 10 PW 1 

3 P+PW 6 L+PW 2 L+PW 8 

4 P 4 S+PW 1 P+PW 17 

5 PW 4 PW 2 L 6 

6 - - C 29 L+P 3 

7 - - P 23 - - 

 

Selecting an inappropriate measurement metric for imbalanced data can be dangerous. To prevent 

obtaining an incorrect conclusion, applying a proper metric is vital (Shilaskar, Ghatol, & Chatur, 

2017). For example, for the imbalanced data, considering solely the prediction accuracy results in 

a bias toward the majority class (Haixiang et al., 2017). Therefore, to estimate classification 

effectiveness, other performance evaluation metrics should be applied that consider class 

distributions, such as sensitivity (recall), specificity, and the geometric mean (Elamrani Abou 

Elassad, Mousannif, & Al Moatassime, 2020). These performance evaluation metrics were 

presented in this thesis. 

To provide a comprehensive performance picture, four comparison categories were used. 

1. the rate of correctly labeled examples (accuracy) 

2. the capability to detect how well a test can identify true positive (sensitivity) 

3. the capability to detect how well a test can identify true negatives (specificity), and 
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4. the geometric mean (G-mean), which is a measure of the balance between the sensitivity 

and specificity metrics. 

These metrics were calculated by employing the confusion matrix, which is a summary of 

predicted outcomes on a classification task. 

A confusion matrix consists of four values (Ting, 2017): 

1. True positives (TP): the number of accurately predicted positive cases, 

2. True Negatives (TN): the number of accurately predicted negative cases, 

3. False Positives (FP): the number of negative cases that are incorrectly predicted as positive, 

and 

4. False Negatives (FN): the number of positive cases that are incorrectly predicted as 

negative. 

Equation 14, Equation 15, Equation 16, and Equation 17 (Pristyanto, Pratama, & Nugraha, 2018) 

are the performance metrics that were calculated based on the confusion matrix. 

 
Accuracy = 

𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 Equation 14 Accuracy 

 

 
Sensitivity= 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Equation 15 Sensitivity 

 

 
Specificity= 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 Equation 16 Specificity 
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G-mean =√
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
∙

𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 Equation 17 G-mean 

To evaluate the classification performance of the DSS, four machine learning methods were 

performed under the same conditions: random forest (RF), logistic regression (LR), support vector 

machine method (SVM), and decision tree (DT). Using the 5-fold cross-validation, a model was 

fitted with these four algorithms on the training dataset. Then, to evaluate the performance of each 

model, they were tested by the test dataset. 

During the 5-fold cross-validation, one confusion matrix was generated for each fold and resulted 

in 5 different confusion matrices for each run. Figure 39 shows a sample of confusion matrices for 

Sc.3. These confusion matrices were captured from fold number 3 while evaluating RF, LR, SVM, 

and DT methods. Since there were 46 cases in Sc.3, using the 5-fold cross-validation, 37 cases 

were assigned to the training data set and 9 cases were considered as the test data. As shown in 

Figure 39, the confusion matrix contains two labels including the actual labels and predicted labels. 

The actual label represents the actual class ID of the test data’s samples. The predicted label 

represents the class ID that was predicted based on the model. The values in the confusion matrix 

show the number of correct (on the diagonal) and incorrect (not on the diagonal) predictions, and 

they are broken down by each class. Also, the confusion matrix uses a color map for boxes, and 

different colors are assigned to different values. In the presented confusion matrices, the lighter 

colors show the higher values. In Figure 39 the actual class ID and the predicted class ID are as 

follows: 

• actual= [1,2,3,3,3,4,5,5,6] 

• predicted by RF=[1,5,3,4,4,4,1,1,4] 
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• Predicted by LR=[1,5,3,5,5,4,1,1,4] 

• Predicted by SVM=[1,5,4,5,6,4,1,1,4] 

• Predicted by DT=[1,5,3,3,3,4,1,5,6] 

 

  

  
Figure 39 Example of Confusion Matrix for Emergency Scenario in Fold 3 of Cross-

Validation 

 

To have one confusion matrix for each method, 5 confusion matrices generated from each fold of 

cross-validation were summed to represents a model’s performance for all of the data. Figure 40, 
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Figure 41, and Figure 42 show the final confusion matrix diagrams captured for the Sc.1, Sc.2, and 

Sc.3 respectively. 

 

  

  

Figure 40 Confusion Matrix for Sc.1 
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Figure 41 Confusion Matrix for Sc.2 
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Figure 42 Confusion Matrix for Sc.3 

 

 

Performance metrics received by each algorithm are shown in Figure 43, Figure 44, and Figure 45 

for Sc.1, Sc.2, and Sc.3 respectively. 
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Figure 43 Classification Performance Metrics for Sc.1 
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Figure 44 Classification Performance Metrics for Sc.2 
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Figure 45 Classification Performance Metrics for Sc.3 



 112 

The summary of achieved performances from the four algorithms is shown in Table 13. As shown 

in the table, there is a large difference in sensitivity and specificity values due to the inherent bias 

towards bigger class. Also, considering solely the prediction accuracy results in a bias toward the 

majority class for the imbalanced data. Therefore, another performance evaluation metric like G-

mean should be considered to evaluate the classification effectiveness. As shown in Table 13, the 

decision tree has the best performance among all algorithms (shown in bold). 

 

Table 13 Summary of  Classification Metrics for Four algorithms 

Scenario Sc.1 Sc.2 Sc.3 

Method RF LR SVM DT RF LR SVM DT RF LR SVM DT 

Accuracy 86.00 88.00 82.40 88.40 91.42 91.42 92.57 93.71 87.67 83.83 88.17 95.00 

Sensitivity 28.60 38.00 31.40 44.60 28.70 30.14 34.42 42.43 39.83 30.66 44.50 68.50 

Specificity 87.40 90.00 88.40 91.20 93.00 92.85 94.71 96.29 74.50 89.17 92.50 97.00 

G-mean 49.99 58.48 52.68 63.77 51.66 52.90 57.09 63.92 54.47 52.29 64.15 81.51 

 

4.2. Decision Tree for the Scenarios 

To create a final model, an algorithm would be fitted to the entire dataset (Berrar, 2018). Therefore, 

after selecting the decision tree as a chosen machine learning algorithm, the final tree model was 

built using the entire case base for making predictions on new data. Figure 46, Figure 47, and 

Figure 48 show the decision tree model created for Sc.1, Sc.2, and Sc.3. These trees were built 

based on the CART algorithm using Scikit learn library in Python (Pedregosa et al., 2011). In the 

CART tree, the information gain is used as an attribute selection measure and entropy computed 

to split the nodes. As shown in the figures, leaf nodes (pure nodes) are considered as a class ID 

and show the number of samples in each class. Therefore, a total of 5, 7, and 6 class IDs are 
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predictable in the tree for Sc.1, Sc.2, and Sc.3, respectively. Whenever the search ended at leaf 

nodes, their class ID would be the predicted result. 

For more clarity, in  Figure 46, the green leaf with class=2 shows the class ID=2 with 39 samples 

in the case base. 

 

Figure 46 Decision Tree Model for Sc.1 
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Figure 47 Decision Tree Model for Sc.2 
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Figure 48 Decision Tree Model for Sc.3 

 

Figure 49 shows a searched route for a new case in the tree model for Sc.3 (Figure 48). As shown 

in Figure 49, the new case is similar to a case with class ID=3 consisting of 8 samples in the 

emergency case base. 

Once the new case class is predicted using the decision tree, the DSS searches to retrieve the most 

similar sample of the corresponding class. This step is done using the Cosine distance metrics. 

Using the Cosine similarity metric, the most similar case to the new case among 8 samples of class 

3 is retrieved. 
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Figure 49 An Example of Selected Route for a New Case 

 

4.3. Smoke Testing Result 

Smoke testing of the DSS functionality was performed using four participants in the ice 

management simulator. However, after one of the sessions (participant R20), it was revealed that 

the DSS did not receive real-time data from the simulator and did not generate solutions based on 

the vessel’s situation. Therefore, the result from this participant was not included in the thesis. The 

performance of the three remaining participants is described for the three different scenarios. 

Table 14, Table 15, and Table 16 illustrate examples of executing Sc.1, Sc.2, and Sc.3 by the three 

participants using the DSS. These tables include timestamps in which participants asked for 

assistance, screen captures of their situation while they requested help, and DSS suggested 

solutions diagrams. 

Prior to the participants’ implementation, some information was given to the participants: 
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1. The DSS recommends not asking for help at the onset of the scenario because the system 

needs time to receive real-time data from the simulator and to calculate features for 

retrieving the most similar case.  

2. The DSS may provide the same solution for a period of time because the solution depends 

on the vessel’s situation, and if it does not change, there would not be any update for the 

solution. 

3. In addition to the suggested approach diagram, some features of the most similar case were 

given to the participants. Also, more detailed information was provided for some solutions 

(not all), and participants had the option to review the additional guidance for more clarity. 

4. Following the DSS’s suggested approach is optional, and the participant could ignore the 

suggestion and implement their own approach. Thus, the final performance could result 

from DSS suggestions, participant experience, and their own strategies. 

Three examples are used to demonstrate the DSS smoke testing performance in the three scenarios, 

leeway, pushing and emergency scenarios. First, Table 14 illustrates executing Sc.1 by participant 

K13. As shown in the table, although the participant asked for assistance at the beginning of the 

scenario, it seems that the DSS provided an appropriate approach for the user. The participant also 

asked for assistance a couple of times between 2 and 4 minutes, however the DSS provided the 

same solution as the vessel’s situation did not change a lot. For this example, the DSS suggested 

a total of four solutions that depended on the vessel’s situation. Overall, based on the smoke 

testing, it seems that the DSS provided appropriate solutions for Sc.1. The participant’s final 

performance can be seen in Figure 50. 
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Table 14 Execution of Leeway Scenario Using the DSS 

T
im

e
 

K13 – Sc.1. Screen captures DSS Solution 

0 

 

 
2-4 
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5-6 

  
9 
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Figure 50 The Final Performance of Participant K13 in Sc.1 

 

The second comparison for the smoke test was for the pushing scenario. Table 15 shows Sc.2 

implemented by participant F09. At the beginning of the scenario, the participant asked for 

assistance, and the DSS suggested a circular approach above the platform. This approach seems 

not an appropriate strategy because of the vessel’s distance from the platform and the mount of ice 

load on it. Therefore, the participant decided not to follow it. Then, at 4 minutes, the participant 

asked again for help, and the DSS suggested another strategy that involved using a leeway strategy 

above the platform. In fact, the new solution at timestamp 4 minutes meant to instruct the 

participant to ignore the ice under the platform and focus on clearing the ice above the platform 

because the drift would clear the ice under the platform. Unfortunately, this explanation was not 

provided in the DSS, so the participant could not understand the purpose behind this solution, and 

tried to follow their own approach, which was a circular approach around the platform. 
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The participant’s choice to follow their own approach occurred with other proposed solutions from 

the DSS. It is possible this confusion resulted from a mismatch between the DSS suggested 

approach and the reasoning for the approach. Sometimes there was not enough explanation for the 

solutions and sometimes the participant forgot to click on the more info button to see a detailed 

explanation. The participant’s final performance can be seen in Figure 51. 

After completing the DSS testing experiment, the problems with inappropriate approaches were 

solved by adding a not recommended label to them and providing some tips to improve these 

approaches. Also, some explanations were added for more clarity to those approaches that did not 

contain a more detailed information. These changes will be explained in detail in Chapter 5: 

Discussion. 

 

Table 15 Execution of Pushing Scenario Using the DSS 

T
im

e
 

F09 – Sc.2. Screen captures DSS Solution 

0 
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9 

 
 

13 
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Figure 51 The Final Performance of Participant F09 in Sc.2 

 

The final comparison for the smoke test was for the emergency scenario. Table 16 shows Sc.3 that 

was implemented by participant D51. In this scenario, the ownship vessel is located in the open 

water as a result most of the participants operated the vessel at higher speeds than when they 

operated the vessel in the ice. For this reason, if they asked for assistance before or while they 

were entering the ice, a case with a high speed in the case base was retrieved (the suggested case 

in time 4 minutes in Table 16). This case had a speed of more than 3 knots in its implementation 

that is not recommended as it exceeds the safe speed. To solve this problem after the experiment, 

the ‘speed’ feature’s priority was changed to a lower priority during the case retrieval. 

Inappropriate approaches were not removed from the data set because these cases are necessary 

for the learning process. Also, it is important to show inappropriate results caused by inappropriate 

strategies so that the participant can be aware of what will happen if they do not change their 

strategies in the remaining time of implementing a scenario. As shown in Table 16, except for the 

first suggestion, the DSS seems to retrieve the relevant cases to current situations. The participant’s 

final performance can be seen in Figure 52. 
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Table 16 Execution of Emergency Scenario Using the DSS 

Time D51 – Sc.3. Screen captures DSS Solution 

4 

 

 
8 
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20 

 
 

 

 

 

Figure 52 The Final Performance of Participant D51 in Sc.3 

 

The final performance of the three participants in the three different scenarios is shown in Table 

17. The performance by the participants can be a result of the DSS guidance and the participant’s 

prior experience. However, based on the experience questionnaire, participant F09 had about three 
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years of experience at sea and spent about 1 month in the presence of sea ice, while the two other 

participants had no experience. 

Overall, the smoke testing of the DSS successfully tested the system in terms of hardware and 

software integration. Future works is required to evaluate the effectiveness of the DSS in providing 

adequate guidance in ice management operations. 

Table 17 Comparing the Final Performance of Participants in Different Scenarios 

 F09 K13 D51 

Sc.1 

 

  

Sc.2 
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Sc.3 
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Chapter 5: Discussion 

This thesis designed a Cased Based Reasoning Decision Support System (DSS) for marine 

operations using expert knowledge. A bridge simulator was used in this research as a useful human 

laboratory for both the knowledge capture and testing of the DSS. This section discusses the 

findings related to the hypothesis of this research. Specifically, (i) capturing expert knowledge to 

classify ice management strategies, detect important ice management factors, and find the 

relationship between them; (ii) developing a CBR decision support system; and (iii) testing the 

CBR decision support system’s capability of recommending ice management strategies and 

offering adjustments during the implementation of a technique in the simulator. This section will 

discuss each.  

 

5.1. Knowledge Capture 

5.1.1. Ice Management Interviews to Construct the CBR Model and Generate Cases 

To develop a preliminary decision support system using a CBR reasoning model, data were 

captured from the expert seafarers through interview sessions. Audio recorded from the interviews, 

including seafarers’ strategies and their opinions about the cadet examples, was transcribed and 

converted into the cases. Although this process was time-consuming, the knowledge captured 

using this approach helped categorize ice management strategies and determine the key ice 

management factors and the relationship between any of these factors. Domain knowledge to 

construct the CBR structure and case feature indices were collected through this step. 

In the interview sessions, the seafarers shared their approaches, such as their rule-of-thumb 

knowledge, and demonstrated the important aspects that should be considered during ice 
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management operations. According to the participants, their ice management strategies were 

adaptable. They believed that there are different approaches and techniques to be used for 

performing ice management scenarios. That means that their plans to conduct these scenarios were 

not fixed, and in some cases, they were a trial-and-error process. When participants were 

explaining different steps of their strategies (different decision points), they expressed that they 

tend to place the ownship vessel in a way that they can easily change the ship’s position securely 

if necessary. That means that if the situation changed and the chosen strategy was not working, the 

participants adapt their technique and test another approach. 

In addition, the strategies that participants described in the interview were static strategies because 

they were considered in ideal situations. Therefore, the information provided in the interview 

session about the suggested strategies and their possible results was limited. The data collected 

from the cadet examples and simulator exercises aimed to address these limitations. 

 

5.1.2. Determining the Scope of Ice Management Operations Using Cadet Examples 

To define the scope of the ice management problem and provide advice about preventing or fixing 

problems, different successful and unsuccessful cases should be considered in the CBR model. 

Therefore, some examples of appropriate and inappropriate strategies implemented by cadets were 

shown to the seafarers, and they were asked to provide some advice and suggestions that could be 

used to inform the DSS. These comments and suggestions were used to improve the examples and 

then were added as a case to the case base. The interview session described the scenarios in ideal 

circumstances. As such, these examples could help participants remark on how an ice management 

approach may cause poor performance and which situation needs a higher level of expertise to 

implement a strategy more accurately. In addition, this information could be included in the DSS 
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to assist users in understanding why the techniques should be executed in a specific way or under 

different conditions. Overall, the experienced seafarer’s evaluation of cadet examples helped to 

add some advice and instructions for the cases in the DSS. 

 

5.1.3. Improving the CBR Model and Adding Details to Cases Using Simulation Exercises 

The CBR decision support system should have enough functionality to suggest ice management 

techniques and adjust the strategies during the implementation of the scenarios. The simulation 

exercise strengthened the CBR model by providing some details like the scenario outcome to the 

case base. For instance, due to the static situation in the interview, cases created from the interview 

did not show the level of the technique’s success or failure. On the other hand, cases created from 

the simulation exercise contain the strategies’ outcome and subjective measures like the 

participants’ priority rankings of their approaches. Also, objective measures such as (1) ice 

concentration in the target zone (a measure of ice management effectiveness) and (2) ice loads, 

showing how well the ice management technique was executed. 

In addition, the simulation exercises contained the dynamic aspects of ice management 

approaches. That means that these cases present continuous information for some features like 

speed and heading that could not be measured in the interview session. 

5.2. DSS Development 

5.2.1. Machine learning algorithms for the similarity matching aspect of the DSS 

For the similarity matching aspect of the DSS, similarity-based algorithms are suitable. Similarity-

based algorithms are practical learning frameworks for problems that can be solved based on the 
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human similarity judgements. Therefore, different classification by similarity methods were 

compared for decision-making purposes including support vector machine method (SVM), logistic 

regression (LR), decision tree (DT), and random forest (RF). 

In machine learning, model selection and model evaluation are key elements. To do that, using 

different performance metrics are necessary for evaluating the effectiveness of a classifier. 

Although, prediction accuracy is used as a common evaluation metric for classification, it may be 

inappropriate for imbalanced data, because accuracy results in a bias toward the majority class. 

Different performance metrics that are more appropriate for imbalanced data were used for model 

selection and evaluation including sensitivity, specificity, and G-mean. These metrics consider 

class distribution, so they are more reliable metrics measure for imbalanced data. 

 

5.2.2. DSS Changes after Smoke Testing 

Based on the results achieved by smoke testing, some changes were made in the DSS. These 

changes were as follow: 

1. Modifying the DSS user interface 

2. Adding general tips for each scenario 

3. Adding specific instruction for all cases 

4. Labeling inappropriate features and improving the approaches 

5. Changing the priority of features for retrieving the similar cases 
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According to the participants’ comments and suggestions, some changes were made to the DSS 

user interface. Figure 53 shows the new user interface. Comparing to the previous interface 

depicted in Figure 34, changes include: 

1. Ownship Properties section was removed from the DSS for two reasons. First, there was 

no need to include some features like the ownship vessel’s speed over ground and heading 

in the DSS because these features would be displayed to the participant using the indicator 

screen embedded in the bridge simulator. Based on the participants’ comments, showing 

these features on both the bridge screen and in the DSS may cause confusion. Second, 

providing some information to the participants about other features like “distance from the 

target” and “area of focus” was removed. Because experiments that would be implemented 

using the DSS in the future are supposed to be compared with the previous experiments of 

the research team (Thistle, 2019; Veitch, 2018). In the previous experiments, the 

participants did not have any extra information about their vessel’s position. They only 

could use the VHF radio to call the bridge officer and ask about their distances. Therefore, 

the same situational information was provided for the participants using the DSS. 

Otherwise, experiments would not be comparable. 

2. Instead of the Ownship Properties section, an Instruction Section was added to the DSS, 

and the “More Info” button in the previous version was removed. Based on the smoke 

testing experience, sometimes participants forgot to click on the “More Info” button, and 

they inadvertently did not success detailed information about a suggested approach. 

Consequently, this button was removed from the DSS, and all information was displayed 

in the mainframe in the instruction section. This section was divided into general and 

specific instructions. In the general part, some tips that were common in each scenario were 
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shown to the participant. In the specific instruction, all instruction for a specific strategy 

and all notes for improving a strategy was presented. 

 

 

Figure 53 New Version of the DSS 

As shown in Figure 54, the DSS asks the participant’s name the first time that they request 

assistance. The name will be generated randomly before starting the session for confidentiality 

purposes. Using this name, all information related to the participant will be added to a log file for 

further analysis. This information includes the timestamps that the participant asked for help and 

retrieved cases by the DSS. 
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Figure 54 Saving Result in a Log File with participants’ name 

Figure 55 shows the new configuration of the DSS interface after all the changes from the smoke 

testing were implemented. In this example, the suggested approach from the DSS is similar to the 

user’s current situation, but the suggested approach is not an appropriate strategy on its own. 

Therefore, the participant is first shown a “caution” warning in red and then the DSS guides them 

in the specific instruction on how to have a better performance. 



 135 

 

Figure 55 Suggested Solution by the DSS 
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Chapter 6: Conclusions 

Prevention of safety hazards plays an important role in the offshore and maritime industries. This 

study focused on a human-centered approach to develop an early-stage decision support system 

(DSS) for offshore ice management operations by applying the case-based reasoning (CBR) 

method. The DSS can tackle conventional on-the-job training weaknesses and can assist in the 

knowledge exchange between seafarers. Knowledge capture from experienced seafarers was used 

to inform the development of an onboard decision support system for ice management operations. 

At the knowledge capture phase, three different methods were used for gathering ice management 

information from the experienced seafarers, including (1) semi-structured interviews on ice 

management approaches, (2) reviewing cadet examples, and (3) performing simulation exercises. 

The data gathered from these methods was employed to develop a CBR model and resulted in 34 

cases in the case base. CBR is under the assumption of similar problems have similar solutions, 

and new problem can be solved by retrieving similar problems or adapting retrieved solutions. 

Thus, a rich CBR case base is needed before it can match user’s condition. Although 34 cases were 

used to develop the CBR case base at the starting point, adding more cases to the case base was 

essential to enhance the solution generation and developing an effective DSS. To do so, 140 cases 

were generated from the previous simulation experiments (Thistle, 2019; Veitch, 2018). 

The aim of this research was the development of an onboard DSS using a CBR case base. Several 

machine learning methods has been implemented in the DSS development.  In order to verify the 

efficiency and the accuracy of each model, four algorithms were selected to compare their 

effectiveness, which are the support vector machine method (SVM), logistic regression (LR), 

decision tree (DT), and random forest (RF). By observing the experimental results, the decision 
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tree gave the best result in comparison to other machine learning methods that were used during 

the evaluation. This study is certainly a great starting point for further development with various 

types of classification. Future testing of different machine learning algorithms will indicate the 

aspects that will need to be modified, with the main purpose to obtain better outcomes. 

To test the CBR decision support system’s functionality in a simulated environment and evaluate 

the way it generates solution by matching similar cases, the DSS has been set up and installed on 

the ice management simulator. The system collected time series data from the simulator during the 

implementation of scenarios and provided targeted solutions according to values of different 

attributes in each case. The DSS has been successfully tested in terms of hardware and software 

integration. 

Some limitations in this research should be noted. First, this research mainly focused on the 

processes of case retrieval and case reuse and the other two processes, case revision and case 

retention are not explained in detail. Moreover, in terms of CBR, similar problems have similar 

solutions and new problems can be solved by retrieving similar problems. Therefore, a large case 

base is needed to match the user’s conditions. 

The number of cases in this study was small and my weaken the reliability of the proposed CBR-

based model in the DSS. Despite the small number of cases, the methodology used for capturing 

data is an important aspect of this thesis. In addition, the data collection methods used in the pilot 

study required post-processing and interpretation before they were added into the CBR model as 

cases. Automating the data could be considered in the future work by parsing and indexing the 

case in the existing simulation technology to create more informative and practical DSS. 
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Future work will focus on validating the DSS by using the DSS in a simulator setting to support 

cadets and seafarers in effectively managing ice during a series of safety critical operations. 

Validation of the DSS in a simulated environment would verify the decision support system’s 

capabilities of offering onboard guidance on pack ice management techniques. The purpose of this 

work would be to determine if participants supported by a DSS would perform better in the ice 

management bridge simulator. This research could also analyze the variability amongst 

participants’ performances to see if variability would be lower due to the uniformity that the DSS 

will give to ice management strategies.  



 139 

References 

 

Aamodt, A., & Plaza, E. (1994). Case-Based Reasoning: Foundational Issues, Methodological 

Variations, and System Approaches. AI Communications, 7, 39–59. 

https://doi.org/10.3233/AIC-1994-7104 

Afshin Mansouri, S., Gallear, D., & Askariazad, M. H. (2012). Decision support for build-to-

order supply chain management through multiobjective optimization. International Journal 

of Production Economics, 135(1), 24–36. https://doi.org/10.1016/j.ijpe.2010.11.016 

Al-hadhrami, T., & Mohammed, F. (2021). Advances on Smart and Soft Computing. In 

Advances in intelligent system and computing (Vol. 1188). 

http://link.springer.com/10.1007/978-981-15-6048-4 

Alexander, L. (2002). Decision support systems in the 21st century. In ACM SIGSOFT Software 

Engineering Notes (Vol. 27, Issue 5). https://doi.org/10.1145/571681.571692 

Ali, S., Iqbal, N., & Hafeez, Y. (2018). Towards Requirement Change Management for Global 

Software Development using Case Base Reasoning. Mehran University Research Journal of 

Engineering and Technology, 37(3), 639–652. https://doi.org/10.22581/muet1982.1803.17 

Althoff, K.-D., & Bartsch-Spörl, B. (1996). Decicion Support for Case-Based Applications. 

Wirtschaftsinformatik, 38, 6–14. 

Ani, R., Jose, J., Wilson, M., & Deepa, O. S. (2018). Modified Rotation Forest Ensemble 

Classifier for Medical Diagnosis in Decision Support Systems. In K. Saeed, N. Chaki, B. 

Pati, S. Bakshi, & D. P. Mohapatra (Eds.), Progress in Advanced Computing and Intelligent 

Engineering (pp. 137–146). Springer Singapore. 

Aouadni, I., & Rebai, A. (2017). Decision support system based on genetic algorithm and multi-

criteria satisfaction analysis (MUSA) method for measuring job satisfaction. Annals of 

Operations Research, 256(1), 3–20. https://doi.org/10.1007/s10479-016-2154-z 

Aqel, M. J., Nakshabandi, O. A., & Adeniyi, A. (2019). Decision support systems classification 

in industry. Periodicals of Engineering and Natural Sciences, 7(2), 774–785. 

https://doi.org/10.21533/pen.v7i2.550 

Asemi, A., Safari, A., & Asemi Zavareh, A. (2011). The Role of Management Information 

System (MIS) and Decision Support System (DSS) for Manager’s Decision Making 

Process. International Journal of Business and Management, 6(7), 164–173. 

https://doi.org/10.5539/ijbm.v6n7p164 

Babka, O., & Whar, S. Y. (1997). Case-based reasoning and decision support systems. 1997 

IEEE International Conference on Intelligent Processing Systems (Cat. No. 97TH8335), 2, 

1532–1536. 

Begum, S., Ahmed, M. U., Funk, P., Xiong, N., & Von Schéele, B. (2009). A Case-based 

decision support system for individual stress diagnosis using fuzzy similarity matching. 

Computational Intelligence, 25(3), 180–195. https://doi.org/10.1111/j.1467-

8640.2009.00337.x 

Berrar, D. (2018). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology: 

ABC of Bioinformatics, 1–3(January 2018), 542–545. https://doi.org/10.1016/B978-0-12-

809633-8.20349-X 

Berrar, D., & Dubitzky, W. (2013). Information Gain. In W. Dubitzky, O. Wolkenhauer, K.-H. 

Cho, & H. Yokota (Eds.), Encyclopedia of Systems Biology (pp. 1022–1023). Springer New 

York. https://doi.org/10.1007/978-1-4419-9863-7_719 

Bohanec, M., & Rajkovič, V. (1990). DEX : An Expert System Shell for Decision Support. 



 140 

Sistemica, 1(1), 145–157. http://kt.ijs.si/MarkoBohanec/pub/Sistemica90.pdf 

Canadian Coast Guard. (2012). Ice Navigation in Canadian Waters. http://www.dfo-

mpo.gc.ca/notices-avis-eng.htm%0Ahttp://www.dfo-mpo.gc.ca/notices-avis-

eng.htm%0ANote 

Cesario, E., & Esposito, M. (2012). A knowledge-based method for verifying the reliability of 

clinical DSSs. 8th International Conference on Signal Image Technology and Internet 

Based Systems, SITIS 2012r, November 2012, 489–495. 

https://doi.org/10.1109/SITIS.2012.78 

Chan, S. L., & Ip, W. H. (2011). A dynamic decision support system to predict the value of 

customer for new product development. Decision Support Systems, 52(1), 178–188. 

https://doi.org/https://doi.org/10.1016/j.dss.2011.07.002 

Chao, C. M., Yu, Y. W., Cheng, B. W., & Kuo, Y. L. (2014). Construction the Model on the 

Breast Cancer Survival Analysis Use Support Vector Machine, Logistic Regression and 

Decision Tree. Journal of Medical Systems, 38(10), 1–7. https://doi.org/10.1007/s10916-

014-0106-1 

Cunningham, P. (2009). A taxonomy of similarity mechanisms for case-based reasoning. IEEE 

Transactions on Knowledge and Data Engineering, 21(11), 1532–1543. 

https://doi.org/10.1109/TKDE.2008.227 

De Mantaras, R. L., Mcsherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., 

Maher, M. Lou, Cox, M. T., Forbus, K., Keane, M., Aamodt, A., & Watsoni, I. (2005). 

Retrieval, reuse, revision and retention in case-based reasoning. Knowledge Engineering 

Review, 20(3), 215–240. https://doi.org/10.1017/S0269888906000646 

Delen, D., Topuz, K., & Eryarsoy, E. (2020). Development of a Bayesian Belief Network-based 

DSS for predicting and understanding freshmen student attrition. European Journal of 

Operational Research, 281(3), 575–587. https://doi.org/10.1016/j.ejor.2019.03.037 

Devi, R. A., & Nirmala, K. (2018). Construction of Decision Tree : Attribute Selection 

Measures. International Journal of Advancements in Research & Technology, 2(4), 343–

347. http://www.ijoart.org/docs/Construction-of-Decision-Tree--Attribute-Selection-

Measures.pdf 

Dunderdale, P., & Wright, B. (2005). PACK ICE MANAGEMENT on the SOUTHERN 

GRAND BANKS OFFSHORE. Management, March. 

Elamrani Abou Elassad, Z., Mousannif, H., & Al Moatassime, H. (2020). A proactive decision 

support system for predicting traffic crash events: A critical analysis of imbalanced class 

distribution. Knowledge-Based Systems, 205, 106314. 

https://doi.org/10.1016/j.knosys.2020.106314 

Felsberger, A., Oberegger, B., & Reiner, G. (2017). A review of decision support systems for 

manufacturing systems. CEUR Workshop Proceedings, 1793(February 2017). 

Feuillâtre, H., Auffret, V., Castro, M., Le Breton, H., Garreau, M., & Haigron, P. (2017). Study 

of similarity measures for case-based reasoning in transcatheter aortic valve implantation. 

Computing in Cardiology, 44, 1–4. https://doi.org/10.22489/CinC.2017.134-299 

Gerardi, M. H. (1984). Smoke Testing. Public Works, 115(4), 56–57. 

Gini Index. (2008). In The Concise Encyclopedia of Statistics. Springer New York. 

https://doi.org/10.1007/978-0-387-32833-1_169 

Gupta, K. M., & Montazemi, A. R. (1997). A connectionist approach for similarity assessment in 

case-based reasoning systems. Decision Support Systems, 19(4), 237–253. 

https://doi.org/10.1016/S0167-9236(96)00063-2 



 141 

Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). Learning 

from class-imbalanced data: Review of methods and applications. Expert Systems with 

Applications, 73, 220–239. https://doi.org/10.1016/j.eswa.2016.12.035 

Haji, F. A. (2015). Advancing theory in healthcare simulation instructional design: the effect of 

task complexity on novice learning and cognitive load. University of Toronto (Canada). 

Hoi, S. C. H., Liu, W., & Chang, S. F. (2010). Semi-Supervised Distance Metric Learning for 

Collaborative Image Retrieval and Clustering. ACM Transactions on Multimedia 

Computing, Communications and Applications, 6(3). 

https://doi.org/10.1145/1823746.1823752 

Hua Tan, K., Peng Lim, C., Platts, K., & Shen Koay, H. (2006). An intelligent decision support 

system for manufacturing technology investments. International Journal of Production 

Economics, 104(1), 179–190. https://doi.org/10.1016/j.ijpe.2005.02.010 

International Maritime Organization. (2017a). Model Course 7.11: Basic Training for Ships 

Operating in Polar Waters, 2017th ed. International Maritime Organization: London, UK. 

International Maritime Organization. (2017b). Model Course 7.12: Advanced Training for Ships 

Operating in Polar Waters, 2017th ed. International Maritime Organization: London, UK. 

Jain, R. (2016). Decision Support Systems: an Overview. In R. Jain & S. S. Raju (Eds.), 

Decision Support System in Agriculture using Quantitative Analysis (pp. 42–50). Agrotech 

Publishing Academy. 

Jiang, Y., Qiu, B., Xu, C., & Li, C. (2017). The Research of Clinical Decision Support System 

Based on Three-Layer Knowledge Base Model. Journal of Healthcare Engineering, 2017. 

https://doi.org/10.1155/2017/6535286 

Keinonen, A. (2008). Ice Management for Ice Offshore Operations. 

https://doi.org/10.4043/19275-MS 

Kolodner, J., Camp, P., Crismond, D., Fasse, B., Gray, J., Holbrook, J., Puntambekar, S., & 

Ryan, M. (2003). Problem-Based Learning Meets Case-Based Reasoning in the Middle-

School Science Classroom: Putting Learning by Design Into Practice. The Journal of the 

Learning Sciences, 12, 495-. https://doi.org/10.1207/S15327809JLS1204_2 

Kurbalija, V., & Budimac, Z. (2008). Case-based reasoning framework for generating decision 

support systems. Novi Sad J. Math, 38(3), 219–226. 

Leake, D. B., & Plaza, E. (1997). Preface. Lecture Notes in Computer Science (Including 

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 

1266(July 2014), v. https://doi.org/10.1007/3-540-63233-6 

Lee, H., Aydin, N., Choi, Y., Lekhavat, S., & Irani, Z. (2018). A decision support system for 

vessel speed decision in maritime logistics using weather archive big data. Computers and 

Operations Research, 98, 330–342. https://doi.org/10.1016/j.cor.2017.06.005 

Lehtola, V., Montewka, J., Goerlandt, F., Guinness, R., & Lensu, M. (2019). Finding safe and 

efficient shipping routes in ice-covered waters: A framework and a model. Cold Regions 

Science and Technology, 165(September 2018). 

https://doi.org/10.1016/j.coldregions.2019.102795 

Lenz, M., & Burkhard, H.-D. (1996). Case retrieval nets: Basic ideas and extensions. In G. Görz 

& S. Hölldobler (Eds.), KI-96: Advances in Artificial Intelligence (pp. 227–239). Springer 

Berlin Heidelberg. 

Liu, S., & Zaraté, P. (2014). Knowledge based decision support systems: A survey on 

technologies and application domains. Lecture Notes in Business Information Processing, 

180 LNBIP(1), 62–72. https://doi.org/10.1007/978-3-319-07179-4_7 



 142 

Liu, Y., Yang, C., Yang, Y., Lin, F., & Du, X. (2009). Case Learning in CBR-Based Agent 

Systems for Ship Collision Avoidance. In J.-J. Yang, M. Yokoo, T. Ito, Z. Jin, & P. Scerri 

(Eds.), Principles of Practice in Multi-Agent Systems (pp. 542–551). Springer Berlin 

Heidelberg. 

Maher, M. Lou, Balachandran, M., & Zhang, D. M. (1995). Case-based reasoning in design. 

Psychology Press. 

Malek, M. (1995). A connectionist indexing approach for CBR systems. In M. Veloso & A. 

Aamodt (Eds.), Case-Based Reasoning Research and Development (pp. 520–527). Springer 

Berlin Heidelberg. 

Marcot, B. G., & Hanea, A. M. (2020). What is an optimal value of k in k-fold cross-validation 

in discrete Bayesian network analysis? Computational Statistics, 0123456789. 

https://doi.org/10.1007/s00180-020-00999-9 

Mashli Aina, A. A. (2015). Developing Decision Support Capabilities through Use of 

Management Information Systems. The International Journal of Management Science and 

Business Administration, 1(9), 46–51. https://doi.org/10.18775/ijmsba.1849-5664-

5419.2014.19.1005 

McKenzie, D. P., & Forsyth, R. S. (1995). Classification by similarity: An overview of statistical 

methods of case-based reasoning. Computers in Human Behavior, 11(2), 273–288. 

https://doi.org/10.1016/0747-5632(94)00036-H 

Mingers, J. (1989). An empirical comparison of selection measures for decision-tree induction. 

Machine Learning, 3(4), 319–342. https://doi.org/10.1007/bf00116837 

Musharraf, M., Smith, D., Veitch, B., & Khan, F. (2019). Integrating machine learning and 

FRAM to extract best operating practices from observations. 4th Workshop and Symposium 

on Safety and Integrity Management of Operations in Harsh Environments (CRISE4) 

Integrating, 1–7. 

Musharraf, M., Smith, J., Khan, F., & Veitch, B. (2020). Identifying route selection strategies in 

offshore emergency situations using decision trees. Reliability Engineering and System 

Safety, 194(October 2017), 0–1. https://doi.org/10.1016/j.ress.2018.06.007 

Nizetic, I., Fertalj, K., & Milasinovic, B. (2007). An Overview of Decision Support System 

Concepts. Race, 3(2), 1–14. 

http://www.foi.hr/CMS_home/znan_strucni_rad/konferencije/IIS/2007/papers/T06_01.pdf 

Patel, H. H., & Prajapati, P. (2018). Study and Analysis of Decision Tree Based Classification 

Algorithms. International Journal of Computer Sciences and Engineering, 6(10), 74–78. 

https://doi.org/10.26438/ijcse/v6i10.7478 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., 

Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in 

Python. Journal of Machine Learning Research, 12(85), 2825–2830. 

http://jmlr.org/papers/v12/pedregosa11a.html 

Perera, L. P., Carvalho, J. P., & Guedes Soares, C. (2011). Fuzzy logic based decision making 

system for collision avoidance of ocean navigation under critical collision conditions. 

Journal of Marine Science and Technology, 16(1), 84–99. https://doi.org/10.1007/s00773-

010-0106-x 

Perera, L. P., Rodrigues, J. M., Pascoal, R., & Soares, C. G. (2011). Development of an onboard 

decision support system for ship navigation under rough weather conditions. Sustainable 

Maritime Transportation and Exploitation of Sea Resources, 837–844. 



 143 

https://doi.org/10.1201/b11810-124 

Porter, B. W., Bareiss, R., & Holte, R. C. (1990). Concept learning and heuristic classification in 

weak-theory domains. Artificial Intelligence, 45(1–2), 229–263. 

https://doi.org/10.1016/0004-3702(90)90041-W 

Power, D. (2001). Supporting Decision-Makers: An Expanded Framework. Proceedings of the 

2001 InSITE Conference, June. https://doi.org/10.28945/2384 

Power, D. (2002). Decision Support Systems: Concepts and Resources for Managers. 

Greenwood Publishing Group. 

Power, D. (2008). Decision Support Systems: A Historical Overview. In Handbook on Decision 

Support Systems 1: Basic Themes (pp. 121–140). Springer Berlin Heidelberg. 

https://doi.org/10.1007/978-3-540-48713-5_7 

Power, D., & Sharda, R. (2007). Model-driven decision support systems: Concepts and research 

directions. Decision Support Systems, 43(3), 1044–1061. 

https://doi.org/10.1016/j.dss.2005.05.030 

Pristyanto, Y., Pratama, I., & Nugraha, A. F. (2018). Data level approach for imbalanced class 

handling on educational data mining multiclass classification. 2018 International 

Conference on Information and Communications Technology (ICOIACT), 310–314. 

Riaño, D., Real, F., López-Vallverdú, J. A., Campana, F., Ercolani, S., Mecocci, P., 

Annicchiarico, R., & Caltagirone, C. (2012). An ontology-based personalization of health-

care knowledge to support clinical decisions for chronically ill patients. Journal of 

Biomedical Informatics, 45(3), 429–446. https://doi.org/10.1016/j.jbi.2011.12.008 

Ribino, P., Augello, A., Lo Re, G., & Gaglio, S. (2011). A knowledge management and decision 

support model for enterprises. Advances in Decision Sciences, 2011. 

https://doi.org/10.1155/2011/425820 

Richter, M. M. (2008). Similarity. In P. Perner (Ed.), Studies in Computational Intelligence (Vol. 

73, pp. 25–90). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-73180-1_2 

Richter, M. M., & Weber, R. O. (2013). Case-Based Reasoning: A Textbook. Springer 

Publishing Company, Incorporated. 

Rizka, A., Efendi, S., & Sirait, P. (2018). Gain ratio in weighting attributes on simple additive 

weighting. IOP Conference Series: Materials Science and Engineering, 420(1). 

https://doi.org/10.1088/1757-899X/420/1/012099 

Rupnik, R., Kukar, M., Vračar, P., Košir, D., Pevec, D., & Bosnić, Z. (2019). AgroDSS: A 

decision support system for agriculture and farming. Computers and Electronics in 

Agriculture, 161, 260–271. https://doi.org/https://doi.org/10.1016/j.compag.2018.04.001 

Sayed, H. E., Gabbar, H. A., Fouad, S. A., & Ahmed, K. M. (2008). A Forecasting Decision 

Support System (Issue 4). In Fourth International Workshop on Computational Intelligence 

& Applications. 

Shilaskar, S., Ghatol, A., & Chatur, P. (2017). Medical decision support system for extremely 

imbalanced datasets. Information Sciences, 384, 205–219. 

https://doi.org/10.1016/j.ins.2016.08.077 

Shim, J. P., Warkentin, M., Courtney, J. F., Power, D. J., Sharda, R., & Carlsson, C. (2002). Past, 

present, and future of decision support technology. Decision Support Systems, 33(2), 111–

126. https://doi.org/10.1016/S0167-9236(01)00139-7 

Shirkhorshidi, A. S., Aghabozorgi, S., & Ying Wah, T. (2015). A Comparison study on 

similarity and dissimilarity measures in clustering continuous data. PLoS ONE, 10(12), 1–

20. https://doi.org/10.1371/journal.pone.0144059 



 144 

Shouman, M., Turner, T., & Stocker, R. (2010). Using decision tree for diagnosing heart disease 

patients. Conferences in Research and Practice in Information Technology Series, 121, 23–

30. 

Smith, J., Yazdanpanah, F., Thistle, R., Musharraf, M., & Veitch, B. (2020). Capturing expert 

knowledge to inform decision support technology for marine operations. Journal of Marine 

Science and Engineering, 8(9). https://doi.org/10.3390/JMSE8090689 

Soltani, S., & Martin, P. (2013). Case-based reasoning for diagnosis and solution planning. 

Queen’s University Technical Report, 2013–611. 

Soltani, S., Martin, P., & Elgazzar, K. (2014). QuARAM Recommender: Case-Based Reasoning 

for IaaS Service Selection. 2014 International Conference on Cloud and Autonomic 

Computing, 220–226. https://doi.org/10.1109/ICCAC.2014.26 

Sonia Singh, P. G. (2014). Comparative Study ID3,CART AND C4.5 Decision Tree Algorithm. 

International Journal of Advanced Information Science and Technology, 27(27), 98. 

Spath, D., Braun, M., & Bauer, W. (2009). Integrated Human and Automation Systems. In S. Y. 

Nof (Ed.), Springer Handbook of Automation (pp. 571–598). Springer Berlin Heidelberg. 

https://doi.org/10.1007/978-3-540-78831-7_34 

Sprague, R. H. (1980). A framework for the development of decision support systems. MIS 

Quarterly: Management Information Systems, 4(4), 1–26. https://doi.org/10.2307/248957 

Su, Y., Yang, S., Liu, K., Hua, K., & Yao, Q. (2019). Developing a case-based reasoning model 

for safety accident pre-control and decision making in the construction industry. In 

International Journal of Environmental Research and Public Health (Vol. 16, Issue 9). 

https://doi.org/10.3390/ijerph16091511 

Tangirala, S. (2020). Evaluating the impact of GINI index and information gain on classification 

using decision tree classifier algorithm. International Journal of Advanced Computer 

Science and Applications, 2, 612–619. https://doi.org/10.14569/ijacsa.2020.0110277 

Tata, S., & Patel, J. M. (2007). Estimating the selectivity of tf-idf based cosine similarity 

predicates. SIGMOD Record, 36(4), 75–80. https://doi.org/10.1145/1361348.1361351 

Thistle, R. (2019). Evaluation of the Effects of Simulator Training on Ice Management 

Performance. 

Thistle, R., & Veitch, B. (2019). An evidence-based method of training to targeted levels of 

performance. SNAME Maritime Convention 2019, SMC 2019, 1(2). 

Ting, K. M. (2017). Confusion Matrix. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of 

Machine Learning and Data Mining (p. 260). Springer US. https://doi.org/10.1007/978-1-

4899-7687-1_50 

Transport Canada Joint Industry-Government Guidelines for the Control of Oil Tankers and Bulk 

Chemical Carriers in Ice Control Zones of Eastern Canada (JIGs) TP15163. (2015). 

Available online: https://tc.canada.ca/en/marine-transportation/marine-safety/joint-

industry-government-guidelinescontrol- oil-tankers-and (accessed on 6 July 2020). 

Trstenjak, B., & Donko, D. (2016). Case-Based Reasoning : A Hybrid Classification Model 

Improved with an Expert ’ s Knowledge for High-Dimensional Problems. International 

Journal of Computer, Electrical, Automation, Control and Information Engineering, 10(6), 

1184–1190. 

Valls, A., Gibert, K., Sánchez, D., & Batet, M. (2010). Using ontologies for structuring 

organizational knowledge in Home Care assistance. International Journal of Medical 

Informatics, 79(5), 370–387. https://doi.org/10.1016/j.ijmedinf.2010.01.012 

Veitch, E. (2018). INFLUENCE OF BRIDGE OFFICER EXPERIENCE ON ICE 



 145 

MANAGEMENT EFFECTIVENESS (Issue August). 

Veitch, E., Molyneux, D., Smith, J., & Veitch, B. (2018). Investigating the influence of bridge 

officer experience on ice management effectiveness using a marine simulator experiment. 

ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. 

Veitch, E., Molyneux, D., Smith, J., & Veitch, B. (2019). Investigating the influence of bridge 

officer experience on ice management effectiveness using a marine simulator experiment. 

Journal of Offshore Mechanics and Arctic Engineering, 141(4), 1–12. 

https://doi.org/10.1115/1.4041761 

Virkki-Hatakka, T., & Reniers, G. L. L. (2009). A case-based reasoning safety decision-support 

tool: Nextcase/safety. Expert Systems with Applications, 36(7), 10374–10380. 

https://doi.org/10.1016/j.eswa.2009.01.059 

Wang, W. M., & Cheung, C. F. (2011). A narrative-based reasoning with applications in decision 

support for social service organizations. Expert Systems with Applications, 38(4), 3336–

3345. https://doi.org/10.1016/j.eswa.2010.08.118 

Xia, P., Zhang, L., & Li, F. (2015). Learning similarity with cosine similarity ensemble. 

Information Sciences, 307, 39–52. https://doi.org/10.1016/j.ins.2015.02.024 

Zaraté, P., Kersten, G. E., & Hernández, J. E. (2014). Preface. Lecture Notes in Business 

Information Processing, 180 LNBIP(July). https://doi.org/10.1007/978-3-319-07179-4 

Zhang, M., Zhang, D., Fu, S., Yan, X., & Goncharov, V. (2017). Safety distance modeling for 

ship escort operations in Arctic ice-covered waters. Ocean Engineering, 146(October), 202–

216. https://doi.org/10.1016/j.oceaneng.2017.09.053 

  



 146 

Appendices 

Appendix A: Interview Session Outline 

 



 147 

Appendix B: Informed Consent Form 

 



 148 

 



 149 

 



 150 

 



 151 

 



 152 

 



 153 

 



 154 

 
 

 



 155 

Appendix C: Experience Questionnaire 

 



 156 

 



 157 

Appendix D: Simulator Sickness Questionnaires 

 
 



 158 

Appendix E:  Habituation Scenario Instructions 

 



 159 



 160 

 
 

  



 161 

Appendix F:  Scenario Instructions 

 



 162 

 
 

 



 163 

 
 

  



 164 

Appendix G: Scenario Diagram Pages 

 

 



 165 

 



 166 

 
 

  



 167 

 

 
 

 

 



 168 

Appendix H: Transcribing Guide 

 
  



 169 

 



 170 

 
 

  



 171 

Appendix I: Interviewer Notes 

 



 172 



 173 



 174 



 175 



 176 



 177 



 178 



 179 



 180 



 181 



 182 



 183 

 
 

  



 184 

Appendix J: Observer Notes 

 



 185 



 186 



 187 



 188 



 189 



 190 



 191 



 192 



 193 



 194 



 195 



 196 



 197 

  



 198 

Appendix K: Factor Cards 

 



 199 

 
 



 200 

Appendix L: Factor Headings 

 
  



 201 

Appendix M: Factor Ranking Label 

  



 202 

Appendix N: Scenario Order Sheet 

 
 



 203 

Appendix O: Simulation Session Outline 

  



 204 

Appendix P: Introduction to Controls Script 

 



 205 

  



 206 

Appendix Q: DSS Testing Session Outline 

 
 

  



 207 

Appendix R: Experience Questionnaire 

 
  



 208 

Appendix S: Debriefing Questionnaire for the DSS Testing 

 
  



 209 

Appendix T: Exit Interview for the DSS Testing 

 


	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Equations
	List of Abbreviations
	List of Appendices
	Chapter 1: Introduction
	1.1. Overview
	1.2. Offshore Ice Management Operations
	1.3. Purpose
	1.4. Research Questions
	1.5. Hypothesis

	Chapter 2: Literature Review
	2.1. Decision Support Systems Definitions and Types
	2.2. DSS Models
	2.2.1. Model-driven DSS
	2.2.2. Data-driven DSS
	2.2.3. Communication-driven DSS
	2.2.4. Document-driven DSS
	2.2.5. Knowledge-driven DSS
	2.3. Reasoning Technologies in knowledge-driven DSS
	2.4. Case-Based Reasoning Theory
	2.5. Case-Based Reasoning for Ice Management Decision Support
	2.6. Case Memory Model
	2.7. Case Retrieval and Similarity Assessment
	2.7.1. Decision Tree
	Figure 6 Basic Decision Tree Flowchart
	Figure 7 DT Algorithm Procedure

	2.7.2. Attribute Selection Measures
	2.7.2.1. Information Gain
	2.7.2.2. Gain Ratio
	2.7.2.3. Gini Index
	2.7.3. Different Types of Decision Tree
	2.7.4. Distance Similarity

	Chapter 3: Methodology
	3.1. Experimental Design
	3.1.1. Experimental Overview
	3.1.2. Description of Participants
	3.1.3.  Description of Simulator
	3.1.4. Familiarization of the Simulator Through Habituation Scenarios
	3.1.5. Offshore Ice Management Scenarios
	3.1.6. Data Acquisition
	3.1.7. Experimental Procedure
	3.1.7.1. Interview Session (Pre-pilot)
	Figure 14 Experimental Procedure Flow Chart for Pre-pilot
	Figure 15 Sketch of Approach
	Figure 16 Replay Video Still Shot

	3.1.7.2. Simulation Exercise (Pilot)
	Figure 17 Experimental Procedure for Pilot Experiment

	3.2. Data Processing and Developing the CBR Case Base
	3.2.1. Knowledge Capture—Gathering Cases to Populate the CBR Case Base
	3.2.1.1. Ice Management Techniques Described by Participants
	3.2.1.2. Key Ice Management Factors and Rankings
	3.2.2. Knowledge Representation—Indexing Cases for Matching and Retrieval Using the Flat Memory Model
	Table 5 Summaries of Cases Collected from all Experiments
	Figure 19 Case Indexing for the Leeway Scenario
	Table 6 Flat Model Representation of CBR Case Base


	3.3. DSS Development
	Figure 20 DSS Procedure

	3.3.1. Feature Extraction
	Table 7 Features to Extract from Simulator Log Files

	3.3.1.1. Features from Simulator Log Files
	Figure 21 Heading Options

	3.3.1.2. Converting Features
	3.3.1.2.1. Ownship Vessel’s Position in Relation to the Target and the Zone
	Table 8 Simulator Points to Calculate the Ownship Vessel’s Position
	Figure 22 Determining the Ownship Vessel’s Position Relative to the Target
	Figure 23 Determining the Ownship Vessel’s Position Relative to the Zone

	3.3.1.2.2. Threshold for the Heading
	Figure 24 Heading Thresholds
	Table 9 Different Points to Calculate Alpha and Betta

	Figure 25 calculation of Angles
	Table 10 Different Ranges for 𝜶 and 𝜽 to Calculate the Heading Threshold
	Table 11 Difference Between Angles in Simulator and Equations

	Figure 26 Cubic Equation Using Angles in Simulator and Equations
	Figure 27 Aspect Options
	Figure 28 Area of Focus Options
	Figure 29 Orientation of Vessel’s Options
	Figure 30 Distance from the Target Example

	3.3.2. Decision tree development as a retrieval method used in the DSS
	3.4. Smoke testing
	Figure 32 Experimental Procedure Flow Chart for the DSS Testing

	3.4.1. DSS User Interface
	Figure 33 DSS User Interface
	Figure 34 DSS User Interface After Choosing a Scenario
	Figure 35 Description of features in DSS User Interface
	Figure 36 Example of the Case Retrieval in the DSS
	Figure 37 An Example of a Suggested Solution Details


	Chapter 4: Results
	4.1. Analysis of results
	Table 12 Number of Samples in Each Class for Scenarios
	Figure 39 Example of Confusion Matrix for Emergency Scenario in Fold 3 of Cross-Validation
	Figure 40 Confusion Matrix for Sc.1
	Figure 41 Confusion Matrix for Sc.2
	Figure 42 Confusion Matrix for Sc.3
	Figure 43 Classification Performance Metrics for Sc.1
	Figure 44 Classification Performance Metrics for Sc.2
	Figure 45 Classification Performance Metrics for Sc.3
	Table 13 Summary of  Classification Metrics for Four algorithms


	4.2. Decision Tree for the Scenarios
	4.3. Smoke Testing Result
	Table 14 Execution of Leeway Scenario Using the DSS
	Table 15 Execution of Pushing Scenario Using the DSS
	Table 16 Execution of Emergency Scenario Using the DSS
	Table 17 Comparing the Final Performance of Participants in Different Scenarios


	Chapter 5: Discussion
	5.1. Knowledge Capture
	5.1.1. Ice Management Interviews to Construct the CBR Model and Generate Cases
	5.1.2. Determining the Scope of Ice Management Operations Using Cadet Examples
	5.1.3. Improving the CBR Model and Adding Details to Cases Using Simulation Exercises
	5.2. DSS Development
	5.2.1. Machine learning algorithms for the similarity matching aspect of the DSS
	5.2.2. DSS Changes after Smoke Testing
	Figure 53 New Version of the DSS
	Figure 54 Saving Result in a Log File with participants’ name
	Figure 55 Suggested Solution by the DSS


	Chapter 6: Conclusions
	References
	Appendices
	Appendix A: Interview Session Outline
	Appendix B: Informed Consent Form
	Appendix C: Experience Questionnaire
	Appendix D: Simulator Sickness Questionnaires
	Appendix E:  Habituation Scenario Instructions
	Appendix F:  Scenario Instructions
	Appendix G: Scenario Diagram Pages
	Appendix H: Transcribing Guide
	Appendix I: Interviewer Notes
	Appendix J: Observer Notes
	Appendix K: Factor Cards
	Appendix L: Factor Headings
	Appendix M: Factor Ranking Label
	Appendix N: Scenario Order Sheet
	Appendix O: Simulation Session Outline
	Appendix P: Introduction to Controls Script
	Appendix Q: DSS Testing Session Outline
	Appendix R: Experience Questionnaire
	Appendix S: Debriefing Questionnaire for the DSS Testing
	Appendix T: Exit Interview for the DSS Testing


