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Abstract

Prevention of safety hazards plays an important role in the offshore and maritime industries,
especially in offshore ice management operations as the safety of these operations depends on the
judgment and decision making of experienced captains and their bridge teams. To address safety
challenges that may arise in the context of ice management operations, this study focused on a
human-centered approach to develop an early-stage decision support system (DSS) for offshore
ice management operations by applying a case-based reasoning (CBR) method. The aim of this
research is to (i) capture knowledge from expert seafarers to be used in the development of a DSS;
and (ii) propose a DSS employing a CBR model to be used onboard ships in a real-time basis for
ice management operations. To capture seafarers’ experience, this study employed semi-structured
interviews and bridge simulator exercises. The results of the knowledge capture exercises were
translated into an ice management DSS using a CBR model. The case-based reasoning (CBR)
model develops solutions to new problems by using similar problems in the past. The DSS employs
a decision tree algorithm to retrieve a case to match observations from the current situation with
an unknown outcome to a case base with known outcomes. This thesis describes the methods used
in the development of the onboard DSS to provide tactical guidance for ice management
operations. It also outlines the methods used to test the DSS software’s suggested ice management

strategies and adjustments during a series of simulator exercises.
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Chapter 1: Introduction

1.1. Overview

People deal with different decision-making problems every day. They have to decide how to
overcome challenges that regularly arise in their lives, including personal choices or more
complicated decisions regarding the economy, business management, or medicine. Assisting
people with making the best decision regarding complicated situations has been an objective of
researchers for years. A decision support system (DSS), which is a computer-based system, is one

method that has been developed to fulfill this goal (Bohanec & Rajkovi¢, 1990).

Ice management is complex in nature and often takes place under challenging circumstances.
Dynamic conditions in ice management operations cause some degree of uncertainty for making a
safe and effective decision in a high-risk situation. This research proposes the development of a
decision support system (DSS) to provide ad-hoc advisory services to the operators to make non-
trivial decisions during an ice management operation. To address safety challenges that may arise
in the context of ice management operations, this study focused on a human-centered approach to
develop an early-stage decision support system (DSS) for offshore ice management operations by
applying a case-based reasoning (CBR) method. The aim of this research is to (i) capture
knowledge from expert seafarers to be used in the development of a DSS; and (ii) propose a DSS
employing a CBR model to be used onboard ships in a real-time basis for ice management

operations.

A DSS may have various definitions in different research areas. That means that a DSS’s definition

may vary based on its characteristics to solve different problems (Sprague, 1980). Although DSS



can be described in several forms, Power (2002) provides three characteristics that decision

support systems have in common (Power, 2002):

1. DSS facilitates the decision-making process,
2. DSS does not automate an action. It only helps decision-makers to make a decision,

3. DSS should help and respond quickly to the decision-makers’ needs in changing situations.

Due to knowledge engineering growth, knowledge-based technologies are mostly used in
advanced decision support systems to assist decision-makers (Babka & Whar, 1997). Among
different reasoning methodologies that can be implemented in the knowledge-based DSS, Case-
Based Reasoning (CBR) is a practical and effective method of solving complicated problems that
cannot be managed using traditional reasoning models like model-based reasoning (Y. Liu, Yang,

Yang, Lin, & Du, 2009).

Most people think that they can avoid repeating some mistakes that they have made before in a
new similar situation. They think that their previous experiences help them to have a better
performance in the similar situation. Although using the previous experience seems to be easy, it
is difficult in practice. History shows that many unfortunate occurrences are repeated after some
years (Virkki-Hatakka & Reniers, 2009). People are not like a computer to memorize every aspect
and detail of an experience and they forget some points in the future. Consequently, similar
accidents occur while they should be prevented using the previous experiences (Virkki-Hatakka
& Reniers, 2009). Having a case base that keeps all experiences related to a specific problem may
be effective to be used in similar situations to solve problems. Case-based Reasoning is a

methodology that can be used to develop such a case base.



The CBR uses a ‘remember and compare’ cycle. Experiences stored in the CBR case base as cases
are used to assist in new situations to make a recommendation. To bring out a suggestion, matching
cases to the problem are retrieved and analyzed to prevent poor solutions. Once feedback is
evaluated in CBR, cases are modified, and their outcomes are chosen to solve the problem. Finally,

if the solution is valid, it will be added to the case base for future use (Leake & Plaza, 1997).

1.2.  Offshore Ice Management Operations

Ice management operations are approaches that consider environmental, design, and operational
elements to secure platforms and facilities in ice-covered waters. Activities off the coast of
Newfoundland, like offshore oil operations, require ice management operations to maintain the oil
platforms’ safety (Smith, Yazdanpanah, Thistle, Musharraf, & Veitch, 2020). Different activities
are performed in ice management operations, such as (Keinonen, 2008)

1. observing and predicting ice conditions,

2. identifying and tracking icebergs and pack ice,

3. reporting ice conditions and,

>

avoiding, breaking, and deflecting ice threats.

Among the operations mentioned above, this thesis focuses on the operations that deflect or
disperse encroaching pack ice from the area close to the oil platforms. Common techniques for
moving the ice using the support vessels are linear, sector, circular, stationary/propeller wake, and
pushing (Dunderdale & Wright, 2005). A combination of these techniques deflects and disperses
the pack ice around the offshore platforms. Due to the changing environments during maritime

operations (e.g., wind, current, response time), predicting the situations to manage the pack ice is



a complicated task. Consequently, many strategies need to be adapted based on the current

circumstances.

Basic and advanced training for ships operating in polar waters are required to be completed for
ice management training. This regulation developed by IMO in collaboration with the Marine
Institute’s Centre for Marine Simulation and the professional organization Master Mariners of
Canada (International Maritime Organization, 2017b, 2017a). In addition to these training, cadets
with less experience rely on experienced operators in ice management operations and learn from
seafarers once they are conducting these operations. On-the-job training lacks standardization and
may cause some problems in practice. First, applying new rules and regulations is time-consuming.
Second, many of the standard criteria for ice management training were established for the
navigation of Arctic waters and may not be directly applicable for ice operations around offshore

oil platforms.

To be an ‘ice navigator’, a master should spend 50 days serving at the vessel (30 days of this time
should be in Arctic waters and performing ice advice or ice-breaking maneuvers) according to
Canada’s ASPPR (Arctic Shipping Pollution Prevention Regulations) (Canadian Coast Guard,
2012), and 90 days navigating in ice-covered water within 5 years (e.g., six trips with the duration
of 15 days for each)(Transport Canada Joint Industry-Government Guidelines for the Control of
Oil Tankers and Bulk Chemical Carriers in Ice Control Zones of Eastern Canada (JIGs) TP15163,
2015). As a result, to be an ‘ice navigator’ and consequently an advisor for offshore ice
management vessels, many ice seasons are required for a seafarer to obtain enough expertise to be
able to manage a situation in which a platform is surrounded by ice. On-the-job training may not

be an entirely adequate means of knowledge exchange from experienced captains to new cadets.



Besides, transferring experience from captains to the cadets builds an inherited knowledge. That
means that the cadet’s ability to adapt ice management strategies strongly depends on the captain
and their teams’ experiences. This aspect of the on-the-job training causes variation in the domain
of ice operations. Veitch et al.’s (2019) research results show this variation, where experienced
seafarers performed emergency ice management scenarios in a bridge simulator (Veitch,
Molyneux, Smith, & Veitch, 2018). According to the findings, a considerable difference in ice

management effectiveness was observed once seafarers implemented scenarios.

1.3.  Purpose

For several nations, operations in ice-covered waters are an ongoing need (Lehtola, Montewka,
Goerlandt, Guinness, & Lensu, 2019). The decreasing ice amount and thickness in the Arctic has
increased traffic and ship operations in the Arctic (Zhang, Zhang, Fu, Yan, & Goncharov, 2017).
Increasing these operations requires some planning to ensure the safety of operations in ice-
covered waters. For this purpose, two aspects that could be considered in maritime technologies

are

1. reducing the hazards that threaten people’s lives, and

2. using autonomous vessels to assist with decision-making (Lehtola et al., 2019).

Automation should be designed for the benefit of people instead of replacing them. This idea stems
from the realization that completely automated services is impractical for certain tasks. The safety
of offshore ice management operations depends on the decisions that experienced seafarers and
bridge teams make. Also human error is one of the most important factors in maritime accidents

(Y. Liu et al., 2009). Therefore, to increase the capabilities of seafarers and support them in their



responsibilities, designing a human-centered system will be advantageous (Spath, Braun, & Bauer,

2009).

To implement ice management operations safely, seafarers need to have structured plans for ice
management. To address this requirement, two fundamental knowledge gaps should be

highlighted:

1. On-the-job training for cadets is a time-consuming process because seafarers are required
to spend so many days in the ice. Due to the variable seasons of ice, it can be time-
consuming to acquire the necessary experience to meet the regulatory requirement of on-
the-job training for ice management.

2. There is not a unique strategy to conduct ice management operations securely, because ice
management tactics from experienced seafarers may not be captured in the specific context

of pack ice management.

Collecting expert knowledge and giving uniformity to ice management training is needed for
addressing these two gaps. To do so, realizing how experienced seafarers approach ice clearing

techniques and how they adapt their strategies in new situations is required (Smith et al., 2020).

Capturing safety knowledge should not rely solely on ‘storytelling’ and should include
constructive procedures using training simulations. Simulation exercises can be conducted to
capture the actions of participants and learn from them without any risk. It has been shown that
using such a training simulation can be highly efficient (Virkki-Hatakka & Reniers, 2009). This
research employs a simulator to collect expert knowledge on ice management scenarios. Using the

data gathered from the simulation exercises, an expert-informed decision support system were



developed to provide expert guidance to seafarers. Case-based reasoning stores this expert
knowledge into its case base and then feeds them into the decision support system. CBR is an
appropriate approach to store well-described and analyzed experiences (cases) and assist cadets

and other seafarers using organized strategies.

The purpose of this research was as follow:

1. To capture expert knowledge from experienced seafarers
2. To transfer this knowledge into a case-based reasoning case base

3. To develop a decision support system for ice management operations

1.4. Research Questions

For this research, the hypotheses were:

1. How to integrate knowledge extracted from different data sources (questionnaires, audio
files, etc.) to create one comprehensive case base containing consistent, accurate, and
useful information?

2. What features do experienced seafarers pay attention to when performing ice management
operations, and how can these features be captured and integrated into a decision support
system to inform the guidance it provides?

3. Can the human decision-making process be imitated using CBR and ML methods that
provide both accuracy and transparency?

4. Does the DSS’s suggested strategies adequately reflect the experienced seafarers’

heuristics/ decision-making strategies?



1.5. Hypothesis

For this research, the hypotheses were:

1. The bridge simulator used in this study would be a useful human laboratory for both
knowledge capture and testing a decision support system.

2. Capturing expert knowledge would allow for the classification of ice management
strategies, detection of important ice management factors, and identification of the
relationships between them.

3. The CBR decision support system would be capable of recommending ice management

strategies or offering adjustments during the implementation of a technique.

This thesis focuses on the development of a CBR decision support system. The remainder of this
thesis is organized as follows. Chapter 2 presents an overview of different types of decision support
systems and their applications, different reasoning methods especially case-based reasoning, case
memory model, and methods for case retrieval such as decision trees. Chapter 3 describes the
procedure used for capturing contextual knowledge from expert seafarers (e.g., data collection).
Also, this chapter focuses on the methods used and the insights gained from translating interview
data and expert performance from a bridge simulator into a case base that can be referenced by the
CBR model. This includes indexing and matching data gathered from the simulator to cases in the
case base, and developing the retrieval algorithm for the CBR model. Chapter 4 presents and
discusses the results of the research and evaluation of the CBR decision support system in a
simulator setting. Chapter 5 presents changes applied to the DSS after testing the DSS in the

simulator setting, and in Chapter 6 limitations and future works is described.



Chapter 2: Literature Review

Decision support systems (DSS) are computer-based programs or algorithms used to guide people
in making decisions and solving complicated problems. Researchers started to support people in
solving complex problems and situations by developing a computer technology-based solution in
the 1970s. In recent decades, technologies for developing such systems have grown rapidly
(Felsberger, Oberegger, & Reiner, 2017). Today, DSSs are used in a variety of domains, such as
business (Chan & Ip, 2011) and management (Asemi, Safari, & Asemi Zavareh, 2011), agricultural
production (Rupnik et al., 2019), forecast management (Sayed, Gabbar, Fouad, & Ahmed, 2008),
medical diagnosis (Ani, Jose, Wilson, & Deepa, 2018), ship navigation (Perera, Carvalho, &
Guedes Soares, 2011; Perera, Rodrigues, Pascoal, & Soares, 2011), and offshore operations (Lee,

Aydin, Choi, Lekhavat, & Irani, 2018).

While a DSS should provide decision-makers with some key factors to guarantee their success, it
cannot suggest a good solution in all situations or for all users. The efficiency of a DSS is related
to its compatibility with both the decision-maker and the nature of the decision. If the DSS is well
matched to the task and the decision maker’s capabilities, receiving benefits from the DSS can be
expected. For this reason, the first step in matching the DSS technology with the intended
application and user is knowing the benefits and the limitations of a DSS. Alexander (2002) in
their literature review of decision support systems, highlight the benefits and limitations of these
systems. The following list provides a summary of some of the benefits of a DSS outlined by

(Alexander, 2002):

1. Improving the user’s ability to process and understand information

2. Improving the user’s ability to solve complicated problems and situations



3. Facilitating and accelerating the decision-making process
4. Making the outputs or results of a decision more reliable

5. Suggesting a new approach or strategy that the user may not have thought about before.

Alexander (2002) also provide a good summary of the limitations of decision support systems:

1. DSS suffer from the lack of some human characteristics in decision making such as
imagination and creativity

2. The usefulness of the DSS can vary based on the computer system that a DSS is running,
or the amount and validity of data it is using, and also the effectiveness of its design

3. DSS has some difficulties for using natural language processing while receiving the user’s
entries in the command interfaces

4. Generally, DSS has some difficulties generating multiple decision-making processes, and

they are usually developed in a narrow range of frameworks (Alexander, 2002).

This section provides an overview of decision support systems theory and frameworks and
describes the examples and methods used for each type of decision support system. Then, it is
explained why a knowledge-based decision support system is suitable for this research purpose. In
the following, among different reasoning models in the knowledge-based DSS, case-based
reasoning and its role in ice management operations are defined. Then, two important parts of case-
based reasoning, including the case memory model, and the case retrieval and similarity

assessment are described in detail.
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2.1.Decision Support Systems Definitions and Types

Decision Support Systems (DSS) are computer-based systems that can support complicated
problems. Such a framework integrates and analyzes raw data to identify challenges and determine

their solutions to assist decision-makers (Shim et al., 2002).

There are three types of problems to be solved. They include structured, unstructured, and semi-
structured problems (Power, 2001). In structured problems, the decision is routine and the solution
can be predicted in advance. Unstructured problems are the opposite of structured problems, and
the procedures for solving the problem cannot be easily formulated in advance. Semi-structured
problems are something between two other problems, which means that some procedures can be

pre-defined.

DSS is not required for all three types of problems, for example, there is no need for structured
problems to have a DSS because they tend to be straightforward and predictable. Most DSS
applications support semi-structured problems, while a few assist decision-makers in unstructured

challenges (Mashli Aina, 2015).

The literature categorized decision support systems based on three aspects and each will be briefly

described:

1. the relationship with the user,
2. the scope, and

3. the mode of assistance it offers.
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A DSS can be classified based on its relationship with users and can be passive, active, or
cooperative (Agel, Nakshabandi, & Adeniyi, 2019). A passive DSS helps and supports decision-
makers but cannot suggest explicit solutions, while an active DSS provides decision guidelines.

The cooperative DSS allows the decision-maker to modify or refine the suggested decision.

Based on the scope as the criterion, DSSs consist of Enterprise-wide DSS and the desktop DSS.
An enterprise is linked to a large database, and many users can use it. In contrast, a desktop DSS

is a small system that can serve an individual user (Felsberger et al., 2017; Jain, 2016).

Power (2002) distinguishes between DSSs based on the mode of assistance and has categorized
the following modes: model-driven, data-driven, communication-driven, document-driven, or
knowledge-driven DSS (Power, 2002). This is the most general categorization taxonomy (Nizetic,

Fertalj, & Milasinovic, 2007) and will be discussed in detail in the DSS applications section.

2.2.DSS Models

2.2.1. Model-driven DSS

A model-driven DSS utilizes different models, such as statistical, financial, mathematical,
analytical, or optimization models, to find solutions for problems and help users (Power & Sharda,
2007). According to the users’ needs, this type of DSS uses either a single model to solve basic
problems or a combination of models to deal with more complex situations. Some examples of a
model-driven DSS are a spreadsheet with formulas, a statistical forecasting model, or an optimum
routing model. Optimization and analytical methods (Afshin Mansouri, Gallear, & Askariazad,
2012) and operational research methods (quantitative methods) are some methods used in the

literature to build a model-driven DSS (Nizetic et al., 2007).
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2.2.2. Data-driven DSS

The most common type of DSS is data-driven DSS. A data-driven DSS analyzes the time-series
of data and helps decision-makers by creating new information based on the evaluated data. A
large amount of data is required for the analyzing process in a data-driven DSS. For example, some
data-driven DSS applications include accessing the INTERPOL database for crime investigations
and accessing the border patrol database for all incidents in a sector. Data warehouses and online

analytical processing (OLAP) are common methods in data-driven DSSs (Power, 2008).

2.2.3. Communication-driven DSS

Communications-driven DSS helps decision-makers to come up with a new solution by providing
a situation in which two or more people can communicate with each other and share important
data and information. Some features of a communications-driven DSS are allowing
communication between groups of people, facilitating knowledge or information sharing,
supporting people’s cooperation and teamwork, and supporting group decision making. Some
examples of these system are video conferencing, audio conferencing, document sharing,
electronic mail, computer-supported face-to-face meeting software, and interactive video.
Network technologies are commonly used to develop a communication-driven DSS (Nizetic et al.,

2007).

2.2.4. Document-driven DSS

A document-driven DSS retrieves documents using processing technologies to analyze them and
suggest a decision. These documents may contain unstructured information in various electronic

types such as images, sound, video, scanned documents, and hypertext documents. A document-
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driven DSS aims to find and retrieve an appropriate document based on specified keywords or
defined terms. They are also able to convert documents into important data. A search engine is an
example of a document-driven DSS that helps its users by searching web pages and retrieving

desired documents (Felsberger et al., 2017).

2.2.5. Knowledge-driven DSS

A knowledge-driven DSS collects specific expert knowledge in a particular field and helps
decision-makers solve specific problems. A knowledge-driven DSS uses different reasoning
methods such as rule-based reasoning (Cesario & Esposito, 2012), case-based reasoning (Smith et
al., 2020), narrative-based reasoning (Wang & Cheung, 2011), ontology-based reasoning, and
genetic algorithms (Zaraté, Kersten, & Hernandez, 2014) to assist decision-makers based on expert
knowledge. Intelligent decision support methods, data mining (Lee et al., 2018), artificial
intelligence methods, fuzzy logic (Perera, Carvalho, et al., 2011), knowledge discovery methods,

and heuristic methods are other common methods for developing a knowledge-based DSS.

2.3.Reasoning Technologies in knowledge-driven DSS

The core component in the knowledge-driven DSS is the knowledge base (Nizetic et al., 2007).
As this research aimed to gather knowledge in a specific domain, and its central part is knowledge
captured from experienced seafarers in ice management operations, a knowledge-driven decision

support system is most suited for this study.

Five reasoning or inference methods for knowledge-driven DSS include (S. Liu & Zaraté, 2014):
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1. Rule-based reasoning (RBR): this reasoning method is used for reasoning that is based on
a set of rules (Jiang, Qiu, Xu, & Li, 2017). In rule-based reasoning, expert knowledge is
coded into some rules. These rules are presented as “if-then” sentences (Ribino, Augello,
Lo Re, & Gaglio, 2011).

2. Case-based reasoning (CBR): case-based reasoning uses human experiences to solve a
problem. It relies on the past and similar cases and reuses them to suggest a solution for a
new problem.

3. Narrative-based reasoning (NBR): this approach deals with unstructured data. This
reasoning method uses stories to assist the decision-making process by sharing what is
learned from narratives (Wang & Cheung, 2011).

4. Ontology-based reasoning (OBR): using ontology some concepts are defined in a specific
domain and then relationships between these concepts are represented (Riafio et al.,
2012). Ontologies are used in applications that are required to process the content of
information not just presenting data to humans (Valls, Gibert, Sdnchez, & Batet, 2010).

5. Genetic algorithms (GA): The GAs are based on Darwinian evolution. GAs produce a
population of chromosomes and each chromosome in the population can be considered as
a solution. The chromosomes evolve using a fitness function and after several generations,
the final chromosome would be the best solution to the problem (Aouadni & Rebai, 2017).
The genetic algorithm is widely applied in different types of problems and provides

appropriate solutions to those problems (Aouadni & Rebai, 2017).

In a knowledge-driven DSS, the decision-making process is conducted by an inference engine.
Among reasoning technologies in knowledge-driven DSS, case-based reasoning theory utilizes

past experiences to find solutions for new problems. It gives an automatic ranking to the previous
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cases and recommends the most suitable ones (Zaraté et al., 2014). Since experiences of seafarers
in ice management operations were collected during this research for decision making, case-based
reasoning is the most suitable reasoning method in the current thesis. More details of the case-

based reasoning technique are described in the next section.

2.4.Case-Based Reasoning Theory

Case-based reasoning (CBR) is a problem solving methodology and is used in artificial intelligence
applications. This type of reasoning is mostly used when the previous experiences are useful in
solving a new problem. To solve the new problem, CBR methodology searches to find the solution
from a similar problem that occurred in the past and then uses the same solution or adapts it for
the new problem (Su, Yang, Liu, Hua, & Yao, 2019). Accordingly, most CBR applications follow
a basic approach to solve a new problem. They search in a case base to capture a solution from
past experiences and take it as an initial point to guide the discovery of the solution for the new
problem. The case base is a collection of cases into which the previous experiences are stored. So,
each case contains some information about the past solution of problems similar to the new
problem. Sometimes the cases store fully or partially solved problems, and sometimes they record

unsuccessful attempts (Kurbalija & Budimac, 2008).

Figure 1 illustrates a CBR lifecycle. As shown in Figure 1, there are four main steps (Aamodt &

Plaza, 1994; Begum, Ahmed, Funk, Xiong, & VVon Schéele, 2009):

1. Retrieve
2. Reuse

3. Revise
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4. Retain
At the starting point, the new problem is considered as a new case. At the retrieve procedure, the
most similar case to the new problem is retrieved. To find the matching case, features from all
cases in the case base are compared to the new case, and their similarity metrics are computed.
The case with the highest similarity metric is the closest experience to the new case (Hua Tan,
Peng Lim, Platts, & Shen Koay, 2006). While the retrieved case may match the new problem
perfectly, it may have some different aspects. The reuse procedure checks the reusable features
and differences between the new case and the retrieved case. If the two cases are fully matched, a
copy of the retrieved case is reused to solve the new problem. Otherwise, if they are partially
matched, an adaptation is necessary before using the retrieved case in the new situation. In the
revise procedure, the effectiveness of the suggested solution is examined. To evaluate the solution,
the application can be tested in the simulator or in real life. Also, subject matter experts are another
source to confirm or decline the solution. If the solution fails and needs to be fixed, it is repaired
in the revise phase to prevent the same error in the future. Finally, in the retain phase, the learned

case, which is the successful or repaired case, is indexed and stored in the case base.
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Case-based reasoning relies on expert and domain knowledge to improve the decision support
applications using an intelligent way with less time, effort, and cost. Therefore, creating a case
base with expert and domain knowledge, experience, and solutions is vital to develop a CBR model
(Ali, Igbal, & Hafeez, 2018; Kolodner et al., 2003). The specific domain knowledge in CBR is
gathered from the experts’ explanations about their domain and experiences in a specific situation.
The specific domain knowledge is used to generate example solutions for the case base (Althoff
& Bartsch-Sporl, 1996). The general domain knowledge is used to develop the reasoning structure
of the CBR model. The general knowledge used within a CBR system guides the case feature
matching, retrieval, and indexing by defining the similarities in the case-base network. It also helps

to minimize the number of cases required to solve problems, enhance the reliability of possible



solutions, increase the system’s efficiency to manage the situations, and adapt to a new

environment quickly (Aamodt & Plaza, 1994; Althoff & Bartsch-Sporl, 1996).

2.5.Case-Based Reasoning for Ice Management Decision Support

Developing an onboard DSS to support ship operation, in particular on decisions about ship
handling in sea ice, will contribute to vessel safety (Perera, Rodrigues, et al., 2011). The CBR
solves a new problem by remembering a past similar situation and reusing what was learned from
that situation (Aamodt & Plaza, 1994). Therefore, it would be an appropriate reasoning method to
implement an onboard decision support system to assist the seafarers. The way that CBR works
for problem solving is by offering some advice based on the expert knowledge that is stored in its
case base. This approach is similar to the training that seafarers provide on-the-job. That means
that the CBR works similar to methods used by seafarers when they train others by transferring
their experiences on-the-job, through storytelling. The following example is a good illustration of

this similarity for solving a problem.

Consider a situation in which a captain is dealing with clearing pack ice around an offshore oil
platform. This captain sees the situation as similar to their past trip working on the vessel in ice-
covered waters. In the previous ice management maneuver, the captain used the pushing technique
to clear medium and large ice floes from the drift line. In fact, they decided not to break the ice
and instead push a large floe to remove the threat from the drift-line. Because they believed that if
they break the ice up-drift, the broken pieces may still cause damage. But the captain did not
forecast the change to the ice drift-line due to the unpredictable environmental conditions, and the

situation became complicated and became a threat at a later time. Remembering the same

19



operational situation and sudden change in weather conditions makes the captain avoid repeating

the same mistake in the current situation.

The CBR model can be used to develop an onboard decision support system and assist a cadet in
various maritime conditions similar to the way that a captain provides them with problem solving
guidance based on their experiences. To inform the reasoning part of the CBR, providing the CBR
with solved problems in its case base, and collecting experiences of a group of expert seafarers in

ice management operations is needed (Smith et al., 2020).

2.6.Case Memory Model

The case base should be arranged in a manageable structure to support efficient case matching and
retrieval techniques. The content of a case can be organized as a set of attribute-value pairs (Flat
Memory Model), a part-subpart relationship (Hierarchy Memory Model), or as a network of

attributes (Network-based Memory Model). These three types of organizations are illustrated in

Figure 2.
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Figure 2 Organization of a Case in Case Memory (Maher, Balachandran, & Zhang, 1995)
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Accordingly, several case memory models for organizing the case base include:

1. Flat Memory Model: all the cases in the flat memory are categorized at the same level. In
this model, for each case retrieval, all cases in the case base should be compared with the
new case. Therefore, the flat memory is not optimized for large data sets because the
retrieval time would be very high. On the other hand, the high accuracy and easy retention
are advantages of this memory model (Soltani & Martin, 2013).

2. Hierarchy Memory Model: in the hierarchy model, only a few cases are considered for the
similarity matching based on a selective search in the hierarchy structure. Therefore, the
similarity matching and retrieval time are efficient in this memory model, and it can be
beneficial when the number of cases is very large. On the other hand, optimal cases may
be neglected in the retrieval process if the wrong area of the hierarchical memory is selected
for the search (Malek, 1995).

3. Network-based Memory Model: the network-based model represents cases with multiple
attribute-value pairs at each node and shows additional types of relationships (Maher et al.,
1995). Models of this category support complex attributes, but their construction is costly

(Soltani, Martin, & Elgazzar, 2014).

Figure 3 illustrates different kinds of memory models. Some common memory models for the
reasoning structure of the CBR are the flat memory model, the category-exemplar model (Porter,

Bareiss, & Holte, 1990), and the case retrieval nets (CRN)(Lenz & Burkhard, 1996).
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Among memory models that are feasible for organizing the case base in this research, the flat

memory best fits the case base. The flat organization is the simplest and most appropriate model

to design and implement small case bases. Table 1 illustrates an example of cases organized using

the flat memory model. This table consists of a list of attributes and different values for six cases.

As is shown in the table, there are no relationships between the cases. That means that no one case

has any relationship to another that needs to be represented, and the representation is complete.

Table 1 Flat Memory Model Example for Identifying Route Selection Strategies in
Offshore Emergency Situations (Musharraf, Smith, Khan, & Veitch, 2020)

Attributes Case ID
Casel Case2 Case3 Case5 Caseb
Scenario LE2 LE3 TE1 LA2 LA3
Final destination MS! LB? LB MS LB
Lights On Off On Off On
Presence of hazard No No No No No
Alarm None None None GPA3 PAPA*
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Route direction in

PA announcement Primary Secondary None None None None
Obstructed route None None None None None None
Previous Route . ) . .
taken N/A Primary  Secondary  Primary Primary Primary
Action Primary Secondary  Primary Primary Primary Primary

! Muster Station

2 Lifeboat Station

3 General Platform Alarm

4 Prepare to Abandon Platform Alarm

2.7.Case Retrieval and Similarity Assessment

The effectiveness of a case-based reasoning system depends on the retrieval of appropriate past

cases to find the solution to a new case. To find the degree of similarity between the candidate

cases and the new case, a similarity assessment is used. Figure 4 shows the similarity matching

procedure. If the problem descriptor considers cases as a set of attribute-value pairs, the matching

involves evaluating the similarity of the past cases’ schema with the new case. This similarity can

be evaluated using domain knowledge in the form of heuristics and domain-specific matching

rules. To find the overall similarity (i.e., aggregation of attribute-value pairs), a matching function

is utilized, and different methodologies like Tversky’s matching function and Nearest-Neighbor

(NN) have been proposed (Gupta & Montazemi, 1997).
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The literature categorizes different retrieval methods based on the similarity assessment. Some

retrieval techniques are illustrated in Figure 5.
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Figure 5 Hierarchy of Retrieval Methods (Soltani & Martin, 2013)

Among all retrieval techniques, the similarity-based methods use the similarity in the features or

the structure of the cases to retrieve the most relevant case in the case base. The attributes used for
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comparison could be the surface attributes provided using the problem descriptor or derived
attributes inferred from the domain knowledge (De Mantaras et al., 2005). This literature review
focuses on the flat structure to organize the case base, and each case is described with attribute-
value pairs. Hence, similarity-based algorithms are suitable for similarity matching. Among the
various similarity-based methods, classification by similarity algorithms could be used for
decision-making purposes (McKenzie & Forsyth, 1995; Trstenjak & Donko, 2016). Support vector
machine method (SVM), logistic regression (LR), decision tree (DT), and random forest (RF) are
some of these classification models (Al-hadhrami & Mohammed, 2021; Chao, Yu, Cheng, & Kuo,

2014).

1. SVM: this technique is a supervised machine learning (ML) algorithm that is utilized for
decision making and data classification and regression problems. SVM uses a maximized
margin to classify data into different groups. It can also handle non-linear problems by
employing several support vectors.

2. LR: it is a statistical decision support tool that fits a model using a logistic function
(sigmoid) to predict the probability of a class. LR makes a relationship between
independent and dependent variables and could be considered as a multivariable method.

3. DT: with the growth of data mining, DT, which is a supervised learning technique, is
getting lots of interest for classification and regression problems. It is a tree-like model that
consists of different rules to divide independent features into variant zones.

4. REF: this method is a nonparametric technique that uses a large number of decision trees to
build an accurate classification model. Each set of decision trees in this algorithm gives a
vote to a class, and then the class that wins the most votes is chosen as the predicted result

(Chao et al., 2014).
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Although LR is easy to implement and effective to train, it tries to fit the best model on the training
dataset that causes overfitting sometimes. Another disadvantage of logistic regression is that it
makes a linear relationship between dependent and independent variables while a non-linear
decision boundary is required. On the other hand, SVM is difficult to understand and interpret the
final model and takes a long training time for a large database. Unlike LR, SVM generates more
complicated decision boundaries and is appropriate for both linear and non-linear solutions. DT
supports non-linearity and is popular due to its simplicity in interpreting the model. Although RF
is more accurate than DT, a large number of trees makes the algorithm very slow. Therefore there
would be a trade-off between time and accuracy specially when it comes to real-time predictions.
Also, RF is more appropriate for large datasets. Since the scope of this research is limited to a
small number of datasets and also suggesting a real-time solution is important for the DSS, DT

would be an advantageous choice to have reasonable accuracy.

2.7.1. Decision Tree

A decision tree is a machine learning algorithm and builds a tree structure flowchart consisting of

three items:

1. decision node: the internal node that represents the features or attributes of a case base
2. branch: that represents the decision rules, and

3. leaf node: that represents the decision or outcome.

The topmost node in a decision tree is known as the root node. The root uses recursive partitioning

to partition the tree based on the attribute’s value. A decision tree is easy to understand and
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interpret and can visualize human-level thinking, so it can be useful in decision-making processes

(Patel & Prajapati, 2018). Figure 6 illustrates a basic decision tree flowchart.
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Figure 6 Basic Decision Tree Flowchart

According to Figure 7, a case base is divided into a training and test data set. Then the training
data and attribute lists are given to the following algorithm to build a decision tree (Musharraf et

al., 2020).

1. Use Attribute Selection Measures (ASM) to choose the best attribute to branch the current
node.

2. Consider that attribute as a decision node and break the dataset into smaller subsets

3. To construct a tree, repeat this procedure for each child until one of the following
conditions match.

a. All the attribute values belong to the same class.



b. No attributes are left for further classification.

c. No more instances are left.

After generating a decision tree, the generated model is evaluated using the test data, and

performance measures are calculated.

Decision tree Generation

Training
Data

Break the Dataset into
Smaller Subsets

i
- i L Recursively Repeat the
! Process for Each Child
Case Base \\‘ a

Performance Evaluation

- Measures
Test Model Evaluation B .SACﬂ.".a?y
Data - ens[tw'lty
- Specificity

- G-mean

Select Best Attribute

Figure 7 DT Algorithm Procedure

2.7.2. Attribute Selection Measures

Attribute selection is a critical step to develop a tree. An attribute selection measure (ASM) is used
to partition the dataset by selecting the best splitting criterion. Different decision tree algorithms
employ different types of ASM, such as information gain, gain ratio, and Gini index (Devi &
Nirmala, 2018). All of these attribute selection methods can be used for building a decision tree

because although the choice of the attribute selection measure affects the size of the tree, it does
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not change its accuracy. That means the classification accuracy of decision trees is not sensitive to

the chosen feature selection method (Mingers, 1989; Tangirala, 2020).

2.7.2.1.Information Gain

Information gain uses entropy as the impurity measure and splits a node to build a tree. Consider
node N represents or holds the tuple of partition D. To choose the splitting attribute at node N, the
attribute with the highest information gain would be selected (Tangirala, 2020). Information gain
is measured based on the following equations (Berrar & Dubitzky, 2013). First, the entropy is

calculated to identify the class label of a tuple in D using Equation 1.

m
Info(D) = —Z_ 1Pilogzpi Equation 1 Entropy
i=

Pi is the probability of an element in D being classified for a distinct class (Ci) and is calculated
using Equation 2.

|Cip|/1DI Equation 2 Probability of
an Element

Then the average entropy based on the partitioning by attribute A is calculated by Equation 3.

\%4
D; .
Info,(D) = z% X Info(D)) Equation 3 ér\:ﬁ:gge
j=1 Py

Finally, Information gain computes the difference between the entropy before the split and the

average entropy after the split of the dataset based on given attribute values by Equation 4.

Gain(A) = Info(D) — Info,(D) Equation 4 Information
Gain
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2.7.2.2.Gain Ratio

The gain ratio is used to decrease the bias that information gain may cause (Shouman, Turner, &
Stocker, 2010), and is measured using the following equations (Rizka, Efendi, & Sirait, 2018).
Information gain prefers to select attributes that have a large number of values and consequently
is biased. The gain ratio (Equation 6) handles this problem by splitting the information gain on

split info (Equation 5).

%4

ol (o] -
Splitinfo,(D) = —z—’ X lo _f> Equa_tlons
pitin 0a®) < D] 92 <|D| Split Info
GainRatio(A) = Gain(A) _ _ _
ainRatio(4) = Splitinfo, (D) Equation 6 Gain Ratio

2.7.2.3.Gini Index

Gini index uses a binary split for each attribute and is calculated using the following equations
(“Gini Index,” 2008). It measures the impurity of each data partition or set of training tuples (D)

using Equation 7.

m
Gini(D) =1 — Z p? Equation 7 Impurity
i=1

Pi is the probability of an element in D being classified for a distinct class (Ci) and is calculated

using Equation 2.

Gini index computes a weighted sum of the impurity of each resulting partition. For example, if a

partition is divided into two partition D1 and D2 the Gini index would be as follow (Equation 8).
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An attribute with the least Gini index is preferred as the root node while making a decision tree

(Devi & Nirmala, 2018).

2.7.3. Different Types of Decision Tree

Different algorithms are performed to construct decision-tree algorithms, including ID3, C4.5, and
classification and regression trees (CART). ID3 is a very simple decision tree and is built in a top-
down fashion. It builds the fastest and shortest tree and maybe over-fitted in a small data set. Also,
it only handles the categorical attributes. C4.5 is the evolution of ID3 and uses a depth-first strategy
to develop a tree. One of the advantages of C4.5 over ID3 is that it can handle both numerical and
categorical attributes. Although C4.5 is tolerable for missing values, there are some empty or non-
informative nodes in its tree, which makes it bigger and causes more complexity. CART constructs
a binary tree and has the same characteristic as C4.5. Unlike C4.5, CART identifies the most
relevant features and eliminates irrelevant ones, it also can easily handle outliers (Sonia Singh,
2014). Since the data set used in this research consisted of both numerical and categorical features,
and there was a concern of missing data points, the CART algorithm was chosen to support these

two criteria and to choose the best and most relevant features to build the tree model.

2.7.4. Distance Similarity

After applying the decision tree and finding a class that a new problem belonged to, a similarity
metric could be used to detect which sample or case in the selected class was the best match to the

new case (Cunningham, 2009; Feuillatre et al., 2017; Richter, 2008). Measuring similarity between
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objects can be performed in several ways. Generally, similarity metrics can be divided into two

categories:

1. Similarity-based metrics: similarity-based methods determine the most similar objects with
the highest values indicating that they exist in the same neighborhood. Such algorithms are
Pearson’s correlation, Spearman’s correlation, Kendall’s Tau, Cosine similarity, and
Jaccard similarity.

2. Distance-based metrics: distance-based methods prioritize objects with the lowest values
to detect similarity amongst them. These methods include Euclidean distance and

Manhattan distance.

Choosing an appropriate distance metric plays an important role in retrieval applications (Hoi, Liu,
& Chang, 2010). Since distance-based metrics are like using a ruler to exactly measure a distance,
they are more appropriate for numerical data, while similarity-based metrics are more suitable
when the data set contains categorical attributes. Since the data set used in this research consisted
of both numerical and textual features, similarity-based metrics were preferred to use in this
research. Among similarity-based metrics, Cosine similarity is generally employed for measuring
distance when the magnitude of the vectors is not a concern (Xia, Zhang, & Li, 2015). For example,
Cosine can be used in document similarity and text data (Shirkhorshidi, Aghabozorgi, & Ying
Wah, 2015; Tata & Patel, 2007). Cosine similarity is defined as follows (Equation 9).

X1 XY

Cosi , =
0sine(%,¥) = il

Equation 9 Cosine
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Chapter 3: Methodology

This chapter contains the steps followed to develop a DSS for ice management operations. First,
two experimental studies were conducted to gather expert knowledge to be integrated into the DSS.
The collected data during the experiments was processed and converted to a CBR case base. The
case base was stored in the form of a two-dimensional matrix and was divided into training and
testing data sets. The training data set was used as input to the decision tree algorithm for case
retrieval purposes. Section 3.1 describes the experimental design and data collection in detail.
Section 3.2 discusses the data processing and creation of the CBR case base. Section 3.3 illustrates
the development of the DSS and decision trees using the case base. Finally, to determine the

stability of the DSS, the evaluation of the DSS in a simulator setting is discussed in section 3.4.

3.1.Experimental Design

This research aimed to address challenges in providing an assistant system in maritime operations
related to the growing use of autonomous systems onboard maritime vessels. The study began with
a pilot program intended to strengthen ice management operations by gaining a deeper
understanding of how seafarers’ strategies and emerging technologies impact these operations.
The result was to develop an on-board decision support system (DSS) that provided tactical
guidance for complex ice management operations. This research used experienced seafarers to
capture expert knowledge to inform a DSS and improve the ice management performance when
real-time decision support is offered. Two experiments were conducted to capture the expert

knowledge:

1. Pre-pilot: Semi-Structured Interview
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2. Pilot: Simulation exercises

As experienced vessel operators were needed to participate in this project, the potential number of
available people that could be recruited was limited. Previously, two experiments were conducted
to study the effects of experience (Veitch, 2018) and training (Thistle, 2019) on ice management
performance (the results from these two studies were used to develop a DSS in this study). Based
on these previous works, it was known that there exists a limited number of experienced vessel

operators who could possibly be approached to participate.

Two groups of participants were used to benefit from their expert knowledge. The groups were:
G1- experienced seafarers who shared their expertise through an interview, and G2- experienced
seafarers who shared their knowledge by executing the ice management scenarios in the simulator.
In total there were five participants, and they were free to choose one or both sessions. Three
participants attended both sessions, while two participants completed just one session each. The
knowledge captured from the two groups was fed to the DSS to help seafarers or cadets while

implementing ice management scenarios.

The semi-structure interview included six parts (the session outline is provided in Appendix A:

Interview Session Outline):

1. Briefing: the participant was given an explanation of the research and was asked to
complete the Informed Consent Form (Appendix B: Informed Consent Form). Then, the
information about the participant’s experience at sea was collected using the Experience

Questionnaire (Appendix C: Experience Questionnaire).
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2. Experience Interview: the researchers asked questions to expand the participant’s
responses to the Experience Questionnaire.

3. Ice Management Factor: the researchers asked questions related to factors the participant
may consider during ice management.

4. Planned Approach Exercise: the participant was asked to explain their planned approach
for ice management scenarios (leeway, pushing, and emergency scenarios).

5. Cadet Training Examples: the participant was shown examples of cadets managing ice in
a bridge simulator (these examples came from the previous experiment (Thistle, 2019)).
After each example, the participant was requested to give their opinions on the cadet’s
performance.

6. Feedback and Closing: before the completion of the session, the participant was asked to

give feedback on the interview.

The interview was semi-structured. This meant some of the questions were pre-determined and

others arose based on the participants’ answers to previous questions.

Like the semi-structured interview, the simulation exercise started with a briefing and experience

interview, and then the following steps were completed:

1. Simulator Sickness Questionnaire (SSQ): researchers asked the participant to fill out an
SSQ (Appendix D: Simulator Sickness Questionnaires) to establish a baseline score.
Researchers administered the SSQ to the participant throughout the tests to see if they were
developing simulator sickness, which was indicated by a higher score.

2. Planning Exercise: this exercise consisted of an overhead diagram of the upcoming ice

management scenario that the participant could use to draw and plan their movements.
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3. Simulator Exercise: the participant was asked to enter the ice management simulator and
perform the ice management scenarios (leeway, pushing, propwash, and emergency
scenarios).

4. Debriefing: the participant was then shown a sped-up video replay of their current scenario,

where researchers again asked them questions about their ice management techniques.

The interview and the simulator exercise were audio recorded and transcribed by the research team.
A few weeks after the session, the researchers sent participants a copy of the results from the study

and allowed them to add, change, or delete information as they saw fit.

After holding all sessions and gathering all required information, data collected from this study
was used in the development of a case-based reasoning decision support system, and machine

learning algorithms were used to develop autonomous systems onboard maritime vessels.

3.1.1. Experimental Overview

A pre-pilot study, a pilot study, and results from two previous experiments (Thistle, 2019; Veitch,
2018) were used in this research. All of these studies were approved by the Interdisciplinary
Committee on Ethics in Human Research (ICEHR) at Memorial University of Newfoundland
(MUN), and they followed an ethics protocol. The pre-pilot and pilot studies, which are the main

focus of this research, were used to collect seafarers’ experiences in managing pack ice offshore.

Experiment 1 studied the effects of experience on ice management performance and was conducted
by Veitch (2018). The results were reported in (Veitch, 2018; Veitch, Molyneux, Smith, & Veitch,
2019). In that research, participants with a range of seafaring experience levels were asked to

execute different ice management scenarios. Each participant’s performance was recorded as a
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replayable video in Experiment 1 and used in the current study as a case to develop a case base for

the case-based reasoning decision support system.

Experiment 2 studied the effects of training on ice management performance and was conducted
by Thistle (2019). This experiment’s results were reported in (Thistle, 2019) and used in the pre-
pilot study of the current research to gather the participants’ evaluations on the cadets’
performance. In Experiment 2, one group of inexperienced cadets were trained through one
training session, and another group was taught in two training sessions in the bridge simulator.
After training, each participant was asked to complete two of the same ice management scenarios.
As aresult, on average, the cadets’ performance improved with each training session, and a method
for assessing the amount of training needed to meet an ideal performance was introduced (Thistle

& Veitch, 2019).

The pre-pilot and pilot studies were performed from January to March 2020. The pre-pilot study

was conducted in two different phases:

1. Using semi-structured interviews, participants were asked to describe how they would
approach three different ice management scenarios. These scenarios were:
a. The leeway scenario,
b. The pushing scenario, and

c. The emergency ice management scenario.

Then experienced seafarers described what factors they would consider while performing

the scenarios and explained why those would be important.
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2. In phase two, six examples of the cadet’s performance from Experiment 2 (two examples

for each scenario) were shown to participants to collect their advice, recommendations, and

feedback on the cadets’ performance.

The pilot study was operated in two phases as well. The first part was conducted like the first part

of the pre-pilot study, while an additional scenario was added. The pilot study phases were:

1. Asking participants to describe their approaches for four different ice management

scenarios. These scenarios were:

C.

d.

The leeway scenario,
The pushing scenario,
The prop-wash scenario, and

The emergency ice management scenario.

2. Requesting participants to execute these suggested approaches in the bridge simulator to

see their procedure in practice.

3.1.2. Description of Participants

Since experienced vessel operators were needed, researchers contacted potential participants

directly to inform them about the study. If they expressed interest, a copy of the informed consent

was sent to them for their review. After reviewing the form, the potential participant could get

back in touch with the researcher and let them know they wanted to participate.

The only criterion to exclude participants from the pilot study was if they were prone to suffering

from simulator sickness, and participants were asked to self-disclose if they felt any symptom.

Also, participants were allowed to withdraw from the study at any time without reason.
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At the beginning of each session, participants were given an experience questionnaire, which
provided information about participant’s years of experience and vessels they used in sea
operations. The range of seafarers’ experience operating at sea was between 10 to 30 years, while
this range decreased in the presence of ice from 2 to 7 years. These participants had the experience
of operating in different regions, such as coastal Newfoundland and Labrador, the Arctic/ North
of 60, the Gulf of Saint Lawrence, and the Great Lakes. They also worked on various types of
vessels including ice breakers, offshore supply vessels (OSVs), anchor handling tug supply
(AHTS) vessels, tanker/ bulk/ cargo vessels, and coastal ferries. Among different operation types,
three seafarers had experience conducting operations in the presence of ice, like watch keeping,
ice management in open water and confined water, maneuvering a ship to escort another vessel,
towing or emergency response, and maneuvering a ship while being escorted, whereas two other
participants had experience watch keeping when passing through ice. In terms of the amount of
training each participant had for operation in the ice, two participants had no formal training while

three other seafarers had advanced training (Smith et al., 2020).

3.1.3. Description of Simulator

Figure 8 shows the ice management bridge simulator that was used in the simulation exercise (pilot
study) for evaluating experienced seafarers’ performances. This marine simulator’s design consists
of an instructor station and a debriefing station outside the simulator, and a 360-degree panoramic
projection display surrounding a basic bridge console, which is located at the center of the
simulator (Musharraf, Smith, Veitch, & Khan, 2019). The software for implementing physics in

the simulator is called PhysX (Thistle, 2019).
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For the pilot study, the anchor handling tug supply (AHTS) vessel was modeled in the simulation
exercise. The reason why the AHTS was selected for this study was that these kinds of vessels are
commonly used for offshore operations and supporting pack ice management in offshore
Newfoundland. This virtual ship was 75 meters in length with ice-class ICE-C. Different features
of the virtual ship are shown in Table 2. The ship consisted of two 5369 kilowatt engines and an

896 kilowatt tunnel thruster in both the fore and aft (Thistle, 2019).

Table 2 Virtual Vessel Elements (Thistle, 2019)

Parameter Value
Length Overall 75m
Length Between Perpendiculars 64 m
Moulded Breadth 18 m
Moulded Depth 8m
Draft 6m
Gross Tonnage 3157 tonnes
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Figure 8 Ice Management Simulator

The simulator configuration that was used for the expert seafarers in pilot and pre-pilot
experiments was the same configuration that was used for the cadets in the previous experiments.
A simplified bridge console was built for the simulator to minimize task complexity and reduce
some difficulties that may occur for cadets who are not very familiar with ships’ controls and
instructions. Although working with a more complicated simulator closer to the real ships’
environment can result in a more realistic output, providing an easy-to-use interface for
participants, especially non-experts, can have more benefits due to the lower cognitive load on

them (Haji, 2015).
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Figure 9 shows a bridge console with (2 m x 2 m) dimensions. Fore and aft consoles were
embedded in the bridge console, so participants could switch between them any time they wanted.

Different bridge simulation controls were:

a. two controls for the fore and aft tunnel thrusters,
b. two controls for the starboard and port engines, and

c. asteering wheel to control the angle of the two rudders.

The indicator screen embedded in the bridge simulator displayed different information to
participants, such as the vessel’s speed over ground, heading, heading change, rudder angle, and
engine and thruster power. As participants could not see their exact distances from the objects due
to the lack of radar in the simulator, they could use the Very High Frequency (VFH) radio to
communicate with the instructor station and ask their distance from other objects or vessels when

they needed it.
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Figure 9: Simulator Bridge Console Design (Thistle, 2019)

3.1.4. Familiarization of the Simulator Through Habituation Scenarios

In the pilot study, the participants were asked to do the three habituation scenarios (shown in
Appendix E: Habituation Scenario Instructions) before executing other main scenarios to
familiarize themselves with the simulator and its bridge console. The purpose of the habituation
scenarios was to decrease errors that could occur while performing scenarios due to participants’
unfamiliarity with the simulator. During the implementation of these scenarios, participants could
use the VHF radio to call the bridge officer and communicate with them. They could also make

sense of how the controls and other parts of the virtual environment worked.

In Habituation 1, participants were asked to round the iceberg from the vessel’s port side with a
distance of 100 meters and then return to their starting location. This scenario was intended to take

ten minutes, and if participants did not complete it within twenty minutes, the scenario was
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stopped. Participants also had the option of asking the bridge officer about the distance between

the vessel and the iceberg.

In Habituation 2, seafarers were asked to make a parallel position with the port side of a Floating
Production Storage Offloading facility (FPSO). The distance between the FPSO and the vessel
was allowed to be 30 meters. The time allocated to this scenario, similar to the first scenario, was
ten to twenty minutes. Practicing slow maneuvers and operating close enough to another vessel

was the purpose of this scenario.

The last scenario was Habituation 3, in which participants used the propeller wash to clear small
floes of ice from the aft of their vessel by pushing them away. At the starting point, the vessel’s
bow faced large pack ice, so for clearing the vessel’s aft, participants were required to switch
between the fore and aft console. The main goal of Habituation 3 was to teach seafarers how to
switch between two consoles and how the prop wash could be implemented in the simulator.

Approximately one to two minutes was enough to finish this scenario successfully.

Before seafarers’ participation began in the simulator, they were asked to fill the simulator sickness
questionnaires provided from Experiment 2 (Thistle, 2019). After performing each scenario, they
filled out the questionnaires again to see if there were any severe simulator sickness symptoms.
There were no signs of severe symptoms during any experiments; otherwise, they would have
ended immediately. Whenever mild symptoms were identified, the experiment was stopped for a

while until all symptoms went away.
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3.1.5. Offshore Ice Management Scenarios

This research was designed to develop a DSS to improve ice management operations by providing
expert advice to the bridge crew. For data acquisition, four scenarios were used in this study and
designed to be similar to Newfoundland’s offshore operations (Thistle, 2019). Appendix F:

Scenario Instructions shows the instructions used to explain the scenarios to the participants.

All scenarios in the experiment were simply designed to avoid distracting factors for participants
during execution. For simplicity, multi-year ice was not modeled in the scenarios, and the drift
direction and the speed did not change during the scenario. First-year ice with 0.3 to 0.7 meter
thickness was used in all scenarios. While the shape and size of the ice floes were randomized,

they were kept the same in each scenario run.

Before explaining each scenario and technique, for making distinctions between them, Sc.1 is
referred to the leeway scenario, Sc.2 is referred to the pushing scenario, Sc. 3 is referred to the
emergency ice management scenario, and Sc.4 is referred to the prop-wash scenario. Techniques

are mentioned as leeway, pushing, and prop-wash techniques.

In Sc.1, shown in Figure 10, a stationary tanker is located in five-tenths first-year ice with a 1 knot
drift to the south. The stand-by vessel’s support is required to clear the tanker’s mid-ship port side
from the ice to make the area suitable for launching a pilot ladder or reducing the damage risk for
the equipment that the crew may want to launch. The time allocated for participants to perform

their approaches in Sc.1 was fifteen minutes.
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Figure 10 Leeway Scenario (Thistle, 2019)

Sc.2 is shown in Figure 11. In this scenario, participants were asked to clear the area around a
stationary platform at a distance of 75 meters from each side using the pushing technique. As
shown in the figure, the platform with 57 m x 57 m dimensions was located in the middle of the
desired area that should be cleared. Therefore, in total, 207 meters on each side should be cleared
of four-tenths of its first-year ice so that lifeboats can be launched in emergencies. In this scenario,
the current is 0.4 knots drifting to the south, and fifteen minutes were given to each participant to

do their best to decrease the ice load on the platform.
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Figure 11 Pushing Scenario (Thistle, 2019)

Sc.3 is illustrated in Figure 12. In this scenario, a moored FPSO was turned to its starboard side,
so that starboard side’s lifeboat launch area was clear of ice to launch lifeboats. The participants’
concentration should have been on the FPSO’s port side lifeboat launch zone, indicated in grey,
and they were allowed to utilize a single method or combination of any approaches or techniques
they were comfortable with or thought were the most effective ones to make the target area free of
ice. The ice concentration in Sc.3 was seven-tenths drifting from north to south at a speed of 0.5
knots, and it was first-year ice. This scenario was longer than the two other scenarios, and seafarers

were given thirty minutes to show their expertise.
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Figure 12 Emergency Ice Management Scenario (Thistle, 2019)

Sc.4 can be found in Figure 13. In this scenario, the starboard side of the stationary tanker was free
of ice, while participants were required to clear the port side of the vessel for another ship to dock
alongside the tanker. The purpose of clearing the pack ice was to reduce the risk of damage due to
ice for the other vessel while docking. The tanker’s port side is located in the seven-tenths first-
year ice concentration, and there is no drift in the scenario. Using the propeller wake wash
technique, participants were asked to clear 75 meters along the vessel’s port side. This scenario

took 15 minutes to complete.
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Figure 13 Prop-wash Scenario (Thistle, 2019)

3.1.6. Data Acquisition

In both interview and simulation exercise sessions, data gathered from seafarers was labelled
randomly in an alphanumeric code, for example N12, to keep the participants’ identities

confidential.

Different types of data were recorded in both experiments. At the beginning of both sessions,
participants were asked to fill out the experience questions in order to know the amount of their
experience in the sea in the presence of ice. Also, the scenario diagram was given to the participants
in both experiments to draw out their strategies for each scenario. The scenario diagrams are shown
in Appendix G: Scenario Diagram Pages. The length of these sessions varied from person to
person, but on average they took about three to four hours. Since the data gathered from the

experiments was confidential and it should be protected from unauthorized access, researchers did
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not use any software for the transcription. Therefore, the researchers transcribed the audio files

manually. Guidelines followed for transcribing are shown in Appendix H: Transcribing Guide.

In the pre-pilot sessions, the whole session was audio recorded and all parts including the
participant’s ice management approaches and comments on the cadet’s replay videos were

transcribed after each session.

In the pilot sessions, the participant’s planned approach exercises and debriefing part were audio
recorded for transcribing afterward. Also, in this experiment, data from the simulator was recorded
for the main scenarios, while data related to the habituation scenarios were not recorded. Recorded

data from the simulator had two forms:

1. a log file consists of information such as the vessel’s speed over ground, course over
ground, longitude, latitude, and heading at each time step and

2. areplay file that gives researchers, in the instructor station, the opportunity of reviewing
the scenario at real speed when the scenario was completed. To calculate the ice
concentration and make a sped-up replay video for each scenario’s implementation,

researchers could later capture screenshots of this replay file.

3.1.7. Experimental Procedure

Participants in this research were recruited based on a protocol that has been reviewed by the
ICEHR at MUN and is in compliance with MUN’s ethics policy. The recruitment process consisted
of a call for subject recruitment email, which included information on contacting the researchers
for those who were interested in participating in the experiment. The recruitment email was

distributed to colleagues to recruit volunteers for the study by the research coordinators. Research
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coordinators were responsible for recruiting the potential participants and were the main point of
contact for participants. They screened interested volunteers to ensure they are eligible to
participate, ensure the potential participants were properly informed, and guided individuals

through the informed consent process.

The experiment’s informed consent form was sent to volunteers when they were contacted to set
a participation schedule. After scheduling and assigning pre-pilot, pilot, or both sessions to the

participants, they were randomly given an alphanumeric code.

3.1.7.1.Interview Session (Pre-pilot)

Figure 14 illustrates the procedure followed in Interview sessions. In these sessions, four people

attended for holding the interview:

1. aninterviewer,
2. two observers, and

3. aparticipant.

The pre-pilot sessions’ outline was shown in Appendix A: Interview Session Outline.
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Participants: Seafarers ‘
n=4
l’ Critique Cadet Examples
Questions
Experience Questionnaire Sc.1 Leeway - What advice or feedback would
AS6 you give the cadet based on their
‘ V55 performance in this example?
Ice Management Factors Questions - Identify points for advice or
What factors do you consider during ice management? Sc.2 Pushing fg:dback and decision points in
Rank the factors in terms of importance B19 video.
X86 - Inthe example, what followed or
‘ violated rules that you would
consider during ice
Tabletop Exercises Sc.3 Emergency management?
Questions E43 - How would you rate the cadet’s
- How would you approach L88 performance in completing this
c.1 Leewa i
Y this scenario? scenario?
- Draw your approach.
Sc.2 Pushing - Identify and describe your *
decision points? Rank Ice Management Factors
Sc3E - What factors do you think What factors are important for success in this scenario?
.3 Emergency are important to consider Rank the factors in terms of importance
for success in this scenario? ‘
| Feedback and Closing

Figure 14 Experimental Procedure Flow Chart for Pre-pilot

At the beginning of the session, the informed consent form was reviewed by the interviewer to
make sure that the participant was aware of every detail of this participation. After the agreement
of the seafarer, both the participant and the interviewer signed the form. In the next step, the
participant completed the experience questionnaire, and researchers asked them some questions if
more details were required for clarification. During the interview, researchers used interviewer and
observers’ notes to take notes of the participant’s comments and approaches. These forms are
shown in Appendix I: Interviewer Notes and Appendix J: Observer Notes. The whole session was

audio recorded.

Next, a list of important factors in ice management operations was provided for the participant,
and they were asked to add any factor that they thought was missing from the list. For each of
these factors, the researchers asked why these factors are important and why they should be

considered during ice management operations in general. The list of provided factors is shown in
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Appendix K: Factor Cards. After completing the list of factors and describing reasons for
consideration, the participant was asked to rank them based on the overall importance. According
to the Factor headings shown in Appendix L: Factor Headings, the participant gave a number
between 1 to 5 to each factor, in which 1 was not important, and 5 was very important. This section
aimed to understand what information is more valuable and has more priority in the participant’s

decision-making process.

There were three types of ice management scenarios that the participant was required to be familiar
with. First, the interviewer explained the Sc.1 and asked the participant to describe how they
approach this scenario. The scenario diagram was given to the participant, and they were requested
to draw out a sketch of their approaches and explain every step of their decisions. The researchers
asked the participant to use multiple colors in each decision point not to have difficulties while
matching the audio recording with the drawn approaches. Decision points were any time in ice
management plans that the participant went from one step to another. Figure 15 shows a sample

of a participant’s sketch of approach.
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Figure 15 Sketch of Approach

After identifying all decision points and asking questions for clarifying all aspects of the drawn
strategies, the participant was shown two pre-recorded examples of cadets’ performance on the
same scenario in the bridge simulation. This phase aimed to collect the seafarer’s advice,
recommendations, and feedback on the cadet’s performance. The cadet examples came from
Experiment 2 (Thistle, 2019). These examples were anonymized top-down replay videos, like what
is shown in Figure 16, which were sped up to thirty-times real speed. The replay video represented
an ice management operation using an offshore supply vessel, and the interviewer explained what

the symbols in the replay video mean.
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Figure 16 Replay Video Still Shot

The participant reviewed replay files once or more and mentioned their opinion about how
effective the cadet performance was. They also gave some advice at critical stages where some
changes were needed to have better performance (some changes in course, speed, technique, etc.).
Then the seafarer was requested to identify any violation of rules in the cadets’ performance. At
the end of the cadet example section, the participant gave a rating between 1 to 5 to the cadet’s

performance.

In the last part of the scenario, the seafarer ranked the ice management factors again, according to
the Sc.1. Using the factor ranking label, as shown in Appendix M: Factor Ranking Label,

researchers categorized the factors’ importance for the specific scenario.

Similarly, for Sc.2 and Sc.3, the participant drew their approaches, evaluated two cadet examples,

and ranked factors for the two specific scenarios.
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In total, the participant demonstrated their strategies for three scenarios and evaluated six cadet
examples (two examples for each scenario) in the pre-pilot session. The order of scenarios and
examples were determined in the scenario order sheet, as shown in Appendix N: Scenario Order

Sheet. Each pre-pilot session took approximately three to four hours.

3.1.7.2.Simulation Exercise (Pilot)

The procedure followed in the pilot Experiment is demonstrated in Figure 17. In these experiments,

four people attended the sessions:

1. aninterviewer,
2. two observers, and

3. aparticipant.

The outline of the pilot sessions is shown in Appendix O: Simulation Session Outline. In addition
to the steps mentioned in the procedure, one of the observers was responsible for loading and
initiating scenarios in the simulator, screen capturing scenarios every three minutes, saving data
collected from the scenarios, and communicating with seafarers during the simulation exercise via

VFH radio.

Like the pre-pilot session, at the beginning, the informed consent form was reviewed by the
interviewer, and both the participant and the interviewer signed the form. Then, the participant
completed the experience questionnaire. In the next step, the interviewer gave a brief description
of the simulator sickness questionnaire, and the participant was asked to fill it out to see if there
was any symptom before implementing scenarios in the simulator. Once all forms were completed,

the observer showed the simulator’s environment and controls to the participant and explained
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different parts of the simulator’s bridge console and the way they worked. The script related to the
simulator’s explanation can be seen in Appendix P: Introduction to Controls Script. These steps,

which consisted of filling out the forms and introducing controls to the seafarer, lasted about fifteen

minutes.
Participants: Seafarers *
n=4
l Simulator Exercises
Experience Questionnaire Sc.1 Leeway
“ Sc.2 Pushing
Simulator Sickness Questionnaire (SSQ)
J Sc.3 Emergency
Habituation Scenarios
| Round the Iceberg | i)
| Maneuver Alongside FPSO |
Debriefing
| Clear Ice with Propeller Wake Wash | - Walk through your strategy (image by image)

_ - In what ways, if any, did your execution in this
I’ scenario change from your planned approach?

- What were your decision points in this scenario?

Planned Approach Exercises - How do you think this scenario compares to a real ice
management scenario?

Sc.1 Leeway Questions - How would you rate your performance in competing
How would you approach

_ hi io? this scenario?
Sc.2 Pushing this scenario?

- Draw your approach. 1
Sc.3 Emergency - Identify and describe your
decision points? Feedback and Closing
I O

Figure 17 Experimental Procedure for Pilot Experiment

As shown in Figure 17, the next step was explaining the first habituation scenario in the training
station and then asking the participant to execute it in the simulator. After completing the first
attempt in the simulator by the participant, the observer introduced the second habituation scenario
in the training station and again asked them to complete it in the simulator. The same procedure

was repeated for the third habituation scenario as well. The habituation section took approximately
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45 minutes to complete, and at the end of this section, the participant’s sickness symptoms were
checked by filling out the second simulator sickness questionnaire. Meanwhile, a break time was

given to the seafarer if they needed any rest.

Next, similar to the tabletop exercise in the pre-pilot sessions, the first ice management scenario
was described to the participant, and they were asked to draw a sketch of their strategies on the
scenario diagram and explain their decision points. However, unlike pre-pilot sessions in which
the participant was asked to complete three scenarios (Sc.1, Sc.2, and Sc.3), in the pilot sessions,
the participant completed four scenarios (Sc.1, Sc.2, Sc.3, and Sc.4). All information provided

from the participant in this step was audio recorded.

In the next step, the participant entered the simulator and completed the first scenario. The
participant was allowed to perform their exact approaches described before or change the strategies
if that was necessary. After completing the first scenario, the participant returned to the training
station and filled out the simulator sickness questionnaire. Then, the debriefing section was

performed.

In the debriefing section, researchers showed the screen captures of the scenario (captured by
researchers during execution) to the participant and asked the seafarer to explain their strategies
and any changes in their execution compared to their planned approach, if there were any. They
were also requested to determine their decision points and compare the performed scenario to the

real ice management scenarios. Debriefing was also audio recorded.

At the end of this phase, the participant rated their performance on a scale from 1 to 5, where one

was not very successful, three was somewhat successful, and five was very successful. After
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completing each scenario, researchers asked if the participant wanted to have a break and help

themselves with the available refreshments.

Similarly, all steps, including planned approached exercises, simulator exercises, and debriefing

repeated for the other three scenarios. The pilot session lasted approximately four hours.

3.2.Data Processing and Developing the CBR Case Base

Developing a CBR case base for the DSS involved two main steps:

1. Knowledge capture - using the expert knowledge for building a case base to inform the
DSS, and

2. Knowledge representation - organizing the information using the flat model.

All information gathered in the pre-pilot and pilot experiment, including the participant’s ice
management approaches, feedback on the cadets’ examples, and strategies on the simulation
exercises, was transcribed from the audio recording files. At the next step, these transcriptions
were used to develop a case-based reasoning case base. Some parts of knowledge gathered from
the participants, such as factor ranking and comments on ice management approaches, were used
in similarity matching and the retrieval part of the DSS, while other information, such as the
participants’ verbal explanations of their ice management approaches and their feedback on the
cadets’ ice management performance, were used to build cases in the CBR case base. Next, for
matching similar cases with the future scenarios’ conditions, common features and characteristics
of cases in the case base were categorized and indexed using the flat memory model. Finally, In

order for the DSS to suggest a similar case, the DSS extracts common features from the simulation
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data and retrieves an expert solved case that matches the new situations using a similarity-based

method.

This section describes every step of data processing for the DSS development in more detail.

3.2.1. Knowledge Capture—Gathering Cases to Populate the CBR Case Base

The transcribed data from the pre-pilot and pilot studies were used to develop cases to populate
the CBR case base and develop the CBR reasoning structure. All transcriptions including verbal
explanations of strategies and important factors were categorized using the Navicat Data Modeler
software. Figure 18 illustrates the CBR knowledge representation that was developed using the
transcriptions. As shown in the figure, the important factors were classified into different
categories (e.g., ‘task objectives’, ‘target vessel properties’, ‘weather conditions’, etc.). Also,
based on participants’ comments during pre-pilot and pilot studies, additional factors were added
to the list of factors and were assigned to different categories (e.g., separate categories for ‘scenario
attributes’, ‘target vessel properties’ and splitting the ‘operator characteristics and actions’
category into two: operator characteristics and the operator’s actions represented by the label ‘ice
management technique’). Important comments about each factor were also stored in the ‘ice
managements factor rank description’ table for further use in DSS to show the decision-maker the
reason of importance. Each case connected pre-programmed characteristics of the scenario (e.g.,
the scenario objective, the environmental conditions, and features of the ship), factor rankings and

explanations of their importance, and the attributes of the participants’ strategies to each other.
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Ice_Mgmt_Technique

Id_technique integer
Id_case integer
Id_action integer
Vessel_aspect text
Area_of_focus text

Id_case
Id_operator
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Technique

Sc_objective Action 1 Vessel_he}adung integer
Sc_time i Action 2 Vessel_orientation text
Sc_conc Action 3 Vessel_speed real

Distance_from_target integer
Performance_rating integer

Initial_sc_peroperties  text

I Ice_concentration real
Intervention text
Target_Vessel_Properties WeaMr_Condiﬂons Ice_Conditions Operator_Characteristics

Id_objective integer | | Id_target_vessel integer | | Id_vessel integer | [Id_weather integer | | Ide_ice integer | | Ide_operator integer
Id_case integer | |Id_case integer | | Id_case integer | [Id_case integer | | Id_case integer | | Ide_case integer
Sc_Objective integer | | Target_type(MODU, FPSO, integer | | Vessel_type integer | | Visibility integer | | Floe_size integer | | Years_experience integer
Area_to_clear  integer | | Tanker) Vessel_heading  integer | | Weather_forcast integer | | Ice_type integer | | Exp_operations integer
Level_urgency integer | | Target_ice_capabilities integer | | Vessel_propulsion integer | |current_drift_speed integer | |Ice_thickness integer || Formal_training integer
Accept_level_risk integer | | Target_hull-formation integer | | Vessel_power integer | (Wind integer | | Ice_concentration integer
time_allocation integer | | Target_ice_loads integer | | Vessel_draft integer | | Info_bridge_lookouts integer | | Floe_speed integer
Target_orientation_in_ice  integer | | Ice_class integer Ice_loads integer
Ice_loads integer Info_ice_charts  integer
Ice_relative_target integer

Ilce_Mgmt_factor
Rank_Description

Id_factor integer
Factor1_rank text
Factor2_rank text
Factor3_rank text

Figure 18 CBR Class Diagram for Ice Management Operations (Smith et al., 2020)

Based on the specific domain knowledge, a list of techniques (and corresponding features) were

extracted for ice management scenarios. The specific knowledge included:

1. the participants’ verbal explanations of their strategies and decision points,
2. the participants’ observations and feedback on the cadets’ performances, and
3. the participants’ execution of scenarios in the simulator and their comments on their own

performance.

These techniques are described in section 3.2.1.1.

Using the general domain knowledge captured from the participants, the reasoning structure of the

CBR was developed. The reasoning part consists of the way the case-base data were indexed for
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similarity matching and case retrieval. The general domain knowledge was captured from three

sources:

1. list of important ice management factors generated by participants and their rankings,
2. seafarers’ comments about general ice management techniques, and
3. participants’ comments about the rules that cadets followed or violated while performing

scenarios.

A list of factors and their rankings is illustrated in section 3.2.1.2.

3.2.1.1.1ce Management Techniques Described by Participants

A list of techniques can be distinguished from the approaches that the participants used in the ice
management scenarios. These techniques are shown in Table 3. A single technique or combination
of these techniques was used by participants in each scenario in all experiments. For example,
most participants in pilot and pre-pilot experiments preferred to use the combination of the leeway

and prop-wash techniques in Sc.1 (leeway scenario).

Table 3 Ice Management Techniques Employed by Participants (Smith et al., 2020)

Technique Diagram Description
| ]
i
FTM
| o%ment / '
— .ff | Using the vessel’s bow or
Pushing < | broadside to clear ice

P - . around the indicated zone.
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Sector

Using the vessel’s bow or
broadside and having a
back and forth motion at
the same time to clear the
ice up-current from the
zone.

Prop-wash

Maintaining a position
above the zone and
flushing the ice from the
target using the vessel’s
propeller wake wash.

Leeway

64

Keeping the position
above the target area and
blocking the flowing ice
using the vessel’s
broadside.



Using the combination of
°Vemem \°‘ pushing and prop-wash

Circular techniques while having a
}T; circular motion above or
v

around the target area.

*)

3.2.1.2.Key Ice Management Factors and Rankings

As described in the method section, in the pre-pilot study, seafarers generated a list of important
factors they consider during the ice management operations. They were also asked to explain the
reason why those factors are important and rank them based on their priorities in different ice

management scenarios. The list of some important factors and their ranks are shown in Table 4.

Table 4 Important Ice Management Factors and Their Ranks Based on Participants’
Comments (Smith et al., 2020)

Average Rankings
Category Factors Initial | Sc.L | Sc2 | Sc3
Area to be Cleared 4.0 4.0 4.0 4.5
Task/

- Level of Urgency 4.3 4.5 4.3 5.0

Objective .
Acceptable Level of Risk 3.8 3.8 4.0 4.0
Location Relative to Target Vessel 3.5 3.8 3.8 4.3
Vessel Properties Vessel Heading 2.8 4.0 4.3 4.5
P Vessel Speed 4.0 4.0 4.0 4.0
Vessel Ice Class 4.0 4.0 4.0 4.0
Weather Conditions V|S|b|l|ty_ and Weather Conditions 4.3 4.3 4.5 3.8
Drift Speed (Current) 4.0 4.0 4.3 4.0
Floe Size 3.3 3.3 3.3 3.5
. Ice Type 3.5 3.5 3.5 3.5

Ice Conditions i

Ice Thickness 4.0 4.7 4.0 4.3
Ice Loads 4.3 4.3 4.3 4.0
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Ice Concentration 4.3 4.8 4.3 4.0

Operator Experience 3.3 3.8 3.8 3.8

Characteflstlcs and Strategy 3.8 3.8 3.8 3.8
Actions

3.2.2. Knowledge Representation—Indexing Cases for Matching and Retrieval Using the

Flat Memory Model

The flat memory model was used for the case memory knowledge representation. The purpose of
indexing features and extracting common attributes that happened in the case base was to match

similar cases with the attributes of future scenarios.

In total, five sources were used to build cases for the CBR case base. These sources include:

1. the participants’ verbal explanations of their strategies and decision points from the pre-
pilot and pilot experiments,

2. the participants’ observations and feedback on the cadets’ performances from the pre-pilot
experiment,

3. the participants’ execution of scenarios in the simulator and their comments on their own
performance from the pilot experiment,

4. seafarers and inexperienced cadet’s execution of scenarios in the simulator from
Experiment 1, and

5. 1inexperienced cadets’ execution of scenarios in the simulator from Experiment 2.

Among all these sources, number 4 and 5 contain the inexperienced cadets’ execution. These
sources were used because even if the cadets’ performance is not as effective as experienced

seafarers, a failed solution is an important piece of information. Using both successful and failed
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solutions could state what should be followed and what has to be avoided. Positive or successful
experiences (cases) state ‘do it again’, and negative or failed experiences (cases) state ‘avoid this’
(Richter & Weber, 2013). The problems with inappropriate solutions (cases) were solved by
adding a not recommended label to them and providing some tips to improve the approaches.

These cases were explained in the result and discussion sections in more detail.

Considering all sources for building the case base of the DSS resulted in 180 cases. Table 5 shows
the number of cases extracted, and the techniques used in each scenario and phase of experiments.
As shown in this table, 30 cases from the pre-pilot study (24 cases from the interview and 6 cases
from the evaluation and recommendations on the cadet examples), 10 cases from the pilot study,

18 cases from Experiment 1, and 122 cases from Experiment 2 were extracted.

Each case was an approach suggested by a participant or executed by them in the simulation to
solve a specific scenario. For example, in the pre-pilot experiment, four participants attended and
each of them suggested one or more approaches for Sc.1. As aresult, in the pre-pilot study, 8 cases
were extracted from four participants in Sc.1. Considering Sc.1, pre-pilot study, and interview
approach section, the table shows that one approach appears to have consensus among the
seafarers. The technique involved positioning the support vessel ahead of the tanker (or alongside
ahead of the zone) using the vessel to create a leeway to block the pack ice from drifting into the
zone and also using prop-wash to flush the pack ice (3 seafarers outlined 5 approaches using
predominately this technique). Although all these five approaches have used a combination of
leeway and prop wash techniques, they were considered as five different cases because these
approaches are different in other attribute values (different values for aspect, area of focus, vessel

heading, orientation, etc.). Three other approaches were suggested that followed conventional
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definitions of the techniques. One seafarer suggested the stationary/prop-wash technique, which
involves maintaining a stationary position ahead of the tanker and using prop-wash to flush the
pack ice (without any other techniques). Two other suggested approaches used the support vessel

to block (lee) pack ice from drifting into the zone (without any other techniques).

All techniques that were used by participants in ice management scenarios were introduced before

in Table 3.
Table 5 Summaries of Cases Collected from all Experiments
Phase Technique Total Case
Prop wash
Interview Approach Leeway (x2) 8
Pre-pilot Leeway + Prop wash (x5)
Leeway + Prop wash
Cadet Example Leeway 2
Prop wash
Pilot Simulator Exercise Leeway 3
Leeway + Prop wash
Prop wash (x2)
Leeway (x33)
Experiment 2 Cadet Example Leeway + Prop wash (x8) 53

Pushing + Prop wash (x6)

Pushing
Prop wash
Circular
Sector
Pushing + Prop wash (x3)
Leeway + Prop wash
Circular
Pushing
Pushing
Prop wash
Sector + Prop wash
Leeway + Prop wash
Pushing + Prop wash (x7)
Experiment 2 Cadet Example Pushing (x20) 54
Circular (x27)

Interview Approach
Pre-pilot

Cadet Example

Pilot Simulator Exercise
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Pushing
Leeway (x2)
Interview Approach Prop wash 8
Pre-pilot Leeway + Pushing
Leeway + Prop wash (x3)

Leeway + Prop wash

Pushing + Leeway
Pushing
Leeway + Prop wash (x2)
Pushing (x5)
Seafarer and Cadet Leeway
Example Leeway + Prop wash
Pushing + Prop wash (x11)
Pushing (x4)
Leeway (x3)
Experiment 2 Cadet Example Leeway + Prop wash 15
Pushing + Leeway
Pushing + Prop wash (x6)
Total Cases 180

Cadet Example

Pilot Simulator Exercise

Experiment 1 18

To design the real world situation, considering all aspects of a problem is not required, rather the
aim is to find aspects that are relevant and helpful to find the problem’s solution. Each experience

as a case can be divided into two parts (Richter & Weber, 2013):

1. aproblem part: describes a problem condition, and

2. asolution part: describes the way a person has reacted to solve the problem.

A solution can be described in various ways:

1. defining the solution in a narrow concept, or

2. defining the solution with additional detail, such as:
a. comments, examples, and explanations,
b. guidance on how to use the solution,

c. mentioning effects of the solution used in the past, or
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d. stating the strategies used to offer the solution.

The flat memory was used to represent a case using attribute-value (or feature-value) pairs. To
present a case, a set of relevant attributes or features should be selected. For matching similar cases
with the future scenarios’ conditions, common features and characteristics of cases in the case base
were categorized and indexed. Among all important factors collected from participants in pilot and
pre-pilot experiments (Table 4 and Figure 18) The following features were extracted from the

seafarer’s verbal explanations in the interviews and their feedback on the cadets’ examples:

e (F1) setting the aspect,

e (F2) area of focus for the ice clearing,

e (F3) approximate vessel heading,

o (F4) orientation of vessel to the target vessel,

e (F5) the specific vessel maneuvers for the technique,

e (F6) an estimate of the vessel speed

e (F7) an approximate distance from the platform,

o (F8) setting the vessel’s controls (Rudder Angle, Engine, Thruster)

e (F9) the participant’s priority ranking of the technique for the scenario and their rating of

the cadets’ performance in the examples.

Depending on the source of the data (i.e., interviews, simulation exercises, Experiment 1, or
Experiment 2), details about the case features could vary. Some cases from the simulation
exercises contained more information about features of a case than cases in the interviews. That

means that participants in the interviews explained their strategies based on a static and ideal
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environment, while information from the simulator events is based on some parameters that cannot

be considered in detail in interviews. Such features are

(*F3) vessel heading,

(*F5) vessel maneuvers,

(*F6) vessel speed,

(*F7) distance from target during clearing and the size of the clearing zone, and

(*F8) setting the vessel’s controls.

Also, two other features were considered important to evaluate the result of each performance in

the simulator. These features are

¢ (*F10) the change in ice concentration in the target zone and

e (*F11) estimate of the ice loads endured by the vessel.

There is no value available for the ice load feature in the cases. Also, the ice concentration feature
was calculated based on the simulation exercise outcome when they were analyzed. Cases captured
from the interview did not contain this feature. Therefore, these two features were not used for
case retrieval purposes, but they could be used in the CBR retain procedure (Figure 1) when a case

should be added to the case base as a positive or negative case.

To illustrate the indexing, two cases of the Sc.1 described by participants were illustrated in Figure
19.As shown in the figure, the approach that the participant defined in the interview (N12)
represents the technique under static and ideal circumstances and provides an approximate value
for some features like the vessel speed and heading. However, the simulator data (NR49) provides

the exact amount of some features that cannot be explained in detail during the interview.
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*F6. Vessel speed ]

[ *F5. Vessel maneuvers *F7. Distance from target vessel }
| F4. Orientation to target vessel *F8. Vessel’s controls J
Features .
[ *F3. Vessel heading F9. Priority rankln.gs and ]
performance ratings
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Figure 19 Case Indexing for the Leeway Scenario

The indexing process was repeated for all cases, and they were saved as a CSV file. After creating
all cases, they were classified based on the important factor ranks (Table 4), participants’ verbal
explanation, and the technique used to approach a scenario. In fact, each case was divided into a
problem part and a solution part. For each case, the technique was considered as the solution part,
and the rest of the features were assigned to the problem part. Therefore, the vessel maneuvers or
techniques were considered as the class labels, and samples were grouped for which participants
used the same technique. For example in Sc.1, ‘L+PW’ (which was a vessel maneuver or technique
and considered as a solution) was assigned to Class ID = 1, ‘P+PW’ was assigned to Class ID = 3,

and so on. In total, 5 classes for Sc.1, 7 classes for Sc.2, and 6 classes for Sc.3 were detected. Table
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6 illustrates an example of cases organized using the flat memory model. This table consists of a

list of attributes of a problem and their values and solutions for six cases.

Table 6 Flat Model Representation of CBR Case Base

Attributes Sc.1 Sc.2
Participant/case ID  V05-12 A48-1 NM81-2 G69-22 Z11-3 Y93-3
Aspect Direct Direct Upcurrent Direct J-approach J-approach
Area of focus AV Z AZ Z Z Z
Vessel heading Angle  Perpendicular Angle Angle Angle Stem
Orientation Stern Stern Stern Rotating Bow Bow
Vessel speed Safe 0.74 Safe 1.44 1.16 0.78
Distance 30 34.56 112.5-150 29.8 59.13 36.97
Port
Vessel’s controls engine Thruster N/A Engine + N/A Engine
+ Rudder
Rudder
Priority Ranking/ N/A 3 N/A N/A N/A
performance rating
Vessel maneuver -, oy pipyy L+PW C P P+PW
(solution)
Class ID 1 3 3 6 1 4

3.3.DSS Development

The information gathered from expert knowledge was transformed into a case base to develop a
decision support technology. This information was integrated into a decision support system to
provide seafarers with onboard guidance in real-time. To provide real-time assistance to a
participant while implementing a scenario in the training simulator, the DSS should extract
common features (F1-F4, and F6-F8) from the simulation data to retrieve a similar case and suggest
a solution. Also, after completion of the execution F10 and F11 should be analyzed for further

evaluation (retain a case). Figure 20 provides a depiction of the procedural steps for the DSS. As
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shown in the figure, there are two important steps for retrieving similar cases to new problems.

The key steps include

1. feature extraction, and

2. applying a retrieval method (similarity matching).

The following subsections will describe the development of DSS in more detail.

4

o Case Retrieval

Retrieve the most similar case using decision
e tree

Choose a Scenario

Suggest an approach

. !

Request for Assistance + 1 Yes Do You Need More Help?

v No
v

Feature Extraction

Continue Until the End of Scenario
| Use the updated data

Extract features corresponding to the Debriefing
case base - Ask participants to explain their strategies

- Ask participants to rate themselves

I Retain Case
- - Extract ice Concentration
- Extract Ice load

- Add the new case to the case base

Store real-time
data from the Case Base

simulator

Figure 20 DSS Procedure

v
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3.3.1. Feature Extraction

The DSS assists decision-makers by providing them with similar cases that have already been
solved by experienced seafarers. In order for the DSS to suggest a similar case, the DSS extracts
common features from the simulation data and retrieves an expert solved case that matches the

conditions of the new situation.

The DSS requires real-time data from the simulator to extract or calculate the common features.
So, As shown in Figure 20, the real-time data from the simulator will be stored to be used for

feature extraction. The data collected from the simulator log file include the follow metrics:

e Scenario Time,

e Speed Over Ground (SOG),

e Longitude,
e Latitude,
e Heading,

e Coarse Over Ground (COG),

e Port and Starboard Rudder Angle,
e Port and Starboard Engine,

e Fore and Aft Thruster, and

e |ce Load.

As shown in Table 7, some of the parameters recorded in the simulator can be used directly by the
DSS and others must be converted to features that the DSS can interpret. These features and how

they were extracted from the real-time data were explained in detail in the following sections.
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Table 7 Features to Extract from Simulator Log Files

Simulator output needed for

Feature . Conversion
calculation of a feature
Features can be input directly from the simulator log files
Vessel heading in relation to target
F3-Vessel Heading Vessel Heading (Stem, Perpendicular, Angle,
Rotating)
Identify if seafarer is using safe
F6-Vessel Speed Speed Over Ground (SOG) speed (<3knots)
Control Qutputs
, Fore/Aft Thruster Identify if seafarer is usin
F8-Vessel’s Controls Port/Star Engine thruster],cyengine, and/or rudger
Port/Star Rudder
F11-Ice Loads Ice loads on ‘Ownship’ Ice load

Features must be calculated from the simulator log files

Latitude/ Longitude Vessel pathway in relation to

F1-Aspect Vessel Heading target (J-approach, Direct,
Upcurrent)
F2-Area of Focus Latitude/ Longitude Where seafarer is focusing most of

the ice clearing time (AZ, AV, Z)

Vessel orientation in relation to

Latitude/ Longitude target (Bow, Stern, Parallel,

F4-Orientation of VVessel Vessel Heading

Changing)
F7-Distance from Target Latitude/ Longitude Vessel distance from target vessel
. . Screen captures of zone before ice
. Instructor Station View of o
F10-Ice concentration Zone management and during ice
management

3.3.1.1.Features from Simulator Log Files

The DSS can use four parameters from the simulator log files directly as features (Table 7).

Features for the DSS that can be input directly from the log file include

e F3- Vessel Heading: Based on the cases in the case base that have already been solved by

experienced seafarers, the vessel heading can have four different options:

a. Stemming the condition (making headway against the current) (O degrees)
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b. Perpendicular to the target (90 degrees)
c. Angle (all other degrees but not changing during the execution)
d. Rotating (in the case of the circular technique, the heading changes constantly, so

it was converted to the rotating option)

Since the vessel heading is accessible directly from the log file, the only needed processing is to
convert the continuous heading values into categorical outputs. Figure 21 shows all headings

options.
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Figure 21 Heading Options

F6- Vessel Speed: The only thing that should be considered about speed is identifying if
seafarers are using a safe speed (<3 knots) because not all of the cases in the case base
have a specific value for the speed feature. Consequently, the continuous value of the
speed should be converted to the safe or dangerous speed.

F8- Vessel’s Controls: This feature could be used directly from the log file to see what
vessel’s properties are using for the vessel’s maneuver. For example, rudders are used to

turn the vessel to either side.
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e F11- Ice Load: Ice load could be used directly from the log file. This feature was not used
for retrieval purposes and did not need more processing. It will be considered as a
threshold to identify if a case should be considered positive or negative in the retain

procedure.

3.3.1.2.Converting Features

According to Table 7, some features needed to be calculated from the simulator log files (aspect,
area of focus, orientation of vessel, vessel maneuver, distance from target, and ice concentration).
Before extracting these features, two other features that were beneficial to compute were identified

and are explained in sections 3.3.1.2.1 and 3.3.1.2.2. The two features are

1. ownship vessel’s position, and

2. threshold for the heading.

3.3.1.2.1. Ownship Vessel’s Position in Relation to the Target and the Zone

To calculate many of the DSS features the position of the ‘Ownship’ was required to be detected.
Therefore, the position of the ‘Ownship’ vessel with respect to the target and the identified zone
that needed to be clear was calculated using their latitude and longitude. Table 8 shows constant
points extracted from the simulator to detect the ‘Ownship’ vessel’s position. Using these points,
different areas were detected for each scenario (Figure 22 and Figure 23). The ‘Ownship’ vessel’s

position then was used to calculate other common features more accurately.
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Table 8 Simulator Points to Calculate the Ownship Vessel’s Position

Points for the Target

Points for the Zone

Latitude Longitude
1 | 60.51039 146.35159
2 | 60.51039 146.35074
3 | 60.50790 146.35074
4 | 60.50790 146.35159

Latitude Longitude
60.50914 146.35285
60.50914 146.35162
60.50853 146.35162
60.50853 146.35285

|

60.51049 146.35544
60.51049 146.35435
60.50997 146.35435
4 | 60.50997 146.35544

60.51117 146.35678
60.51117 146.35299
60.50930 146.35299
60.50930 146.35678

1| 60.51833 146.35961
2 | 60.51833 146.35749
3 | 60.51614 146.35749
4 | 60.51614 146.35961

60.51773 146.36102
60.51731 146.35900
60.51624 146.35993
60.51667 146.36194
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Figure 22 Determining the Ownship Vessel’s Position Relative to the Target
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Figure 23 Determining the Ownship Vessel’s Position Relative to the Zone

3.3.1.2.2. Threshold for the Heading

Some of the DSS features require a threshold to indicate if the heading of the ‘Ownship’ vessel is
between the threshold. Figure 24 indicates down range and up range of the threshold. « is an angle
between the own vessel and a point located on the top of the target according to the trigonometric

circle, and 6 is an angle between the own vessel and a point located on the bottom of the target
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according to the trigonometric circle. As shown in Table 9, different points of the target were

considered to calculate a and 8 according to the position of the ownship in relation to the target.

360 :0 g
i E
5 9
by (| TR - eI . 90
180

Figure 24 Heading Thresholds

Table 9 Different Points to Calculate Alpha and Betta
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As shown in Figure 25, to calculate « and 6, Equation 10 and Equation 11 were used.

B=tan"tte 4 =90-p Equation 10 Angle between

Xb=Xa the own vessel and a point

located on the top of the

target

y=tan"12¢% g9 =90—y Equation 11 Angle between
Xa—Xc

the own vessel and a point
located on the bottom of the
target
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270

Different values for a and 8 depending on the ownship’s position in relation to the target are listed

in Table 10. As shown in the table, once the ownship is located in the target’s aft, 8 is downrange,

180

and a is up range.

270

360 :0

Tanker

180

Figure 25 calculation of Angles

90

Table 10 Different Ranges for a and 0 to Calculate the Heading Threshold

Ownship’s position in a 0 Downrange | Up range
relation to the target
- sededse2 |

Port 90 —-p 90 +y a 0
Starboard 270 -8 270 +y a 0
Fore 90+ 270 —y a 0
Aft 270+ 90 —y a
Fore-Port 90+ p 90 +vy a 0
Fore-Starboard 270 - 270 —y a 0
Aft-Port 90 - 90 —y a 0
Aft-Starboard 270+ 9270+vy a 0
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Alongside 90 —-p

270 —y a

a and 6 in the simulator had different values than the amounts that were calculated by the
equations. Equation 10 and Equation 11 required (X, y) coordinates of two points for calculating
the angle, while the longitude and latitudes of the points were available in the simulator. Using
longitude and latitudes of the points in the equation resulted in some differences in the angles. So
the differences between angles calculated by the equation and the simulator was due to the different
metric units. Table 11 illustrates the angle differences in the equations and the simulator. Using
these angles, a cubic equation in Figure 26 was calculated for translation of angle differences.

Based on Equation 12, the angles were converted to desired ones, and appropriate « and 6 were

computed. Then these thresholds were used to extract some common features.

Table 11 Difference Between Angles in Simulator and Equations

Angle in the simulator Angle according to the equation
89.20 88.45
88.39 86.90
83.53 78.34
69.98 53.47
56.77 36.93
43.53 25.10
32.69 17.60
22.53 11.57
14.22 7.15

2.86 1.47
1.74 0.85
0.70 0.38

85




y = 1E-04x3 - 0.0228x? + 2.2484x - 0.3535
RZ=1

90
80
70
60
50
40

30

10

0 10 20 30 40 50 60 70 80 90 100

Figure 26 Cubic Equation Using Angles in Simulator and Equations

Equation 12 Cubic

y =10"*x3 — 0.0228x2 + 2.2484x — 0.3535 Equation for
Changing Angles

The DSS should convert some parameters from the simulator log files into features (Table 7).

Features for the DSS that should be calculated from the log file include

e F1- Aspect: this feature shows the vessel pathway in relation to the target. Based on cases
in the case base that were obtained from the participants’ techniques in the interview or

participants’ action in the simulation exercises, three values were assigned to the aspect:

1. J-approach: getting close to the target from below the zone

2. Direct: getting close to the target directly
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3. Up-current: getting close to the target from up-current of the target (Figure 27)

G

J-approach Direct Up-current

Figure 27 Aspect Options

To calculate this feature from the log files, the heading of the ownship vessel was compared
to the thresholds (a and 6) that were calculated in section 3.3.1.2.2 using latitude and
longitude of the vessels. Since the aspect shows how the ownship is moving toward the
target, this feature will be calculated at the beginning of each participant’s performance
and does not change during the operation. Based on the starting position of the ownship
vessel in each scenario, the aspect will be calculated in the first 3 minutes of each operation
and will be used until the end of the scenario. Accordingly, If the heading of the ownship
was more than the up range of the threshold (mostly 8 and in some cases a), the aspect
was considered as J-approach. If the heading of the ownship was between a and 6, the
aspect was considered as Direct. Finally, if the heading of the ownship was less than the
downrange of the threshold (mostly @ and in some cases ), the aspect was considered as

Up-current.
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e F2- Area of focus: this attribute was considered for identifying where the seafarers are
spending most of their time clearing the ice. Based on cases in the case base, the values for

this attribute can vary, including:

1. above the zone (alongside the target),
2. above the vessel or target, and

3. inthe zone (Figure 28).
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Figure 28 Area of Focus Options

The latitude and longitude of the ownship vessel were utilized to calculate this feature from
the log file. First, based on the explanation in section 3.3.1.2.1, the ownship vessel’s
position with respect to the target and the zone was considered in each timestamp. Then,
the position that occurred more than others during the operation was detected and assigned

to above the zone (AZ), above the vessel (AV), or in the zone (2).

e F4- Orientation to the target vessel: this feature determines the ownship vessel’s orientation

in relation to the target. Based on cases in the case base, this attribute has four options:

1. ownship vessel’s bow facing the target
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2. ownship vessel’s stern facing the target
3. ownship is parallel with the target,
4. ownship’s orientation is constantly changing (this case occur when the circular

technique is used) (Figure 29).
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Figure 29 Orientation of Vessel’s Options

The heading, latitude, and longitude of the ownship vessel from the log file were utilized

to calculate this feature. If the circular technique was used by the participant, the orientation
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was assigned to Changing. The parallel option was checked using the vessel heading, the
scenario type, and the vessel’s position. Finally, using the explanation in section 3.3.1.2.2,
« and 6 thresholds were calculated to create an interval. If the ownship vessel’s heading is
in between this interval, the ownship vessel’s bow is facing the target. Otherwise, the vessel

orientation will be assigned to Stern.

F7- Distance from the vessel: this feature shows how far the ownship vessel is from the
target. For calculating this feature, the latitude and longitude of the target and ownship
vessel were used. Using the position of the ownship vessel in relation to the target several

points were used to calculate the distance.

For example, as shown in Figure 30, if the ownship vessel is near the top of the target, its
distance from the top point is calculated. If it is in the middle of the target, its distance from
the center point of the target is considered. Otherwise, if the ownship vessel is close to the

bottom of the target, its distance from a bottom point on the target is used.
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Figure 30 Distance from the Target Example

F10- Ice Concentration: This feature was not used for retrieval purposes. It was considered

as a threshold to identify whether a case should be considered positive or negative in the

90



retain procedure. So, this step could be seen as a post-processing step for the retaining
process in the CBR and was obtained using Experiment 2 scripts (Thistle, 2019). For
computing this feature, screen captures of the zone before ice management and during ice
management scenarios were taken. Using these images, the amount of ice that was

removed from the indicated area was calculated automatically using the MATLAB scripts.

3.3.2. Decision tree development as a retrieval method used in the DSS

A decision tree generates a tree from the case base with defined classes characterized in terms of
certain attributes (Musharraf et al., 2020). Given the case base shown in Table 6, for each case, the
technique was considered as the solution part, and the rest of the features were assigned to the
problem part. Therefore, the vessel maneuvers or techniques were considered as the class labels,
and samples were grouped for which participants used the same technique.

The training case base was fed to the decision tree algorithm to fit a model. Considering these data
as a set of attributes (A1, Az,..., An), values ([V11, Vo, ..., Vak], [V21, V22, ..., V], ..., [Vn1, Vn,

..., Vnk]), and classes (ID1, IDz, ..., IDm), the decision tree model could be shown in Figure 31.

Figure 31 Classifying Cases Based on the Characteristic of Attributes (Musharraf et al.,

2020)
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This model could be used any time to retrieve the most similar class to a new case. To create such
a model, the CART algorithm - a classification and regression tree - was utilized. As shown in
Table 6, the case base consisted of numerical and categorical variables. The CART algorithm is

capable of handling these two kinds of variables.

Once the generated model determined the class of the new case, it is time to specify which sample
of the class is the most similar paired attribute-value to the new case using a similarity metric.
Cosine similarity was used in this thesis among different similarity metrics, such as Euclidean and
Manhattan. Since the magnitude of the new case vector does not matter in this study, Cosine

similarity is an appropriate metric for measuring distance.

In the next chapter, more details about generating the decision tree using the training data set and

prediction accuracy using the test data set are discussed.

3.4.Smoke testing

Smoke testing is a software testing process to evaluate software functionalities, and it involves a
number of tests run to confirm the stability of the software. In fact, the purpose of smoke testing
is to reveal if the software has functionality and works properly to be used for further works by the
research team (Gerardi, 1984). To determine whether the designed DSS is stable or not, smoke

testing was implemented in the ice management simulator.

The procedure followed for testing the DSS is demonstrated in Figure 32. The outline of this

experiment is shown in Appendix Q: DSS Testing Session Outline.
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In addition to the steps mentioned in the procedure, one of the researchers was responsible for
loading and initiating scenarios in the simulator, screen capturing scenarios every three minutes,
saving data collected from the scenarios, and communicating with seafarers during the simulation

exercise via VFH radio.

The whole process of this test was somewhat similar to the pilot session, but the DSS was added
to it. At the beginning, the participant completed the experience questionnaire (Appendix R:
Experience Questionnaire) to collect information about the participant’s experience at sea and/or
sea ice. This data was used later to see whether the DSS causes a considerable difference in ice
management effectiveness once participants have different amounts of experience. In the setup,
the simulator’s environment and controls were shown to the participant, and different parts of the
simulator’s bridge console were explained to them (Appendix P: Introduction to Controls Script).
Then, the participant was shown the DSS user interface and how it works. A description of the
user interface used in the experiment was explained in section 3.4.1. The setup lasted about twenty

minutes.
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Figure 32 Experimental Procedure Flow Chart for the DSS Testing

As shown in Figure 32, the next step was explaining the habituation scenarios and asking the
participant to conduct them in the simulator. The habituation scenarios took approximately 15

minutes to complete.

In the next step, the participant entered the simulator and completed the first exercise using the
DSS. Anytime that the participant asked for assistance, the time of the request and the suggested
cases were saved into the DSS for further analysis. After completing the first exercise, the

participant returned to the debriefing station, and the debriefing was performed.

During the debriefing, researchers showed the screen captures of the scenario (captured by
researchers while execution) to the participant and asked the seafarer to explain their strategies
and any changes in their execution based on the DSS suggestion, if there were any. The debriefing

questionnaire is provided in Appendix S: Debriefing Questionnaire for the DSS Testing.
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At the end of this phase, the participant rated their performance using the DSS on a scale from 1
to 5, where one was not very successful, three was somewhat successful, and five was very

successful.

Similarly, all steps, including simulator exercises, and debriefing were repeated for the other two
scenarios. At the end of the session, the participant answered some closing questions about the
user-friendliness of the DSS and how the system could be improved (Appendix T: Exit Interview

for the DSS Testing). The whole session lasted approximately two hours.

3.4.1. DSS User Interface

The user interface of the DSS is shown in Figure 33. To operate the DSS, the participant was first
asked to choose the scenario that they planned to complete. In the first frame of the DSS, the user
is provided with some information about the available scenarios, such as a diagram of each

scenario, each scenario’s objectives, and the allocated time for executing each scenario.
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Figure 33 DSS User Interface

After choosing a scenario, the participant is shown a second frame, as illustrated in Figure 34. The

following are the different components in the second frame:

e Back to Main Menu: this button lets the participant return to the first frame to choose a
different scenario.

e Ownship Properties: in this section, the ownship vessel’s features will be shown. These
features are used to retrieve similar cases from the case base. At the beginning of the
participation, some of the feature values are null, but they can be calculated during the
scenario. As such, the values of these features will be updated after a few minutes of

running the scenario.
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e Assist button: this button activates the Suggested Solution and Suggested Approach frame,
meaning that the features and the diagram of the most similar case will be shown on the
screen.

e Suggested Solution: the features of the most similar case will be displayed.

e Suggested Approach: the suggested diagram of the retrieved case will be shown.

e More Info: this button provides a more detailed description of each solution and the

suggested approach.

Suggested Solution

Vessel Speed O

Vessel Heading @

Figure 34 DSS User Interface After Choosing a Scenario

Each feature has a question mark icon displayed next to it. As shown in Figure 35, whenever the

cursor hovers over the icon, the description of that feature is provided.
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Suggested Solution

Vessel Speed © NA

Vessel Heading @ NA

A

Aroaol Focus €  \haro seafarer is focusing most of the ice clearing timet
AZ: Above Zone

AV: Above Vessel or Target
Z:In Zone

Aspect @

Orientation to Target @ NA

Distance from Target @

Maneuver @

Figure 35 Description of features in DSS User Interface

Figure 36 and Figure 37 illustrate the information the DSS provides a participant when they seek
assistance for the selected emergency scenario. As an example, using the retrieval method, the
DSS searched for a solution to the new situation (case Z25-3 in this example), and case Y21-3 was
predicted as the most similar case to Z25-3. As shown in Figure 36, all information about Z25-3
and Y21-3 was illustrated in Ownship Properties and Suggested Solution boxes, respectively. The
suggested diagram for Y21-3 was shown in the Suggested Approach box for more clarification as
well. By clicking on the More Info bottom, all tips about implementing the solution could be

retrieved (Figure 37).

98



Suggested Solution

Vessel Speed ©

1. Create a direct route to get close ahead
of the FPSO (speed under 3 knots. If the
FPSO was on fire choose 5 knots)

2. Position the support vessel as a block

3. Once the zone is clearing from the ice,
move from DP2 (leeway) to DP3 (broadside
pushing). (position to the North with
distance=100m)

4. Thrust to the west, try to clear out the
zone, then go back and forth to make a
couple of thrust passes (The range for the
broadside pushing depends on the
situation, but try to clear the area closer to
the FPSO in the zone).

Technique [ L+PW
o]

AV

OrientationtoTarget | Stern .

Figure 37 An Example of a Suggested Solution Details
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Chapter 4: Results

This section provides a description of the analysis used to select the similarity matching algorithm,
describes the decision tree method used, and finally explains the smoke testing used to evaluate

the DSS functionality.

4.1. Analysis of results

After gathering all the common features from the simulator log file, the DSS can retrieve the most
similar case. Among the various similarity-based methods, classification by similarity algorithms
were performed in this study for retrieval purposes. The cross-validation algorithm was used to
evaluate machine learning models on the case base. Using the same data for training and testing a
model causes overfitting and would fail to suggest the useful prediction of yet-unseen data. To
have a better performance, cross-validation was used to divide data into training and testing data

sets.

K-fold cross-validation randomly splits data into K approximately equal-sized subgroups (Berrar,
2018). It uses K-1 parts to fit the model and the remaining parts for testing the performance of the
generated model. This process is repeated K times, and in each iteration, a different group or fold
is considered as the test data. Finally, using Equation 13, the average performance would be
calculated. In this equation, K represents the number of folds, and P represents the performance of

the test data using a given fold (Delen, Topuz, & Eryarsoy, 2020).

1 Equation 13 Cross-
AP = EZ P; validation’s Average
i=1 Performance

100



As an example, Figure 38 shows a schematic display of 5-fold cross-validation by Berrar (2018).
In this figure, n observations (1, 2, 3,..., n) were randomly split into five groups. In each fold, the
group shown in beige was considered the testing data and the remaining parts shown in blue were

considered training sets.

}

Figure 38 5-fold Cross-Validation (Berrar, 2018)

In the optimal selection of K, both training and test datasets would properly contain a complete
description of conditions. Also, the best value of K would depend on a number of attributes of the
dataset (Marcot & Hanea, 2020). To evaluate the generalizability and stability of the machine
learning models, the k-fold cross-validation with different sizes of training and test sets was
examined in this research. The ratios of 67:33% (k=3), 80:20% (k=5), and 90:10% (k=10) were
tested as the size of the training and test data set. The value of K=5 resulted in better precision.
Therefore, to evaluate the similarity-matching performance of the DSS a 5-fold cross validation

was used.

Table 12 shows the total number of samples in each class for different scenarios in the case baes.
Based on different solutions or vessel maneuvers, class IDs were assigned to each scenario.

Overall, 5 solutions for Sc.1, 7 solutions for Sc.2, and 6 solutions for Sc.3 resulted in 5, 7, and 6
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class IDs for each scenario, respectively. As it is illustrated in Table 12, the data is imbalanced and

the classes are not represented equally. That means that some classes have only one sample,

whereas some others have more.

Table 12 Number of Samples in Each Class for Scenarios

Class Sc.1 Sc.2 Sc.3

ID Solutions/vessel | Number | Solutions/vessel | Number | Solutions/vessel | Number
maneuver of maneuver of maneuver of

samples samples samples

1 L+PW 15 S 1 P 11

2 L 37 P+PW 10 PW 1

3 P+PW 6 L+PW 2 L+PW 8

4 P 4 S+PW 1 P+PW 17

5 PW 4 PW 2 L 6

6 - - C 29 L+P 3

7 - - P 23 - -

Selecting an inappropriate measurement metric for imbalanced data can be dangerous. To prevent

obtaining an incorrect conclusion, applying a proper metric is vital (Shilaskar, Ghatol, & Chatur,

2017). For example, for the imbalanced data, considering solely the prediction accuracy results in

a bias toward the majority class (Haixiang et al., 2017). Therefore, to estimate classification

effectiveness, other performance evaluation metrics should be applied that consider class

distributions, such as sensitivity (recall), specificity, and the geometric mean (Elamrani Abou

Elassad, Mousannif, & Al Moatassime, 2020). These performance evaluation metrics were

presented in this thesis.

To provide a comprehensive performance picture, four comparison categories were used.

1.

2.

3.

the rate of correctly labeled examples (accuracy)
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the capability to detect how well a test can identify true positive (sensitivity)

the capability to detect how well a test can identify true negatives (specificity), and



4. the geometric mean (G-mean), which is a measure of the balance between the sensitivity

and specificity metrics.

These metrics were calculated by employing the confusion matrix, which is a summary of

predicted outcomes on a classification task.
A confusion matrix consists of four values (Ting, 2017):

1. True positives (TP): the number of accurately predicted positive cases,

2. True Negatives (TN): the number of accurately predicted negative cases,

3. False Positives (FP): the number of negative cases that are incorrectly predicted as positive,
and

4. False Negatives (FN): the number of positive cases that are incorrectly predicted as

negative.

Equation 14, Equation 15, Equation 16, and Equation 17 (Pristyanto, Pratama, & Nugraha, 2018)

are the performance metrics that were calculated based on the confusion matrix.

TP + TN

A = Equation 14 Accurac
CWAY = TP ¥ TN + FP + FN d y

e TP : o
Sensitivity= TP T FN Equation 15 Sensitivity
Specificity= v i ifici

pecificity= TN + FP Equation 16 Specificity
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G = F N Equation 17 G
“mean = | e p quation mean

To evaluate the classification performance of the DSS, four machine learning methods were
performed under the same conditions: random forest (RF), logistic regression (LR), support vector
machine method (SVM), and decision tree (DT). Using the 5-fold cross-validation, a model was
fitted with these four algorithms on the training dataset. Then, to evaluate the performance of each

model, they were tested by the test dataset.

During the 5-fold cross-validation, one confusion matrix was generated for each fold and resulted
in 5 different confusion matrices for each run. Figure 39 shows a sample of confusion matrices for
Sc.3. These confusion matrices were captured from fold number 3 while evaluating RF, LR, SVM,
and DT methods. Since there were 46 cases in Sc.3, using the 5-fold cross-validation, 37 cases
were assigned to the training data set and 9 cases were considered as the test data. As shown in
Figure 39, the confusion matrix contains two labels including the actual labels and predicted labels.
The actual label represents the actual class ID of the test data’s samples. The predicted label
represents the class ID that was predicted based on the model. The values in the confusion matrix
show the number of correct (on the diagonal) and incorrect (not on the diagonal) predictions, and
they are broken down by each class. Also, the confusion matrix uses a color map for boxes, and
different colors are assigned to different values. In the presented confusion matrices, the lighter
colors show the higher values. In Figure 39 the actual class ID and the predicted class ID are as

follows:

e actual=11,2,3,3,3,4,5,5,6]

e predicted by RF=[1,5,3,4,4,4,1,1,4]
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Predicted by LR=[1,5,3,5,5,4,1,1,4]

e Predicted by SVM=[1,5,4,5,6,4,1,1,4]

Predicted by DT=[1,5,3,3,3,4,1,5,6]

ConfusionMatrix_RF_Emergency K=3

ConfusionMatrix_LR_Emergency_K=3

3.00 3.00
2.50 2.50
o
_ 2.00 _ 2,00
o o
E £
Ei 1.50 3 1.50
= (3
< < o
1.00 1.00
wy
0.50 0.50
o
0.00 0.00
1 2 3 4 5 6
Predicted label Predicted label
RF LR
ConfusionMatrix_SVM_Emergency_K=3 ConfusionMatrix_DT_Emergency K=3
3.00 3.00
2.50 2.50
2.00 2.00
o o
B =
| =
E 150 3 1.50
2 1=
< <
1.00 1.00
0.50 0.50
0.00 0.00
Predicted label Predicted label
SVM DT

Figure 39 Example of Confusion Matrix for Emergency Scenario in Fold 3 of Cross-
Validation

To have one confusion matrix for each method, 5 confusion matrices generated from each fold of

cross-validation were summed to represents a model’s performance for all of the data. Figure 40,
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Figure 41, and Figure 42 show the final confusion matrix diagrams captured for the Sc.1, Sc.2, and

Sc.3 respectively.

ConfusionMatrix_RF_Leeway ConfusionMatrix_LR_Leeway

35

35
30 30
25 25
° °
| 20 = 20
C C]
g g
< 15 < 15
10 10
5 5
1 2 3 4 5 0 1 2 3 4 5 0
Predicted label Predicted label
RF LR
ConfusionMatrix_SVM_Leeway ConfusionMatrix_DT_Leeway
35 35
30 30
25 25
2 2
= 20 = 20
o o
2 k=
o (=]
< 15 < 15
10 10
5 5
0 1 2 3 4 5 0
Predicted label Predicted label
SVM DT

Figure 40 Confusion Matrix for Sc.1
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Actual label

Actual label

ConfusionMatrix_RF_Pushing ConfusionMatrix_LR_Pushing

25
20
2
15 =
o3
2
b
10
5
0
Predicted label Predicted label
RF LR
ConfusionMatrix_SVM_Pushing ConfusionMatrix_DT_Pushing
25
20
2
15 E
-]
a2
(=]
<
10
5
0
Predicted label Predicted label
SVM

DT

Figure 41 Confusion Matrix for Sc.2
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ConfusionMatrix_RF_Emergency ConfusionMatrix_LR_Emergency

16 16
14 14
12 12

2 0 £ 10
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< < ‘
6 6
4 4
2 2
0 0

1 2 3 4 5 6 1 2 3 4 5 6
Predicted label Predicted label
RF LR
ConfusionMatrix SVM_Emergency ConfusionMatrix DT Emergency
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12 12
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6 6
4 4
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0 0

1 2 3 4 5 6
Predicted label Predicted label
SVM DT

Figure 42 Confusion Matrix for Sc.3

Performance metrics received by each algorithm are shown in Figure 43, Figure 44, and Figure 45

for Sc.1, Sc.2, and Sc.3 respectively.
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Class Statistics:

Classes 1 2
Population 66 66
P: Condition positive 14 37
N: Condition negative 52 29
Test outcome positive 13 49
Test outcome negative 53 17
TP: True Positive 6 37

True Negative 45 17

False Positive 7 12

False Negative 8 0
TPR: (Sensitivity, hit rate, recall) 0.428571 1
TNR=SPC: (Specificity) 0.865385 0.586207

ACC: Accuracy 0.772727 ©.818182

Class Statistics:

Classes 1
Population 66
P: Condition positive 14
N: Condition negative 52
Test outcome positive 14
Test outcome negative 52
True Positive 7
True Negative 45
False Positive 7
False Negative 7
(Sensitivity, hit rate, recall) 0.5 1
TNR=SPC: (Specificity) ©.865385 0.724138
ACC: Accuracy 9.787879 0.878788

Class Statistics:

Classes 1 2
Population 66 66
P: Condition positive 14 37
N: Condition negative 52 29
Test outcome positive 14 32
Test outcome negative 52 34
TP: True Positive 9 27
TN: True Negative 47 24
FP: False Positive 5 5
FN: False Negative 5 10
TPR: (Sensitivity, hit rate, recall) 0.642857 0.72973
TNR=SPC: (Specificity) 9.903846 0.827586

ACC: Accuracy 0.848485 0.772727
SVM

Class Statistics:

Classes 1 2
Population 66 66
P: Condition positive 14 37
N: Condition negative 52 29
Test outcome positive 14 39
Test outcome negative 52 27
TP: True Positive 10 33
TN: True Negative 48 23
FP: False Positive 4 6
FN: False Negative & &
TPR: (Sensitivity, hit rate, recall) ©.714286 ©.891892
TNR=SPC: (Specificity) 0.923077 ©0.793103
ACC: Accurac 0.878788 0.848485

DT

0.966102
0.863636

0.949153
0.848485

0.898305
0.80303

9.428571
9.949153
9.893939

0.983607
0.909091

0.4
0.983607
9.939394

0.2
0.901639

0.848485

0.2
0.95082
9.893939

Figure 43 Classification Performance Metrics for Sc.1
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Class Statistics:

Classes

Population

P: Condition positive

N: Condition negative

Test outcome positive

Test outcome negative
True Positive
True Negative

False Positive

False Negative
TPR: (Sensitivity, hit rate, recall)
TNR=SPC: (Specificity)
ACC: Accuracy

Class Statistics:

Classes

Population

P: Condition positive
N: Condition negative
Test outcome positive
Test outcome negative
TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative
TPR: (Sensitivity, hit rate, recall)
TNR=SPC: (Specificity)
ACC: Accuracy

Class Statistics:

Classes

Population

P: Condition positive

N: Condition negative

Test outcome positive

Test outcome negative

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

TPR: (Sensitivity, hit rate, recall)
TNR=SPC: (Specificity)

PPV: Pos Pred Value (Precision)
ACC: Accuracy

Class Statistics:

Classes

Population

P: Condition positive

N: Condition negative

Test outcome positive

Test outcome negative
True Positive
True Negative
False Positive
False Negative

TPR: (Sensitivity, hit rate, recall)
TNR=SPC: (Specificity)
PPV: Pos Pred Value (Precision)

ACC: Accuracy

1
0.985294

0.985294

NaN
0.985294

0.985075
0
9.970588

2

68

1e

58

7

61

4

55

3

6
0.4 0
0.948276 1 1 1
0.867647 ©.970588 0.985294 0.985294

2

68

10

58

8

60

6

56

2

4

0.6
0.965517 0.984848 1
0.911765 0.955882 0.985294 0.985294

2
68
10
58
12
56

9
55

3

1

0.9

6

68

30

38

35

33

26

29

9

4
0.866667
0.763158
0.808824

6

68

30

38

39

29

27

26

12

3

0.9
0.684211
0.779412

6
68
30
38
33
35
27
32

6

3

0.9

0.948276 0.984848 0.970149 0.955224 0.842105
0.75 0 0 0 0.818182
0.941176 0.955882 9.955882 9.941176 0.867647

SVM

2
68
10
58
11
57

8
55

3

2

0.8 0.5

6
68
30
38
25
43
24
37

1

6

0.8

0.948276 0.984848 0.985075 0.925373 0.973684

0.727273 0.5 0 0

0.96

0.926471 9.970588 0.970588 0.911765 0.897059

DT

Figure 44 Classification Performance Metrics for Sc.2
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Class Statistics:

Classes 1 4
Population 46 46
P: Condition positive 11 17
N: Condition negative 35 29
Test outcome positive 12 26
Test outcome negative 34 20
TP: True Positive 9 16
TN: True Negative 32 19
FP: False Positive < 10
FN: False Negative 2 1
TPR: (Sensitivity, hit rate, recall) 0.818182 0.125 9.941176 0.5
TNR=SPC: (Specificity) 0.914286 0.973684 9.655172 0.925
ACC: Accuracy 0.891304 0.978261 0.826087 0.76087 0.869565

Class Statistics:

Classes 1 4
Population 46 46
P: Condition positive 11 17
N: Condition negative 35 29
Test outcome positive 12 23
Test outcome negative 34 23
True Positive 7 14
True Negative 30 20
False Positive 5 9
False Negative 4 3
TPR: (Sensitivity, hit rate, recall) 0.636364 0.375 0.823529
TNR=SPC: (Specificity) 0.857143 ©.977778 ©.894737 ©0.689655 0.925

ACC: Accuracy 0.804348 0.956522 0.804348 9.73913 0.804348

Class Statistics:

Classes 1 4

Population 46 % 46

P: Condition positive 11 17

N: Condition negative 35 29

Test outcome positive 10 20

Test outcome negative 36 26

TP: True Positive 8 16

TN: True Negative 33 ‘ 25

FP: False Positive P 4

FN: False Negative 3 1

TPR: (Sensitivity, hit rate, recall) 0.727273 0.5 0.941176 9.166667

TNR=SPC: (Specificity) 0.942857 9.933333 0.973684 0.862069 0.9
: Accuracy 0.891304 0.913043 0.891304 0.891304 0.804348

Class Statistics:

Classes 1
Population 46
P: Condition positive 11
N: Condition negative 35
Test outcome positive 9
Test outcome negative 37
True Positive 8
True Negative 34
False Positive 1
False Negative 3
TPR: (Sensitivity, hit rate, recall) 0.727273 0.875 1 0.833333 0.666667
TNR=SPC: (Specificity) 0.971429 1 1 0.965517 2.9 0.976744
ACC: Accuracy ©0.913043 9.978261 0.978261 0.978261 0.891304 0.956522
DT

Figure 45 Classification Performance Metrics for Sc.3
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The summary of achieved performances from the four algorithms is shown in Table 13. As shown
in the table, there is a large difference in sensitivity and specificity values due to the inherent bias
towards bigger class. Also, considering solely the prediction accuracy results in a bias toward the
majority class for the imbalanced data. Therefore, another performance evaluation metric like G-
mean should be considered to evaluate the classification effectiveness. As shown in Table 13, the

decision tree has the best performance among all algorithms (shown in bold).

Table 13 Summary of Classification Metrics for Four algorithms

Scenario Sc.1 Sc.2 Sc.3

Method RF LR SVM DT RF LR SVvM DT RF LR SVvM DT

Accuracy | 86.00 88.00 82.40 88.40 | 91.42 91.42 9257 93.71 | 87.67 83.83 88.17 95.00

Sensitivity | 28.60 38.00 31.40 44.60 | 28.70 30.14 34.42 4243 |39.83 30.66 44.50 68.50

Specificity | 87.40 90.00 88.40 91.20 | 93.00 92.85 94.71 96.29 | 7450 89.17 92.50 97.00

G-mean | 49.99 58.48 52.68 63.77 | 51.66 52.90 57.09 63.92 | 54.47 52.29 64.15 81.51

4.2. Decision Tree for the Scenarios

To create a final model, an algorithm would be fitted to the entire dataset (Berrar, 2018). Therefore,
after selecting the decision tree as a chosen machine learning algorithm, the final tree model was
built using the entire case base for making predictions on new data. Figure 46, Figure 47, and
Figure 48 show the decision tree model created for Sc.1, Sc.2, and Sc.3. These trees were built
based on the CART algorithm using Scikit learn library in Python (Pedregosa et al., 2011). In the
CART tree, the information gain is used as an attribute selection measure and entropy computed
to split the nodes. As shown in the figures, leaf nodes (pure nodes) are considered as a class ID

and show the number of samples in each class. Therefore, a total of 5, 7, and 6 class IDs are
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predictable in the tree for Sc.1, Sc.2, and Sc.3, respectively. Whenever the search ended at leaf

nodes, their class ID would be the predicted result.

For more clarity, in Figure 46, the green leaf with class=2 shows the class ID=2 with 39 samples

in the case bhase.

Vessel's Controls<=0.5

entropy=0.622
samples=66
value=[14,37.7,5,3]
class=2
Average heading <= 44.91 Vessel speed=<= 0.455
entropy=0.336 entropy=0.455
samples=46 samples=20
value=[1,37,0,53] value=[13,0,7,0,0]
class=2 class=1

Average heading<=271.87

value=[2,0,6,0,0]
class=3

entropy =0.5
samples=2

value=[1,0,1,
0,0,]

class=1

Figure 46 Decision Tree Model for Sc.1
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Vesscl's Controls <= 0.5
entropy=0.668
samples=68
value={1,10,2,1,1,30,23]
class=6

Area of focus <= 1.5

o Distance from target vessel <= 110.985
-mpla-s’d” -nplu-'l‘:,
value=(1,0,0,0,1,29,23] value=(0,10,2,1,0,1,0]

Vessel speed <= 0.85
entropy =0.56

samples=5
value={0,3,0,1,0,1,0)
class=2
Vessel speed <= 0.41
value=(0,0,0,0,

0,1,1]
class=6

Figure 47 Decision Tree Model for Sc.2
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Vessel's Controls <= 0.5

entropy=0.754
samples=46
value=[11,1,8,17,6,3]
class=4
Average heading <= 245.795 Vessel speed<=0.57
entropy=0.512 :ept_awy-o.ﬁs
~ samples=18 l_um.o’wa 1,7’0'3]
value=[11,1,0,0,6,0] vl ,17
class=1 class=4

Area of focus<=1.5
entropy=0.48
samples=5
value=[3,0,0,0,2,0,]
class=1

Figure 48 Decision Tree Model for Sc.3

Figure 49 shows a searched route for a new case in the tree model for Sc.3 (Figure 48). As shown
in Figure 49, the new case is similar to a case with class ID=3 consisting of 8 samples in the

emergency case base.

Once the new case class is predicted using the decision tree, the DSS searches to retrieve the most
similar sample of the corresponding class. This step is done using the Cosine distance metrics.
Using the Cosine similarity metric, the most similar case to the new case among 8 samples of class

3 is retrieved.
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Vessel’s Controls <= 0.5
entropy=0.754
samples=46
value=[11,1,8,17,6,3]
class=4

Vessel speed<=0.57
entropy=0.538
samples=28
value={0,0,8,17,0,3]

class=4

Average heading <= 166.51

Figure 49 An Example of Selected Route for a New Case

4.3. Smoke Testing Result

Smoke testing of the DSS functionality was performed using four participants in the ice
management simulator. However, after one of the sessions (participant R20), it was revealed that
the DSS did not receive real-time data from the simulator and did not generate solutions based on
the vessel’s situation. Therefore, the result from this participant was not included in the thesis. The

performance of the three remaining participants is described for the three different scenarios.

Table 14, Table 15, and Table 16 illustrate examples of executing Sc.1, Sc.2, and Sc.3 by the three
participants using the DSS. These tables include timestamps in which participants asked for
assistance, screen captures of their situation while they requested help, and DSS suggested

solutions diagrams.

Prior to the participants’ implementation, some information was given to the participants:
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1. The DSS recommends not asking for help at the onset of the scenario because the system
needs time to receive real-time data from the simulator and to calculate features for
retrieving the most similar case.

2. The DSS may provide the same solution for a period of time because the solution depends
on the vessel’s situation, and if it does not change, there would not be any update for the
solution.

3. Inaddition to the suggested approach diagram, some features of the most similar case were
given to the participants. Also, more detailed information was provided for some solutions
(not all), and participants had the option to review the additional guidance for more clarity.

4. Following the DSS’s suggested approach is optional, and the participant could ignore the
suggestion and implement their own approach. Thus, the final performance could result

from DSS suggestions, participant experience, and their own strategies.

Three examples are used to demonstrate the DSS smoke testing performance in the three scenarios,
leeway, pushing and emergency scenarios. First, Table 14 illustrates executing Sc.1 by participant
K13. As shown in the table, although the participant asked for assistance at the beginning of the
scenario, it seems that the DSS provided an appropriate approach for the user. The participant also
asked for assistance a couple of times between 2 and 4 minutes, however the DSS provided the
same solution as the vessel’s situation did not change a lot. For this example, the DSS suggested
a total of four solutions that depended on the vessel’s situation. Overall, based on the smoke
testing, it seems that the DSS provided appropriate solutions for Sc.1. The participant’s final

performance can be seen in Figure 50.
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Table 14 Execution of Leeway Scenario Using the DSS

DSS Solution

K13 — Sc.1. Screen captures

Time

2-4

118



5-6
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20%: 0.07 mfs
COG: 165.43¢

Figure 50 The Final Performance of Participant K13 in Sc.1

The second comparison for the smoke test was for the pushing scenario. Table 15 shows Sc.2
implemented by participant FO9. At the beginning of the scenario, the participant asked for
assistance, and the DSS suggested a circular approach above the platform. This approach seems
not an appropriate strategy because of the vessel’s distance from the platform and the mount of ice
load on it. Therefore, the participant decided not to follow it. Then, at 4 minutes, the participant
asked again for help, and the DSS suggested another strategy that involved using a leeway strategy
above the platform. In fact, the new solution at timestamp 4 minutes meant to instruct the
participant to ignore the ice under the platform and focus on clearing the ice above the platform
because the drift would clear the ice under the platform. Unfortunately, this explanation was not
provided in the DSS, so the participant could not understand the purpose behind this solution, and

tried to follow their own approach, which was a circular approach around the platform.
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The participant’s choice to follow their own approach occurred with other proposed solutions from
the DSS. It is possible this confusion resulted from a mismatch between the DSS suggested
approach and the reasoning for the approach. Sometimes there was not enough explanation for the
solutions and sometimes the participant forgot to click on the more info button to see a detailed

explanation. The participant’s final performance can be seen in Figure 51.

After completing the DSS testing experiment, the problems with inappropriate approaches were
solved by adding a not recommended label to them and providing some tips to improve these
approaches. Also, some explanations were added for more clarity to those approaches that did not
contain a more detailed information. These changes will be explained in detail in Chapter 5:

Discussion.

Table 15 Execution of Pushing Scenario Using the DSS
FO9 — Sc.2. Screen captures DSS Solution

aw L

o
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Figure 51 The Final Performance of Participant FO9 in Sc.2

The final comparison for the smoke test was for the emergency scenario. Table 16 shows Sc.3 that
was implemented by participant D51. In this scenario, the ownship vessel is located in the open
water as a result most of the participants operated the vessel at higher speeds than when they
operated the vessel in the ice. For this reason, if they asked for assistance before or while they
were entering the ice, a case with a high speed in the case base was retrieved (the suggested case
in time 4 minutes in Table 16). This case had a speed of more than 3 knots in its implementation
that is not recommended as it exceeds the safe speed. To solve this problem after the experiment,
the ‘speed’ feature’s priority was changed to a lower priority during the case retrieval.
Inappropriate approaches were not removed from the data set because these cases are necessary
for the learning process. Also, it is important to show inappropriate results caused by inappropriate
strategies so that the participant can be aware of what will happen if they do not change their
strategies in the remaining time of implementing a scenario. As shown in Table 16, except for the
first suggestion, the DSS seems to retrieve the relevant cases to current situations. The participant’s

final performance can be seen in Figure 52.
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Table 16 Execution of Emergency Scenario Using the DSS

Time

DSS Solution
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20

Figure 52 The Final Performance of Participant D51 in Sc.3

The final performance of the three participants in the three different scenarios is shown in Table
17. The performance by the participants can be a result of the DSS guidance and the participant’s

prior experience. However, based on the experience questionnaire, participant FO9 had about three
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years of experience at sea and spent about 1 month in the presence of sea ice, while the two other

participants had no experience.

Overall, the smoke testing of the DSS successfully tested the system in terms of hardware and
software integration. Future works is required to evaluate the effectiveness of the DSS in providing

adequate guidance in ice management operations.

Table 17 Comparing the Final Performance of Participants in Different Scenarios

D51

Sc.1

Sc.2
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Sc.3
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Chapter 5: Discussion

This thesis designed a Cased Based Reasoning Decision Support System (DSS) for marine
operations using expert knowledge. A bridge simulator was used in this research as a useful human
laboratory for both the knowledge capture and testing of the DSS. This section discusses the
findings related to the hypothesis of this research. Specifically, (i) capturing expert knowledge to
classify ice management strategies, detect important ice management factors, and find the
relationship between them; (ii) developing a CBR decision support system; and (iii) testing the
CBR decision support system’s capability of recommending ice management strategies and
offering adjustments during the implementation of a technique in the simulator. This section will

discuss each.

5.1. Knowledge Capture

5.1.1. Ice Management Interviews to Construct the CBR Model and Generate Cases

To develop a preliminary decision support system using a CBR reasoning model, data were
captured from the expert seafarers through interview sessions. Audio recorded from the interviews,
including seafarers’ strategies and their opinions about the cadet examples, was transcribed and
converted into the cases. Although this process was time-consuming, the knowledge captured
using this approach helped categorize ice management strategies and determine the key ice
management factors and the relationship between any of these factors. Domain knowledge to

construct the CBR structure and case feature indices were collected through this step.

In the interview sessions, the seafarers shared their approaches, such as their rule-of-thumb

knowledge, and demonstrated the important aspects that should be considered during ice
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management operations. According to the participants, their ice management strategies were
adaptable. They believed that there are different approaches and techniques to be used for
performing ice management scenarios. That means that their plans to conduct these scenarios were
not fixed, and in some cases, they were a trial-and-error process. When participants were
explaining different steps of their strategies (different decision points), they expressed that they
tend to place the ownship vessel in a way that they can easily change the ship’s position securely
if necessary. That means that if the situation changed and the chosen strategy was not working, the

participants adapt their technique and test another approach.

In addition, the strategies that participants described in the interview were static strategies because
they were considered in ideal situations. Therefore, the information provided in the interview
session about the suggested strategies and their possible results was limited. The data collected

from the cadet examples and simulator exercises aimed to address these limitations.

5.1.2. Determining the Scope of Ice Management Operations Using Cadet Examples

To define the scope of the ice management problem and provide advice about preventing or fixing
problems, different successful and unsuccessful cases should be considered in the CBR model.
Therefore, some examples of appropriate and inappropriate strategies implemented by cadets were
shown to the seafarers, and they were asked to provide some advice and suggestions that could be
used to inform the DSS. These comments and suggestions were used to improve the examples and
then were added as a case to the case base. The interview session described the scenarios in ideal
circumstances. As such, these examples could help participants remark on how an ice management
approach may cause poor performance and which situation needs a higher level of expertise to

implement a strategy more accurately. In addition, this information could be included in the DSS
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to assist users in understanding why the techniques should be executed in a specific way or under
different conditions. Overall, the experienced seafarer’s evaluation of cadet examples helped to

add some advice and instructions for the cases in the DSS.

5.1.3. Improving the CBR Model and Adding Details to Cases Using Simulation Exercises

The CBR decision support system should have enough functionality to suggest ice management
techniques and adjust the strategies during the implementation of the scenarios. The simulation
exercise strengthened the CBR model by providing some details like the scenario outcome to the
case base. For instance, due to the static situation in the interview, cases created from the interview
did not show the level of the technique’s success or failure. On the other hand, cases created from
the simulation exercise contain the strategies’ outcome and subjective measures like the
participants’ priority rankings of their approaches. Also, objective measures such as (1) ice
concentration in the target zone (a measure of ice management effectiveness) and (2) ice loads,

showing how well the ice management technique was executed.

In addition, the simulation exercises contained the dynamic aspects of ice management
approaches. That means that these cases present continuous information for some features like

speed and heading that could not be measured in the interview session.

5.2. DSS Development

5.2.1. Machine learning algorithms for the similarity matching aspect of the DSS

For the similarity matching aspect of the DSS, similarity-based algorithms are suitable. Similarity-

based algorithms are practical learning frameworks for problems that can be solved based on the

130



human similarity judgements. Therefore, different classification by similarity methods were
compared for decision-making purposes including support vector machine method (SVM), logistic

regression (LR), decision tree (DT), and random forest (RF).

In machine learning, model selection and model evaluation are key elements. To do that, using
different performance metrics are necessary for evaluating the effectiveness of a classifier.
Although, prediction accuracy is used as a common evaluation metric for classification, it may be
inappropriate for imbalanced data, because accuracy results in a bias toward the majority class.
Different performance metrics that are more appropriate for imbalanced data were used for model
selection and evaluation including sensitivity, specificity, and G-mean. These metrics consider

class distribution, so they are more reliable metrics measure for imbalanced data.

5.2.2. DSS Changes after Smoke Testing

Based on the results achieved by smoke testing, some changes were made in the DSS. These

changes were as follow:

1. Modifying the DSS user interface

2. Adding general tips for each scenario

3. Adding specific instruction for all cases

4. Labeling inappropriate features and improving the approaches

5. Changing the priority of features for retrieving the similar cases
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According to the participants’ comments and suggestions, some changes were made to the DSS
user interface. Figure 53 shows the new user interface. Comparing to the previous interface

depicted in Figure 34, changes include:

1. Ownship Properties section was removed from the DSS for two reasons. First, there was
no need to include some features like the ownship vessel’s speed over ground and heading
in the DSS because these features would be displayed to the participant using the indicator
screen embedded in the bridge simulator. Based on the participants’ comments, showing
these features on both the bridge screen and in the DSS may cause confusion. Second,
providing some information to the participants about other features like “distance from the
target” and “area of focus was removed. Because experiments that would be implemented
using the DSS in the future are supposed to be compared with the previous experiments of
the research team (Thistle, 2019; Veitch, 2018). In the previous experiments, the
participants did not have any extra information about their vessel’s position. They only
could use the VHF radio to call the bridge officer and ask about their distances. Therefore,
the same situational information was provided for the participants using the DSS.
Otherwise, experiments would not be comparable.

2. Instead of the Ownship Properties section, an Instruction Section was added to the DSS,
and the “More Info” button in the previous version was removed. Based on the smoke
testing experience, sometimes participants forgot to click on the “More Info” button, and
they inadvertently did not success detailed information about a suggested approach.
Consequently, this button was removed from the DSS, and all information was displayed
in the mainframe in the instruction section. This section was divided into general and

specific instructions. In the general part, some tips that were common in each scenario were
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shown to the participant. In the specific instruction, all instruction for a specific strategy

and all notes for improving a strategy was presented.

Back To Main Menue

These features show the properties of The diagram can be similar to your current approach
the suggested approach (shown in

posmte grende “ prerag and situation but it does not mean that it is
approach, your final features could be
close to these values.

There is no information yet!
Vessel Speed © NA

Vessel Heading @ NA

NA

NA

Figure 53 New Version of the DSS

As shown in Figure 54, the DSS asks the participant’s name the first time that they request
assistance. The name will be generated randomly before starting the session for confidentiality
purposes. Using this name, all information related to the participant will be added to a log file for
further analysis. This information includes the timestamps that the participant asked for help and

retrieved cases by the DSS.
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Back To Main Menue

!

Suggested Solution *’ ’ Suggested Approach
rlm'gmm“ The diagram can be similar to your current approach

and situation but it does not mean that it is

There is no information yet!
Please put your user name in this box:

There is no information yet!

0800 (207m)

Figure 54 Saving Result in a Log File with participants’ name

Figure 55 shows the new configuration of the DSS interface after all the changes from the smoke
testing were implemented. In this example, the suggested approach from the DSS is similar to the
user’s current situation, but the suggested approach is not an appropriate strategy on its own.
Therefore, the participant is first shown a “caution” warning in red and then the DSS guides them

in the specific instruction on how to have a better performance.
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1. Work upstream (above zone). Focusing a lot on clearing
downstream (below the platform) is a waste of time because
the current will clear that ice.

5 Amuch(.mule-nomwmﬂhwlnbn)
aspect to
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and ask for assistance again or note to improve the approach:
wﬂmmwmomuuwdamumm

Back To Main Menue

Vessel Heading @ 116.13

Areaof Focus @  Along_Zone

Aspect @ direct

Orientation to Target @ bow

Distance from Target @ 74.53

Maneuver @ Pushing + PropWash

" Suggested Approach

The diagram can be similar to your current approach
and situation but it does not mean that it is

Figure 55 Suggested Solution by the DSS
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Chapter 6: Conclusions

Prevention of safety hazards plays an important role in the offshore and maritime industries. This
study focused on a human-centered approach to develop an early-stage decision support system
(DSS) for offshore ice management operations by applying the case-based reasoning (CBR)
method. The DSS can tackle conventional on-the-job training weaknesses and can assist in the
knowledge exchange between seafarers. Knowledge capture from experienced seafarers was used

to inform the development of an onboard decision support system for ice management operations.

At the knowledge capture phase, three different methods were used for gathering ice management
information from the experienced seafarers, including (1) semi-structured interviews on ice
management approaches, (2) reviewing cadet examples, and (3) performing simulation exercises.
The data gathered from these methods was employed to develop a CBR model and resulted in 34
cases in the case base. CBR is under the assumption of similar problems have similar solutions,
and new problem can be solved by retrieving similar problems or adapting retrieved solutions.
Thus, arich CBR case base is needed before it can match user’s condition. Although 34 cases were
used to develop the CBR case base at the starting point, adding more cases to the case base was
essential to enhance the solution generation and developing an effective DSS. To do so, 140 cases

were generated from the previous simulation experiments (Thistle, 2019; Veitch, 2018).

The aim of this research was the development of an onboard DSS using a CBR case base. Several
machine learning methods has been implemented in the DSS development. In order to verify the
efficiency and the accuracy of each model, four algorithms were selected to compare their
effectiveness, which are the support vector machine method (SVM), logistic regression (LR),

decision tree (DT), and random forest (RF). By observing the experimental results, the decision
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tree gave the best result in comparison to other machine learning methods that were used during
the evaluation. This study is certainly a great starting point for further development with various
types of classification. Future testing of different machine learning algorithms will indicate the

aspects that will need to be modified, with the main purpose to obtain better outcomes.

To test the CBR decision support system’s functionality in a simulated environment and evaluate
the way it generates solution by matching similar cases, the DSS has been set up and installed on
the ice management simulator. The system collected time series data from the simulator during the
implementation of scenarios and provided targeted solutions according to values of different
attributes in each case. The DSS has been successfully tested in terms of hardware and software

integration.

Some limitations in this research should be noted. First, this research mainly focused on the
processes of case retrieval and case reuse and the other two processes, case revision and case
retention are not explained in detail. Moreover, in terms of CBR, similar problems have similar
solutions and new problems can be solved by retrieving similar problems. Therefore, a large case

base is needed to match the user’s conditions.

The number of cases in this study was small and my weaken the reliability of the proposed CBR-
based model in the DSS. Despite the small number of cases, the methodology used for capturing
data is an important aspect of this thesis. In addition, the data collection methods used in the pilot
study required post-processing and interpretation before they were added into the CBR model as
cases. Automating the data could be considered in the future work by parsing and indexing the

case in the existing simulation technology to create more informative and practical DSS.
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Future work will focus on validating the DSS by using the DSS in a simulator setting to support
cadets and seafarers in effectively managing ice during a series of safety critical operations.
Validation of the DSS in a simulated environment would verify the decision support system’s
capabilities of offering onboard guidance on pack ice management techniques. The purpose of this
work would be to determine if participants supported by a DSS would perform better in the ice
management bridge simulator. This research could also analyze the variability amongst
participants’ performances to see if variability would be lower due to the uniformity that the DSS

will give to ice management strategies.
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Appendices

Appendix A: Interview Session Outline

Session Outline

1. Briefing

o Overview of project

o Informed Consent Form
2. Experience Interview

o Experience Questionnaire

o Questions about your seafaring experience
3. Ice Management Factors

o Q1: What factors do you consider for success in ice management?
¢ Rank factors in terms of importance

4. Cadet Training Examples
o Scenario x3 scenarios

* Introduce scenario

*  Q2: How would you execute this scenario?
» Sketch approach and identify decision points on diagram.

= Example x2 examples for each scenario
* \Watch cadet example
* Advice, Recommendations, Feedback, and Decision Points

* Q3: What advice, recommendations, or feedback would you give the
cadet based on their performance in this example?

* Q4: What do you view as the decision points in this example? Decision
points are points where the cadet made a decision to change action. This
could include deviation from the previous ice management approach or
moving from one step of their ice management plan to another.

+ |dentify points for advice, recommendations, or feedback and
decision points in video

* Qb5a: What in this example violated rules that you would consider during ice
management?

» Q5b: What in this example followed rules that you would consider during ice
management?

* Q6: How would you rate the cadet’s performance in completing this scenario on a
scale of 1 to 5 where 1 is not very successful, 3 is somewhat successful, and 5 is
very successiful?

» Q7: What factors would you consider for success in this scenario?
* Rank factors in terms of importance
5. Feedback and Closing
o Your feedback for us about the session
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Appendix B: Informed Consent Form
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Informed Consent Form
Title: Knowledge Capture of Decision Making Processes Using Experienced
Personnel in a Simulator Environment
Researchers: Memorial University:

Dr. Brian Veitch, Professor of Ocean and Naval Architectural Engineering,
Faculty of Engineering and Applied Science, Memorial University,
(709) 864-8970, bveitch@mun.ca

Jennifer Smith, Human Factors Research Coordinator, Safety at Sea Project,
Faculty of Engineering & Applied Science, Memorial University,
(709) 864-6764, jennifersmith@mun.ca

Dr. Mashrura Musharraf, Postdoctoral Fellow, Faculty of Engineering and
Applied Science, Memorial University,
(709) 864-6764, mashrura.musharraf@mun.ca

Fatemeh Yazdanpanah, Graduate Student, Faculty of Engineering and Applied
Science, Memorial University, (709) 864-6764, fyazdanpanah@mun.ca

National Research Council of Canada:

Dr. Jonathan Power, Research Council Officer, National Research Council of
Canada / Government of Canada, (709) 772-8430. jonathan.power@nrc.ca

Benjamin Colbourne, Research Council Officer, National Research Council
Canada — Ocean, Coastal, and River Engineering (NRC-OCRE),
(709) 772-6001, Benjamin.Colbourne@nrc-cnre.ge.ca

Jeffery Brown, Graduate Student and Research Council Officer, National
Research Council of Canada / Government of Canada,
(709) 772-4339, Jetfrey. Brown@nrc-cnrc.ge.ca

You are invited to take part in a research project entitled “Knowledge Capture of Decision Making
Processes Using Experienced Personnel in a Simulator Environment.

This form is part of the process of informed consent. It should give you the basic idea of what the
research is about and what your participation will involve. It also describes your right to withdraw
from the study. In order to decide whether you wish to participate in this research study, you should
understand enough about its risks and benefits to be able to make an informed decision. This is the
informed consent process. Take time to read this carefully and to understand the information given to
you. Please contact the researcher coordinators, Jonathan Power or Jennifer Smith. if you have any
questions about the study or would like more information before you consent.

It 1s entirely up to you to decide whether to take part in this research. If you choose not to take part in
this research or if you decide to withdraw from the research once it has started, there will be no
negative consequences for you, now or in the future.
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Introduction:

This project is being funded by both the National Research Council of Canada and Memorial
University’s Safety at Sea Project which is funded by Natural Sciences and Engineering Research
Council (NSERC), Husky Energy, and InnovateNL.

Advancements in software engineering in recent years has led to the development of vehicles that do
not require people to drive or pilot them. It is believed that these autonomous machines will be used in
the near future, possibly replacing the need to have people behind the wheel.

In order to make sure that these autonomous machines are operating as safely as possible, we would
like them to operate in the same way an experienced person would if they were driving. For the
autonomous machines to be able to do this, we need to be able to tell them what information is
important, and how they should make a decision based on it. For example: if there were an obstacle in
front of a car/ship. the autonomous machine needs to not only to go around it, but to know if it should
go to the left or right, or speed up or slow down.

To provide the autonomous machine with this kind of informed decision-making we will be
performing a study to see if different technologies and methods can capture information experienced
people, like yourself, use to make a decision. We are hoping to be able to determine if these
technologies and methods provide good insight into how decisions are made, and then use them for
future studies other than this one.

Purpose of Study:

You are being asked to be a participant on a study designed to evaluate methodologies and
technologies for capturing what knowledge is used by experienced people to inform their decision-
making in ice management operations.

What You Will Do in this Study:
If you choose to participate in this study, you will be asked to complete a number of ice management
trials in an ice management simulator.

You will work with a member of the research team to schedule times that are convenient for you to
participate in this study. It is expected that the study will take two separate sessions to complete.

Each session will take place at the Safety at Sea project’s Simulation Lab (EN1035) in the
Engineering and Applied Sciences (SJ Carew) building on Memorial University's St. John's campus.

You will arrive at the ice management simulator at the scheduled time where you will meet a
member(s) of the research team.

The sessions will be split into four parts: (1) Briefing, (2) Familiarization Trial. (3) Ice Management
Scenarios, and (4) Feedback and Closing. With your consent, portions of the Ice Management
Scenarios (i.e. the planning exercise and post-trial debrief) will be audio recorded and transcribed by
the research team.
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Note: You do not need to complete all trials during one visit to the ice management simulator. If at
any point you wish to stop for the day. and return at a later date to complete the remaining trials, we
can arrange a follow up time for you to return.

Refreshments (water and snacks) will be on hand for you during the trials. We will have time for you
to take multiple breaks throughout the sessions to allow you to have some refreshments. move around
outside of the simulator, or use the washroom.

1. Briefing:

We will explain the research and an opportunity to ask questions or express concerns. If satisfied, you
will indicate your free and informed consent by completing this Informed Consent Form.

Before you start any trials, we will ask you to complete an experience questionnaire. We will also ask
you to fill out a simulator sickness questionnaire (SSQ) in order for us to establish a baseline score for
you. We will administer the SSQ to you throughout the trials to see if you are developing simulator
sickness. which will be indicated by a higher score.

After you have completed the SSQ for the first time, you will be fitted with a set of eye glasses that
will record what direction you are looking in, and record where your eyes are focusing. These glasses
are worn like a pair of sunglasses (with no tint) and are connected to a battery pack, which will clip on
to your belt. Once the glasses are in place and working, we will escort you into the console of the ice
management simulator.

2. Familiarization Trial:
Once in position on the console, you will be asked to perform the 3-familiarization trials. These trials
are designed to allow you to get familiar with the ice management simulator, and how the ship

handles in the simulation. The trials are expected to take approximately 5-10 minutes for a total of 15-
30 minutes.

After the familiarization trials are completed, we will move on to the ice management scenarios.

3. Ice Management Scenarios:

The ice management scenarios consist of a planning exercise, simulator scenario, and a post-trial
debrief. There will be five ice management scenarios to complete in total. Each scenario takes
approximately 15-30 minutes, for a total of 75-150 minutes.

Prior to starting each ice management scenario, you fill out a SSQ and go through a planning exercise
with us. The planning exercise will consist of a diagram of the upcoming ice management scenario
that you can use to draw on, and plan your movements. We will be asking you interview style
questions during this planning session (e.g. Why are you choosing to go this way with the ship as
opposed to that way?). Your responses in the planning exercise will be audio recorded.

Upon finishing the planning session, you will re-enter the ice management simulator and perform the
ice management scenario.
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When the scenario has been completed. you will be escorted off the ice management simulator and fill
out another SSQ to determine if you are experiencing any symptoms of simulator sickness. You will
then be shown a sped up video replay of your current scenario, where we will ask you interview style
questions about your ice management techniques. We will ask you a series of questions to get your
opinion on your performance and what factors you considered during ice management. Your
responses in the post-trial debrief will be audio recorded.

4. Feedback and Closing:

You will be asked to give feedback on the planning exercises. scenarios. and post-trial questions.
After this, the session will be completed.

Length of Time:
You will be asked to attend 1-2 session(s). The length of this session may vary from person to person
but is expected to be between 4-6 hours.

Withdrawal from the Study:

You can withdraw from this study at any point during your participation without giving any reason.
and all data collected up until that point will be destroyed. There are no consequences to you for
withdrawal from the study. If you choose to withdraw from the study after your participation, your
data can be removed from the study up to two weeks after your participation. To withdraw from the
study just inform the research coordinators. Jonathan Power or Jennifer Smith.

Compensation and Travel Expenses Reimbursement:

You will be given a $200 CAD honorarium for participating in this study. Any travel expenses
incurred in order to attend this study at MUN will be reimbursed. We will abide by the most recent
Schedule of Reimbursable Expenses listed by the Financial and Administrative Services at MUN for
on travel expense claims. Note that the honorarium and travel claim do not oblige you to participate:
regardless of whether you are paid to travel. you are free to withdraw from the study and your
participation status will remain anonymous.

Possible Benefits:

There will be no direct benefit to you for participating in this study.

Data collected from this study will benefit in the development of machine learning algorithms for
autonomous ships.

Possible Risks:

A risk associated with participating in this study is the potential development of simulator-induced
sickness. Simulator-induced sickness is very similar to motion sickness and can occur when people
use equipment such as virtual reality headsets or simulators. Symptoms can include fatigue, headache,
eye strain, difficulty focusing, increased salivation, sweating, nausea, stomach awareness, blurred
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vision, dizziness, vertigo, and burping. The symptoms can sometimes occur during, immediately after
or several hours after exposure to the simulator.

We will be monitoring you for simulator sickness throughout the ice management scenarios by asking
you complete the simulator sickness questionnaire (SSQ). If you self-report any of the above
symptoms as “moderate” or “severe”, we will pause the trials and you will be provided with a rest
period until your symptoms have subsided. You can decide whether you would like to resume the
trials after the rest period. If the symptoms subside. and you choose to do so. we can continue with the
trials. If you choose to not continue with the trials, we will stop the trials and you will exit the
simulator.

If after the session ends the symptoms of simulator sickness persist for more than 20 minutes, we will
arrange for you to get home safely.

Your performance in the simulator will be recorded throughout the study. For some individuals, this
may cause performance anxiety or stress. This anxiety or stress may be caused by poor performance in
the scenarios, by the difficulty or novelty of the task. or by repeated trials. To reduce the likelihood of
anxiety and stress, where possible, we will guide you through the scenarios of the study. You will
receive a break between scenarios to rest and you will be instructed not to worry or dwell on the previous
scenarios.

You will be reminded that if you are not comfortable with any aspect of the trials, then you have the
right to withdraw from the study at any point. To reduce the likelihood of embarrassment, you will
perform the task individually and you will be reminded that your performance in the simulator will be
anonymous. That is, your data is not linked to your identity and that your performance or withdrawal
will not be reported to anyone.

If at any time you experience symptoms or discomfort. which prevent you from continuing in this study
you retain the right to withdraw from the study.

As discussed in the Anonymity section of this form, the researchers cannot guarantee your complete
anonymity in this research. While your name will not be reported. you may be identifiable to other
people based on other information you provide. This means there is a risk of being identified based on
your participation in this study. To reduce the likelihood of you being identified the researchers will
avoid reporting any identifiable information such as specific vessels you have worked on.

There is a risk of embarrassment in this study if you feel you cannot answer the researchers’ questions
adequately. To reduce the likelihood of embarrassment you will be reminded that you are not being
tested by these simulator trials.

Confidentiality:

The ethical duty of confidentiality includes safeguarding participants’ identities, personal information,
and data from unauthorized access, use, or disclosure. Protecting your privacy and maintaining
confidentiality is important to the research team. The information gathered in this study will be used
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solely for research purposes. Only researchers involved in this study will have access to the data. The
research coordinator, Jennifer Smith. will be the data custodian for this study. All other researchers at
MUN and NRC will have access to anonymized data.

Anonymity:
Anonymity refers to protecting participants’ identifying characteristics, such as name or description of
physical appearance.

Protecting your privacy is an important goal for the research team and this means ensuring all
personal data recorded during yout participation remains anonymous. You will not be directly
identified in publications. The study will use a number to identify you, not your name. For example,
researchers will use an alphanumerical participant code (e.g. AB001) to identify you in all reports of
your data including when direct quotations are used. Identifying information such as your name and
the names of any companies or vessels you reference will not be reported. However, information such
as the types of vessels you have worked on and the positions you have held (e.g. Caption, Deck
Officer, etc.) may be reported and it is possible that you will be identifiable to other people on this
basis. Additionally, since the participants for this research project have been selected from a small
group of people. who are likely known to each other. it is possible that in reports of this study you
may be identifiable to other people based on what you have said. This means the research team cannot
guarantee your complete anonymity in this research.

Recording of Data:
As part of this study, we will be collecting the following data from you:
¢ Name and contact information.
¢ Experiences managing ice operations.
¢ Simulator sickness questionnaire scores.
e Eye tracking data (from the eye tracking glasses)
e Ice management scenario performance (from the simulator)
¢ Hand drawn plans created during planning sessions.
e Audio from planning sessions.
e Audio from post-trial debriefs.

Use, Access, Ownership, and Storage of Data:

The research team will collect and use only the information they need for this research study. Your
name and contact information will be kept in a locked office on a password protected computer by the
research team at MUN (specifically the research coordinator, Jennifer Smith). It will not be shared
with others without your permission. You will receive a randomized alphanumeric participant code
(e.g. AB001). All information collected from you will be recorded with the participant code. Your
name will not appear in any report or article published as a result of this study.

Information collected, anonymized, and used by the research team will be stored by the research
coordinators, Jonathan Power and Jennifer Smith, and they are the people responsible for keeping it
secure. A hardcopy of your transcribed audio recordings and question responses will be kept in a
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filing cabinet in a locked office accessible only by the research team and will be kept separate from
your signed informed consent form. Electronic files (e.g. simulator log files, eye tracking records, and
audio-recordings) from this study will be kept in a password-protected file on a hard drive accessible
only by the research team. Data will be kept for a minimum of five years, as required by Memorial
University’s policy on Integrity in Scholarly Research. After five years, all electronic records of your
participation will be permanently deleted and all paper files will be destroyed.

Data collected in this study will be documented in an Ocean Engineering Research Center (OERC)
report. This will make the data accessible to other researchers. This report will not include your name.

Reporting of Results:

The research team intends to publish the findings of this study in peer-reviewed journals and academic
conferences. Formal reports will be made available to the research project partners (the National
Research Council, Husky Energy. and Virtual Marine). The data will be reported in a descriptive form
and may also include direct quotations and/or summarized question responses. Your name will not be
reported in any form.

Sharing of Results with Participants:
‘When data analysis 1s completed. a report will be prepared and participants who wish to be informed
of the results will have the opportunity to receive a copy of this report.

Questions:

You are welcome to ask questions before, during, or after your participation in this research. If you
would like more information about this study. please contact:

Jonathan Power (jonathan.power(@nre.ca) or Jennifer Smith (jennifersmith@mun.ca).

ICEHR Approval Statement:

The proposal for this research has been reviewed by the Interdisciplinary Committee on Ethics in
Human Research and found to be in compliance with Memorial University’s ethics policy. If you have
ethical concerns about the research. such as the way you have been treated or your rights as a
participant. you may contact the Chairperson of the ICEHR at icehr(@mun.ca or by telephone at 709-
864-2861.

NRC Research Ethics Board Statement:

This study has also been approved by the NRC Research Ethics Board (NRC-REB) under protocol
number 2019-119. REB review seeks to ensure that research projects involving humans as participants
meet Canadian standards of ethics. Any questions or concerns about the ethics of this study may be
directed to the NRC-REB Secretariat, NRC-REB@nrc-cnic.gc.ca, (613) 949-8681.

Consent:
Your signature on this form means that;
e You have read the information about the research.
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e You have been able to ask questions about this study.

e You are satisfied with the answers to all your questions.

e You understand what the study is about and what you will be doing.

e You understand that you are free to withdraw participation in the study without having to give
a reason. and that doing so will not affect you now or in the future.

e You understand that if you choose to end participation during data collection, any data
collected from you up to that point will be retained by the researcher, unless you indicate
otherwise.

e You understand that if you choose to withdraw after data collection has ended, your data can
be removed from the study up to two weeks after your participation.

I agree to be audio-recorded [ ]Yes [ ]No
I agree to the use of direct quotations []Yes [ ]No
I allow data collected from me to be archived in an Ocean []Yes [ ]No

Engineering Research Center Report

By signing this form, you do not give up your legal rights and do not release the researchers from their
professional responsibilities.

Your Signature Confirms:

[] I have read what this study is about and understood the risks and benefits. I have had
adequate time to think about this and had the opportunity to ask questions and my questions
have been answered.

[ ] Iagree to participate in the research project understanding the risks and contributions of my
participation, that my participation is voluntary. and that I may end my participation.

[ ] A copy of this Informed Consent Form has been given to me for my records.

Signature of Participant Date

Researcher’s Signature:

I have explained this study to the best of my ability. I invited questions and gave answers. I believe
that the participant fully understands what is involved in being in the study, any potential risks of the
study and that they have freely chosen to be in the study.

Signature of Principal Investigator Date
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Appendix C: Experience Questionnaire

Participant Humber:
Date:

Appendix C: Experience Questionnaire

FPleaze review and answer the guestions as you see fit. You are free to omit any guestions that
vou do not wish to answer. If something is unclear, agk the experiment coordinator. Your
answers are confidential.

Cluestion Answer

1. Approximately how many years
experence do you have at sea?

2. On what types of vessels have you OOsV fAHTS

operated? (Select all that apply) O lcebreaker

O Tanker / Bulk ! Cargo

O Femry [ Coastal

O | have not spent time at sea

3. Hawve you ever operated in sea ice? OYes
O No
4. What types of operations did you O Watchkeeping during transit
perform while in ice? (Select all that O Maneuvering ship while being escorted
apply) [0 Maneuvering ship to escort another vessal

O lce management (open water)

O lee management {confined water)

O Towing or emergency response

O | have only observed operations in ice
O | have not operated in ice

5. Where have you obtained your O Great lakes
experience in operating in ice? (Select | U Guif of St. Lawrence
all that apply) O Copastal Mewfoundland and Labrador
O Arctic (north of &0)
[J Baltic Sea
O Caspian Sea
O Sea of Okhotsk
O Antarctic
O | have not operated in ice

6. Approximately how many years have
you spent in the presence of sea ice?
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Participant Number:

7. What types of shore based training
have you taken for operating in ice?
(Select all that apply)

[ Bagic training in ice operations

O Advanced training in ice operations

O Attendance at professional seminars
dizcussing techniques and procedures
relevant to ice operations

O | have never received training related to ice
operations

&. Do you have any experience using a
marine simulator? (Select all that

apply)

O Training for navigation in open water
O Training for navigation in ice

O Research study

O | have no experience using a marnne
simulator
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Appendix D: Simulator Sickness Questionnaires

Simulator Sickness Questionnaire’

Please place an X in the box for each symptom you are experiencing at this current
moment.

Date: Trial:

Symptom None Mild Moderate Severe

General discomfort

Fatigue

Headache

Eyestrain

Difficulty focusing

Increased salivation

Sweating

Nausea

Difficulty concentrating

Fullness of head

Blurred vision

Dizziness (with eyes
open)

Dizziness (with eyes
closed)

Vertigo

Stomach awareness

Burping

7 Derived from: Kennedy, R., Lane, N., Berbauml K., and Lilienthal, M. {1993). Simulator Sickness Questionnaire: An
Enhanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology, 3:3, p.203-
220.
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Appendix E: Habituation Scenario Instructions

Habituation 1: Rounding the Iceberg

(=1

CAme

Objective: Round the iceberg, passing it to your port, and return
Time: ~10min (20min cut-off)

. This will give you the opportunity to:
¥» Get used to the virtual environment
# Get a feel for the controls and the bridge layout
>

.

Get used to calling the bridge officer in the wing console

. There is a bridge officer in your wing console. Radio them to ask for the distance between
the iceberg and your vessel

» Vessel heading: 33.5deg
»  Current: Okn

# Current direction: N/a
»  Wind: Light
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Habituation 2: Maneuver alongside FPSO

[} R )
[+ '|-_ .ll
1
L Current 0.3kn
tamch fry femsel
J {—-_________
\ —_—
\\\
\\\ .-'I
\ /
0 ld \
.
™,
N
\\\
.
-

Objective: Stop 30m (100ft) abeam of FPSO port side
Time: ~10min (20min cut-off)

. This will give you the opportunity to:
¥ Get used to slow maneuvers

» Get used to radioing your wing console bridge officer for distance

. There is a bridge officer in your wing console. Radio them to ask for the distance between
the iceberg and your vessel

# Vessel heading: 172deg

» Target heading: 32.5deg

»  Current: 0.3kn

»  Current direction: 327deg (NNW)
»  Wind: Light
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Habituation 3: Clear ice using propeller wake wash

ot

Objective: Use your propeller wash to push away the small floes directly
aft of your vessel

Time: “1min (or until complete)

. This will give you the opportunity to:

» Get used to prop wash as a way to clear ice

Vessel heading: 180dg
Current : Okn

Current direction: N/fa
Wind: Light

Ice: 0.3-0.7m first year ice

L A A U
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Appendix F: Scenario Instructions

Training: Pushing

'Iljﬂ

Drift 0.4kn

0.5 mid

£~
[
0.4 i ~—
Stand-by Vessel

03 bt

02 it

680ft (207m)

Objective: Clear the encroaching pack ice from the indicated area using the
pushing technique
Time: 15min

> Stand-by vessel support is required to clear the ice around the platform

> Ice clearing reduces the risks due to ice pressure on the platform and damage to the facility from
ice

> Maintain a safe speed of 3kn

»  The Atlantic Hawk has unprotected rudders while reversing; reverse in ice with caution

¥  Vessel heading: 120deg

> Current: 0.4kn

> Current direction: 180deg S

»  Wind: Light

> Ice: 0.3-0.7m first year ice, 4-tenths concentration
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Training: Leeway

Drift 1kn

221ft (67.5m)
Objective: Clear the indicated area aft of midships using the leeway
technique

Time: 15min

»  Stand-by vessel support is required to clear the indicated area so that research equipment can be
launched

> Ice clearing reduces the risks of damage to the research equipment from ice

A4

Maintain a safe speed of 3kn
The Atlantic Hawk has unprotected rudders while reversing; reverse in ice with caution

A4

Vessel heading: 60deg

Target heading: Odeg

Current: 1kn

Current direction: 180deg S

Wind: Light

Ice: 0.3-0.7m first year ice, 5-tenths concentration

YV YV VY VY
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Scenario B: Emergency ice management (7tenths
concentration)

Drift 0.5kn

04 ma

o
[T Ry

D

Stand-by vessel

0ZmM

Objective: Clear encroaching pack ice from the boxed area shown
Time: 30min

. Stand-by vessel support is required to clear the ice under port lifeboat launch zone
. FPSO’s starboard side is already clear due to ice drift direction

#  Maintain a safe speed of 3kn

#  The Atlantic Hawk has unprotected rudders while reversing; reverse in ice with caution
»  Current: 0.5kn

#  Current direction: 180deg S

»  Wind: Light

»  lce: 0.3-0.7m first year ice
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Appendix G: Scenario Diagram Pages

articipant Code: Date:
P

Approach Number: Time:

Pushing Scenario

0.1 nid
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Participant Code: Date:

Approach Number: Time:

Leeway Scenario

0.4 niA

0.1 nM

165



Participant Code: Date:

Prop Wash Scenario

SO AT

O & Dy %D@g%g
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7o SR
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Participant Code: Date:

Approach Number: Time:

Emergency Ice Management Scenario — 7 tenths

0.4 v

um%

Stand-by vessel

A A
‘l.-‘ 8,

=X

§ olmliy.
hgoor s @se!
(Vg e Cus

01 nM
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Appendix H: Transcribing Guide

Transcribing Guide

Before each section have a heading with the following format:

Section: Audio file name — start time to end time
Transcribed by: Transcriber Checked by: Checker

For example:

Section: Recording Part 2 — 20:55 to 21:24
Transcribed by: FY Checked by: RT

TOO:

RT:

RT:
TOO:
RT:

Everything in between the start and end time listed should be transcribed.
Stuff at the beginning of sections where the topic is being explained and
the participant doesn’t say anything relevant doesn’t need to be
transcribed (i.e. start the transcription section after that).

Format for transcription:

Who's speaking then tabbed. Text in plain size 12 Arial font single spaced.
Left aligned.

Line between. Then, who'’s speaking. Then, tabbed.
Second line also tabbed. (Tables use the same format)

For example:

Okay. Yeah.

Yeah, | think that’s it.

Alright.

For tables follow the format in “TO0- Interview Experiment Data — R2’

If something in the audio is un-clear write in audible in italics and highlight
it. The checker will go back to that part and if it's unclear to them it will be

left as in audible un-highlighted.

If there is anything in the transcription you are not sure about just highlight
for the checker to review.

To clarify something (e.g. define what is meant by here or this) put in
brackets and italics, e.g. [words in italics]. If you think you know what is
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TOO:

RT:

T0O:

being referred to but are not sure but a question mark after e.g. [Decision
Point 17].

We don'’t need to transcribe vocal fillers (e.g. ‘ums’, 'ahs’, etc.). | have also
been removing ‘so’ unless it's relevant to the context. (e.g. being used as
therefore).

We don’t need to use stylistic forms of words (e.g. because instead of
writing ‘cause).

I've been using contractions where appropriate (e.g. weren't, it'd, it's). |
guess we will continue that unless someone says otherwise. If it would be
clearer not to use contractions we can use the full words (e.g. were not, it
would, it is).

When someone starts to use the wrong word and then corrects
themselves no need to add the wrong word part (e.g. starboard instead of
writing por...starboard). If they use two words and it's unclear which they
actually mean just put both in as they’re said. The same goes for when
someone restarts a sentence.

Format for when someone is interrupted and continues what they're
saying:

First part...
Interruption

...second part.

An ellipsis can also be used when a sentence trails off and isn’t
completed.

Some words have multiple acceptable spellings. We should use the same
spellings for consistency:
o Okay.
Yeah.
Doughnut.
Colour.
Maneuver.
Um-hum.

O 0O 0O O0O0

Use camas to separate side thoughts in the middle of a sentence. (e.g.
How do you balance the risk of colliding with the vessel or the platform, in
this case it's a tanker, with blocking the ice from the zone.) Dashes or
brackets could also be used but to stay consistent use camas.
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When starting a transcription section in a table just put everything in the
table rather than splitting up the table with a section of text in the middle.

Transcribe in the order things were said. It can be rearranged latter for
actually using it but it's easier to follow if it's in order.

Participant codes are capital letters (e.g. X86)
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Appendix I: Interviewer Notes

Participant Code: Date:

Interviewer Notes

Experience Interview

What factors do you consider for success in ice management?
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Participant Code: Date:

Interviewer Notes
Training Scenario 1:

How would you execute this scenario?

Decision Points (Decision points are points where the cadet made a decision to change
action. This could include deviation from the previous ice management approach or
moving from one step of their ice management plan to another.)

Alternative Approaches
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Participant Code: Date:

Interviewer Notes
Training Scenario 1: Example 1 Code:

What advice, recommendations, or feedback would you give the cadet based on
their performance in this example?

What do you view as the decision points in this example? Decision points are
points where the cadet made a decision to change action. This could include
deviation from the previous ice management approach or moving from one step of
their ice management plan to another.

How would you rate the cadet’s performance in completing this scenario on a
scale of 1 to 5 where 1 is not very successful, 3 is somewhat successful, and 5 is

very successful?

1 2 3 4 5
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Participant Code: Date:

Interviewer Notes

Training Scenario 1: Example 2 Code:

What advice, recommendations, or feedback would you give the cadet based on
their performance in this example?

What do you view as the decision points in this example? Decision points are
points where the cadet made a decision to change action. This could include
deviation from the previous ice management approach or moving from one step of
their ice management plan to another.

How would you rate the cadet’s performance in completing this scenario on a
scale of 1 to 5 where 1 is not very successful, 3 is somewhat successful, and 5 is

very successful?

1 2 3 4 5 (Cadet's Performance Compared to Other Example)

174



Participant Code: Date:

Interviewer Notes

Training Scenario 1:

Are there any rules from documented regulations or recommendations that you
would consider when executing this scenario?

Are there any rules based on common practice that you would consider when
executing this scenario?

Are there any rules that you have learned from experience that you would
consider when executing this scenario?

What factors would you consider for success in this scenario?
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Participant Code: Date:

Interviewer Notes
Training Scenario 2:

How would you execute this scenario?

Decision Points (Decision points are points where the cadet made a decision to change
action. This could include deviation from the previous ice management approach or
moving from one step of their ice management plan to another.)

Alternative Approaches

176



Participant Code: Date:

Interviewer Notes

Training Scenario 2: Example 1 Code:

What advice, recommendations, or feedback would you give the cadet based on
their performance in this example?

What do you view as the decision points in this example? Decision points are
points where the cadet made a decision to change action. This could include
deviation from the previous ice management approach or moving from one step of
their ice management plan to another.

How would you rate the cadet’s performance in completing this scenario on a
scale of 1 to 5 where 1 is not very successful, 3 is somewhat successful, and 5 is

very successful?

1 2 3 4 5
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Participant Code: Date:

Interviewer Notes

Training Scenario 2: Example 2 Code:

What advice, recommendations, or feedback would you give the cadet based on
their performance in this example?

What do you view as the decision points in this example? Decision points are
points where the cadet made a decision to change action. This could include
deviation from the previous ice management approach or moving from one step of
their ice management plan to another.

How would you rate the cadet’'s performance in completing this scenario on a
scale of 1 to 5 where 1 is not very successful, 3 is somewhat successful, and 5 is

very successful?

1 2 3 4 5 (Cadet's Performance Compared to Other Example)
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Participant Code: Date:

Interviewer Notes

Training Scenario 2:

Are there any rules from documented regulations or recommendations that you
would consider when executing this scenario?

Are there any rules based on common practice that you would consider when
executing this scenario?

Are there any rules that you have learned from experience that you would
consider when executing this scenario?

What factors would you consider for success in this scenario?
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Participant Code: Date:

Interviewer Notes
Emergency Ice Management Scenario - 7 tenths

How would you execute this scenario?

Decision Points (Decision points are points where the cadet made a decision to change
action. This could include deviation from the previous ice management approach or
moving from one step of their ice management plan to another.)

Alternative Approaches
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Participant Code: Date:

Interviewer Notes

Emergency Ice Management Scenario — 7 tenths Example 1 Code:

What advice, recommendations, or feedback would you give the cadet based on
their performance in this example?

What do you view as the decision points in this example? Decision points are
points where the cadet made a decision to change action. This could include
deviation from the previous ice management approach or moving from one step of
their ice management plan to another.

How would you rate the cadet’s performance in completing this scenario on a
scale of 1 to 5 where 1 is not very successful, 3 is somewhat successful, and 5 is

very successful?

1 2 3 4 5

181



Participant Code: Date:

Interviewer Notes

Emergency Ice Management Scenario — 7 tenths Example 2 Code:

What advice, recommendations, or feedback would you give the cadet based on
their performance in this example?

What do you view as the decision points in this example? Decision points are
points where the cadet made a decision to change action. This could include
deviation from the previous ice management approach or moving from one step of
their ice management plan to another.

How would you rate the cadet’s performance in completing this scenario on a
scale of 1 to 5 where 1 is not very successful, 3 is somewhat successful, and 5 is

very successful?

1 2 3 4 5 (Cadet's Performance Compared to Other Example)
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Participant Code: Date:

Interviewer Notes

Emergency Ice Management Scenario — 7 tenths

Are there any rules from documented regulations or recommendations that you
would consider when executing this scenario?

Are there any rules based on common practice that you would consider when
executing this scenario?

Are there any rules that you have learned from experience that you would
consider when executing this scenario?

What factors would you consider for success in this scenario?
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Appendix J: Observer Notes

Participant Code: Date:

Observer Notes

Briefing

Experience Interview

Initial lce Management Factors
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Participant Code: Date:

Observer Notes

Leeway Scenario - Sketch of Approach and Decision Points

Approach Number:
0.4 nid VS0 On0ha
9o

A=
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Date:

Participant Code:

Observer Notes

Leeway Scenario — Advice, Recommendations, or Feedback - Example Code:
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Participant Code: Date:

Observer Notes

Leeway Scenario — Decision Points - Example Code:

O
X e W
04 OO
Stagagssaoe<7§og g)oo

Rate Cadet’s Performance

Not Successful 1 2 3 4 5 Very Successful
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Participant Code: Date:

Observer Notes
Leeway Scenario

Rules from documented regulations or recommendations

Rules based on common practice

Rules from experience

lce Management Factors

Other Comments
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Date:

Participant Code:

Observer Notes

Pushing Scenario - Sketch of Approach and Decision Points

Approach Number:

i
3
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Date:

Participant Code:

Observer Notes

Pushing Scenario — Advice, Recommendations, or Feedback - Example Code:
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Participant Code: Date:

Observer Notes

Pushing Scenario — Decision Points - Example Code:

04 M
Stand-by Vessel

Rate Cadet’s Performance

Not Successful 1 2 3 4 5
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Participant Code: Date:

Observer Notes

Pushing Scenario

Rules from documented regulations or recommendations

Rules based on common practice

Rules from experience

Ice Management Factors

Other Comments
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Participant Code: Date:

Observer Notes

Emergency Ice Management Scenario - Sketch of Approach and Decision Points
Approach Number:

5
-~

S
LT R —

Stand-by vessel

02 m

01w
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Participant Code: Date:

Observer Notes

Emergency Ice Management Scenario — Advice, Recommendations, or Feedback -
Example Code:

5

nd-by vessel
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Participant Code: Date:

Observer Notes

Emergency Ice Management Scenario — Decision Points - Example Code:

B BT AT ATY |
=~ S g e @ L)
nd-by vessel 59\' .’;_’ ’i'.\wz“ », )

o . ‘9.“9',.
s SR P

Rate Cadet’s Performance

Not Successful 1 2 3 4 5 Very Successful
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Participant Code: Date:

Observer Notes

Emergency Ice Management Scenario

Rules from documented regulations or recommendations

Rules based on common practice

Rules from experience

lce Management Factors

Other Comments

196



Participant Code: Date:

Observer Notes

Feedback and Closing
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Appendix K: Factor Cards

Level of Acceptable Ability of Ship
Urgency Level of Risk Driver
Floe Vessel Strate
Size Capability 9y
Vessel Ice Ice
Heading Concentration Loads
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Vessel Location

Relative to Distance Vessel
Target Vessel Traveled Speed
Visibility and
Area to be Drift Speed Weather
Cleared

Condtions
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Appendix L: Factor Headings

(1) — Not Important

(2)

(3) — Important

(4)

(5) — Very Important




Appendix M: Factor Ranking Label

Factor Ranking

Participant:
Date:
Time:
Circle Section of Ranking
Initial After Pushing After Leeway After
Scenario Scenario Emergency
Scenario
Factor Ranking
Participant:
Date:
Time:
Circle Point of Ranking
Initial After Pushing After Leeway After
Scenario Scenario Emergency
Scenario
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Appendix N: Scenario Order Sheet

Participant Code:

Date:

Scenario Order

Training Scenario 1:
Example 1 Code:

Example 2 Code:

Training Scenario 2:
Example 1 Code:

Example 2 Code:

Emergency Ice Management Scenario — 7 tenths Ice Concentration:
Example 1 Code:

Example 2 Code:
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Appendix O: Simulation Session Outline

NRC-MUN Pilot — Session Outline

1. Briefing

Overview of Project
Informed Consent Form

Experience Questionnaire

2. Set-Up

SSQ
Introduction to Controls
Eye Tracking Glasses Setup

3. Habituation

Habituation Scenario 1: Rounding the Iceberg
Habituation Scenario 2: Maneuver Alongside FPSO

Habituation Scenario 3: Clear Ice Using Propeller Wake Wash
SSQ

4. Simulator Scenarios X4

Introduce scenario

Q1: How would you approach this scenario?
= Sketch approach |

Complete scenario in the simulator

SsQ

Review of scenario performance

Q2: In what ways, if any, did what you did in this scenario change from your planed
approach?

Q3: What were your decision points in this scenario? Decision points mean points where
you made a choice to change action. This could include deviation from the previous ice
management approach or moving from one-step of your ice management plan to another.

Q4: What factors did you consider while executing this scenario?

Q5: How would you rate your performance in competing this scenario on a scale of 1t0 5
where 1 is not very successful, 3 is somewhat successful, and 5 is very successful?

Q6: How do you think this scenario compares to a real ice management scenario?

5. Feedback and Closing

Your feedback for us about the session

203



Appendix P: Introduction to Controls Script

Introduction

The bridge of the simulator is modeled after that of the Atlantic Hawk, a
conventional diesel, twin screw, fixed pitch propeller Offshore Supply Vessel
(OSV). The Atlantic Hawk is class 1C, meaning it is not an ice class vessel.
Therefore, POLARIS guidelines for operations in icy water recommend a speed
of no greater than 3kn when operating in ice. Exceeding this speed could
damage the vessel. Please consider that the Atlantic Hawk has unprotected
rudders, so be cautious when reversing as ice can damage the steering gear.
The design speed of the Atlantic Hawk is 13kn so its limits in ice can easily be
exceeded.

Control Consoles

The forward console display screen allows the operator visual feedback from the
control gauges as well as the vessel speed, heading, and change of heading.

The steering wheel controls both the port and starboard rudders. The rudders
may be locked by turning the steering wheel to lock and pressing the left-right
slider button on the right hand of the steering wheel. To return controls of both
rudders press the up-down slider button on the right hand of the steering wheel.
The buttons on the left hand of the steering wheel do not control anything. Verify
rudder position by checking the gages on the display screen. | suggest steering
with the bottom of the wheel to avoid inadvertently locking a rudder.

The port and starboard throttles control the main engines and the fore and aft
throttles control the fore and aft tunnel thrusters. For all controls operation is fairly
intuitive, you push the controls in the direction you wish to go. Control inputs can
be verified by checking the gages on the display screen. The black levers do not
control anything.
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Switching Controls

To switch between forward and aft controls, at the forward controls press the 3
transfer buttons below the port and starboard main throttle of the active controls,
then at the aft console press the 3 transfer buttons corresponding on the
opposite console to take control of the opposite console. Control may be verified
by checking the gages on the aft display screen. The same process is reversed
to return to the forward console. Press the 3 transfer buttons at the aft console,
then press the corresponding buttons on the forward console and verify control
has been switched by checking the forward display screen. All ice management
scenarios will begin with forward controls.

Radio

The radio is used to communicate with me at the control center. To use i,
depress and hold the large button and speak, then release the button and wait
for a reply. You may use the radio for any questions you have while inside the
simulator such as distance from your vessel to a target object, or heading of a
target object, or time remaining in the simulation.

Habituations

To begin we will have you complete 3 habituation scenarios to become familiar
with the simulator controls. In the first habituation you will round a bergy bit and
return towards your starting position. This habituation is to help you become
familiar with reading your gauges and using landmarks to navigate. We ask that
you use your radio to request distances between your ship and the bergy bit. In
the second habituation you will park your vessel alongside an FPSO practicing
maneuvering at slow speeds using your tunnel thrusters. In the third habituation
you will practice switching between forward and aft consoles and use propeller
wake wash to clear the ice aft of the vessel.

Please ask me if you have any questions.
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Appendix Q: DSS Testing Session Outline

Session Outline

1. Briefing
e Overview of Project

2. Questionnaires

¢ Experience Questionnaire - Questions about your seafaring experience

3. Set-Up
e Introduction to Controls

e |[ntroduction to DSS Interface

4. Habituation
e Habituation Scenafio: Maneuver Alongside FPSO
e Habituation Scenario: Clear Ice Using Propeller Wake Wash

5. Simulator Scenarios (Leeway, Pushing, Emergency)

Introduce scenario

Complete scenario in the simulator
Review of scenario performance
Debriefing Questionnaire

6. Feedback and Closing
e Exit Interview - Your feedback for us about the session
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Appendix R: Experience Questionnaire

Participant Number:
Date:

Experience Questionnaire

Please review and answer all questions as you see fit. You are free to omit any questions that you do not
wish to answer. If something is unclear, ask the experiment coordinator. Your answers are confidential.

Question Answer
Approximately how many years of experience do
you have at sea?
On what types of vessels have you operated? OSV / AHTS
(Select all that apply) Icebreaker
Tanker / Bulk / Cargo
Ferry / Coastal
I have not spent time at sea
Have you ever operated in sea ice? Yes
No
Approximately how many years have you spent in
the presence of sea ice?
What types of operations did you perform while Watchkeeping during transit

in ice? (Select all that apply)

Maneuvering ship while being escorted
Maneuvering ship to escort another vessel
Ice management (open water)

Ice management (confined water)
Towing or emergency response

I have only observed operations in ice

I have not operated in ice

What types of shore based training have you taken
for operating in ice? (Select all that apply)

Basic training in ice operations

Advanced training in ice operations

Attendance at professional seminars discussing
techniques and procedures relevant to ice
operations

I have never received training related to ice
operations

Do you have any experience using a marine
simulator? (Select all that apply)

Training for navigation in open water
Training for navigation in ice

Research study

I have no experience using a marine simulator

207




Appendix S: Debriefing Questionnaire for the DSS Testing

Participant Code:
Date:

Debriefing Questionnaire

1. Inyour own words, describe what you did in this scenario?

2. Did you change anything about your strategy/approach in the scenario according to the
DSS assistance?

3. What was the most challenging part of the scenario?

4. Did the DSS suggest any solution to tackle this challenge?

5. What were your decision points in this scenario? Did you make these decision points
based on your own plan or because of the DSS suggestion?
(Decision points mean points where you made a choice to change action. This could
include deviation from the previous ice management approach or moving from one-
step of your ice management plan to another)

6. How would you rate your planned strategy in completing this scenario on a scale of 1
to 5, where 1 is not very successful, 3 is somewhat successful, and 5 is very successful?

7. How would you rate your performance using DSS in completing this scenario on a scale
of 1 to 5, where 1 is not very successful, 3 is somewhat successful, and 5 is very
successful?
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Appendix T: Exit Interview for the DSS Testing

Exit Interview

1. What would you like to add to the DSS to better assist users for implementing
scenarios?

2. How user friendly do you think the DSS is?

3. What is your feedback for us about the session?
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