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Abstract

In this thesis the magnetic properties of a model for a two-dimensional, dipolar
thin film are determined using Monte Carlo simulations. Three different versions
of the model have been considered and the results have been compared to previous
theoretical results as well as to recent experiments on ultra-thin magnetic films.

The first version of the model is a uniaxial model, with dipolar and exchange

interactions. The ground states for this model are shown to be stripe phases for all

J/g > 0.85, where J is th h of the exchange i ion and g is the strength of
the dipolar i i At finite there is a phase ition from these
stripe phases at low to an orit i i phase at higher

This ori i i phase appears to map continuously to

the paramagnetic phase. The effect of an applied field on the stripe phases is also
considered.

The second version of the model is a planar model. [n this model the magnetic
moments interact only via the dipole-dipole interaction. The results of Monte Carlo
simulations are interpreted within the context of a linearised spin wave calculation.
The comparison indicates that the model system orders at a finite temperature in the
thermodynamic limit. The nature of the transition from the paramagnetic state to

the low temperature ordered state is studied by idering the decay of the poi

correlation function, both above and below the critical temperature.

The third version of the model is a dipolar Heisenberg model, in which the mag-



netic moments interact via the dipole-dipole interaction. The moments are also
subject to a magnetic surface anisotropy. This model is shown to exhibit a novel
reorientation transition. The phase diagram for this model is developed and com-
pared to that obtained for a similar system with a dominant ferromagnetic exchange

interaction.
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Chapter 1

Introduction

In this thesis the properties of a lattice-based model for two-dimensional magnetic
thin films are investigated. The magnetic moments in the model interact via a dipole-
dipole interaction as well as other possible interactions, but it is the effects of the
dipolar interaction which are considered in depth. These effects on the magnetic
properties of materials can be very dramatic and yet still quite subtle. and there
has been keen interest in magnetic thin films over the past 20 years [1, 2, 3]. In
recent vears magnetic thin films have again become a “hot” topic for research due to
enhancements in molecular beam epitaxy, and the ability of researchers to construct
high quality thin films for study [4, 5].

In this thesis, the phase behaviour is established for a classical model of a thin
magnetic film both at T = 0K and at finite temperature. The results of analytical

calculations for the energy of various phases are presented and used to predict the



ground states for the model. Monte Carlo simulations are used extensively to deter-
mine both the low temperature properties and the nature of the phase transitions
present in the various versions of the model. Three different variants of the basic
model are considered. The first is a system with uniaxial or one component mag-
netic moments. The magnetic moments are constrained to orient perpendicular to
the film and interact via a dipole-dipole interaction and an exchange interaction. The
influence of an applied feld is also considered. The second is a system with planar
or two component magnetic moments. The magnetic moments are confined to the
plane of the film and interact via the dipole-dipole interaction only. For this variant
of the model, the low temperature properties are examined with reference to a classi-
cal, linearised spin wave calculation. The third version of the model is a Heisenberg
model in which the moments are fully three-dimensional vectors which interact via
the dipole-dipole interaction and are subject to a perpendicular anisotropy.

Much of the work presented in this thesis has been published(6, 7, 8,9, 10, 11, 12].

The outline of the thesis is given below.

1.1 Outline

This thesis is organised as follows: Chapter 1 will introduce the model being
studied in general terms, and discuss the motivation for the study. It will also provide
an introduction to previous experimental and theoretical work related to the work

presented in this thesis.



Chapter 2 will give a brief introduction to Monte Carlo simulations. The difficul-
ties associated with including a dipolar interaction within a Monte Carlo simulation
will be discussed. The dipolar interaction is a long-range. anisotropic interaction and
both of these properties make it a challenge to incorporate efficiently into a Monte
Carlo simulation. The simulations carried out as part of this study are among the
most comprehensive and involve the largest systems of any published studies.

Chapters 3 and 4 treat the case of a uniaxial dipolar system. In other words. these
chapters deal with a system where the magnetic moments are constrained to point
perpendicular to the film. Assuming that the direction perpendicular to the film is
the Z direction. the magnetic moment can assume only two states; either 7 = +uZ or
f = —pz. The moments lie on a square lattice and interact via the dipolar interaction.
and an exchange interaction and with an applied field. Chapter 3 deals exclusively
with the problem of establishing the ground state as a function of the ratio between
the exchange interaction and the dipolar interaction, in the absence of an applied
field. Chapter 4 considers the finite temperature behaviour of this system. as well as
the effects of an applied field.

In Chapter 5, a dipolar planar model is considered. In this model the magnetic
moments or spins are assumed to lie within the plane of the thin film and to have full
rotational freedom in that plane. Again assuming that the direction perpendicular
to the film is the Z direction, this means that, in the planar model. the magnetic

moment may be specified by Z = p*Z + p¥y with |4] = p. The Z and y directions



are chosen so they lie along the axes of the square lattice of the system. The nature
of the ordering which takes place in this model is analysed while considering the

results of a linearised, spin wave ion. The spin wave ion has been

performed for both the full long-range dipolar interaction as well as for a short-range
approximation. This model is also interesting because of the well known properties
of the classical planar model, which is an isotropic short-range exchange model. In
the classical planar model there is no order-disorder transition, but instead there is a
Kosterlitz-Thouless transition [13].

In Chapter 6. a system with a dipolar interaction along with a magnetic surface
anisotropy is considered. The magnetic moments are considered to be fully three-
dimensional vectors, Z = p*f + p¥§ + p°Z, with an anisotropy chosen such that the
= direction (perpendicular to the plane) represents the easy axis for the system. In

this part of the study the ies of a i i ition in the absence of an

exchange interaction are examined.
The final chapter, Chapter 7, is the conclusion. In this chapter a brief summary
is given of the major results presented in the thesis. As well it offers an overview of

some of the remaining questions in this field.



1.2 Motivation and experimental results

1.2.1 Rare earth compounds
The original motivation for choosing to work with two-dimensional dipolar systems
was to explain the ordering observed in the rare earth subsystem of (RE)Ba,Cu3;O7.

which is a class of magnetic High have

vast technological potential, therefore understanding the properties of these systems is
very important. In these compounds, the rare earth ions order at temperatures of the

order of a few Kelvin, where the dipole-dipole interaction is significant. The ordered

states observed in these ds are also consistent with a signil dipole-dipol

interaction (14, 15, 16, 17]. There are a large number of experiments on the low tem-

perature ies of these which have i that, for some rare
earths. the ordering has characteristics which are distinctly two-dimensional. For
example, Lynn et al. (18] showed that in ErBa,CugOy, the rare earth sublattice or-
ders at 618 mK, and they also showed that the neutron scattering by this material is
characteristic of two-dimensional ordering within planes in the crystal. The neutron

indicates that th: i i ordering occurs only at lower tempera-

tures [18]. Similar results have been found for DyBa,CusO; by Fischer et al. [19]
and by Goldman et al. [15]. These experimental results have been compared with
simulations in previous publications [20, 21, 22], and are not discussed explicitly in

this thesis, however understanding the (RE)Ba,;Cu3O7 compounds represents an im-




portant potential application of the present work.

1.2.2 Magnetic thin films

In addition to (RE)Ba,CusOy, the model studied can also be applied to magnetic
thin films. This is a topic of considerable interest both from an experimental and
a theoretical perspective. Recent progress in molecular beam epitaxy in ultra-high
vacuum has allowed experimentalists to make great strides in the fabrication and
analysis of ultra-thin (several mono-layers) magnetic films [4, 5, 23, 24, 25, 26, 27, 28,
29. 30, 31, 32]. It is apparent from these studies, and the related theoretical work.

that the dipolar i ion plays an i role in ining the magnetic

properties of these systems.

Thin epitaxial films of Fe on the Co(100) surface were studied by Pappas et al.
{5] using spin-polarised secondary-electron spectroscopy. The films in this study were
approximately 2.5-3.5 atomic layers thick. There are two results of this work which
are of particular relevance to this thesis. The first is that, at low temperature, the
system orders with the magnetic moments perpendicular to the film. This implies
the existence of an anisotropy or interaction besides the typical short range exchange
interaction, since an isotropic system with only short-range exchange interactions
would not exhibit long-range order(33]. The dipolar interaction is the obvious addi-
tional interaction, but it favours in-plane ordering. This suggests that a magnetic
surface anisotropy also exists. Pappas et al. also showed that at higher temperatures



there is a reorientation transition at which the direction of the net magnetisation
switches from perpendicular to the film to parallel to the film.

Allenspach et al. [4] have studied thin epitaxial films of Co on the Au(111) surface
using spin scanning electron microscopy (SEM). They found the intriguing result in a

three layer film that at of i 300 K the magnetic mo-

ments form domains of micron size with the magnetic moments oriented perpendicular
to the plane of the film. This was the first time that an experiment had supported
the theoretical predictions that domains would form in thin films, when the films had
perpendicular anisotropies due to dipole-dipole interactions[8, 34]. Allenspach et al.
also found the reorientation transition observed by Pappas et al [5]. The reorien-
tation transition occurs both as a function of temperature and as a function of the
film thickness. For films with a thickness less than three mono-layers the magneti-
sation is perpendicular to the film, while films thicker than six mono-layers have a
magnetisation which lies in the plane of the film. This reorientation is believed to be
the result of a change in the effective strength of the magnetic surface anisotropy. [n
the thicker films the ratio of the number of moments at the surface to total number
of moments is reduced, and hence the effect of the surface anisotropy is similarly re-
duced. With no surface anisotropy the lowest energy state is that with the moments
in the plane of the film. This is due to the dipolar interaction, which favours the
in-plane state. Allenspach and Bischof [23] have observed a reorientation trausition

both as a function of temperature and as a function of film thickness in thin films of



Fe on the Cu(100) surface as well. Using SEM they have shown that stripe domains
form when the magnetisation is perpendicular to the film at low temperature.
Kerkmann et al. [24] studied Co films on the Cu(100) surface in an applied
magnetic field. They made use of both the magneto-optic Kerr effect as well as
spin-polarised SEM. They were able to observe an ordered phase at low temperature

with definite domain ion, as well as the ition to a dis phase at

higher temperatures. They also studied the hysteresis curves due to the application
of an applied field both above and below the transition temperature and showed that
the results were very similar to those predicted for the 2-D Heisenberg model above
the transition temperature. Speckmann et al. [30] have also looked at Co flms on
the Au(111) surface using SEM. They showed that after annealing, the films display

and a

a definite domain structure with
domain size dependent upon the film thickness. They were able to measure the
dependence of the domain size on the film thickness for films as thin as two mono-
layers and the results are well fit by the predictions of Kaplan and Gehring [35], whose
work will be discussed below.

The properties of Fe on the Ag(100) surface have been studied by Qui et al.
[25], who confirmed that for very thin films the preferred direction for the ordered
magnetic moments at low temperature is perpendicular to the plane of the film. Qui
et al. studied a wedge shaped film as they were interested in the variation of the

magnetisation as a function of the film thickness. They found that in a 7 mono-layer



film there is a reori i ition at i T =375K.

These results are relevant to all sections of this thesis, but are of particular rel-
evance to Chapters 3 and 6. In Chapter 3 it is concluded that the lowest energy
state for films with perpendicular magnetisation is a stripe phase that is qualitatively
similar to that observed by Allenspach et al. In Chapter 6 the reorientation tran-
sition. as a function temperature, is explored. In many of the experiments, it is a
change in the thickness of the film which leads to the reorientation transition. The

film thickness is an i while the i of the

magnetic surface anisotropy (MSA) is not. In a Monte Carlo simulation the MSA
is a controllable parameter, and it is less computationally demanding to simulate a

mono-layer than to simulate a multi-layered film. Therefore, in this thesis, only the

case of a ly induced i i ition in a layer is

Technologically, materials such as Co/Au(111) films are interesting due to poten-
tial applications in magnetic storage devices [4]. There are also a number of systems
which have similar properties to dipolar thin films, which makes the understanding of
thin films interesting from a purely theoretical point of view. These systems include
such diverse systems as liquid crystals, Langmuir mono-layers and others [36, 37, 38].
The rich variety of spatially modulated phases which can be found in dipolar thin
films also makes them ideal systems for the study of pattern formation(39, 40, 41]
and self-organised behaviour [42].
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1.3 The model in general

In this section the general Hamiltonian that defines the model discussed in this
thesis is introduced. This is done in order to make the discussion of the previous
theoretical work on this subject more cohesive, as most of the terms used in the rest
of the thesis will be defined in this section.

‘The model attempts to capture the salient features of a magnetic thin film. or of
the rare earth sublattice in the (RE)Ba,CugOr compounds. Hence the model treats
a two-dimensional system on a square lattice, where the two in-plane directions are
the £ and § directions and the direction perpendicular to the plane is taken as the =
direction. At each lattice point there is a magnetic dipole /i and a net spin $. The
Hamiltonian for the model is, in general, given by

=1ty AR AR _ (3R - Ry) (B(R) - Rey)
2i% [ L3
Z & S5
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where the displacement is defined as £; = R — R; and a primed sum means that
the term with F; = R; is excluded.

The first term in equation 1.1 is the dipolar interaction and the sum is over all
pairs of spins R, R;. The typical way of writing the interaction energy between two
dipoles is

_ g (B By) - Ry) 2

BR-R)= A
y
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For ical reasons it is i to start from a different form

of the interaction. which looks very much like the Coulomb interaction. In the form
used in most of the calculations shown in this thesis. the interaction energy between

two dipoles is written as
=

s = = 5.. 8 8 1
E(R: - Ry) = §I‘°(&')l"(xj) MFFE—:’I (L3)

With a little work one can show that the two forms are equivalent. The dipolar

is a long-range i i which means that each spin in the system
interacts with all the other spins in the system. It also means that, unlike an exchange
interaction which typically decays exponentially with distance, the dipolar interaction
decays with a power law dependence on distance. This can lead to convergence

problems when treating systems in the thermodynamic limit.

The dipolar i ion is also an ani ic i ion; in figure 1.1 the field
produced by an isolated dipole is shown schematically. It can be seen that the dipole-

dipole i ion can either be ic or antil i ing on the

relative displacement of two dipoles. This will be important, as will be seen later in
this thesis, in determining the ground state spin configuration as a function of the
various parameters in the Hamiltonian.

The second term in equation 1.1 is an exchange interaction. This sum is over all
nearest neighbour pairs (the notation (£;, &;) is standard), as the exchange interac-

tion is a short range interaction. A positive J denotes a ferromagnetic exchange inter-

action, while a negative J denotes an antil ic i i inter-
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Figure L.1: The field for an isolated magnetic dipole. The vectors show the magnetic
field at various points about a magnetic dipole located at the origin.

actions arise as a consequence of charge overlap between ions. Figure 1.2 schematically
illustrates three types of exchange interaction: direct, indirect and super-exchange.
In a direct exchange the charge clouds of adjacent ions overlap and the electrons from
one ion are able to directly interact with those of the second ion. The second type
of exchange is known as an indirect exchange interaction. In this case the electrons
of a magnetic ion interact with conduction electrons, which can then interact with
a second magnetic ion, giving an effective coupling between the two magnetic ions.
The third type of exchange is a super-exchange. In this type of exchange there is
an intermediate non-magnetic ion which has a charge overlap with the two magnetic

ions. The non-magnetic ion mediates the exchange interaction as its electrons interact



13
with the electrons of the first ion. and they then interact with the second magnetic

fon. In all of these cases the interaction may be approximated by the form given by

the second term in equation 1.1
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Figure 1.2: Schematic diagram of a direct exchange (a), an indirect exchange (b) and
a super-exchange interaction (c).

The third term in equation 1.1 allows for the application of an applied external
field which can have components in any of the three spatial directions. The effect of
an applied field is studied only in the case of uniaxial moments, in Chapter 4.

The fourth term in equation 1.1 is the magnetic surface anisotropy. In a material
it is possible for a preferred axis or axes to exist, about which it is energetically

favourable for the system to order. This can be the result of a number of things.
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For example, the lack of spherical symmetry in the charge overlap between ions.
due to spin-orbit coupling, can lead to a preferred orientation for the ions. The
isotropic exchange interaction does not account for this. This is the case for cobalt
crystals [43]. Another possible cause is crystalline electric fields. which are the result

of the i fields of the neij ing ions. Ci ine electric field effects

will be much stronger in magnetic thin films composed of transition metals than in
rare earth superconductors, since in the magnetic thin films it is the outer shell, the
3dsheI.L which is responsible for the magnetic moment, while in the rare earth ions
it is the inner 4f shell.

In the model magnetic film considered in this thesis it is sufficient that the
anisotropy couple only to the  component of the magnetic moment, due to the
symmetry between the two in-plane directions. A positive anisotropy, K > 0 gives
an easy axis along Z, while a negative value makes Z a hard axis and gives an easy
plane within the film. The case of K < 0 is treated in Chapter 6, where the system
is studied as a function of K.

Before proceeding it is useful to rewrite equation 1.1 in terms of the dimensionless
quantities which are used in the Monte Carlo simulations. The magnetic moments
are rewritten as @ = sy, where || = L. Similarly the spin is rewritten as § =

S.sy3. Also all displacements are scaled by the lattice constant, a, so that & — R/a.



Substituting these definitions in to equation 1.1 yields
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Finally new coupling constants are defined such that the Hamiltonian can be written

as
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where g is the Landé g factor [44]. In the remainder of the thesis, unless otherwise

stated. all energies, J, h,and K will be measured in units such that g = p2;,/2a° = 1.
In this thesis the magnetic moments are treated classically. It is important to

establish when this simplification is since ism is an i

quantum ical Ui ly this is not always a trivial task[45].
Certainly the assumption is valid near a second order phase transition. The relevant
length scale near such a transition is the correlation length, which diverges at the
traosition. No such divergence occurs near a first order transition, and hence all

made ing such itions must be made with the caveat that

quantum effects have been ignored. This may be reasonable when comparing results
to experiments on magnetic thin films in which the transitions take place near room

It may not be in the rare earth superconductors in which the

transitions occur near 1 K. The predictions for the ground states, which are based on
classical calculations, must be considered to be, at best, a first approximation valid
in some low temperature region. A complete calculation of the T’ = 0K state of an

experimental magnetic system must include a consideration of quantum effects.



1.4 Relevant theory

The experimental work discussed above is relevant to the resuits presented in all
of the upcoming chapters, However the theoretical studies are best divided based on
the spin dimensionality. This division is employed because the spin dimensionality is
an i in ining the critical iour and phase

of a system. This does not imply that the resuits of one section will not be relevant
to other sections. In fact the chapter concerned with the Heisenberg model is very
much dependent on the results found for both the uniaxial and planar systems. Since
in each chapter the important literature for that section is reviewed, the survey here
will be in the form of a brief overview of what has been published and the methods

employed, rather than a detailed analysis of the final results of these studies.

1.4.1 Uniaxial system

For uniaxial systems, where the magnetic moments are oriented perpendicular to
the plane of the film, one of the fundamental questions is to establish the ground
state when one has both a nearest neighbour exchange interaction and a long-range
dipolar interaction. The dipolar interaction makes this a subtle calculation and there
has been some contradiction between published results. The contradiction arises
because ground state energies within a il imation by Garel
and Doniach[46], Yafet and Gyorgy[34], and Kaplan and Gebring [35] disagree with

those of Czech and Villain [47] who did not make use of a continuum limit but retain
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the discrete nature of the underlying lattice. The i ions by Garel
and Doniach and the other groups all predicted a ground state consisting of striped
domains. while the calculations of Czech and Villain predicted a ground state of
square domains. As well, Taylor and Gyorffy [48], using a discrete approach, agreed
with the results of the continuum calculations, and hence disagreed with Czech and
Villain, although their calculation was valid in a different regime. This problem is
discussed in some detail in Chapter 3.

At finite temperature an important question concerns the nature of the transition
from a low temperature ordered phase to the high temperature, paramagnetic phase,
both in zero applied field and non-zero applied field. The behaviour of the system in
an applied field is important because of the technological implications for materials
used for magnetic storage. The relevant theory in zero field has been developed
by many of the same authors listed in the previous paragraph, using a number of
different methods. Garel and Doniach [46] used a Ginzburg-Landau approach to

study a film with a finite thickness at finite including the ibility of

an applied field. Gehring and Keskin [49] considered a model film using a mean field
approach and looked at the temperature dependence of the domain size. Mean feld
approximations have been used in the limit of a discrete system by Czech and Villain
[47] and by Taylor and Gyorffy[48] and in the continuum limit by Abanov et al. [50].
Lattice gas simulations have been used by Hurley and Singer[42, 51, 52]. A discussion

of the finite phase iour is in Chapter 4.




1.4.2 Planar system

The dipolar 2-D planar model is interesting, particularly in light of what is known
about the classical 2-D planar model. [n the classical 2-D planar model the magnetic
moments interact via an isotropic, short-range exchange interaction. The classical 2-D
planar model contains a zero energy spin wave mode (a gapless mode) which prevents
long-range order at any finite temperature. However, the model does undergo a phase
transition. At low temperature it is possible for bound pairs of vortices to exist and
the two-point correlation function exhibits a power law decay. When the temperature
reaches a critical point the vortex pairs unbind and the two-point correlation function
decays exponentially. This type of phase transition is known as a Kosterlitz-Thouless
transition [13, 33. 54].

The effect of the dipolar interaction on a system with a dominant, ferromag-
netic exchange interaction was considered by Maleev [3]. Maleev showed that it was
possible for the dipolar interaction to stabilise long-range order in a planar model
as a direct result of the long-range nature of the dipolar interaction. Zimmerman
et al. [53] considered a system of dipoles on the honeycomb lattice, using a mean
field approach as well as Monte Carlo simulation, and developed a phase diagram
for that model. They also noted the subtle nature of the spin wave spectrum due to
an anisotropic interaction, such as the dipole-dipole interaction. This was expanded
upon by Henley[56] who introduced the concept of thermally induced ordering, and

Prakash and Henley. [57] who applied this concept to the low temperature behaviour
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of an anisotropic model with a short-range interaction which was chosen to mimic
the nearest neighbour part of the dipole-dipole interaction. Prakash and Henley were
able to derive expressions for the free energy and magnetisation of their model within
the context of a spin wave approximation.

Using a spin wave calculation as well as Monte Carlo simulation, and working on
the triangular lattice, Bedanov (58] concluded that this model orders at low temper-
ature. The results of his spin wave calculation agreed with his Monte Carlo results.
The Monte Carlo results, however, were for very small systems. Numerical studies for
larger square lattices have been done by Bajaj et al. [59]. In these studies. using spin
dynamic stimulations, the spin wave spectra have been calculated for a dipolar model
using the same nearest neighbour approximation as used by Prakash and Henley.
The results of the present work concerning the planar dipolar model are presented in

Chapter 5.

1.4.3 Heisenberg system

In the experiments discussed above, the systems studied are generally believed to

have a domi ic exchange i i jally a strong magnetic
surface anisotropy, and a much weaker dipolar interaction. Almost all of the previous
theoretical work on dipolar Heisenberg models has been on models in which the

relative strengths of the ions were chosen to be similar to those in

Early work includes a spin wave calculation by Yafet, Kwo and Gyorgy(60] for a system
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which orders with a magnetisation perpendicular to the plane of the film. Pescia and
Pokrovsky(61] treated the same problem within the context of the Renormalisation
Group and concluded that this system should have a reorientation transition for a
range of ratios between the strength of the dipolar interaction and the strength of the
‘magnetic surface anisotropy. Politi et al. [62] also studied the reorientation transition
in a thin flm. They used a Renormalisation Group proposed by Polyakov [63], which
they ised to study the i i ition in terms of both film thickness

and temperature.
Spin wave results have also been published by a number of groups. Pich and
[64] consi the dipolar anti with a d
netic exchange, predicting that the dipolar interaction leads to a gap in the spin wave

spectrum and hence the existence of an ordered ground state, with the assumption
that the ground state is perpendicular to the plane of the film. Corruccini and White
[65] considered a model with only the dipole-dipole interaction and, based on their
linearised spin wave calculation, concluded that the model will not exhibit long-range
order on the square lattice. Stamps and Hillebrands[66] and Bruno[67] have consid-
ered two-dimensional ferromagnetic systems with dipolar interactions within the spin
wave approximation.

The problem of a ferromagnetic system with a small dipolar interaction has also
been approached using mean field techniques by both Moschel and Usadel[68, 69, 70]

and Hu and Kawazoe[71]. As well, Monte Carlo simulations have been done by



Chui(72] and Huche et al. [73, 74]. Both the mean field studies and the Monte Carlo
studies considered both the effect of temperature and film thickness as they related

to the reorientation transition. Abanov et al.[50], in a detailed study of a model thin

film, have made a number of icti ing the phase i both in zero
and non-zero applied field, which are relevant for all chapters in this thesis. They
have also made a number of predictions concerning the phase diagram for their model
using a mean field approach.

These studies all provide i i ing the phase iour of the model

system in a small region of phase space where the ferromagnetic exchange interac-
tion and a magnetic surface anisotropy dominate over a much smaller dipole-dipole
interaction. In Chapter 6 an alternative region of phase space is probed. This region
is characterised by the absence of an exchange interaction (J = 0). The phase be-
haviour is explored as a function of the strength of the magnetic surface anisotropy

relative to the strength of the dipolar interaction.



Chapter 2

Methods

While there is a substantial body of literature concerned with the computational
aspects of magnetic systems with short range interactions, [75, 76] it is only recently
that much attention has been given to the effects of long-range interactions and how
to effectively treat these interactions within a Monte Carlo simulation (38, 72, 73].
This chapter is intended as a review of the basics of Monte Carlo simulation methods
and some of the theory behind the technique. The chapter also contains a discussion
of how the long-range nature of the dipolar interaction makes the simulations much
more difficult than when only local interactions are included. The final section is a

discussion of the techniques used on the various computer architectures to minimise

the problems i with the long-range i



2.1 Monte Carlo simulation

of the d; i ies of a magnetic system involves the

calculation of the expectation values of various local operators with respect to the

it involves ing integrals of
the form
(ty = LA exp(—BE((=h) @i

Jd{z} exp(—BE({z}))

where {z} denotes a set of variables that serve to uniquely specify the configuration
of the system of interest. A({z}) and E({z}) denote the value of a local operator
and the energy of the system in configuration {z}, respectively, and 3 denotes the
inverse temperature (8 = 1/ksT). Note that if one or many of the z’s in {z} is
discrete, then the integrals associated with those variables become the appropriate
summations. While it is not always possible to analytically evaluate averages such
as those expressed by equation 2.1, for many systems of interest it is often possible
to evaluate them numerically for finite systems by means of Monte Carlo simulation.
It is then possible to extrapolate the results for these finite systems to systems of
infinite size, by means of finite size scaling techniques [77, 78]. The reliability of
the procedure is, however, critically dependent on the size of the systems which
can be usefully studied and the precision of the results obtained. These factors are
determined by the complexity of the model under investigation, the efficiency of the
algorithm used and the speed and capacity of the computer on which the simulation

is being Hence i i ions are crucial to the successful
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of Monte Carlo si ion to problems of physical interest.

The Monte Carlo simulation is. in simplest terms. a method of integration. [n
the Monte Carlo method, a subset of all possible states of a system are used to
approximate the entire set. One way of choosing the states to include in the evaluation
of the integral is to pick the states randomly, that is with probability P({z}) = 1/N.
where V is the total number of possible configurations. This method of Monte Carlo

is very i ient at il ities such as (A) in equation 2.1. This
is because the exponentials in the integrand of equation 2.1 can vary over several
orders of magnitude, and hence there are large regions of phase space which do not

to the i jon. To improve the efficiency of the Monte

Carlo simulation the concept of “importance sampling” is employed. [mportance

sampling means that from the total phase space of the system, only those regions

which will il ignil to the i ions are sampled.

In this work, points are selected according to the probability Pe({z}), where
Pa({z}) x exp(-BE({z})) - (22)
Selecting points according to this probability allows one to estimate the value of the
expectation value (4) from M points quite simply as
1M
@~ 72 Alzh)- @3)
=1

Obviously the more points used in the evaluation of (4) the more accurate the value

obained[79].
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It has been shown that one may generate a set of states {z}, according to the

probability Peq({z}) by means of a trajectory {y}, through phase space [79]. This

trajectory is generated by means of a Markov process defined in terms of a transition

probability, which is denoted by W({y}, — {y}--1), and is required to satisfy the
condition of detailed balance, specifically

Pa((W}IW (v} = wheet) = Pa({y}e-dW({yheas = u}) - (24)

The states {z}, used in the evaluation of the expectation value given by equation 2.3

are typically determined from the trajectory {y}. as
{zh = Whosno » (2.3)

where 7, denotes the number of Monte Carlo steps (MCs) required for the system
to reach equilibrium and n is determined by the number of MCs it takes for cor-
relations within a system (in equilibrium) to effectively decay to zero. In this way
the evaluation of the weighted average over phase space, expressed by equation 2.1.
is replaced by an average over a trajectory in phase space generated by the transi-
tion probability W({y}: = {y}r~1). The specific form of the transition probability
W({y}r = {y}-+1) may be chosen in a variety of ways to satisfy equation 2.4 and
many different choices have been studied. It should be noted however that the par-
ticular choice of W({y}; — {y}-+1) can have a dramatic effect on the values of 7o
and n required to obtain good statistics and hence will have a crucial effect on the

efficiency of the simulation and the accuracy of the results[73, 76, 79).



It is important to make one point concerning the definition of n in equation
25. n is the number of steps along a trajectory, in phase space. required to allow
correlations to effectively decay to zero, and hence it is also the number of Monte
Carlo steps between taking samples of the system when calculating chermodynamic
averages. The best choice for n depends upon the correlations which are present in
the system. since an uncorrelated set of configurations is required. It is difficult to
make estimates of n @ priori, since this requires knowledge of equilibrium relaxation
times. [t is possible to determine if an appropriate value has been chosen a posteri.
by choosing a larger value of n and confirming that the thermodynamic averages are
unaffected by the increase. This is part of the “art™ of doing simulation physics.

The reason for expanding upon the definition of n is that it is very important
when studying critical phenomenon. Close to a phase transition the correlation times
increase dramatically, becoming divergent in an infinite system, an effect known as
“critical slowing down”. This presents particular problems for simulations on large
systems close to criticality, as the value of n required to obtain reliable results will
increase as a consequence of the increased correlation times. The value of n needed is
also dependent greatly on the dynamics that is used in the Monte Carlo simulation.
There have been a number of algorithms developed to minimise these problems in

systems with short-range interactions [80]. This is in fact still a very active research

area. Unfortunately it is not clear if these i i are i o

systems with long-range i i Asa near a phase ition one
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is forced to use a large value of n. greatly increasing the time required for a simulation
of a system with long-range interactions.

A detailed discussion of Monte Carlo simulation methods can be found in many
books. In particular the two volumes edited by K. Binder in the Topics in Current

Physics series[79, 81| are very useful.

2.1.1 General Algorithm

For magnetic systems the degrees of freedom are those associated with the ori-
entation of magnetic dipoles in a lattice. The quantities to be calculated include
the average internal energy, the specific heat, appropriate order parameters and their

d magnetic ibility. Either the i ithm([82] or the heat

bath algorithm(76] is used in all of the simulations presented in this thesis. In the

) is if the transition ility is given by
) | fAE<0O
Wz} = {zha) = . (2:6)
exp(~BAE) i AE>0
where AE is the difference in energy between the state {z}, and the state {z},.,.

In the heat bath algorithm the transition probability is given by

Wilzhe = (zheod) = aam AT @7

A simulation then consists of generating a trajectory in phase space starting with
some initial spin configuration by means of the following steps:



i)

Generate a new configuration by randomly choosing 2 spin to update and ro-

tating the spin to some new direction (§; — 57 = §; + AS)).

e

Calculate the difference in energy, AE, between the original configuration and

the new one.

o

Generate a random number R between 0 and 1.

{

If R < W(S; — 5i) then accept the new spin configuration.

If R> W(S; — 57) then retain the old spin configuration.

o

6. Return to step 1.

This procedure is repeated over and over again, with data taken every n steps.

2.2 Monte Carlo simulations with dipolar interac-
tions

Much of the current interest in these models stems from the effects of the long-
range character of the dipolar interaction. In earlier studies on three-dimensional
dipolar systems [1] it was found that finite size effects can be best treated by assuming
that the spin system is periodic. In the following arguments the system is assumed to
be a square lattice with lattice constant @, and L? magnetic ions. The square lattice is

used since the experimental systems being considered have this symmetry. However
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the methods can be generalised to other lattices. By imposing this periodicity, the
configuration of the system can be specified in terms of the L? spin variables contained
within a single cell. The energy of a particular configuration can then be written in
terms of this finite cell by “folding in” the interactions between the spins inside the
cell and those outside, to leave an effective interaction between two spins within the
basic unit cell. Figure 2.1 illustrates what is meant by “folding in". The part of the
system inside the dark lines is the finite system, and the infinite system is comprised

of infinitely many copies of this finite system. Thus knowing the state of each spin in
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Figure 2.1: The infinite system is comprised of replicas of the finite cell. All inter-
actions between spins outside the finite cell are included in an effective interaction
between spins within the unit cell.

the finite system means that one knows the state of every spin in the infinite system.
The Hamiltonian can then be rewritten such that the spins outside of the finite system

can be replaced with the equivalent spins from inside the finite system. The cost of



this technique is a greatly increased complexity in the form of the interaction.
Mathematically, this means that the allowed spin configurations satisfy the re-
quirement that
F(R) =3(R+G), (2.8)
where G is a lattice vector given by

G = L(gi3 + g20), (2.9)

with g, and g, = 0,%1,%2.... Note that distances have been scaled by the lattice
spacing a. The square lattice is defined in terms of the unit vectors Z and §. This

assumed periodicity presents no problems for treating the MSA or the applied fieldina

simulation. For the exchange i ion it is equi! to the ication of periodic

boundary conditions. Because the dipolar interaction is a long-range interaction and

the simulation uses a finite size system, i ing the dipolar i ion into

asi ion is more i than i ing the exchange interaction. The

dipolar part of the Hamiltonian, given in equation 1.5,
Hu=g T ‘0Bl (Ram)o® (Bom), (210)
LA

can be rewritten such that it only depends on the moments and lattice vectors in
the finite system. This can be done by writing the vector Rum in terms of a reduced
VeCtor fnm Where

Rum =7am +G, (211)
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and C is chosen such that pm lies within the finite system. Using the fact that the

allowed spin configurations satisfy equation 2.8, the Hamiltonian then becomes
Hus= g% P 'a‘(r.) E (7o — G)o? (Fm)- (2.12)

To remind the reader, V is the number of magnetic moments in the system (V — oo
in the thermodynamic limit), and L? is the number of moments in the finite cell. The
notation used for the sums over 7, and 7, is intended to signify that these sums are
over the lattice sites in the finite L? system. Substituting the expanded form for [*?
gives

Ha= [C *2 Z ' (Fu)o” )l 3, o ﬁ (2.13)
where C denotes the interaction between spins at equivalent lattice sites and is there-
fore independent of the configuration of the system by virtue of the assumed periodic-

ity. The prime on the sum indicates that the all terms with 7, = 7}, are excluded from

the sum. The Hamiltonian can then be rewritten in terms of an effective interaction

N L&
Hu =7 |C+3 3 oW (Fam)o® () |+ (2.14)
2
with
W (Fom) = Z L (2.15)

Mar 6"& [Fom +G =71
The numerical evaluation of the effective interaction is best accomplished by means

ofa isation of the Ewald i hni The details of this calculation

have been published previously [2, 20].
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With the Hamiltonian of the system given by equation 2.14. the change in energy
due to the rotation of a magnetic moment can be calculated at an arbitrary site n. [f
the magnetic moment changes according to

o = Fa+AF, (2.16)
then the change in energy can be expressed in terms of an effective field A, defined

at each lattice point as

AE =Y AcSHZ, (217
=
where the effective field is given by

HE = 3 W(Fom)oh. (2.18)

2.3 Computational aspects

With the Hamiltonian of the system given by equation 2.14, the Monte Carlo
algorithm described in the previous section proceeds as follows. From the initial spin
configuration the effective field H,, defined by equation 2.18, can be calculated at each
site on the lattice. The change in energy, given by equation 2.17, is then calculated
for the rotation of a randomly chosen spin. If the new spin configuration is accepted

then the effective field at each site is updated:

H2 = HS + 3 W(7m) A, . (2-19)
Sm
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This operation is much more time ing for a long- i ion than for

a similar simulation with a short range interaction. This is because rotating a spin
at one site induces a change in the effective field at all other sites on the lattice.
Thus each spin change requires the updating of the L? effective field marrix, and
since one must update each spin in the system, which means L? spins, the time for

one MCs/site scales like L* in i ions and L® in 3-di i The amount

of computation required is also strongly correlated to the acceptance rate, since the
decision to flip or not requires very little computation time relative to the updating of
the effective fields. At low temperature very few spin changes are accepted, but near

a second order phase ition the rate increases i lv. Combined

with the phenomenon of critical slowing down, mentioned earlier, this means that in
the vicinity of the critical point, one requires much longer simulations, in terms of
MCs/site, in order to obtain good statistics[81, 79].

A further concern is that the effective interaction W°4(f,,). defined by equation
2.15, is not a simple function. It must be pre-computed and stored as an array. It is
not generally feasible to store the full L* array (one L? array for each pair of a and

3) of foating point numbers, since the goal is to have L as large as possible. (This

to be removed with 64 bit address mapping are now
becoming available and the amount of memory which can be addressed has increased
significantly.) Fortunately there is a large amount of symmetry in the system and

it is only necessary to store a single L? array. The cost of using this symmetry is
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that now a mapping from the L* array to the L? array must be used. Doing this
mapping efficiently is currently the limiting factor on the efficiency of the code. and
considerable time and effort have been spent in trying to make this section of code
as efficient as possible. To accomplish this a (2 x L) x (2 x L) array is used. where
We?(7 — ) is repeated in each of the 4 L x L sections of the large array. Because
of the periodicity assumed in equation 2.8, finding the correct interaction between
the spin that has rotated and all other spins can be accomplished by assuming the
rotated spin is at the origin of the system. By storing the larger array, stepping
through memory is now done partially in unit strides and partially in strides of 2L.
which is a more efficient method of accessing memory then accessing array elements
in a random order.

The code used to perform the update of the effective field is given below. The
variables Wxx, Wyy, Wxy, and W2z are the interaction matrices for (aJ) equal to
XX. ¥¥, Xy (and yx) and 2z, respectively. Wxz and Wyz are zero in a two-dimensional
system, and Wxy = Wyx. Hx, Hy, and Hz are arrays which store the effective field

in the x, y, and z directi Note that the i i arrays have been stored

as one-dimensional arrays, because this allows a more efficient access to the arrays.
The variables rowspin and colspin refer to the row and column of the spin which has
rotated and deltax, deltay and deltaz are the changes in the x, y and z components
of the rotated spin. This update loop is one of the benchmarks used in evaluating

the efficiency of the code on the different machines used to do the simulations.



c---— UpdateFields spin at ( rowspim, colspin) has changed-————-
D092 j =0, L1
Fn = 2sLs(L+j-rowspin)-colspin+1+L
jl=1Lsj +1
D093 k =0, L-1
Hx (k+j1)=Hx(k+j1) +deltax*Wxx (Fn+k) +deltay+Wxy (Fo+k)
Hy (k+j1) =Hy (k+j1) +deltaysWyy (Fo+k) +deltaxsixy (Fo+k)
Hz (k+j1) =Hz (k+j1) +deltazeWzz (Fn+k)
93 CONTINUE
92 CONTINUE

2.4 Benchmarks

Benchmarking the Monte Carlo code is important for a number of reasons. The
most obvious is that it gives an indication of how efficiently one is making use of the
available computational resources. It also allows one to gauge if changes to a code

have improved the and how signil that i is (or perhaps

even how much a change in the code has degraded the performance). Monte Carlo

simulations with long-range i ions require very high-

resources, which are expensive, and should not be wasted or used inefficiently. The

simulations which constitute a large portion of the new results in this thesis would

not have been feasible using the computational resources available only five years ago.
The simulations presented in this thesis were run on a number of different comput-

ers, using resources provided by many sources. At Memorial University of Newfound-

land the code was run on a Silicon Graphics R4000 Crimson, a DEC 2100/A500MP,

a DEC 300/M600, and a DEC AXP 3400. Through a scholarship provided by The
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High Performance Computing Centre in Calgary, Alberta, access was granted to their
Fujitsu VPX240, which is a vector supercomputer with a peak rate of 2.5 gigaflops.
(2.5 x 10° floating point operations per second). Access to a 64 node Connection Ma-
chine 5 (CM3), was obtained from the HLRZ Research Centre in Julich, Germany.
The CM5 is a massively parallel machine. The Pittsburgh Supercomputing Center
and Digital Equipment Corporation graciously provided time on an 4 processor DEC
8-400/300.

In benchmarking the performance of the code used for the simulations, two impor-
tant measures were used. The first is a floating point operations per second (flop/s)
rating for the basic kernel which updates the effective field matrix and is shown
above. The second is a measure of the time per Monte Carlo step per site. This
second benchmark is the CPU time required to pick a new state, decide whether to
accept the new state, and to update the system assuming the change was accepted.
The time/MCs/site is calculated using a 40 x 40 system. For the two supercomputers
used in this work, particularly the Connection Machine 5 (CM5), their performance
relative to the workstations would be better if larger systems were used, although the
amount of memory then becomes a concern. On the DEC Alpha 8400 5/300, bench-
marks were gathered for a Fortran77 and a Fortran90 code. The DEC Alpha 8400

5/300 is a shared memory il and the code was developed to

take advantage of the parallel nature of the machine. Therefore benchmarks are given

for the Fortran90 code using both 1 processor and using 4 processors. The Mflop/s
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rating allows the comparison of the efficiency of the code to that of other programs on
the various machines and to the peak efficiency of the machine. The time per Monte
Carlo step per spin is a less general benchmark since it is a comparison of the speed
of the machines for this one problem, but it is the more informative to the physicist.
since it is more closely related to the real time to complete a simulation.

In Table 1 both sets of benchmarks are shown for some of the machines which
have been used to test the code. It should be noted that the programming experience

of the author in a high- i is limited and some of the

benchmark numbers reflect this fact. In particular the numbers for the CM5 are very
much influenced by the limited opportunity to interact with people with experience in
this environment. Comparison of the Mflop/s ratings on the various machines to their
peak Mflop/s ratings, shows that the code is using the hardware very efficiently. The
numbers showing the time/MCs/site also reflect the type of problem treated. The
main CPU intensive loop in the program is perfectly vectorisable and parallelisable.
but the mapping from the L* array to the L? array makes the algorithm less than
ideal for the distributed memory of the CM5. On the CMS5 it is more efficient to
store the entire L* interaction matrix. Thus the Mflop/s rating for the CMS5 is very
impressive, while the time per MCs/site is less so. This is because parts of the code
must be done serially and the massively parallel nature of the CM5 is wasted, and
because communication between the nodes is necessary with each spin rotation. The

DEC 8400/300 is a very new machine which features 64 bit memory addressing and
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shared memory with 4 processors (on the machine which was used for this study).
The ability to address large amounts of memory allowed the use of the full L* arrays.

and the shared memory architecture also reduced the time per step required for

communication.
Machine Benchmark #1 | time/MCs/site
_ in Mflop/s in seconds
SGI Crimson R4000 111 5.53 x 10—
1BM 320H 16.7 .87 x 10—~
DEC MOOZSOO AXP 32.2 .64 x 107 133
DEC 2100 A500MP 35.0 .24 x 10~ 190
| DEC 84007300 (1 CPU./90) 71.2 63 x 10+ 600
DEC 8400/300 (L CPU.E77) 1293 587 x 105 600
IBM 390 R6000 1512 5.68 x 10— 256
DEC 8400/300 (4 CPU.180) 250.8 3.06 x 10° 2400
Fujitsu VPX240/10 398.4 182 x 10> 2400
CMs5 (64 proc) 510.0 LIIx 10— 2560

Table 2.1: Benchmarks of the code using a 40 x 40 lattice. These benchmarks are
provided only for interest. The timings were not all done under equivalent load
conditions or in accordance with generally accepted procedures. The peak Mflop/s
rate was obtained from various sources and should be viewed as an estimate. (The
third column for the CM35 is not a misprint)

2.5 A typical simulation

In a simulation the choice of various parameters necessary for the simulation
depend upon a number of factors. For example the choice of n, depends very much
on how close the temperature of the simulation is to any phase transitions. Near

the transition temperature, where one requires a larger number of initialisation steps.
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n = 20 MCs/site is normally used, while in a simulation away from the critical
region n is typically 10 MCs/site. As a reminder, n is the number of steps along a
trajectory required to allow correlations to effectively decay to zero, and hence it is
also the number of Monte Carlo steps between taking samples of the system when
calculating thermodynamic averages. A typical simulation consists of 10000 to 100000
initialisation steps per spin followed by from 10° to 10° more MCs/site for collecting
data.

As was stated earlier there is an art to simulations much as there is an art to doing
experiments and, as in experiments, reproducibility of results is one of the best tests.
The code used for the simulations has been modified many times during the period of
this study. These modifications have always been coupled with attempts to improve
the efficiency of the code and to better take advantage of the available hardware.
In these efforts the code was rewritten no less than four times, and each time the
results were compared with our previous results and those published by others to
confirm that the program was functioning properly. The effort allocated to redoing
simulations and confirming old results has led to a set of code in which the author

has a great deal of confidence.



Chapter 3

The uniaxial dipolar model:

Ground states

3.1 Introduction

In this chapter the ground state properties for a two-dimensional spin system
on a square lattice are examined. It is assumed that the crystalline electric fields
are sufficiently large that the orientation of the magnet dipoles is constrained to lie
perpendicular to the plane of the magnetic film. This corresponds to the case of
K — oo in the Hamiltonian of equation 1.5. In this case the components of the
magnetic dipoles within the plane of the film will be zero. Thus o, = g, = 0 and the

Hamiltonian reduces to

H=Y '0*(Fa)T (Fn — )0 (Fim) —

FasFm
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where 0. = £1. In the absence of the dipolar interaction, the above Hamiltonian
reduces to the well known Ising model [83], which can be solved exactly in two-
dimensions [84] and which has been the subject of considerable theoretical study-
For J > 0 and in the absence of the dipolar interaction, the ground state is £he
ferromagnetic state, while for J < 0 the ground state is the pure antiferromagnetic
state, where each spin is anti-aligned with its four nearest neighbours. For the ptire
dipolar system (J = 0) the ground state is an antiferromagnetic state where the
spins form ferromagnetic rows along one axis which are ordered antiferromagnetically
along the second axis. The ground state for the uniaxial model, that includes both £he
exchange and the dipolar interactions, is somewhat more complex. Our preliminAry

Monte Carlo studies led that gradually i ing J from zero did not induce 2

t ition from the antifer ic ground state of the pure dipolar system to the
ferromagnetic ground state of the ferromaguetic Ising system as one might expect [6]-

Instead the Monte Carlo studies led a of itions with i ing J

between states in which the magnetic dipoles formed stripes along one of the principal
axes of the square lattice. A typical stripe configuration is shown in figure 3.1.

A review of the published literature at that time revealed that no one had reported
seeing these phases in a Monte Carlo simulation, and considerable effort was expended
in rigorously checking the code and in obtaining analytical and numerical results for
the energy of various ground state configurations. While no Monte Carlo results

were available, there were, however, some theoretical results which indicated that the
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Figure 3.1: An example configuration showing the low temperature ordering in a
stripe phase. (L? 128 x 128) and J = 8.9. Black indicates regions where the
magnetic moment points in the +2Z direction and white shows magnetic moments in

the —2Z direction.

ground states in this region should be the stripe phases. The earliest of these works
was by Garel and Doniach [46]. Garel and Doniach showed, using a Ginzburg-Landau
approach, that the stripe phases were stable with respect to the ferromagnetic phase.
Their calculation treated the case of a slab of finite thickness at low temperatures in an
applied field. They developed a mean field phase diagram for the system. Published
later, the work of Yafet and Gyorgy[34] used a mean field approach to study domain

formation in mono-layers and their results agreed qualitatively with the results of

and Doniach. Yafet and Gyorgy explicitly treated the case of a mono-layer,
while Garel and Doniach had considered a film of small, but finite thickness. Yafet and

Gyorgy assumed a finite anisotropy and worked within a continuum approximation, as
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had Garel and Doniach. The Monte Carlo results of the present study were done using
a discrete system and assumed an infinite anisotropy. As cited by Yafet and Gyorgy
as a private communication and later published, Czech and Villain [47] reported
that when the discrete nature of the lattice was retained, the stripe phases were
no longer the ground state. Instead Czech and Villain predicted that the ground

states would be a sequence of checkerboard phases, where blocks of ferromagnetically

ordered moments would be arranged anti i much like the
of black and red squares on a checkerboard. The difference in the two results was not
surprising considering the subtle nature of the dipolar interaction.

The Monte Carlo results of the present study were therefore somewhat unsettling

since they agreed with the i ictions based on is models, but
disagreed with the results which claimed to retain the discrete nature of the lattice.
Obviously the resolution of the apparent discrepancy was very important in order
to properly understand the results obtained. It was, therefore, necessary to explore
more closely the ground state energies for the dipolar systems in the limits which are

appropriate for the Monte Carlo simulations.

3.2 Ground state energies

Figure 3.2 summarises the low temperature results obtained from our early Monte
Carlo simulations [20]. The phases shown in the figure are named using 2 letters and

an optional number. The first letter refers to the ordering along the # direction and
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the second letter to the ordering along the j direction. An F indicates ferromagnetic
ordering and an A indicates antiferromagnetic ordering. The optional number gives
the width of the ferromagnetically ordered stripe in the case where there is a stripe
phase. For example, AF8 refers to a stripe phase in which there are ferromagnetic
stripes of width 8 magnetic moments along the § direction, which are ordered an-
tiferromagnetically along the £ direction. The results shown in Figure 3.2 indicate
that as J increases, so does the width of the stripes in the ground state. The system
size used to determine the phase diagram shown in figure 3.2 was only 16 x 16. Only
a few different stripe phases are indicated, as the periodicity of the stripes must be
commensurate with the system size and obviously if the stripe width is greater than
or equal to 16 then the system would look ferromagnetic. This is always a concern
in Monte Carlo simulations with spatially modulated phases, where the boundary
conditions impose a periodicity on the system. If this imposed periodicity is not
commensurate with the natural period of the system, then one is not seeing the true
behaviour of the infinite system. These studies on small systems suggested not only
the need for simulations on larger systems, but also the need to be able to determine
the proper ground state for a given value of J.

In order to predict the correct ground state, an expression for the energy of both
stripe phases and checkerboard must be derived. For a stripe phase of width h, the

exchange interaction contribution to the energy is given by

Ea=-2/(1- %) : (32)
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Figure 3.2: The phase diagram found using Monte Carlo simulations with a L? =
16 x 16 system. Of interest in this figure is the low temperature region, which shows
that the ground state for some values of J are stripe phases. These phases are the
AFL. AF2, AF4, and AF8 phases, where the number refers to the width of the stripes.
The vertical lines are estimates of the phase boundaries between the stripe phases
based on energy calculations, as discussed in the text. Temperature is in units of
9/ks-



while for a checkerboard phase of size h by h the exchange contribution is
2
Ea=-24(1- - (33)

The use of h to describe the characteristic domain size in the stripe and checkerboard
phases should not be confused with the applied field h, the context in which A is
used should lead to no confusion. The expressions for the dipolar contribution to the

energy are not quite as compact. For a stripe phase

w - (g sgois L forngngd).
WE 19l 10 . 23 47
® T%T"*W’(‘*IEE“" )3z 60

and for a checkerboard phase,

o A (s cypen PG | L~ S8 Ful0lF + G1)
fa = *(,Z( R g PP YD M 1

w‘zlclp(l_dl) (1,.%';2',-54—) _;ﬂ’?‘ @5
F\ is defined as
Fi(z) = -ze—l‘ + £erfc(z) (3.6)
and F; is defined as
F(z)= — Vrerfe(z). (3.7)

The definitions of 1, G, and @ are all given in Appendix A, in which the exact de-
tails of the calculation are presented. Only the final results are presented here along

with a discussion of the analysis. These expressions are exact, and can be evaluated
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numerically for any value of k. although one is still limited by the computation time
required when h is large. This is in contrast to the calculations of Czech and Villain.
Garel and Doniach, and Yafet and Gyorgy, which are intended to be approximations
valid in the limit of large . The expressions for the energy of the stripe and checker-
board phases are quite complex. This is a direct result of the long-range nature of the
dipole-dipole interaction and the slow convergence of the sums in equation 3.1. The
sums in equation 3.4 and 3.5 converge quickly, with seven figure accuracy generally
obtained by taking only terms with |G| < 5. The energies given by equations 3.4
and 3.5 for small values of & have been compared to those given by the Monte Cario
calculation as an extra check of the Monte Carlo program.

In figure 3.3 the energy of the stripe phases with A = 1,2,3,4, and 5 along with
the energy of the ferromagnetic and antiferromagnetic phases are plotted as functions
of J. For J < 0.85 the ground state is the pure antiferromagnetic state preferred by
the dipolar interaction. At J = 0.85 the ground state changes to a stripe phase
with h = 1. As J increases the ground state changes to stripe phases with larger and
larger strip width. The checkerboard phases are never the lowest energy phase for the
values of J shown, and therefore are not shown in figure 3.3. Although it is difficult
to discern from figure 3.3, as J increases, the differences in energy between successive
stripe phases get smaller at any given temperature. Also the region of stability for
the lowest energy stripe phase gets narrower as the stripe width grows. It is evident

in figure 3.3 that as h increases the energy of that stripe phase becomes closer to that
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of the ferromagnetic phase. It is not clear if the stripe phases will continue to be of

lower energy than the ic phase or the d phases at larger values

of J. However, the range of stripe widths shown in figure 3.3 is the relevant range
for comparison to the Monte Carlo results. In figure 3.2 the T = 0 phase boundaries
predicted by the above energy calculations are shown as solid vertical lines. They
are in good agreement with the Monte Carlo results. While this partially validated
the results of the Monte Carlo simulation, which indicated that the system orders

in a stripe phase at low rather than a phase, it did not

resolve the apparent discrepancy between the ground state predictions of continuum

and discrete calculations.

3.2.1 In the limit of large stripe width

Figure 3.3 includes only phases up to h = 5, and while the results suggest the
stripe phases will continue to be the lowest energy phase for larger values of J, the
results are not conclusive. Thus an asymptotic form of the energy for the various
phases as a function of J is required. This calculation has been done by Whitehead
and De’Bell[85] and leads to a dipolar contribution to the energy for both the stripe

phases and the checkerboard phases of
Jim Eu (h) = B3, — +(4+ Bla () +0 (). (38)

with Eg, equal to the dipolar contribution to the ferromagnetic state. A and B are

positive constants, which differ for the stripe phases and for the checkerboard phases.
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Figure 3.3: The energy of the stripe phases with A = 1, 2, 3, 4, and 5, as well as
the ferromagnetic and antiferromagnetic phases as functions of J. Temperature is in
units of g/kg.
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The calculations of A and B are quite difficult. The B’s have been calculated
exactly for both the checkerboard and stripe phases [35. 85]. For the stripe phases
B = 8. while for the checkerboard phases B = 16. The difficulties associated with

the long-range dipolar i ion manifest in the ion of the A's.

To calculate the A’s, the energies of the various phases were fit to the functional form
given in equation 3.8 using the larger values of h(h > 50). Fortunately the higher
order terms in equation 3.8 are very small and the functional form holds even for
stripes as small as h = 10, and for checkerboards as small as & = 20. To show how
well this functional form holds the resuits are plotted in figure 3.4. The slope in
each case yields an estimate of B and the y-intercept gives an estimate for A. The

between the ical data and the ic form is excellent. The

estimates for A from this analysis are 4 = 9.105 + 0.005 for the stripe phases and
A =2.819 £ 0.005 for the checkerboard phases.
After combining equations 3.2 and 3.3 with equation 3.8 the total energy of a

stripe or checkerboard phase as a function of J and A can be written as
Jlim E(h) = Esg(h) + Eue(h, J). (3.9)
For stripes one has
hlire“E(h)=Ep—-%(A—ZJ+B].n(h))+O(h—Iz), (3.10)
and for the checkerboard phases one has

- 1 1
Jim E(h) = Er = 3 (4= 47 + Bla() + 0 (57) - (311
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Figure 3.4: A plot of { [E};, — Eap(h)]} as a function of In(h) for the stripe (a) and
checkerboard phases (b) [6].
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where Er = E3,~2J is the combined energy of the ic phase. The minima
of the energies in equations 3.10 and 3.11 define a lowest energy domain size for each
class of phases, which is denoted by A*. It is straightforward to derive that for both

stripe and checkerboard phases

K=o (). (12)
with hg = exp(l — A/B) (the exact values of B have been substituted into the

exponential to obtain the J/4 ituting back into ions 3.10

and 3.11 leads to an expression for E(h*), which is the energy of the lowest energy

state in each class. The resulting equation for both stripe and checkerboards is

E(h) = Ep— f} +0 (h—{,-) ; (3.13)
= Ep- %erp(-lld) +0 (7.%) 5 (3.14)
Thus both the stripes and ch would ilise the ic state,

as B and hg are positive by definition. Which of the two phases is the ground state
is determined by the value of B/hg. For the stripes B/ho ~ 9.2 + 0.05 and for the
checkerboard B/hg ~ 7.0 +0.05. Thus the stripe phases constitute the ground state
in a discrete system.

Kaplan and Gehring [35] arrived at a similar conclusion regarding the stability
of the stripe phase over the checkerboard phase. They also correctly identified the
approximation in the analysis of Czech and Villain[47] that leads to their conclusion

regarding the stability of the checkerboard phase. However a detailed comparison of
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the analysis of Kaplan and Gehring with the present results reveals that the continuum
approximation leads to a slightly different value of the coefficient A (defined as 475
and dxb/ for the stripe phase and the checkerboard phase respectively in (35]) for both
the stripe and the checkerboard phases. This arises as a consequence of the fact that
corrections to the In(h) term in the asymptotic expansion of the dipolar energy are
very sensitive to the nature of the approximations used in the analysis. While such

corrections are relatively small, they are igni in ing the

difference between the minimum energy of the stripe and checkerboard phase for a
given value of J. This serves to emphasise the subtle nature of the dipolar interaction
and the care that has to be taken in treating a long-range interaction. This point is
also emphasised in the work of Hurley and Singer [51].

As stated above, the results of Czech and Villain highlight the subtle nature of

involving the dipolar i fon and it is ile to look more closely
at their analysis. In their analysis they make one improper assumption, which leads
to their conclusion that the checkerboard phases are the ground state. They arrive
at a result similar to equation 3.8 for the dipolar contributions to the energy (their
equation (12)) for both the stripes and checks. In this result there is a term which
varies as A/h where A is of order unity. In the expression for the contribution to the
energy due to the exchange interaction, there is a term which varies as J/h. Their
improper assumption was that for J >> 1, they assumed that they could ignore the

term which varies as A/, since it will be dominated by the term which varies as J/h
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from the exchange contribution. This is equivalent to setting A = 0, and in fact for
large values of J, the term they ignore does not contribute significantly to the energy
of either the stripes or the checkerboard phases as both asymptotically approach
the same value of the energy. The problem arises because this term does contribute
significantly to the determination of A*. By taking A4 = 0, Czech and Villain have let
h* = exp (1 + %) for both stripes and checks and the determination of the ground
state is dependent only on the B’s. One can see quite clearly how the conclusions
drawn from any analysis will be strongly dependent on any approximations used to
estimate 4. Kaplan and Gehring(35] also pointed out the flaw in the argument of
Czech and Villan.

In figure 3.5, the energies of the lowest energy stripe phase, the lowest energy
checkerboard phase and the ferromagnetic phase are all plotted as functions of J. As
well, the corresponding set of points found for small J, from the exact calculation
of the energies for small stripes and checkerboards are plotted; each point indicates
where the domain size of the lowest energy stripe or checkered state changes from &
toh+1.

While the work discussed above was in still progress, two related papers were
published[42, 48]. The first, by Taylor and Gyorffy [48], dealt with a mono-layer cou-
pled via dipolar, exchange, and spin-orbit interactions. They calculated the ground
state energies and predicted the existence of stripe phases in the limit of small J,

while maintaining the discrete nature of the magnetic moments. They were, however,
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Figure 3.5: Companmoithewofthesmpeudchedgxboudpﬁm The
solid line shows the energy ion for the stripe
phase with the coefficients given in the tu:t. Thz dashed line shows the corresponding
energies for the checkerboard phase. Crosses represent the points at which the width
of the stripes changes from h to h + 1. Diamonds are the corresponding points for
the checkerboard phases. Forlefuume. lhzdo!—dnkedhneandthgdondhmshn'
the energies of the ic phases,




unable to determine the ground state in the limit of large J as done above. and left
this as an open question. Also, they did not discuss the work of Czech and Villain
concerning the checkerboard phases. Their predicted ground state energies matched
the results found in the above analysis, within the precision quoted. Taylor and Gy-
orffy also noted that their initial attempts at Monte Carlo simulation had proved
inconclusive, due to meta-stability effects. There was also a paper by Hurley and
Singer [42] which predicted the existence of stripe phases and provided some Monte
Carlo evidence of stripe phases. This work was done on a triangular lattice using a
lactice gas model, hence it is not possible to make direct comparisons to their results.

The work of Hurley and Singer is very similar to that of Yafet and Gyorgy.

3.3 Summary

The ground states for a uniaxial spin system on a square lattice were established
as a function of the ratio of the short range exchange interaction and the long-range
dipolar interaction. The ground states for J > 0.85 consist of a series of stripe phases,

with the stripe width i ing with i ing J, rather than ch board phases

as was predicted previously. Using the exact values for the energy of stripes with
moderate widths as well as for checkerboard phases of moderate size, the energies of
the two classes of phase were calculated analytically in the limit of large J. It was
then established that the stripe phases are always the lower energy phase and will

destabilise the ferromagnetic phase even in the limit of J going to infinity.



Chapter 4

The uniaxial dipolar model: Finite

temperature

4.1 Introduction

In this chapter, the treatment of uniaxial systems is extended to finite temperature
using Monte Carlo simulation. In the first half of the chapter, the moments are
assumed to interact via the dipolar and exchange interactions as in the previous
chapter. In the second half of the chapter the effect of an applied external field

dit to the film is

The phase behaviour of a uniaxial dipolar model in zero field has been analysed by
Czech and Villain [47], for a discrete lattice. Although, as was shown in the previous

chapter. Czech and Villain assumed the wrong ground state, much of their argument
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is still valid. Czech and Villain predict a depinning transition where the magnetic
superlattice depins itself from the underlying square lattice. Thus the system forms a
“floating solid” at all but the lowest temperatures. These predictions are based largely
on a mean field analysis of the problem. Abanov et al. [50] have also treated the
problem as part of a more general treatment of dipolar systems in the continuum limit.
Abanov et al. use a phenomenological Hamiltonian. which they write in terms of a
Fourier transform of the displacement of domain walls from an ordered configuration.
The displacement of the nth domain wall is given by un(7), and its Fourier transform
is given by

) = § [ P e (-i5-7).- @1

When the iltonian is in terms of the i with the
Fourier transform of the displacement of the domain walls, they obtain a term of the
form xp2p}. The sign of x determines the stability of the Ising nematic phase and
hence also determines the predicted phase diagram. They find, to lowest order. x < 0.
but show that thermal fluctuations can lead to a positive x by taking the one-loop
correction to . Both predictions of Abanov et al. are shown in figure 4.1. The exact
nature of the various phases will be discussed below, but it is important to note that
Abanov et al. have not assumed a uniaxial system in their study.

The phase diagram of Abanov et al. shows the effects of temperature, an applied
film perpendicular to the film (Hperp) and an applied field parallel to the film (Hpera)

on the phase behaviour of a dipolar system. In this thesis Hpera = 0 as the effects
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of a parallel applied field are not considered. Also Abanov et al. have considered
a Heisenberg model. rather than a uniaxial model. Therefore their phase diagram
includes a reorientation transition at T, which is not relevant to this chapter. but
which will be considered in chapter 6. Abanov et al. have named the various phases
based on an analogy to liquid crystal phases. This will be discussed later in the
chapter, but the smectic phase in figure 4.1 refers to the stripe phases. The tetragonal
phase is similar to the stripe phases, but lacks orientational order as will be discussed
below. Abanov et al also predict that an Ising-nematic phase may be stable. This
phase will be defined below. The naming scheme used to identify the various phase

The addition of a field further complicates the problem. On the basis of a phe-
nomenological Landau-Ginzburg model, Garel and Doniach[46] predict that for suf-
ficiently large applied fields, the stripe phases will be unstable with respect to the
formation of two-dimensional cylinders or bubbles and postulate the phase diagram
shown in figure 4.2. This phase diagram shows the effects of temperature and an
applied field directed perpendicular to the film. The bubble phase consists of com-
pact domains of ferromagnetically ordered magnetic moments, which are ordered in
a hexagonal pattern, with the surrounding moments aligned in the opposite direc-
tion. Abanov et al. predicted in their work that on the square lattice the four-fold
anisotropy of the underlying lattice will stabilise the stripe phases at sufficiently low

temperatures, as shown in figure 4.1. Monte Carlo simulations have been done on
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the triangular lattice using a lattice gas model by Hurley and Singer [42], leading to
the phase diagram shown in figure 4.3. In this figure, S refers to the stripe phase.
H refers to the hexagonal or bubble phase and [ refers to the isotropic phase. The
phase diagram of Hurley and Singer is in the density-temperature plane, which makes
it difficult to compare to the results of this thesis. It is possible, however, to map the

lactice gas approach to our standard Monte Carlo simulations.

4.2 Zero field

The phase diagram shown in the previous chapter, figure 3.2, is for an V =
16 x 16 system, and a system of this size is too small for extracting phase behaviour.
Nevertheless the Monte Carlo simulation of this small system provided some of the

first simulation evidence of some i ing finite i The upper
line in figure 3.2 is a phase boundary which was determined from the peaks in the
specific heat. The low temperature phases are the ordered stripe phases, but the
detailed nature of the higher temperature phase isn’t clear in a system this small. To
help in determining the nature of this phase, the structure factor was calculated. The

structure factor is defined as
s(®)=(|Ts@eed). (@2

In figure 4.4 the structure factor is plotted at three temperatures for J = 6.0: at

T = 0.5, a low temperature well below the transition line, at T = 3.00, which is
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Figure 4.1: The phase diagram as predicted by Abanov et al. [50]. The figure (a) is
a prediction for £ > 0 while figure (b) is for x < 0. This phase diagram shows the
stable phases as a function of an applied field i to the film
and an applied field parallel to the film. The scheme used to name the transition
temperatures by Abanov et al. is not used in this thesis.
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Figure 4.3: The phase diagram as predicted by Hurley and Singer [42]. The S refers
to the stripe phase, the H to the hexagonal or bubble phase and the / to the isotropic
phase.
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near the traosition. and at T = 5.00, which is well above the transition. At low
temperature. the peaks in the structure factor are characteristic of the stripe phase
with h = 4. in which the stripes are ferromagnetic along the Z direction Just above the
transition. the primary peaks associated with the FA4 and AF4 phases are present. At
still higher temperature there is also structure with a characteristic |K| which is the
same as that in the AF4 and FA4 phases. This indicates that the transition might not
be a simple order-disorder transition as is typically seen in magnetic systems. Thus

larger and more accurate simulations are needed to clarify this work.

4.2.1 Simulations of large systems

The extension of the simulations to larger systems was carried out in collaboration
with [. Booth8, 86]. Using the ground state calculations as a guides, two values of J
where chosen for more detailed study. J = 6.0 yields a ground state of stripes with
width A = 4, while J = 8.9 gives stripes of width h = 8. These two values were
chosen because the lattice sizes which could be simulated were initially powers of two
and hence these stripe widths would be commensurate with the lattice size (This size
restriction was eventually relaxed in later versions of the program).

The specific heat as a function of temperature for J = 6.0 and J = 8.9 is shown
in figure 4.5. In both graphs there are two peaks; for J = 6.0 there is a sharp
peak at T = 2.5 followed by a broad peak or hump at T = 5.0 while for J = 8.9

there is a very sharp peak at T = 4.8 and a larger and broader peak at T = 9.5. The
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Figure 4.4: The structure factor for a 16 x 16 system at three temperatures. T=5.00
(a), T = 3.00 (b), and T=0.50 (c). Temperature is in units of g/ks.
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Figure 4.5: The specific heat for J = 6.0 on a 32 x 32 lattice (a) and J =89 ona
64 x 64 lattice (b) as a function of temperature. Temperature is in units of g/ks-
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nature of the two peaks can be partially discerned by comparing typical configurations
at various temperatures and matching them with the features in the specific heat.
Figure 4.6 shows a series of such configurations for J = 8.9. At low temperature
the. system is ordered in the ground state stripe phase with only small fluctuations
at the boundaries. The first peak occurs at Tp (the O refers to fact that this is an
orientational transition, as discussed below) and corresponds to the break up, not of
the stripes. but of the orientational order of the stripes. Thus just above Tp, as shown
in figure 4.6 the system is composed of extended domains where both the translational
and orientational order of the low temperature phase are absent. The second peak

at T, (T, is used in analogy to the Néel in an anti ic) then

corresponds to the disordering of these extended domains similar to that seen in the
Ising model. This is seen in figure 4.6, where as the temperature is raised the average
domain size and distribution of domain sizes appear very similar to those seen in
the Ising model. It is useful to draw an analogy to the phases found in the study
of liquid crystals. The low temperature phase of the dipolar system is similar to the
smectic phase of liquid crystals. In the smectic phase in a liquid crystal, the liquid
crystal has positional order and long--ange orientational order(87]. In the dipolar
model the system has long-range orientational order. The nature of the positional
order has not been determined. Just above Tp one has a tetragonal phase which no
longer possesses the orientational order. At higher temperature, the stripes disorder
and one has the fully disordered phase. This analogy provides a well known, initial
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basis for classifying the various phases and transitions. Therefore in the rest of this
thesis. the various phases will be referenced using this analogy. One must keep in

mind that in some cases a firm correspondence between the ordering observed in the

dipolar system and the liquid crystal may not have been clearly established[87].

e

!

Figure 4.6: Typical configurations of a 64 by 64 system at various temperatures for
J=89. Sumng in u:: upper left and moving across the top row the temperatures
areT =350, T 50. In the bottom row the temperatures are from
left to right T = s .00, and T = 11.0. T in this system is approximately
T = 4.8. Temperature is in units of g/ks.

This explanation of the two peaks in the specific heat is consistent with the struc-
ture factor as measured for this larger system. Once again taking just the J = 8.9
system, plots of the structure factor, shown in figure 4.7, show that below 7o there are
only peaks at those wave vectors associated with a single orientation of the stripes.
Above Tp, but below T,, the structure factor shows significant ordering at all wave

vectors associated with stripes of width h = 8, regardless of the orientation. As the
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temperature increases further the structure factor still shows residual structure which
gradually disappears. These data were binned based on the magnitude of the wave
vector. |K], and a plot of S(|K]) vs. |K| is shown in figure 4.8. It can be seen that
both above and below T, the ordering in the system is associated with the same
value of | K; ie. that which characterises stripes of width & = 8. Only at much higher

are there signil ibutiens to the structure factor for other val-

ues of |K|. If the system were completely disordered, there would, of course, be no
peaks in S(|K]), as there would be no ordering at any wave vector. (In a finite system
there would be a very broad, and shallow peak.) It is not clear if there is a sharp
phase transition between the tetragonal and the disordered phase.

To study the orientation transition more closely an appropriate order parameter
can be defined. In this case an order parameter is needed which is able to measure the
orientation of the stripes despite the thermal fluctuations in the domain walls in the

system. If n, is the number of hori; bonds i itely aligned nearest

neighbour spins and n, is the number of vertical bonds separating oppositely aligned

nearest neighbour spins, then an orientational order parameter can be defined as

O =2 (13)
If the stripes are preferentially oriented, then one of either n, or n, will be approx-
imately zero and |Oy,| will be approximately 1. If there is no preferred orientation
then ny = n, and |Oy,| will be approximately 0. In figure 4.9, (|Ons|) has been plot-

ted for three system sizes at J = 8.9 as a function of temperature. (|Os|) is clearly
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Figure 4.7: The structure factor for a 64 x 64 system with J = 8.9 at T = 4.60 just
below Tp (a), T = 5.11 which is just above To (b), and T = 10.0 which is well above
T, (c). To in this system is approximately 4.8. Temperature is in units of g/ks.
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L at low temperatures and drops sharply to 0 (with finite size effects) at the same
temperature as the sharp peak in the specific heat. These plots are consistent with a
continuous transition from a phase with a distinguishable orientation to a phase with

0o net orientation.
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Figure 4.9: The orientational order parameter at J = 8.9 for system size N =
322,482,642 as a function of temperature. Temperature is in units of g/ka.

4.2.2 Disl i and disinclinati

The mechanism by which a stripe phase loses its orientational order is not well

There is ion that the loss of oris i order is closely asso-

ciated with the unbinding of topological efects[50]; the reasoning is as follows. In
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the stripe phase on the square lattice there are two kinds of topological defects which
are thought to be associated with the loss of orientational order: disinclinations and
dislocations. A dislocation can be regarded as a bound pair of disinclinations. Exam-
ples of each are shown in figure 4.10. At low temperatures, disinclinations are bound
in pairs. Above a transition at which the bound dislocation pairs unbind, one would
observe no positional order, but long-range orientational order [50]. This is analogous
to what is seen in the nematic phase in liquid crystals. The result of an unbinding
of disinclinations would be the loss of the orientational order{50]. This would lead to
the tetragonal phase in the case of the square lattice.

In the Monte Carlo simulations discussed above no evidence is found which in-

dicates the existence of the nematic phase, as the transition appears to be from a

low ic-like phase to a | phase at higher temperature. As
of yet, no one has attempted to use Monte Carlo simulations to determine if either
of the transitions occurs at the same temperature as the unbinding of the predicted
bound pairs of disinclinations or dislocations. This is a very difficult measurement to

make, largely due to the technical di ies of efficiently identifying the ical

defects.

4.2.3 Summary:Zero field

The theoretical analysis of the problem of a uniaxial dipolar system by Czech

and Villain [47] predicted a depinning transition, where the magnetic superlattice
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Figure 4.10: An example of a dislocation (a) and examples of the two types of dis-
inclinations which can occur in the stripe phases (b) and (c). These examples are
schematics. Black regions have magnetic moments along the positive : direction.
while white regions have magnetic moments along the —: direction.
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depins itself from the underlying lattice. [t is feasible to associate this transition
with the loss of orientational order found in the Monte Carlo simulations. There are.
however, some difficulties in making this analogy. In particular Czech and Villain
do not predict the complete loss of orientational and translational order seen in the

Monte Carlo studies. As well, the of the iti on J

in the simulations is non-trivial. In the analysis of Abanov et al, done in the limit
of a large, but finite anisotropy, they have the added complication of a reorientation
transition. They predict a low temperature smectic phase which is similar to the
oriented phase found in the Monte Carlo simulation, as well as a tetragonal phase.
However while the Monte Carlo simulations seem to predict a continuous transition.
Abanov et al. predict that the transition is either first order, or that there exists an
Ising nematic phase, intermediate to the smectic and tetragonal phase. In the latter
case the transition would proceed in a manner similar to that predicted for the melting
of a two-dimensional lattice. There are limitations to making comparisons between
this work and the Monte Carlo results. First, Abanov et al. treat the problem in
the continuum limit and with finite anisotropy. Second, the Monte Carlo simulations
are not sufficiently accurate to discount the possibility of the existence of a weak first
order transition, nor are the simulations able to discount the possibility of a narrow
region between the smectic and tetragonal phases where a nematic phase might be

stable.



4.3 Finite field

The Monte Carlo analysis of the previous sections is now extended to include an

applied field. The Monte Carlo si ions were done in ion with Jessica

Arlett [10]. As in the case of zero field, it is not feasible to complete simulations for
all possible values of J, so once again two particular values of J have been chosen
for study. The values chosen are the same as those used in the zero field simulations:
J=60and J =89.

The magnetisation is shown in figure 4.1 as a function of temperature for several

values of the applied field. The isation saturates at low to one
of a few values. This is a result of the discrete nature of the lattice. In zero field
the stripes of up and down spins are of equal width, hence the net magnetisation is
zero at low temperature. As the field is increased, it eventually becomes energetically
favourable for the stripes oriented parallel to the applied field to become thicker
than those oriented anti-parallel to the field. The system also needs to maintain its
periodicity due to the boundary conditions which have been imposed on the system.
Therefore there are discrete jumps in the magnetisation corresponding to the parallel
stripe width going from & to h + 1 and the anti-parallel stripe width going from A
to h — 1. Once again the reader is warned that h has been used to refer to both
the applied field in reduced units and to the characteristic domain size in the stripe
and checkerboard phases. It will be clear from the context in which A is used, which

quantity one is discussing.
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Figure 4.11: The magnetisation, for various values of the applied field as a function
of temperature. J = 6.0 on a 32 x 32 lattice (a), J = 8.9 on a 64 x 64 lattice (b).
The large circles indicate the location of the transition from the smectic phase to the
tetragonal phase. Temperature is in units of g/kg.
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At low temperature the magnetisation remains almost constant. As the temper-
ature is increased, the magnetisation rises quickly to a broad peak and then slowly
drops. This behaviour can be understood by looking at the low energy fluctuations of
the domain walls. The low energy fluctuations will consist of single spin flips some-
where along one of the domain walls. These will not occur in significant numbers until
the temperature reaches a point at which the energy of the excitation is comparable
to kgT. In zero field the energy to flip a spin up and the energy to flip a spin down
are equal. The numbers of such lips are also equal and on average they have 1o effect

on the isation. In a field, this in energy is removed. Spin flips from

anti-parallel to parallel to the field will begin to occur in significant numbers at lower
temperature than spin flips in the opposite direction. Therefore the magnetisation

will increase with once the reaches the activation energy of

the anti-parallel to parallel spin flips. The magnetisation will continue to rise until
the temperature reaches the activation energy for the parallel to anti-parallel flips.
These spin flips will decrease the magnetisation.

As discussed above, the break up of the orientational order is believed to be pre-

cipitated by the ion of unbound disinclinati As the field increases and
the width of the minority stripes decreases it takes a smaller fluctuation to break
these stripes. The breaking of a stripe forms a pair of unbound disinclinations. Thus
increasing the field leads to a reduction in Tp. Tp approaches the limit of the tem-

perature at which the anti-parallel to parallel spin flips are thermally activated. This
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occurs because the spin flips can act as nucleation sites for the topological defects.

4.3.1 The ori ional order

In the case of zero field, an orientational transition from a smectic phase at low

temperature to a tetragonal phase at higher temperatures was found. At finite field

a similar ition is found by ing the ori i order defined
in equation 4.3. (|Og.|), the orientational order parameter, is shown in figure 4.12
for several values of the applied field, for the two chosen values of J. At the phase
transition the stripes of the minority spins break up to form elongated islands, while
the majority stripes remain until higher temperatures. In zero field both sets of stripes
break up at the same temperature due to the symmetry of the system. The break
up of one type of stripe is sufficient to destroy the long-range orientational order.
The drop in (|Ohl) in a finite field, particularly for large applied fields, is extremely

sharp. There is also i i i with the isation and

the average internal energy, which would indicate that the transition is first order.
Although it is difficult to discern within the limits of the simulation, the results found
are consistent with a first order transition at large values of the applied field, and
with a weakly first order or a continuous transition in the limit as the applied field

gOes to zero.
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Figure 4.12: The orientational order parameter defined by equation 4.3 plotted as
a function of temperature for several values of the applied field for J/g = 6.0 on a
32 x 32 lattice (a) and for J/g = 8.9 on a 64 x 64 lattice (b). The solid lines are
guides to the eye only. Temperature is in units of g/kp.



4.3.2 Domains in finite field

Above the orientational transition, the stripes of minority spins break up into
elongated islands. It is possible to measure the degree of elongation of the islands as
a function of both temperature and field. The eccentricity of a configuration can be

defined as

n!

|2‘..- ni(n}

nj +ni @4

where nj, and n are the number of horizontal and vertical bonds along the perimeter
of the ith island of minority spins in a given configuration and n’ is the total number
of spins in the ith island. In figure 4.13 the expectation value for e is shown for
various applied fields as a function of temperature. In all cases e drops significantly
at the temperature at which the system loses its orientational order. At high fields
the drop appears to be discontinuous. Even above the transition the islands still

retain a measurable eccentricity, which is larger for larger fields.

4.3.3 The phase diagram

The (h,T) phase diagram determined from the Monte Carlo simulations is shown
in figure 4.14. The diagram includes a portion of the phase boundary between the

smectic phase and the tetragonal phase. At low temperature the Monte Carlo simula-

tions would not allow a ination of the phase i Points in the diagram
were determined both from simulations in which T' was slowly varied at constant field

and simulations in which the temperature was held fixed and the field was varied.



Figure 4.13: The eccentricity as a function of temperature for various values of the
applied field on a 32 x 32 lattice with J = 6.0. Temperature is in units of g/kp.

While the simulations were all done at positive values of h, the diagram has been
extended to include negative values by assuming that the transition temperature is
independent of the sign of h. This phase diagram differs from that predicted by
Garel and Doniach[46] since there is no evidence of a bubble phase, and there is no

sharp ition between the and the fully di: phase. Similarly, the

phase diagram Abanov et al. [50], figure 4.1, predicts a phase transition between the
and phase. C ison to the phase diagram of Hurley and

Singer[42] is more difficult as our Monte Carlo simulations are not able to describe
the phase behaviour at low temperatures. Although there is no evidence of the coex-

istence regions predicted by Hurley and Singer, it is possible they might be seen at
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Figure 4.14: The phase diagram as a function of T and h showing the boundary
between the smectic stripe phase and the tetragonal phase for J = 6.00 on a 32 x 32
lattice. Circles are from simulations done at constant field, and squares indicate
results from simulations done at constant temperature. Temperature is in units of
9/ks-
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temperatures lower than those which have been simulated.

4.4 Summary

ding the problems 7 with ing the various

of Czech and Villain[47] and Abanov et al. [50] to the Monte Carlo results obtained,

there are definite statements which can be made based on the results in zero field.

First, the typical sharp order-disorder phase iti iated with the Ising model
is absent in this model. [n its place a broad peak is found in the specific heat and the
detailed nature of the transition to the fully disordered phase is unclear. Between the
low temperature ordered phase and the fully disordered phase, there exists a phase

which lacks the oril ional order of the low phase, but is of

well defined with a ch istic period. The ition from the smectic

phase to the tetragonal phase appears to be continuous.

The Monte Carlo results indicate that, in an applied field as the temperature in-

creases, the stripe (smectic) phase melts to an orif i i ( )

phased which consists of el islands. The ition can be ised using

a suitably defined order parameter, which measures the orientation of the system,
as was done in the case of zero field. At the transition, this order parameter drops

sharply to zero with a ding peak in the i ibility. While the

Monte Carlo data are not sufficient to determine the order of the transition from the

smectic to the tetragonal phase, there is some evidence that it is first order for large
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fields. but continuous or at most weakly first order in the limit as the applied field
goes to zero. The tetragonal phase maps continuously to the paramagnetic phase
with increasing field, without a well defined transition. In the tetragonal phase the
islands retain their elongation. There is no evidence in these simulations of a well
defined transition to a bubble or hexagonal phase, although it is possible that it ex-
ists at low This is a signi differe between the phase diagram

found in this work and those predicted previously. One must bear in mind that the

v plays a i role in the results found both in the smectic

and in the tetragonal phase. This is a result of the lattice which is included in our
Monte Carlo studies, but is often omitted in studies which treat the problem in terms

of a continuum.



Chapter 5

The dipolar planar model

This chapter is a discussion of the dipolar planar model. As in the previous
chapter the model is two-dimensional and the magnetic moments lie on the square
lattice. In this chapter the magnetic moments are assumed to have two components.
The magnetic moments can be thought of as vectors confined to lie in the plane of
the film; ie., with only Z and j components. Generally this would be due to some
finite anisotropy, such as that due to crystal fields. However only the case of infinite
anisotropy, which confines the magnet moments to the plane of the film, will be
considered. In terms of the Hamiltonian given in equation 1.5, the system is also
limited to the case of J = 0, & = 0, and the anisotropy is K = —oo. Because the

system will now have an easy plane (hard 2 axis) the Hamiltonian of equation 1.5 can



be written in units of g as
H={1 S B R | G1)
2 R,
where the anisotropy has been dropped, since o* = 0.

This chapter contains two separate but related parts. The first part of the chapter

is a classical linearised spin wave ion of the low ies of a
finite sized system. The second part of the chapter consists of the results of Monte
Carlo simulations, including those done at low temperature. The low temperature
results of the two calculations are compared closely.

Comparing the results is very important because it is possible for the finite size of
the systems used in the Monte Carlo simulations to lead to incorrect information con-
cerning the ordering in the model. Such is the case in the two-dimensional XY model,
which appears to order in a finite system, but does not order in the thermodynamic

limit. Classical linearised spin wave ions for the classical i ional XY

model predict a non-zero value for the order parameter, in a finite size system, at finite

temperatures{54]. They also predict that in the limit as the system size goes to infin-

ity the order parameter goes to zero for all Monte Carlo si ions of

the classical two-dimensional XY model, which must be done using finite size system,

give non-zero values for the order at finite [88]. By
the order parameter at low temperature found using the Monte Carlo simulations, to
that predicted by the classical spin wave calculations for a similar size system, one

can show that the apparent ordering seen in the simulations of the classical 2-D XY
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model is the result of the finite size of the system. Thus if one could simulate an
infinite system, the ordering would not take place. Because of the possibility that the
Monte Carlo simulations might lead to incorrect conclusions concerning the ordering
in our model. it is important to analyse the results of the simulations in light of the

classical linearised spin wave calculation.

5.1 The ground state

Despite the fact that the model is restricted to include only one interaction - the
dipolar interaction - the nature of the ground state for this system is not trivial. [t
is well known that the ground state in this model is antiferromagnetic[89]. It is also

Two particular ground state configurations are shown in

figure 5.1. The other ground state spin configurations can be generated from either

of these states by means of a complicated set of sublattice rotations. It is easier
to characterise the states belonging to the ground state manifold if a simple gauge
transformation of the spins is made. This transformation may be written as

SR = (-1)™o* (M, (32)

A = (~)™e¥(@D- (5.3)

Here the &’s are the untransformed spins and the §'s are the transformed spins. 7,

and ny are the of the di 7in the z and y di

relative to an arbitrary origin in units of the lattice spacing. The ground states
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shown in figure 5.1 are shown in terms of the gauge transformed spin variables in
figure 5.2. Each configuration in the ground state manifold can be characterised by
the orientation of the vector V' defined as
7=+ 5 SR, (54)
TR
For any ground state configuration V| = 1, and the inverse is also true.
Zimmerman et al. [55] considered the problem of a classical dipolar planar model
on the honeycomb lattice as a model for FeCls-graphite intercalated compounds
within the mean-field approximation. They showed that the ground state in this
model is highly degenerate, even though the Hamiltonian itself does not possess a
similar symmetry. Using a mean field approach they predicted the existence of an or-
dered phase at low temperature and developed a phase diagram in the temperature—
applied feld plane. Henley [56] and later Prakash and Henley [57] considered an
anisotropic nearest neighbour model where they chose the anisotropy to match the
nearest neighbour portion of the dipolar interaction. Their model mimics the ground
state degeneracy found in the dipolar models by Zimmerman et al. in the case of the
honeycomb lattice, and they showed that a similar effect is seen on the square lattice.
Prakash and Henley showed that spin fluctuations in their model lead to an effective
potential in the free energy, and that this potential has a symmetry determined by
the underlying lattice. They conclude that this potential is sufficient to induce order-

ing at low and refer to the ph as thermally induced magnetic

ordering. As stated, Prakash and Henley[57] used a short range approximation to the
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Figure 5.1: Two examples of ground states for the dipolar planar model.
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Figure 5.2: The ground state spin configurations corresponding to those in figure 5.1.
but shown in terms of the gauge transformed spins.
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dipolar interaction, and it was unclear how the results for their model would differ
from one in which the full long-range nature of the dipolar interaction is included.
Throughout this chapter comparisons will be drawn between the results obtained us-
ing the full dipolar interaction and those obtained from Prakash and Henley’s short
range approximation.

There are a number of papers which deal with a two-dimensional planar system
with dipolar and ferromagnetic exchange interactions [60, 62, 67]. In all of these
smd.ies’, the exchange interaction is assumed to be dominant and the ground state is
therefore ferromagnetic. It is not useful to compare the results found here to those
results. There have been classical spin wave studies on pure dipolar systems. Bajaj
et al. [59] have done spin dynamics simulations using the short range approximations
of Prakash and Henley. They have not, to the best of our knowledge, repeated the
simulations with the full dipolar interaction. Bedanov(58] has looked at the problem
of a two-dimensional dipolar planar model on the triangular lattice, and concluded
that the system orders at low temperature. Corruccini and White [65], who studied
the quantum mechanical model on the square lattice in the spin wave approximation,
predict that the model does not order at low temperature. Pich and Schwabl [64]
have treated a similar quantum mechanical model on the square lattice, and predict
that the model will order at low temperature. While none of these papers deals
with the model treated in this thesis, the conflicting predictions do serve to illustrate

that considerable difficulties still exist when treating dipolar interactions, and these
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can lead to

v auswers to seemingly simple questions.

5.2 Low temperature behaviour

The low temperature behaviour of the dipolar planar system can be studied via

a linearised spin wave ion. A spin wave fon is a version of a standard

method of solid state physics(43], by which one parameterises the states of the sys-
tem in terms of a set of variables which describes the states in terms of deviations
from the ground state. Expanding the Hamiltonian about the ground state in terms
of these variables, and taking the lowest order, non-zero term leads to a simplified
approximation to the Hamiltonian which describes the low lying excitations of the
system. For example, in a crystal one takes the positions of the ions in the ground
state and expands the Hamiltonian in terms of small deviations about these posi-
tions. The result is a phonon spectrum for the crystal. For a magnetic system the
orientations of the magnetic moments serve to parameterise the state of the system,
and one can calculate a spin wave spectrum to lowest order in fluctuations in these

‘Within this imation, it is possible to calculate the free energy,

the order parameter and many other thermodynamic quantities. [n this thesis the
magnetic system is treated classically and hence the spin wave analysis is also a classi-
cal calculation. Quantum-mechanical spin wave analyses of similar models have been
performed previously[65, 64].

Among the benefits of calculating the classical spin wave modes of the system is
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that these mod be i v using inelastic neutron scattering[43].
Spin waves can also be detected in NMR studies by studying relaxation rates [43].
Cnfortunately, relevant experiments are not yet available for coq_nparison. Both tech-
niques would allow a direct comparison between the predictions of theory and the
results of experiments. It will be interesting to compare the results of the simulations
presented in this thesis and these experimental results when they become available.
While the classical spin wave method is quite powerful it still, of course, has
limitations. The method is valid only in the limit of low temperature, and excludes
other possible low energy excitations which are of higher order. This can be very
significant, as was seen in the history of the classical planar model. The theory of
Mermin and Wagner indicated that the the classical planar model does not have long-

range order at any non-zero temperature [33], hence that there is no order-disorder

transition in this system. Spin wave ions of the two-point ion function

in the classical planar model showed that it decayed with a power-law dependence on

distance at low [90]. High series e ion [91] indicated
that the two-point correlation function should decay exponentially with distance. The
change in the behaviour of the correlation function indicates that there is a phase
change in the system from a phase with power-law decay to one with an exponential
decay in the correlation function. The work of Kosterlitz and Thouless(13, 53, 54|,

in which the significance of low energy vortex excitations was treated, led to the

of the apparent di:
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Because of the controversy associated with the classical planar model. the ex-
istence of a continuous symmetry with respect to the rotation of the net magnetic
moment is a well studied problem. In the classical planar model, which is a model with

short range exchange i i the i leads to the existence of

a gapless spin wave excitation. Gapless means that at some value of §, the energy of
the spin wave is zero. The gap generally refers to the minimum energy required to
excite any of the spin wave modes, hence a gapless spin wave excitation requires no
energy to be excited. Spin wave excitations have been shown to be sufficient to de-
stroy any long-range order at any finite temperature in the classical planar model[33].
Thus there is no traditional order-disorder transition in this model. Zimmerman et
al. (53] realized that the situation is somewhat more subtle in the case of a dipolar
interaction. In the case of a dipolar system, the ground state is highly degenerate and
there is a gapless spin wave excitation at T = 0. The dipolar Hamiltonian itself does
not possess a similar symmetry. The question is then: Does one observe ordering in a
planar system with only dipolar interactions? Another way of phrasing this question
is, is there a thermally induced gap in the eigenspectrum which leads to long-range
order, and does one observe a Kosterlitz-Thouless phase transition or not?

In order to properly describe the spin wave excitations, a superlattice with lattice
spacing 2a and four spins per unit cell, as shown in figure 5.3, must first be defined.
This is necessary because the ground state is an antiferromagnetic state. The calcula-

tion is done in terms of the gauge transformed spins, since then it is possible to define
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the ground state in terms of the angle fy which V' makes with the r axis. The state of
a spin is given by 8a(£), where R is the position of the unit cell and & = 0.1.2, 3 gives
the position of the spin within the unit cell. The Hamiltonian can be written as a

function of the state of the spins, H({#}), and then expanded in terms of fluctuations

of those spins about any ground state. In ical terms the iltonian is
2
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Figure 5.3: The unit cell used in the classical spin wave calculations. A unit cell is
2a x 2a, and contains 4 spins. This figure shows 16 unit cells. The labelling scheme
used is indicated in the upper left unit cell.

ded in terms of the ions of the direction of the moments:

H{OY) = Ho+Hi+Ha+...

Ho + 269 (&)—7‘—)74;., +

250.(3.) % (R‘) il nﬂ“"‘“““” +. (53)

where §; defines the directions of the moments in the ground state about which
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the Hamiltonian is expanded. Keeping only the lowest order terms in d6.(F) the

Hamiltonian can be written as

H o= B+ 3% Y 60u(R)Gal R~ B)ota( ). 6)
i af
= Bo+ Y [ dis0u(@)Gan(@ibs(~), 1)
af

where Q is the first Brillouin zone. Gos(&; — R;) is defined as
T 3 .
Gas(R:—Ry) = "—ao.(&)_“ao,(ﬁ,)""" (58)

Gas(q) is quite complicated and is given in equation B.27. This expression for the

can be simpli by ing the ions in terms of the eigen-

vectors of Go3(g), which are defined by the equation
3. Gas(@92(D = A(D¥5(D (5.9)

where A, (q) is the ei iated with the ej () and w =0.1,2,3.

Ao(q) is chosen such that limg1o Ao(¢) = 0. A detailed derivation is given in Ap-
pendix B. In figures 5.4 and 5.5, A,() is plotted as a function of ¢ for each branch
of the eigenspectrum for 6, = 0 and for 8, = /5, respectively, in the first Brillouin
zone. These figures show how the long-range nature of the dipolar interaction affects
the symmetry of the eigenspectra. They also illustrate how the axis about which the
system orders can change the eigenspectra.

In figures 5.6 and 5.7, particular cuts through g-space are shown from the 8, = 0

spectra to highlight some features of note. First one can see in both spectra that
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as ¢ — 0 there is one branch that goes to zero. This is a result of the continuously
clegenerate ground state, and for ¢ = 0 this is the mode associated with the rotation
of V. As well, one can see that in 5.7, which is a cut along the ¢, = g, direction.
that there is a branch in the spectrum which varies linearly with g; as ¢ — 0. This is
a result of the of the non-analytic nature of G4, which results from the long-range
nature of the dipolar interaction.

The calculations of Prakash and Henley[57] were repeated by using a nearest
neighbour interaction instead of the full dipolar interaction. Spectra equivalent to
those shown in figures 5.6 and 5.7 were calculated using this interaction and are

plotted in figures 5.8 and 5.9.

5.2.1 Spin wave stiffness

The excitation mode given by \g is known as a soft mode and, in the limit of long
wavelengths, the mode can be expressed as
}iﬂk(ﬂ = D(4)¢*. (5.10)
D(g) is known as the spin wave stiffness or rigidity. The name comes from Landau
theory, where D(4) plays the role analogous to the restoring force in response to a
fluctuation away from the ground state. In figure 5.10 the spin wave stiffness is plotted
as a function of the direction of the wave vector for two ordering angles; one for when
the spins order parallel to the z-axis and the second for when the spins order about

the direction at 45° to the z-axis. The corresponding results for the nearest-neighbour
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Figure 5.4: The full eigenspectra for , = 0 using the full dipolar interaction. A, is
shown in (a).
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Figure 5.5: The full eigenspectra for 6 = 7/5 using the full dipolar interaction. Ay

is shown in (a).



02

15 ’
1.0

~

o
- i
< |
0s 1
i
|
1
00 J
o5 23 03 os

-a.iqx /nn_t

: Eigenspectrum along the g, = 0 direction using the full dipolar interaction
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Figure 5.7: Eigenspectrum along the g, = g, direction using the full dipolar interac-
tion for 6y = 0.
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Figure 5.8: The eigenspectrum along the g, = 0 direction for the nearest neighbour
model of Prakash and Henley[57) for fg = 0.
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Figure 5.9: The eigenspectrum along the g; = g, direction for the nearest neighbour
model of Prakash and Henley[57] for 8, = 0.
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model of Prakash and Henley are shown in figure 5.10 as dashed lines for comparison.
Note that while the results of Prakash and Henley are qualitatively similar to those
described above, including the long-range nature of the dipolar interaction gives rise
to a much larger variation in D(§). On average D(q) is smaller when the full dipolar
interaction is included in the calculation. This will lead to softer modes, that is,

modes which require less energy to excite, particularly near 7 = 0 when the system

bas ordered along one of the axes.

O(®)

10 25 00 [ 0

(73

Figure 5.10: The spin wave stiffness D(g) as a function of the direction of the wave
vector, for spins ordered along the z-axis (left) and along the diagonal (45° to the
z-axdis) (right).

5.2.2 Free energy
Within the classical spin wave approximation one can calculate the free energy as

F = kgThhZ (5.11)
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kTl [ e (~Zémc'wo(a) ; (12)
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The first term is the ground state energy (in units of g) and is independent of the
ordering angle 8. The second term in equation 5.13 will be dependent on the ordering
angle through its dependence on the eigenspectrum. In figure 5.11 this term is plotted.
in units of gNkpT/87, as a function of fy, along with the corresponding results for
the nearest neighbour model of Prakash and Henley. One can see that there is a
greater range in the correction to the free energy, implying that the thermal selection
of the ordering angle is increased when the full dipolar interaction is included in the

spin wave calculation.

5.2.3 Order parameter

It is also possible to calculate the order parameter within the classical spin wave
approximation. The order parameter is defined as

¥=<[V|>, (5.14)

where V is defined in equation 5.4. To simplify the calculation the specific case of
a system ordered about the positive z-axis is considered. The results would be the
same if ordering about the negative z-axis or either the positive or the negative y-axis
were considered. One finds

¥ = =<5 > (5.13)

4
N
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Figure 5.11: The angular dependent part of the correction to the free energy according
to the classical linearised spin wave theory in units of gNkgT/(872).
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where the integral over §'is only over the upper half of the Brillouin zone. The integral
will diverge in the thermodynamic limit due to the soft mode for which Ag — 0 as

¢ — 0. This implies that in the ic limit the order is zero for

all non-zero temperatures and hence that there is no long-range order at any non-
zero temperature in this approximation The details of the calculation are presented
in Appendix B.

In a finite sized system the integral in equation 5.17 is replaced by a sum. The
sum will be finite and the result can be compared to both the results of the short
range approximation of Prakash and Henley and more importantly to the results of
the Monte Carlo simulation. To calculate the order parameter for a finite size system
D. defined as D(g) averaged over the direction of §, is substituted into equation 5.10.

For small § this term will ine the ¢ d of i in equation 5.17,

and this dependence can be easily calculated once the integral has been converted
to a sum. Once again the details of this calculation are relegated to Appendix B.
Finally one can write the order parameter as

T s
¥=1- ;;b—(ln(N) +0), (5.18)

where C is a constant to be determined, but is independent of N, and T, and D =

5.154 x 1072 (Following Prakash and Henley would give D = 0.1433). Such a size



110

dependence can easily be checked using finite size analysis.

5.3 Monte Carlo results

Attention is now focused on the results of the Monte Carlo simulations, which will

be interpreted in the light of the results of the linearised spin wave theory.

5.3.1 The order parameter

To begin, the order parameter is considered as a function of temperature. In
figure 5.12 the magnetisation in terms of the gauge-transformed spins is plotted as
a function of temperature for a number of system sizes. The system sizes vary from
NV =8x8up to V= 128 x 128. These results indicate that the system orders at low

The iated magnetic ibility, defined as

x= 55z [0V - 4717, (319
also has a peak which corresponds to the sharp drop in the order parameter on
warming. The susceptibility is plotted in figure 5.13. The specific heat, given by

C. =y 0em - 4En]. 620

where E is the internal energy of the system, which is plotted in figure 5.14. While
the order parameter, susceptibility and the specific heat all indicate that the system

orders. one must be cautious. The systems here are finite, but it is predictions in the
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thermodynamic limit which are significant. [t is possible for the finite system to order
at a finite temperature, but for the system in the thermodynamic limit to remain

at all finite This is the situation in the classical planar

model, where in a finite system the magnetisation is non-zero at low temperatures,
but is identically zero for all non-zero temperatures in the thermodynamic limit [88]

as was shown in the classical spin wave calculation in the previous section.
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Figure 5.12: The order parameter for systems of various size as a function of temper-
ature, as found using Monte Carlo simulation. The numbers in the legend refer to L.
where the system size is L x L. Temperature is in units of g/ks.
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Figure 5.13: The susceptibility of the order parameter for various size systems as a
function of temperature, as determined from Monte Carlo simulation. The numbers
in the legend refer to L, where the system size is L x L. The lines are guides to the
eye. Temperature is in units of g/kg.
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Figure 5.14: The specific heat for various size systems as determined by Monte Carlo
simulation. The numbers in the legend refer to L, where the system size is L x L.
The lines are guides to the eye. Temperature is in units of g/kp.
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To determine if such is the case for this model. the size dependence of the order
parameter must be considered. One can see in figure 5.15 that. at low temperature.
the order parameter varies linearly with temperature. This feature is a consequence
of the thermal excitation of the spin waves. A prediction for this slope was derived

for the case of massless spin waves in equation 5.18. The slope is defined as

AN = Jm (#) . (521)

In the classical spin wave theory, limy A(V) & 1/(87D) ln V, where D is as given
above. Thus, in the thermodynamic limit, A diverges according to this theory. This
is a direct result of the existence of the gapless branch in the linearised spin wave
theory spectrum, and is the reason why the classical planar model does not exhibit
an ordered state.

In figure 5.16, A is plotted as a function of InV. A was obtained by fitting
equation 3.21 to the low temperature region of the order parameter as derived from
Monte Carlo simulation. The line drawn in the figure is a least squares fit to the
lowest four points. The classical spin wave theory predicts a linear dependence, but
this theory is valid in the limit of large V. Fitting to the lowest four points gives
the largest possible estimate for the slope. Even then the slope predicted by spin
wave theory is two orders of magnitude larger than that of our fit in figure 5.16. As
-V increases, A deviates from this straight line and approaches a plateau. That 4 is
independent of .V for large .V rather that depending linearly on .V, suggests that the

ordering observed in the simulations is not a finite size effect.
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Figure 5.15: view of the low region of figure 5.12. Temperature

is in units of g/ksp.
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The explanation of how this ordering comes about revolves around noting that
the classical linearised spin wave theory predicts a gapless mode in the spin wave

spectrum even at finite At finite the lack of a global

invariance in the Hamiltonian leads to an effective anisotropy. This was evident in
the angular dependence shown by the free energy in figure 5.11. To properly treat
this anisotropy will require the treatment of higher order terms in the spin wave

of the iltonian. This ion is in [92]. [t is expected that

a self-consistent treatment will yield a gap in the renormalised spin wave spectrum at
finite temperature. This gap will lead to a well defined finite value of A in the limit
of V — oco. At present the Monte Carlo data would lead to a conservative estimate
that in the limit as ¥ ~ oo, A(N) = 0.16 +0.0L.

Henley d that the ani: can be i in a manner similar to

that used for studying a classical planar model with an anisotropy term of the form
hy(S2+5)), (5:22)

added to the Hamiltonian. In the case of the dipolar model, h can be thought of as

a effective ani To gain some measure of the effects of

this anisotropy one can define
PT) = (5% +5) (529)

which is the field conjugate to hy(T). In figure 5.17 P(T) is plotted for a N = 40 x 40

system for both the dipolar model and for a number of classical planar models with
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different values of the A, term. If the net magnetisation is fixed along one of the axes
then P = 1, while if the magnetisation is free to point in any direction P = 0.75.
As one can see in figure 5.17. the classical XY model has P = 0.75 if hy = 0. Fora
non-zero hy P(T) — 1 as T — 0, since the introduction of the non-zero hy destroys
the rotational invariance. For the dipolar model, with no explicit Ay term in the
Hamiltonian, one can see behaviour which is very similar to that in the classical
planar model with Ay = 0.2, but P for the dipolar planar and P for the classical XY

model with hy = 0.2 are not identical.

Figure 5.17: P(T) for the classical planar model for three values of hy, and for the
dipolar planar model. Temperature is in units of g/kp.

From the information available it is possible to determine the effective h; approx-
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imately for a range of isati for the classical
planar model indicate that any non-zero A, is a relevant variable below a certain
temperature[90]. One can speculate that the arguments for the classical planar model
with a four-fold anisotropy can be carried over to the dipolar model and hence the
effective hy will be a relevant variable below a certain critical temperature. This
would imply the existence of an order-disorder transition, which would agree with

the Monte Carlo data.

5.3.2 Correlation function

The discussion of the effective anisotropy leads to an interesting question. If the
effective anisotropy is very small near the transition, as it appears to be, then it is
natural to ask to what extent the system acts like an isotropic system. The classical
planar model, which is an isotropic model, does not have long-range order at any
non-zero temperature and hence does not have a standard order-disorder transition
as discussed above. In the case of the classical planar model with an anisotropic term
like that in equation 5.22, José et al. [90] have shown using an RG calculation that
the model exhibits a continuous transition to an ordered state for any non-zero value

of hy, with i  critical To ine the nature of the transition

in the dipolar model, the two-point correlation function in two of the larger systems is

considered (L? = 1600 and L? = 4096). The two-point correlation function is defined
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as
C(A = (5(0) - 5) — (SONS@)- (5.24)

In the classical planar model there is a Kosterlitz-Thouless transition. Near both
the standard order-disorder ition and the itz-Thouless ition the cor-

relation function at high temperature has the same form, that being an exponential
decay given by

CH~ewm ('?') ; (5.25)
The correlation length £ in both models diverges at the critical temperature, albeit in
different ways. In figure 5.18, the correlation function is plotted as a function of |] for
a number of temperatures well above T, in a 40 x 40 system. The data are consistent
with the expected form for 5 << |f] << 15 lattice spacings. This is expected since
the form given in 5.25 is not valid for very short distances and finite size effects will
affect the function when [7] becomes close to half the system size (L = 40). The

length can be ined from the slope of the decay, and theoretically

one could test to see if the correlation length diverges as predicted by K-T theory
or as predicted for a standard continuous transition. Given that the data are for
relatively small system sizes and that making this determination is very difficult, the
data have not been subjected to that kind of mistreatment. Suffice to say the data
are not sufficiently accurate to discount the possibility of either type of transition
On the other hand, the correlation function itself is expected to have different

forms below the critical temperature. K-T theory predicts that the correlation func-
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Figure 5.18: The correlation function for four temperatures above I as calculated
from Monte Carlo simulation of a 40 x 40 system. Temperature is in units of g/ks.
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tion should decay with a power law dependence, with the power being temperature
dependent, while below a standard transition the decay is exponential. In figures
5.19 and 3.20 the correlation function is plotted as a function of |] for a number of
temperatures well below T, on semi-log and log-log scales respectively. As for the
data above T, one can reasonably fit it to a straight line on the semi-log scale for
moderate values of the distance. On the log-log scale it is not possible to get a linear
fit in any appreciable range of |7]. This is evidence that the transition is to an ordered

state, and the anisotropic potential effects the ordering.

00 50 100 150 200
r

Figure 5.19: Correlation function below T, on a semi-log plot for a system with
N =40 x 40. Temperature is in units of g/kg.

Although the data are not sufficiently accurate to determine the form of the di-



Figure 5.20: Correlation function below T on a log-log plot for a system with V =
40 x 40. Temperature is in units of g/kg.
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vergence at the critical temperature, in figure 5.21 the correlation function is plotted
as a function of temperature for two system sizes, L = 40 and 64. The peak at T.
with a rapid drop on either side is consistent with the expected behaviour of ordering
with rotational anisotropy. No attempt has been made to apply finite size scaling

techniques to this data to obtain itative results ing the di
8.0
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Figure 5.21: The correlation length as a function of temperature for N = 40 x 40 (O)
and NV = 64 x 64 (). The lines are intended as guides to the eye. Temperature is
in units of g/kg.



5.4 Summary

In this chapter a dipolar planar model has been studied. The low temperature
properties found using Monte Carlo simulation have been interpreted in the context
of a classical linearised spin wave calculation. The Monte Carlo results differ sub-
stantially from the predictions of the spin wave calculation. A finite size analysis of
the slope of the order parameter at low temperature clearly indicates that the depen-
dence on system size is significantly less than that predicted by the classical linearised
spin wave theory and that, for larger systems, the order parameter approaches a well
defined value. This indicates that the system does exhibit an ordered phase at low

This je is by the analysis of the two-point correla-

tion function which, when considered in light of the theory of José, implies that the
thermally induced anisotropy leads to a standard continuous transition from a high
temperature disordered phase directly to an ordered phase. By measuring the field

to the effective ani: some estimate of the approximate size of the

effective anisotropy was made. However in the region of the phase transition it was
not possible to make an accurate estimate of the effective anisotropy.

In performing the classical spin wave calculation some features which were not
present in the nearest neighbour model of Prakash and Henley [57] were identified.
For example, the linear behaviour of the second branch of the spin wave spectra at
small § is associated with the long-range nature of the dipolar interaction. Further

analysis of the Monte Carlo results, in i the low of
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the order parameter and the two point correlation function. indicates that the model
orders at low temperature along one of the in-plane axes and that the transition from

the disordered phase to the ordered phase is a continuous transition.
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Chapter 6

The dipolar Heisenberg model

6.1 Introduction

There have been a number of intrigui i | results ing dipolar

thin films, as discussed previously in chapter 1. Two in particular are reported in
the work of Pappas et al. [5], as well as that of Allenspach and Bischof [23] on Fe on
the (100) surface of Cu. Both groups found that the system exhibited a reorientation

at which the isation switches from f-plane to in-plane as the

temperature increases. This work has led to a number of other experiments with
similar results which were discussed in the introduction [24, 25, 26, 27, 28, 29, 30, 31,
32.

The typical approach to treating this problem theoretically has been to start

with a two-dimensional system in which the magnetic moments interact via a ferro-
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magnetic exchange interaction. a perpendicular magnetic surface anisotropy, and a

dipolar i i The relative hs of the i ions are chosen to mimic
the expected experimental parameters, so the exchange interaction and the MSA are
typically much larger than the dipolar interaction. However, despite its small relative

the dipolar i ion plays an i role in ining the mag-

netic properties of these systems. Previous studies on two-dimensional systems have
shown that including only a ferromagnetic exchange and a positive, perpendicular
MSA, Lhe system will order with a transition temperature determined by the ratio of
the exchange interaction and the MSA. For K/J > 0, K being the strength of the
MSA, there is a second order phase transition to the ferromagnetic state, with the
moments ordered out-of-plane, which is in the Ising universality class. For K/J < 0
the system is similar to the classical XY model and exhibits a Kosterlitz-Thouless
transition [93].

The addition of the dipolar interaction has three effects:

e 1. The anisotropic nature of the dipolar interaction is able to stabilise the

in-plane ordered state as shown in chapter 5.

e 2. It allows for the ibility of a

® 3. It creates regions in phase space where the ground state is a perpendicular

stripe phase as shown in chapter 3.

Systems which include the ferromagnetic exchange, the MSA and the dipolar inter-
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action have recently been studied extensively using such methods as Renormalisation

Group ions[61, 94], mean feld ions[69, 71], Monte Carlo simulation

[72. 73, 74], and spin wave analysis [31, 60, 66, 67]. However previous studies as-
sumed that the lowest energy in-plane state and the lowest energy out-of-plane state

were both ferromagnetic.

6.2 Dipolar dominated sy

In this chapter. a two-dimensional, magnetic system on the square lattice is simu-
lated, with the magnetic moments being fully three-dimensional vectors. In contrast
to the studies discussed above, the magnetic moments in these simulations interact
via a dipolar interaction and a magnetic surface anisotropy, but there is no exchange
interaction. Referring to the general Hamiltonian of equation 1.5, J = 0, and the
properties of the system are studied as a function of K. In units of g, the Hamilto-

nian considered in this chapter is given by
H={3 T PRI F)(R) - KRN 6
) =

The pure dipolar system is of interest because, while the exchange interaction
is generally the dominant interaction in real systems, the dipolar interaction plays

a crucial role in ining the phase iour and of the magnetic

ordering. That being the case, removing the extra interaction isolates the dipolar

interaction somewhat and allows one to probe its effects more directly. A better
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understanding of the dipolar system naturally aids in understanding the ferromagnetic
system. Also, the pure dipolar system is a closer approximation to some of the
(RE)Ba,Cu30; compounds which do not have ferromagnetic ground states, than
would an exchange dominated model [14, 15, 16, 17]. This model is also an important
limiting case of the full Hamiltonian of equation 1.5, hence it is interesting in its own

right.

6.2.1 The ground state

The ground state of the system is dependent on the value of K. For K =0 itis

the antiferromagnetic in-plane ground state described in chapter 5. This state can be

> . (6:2)

For large K the ground state becomes the out-of-plane antiferromagnetic state. This

). 63)

These order allow the isation of the magnetic order in terms of

by the order

3= 3 ([Sro @z + rona

state can be parameterised by the order parameter

.= (|Srmem

a homogeneous order parameter. Mj is identical to the order parameter defined for
the planar model in chapter 5. Along with the definition of the order parameters we

can define associated susceptibilities, x; and x., as

x0 =y [0 - 7] 60



and

xe =gy [0 -~ . ©3)
One of the benefits of the antiferromagnetic ground state, from a computational
point of view, is that convergence problems that arise in ferromagnetic ground states
as a consequence of the long-range character of the dipolar interaction, are less severe
‘when one is dealing with antiferromagnetic ground states. The limiting case of infinite
anisotropy has already been treated in the two previous chapters. K = +oo is the
uniaxial case which was discussed as a small part of chapter 3, while the model with
K = —oo is simply the planar model of chapter 5.

At T = 0, the phase boundary between the two phases can be calculated by
taking the dipolar energy for both the in-plane state, (Ein) and out-of-plane state
(Eme) as calculated in chapter 3 and reference [22] and solving for the value of K
where Ein = Eqe — NK. The phase boundary at T = 0 is then found to be at

K =244%001

6.2.2 Finite temperature

The results derived from the Monte Carlo simulations at finite temperature are
quite intriguing. In figures 6.1, 6.2 and 6.3, both Mj and M, are plotted as functions
of temperature for different values of K in a N =40 x 40 system.

In figure 6.1, K = 0.50 and the data indicate that there is a transition from

the paramagnetic phase to an in-plane ordered phase. Thus, in figure 6.1, Mj goes
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Figure 6.1: The order parameters defined in equations 6.3 and 6.2 as functions of
temperature for K =0.5 in a N = 40 x 40 system. Temperature is in units of g/ks.

Figure 6.2: The order parameters defined in equations 6.3 and 6.2 as functions of
temperature for K = 1.50 in a N = 40 x 40 system. Temperature is in units of g/kg.
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Figure 6.3: The order parameters defined in equations 6.3 and 6.2 as functions of
temperature for K = 3.00 in a N = 40 x 40 system. Temperature is in units of g/kg.

sharply from effectively zero (with finite size effects preventing the average from being
exactly zero) at high temperature to a finite value at non-zero temperature. Below
this temperature it varies approximately linearly with temperature, and extrapolates
to 1 at T = 0. This is a familiar result of spin wave excitations preventing complete
ordering at finite T, which was discussed in depth in chapter 5 with respect to the
planar model. M., on the other hand, remains effectively zero for all temperatures.
The temperature dependence of the parallel susceptibility is shown in figure 6.4, and
the specific heat is shown in figure 6.7. Both quantities have peaks which correspond
to the drop in Mj.

In figure 6.3, K = 3.00 and the data indicate that there is a transition from the
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ic phase to an f-plane ordered phase. Thus we see exactly the same

behaviour as was seen at K = 0.5, except that now it is M which becomes non-zero

at T, while Mj remains zero at all The d d of the

perpendicular susceptibility is shown in figure 6.6. It is consistent with a continuous
phase transition as is the specific heat which is shown in figure 6.9.

150
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Figure 6.4: The susceptibility defined in equations 6.5 and 6.4 as a function of tem-
perature for K = 0.5 in a V = 40 x 40 system. Temperature is in units of g/ks.

In figure 6.2, K = 1.50 and the behaviour of the two order parameters is now
very different from that observed in figures 6.1 and 6.3. For this value of K the

system starts out in the ic state at high As the

is lowered the system orders first in the out-of-plane state, so M. becomes non-

zero while My remains zero. As the temperature is lowered further, the system then



Figure 6.5: The susceptibility defined in equations 6.5 and 6.4 as a function of tem-
perature for K = 1.50 in a V = 40 x 40 system. Temperature is in units of g/ks.

Figure 6.6: The susceptibility defined in equations 6.5 and 6.4 as a functions of
temperature for K = 3.00 in a .V = 40 x 40 system. Temperature is in units of g/kg.



Figure 6.7: The specific heat as function of temperature for K =0.5ina V =40 x40
system. Temperature is in units of g/kg.
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Figure 6.8: The specific heat as function of temperature for K = 1.50 ina V = 40x40
system. Temperature is in units of g/kp.
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Figure 6.9: The specific heat as function of temperature for K = 3.00ina .V = 40x40
system. Temperature is in units of g/ks.

switches such that it orders in-plane; M, becomes non-zero while M_ effectively drops

to zero. The temperature dependence of the specific heat is shown in figure 6.8. and

the per i and parallel ibilities are shown in figure 6.5.

In figure 6.10 samples of the configurations are shown at various temperatures.
with K = 1.50, to illustrate the level of order present in the system. The upper
configuration in figure 6.10 is from the paramagnetic phase, while the two lower
configurations are from ordered phases. Thus in this system there are at least two

one from the ic phase to the ordered phase shown in the
middle configuration, and then a transition to the second ordered phase shown in the

lowest ion. This second ition is the reoris i ition which will
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be discussed in more detail in the following sections.

In figures 6.11, 6.12 and 6.13 the order parameters have been plotted for the same
values of K as in figures 6.1, 6.2 and 6.3 respectively, but for a number of different
system sizes. In both figures 6.11 and 6.12 the finite size effects are consistent with

what is expected for a ot iti This is not as in the two

limiting cases discussed above, continuous transitions were also found [9, 11]. The

from the ic state to the ordered state in figure 6.2 has the same

finite size effects seen in figures 6.1 and 6.3. It is reasonable to conclude that this
transition is the same as the order-disorder transition that is observed for the other
choices of K. Thus the results indicate that an exchange interaction is not necessary

for the existence of a reorientation transition.

6.2.3 A closer look at the reorientation transition

In figure 6.14, the two order parameters are shown in the region near the transition
temperature. It is clear from this figure that the transition does not exhibit the finite

size effects normally i with a il ition. One does not observe a

sharpening in the transition as the system size increases as is typically observed near a

second order phase ition. At the i i ition there is a sharp drop in
the average energy, with i is as the is cycled through
the transition by first i ing and then ing the This can be

seen in figure 6.15. This is typical at a first order transition. Thus there is strong
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Figure 6.10: Examples of configurations in the three regions of the phase diagram with
K =1.50 and L? = 256. Figures on the left show the projection of the transformed
system into the plane of the film, while the figures on the right show the transformed
perpendicular components. T = 2.00 (upper), T = 0.80 (middle), and T = 0.3
(lower). Temperature is in units of g/kp.
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Figure 6.11: The order parameters defined in equations 6.3 and 6.2 as functions of
temperature for K = 0.5 for various size systems. Temperature is in units of g/ks.

Figure 6.12: The order parameters defined in equations 6.3 and 6.2 as functions of
temperature for K = 1.50 for various size systems. Temperature is in units of g/ks.
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Figure 6.13: The order parameters defined in equations 6.3 and 6.2 as functions of
temperature for K = 3.00 for various size systems. Temperature is in units of g/kg.

evidence that the reori i ition is a first order ition. This is

with the i i results ing the i i ition found

in ferromagnetic exchange dominated systems [69]. This leads to a very interesting
question concerning how the lines of first order transitions are related when the phase
diagrams for both systems are combined. This question will be discussed in the next
section.

It is important to note that the location of the reorientation transition can be
difficult to determine. There is typically considerable hysteresis associated with a
first order transition and that is evident in the results provided by the Monte Carlo

simulation. For example, figure 6.16 shows the perpendicular order parameter and
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Figure 6.14: The order parameters from figure 6.12 mlhcregonuf:he reorienta-
tion transition. All data shown were collected as the temperature was decreasing.
Temperature is in units of g/kg.

figure 6.15 shows the average internal energy as functions of temperature as calcu-

lated using both an i is and a
The normal practice is to use the final configuration of one simulation as the ini-

tial ion of a si ion at a different using i the

first 10% of the Monte Carlo steps to allow the system to reestablish equilibrium at

the new The change in is always small, either positive or

negative. The meta-stability is most troublesome in the region where the reorienta-

tion transition temperature is very low, since thermally induced fluctuations are very

weak. In this region ive sil ions done with d i often.
will not switch over to the in-plane state even at the lowest simulation temperatures.

The reorientation can still be observed by starting in the in-plane ordered state and
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a set of si ions at i

6.2.4 Phase diagram

In figure 6.17 the results of the Monte Carlo simulations have been collected
to form a phase diagram. It includes the results shown above as well as a large
number of other simulations done at various values of K and on a number of different

size systems. The phase diagram includes the two lines of continuous order-disorder

transitions as well as the line of reori i iti If the line of

transitions is a line of first order transitions as it appears to be, then the point at

which it meets the two lines of i it is, by definition, a tri-critical
point. This point is indicated in figure 6.17 by a large triangle and is estimated to lie
at T =0.90 £0.05 and K = 1.30 £0.05.

The phase diagram shown in figure 6.17 is redrawn schematically in figure 6.18(a).
Figure 6.18(b) is a schematic of the phase diagram predicted for an exchange domi-
nated ferromagnet [69, 72, 94]. It is easy to see that while the two phase diagrams

show certain similarities there are a number of fund; | di In

the role played by the in-plane phase and the role played by the out-of-plane phase in

the reorientation transition have been reversed. In the model studied here the tran-

sition is from an in-plane state to an out-of-plane state as the increases.

In the ic model the ition is from out-of-plane to in-plane as temper-

ature is increased. Therefore the slope of the coexistence line is different in the two
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expanded view of the region near the showing the
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Figure 6.17: Phase diagram obtained from Monte Carlo simulation. Region I is
ordered out-of-plane, region II is ordered in-plane, and region III is paramagnetic.
The dashed line is a guide to the eye highlighting the line of first-order reorientation
transitions between the two ordered states. The solid lines are guides to the eye
highlighting the two lines of second order transitions from the paramagnetic state to
one of the two ordered states. Points on each line are coded based on system size:
N =164, 0) . 24%(0,4) , 32%(<, *), and 40%(>, +). Temperature is in units of

9/ks-
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models. being negative in the model studied here and positive in the ferromagnetic
model. The two lines of first order transition belong to a first order surface in the
T-K-J phase diagram. The nature of this surface is an unresolved problem, which is
complicated by the existence of the stripe phases discussed in chapter 3. None of the

previous studies considered the stripe phases in their analysis.

A B
L L
1 1
1Y 19
e\ " 4\
T T

Figure 6.18: Schematic phase diagram for the dipolar model (a) and the ferromagnetic
exchange model (b).

6.3 Summary

In summary, the phase diagram for a i i magnetic it with

a dipolar interaction and a magnetic surface anisotropy has been determined as a
function of K and temperature. The phase diagram contains three phases: a param-

agnetic phase, an ordered phase with the moments in the plane of the flm. and an
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ordered phase with the moments perpendicular to the film. The three phases appear
to coexist at a tri-critical point. This is the point where the line of reorientation tran-
sitions, which appear to be first order, meets the two lines of second order transitions.
Comparison of this phase diagram to that predicted for a system with a dominant

ic exchange i ion shows some similarities, such as the existence of a

first-order reori i ition, but there are i ing dif In

the sign of the slope of the coexistence line between the two ordered phases is differ-

ent, thus the role played by the lowest energy parallel phase and the lowest energy

icular phase in the reorientati ition are reversed. It will be interesting
to see how the phase diagram changes as a function of J/g, when proper consideration

of the stripe phases is included in the analysis.




Chapter 7

Conclusion

7.1 Summary of results

The goal of the studies upon which this thesis is based was to gain a better under-
standing of the magnetic properties of a model for a magnetic thin film. In particular.
a major focus was on understanding the effects of the dipole-dipole interaction on the
phase diagram.

For a system in which the magnetic moments are constrained to orient perpendic-
ular to the system, ground state energy calculations were used to establish the ground
states for a system with a short-range exchange interaction as well as a dipole-dipole
interaction. It was shown that these ground states consist of stripe phases, with the
stripe width growing exponentially with the ratio of the strength of the exchange

interaction to the strength of the dipolar interaction in the limit of large stripe width.
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This calculation helped clarify a discrepancy between the predicted ground states
of calculations based on a continuum model and those based on calculations which
retained the discrete nature of the system.

At finite temperature, the Monte Carlo study of the uniaxial model proved to be
very illuminating. The simulations showed that there was no evidence of a sharp
order-disorder transition. as is found in the Ising model of ferromagnetism. Instead.
a broad peak is found in the specific heat. and the nature of the transition from
the low temperature ordered phase to the fully disordered phase is not clear. It
was also shown that there exists a phase intermediate to the fully disordered high
temperature phase and the ordered low temperature phase. The low temperature
phase consists of stripes which are orientationally ordered. This intermediate phase,
called the tetragonal phase, consists of orientationally disordered stripes, The Monte
Carlo results indicated that the transition from the stripe phase to the tetragonal
phase is continuous in the absence of an applied field.

The addition of an applied field in the uniaxial model leads to a tetragonal phase
which consists of elongated islands. The transition from the low temperature stripe
phase to the tetragonal phase appears in the Monte Carlo results to be first order for
large fields, but the results are not sufficient to determine if the transition is weakly
first order or continuous for small fields. As in zero field, the tetragonal phase changes
continuously to the fully disordered phase in an applied field. There is no evidence in

this study for the existence of a hexagonal or bubble phase. It is possible that these
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phases are stable in regions of phase space which our Monte Carlo simulations were
not able to probe (eg., at very low temperatures in high fields).

The study of the dipolar planar model has shown that the finite size effects seen in
order parameter, as calculated by the Monte Carlo simulation, can not be accounted
for by a linearised spin wave calculation. This fact implies that the ordering observed
in the simulations will persist in the limit N — occ. The analysis of the two-point
correlation function indicates that there is a continuous transition from the fully dis-
ordered phase at high temperature to an ordered phase at low temperature. The low
temperature ordered phase is stabilised by a thermally-induced effective anisotropy,

the magnitude of which can be crudely esti at low by

the field conjugate to the effective anisotropy, to the equivalent field in the classical
XY model. The spin wave analysis used in this thesis treated the full dipolar inter-
action, including its long-range nature. A number of features which are absent if one

the dipolar i fon with a nearest neighbour exchange interaction

were highlighted by this analysis.

The final aspect of this thesis was a study of a dipolar Heisenberg model with
a magnetic surface anisotropy. Using Monte Carlo simulation to map out the phase
diagram as a function of temperature and the ratio of the strengths of the magnetic
surface anisotropy and the dipole-dipole interaction, it was shown that this possesses
a novel reorientation transition. The phase diagram contained three regions: an

ordered region where the magnetic moments are oriented perpendicular to the film,
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an ordered region where the magnetic moments are oriented parallel to the film.
and a paramagnetic phase. Separating these regions are two lines of second order
transitions and a single line of first order transitions. These lines all appear to meet

at a tri-critical point.

7.2 Future work

While the study upon which this thesis is based was able to provide answers to a.
number of questions, there are many which remain to be resolved
In the uniaxial model it is still unclear what the exact mechanism is which leads

to the transition from the smectic phase to the tetragonal phase. While it has been

that the ition can be in terms of the of topo-
logical defects{50, 38, 10], this has not been firmly established. There is also some
question concerning the stability of the hexagonal or bubble phase which has been
predicted to exist in an applied field at low temperature.

The linearised spin wave calculation, done as part of the study of the planar model.

was unable to provide a suitable imation scheme. A i

of the spin waves which takes into account the higher order terms in the expansion
may be able to account for these results and provide a more detailed understanding
of the anisotropy which is present in the model[92]. The study of the dipolar planar
model presented in this thesis is really just a starting point to understanding the

nature of this system. The effect of the addition of an exchange interaction or an
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applied field has not been addressed at all. and needs to be if one hopes to gain a full
understanding of the model. [t is also very important when one considers potential
applications of magnetic thin films.

As stated in chapter 6, the study of the dipolar Heisenberg model presented in
this thesis considers a region of phase space which is quite different from that of
the other groups which have been studying similar models. The results presented
here and the results of these other studies can be combined to define a larger phase
diagram. So far only small pieces of this larger phase diagram are available and it
is not completely clear how these pieces will fit together. As well, it is necessary to
consider the results of chapters 3, 4, and 3 in forming the larger phase diagram as
each provides a limiting case. In particular, the existence of the stripe phases has
not yet been considered in any study of the dipolar Heisenberg model. No picture
of this model will be complete without a thorough investigation of the stripe phases

and their regions of stability in the phase diagram.
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Appendix A

The energy of stripe and

checkerboard phases

In this appendix the dipolar contributions to the energy of the stripe and the
checkerboard phases are calculated as functions of the characteristic domain size h.

For the stripe phases the characteristic size is the thickness of the stripe. If the
magnetic moments are uniaxial and perpendicular to the plane of the film, then the
dipolar energy can be written as

E= E ml (A1)
LR
which is a simplification of equation 1.5. Rma = m — Ro and all displacements are

scaled by the lattice constant a. The stripe phases are translationally invariant along
the j direction and are periodic with modulation length A = 2k in the £ direction.

Given the symmetry of the stripe phases, the sum over all spins £, can be replaced
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by a sum over the spins in a single strip of width A and a sum over all superlattice
vectors G of the stripe phase. Therefore the energy can be rewritten as
. ): > ﬂ(r,. + G)d(ﬂ-.) (A2)
Ba "=l +CF
where the vector 7, = (n)Z and is confined to a single strip. The prime on the sum
over R, is a reminder that the case when R, and 7 — G refer to the same spin is
excluded. Given the periodicity of the square lattice, as well as the symmetry of the

stripe phases, G has been defined such that
G = gihi + gai. (A3)

The symmetry of the stripe phases also means that o(Rn) = —0(Rn + hZ) with
s0) =1
The system will be made up of 4 equivalent spins, where V is the total number

of spins in the system. Equation A.2 can then be written as

N & & oG +nd)a(mz)
E=REE T e )

with fium = (m — n)Z. Equation A.4 naturally breaks into two parts. The first part
contains the interaction between spins where 7., = 0. The second part contains all

other interactions. Therefore one can write

(A3)

where the prime means that the term m = n is excluded from the sum.
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The ion of the terms ing in the above ion is i by

the long-range character of the dipolar interaction and is best accomplished by a

variation of the Ewald summation technique described in earlier work [2. 95]. This

allows one to express the above fon in terms of a combination of rapidly
convergent series.
Consider the second of the two terms that appear in equation A.5. In order to
evaluate this sum. the integral representation
R N
v A T (as6)
is used and the sum is written in two parts as
4 = a2
—_— = =Y (-1 ~[Fmn=G["s? o
‘/;26_:( 1) /ﬂ dp pe (A7)
4 :
1) ~[Faa=Gl"
75;( 1) ( /: dp e +
[ dpperlrei®), €%
g

where 7 is an arbitrary constant. The second integral appearing in equation A.8 can

be readily evaluated as

7 dp erlrenel' ﬂﬂ""‘_fﬂl (A9)
" [ + G
where F(z) is given by
Fy(z) = %u“’ + —‘{‘—;exfc(x) . (A.10)
to yvield a rapidly convergent series

L ~Fma-c’et _ 4 =
Tz [ do e F2e0 (A1)
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The first sum appearing in equation A.8 can also be made rapidly convergent by con-
verting the sum over superlattice vectors to a sum over the corresponding reciprocal
lattice vectors to give

)G;( gk ["d,,z,-v..,du = é_.f)a:,m.. /f%g_;mru

s

47 ?F’(Igyl) Gren (312)

=h§

where F3(z) has been defined as

Fya) = (a13)

and the vector @ is given by
6:21:( = 1/22 +l1y) , (A1)

where [, and [, are integers.

The first term appearing in equation A.5 can be evaluated in a similar manner

(=n* i e
Z 6 s Eﬂ( 1]’3‘0 dp e,

4 G, e, o

E.('”"W( [ do fe® + ["dp o), (a15)

where, as in the previous case, the integral has been divided into two parts to improve

the ies of the

The second term in equation A.15 can be readily evaluated to give

F-(nlél)

) P
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where the function Fi(z) was defined earlier by equation A.10. The first term in
equation A.15 can be evaluated by transforming the sum over lattice vectors to one

over reciprocal lattice vectors to give

z- e = dose e ——[— /w st - -}- (a17)

where the reciprocal lattice vector @ is given by equation A.14.

This integral can be readily evaluated to give

A" pemore _ A [ 191 (1G]
E.,""’ﬁfa dp e = [")a: zp,(zﬂ)_ (A18)
Combining terms one has that
2.4z Ly~ gt o il + 1)
v - \/17(,,%( e +5 ”);EI( 1)° |r‘...,.+GF )
W7 14l 191 L&, grmn
T iEie) o

A similar calculation can be carried out for the checkerboard phases. One begins
again with equation A.1. The characteristic domain is now a square of size h by h.
Hence the system now possesses periodicity in both the  and j directions with a
modulation length A = 2h. Therefore the sum over all spins n can be replaced by

a sum over all spins in a single square of size h x h and a sum over all superlattice

vectors G.
5 5 ol +C)o(n)
E_EE);; s (A.20)

Here the vector 7, is confined to lie in a single square of spins. For the checkerboard
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phases the superlattice vector G is defined as
G = gih + qihy, (A21)

and the symmetry of the system is such that
o(f) = (~1)"*%0(7 +G). (a.22)

The system is now made up of £ equivalent sites and one can write equation A.20

=S5 Es a(r.+c)a(r.) )

== mn + G
where both 7, and 7, are confined to lie within the single square of spins. Using
equation A.22, equation A.23 can be written as
A A2
—1)m
E = h? ( g (—.—) ¥ (A.24,
( Z e W tEE L mecr d

where the prime means that the term m = n is excluded from the sum. The calcula-

tion proceeds exactly as for the stripe phases and hence only the conclusion is quoted

bere.
E RG] 2&, Fi(0lfimn + G
£ - S (ZeomntlR o de § S onen Bl )
af2|d|,,(|o| (H_ ): 4,_.)_3%' )

In this result the definitions of the functions F} and F; are as given before for the
stripe phase calculation, but the vectors G are as given in equation A.21 and Q is

now given by

S (z. = . ) ! s



where [, and [, are integers.
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Appendix B

Spin wave expansion for the

dipolar planar model

B.1 The Hamiltonian
In this appendix the dipolar Hamiltonian is expanded to leading order in fluc-
tuations about the ground state. One begins with the dipolar contribution to the
Hamiltonian in units of u2;,/a%
U=} T ' Gl Fam)o (o) ®1
7

In this expression

Fo = na +my4, (B2)
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where nz.ny = 0. £1,%2.... define the square lattice and all distances and displace-

ments have been scaled by the lattice constant a.

.9 a
ey ®3)

L9 (Fam) =
is the dipole-dipole interaction between moments separated by fum = n — Fn. The
sum is a double sum over all lattice points in the system, excluding n = m. as

indicated by the prime on the sum. The Hamiltonian is then rewritten in terms of

the unit cell defined in figure B.1 using the notation

o2(R) = o*(Ra+7l), (B4)

[m = [(Ram + ) (B.3)

where A, is now a vector which indicates the position of the origin for a unit cell

rather than a lattice point and is defined by
R =2n.2+2n,5 (B.6)

with ng,ny = 0,%1,£2.... As shown in figure B.1 the vectors, 7, define the four

sites in the unit cell with

7 =02+0§ (8.7
f =12 +0§ (B.8)
A=02+1j (B.9)

fo=lE+1g. (B.10)



The Hamiltonian can then be written as
3 5 s
H= 3 Yol Rn)lmol (Bm)- (B.11)
P e

The sums over R, and R, are sums over all unit cells as given by equation B.6, while
the sums over u and v are over spins within a unit cell. The prime on the sum now
indicates that for n = m one must exclude terms with u = v. Note that terms with

n =m, but u # v are included in the sums.

S BT e
| P O O O A O I
e b
LI O A O A O I
LA A 0 T A I RO I I
I I O A O O
bbb bt
LI O O Y O I

Figure B.1: The unit cell used in the spin wave calculations. A unit cell is 2a x 2a,
and contains 4 spins. This figure shows 16 unit cells. The labelling scheme used is
indicated in the upper left unit cell.

The ground state can now be characterised by a single variable using the trans-
formation given below in equations B.12 and B.13, which are applied to the magnetic

moments

(M) = (-)™"e (), (B.12)
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PR = (). (8.13)

The Hamiltonian can then written as
H= .i.,. = G2 (Rn) AT 88 (). (B.14)

where 427 is given by

A28 = (—1)RTE (1) (B.15)
which is just a convenient manner of representing the inverse of the transform (it is
also the transform itself, since 422 is its own inverse). After the transformation. the

spin state can be specified by an angle 8(Zy + 7,) = 0,4, such that
Gi(Ra) = cos(bhnu) (B.16)
GYRa) = sin(fna), (B.17)
As stated previously in the text, all ground states will be characterised by an angle.
6o. which is the angle the ordered spins make with the z-axis. Next the angle 6,
made by the spin at R, + 7, is perturbed by some small amount 86,.; so that

Gn = 0o + 66;x. The Hamiltonian is d in terms of these ions, giving

H o= Ho+Hi+Ha+... (B.18)
= Bt M+ 2T S st L Hlsodys + . (B.19)
= ok = e ju+ . (B.
=R PR - 0 Pt P T
E, is the ground state energy, while ¥, is zero by definition and defines the set of

angles , associated with the ground state configurations. H, gives the lowest order
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correction to the Hamiltonian in terms of the fuctuations. After taking the two

derivatives and evaluating the result at 8;, = 8, H, can be written as

i B
Hy = 3 3 66y {—ﬁl'r'JiJZZ(l — imOkkr) 3 B A2 imt
k=1 m af

ig k=1
(1= 6:560x0) 3 C0 AL 025, }so,- % (B-20)
ad
where B and C are defined as
B cos?(8) sin(6y)
sin(6o)  sin*(6)
- sin*(o) —sin(fo)

—sin(8)  cos*(6)

Next, one Fourier transforms the fluctuations in the magnetic moments, such that
58(d) = 23:59,(&);—‘“’, (B.21)
while the inverse transform gives
s0(R) =% [ d@d.(@eE, (B22)
s

where the integral is over the first Brillouin zone. The first Brillouin zone is a square

with — > gq > §. Two useful results are

5[, S = R R, ®23)

TR = 23 57— +Q), (.24
[ q



3
where § is a reciprocal lattice vector. After substituting equation B.22 into equation
B.20. and simplifying one can write the Hamiltonian as

H=E+ Y [ d@0.(0Gu(D0:(~), (B.23)
we /08
which is equivalent to equation 5.7 quoted in the main text. G,(¢) can be written
as
1 S &
Cul@ = —bamz T3 31 - 6(R)6u) 4SBT (R) +
af k=l §
;‘,—g;u — 8(R6) AT (R, ®26)
To simplify later calculations and to highlight features of the various terms, the g-

dependent and g-independent parts of G,,(g) are separated:

Gus(q) = BuwAu + Yun(), (B.27)
where

s
A= —%EZ-&'B"A:.‘(M. (8.28)

af k=1
Tal@ = %gAZC“A:."(a. (B.29)
AB(@ = L1 -6(R)su)l2E(R)e TR, (B.30)

[

To calculate A2(g) the standard methods of Ewald summations are applied as has
been explained previously in Appendix A and in earlier work [22]. The result for
u# v gives

o) (RO+rd) .
2@ = \/A;g(_*_lﬁ_"__l,-.«nr(;;,,qﬂﬁnl)

|R+m



——(,r(2 i R+ )

(" *'9 (‘?"' 2 i1,

2 R;ﬂ) |q+
TP i, (ltﬂ)
_TLT i ngrge (1)
T 2

while for u =v

A%@ = szle-*fr(g;vflﬁl)

“‘\/‘zglﬂ‘l? G
gl (o

u o+f|
P :«‘v’
T ( ) fB=2)

where ['(z;y) is the incomplete Gamma function and erfc(x) is the complementary
error function. In this form it is possible to efficiently calculate A2%(g), and hence

the Hamiltonian.

B.2 Partition function

This is a calculation of the partition function of the dipolar systems in the spin
wave approximation for a system of finite size, N = 2L x 2L (L? units cells and 4L?

spins). By definition the partition function is given by

Zm ¥ up(;s—’;) (B.33)

all states



|y
[n the spin wave approximation one can write this as
2= (L[ 6(@)) oo (-1 (A, @3
with
B [3(R) = 7 = FBG (R- ) (). (8.35)

[3(&)] specifies the set of orientations of all the spins in the system after being

by the given in at B.12 and B.13. To simplify the
expressions the following notation is adopted. 3(8) = (61,62, s, 4) is a four com-
ponent vector which gives the orientation of the moments in the unit cell with origin
at R. Matrices will be denoted with either a ~or *, where the ~ will signify a diagonal
matrix. Any four component vector will be signified by the ~ over line. The following

substitutions are now made:

¢ (R) = -\,%E‘:n*a(ﬂe” (B36)

ba(@ = 7‘;2’!). (B)ees. (B37)
After Fourier transformation the Hamiltonian can be by

Heo [0 (@] = ;3@‘0' @%(-a)- (B.38)
The of is now ined in G (). The partition function

can now be written as

Zu= (I(I s («n) e (~Heu [6 @), (B.39)
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In changing from integrals over o (&) to integrals over o(q). the integration has
changed from being over real fields to an integration over complex felds and hence
might appear to have increased the degrees of freedom from 4L? to 8L%. This is
not the case, since by symmetry ¢(§) = ¢*(—4). To adjust for this change the
integrations are only over d (§), where g lies in the upper half of the Brillouin zone
(the half above g, = 0). Bear in mind that at this point the sums over §'still run over
the entire Brillouin zone.

The next step is to diagonalise G (§) by changing the basis such that
B3(@)'C (@) B(~0) = 3@ P*PC () PPE(-D- (B.40)
The matrix P is chosen such that
C@=PC@F (BA1)

is diagonal and hence Pg(—q) are the eigenvectors of G (§). One defines v = Po
(Note that the components of 3 will be numbered 0 — 3). Equation B.38 can be

rewritten as

Helo@ = LD'C @9 (B.42)
q
= T @ W@ )
=
s
=223 A (@ Wa@I (B.44)
=

where the A, are the eigenvalues of G. The sum over § is now over the upper half of

the Brillouin zone. with the factor of 2 accounting for the bottom half.



One can now substitute equation B.44 into equation B.34 to vield

- s
Zne = H'/ 43(@::;:(42,\,@ Iw..(ﬂl’) (BA3)
T a=0
3
= II' [ @ [ e (-2 @ a@F?) (B.46)
€= =1
= ' #@7@ [ e (-2 @ a@F) ®47)
¥ . a=0

3
= MY@OI [ d@en(-2a@@?).  (B9)
a=0’"%

<
where J () is the Jacobian. One must be careful here as the integration over dw, ()

is over the complex plane. Hence one has that

[dtaem (~20alil) = [ [Tdivalews (-20leal)  (BAD)

1 =
= x(3) ®30)
= (_u.')‘ (B.51)
and the final result is that
Zw = V@I (B.32)
Iv@Mg;
2@ <
= 2 (B.33)
T'Em

From equation B.53 one can calculate the free energy, which is given by

F = KsTla(2) (B.54)
= B+ “;’:T [ﬂ 47 1a (detG(@) - —N;“‘;T In (—‘v::T) (B.55)
- 6+ B8 [ wgno@-TEn(RE) @0




B.3 The order parameter

Now the order parameter, as defined in equation 5.14, is calculated within the
spin wave approximation for a finite system of size V = 2L x 2L. Without loss of
generality it can be assumed that the system orders along the j direction and hence

the order parameter can be written as,

¢ = (S @) ®3n
= BEL (@) ®38
= El;§§<1~—01(ﬁ)+ ) (8.59)
= é‘%g(l)-g%%;(ﬁ(i))+o((¢:)) ®50)
~ -mEL @) @)

It has been assumed that the fluctuations about the ground state are small and one

need only calculate terms of order ¢?. The second term in equation B.61 can be

written as
TAWN) = izﬁ_}i(&(ﬁ)) (B.62)
- S| (0 /o @) d @], ew

where A(V) is defined with considerable foresight, and T is temperature. H,, is the

spin wave approximation to the Hamiltonian as given by equation B.38. Continuing
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by Fourier transform one gets for this second term

TAN)= (B.64)
= s (VI [0 @) & Se@et L s a@ers
8LZF S \¢ =i v W VNFT
exp (— TF @G (q"))} (B.63)
@
- i%zg[(n 1/ u,(q’)) 3 Za@a@)eE
exp( ):s‘(r)ao(c’))] (B.66)
rd
- Lis 'ﬁ/do-(r) 3 S H(@6(@) DR
T rzg il T FMANlg

(B67)

" (B68)

o L L . 2 (- 50 T @@ ] ;
i z§[({,1 H/da,(f))i[a(ﬂ (<= )| @so
= %%‘_ﬁ [(g ',II/“: (ﬂ) 'ﬂ"-(ﬂl’( 2%, 3 ((163(())] (B.70)
= .‘:: ;i[ﬂ H / dg; (6’)2 6i(@) e ""”‘”J (8.11)

where the sums have been adjusted to run over only the upper half of the Brillouin
zone, with the appropriate factor of 2 to compensate. Now one writes the partition
function out in full so that one has

1 [Me ‘Wi T8, @) 2 Bl@F (B @50)]

TAW) = 2 Tﬂl i, [ do5 (@) (,—z:‘mt‘:?m)]

(B.72)
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When ¢ # §, certain terms in the sum in the numerator and denominator are

identical and will cancel. One is then left with

1
TAN) = =3 3 B.
AN u.’z,: 1B (@ e " @%a] (B.3)
One can diagonalise the matrix as in the previous section such that
v = B3 (B.74)
G = PGP, (B.75)

where as before G is diagonal with eigenvalues A, and the eigenvectors are given by

. This gives

& @ 1@ P~ F@P (<= @)
[rd6(@J (@ (e @5%@)]

The Jacobians in the i and are i of the

S
TA(N) = éz'[ (B.76)
T

and hence can come outside the integrals and then cancel. The matrix P! is the

inverse of P. Because G is a diagonal matrix one can simplify equation B.76 as

1 4@ P @) exp (-2 50 Aa¥s)
TA( = — — B.77)
M = B T o () G
L Z,rﬁ(mﬁ-%nvn:dap(—v.ﬂi) 78
LG [0 @ Mamoexp (-20a¥a) ’

Examination of the term |P~'%(4)|* shows that the even terms upon expansion (odd
terms are zero by symmetry) are just [1;[2 + [6a|? + [s[? + |1s|2. Hence

1 L% () [BR T e~ ei¥e? 1 & [dy, a2 Aal¥a?
m; 1dv (@ Wl Maze 2:{: ,,Z,,I a (4) [Val’e (B.79)

Ta @ Mge=wer A Tdva (@) e we"
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Now the integral in the denominator is identical to that seen in the calculation of the
partition function and the result is given in equation B.51. [t is important to recall
that this integral is over all space in the complex plane. Taking the integral in the

denominator one has

[dbalpale e’ = [*d [~ lwaldibalivalte Pt (B50)

= 2 [T dallvafie e’ (B31)
= zxﬁ (B:82)
= & (B.83)

Substitution back into equation B.79 yields as a final result,

TA) = LT3 (#(R) (B39
22
S N s
- w2 e
1 .y
- m; n);&_ (B.86)

Therefore the order parameter for a finite size system on the square lattice can be
written in the spin wave approximation as
=1 —TA(N) (B87)

-3 L, Z > '\c (B.88)

and one is reminded that A()V) has been defined rather than explicitly calculated at

this point.



B.3.1 Asymptotic behaviour

Calculating the order parameter in the limit as ¥ — oo is still not a trivial
calculation. This is due to the soft mode in the eigenspectrum. The goal is to

calculate
AN) = 73 x (B.89)
TA( i 2R .

For a system of size N = L x L the sum over § is over a finite number of terms defined
by

¢ = = (2na+1) (B.90)

2L ¥

where ng = 0,£1,%£2... £ (L — 1)/2. Three branches of the eigenspectrum remain
finite as ¢ — 0. The fourth branch, which will be labelled as Ao(g), does go to zero
as § goes to zero and will cause difficulties in the limit of large V. In the limit as
.V — 0o the sums over ¢ for all branches except A\o(¢) can be converted to integrals

and evaluated. That is

L = [l
EE,: _/dq&(ﬂ (B91)

= TCa, (B.92)

&=

where the temperature dependence of A, has been explicitly extracted and C, is a

constant independent of V for large N. For Ay one must be careful since

fim 2o = D), (B.93)
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which will lead to a divergence at §'= 0 in the limit of V — co. One can define A(§)

such that
1 1 1
— e — B.94
@~ 3@ be G
where D is the average of D(g) over all angles:
1 L = df
5%k D@’ =
where @ is the angle § makes with the z-axis. Therefore
T SN sy G e
WL NG T WL @Y e 25
L, L
- T ghE g @)

The first term is independent of V in the limit V' — co while the second will define

the dominant V dependence. Evaluating the second term gives
Ll Lyw+re, (B.98)
8% D@ sib

where Cp is a constant independent of V.

Finally combining all the contributions gives in the limit of large V gives

1 1 1
—¥ 'Y —=— B.
SNZ.; E& =M +C), (B.99)
with C a constant independent of N. C includes all the contributions defined above
and is given by

C=8rD(Co+Ci+Ca+Cs+ o) (B.100)
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Thus the order parameter as calculated in the linearised spin wave approximation.

varies in the limit of large system size V as a function of temperature and .V as

T
¥ 1= (la(V) +C). (B.101)
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