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Abst ract

In this t hesis the magnetic properties of a. model for a rwo-dlmeusicaal . dipolar

t hin film are dete rmined. using Monte Carlo simulatioDS. Three different versions

of the model have been considered. and the results have been compared. to pre vi ous

ebeored cel results as well &!I to recent experiments on ult ra-thin magnetic films.

T he filst version of the model is a uniaxial model, with dipolar and exc:hange

interacti ons. The ground states for this model are shown to be stripe phases for all

Ji g > 0.85. where J is the strength of the exchange inter action and 9 is the str ength of

the dipolar interactio n. At ftnite temperature there is a phase transitio n from these

strip e phases at low temperature to an orien tationa.lly disordered phase at high~

tempera tures. This orientat ional disordered phase appears to map continuo usly to

the paramagnetic phase. The effect of an applied. field on the stripe phases is also

considered..

The second version of the model is a planar model. In this model the magnet ic

moments interact only via the dipole-dipo le interacti on. The results of Monte Carlo

simulations are interp reted within the context of a linearised spin wave calcula tion .

T he comparison indicates that the model system orders at a finite temperature in the

thermodynamic limit . The nature of the transition from the paramagnetic sta te to

the low tempera ture ordered sta te is studied by considering:the decey of the two-point

correlation funtt ion. bot h above and below the criti cal temperature .

The third versio n of the model is a dipolar Heisenberg model, in which the mag-



netic moments interact via the dipole-dipo le interaction. The moments are also

subject to a magnetic surface anisotropy. This model is shown to exhibit a covel

reorientati on transition. The phase diagram for this model is developed and cere­

pared. to t hat obtained for a similar system with a dominan t ferromagnetic exchange

interaction.
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Chapter 1

Introduction

Lnthis thesis th e properties of a lattiee- based mod el for ~ension.a.l magn etic

thin films are investi gated . The magnetic moments in the model interact via a dipo le­

dipole interaction as well as other possible interact ions , but it is the effects of the

di po lar interactiOQ which are considered in depth, These effects 00 th e magnetic

properties of materials C&D. be very dramatic an d yet 5til.I quite su btle , an d there

has been keen interest in magnetic thin films over the past 20 years [1, 2, 3). In

recent years magne ti c thin films have again become a "hot" to pic for research due to

enhancunents in molecular ~am ep itaxy, and the ability of researchrn to construct

high quality thin !lms for st udy [4, 51.

In this thesis , the phase behaviour is esta blished for a c1~cal model of a thin

magnetic film both at T = OK and at finite tempe ra ture . The results of analytical

calcula tions for tbe energy of various phases are presen ted and used to predict the



ground ~ tates for tile mod el. 1 lonte Car lo simula tions are used ext ensively to de te r­

mine both the 10" temperat ure properti es and the nature of the phase ereastnces

present in the various versions of tile model Three different variants of the basic

model are considered . Th e first is a syste m with uniaxial or one component mag­

net ic moments . Th e magneti c moments are constrained to orie nt perpendicular to

the 6.lmand in teract via a dipole-dipole inte rac tio n and an exchange interact ion . Th e

influence of an app lied field is also considered. The seco nd is a systlWl with planar

or two component magnetic: momen ta. Th e magnetic momen ts are confined to th e

plane of the 6lm and in terac t via the di po le-dipo le interaction only. For this variant

of the model , the low temperatur e properties are examined with refere nce to a classi­

cal. Iinearised spin .ave calcul atio n. The third version of the model is a Heise nberg

model in _b.ieb the mo ments an fully ~ensional vecto~ which interact via

the dipole-di pole interaction and are su bject. to a perpendicular aniso t ropY.

Much of the work.presented in this thes is has been pu blished [6 , 7, 8, 9, 10, 11, 121.

The outlin e of the thesis is given below.

1.1 Outline

T bis th esis is organised as follows: Cha pte r 1 will introduce the model being

st udied in general terms, and discuss the mot iva tion Corthe study. It will also provide

an introduction to previous expe rim en tal and theo re tic al work re lated to the work

presented In this thesis .



Chap ter 2 will give a brief introduction to ~Ionte Culo sim ul a ricns . Tbe diffi<:'U1­

ties associated with including a dipolar Inrerecd cn within a ~lonte Carlo sim ulation

"ill be discussed . T be dipol ar int~raction is a long-range. anisotropic interact ion and

both of these properti es make it a chal1enge to incorpo rat e efficiently into a ~Ionte

Carlo simulation . The simula.tions carried out as part of this st udy ~ among the

IIlOSt comprehensive and involve the largest systems of a.ny published studi es.

Chapters 3 and 4 treat the esse of a uni.axia.I dipolar system. In othl"rwords. these

cha pte rs deal with a syste m where the magnet ic mom ents ~ cc estraiaed to point

perpendjculer to t he film. Assumin g that the direction perpendi cular to the film is

the : direction, the magn~tic momen t can assume only two states; either jl ;:: +I-li or

il = - ¢ . The moments lie 0 0 a square l.1.t tice and interact via the dipolar interact ion.

and an exchange interaction and with an applied field. Chapte r 3 deals exclusively

with the problem of establishing the ground sta te as a function of the rati o between

the exchange interactio n and the dipolar interaCtion, in the abse nce of an applied

field. Chapter 4 considers the finite temperature beha viour of this syst em. as well as

the effects of an app lied field.

In Chap ter 5, a di polar planar model is considered . te this mod el the magnetic

moments or spins are assumed to lie within the plane of the thin film and to have full

rotational freedom in that plane . Again assuming that the direction perpe ndicular

to the film is the i dlrecricn , this means that , in tbe planar model, tbe magnetic

moment may be specifi ed by jl = ,rt + Il' f/ with lill =JL The i and ~ directio ns



<Ion chosen so they lie atong the lUe$ af the squar e Iarrice of the system , The na ture

of the ardering which takes place in this model is a.nal~ while considering the

results af a Iineartsed, spin wave calculation . Th e spin wave calculation has bee n

perform ed for both th e full long-range dipolar interaction as well as for a sheet- range

apprmimation. This model is also inurestinc; because of the _ 11known prope rti es

of the clas:si.cal plan ar model , which is an iscrrcpie shon.range exchan ge model. In

the classical planar mod el there is no order-diso rder transit ion, but inst ead there is a

Kosteune-Tbc uless transition [131.

mChapter 6. a system with a dipolar inuraction along with a magnetic: surface

aniso tro py is considered . The magn etic moments are considered to be fully three.

dimensional vectors, ;; = lJ~i + JJ~V + JJ~ i. wirh an aniso tropy chosen such tha t t he

=direction (perpe ndicular to rhe plane) represents the e85}' axis for th e system . In

rhis PArt of the study the pro perti es of a reorientation transition in th e absen ce of an

exclaange interactio n are examined.

The final chapter, Ch apter 7, is the conclusio n. In this chapter a brief summary

is gh-en of th e major rerults presen ted in th e thesis . As well it offers an overview of

some of the remaining questions in this field.



1.2 M otivation and exper imental results

1.2 .1 Rare eart b com p o unds

T he original moth"lltion forchoosing to work with two-dimensional dipolar systems

was to exp lain the ordering observed in the rare eart h su bsyst em of (RE )Ba2CI1JO;".

which is It. dass of magnetic superconductors. High-te mper ature superconductors have

\-ast recb..nological potentia1. th erefore undetsta.ading the properties of these systems is

ve ry important . In these compoun ds , the tan! earth ions order at tempera eures of the

order of a few Kelvin, where tbe dlpcle-dlpcle interaction is significan t . The ordered

st at es observed in these compoun ds are also consistent with a sign.i.fican t dipo le-dipole

interaction [14, 15, 16, 11]. There are a large number of experiments 00 the low tem­

perature properties of these compo unds which have established that , for some rare

eart hs . tbe ordering has characteristics which an distinctly two-dimensional . For

exam ple, Lynn ee aI. (181showed t hat in ErB~Cu3Or , the rare earth eublettlce or­

ders a t 618 mK, and th ey also showed th at the neutr on sca t tering by this ma terial is

chara.cteristic of t'M>dimension.a.1 ordering within planes in the aystal. T he neutro n

scat tering indicateS that three-dimensional ordering occun only at lceer tempera­

tures (181. Similar resul ts have been found for Dy~ClltOr by Fischer d oL [191

and by Goldman ee al. [151. Th ese expe rimental resul ts have been com pared with

simulations in previous publica tions 120, 21, 221, and are not discussed explici tly in

this thesis, oo-wr understanding the (RE)B,.,~Or compounds represents an i.m-



pan aat poten tial applicat ion of the present 'MJrk.

1.2 .2 M ag ne t ic t h in films

In addition to (RE) Ba 2CUaOr . the model studi ed can also be ap plied to magnetic

thin films. This is a top ic of oonsiderab le interest both from an experime ntal and

a th~tttical ~tspective . Recent progress in molecular bea.m. epitaxy in ultra-high

vacuum has allowed experim entalists to make great strides in the fabrication and

analysis of ultr a- thin (several mono-layers] ma&J1eticfilms (4. 5. 23. 24, 25, 26, 27.28 ,

29. 30. 31. 321. It is apparent from these studies , and the relat ed th~tttical 'MJrk.

that the dipolar interaction plays I.D. important role in determining the magnetic

properties of these systems .

Thin epitaxial films of Fe on the Co(l OO) surface were studied by Pappas et aL

[5] using spin-polarised secondary-eleeuon specuosropy. The Illms in this study were

ap proxima tely 2..5-3.5 atomic: layers thick. There are two results of this work which

are of particular relevance to this thesis. The first is tha t, at low temperature, the

system orders with the magnetic moments perpendicular to the lilm. This implies

the existence of an anisotro py or interaction besides the typical short range exchange

interaction, since an isotro pic system with only short·range exchange interactions

would aot exhibit long-range order(33]. The dipolar interaction is the obvious addi­

tional interaction, but it Cavours in-plane ordering . This suggests that a magnet ic

surface anisotrOpy also exists. Pappu d cU. also showed th at at higher temper atures



the re is • reorient atio n transi t ion. at which the direcricu of t he net meguerisancn

switches from perpendicular to the film to parallel to the film.

Allenspach et aL [4]ha~ studied thin epitaxial films of Co 0 0. the Au(lll ) surface

using spin scanning electro n microscopy (SEM) . Thr) ' found the intriguing result in a

three mono-layer film that at temperatures of approximately 300Kthe magne tic mo­

ments form domains of micron size wit h the magnetic moments c rienred perpe ndicular

to the plane of the film. This IIi7I.Sthe lim time that au expe:rimrnt had supported

the theoretical p~ons that domain5 would form in thin films, when. th e lilms had

perpendicul ar anisotrop ies due to di pole-dipole intera etions[8, 34].•\llenspach et ai.

also found the reorientation naosition observed by Pappas et aL [5]. T he reorien­

tation transition cccurs both as a functio n of tempe rature and as a function of the

film thickness. For 61ms with a thickness less than three mono-layers the magnet i­

sario n is perpendicular to the film., while 61ms thidrer than six mono-layers beve a

magnetisation which lies in the plan e of the film. This reorienta tion is believed to be

the result of a change in the effective strengt.h of the magnet ic surface anisotropy. In

the thicker films the rat io of the num ber of moment5 at the surface to total number

of moments is reduced, and hence the effect of the surface anisotrOpy is similarly re­

duced. With no surface anPotropy the lowest energy state is that wit h t he moments

in the plane of the fi.1m. This is due to the dipolar interact ion, which favours the

in-p lane sta te. Allenspach and Bischof (231 have obse rved a reorieuution transi tion

both as a function of tem perature and &S a function of 61mthickn ess in t hin li1msof



Fe on the CU( lOO)surface as well . l:sing SEM they ba~ shown that stripe domains

form when the maguetisa tioa is perpe ndicular to the film at low temperature.

Kerktnann et ai. (24J studied Co lilms on the Cu( lOO) surface in an applied

magnetic fi~1d. They made use of both th e magneto-o ptic Ken effect as well as

spin -po larised SEM . They were able to observean ordered phase at low temperature

with definite domain formatio n, as well as the transition to a disordered phase at

higher tempera tures . Th ey &Iso studied. the hysteresis curves due to the applicat ion

of an applied. field both a bove ee d below the transi tion tempe ra ture and shOViOO that

the results were very simil ar to those predicted for the 2·D Heisenberg model above

the transit ion temperature. Spedana.nn d ai. [301have also looked at Co films on

the AU(lll) SUIfAce using SEM. Th ey showedtha t after annealing, the films display

a definite domain structure with perpendi cular magnetisa tion and a characte rist ic

domain size dependent upon the lUm thickness. T hey were able to measure the

dependence of the domain size on the film thidmess for films as thin as two mono­

!ayers and the resul ts are wellfit by the predictions of Kaplan and Gehrin g (351. whose

work will be discussed below.

The prope rties of Fe on the Ag( l OO) surface have been studied. by Qui et aL

[251, who co nfirmed tha t for w ry thin lilms the preferred direction for the ordered

magnetic moments at low temperature is perpendicular to the plane of the lihn. Qui

et aL studied a~ sha ped 6.lm as they were inte rested in the variation of the

magnetisa tion as a function of the fUmthicImess . They found that in a 7 mono-layer



film there is a reorienta tion tranSi tion at ap proxiImLte!yT =:J75K.

These results are rde YUt to all sections of this thesis , but an of panicular rel­

evaace to Cha ptetS :3and 6. In Chapter 3 it is concluded that the lowest energy

state for filmswith perpendicular magnetisation is a stripe phase that is quali tat ively

similar to that observed by .-\1lenspadl d at In Chapter 6 the reorientation tran­

sition . as a function temperature, is exp lored. In many of the experiments. it is a

change in the thickntsl; of the film which leads to the reorientati on transition . The

film thi ckness is an experimentally controllable par ameter while the magnitude of the

magnetic !IUrfaceanisotropy (MSA) is ece. In a Monte Carlo simula tion the ).[SA

is a contro lla ble parameter , and it is less computa tionall y deman ding to simulate a

mono-layer than to simula te a multi-layered film . Therefore , in this thesis, only the

case of a thermally induced reorientation tr ansi tion in a mono-layer is considered .

Technologically, materials such as Co/ Au(111) films are interesting due to posen­

rial applications in magne tic storage devices [41. There are also a number of systems

which have similar properties to dip olar thin films , which makes the understanding of

thin films interesting from a purely t heoretical poin t of view. These sys tems include

such diverse systems as liquid crystals, Langmuir mono-layers and othe rs (36, 37, 38].

Th e rich variety of spatia1ly modulated phases which can be found in dipol ar thin

films also makes them ideal syste ms for the study of pattern format ion(39, 40, 411

and self-organised behaviour (0121.
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1.3 The model in general

In this Sl!'Ctionthe general Hamiltonian that defia es th e model discussed in t his

thesis is introd uced. T his is done in order to make the discussion of the previous

theoretical work on this subject more cohesive, as most of the terms used in the rest

of t he thesis will be defined in this section ,

The model atte mpts to capture the salient feeeures of a magnetic thin film . or of

the rare eart h su blatt ice in the (RE)832CU30, compoun ds. Hence the model tr eats

a two-dimensional ~em on a square lattice, where the two in-plane direct ions all"

the i and y directions and th e direction perpendicular to the plan e is taken as the ;

direction. At each lat tice point there is a magnetic dipo le ji and a net spin S. The

Hamil tonian for the mod el is, in gen eral , given by

" =
~ L ' [ii(R.)_'i1(i!,) _3(i1(R. )·R.tHi1(i!,)' R.,)]
'1 il, ,/I, lR.:.i11 1R.;ls

-f L SIR.) ·S(R,)
(.t. .~ )

- L H· i1CR.) - L A(P(R.)' )' .
~ ~

Cl.l)

whe re the disp lacem ent is de fined as it; = it. - R;and a primed sum means tha t

the term with R.= R; is excluded .

Th e first term in equat ion 1.1 is the dipol ar interacti on and the sum is over all

pairs of spins Rotti.;. Th e typical way of wri ting t he interac tion energy be tween two

dipoles is

(1.2)
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f or !n&thern..t ical reasons it is sometimes preferable to 5t&rt from A dilferent form

of the int eraction. which loo ks very much like the Coulomb interaction. In the form

used in mos t of the ca.lcula tions shown in this thesis, the interaction energy between

two dipoles is written as

\"ith a lit tl e work one can show that the t1ro forms ~ equivalent. T he dipolar

interactio n is a long-range interaction, whi ch means that each spin in the syste m

interacts with all the other spins in the system. It also means that, unlike an exchange

interaction which typically decays exponentially with distuce. the dipolar in teraction

deca ys with a power law de pendence on distance. This can lead to convergence

probl ems when trea tin g syste ms in the th ermodynamic limit.

Th e dipo lar intenu:tiOll is also an a.nisottopic interaction; in figure 1.1 the field

produced by an isolated di pole is sboen schem atieally. It can be seen that the dipol e-

dipo le interaction can either be ferromagnetic or antifen'Omagnetic , depending on the

relative displacement of two dipoles. T his will be important , as will be seen lat er in

this rhesis, in determining the ground state spin configuration as a func ti on of the

various parameters in the Hamil tonian .

The second term in equation 1.1 is an exchange inte raction. This surn is over all

nearest neighbour pairs (t he nota tion (R.,R,) is stan dard ], as the exchange tnterec-

tion is a short range interactio n. A positive J denotes a ferromagnetic exch~ inte r-

acncu . while a negative J deaoees an antiferromagnetic interaction. Exch~ inter-
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Figure U : The field for an isolated magnetic dipo le. The vececrs show the magnetic
field at various points a bout a magnetic dipo le loca ted at the origin.

actions arise as a consequence of ch.aq;e overlap between ions. f igure 1.2 schemat ically

tllusera ees three types of~ interaction: direct , indirect. and supe r-exchange.

lu a direct exchAnge the charge clouds of adjace nt ions ov-etlap and the electrons from

one ion are abl e to directly interact with those or the second ion. The second type

of exchan ge is known as a.nindirect exchange interaction . In this case th e eleeero es

of a magnetic ion interact wit h conduction electro ns, which can then interact with

a second magnetic ion, giving an effective coupling be tween th e two magnetic ions.

The thir d type of exchange is a sup er-exchan ge. In this typ e of exchan ge there is

an interm~ate non. magnetic ion which bas a charge over lap with the two magnetic

ions. The Don-magnetic ion medi ates the exchange interaction as its electrons interact



with the elect rons of the fin t ion . and they the n interact with the second lJl&guNic

toe. In.all of thee cases the interaction may be approximated by the form.gi~n ~.

the second term in equation 1.1.

I. )

(b)

lei

Figure 1.2: Schematic diagram of a diner exchange (a), an. indirect. exdl ange (b) an.d
a super-exchange interaction (c).

Th e third term in equa tion 1.1 allows for th e application of an. applied extern al

field which can have compo nents in any of the three spatial direttions. ThE:effect o{

an applied field is studied only in th e case of uniaxial mome nts , in Chapter 4.

Th e founh term in equat ion 1.1 is the ma gnetic surfac e aniso tropy. In a mate rial

it is possi ble {or a preferred axis cr axes to exist, abo ut which it is energetically

favourable for th e syste m to order . This ean be t he result of I. num ber of things.



f or exam ple, the lack or spherical symmetry in the char ge overlap between ions.

due to sp in-orbit coupling, can lead to a preferred orientation fur the ions. The

isotr opic exchange interaction does not account fee this. TIUs is the case rot co bal t

cryst als [431. Another possib le cause is cryst&11ine electric fields . which are the resul t

or the inhomogeneous fields or the neighbouring ions . CQ'St8l.line elect ric field ejfects

will be much stronge r in magneti c thin films composed. or transition metals than in

rare earth supereoa duetors, since in the magnetic thin films it is the outer shell , the

3d.shell, which is respo nsible for the magn etic momen t, while in the rare earth ions

it is the inner 4f shell.

In the model magnetk film. considered in this thesis it is sufficient that the

aniso tropy couple only to the i component or the magnetic moment , due to the

symmetry between the two in-plane directions. A posit ive anisotropy, K > 0 gives

an easy axis along i , while a negative value makes i a hard axis and gives an easy

plane within the film. The case or K < 0 is treated. in Chapter 6, when the syste m

is studied. as a function or K .

Before proceeding it is useful to rewrite equation 1.1 in tenns of the dimensionless

quan tities which are used in the M ODte Carlo simulations. The magnetic moments

are rewritten as il = ""'I/a, when IlfJ = 1. Similarly the spin is rewritten as S ­

Sclla. Also all disp lacements are scaled by the lat tice const ant , a, so th at R. -+ R/a.
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Substi tuting these definitions in to equation 1.1 }~lds

5u~ E . [U(R;)_.UIR;) _ 3 (u(R;)· l R;j)! (U(R;) . 1R;, » ]
r 21., .A, lR;il3 lR;il5

_:!.§iu. E u(R;) .u(8;)
2 (A..A,>

-"IIE i/ .u(R;) - ~IIE A(a' (R;»'.
~ ~

(U)

Finally new coupling constants are defined such that the Hamiltonian can be written

" 9 { E .a"( R;)r-' (R;,)....(R, ) - f E u(R;) .u(8; ) - E ii· u(R;)
i. .A, (1.,.11,> i.

-K f 1a'(R;» ' } ' (1.5)

with

T he new coupling constanu are defined to be

!:k,0'
~

9

= '.':J(~)
/Jell

~ 2a3~(~r

!!.!ll!!..
9

2a'i/
"II

(1.6)

(1.7)

(1.8)

(1.9)
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K

(1.10)

where gJ is the Lande 9 factor (441. In the remainder of the thesis. unless otherwise

stated . all energies, J , h,and K 'lVillbe measured in uni ts such that 9 == 1J~1I/2tJJ ;;;;1.

Ln this thesis the magnetic moments are trea ted c1as5icaJly. It is important to

esta blish when this simplification is reasonable, since magne tism is an intrinsically

quan tum mechanical phe nomenon. Unfortunately this is not always a t rivial task [451.

CertailUy the assumption is valid Dear a second order phase transition . The relevant

lengt h scale near such a transition is the eorrelation length, which diverges a t the

tra nsit ion. ~o such divergence occurs near a first order transi tion, and hence all

predictions mad e concernin g such transitions must be made with th e caveat chat

quantum effectS h.ave been ignored.. This ma y be reason able when comparing results

to experiments on magnet ic thin films in which the transitio ns take place near room

temperature. [ t may not be reasonable in the rare eart h superconductors in which the

transitions occur near 1 K. The predictions for th e ground seaees, which are based on

classical calculations, must be considered to be, at best , .. first approximation valid

in some low temperature region. A complete caleulation of th e T = OK state of an

experimental magnetic system must include a consideration of quantum effecu.



1.4 Rel evant t heory

The experimental work discussed~ is relevan t to the results presented in all

of the upcoming chapters, However th e theoretic al st udies are best divided based on

the spin dim ensionali ty, This divisio n is emp loyed beca use the spin dimensionality is

an im portan t parameter in determining th e critical behavio ur and phasebehaviour

of a system. This does not imply that the reeults of one S«tion will not be relevaar

to other sect ions . In fact the chapter concerned with the Heisenberg model is very

much dependent on the results found for both the uni axi al and planar systems. Since

in eac:hchapter the imporunt literature for that section is reviewed, the~y here

will be in th e form of a brief CM!rviewof what has been published and the meth ods

employed, rat her than a detailed analysis of the final results of these studies .

1.4.1 Uniaxial system

For uniaxial systems, where t he ma gnetic moments are orien ted perpendicular to

the plane of the film , one of the fundamental questions is to establish the ground

state when one hasboth a nearest neighbour 6Change interaction and a long-range

dipo lar interaction. The di polar interaction ma.bs this a subtle calculation eed there

has been som e contradict ion between pub lished results . Th e cont radiction arises

beca use ground sta te energies calcul ated. within .. cont inuum ap proximatio n by Garel

and Doni.ach[46J. Yafet and Gyorgy{3-II. and Kaplan. and Gdlring {351 disagreeorrith

[hose of Czech and Villain {47J who did not rna..Ite use of a continuum limit but~
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the discr ete nature of tile underlying lat t ice. Tile continuum calculations !Jl.- C are l

and Doniacb. and t he ot her gro ups all predicted a ground st a te consist ing of stri ped

domains . while the c:a1cu1ations of Czech and V'illain predicted a groun d stat e of

square domains . As wdl, Taylor and Gyodfy (481.using a discrete approach, agreed

with t he results of the continuum calculations, and hence disagreed with Czech and

Villain . alt hough their calculati on was valid in a different regime, This problem is

discussed in some detail in Chap ter 3.

At linite temper ature an import an t questio n concerns the na ture of t he transition

from a low temperature ordered phase to the high temperature, parama gnetic phase.

both in zero applied field and non-zero ap plied field. T he behaviour of the system in

an appli ed field is impo rtant beca use of the technological imp UcatiODS for materials

used for magnetic stonge. The reevant theory in zero field has been developed

by man y of the sam e auth ors listed in the previous paragraph, using a number of

different met hods. Gar el and Doniaeb [461 used a Gi.D.zburg-Landau approach to

study a film.with a finite thickness at finite temperature including the possibili ty of

an applied field. Geh.riJ:ig and Kesltin 149) consid ered a mode l film using a mean field

ap proach and looked at the tem perature dependen ce of the domain size. ~Iean field

app roxima tions ha~ been used in the limit of a discrete system by Czech and Villain

[47] and by Taylor and Gyodfy [48] and in the cont inuum limit by Abanov et al. [50].

Lattice gat! simulations have been used by Hurley and Singer(42. 51, 52]. A discussio n

of the finite temperature phase behaviour is presen ted in Chapter -I.



1.4 .2 Pl anar syst em

The dipo lar 2-D planar mod el is inte resting , panicu1arly in light of what is known

about the classical 2-D plan.a.rmood . In the classical 2·0 planar model the magn etic

moments interact via an isotropic, short- range:exchange interactio n. The dassi ca12-D

planar model cont ains a zero energy spin wave mode (a gapless mode) which prevents

long-r ange order at any finite temperature. However , the model does unde rgo a phase

transifion. At low temperature it is possi ble for bound pairs of vorti ces to exist and

the ewo- peiat correlation function exhib its a power law decay. w"hen the temperat ure

reaches a critical poin t the vort ex pairs unbind and the rwc-pcinecorrelation function

decays aponenti ally. this type of phase transition is lm.'"'Das a Kosterlitz· Thoul.~

tranSition 113, 53. 541.

The effect of the dipolar interac tion on a system with a dominant, ferro mag·

aerie exchange interaction was considered by Maleev [3J . Maleev showed that it was

possible for the di polar interaction to stabilise long-range order in a planar model

as a direct result of the Iong· range nature of the dipo lar interac tion . Zimmerman

er 111. 155) considered a system of dipo les on the honeycomb lat tice , using a mean

field approach as well as MOnte Carlo simulation , and developed a phase diagram

for that model. They also noted the subtle nature of the spin wave spect rum due to

an anisotropic inte ract ion, such as the di pole-dipole interaction . This was expanded

upon by Henley(.i61 who introduced. the concep t of thermally induced ordering , and

Prakas h and Henley, [.ii') who ap plied this concept to the low temp erature behaviour
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or an anisot ropic' model with a short- range intenction which was chosen to mimic

the nearest neighbour pan of the dipcl e-dipc le intenu:tion. Prakash and Henley were

able to derive expressions ror the freeenergy and magne tisation or their model within

the context of a spin wave approximation.

l,;'sing a spin wave calculation as -U as Monte Carlo simulati on , and working on

the triangu.lar lattice, Bedanov {581concluded that this model orders at lowtemper­

ature. The results or his spin wave calculation agreed with his Monte Carlo results.

The ~Ionte Carlo results, however, were for very small systems. Numerical studies for

large r square lat tices have been done by Bajaj et aL {59]. In these st udies , using spin

d~-namic stimulations , the spin wave spectra have been ealeulared {or a dipolar model

using the same nearest neigh bour approximation as used by Prakas h and Henley.

The results or the present work concerning the pla.o..ar dipolar model are presented in

Chapt er 5.

1,4 .3 He isenberg sys te m

In the experiments discussed above, the systemj; studied are generally believed to

have a dominant rerromagnetic exchange interaction, potentially a strong maguetic

surface anisotropy, and a much weaker dipolar tnteraceton. Al most all of the previous

theoretical work on dipolar Heisenberg mod els has been on models in which the

relati Ye strengths of the interactions were chosen to be similar to those in experime nts.

Early workincludesa spin ...vecalcu1ation by yarer, Kwoand Gyorgyf60] fura syste m
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wb.ichorders with a magnetisation perpendicular to the plane of t he filIn. Pescia and

POkro\'Sk)161J treated the same problem within the context of the Renormalisation

Gro up and concluded that this system should have a reorientation transition Cor a

ran ge of ratios between the strength of the dipo lar interaction and the strength of the

magnetic s:urface anisotropy. Politi a aL [62Jalso studied th e reorientation ua.nsi tio n

in a thin lilm . They used a Renormalisation Group proposed by Polyakov [631,which

they generalised to study the reorien tation transition in terms of bo th film thickness

and temperature.

Spin wave results have also beea published by a number of groups, PiC'hand

Schwabl [64J considered the di polar antiferromagnet 'With . dominant antiferromag·

net ic exchange , predicting that the dipo lar int eraction leads to a gap in the spin wave

spect rum and hence the existence of an ordered ground seeee, with th e assumption

tha t the groun d state ispe~ to the ptane of the lilm. Corruccini and Whi te

[65) considered . mode l with only th e dipol e-dipole interaction an d, based on their

linearised spin wave calculation, conclud ed that the mod el will not exhibit long- range

orde r on the square lattice . St amps aad Hillebran ds(66! and Bruno[67j have cousid­

ered two-dimensi onal ferromagnetic syste ms with dipol ar interactions within the spin

wave approximation.

The problem of a ferromagnetic syste m with a small dipo lar inte rac tion has also

been app roached using mean field techniques by bot h Moschel and Usade l[68, 69, 701

and Hu and Ka~[71I . As well, ~tonu Carlo sitnula tioC$ have been done b)'



Chui[72] and Hueht ee at. [73, i4 ]. Both the mean field studies and the xtonte Car lo

st udies considered bo th the effect of temperature and film thickness as they rela eed

to the reorienta tion transition. Abanov d c&l.[50], in a detailed study of a model thin

film. have made a number of prediericus concerning the phase behaviour , both in zero

and non-zero applied field, which are rdevant for all chapter5 in this thesis . They

ha~ else made a numbe r of p~etions concerning the phase diagam for their model

using a mean field app roach.

These studies all provide informa tion concerning the phase behaviour of the model

sys tem in a sm all region of phase space where the f6TOmagnetic exchange Interac­

tion and a magnetic surface anisotropy doati.n&te ~r a much smaller dipole-dipole

interaction. In Cha pter 6 an. alternati~ region of phase epece is probed . This region

is characterised by the absence of an exchange interaction (J =0). The phase be-­

haviour is explored as a function of the stre ngth of the magnetic surface anisotropy

relative to the strength of the dipolar interaction.



Chapter 2

Methods

While there is a su bstantial body of literature concerned with the computational

aspects of magnetic systems with short range interactions , {7S, .6 1it is only recently

that much at tention has been gi~ to the effects of long-range interacti ons and how

to effectively treat these interactio ns wit hin a MODte Carlo simul atio n [58, 12, ;3 1.

T his chapt er is intend ed as a review of t he basics of Monte Carlo simula tion meth ods

and some of the theory behind the techniqu e. The chapter also contains a disc ussion

of how the long-range na ture of the dipolar interaction makes the simulatioQSmud.

more difficult than _h en only Iocat.I int eractiOD5are includ ed . The final section is a

discussion of the techniques used00 the various computer architec tures to m.in.imise

the problems associated with the (ong-ran ge interactio n
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2.1 Mont e Carlo simulation

Evalua tion of the thermodynamic properti es of a magne tic: syste m involves the

calculation of the expectation values of various local operators with respect to the

Boltzm ann probab ility distri butio n. Specifically. it invol~ calculatin g integrals of

the form

(2.1)

where '{s } denotes a set of variables that serve to uniquely specify the configuration

of the syste m of interest . A({z}) and E({z}) denote th e value of a local cperaeor

and the energy of the syste m in configuration {s }, respectiV'!l.r, and. IJdenotes the

Inverse te mpe ra ture (fJ = liken. Note that if one or many of the e 's in {e} is

discrete , then the integrals associat ed with those variables become the appr opria te

summations. While it is not always possible to anal yticall y evaluate averages such

as those expressed by equation 2.1, for many syste ms of interest it is often possible

to evalua te them numericall y for finite systems by means of Monte Carlo simulation.

(t is then possible to extrapolate the results for these finite syste ms to systems of

i.n.fi.nite size . by means of linite size scaling techniques [77, 78J. The relW>ility of

the procedure is, hownoer, critically depende nt on the size of the systems which

can be usefully studied and the precision of t he results obtained. These factors are

determined by t he complexity of the model under investigat ion , t he efficiency of the

algorithm used and the speedand capacity of the computer on which the simulatio n

is being performed . Hence computational consider ations are cruci al to the successful



applica t ion of ~Ionte Carlo simulation to pro blems of ph~"SicaJ. int~t.

The ~lo[lte Catlo simulation is. in simplest terms . a method of integration. In

the ~Io [lte Carlo method, a subset of all possi ble states of a syst em are used to

approxima te the entir e set . One way of choosing the states to include in the evalua tion

of the integral is to pick the states randolJl1y, that iswitb probability P ({r} ) =i / .V.

where N is the to tal number of possible configurations . Th.i:s method. of Monte Carlo

simulation is very inefficient at evalu ating quantit ies such as (A) in equation 2.1. Tills

is because the expo nentials in the integrand of equatio n 2.1 can vary over several

orders of magni tude , and hence there are large: regions of phase space which do not

contribute significant.\y to the integration. To improve th e efficiency of th e ~lonte

Carlo simulation the concept of "im port ance sa mpling" is employed. Im port ance

sampling means th at from the total phase space of the syste m, only those tegions

which will contribute sig:a.i.ficantlyto the integrations are sampled.

In this work, poin ts are selected according to the probability P-et({ r }). where

P~({z}) '" .",, (-PE(lz})) . (2.2)

Selecting points according to this probability allowsone to estimate the value of th e

expectation value (A) from M points qui te simply as

(2.3 )

Obviously the more points used in th e evalua tia n of (A) th e more accurate the \'lIlue

obtained[79].



It has been shown that one lIl&Y generate a set of st ates (z ).. according to ebe

probability P",,((z}) by means of a trajectory bh. through phase space [19J. T his

tra jectory is geueraeed by m~ans of a :\Iu kov ptoC1!SS defined in terms of a transit ion

pro babili ty, which is denoted by W({ y}.. -+ (v }..- il , and is required to sa tisfy the

condition of detailed balance, specifically

The sta tes {e }.. used in the evaluatio n of the expecta tion value given by equation 2.3

are typically determined from the trajectory b )..as

(2 .5)

where TO denotes the number of Monte Car lo st eps (MCs) required for the syste m

to reach equilibrium and n is determined by the numbe r of ~lCs it takes for cor­

relat ions within a system (in equilibrium ) to effectively decay to mo. In this way

the e,,1l1uation or the weighted average over phase space , exp ressed by equation 2.1.

is re placed by an average over a traj ectory in phase space generated by the transi-

tion pro bability W(b}.. -+ b ).....r}. The specific form of the transi tion probability

W(b}.. -+ (Y} ...., ) may be chosen in a variety or.....ys to satisfy equatio n 2.4 and

many different choices have been studi ed. It should be noted however that the pat.

ticular choice of W(b )..-+ (y}....t) can have a dramatic effect on the values of To

and n required to obtain good statistics and hence will have a crucial effect on the

efficiency of the simulation and the accuracy orthe results [75, 76. i9J.



It is important to make one point ooncemin.g the definitioo of n in equat ion

2.5. n is the number of steps along" trajectory. in phase space . req uired. to allow

correlations to effecti'.~ly decay to zero , and hence it is also th e number of ).(onte

Carlo st eps between takin g sam ples of the syste m when cakula.ting thermodynamic

a~~rages. The best choice for n depends upon the correlations ....hich are present in

the ~"Stem. since an uacerrelared Itt of configurations is required . It is di.ffi.cult to

make est imates of n II priori.,since this requires knowledge of equilibri um relaxa tion

times . It is possible to dete rmine if an app ropri at e value has been chosen a IX'"teri.

by clloosing a larger value of n and confirming that the thttmodynamic a~-erages are

unaffected blo' the increase . This is part of the "art" of doing simulation phrs ics.

The reason for expan ding upon the definit ion of n is tha t it is very important

when studying critical phenomenon. Close to a phase transition th e correlat ion times

Increase dramaticall)', beco min g diVttgeDt in an in1in.ite system, an effect knowu as

";'cri tical slowing down" . This presents part icular prob lems for simulations on large

systems close to crit icality , as the value of n required to obtain reliable results will

increase as a consequence of the increased correlation times . The value of n needed is

also dependent greatl y on the dynamics that is used in the Mente Car lo simulation.

Then have been a number of algo rithms developed. to m.ini.m.ise these problems in

systems with short -range Iaterecnoas [80]. This is in fact st ill a very active research

area . L"nfon una.tely it is not clear if these acceleration algorithms an! applicable to

~"'Stems with long-range interactioDS. As a consequence . near a phase transi t ion one
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of a svseern with long-range interactions.

A detailed discussion of .\Ionte Carlo simulatio n methods can be found in many

boob. In particular the two volumes edited by K. Binder in the Topics in Current

Ph ysics series(79 , 811are very useful .

2.1. 1 Gener al Al gorithm

For magnetic systems the degrees of freedom are those associated with the cri-

entation of magnetic dipoles in a lattice. The quantities to be calculated include

the average internal energy, the specific hea t , appropriate order parameteIS and ebeir

associated magnet ic susceptibility. Either the MetrOpOlisalgorithm [82j or the heat

bat h algorithm.{761 is used in all of the simulations presented in this thesis. In the

'\ (etropolis algorithm the transition probability is giVl!l1 by

{

I if .:lE<O
W(('I. _ (' I••,J B •

oxp(-P"E) if "E > 0

(2.6)

where J.E is the difference in energy between the st ate (z }.. and the stat e (Z}.._I'

te the heat bath algorithm the transi tion probability is given by

A simulation then consists of generating a trajecto ry in phase space starting with

some initial spin configuration by means of the following seeps :



1. Generate A new configuratio n by randomly choosing a spin to updat e and ro­

tAting the spin to some new directica (S; _ S;"" S;+~i) '

2. Calculate the difference in energy, 6£, between the original configuration and

the new one.

3. Generate A random number R between0 and. 1.

4. ~ R < W (S; ...,.Sa then accept the new spin configuration.

5. U R > W (8.: ....... Sa then retain the old sp in confiIuration..

6. Return to st ep 1.

This procedure is repeated over and over again, with data taken every n steps .

2.2 Monte Carlo simulations with dipolar interac-

tions

~luch of the curren t interest in these models stems from the effects of the tong­

range character of the dipolar interac tion.. In earlier studies 00 thr!e--dimensional

dipollLIsystems [11it wasfound tha t finite sizeeffects can be best treated by assuming

that the spin syste m is periodic. In the following arguments the system is assumed to

be a squ are lat tice with lattice constan t a, and L2 magnetic Ic es. T he square leence is

used since the experimenta.! systems being considered have this symmetry. HOM~~r



the met hods can be generalised. to other lat t ices. By imposing this periodicity. the

m nfigur ation of the sJ'5tem can be specified in termS oCthe L2 spin variables contained

within a single cell . The energy of a part icular configuration can then be writt en in

terms of this finite cell by "folding in" the interact ions between the spins inside the

cell and those outside, to leave an effective interaction between two spins within the

basic uni t cell . Figure 2.1 illustrates what is meant by "folding in" . The pan of the

system inside the dark lines is the finite system, and t he infinite system is comprised

of in.finitely many copies of this finite system. Thus knowing the sta te of each sp in in, I I I I I , I I I I I
I I I I I I I : I I I I
I I , I I I I I I , , I
I I I I I I I I I I I I
I I I , I I I , , I I I
I I I I

I ~I I : I I I :~ I
I I I I I I I I I I, I , I I I I I I I I ,
I I I , I I I I I I I ,
I I , I I I , , I , , ,
I I I I I I I I I I I I

Figure 2.1: Th e i.nfinite system is comprised of replicas of the finite eell, All inter ­
actio ns bet-nen spins outside the finite cell are included in an effective interution
beeweea spins within the UDit cell .

the finite system means that one knows the st ate of every spin in the infinite erseem.

The Hamil toniao can tben be rewrit ten such that the spins ou tside of the linite system

ca.nbe replaced with the equivalent spins from inside the linite system . The cost of
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this tecanlqu e is a greatly increasedcomplexity in the form of the interaction.

Mathematically, this means that the aiJoIwed spin configura tiotlS sa tisfy the reo

quiremeae that

u(R) =u(R+ G),

where G is a lat ti ce eectce giYl!:D by

(2.8)

(2.9)

with 9\ and !h = 0, ±1 , ±2 . .. . Note that distances have been scaled by the lattice

spacing a. The square lat tice is defined in tmns of the unit \o1!CtOn r and Ii. This

assumed periodicity presents no problems for treating the MSA or the applied field in a

simulation. For the exchange interaction it is equivalent to the applicatio n of periodic

boundary condi tions . Because the dipo lar interaction is a long-range interaction and

the simu.latio n uses a finite size system, incorporating the dipolar interaction into

a simulation is more complicated than incorporating the exchlJlge interaction . The

dipolar part of the Hamil tonian, given in equation 1.5,

..... - 9 L ,,,(R..)r-'(R-)a' (R..)........ (2.10)

can be rewrit ten such that it only depends on the moments and lattice vectors in

the finite system. This can be done by writing the vector R...rn in terms of a reduced

vecto r r..", where

R.... =r..... +(~, (2.11)



and G is cacsee such th at i'_ lies within the finite system.. L'sing the ract tha t the

allowed spin configurati ons satisfy equatio n 2.8, the Hamil tonia.ll. then becomes

""~ gf, f: '''''('.)1:r-'V_ - G)"'('~). (2.12)
'.'... d

To remind the reader, N is the number or magnetic moments in the system (N _ cc

in the thermodynamic Limit ), and L2 is the number or moments in the finite cell. T he

not ati on used for the sums over ;:;. and ;:;... is intended to signify that these sums are

over the la ttice sites in the fi.n.ite L2 system. Substituting the expanded form for pod

where C denotes the interaction beteeea spins at equivale nt lat tice sites and is there-

fore independ en t of the confi guratio n of the system by virtue of the assumed period ic-

it)·. The prime on the sum indicates that the all terms with r.. = i'". are excluded from

the sum . Th e Hamiltonian can then be rewritten in terms of an elfedi~ interaction

"""(f'"",) " Dim~~~. (2.15)
af'-o lJr",lJr" Ir"", + G-f1

The numerical evaluation of the effective interactio n is best accom plished by meana

or a generalisation of the Ewald summation technique. The details of this ca1culation

hav'e been pub lished previously [2. 201.



\\ith the Hamil tonian of the ~-stem gh-en by equa tion 1.U . the chan~ in ene~·

d ue to the rotatio n of a magnetic moment can becalculated at an arb itrary site n. If

the magnet ic moment changes according to

(2.16)

then the change in energy can be expressed in terms of an effective field il ..defined

at each lattice point as

where the effective field is given by

H:~ E-(,.._)~.-...
2 .3 Com p ut a t ion al as p ec ts

(2.17)

(2.18)

With the Hamil tonian of the system given by equation 2.14, the ~Ionte Car lo

a.lgorithm described in the previous sect ion proceeds as fol1ows. From the init ial spin

configuration the effective field U",defined by equation 2.18, can be calculated at each

site on the lattice . The change in energy, given by equation 2.17, is th en calcula ted.

for the rotatio n of a rando mly chosen spin . If the new spin configuratio n is eccepred

then the effective field at each site is updated:

H: ~H: +E_("_)~ ,
,~

(2.19)
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This operat ion is much more time co usuming for a long-range interaction than for

a simil ar simulati<ln with a shore range interaction.. This is because rotating a spin

a t one site indu ces a change in the effecti ve field a t all other si tes on the lat tice .

Thus each sp in change requires the updating of the L2 effective field mem x. and

since one must update each spin in th e syst em . wbich means L2 spW. the tim e fat

ODe}ICsjsi te scales Iilte L4 in two-dimensions and L' in 3-dime nsions. The amoun t

of com put adc u required is also stro ngly corre la ted to the acceptance rate . since the

decisio n to dip or Dot requir es very lit tle comput ation time relati ve to the upda t ing of

the effecti:I.-e fields . At low tem perarure very few spin changes are accepted. bu t near

a second order phase tranSitio n th e atteptance rate increases conside rabl y. Combin ed

with the pheno meno n.of cri t ical slowing down , mentioned earlier , this means th a t in

the vicinity of the critical point . ODe requir es much longer simulations, in terms of

.\lCs j site , in orde r to obt&in.good statistics[81. 79).

A funher ecncem is that the dfective inte raction W'""(r_ J, defined by equatio n

2.15, is not a simple funct ion . It must be pre-computed and stored as an arra y. It is

not generall y feasible to sto re the full L4 arr ay (one L2 arra y for each pair of 0 and

3) of flOAting poim num bers, since the goal is to have L as large as possible . (This

rest rictio n is starting to beremoved as computers with 64 bit address mappin g are now

becoming availabl e and the amount of memo ry which can be addressed has increas ed

signili cantly .) Fortunately there is a larg e amoun t of symm etry in the system and

it is only necessary to store a single L2 array. The con of using this symmet ry is



tha t now a mapping from the L~ amy to the L2 array must be used . Doing litis

map ping efficiend y is currentl y the limiting factor on the efficiency of the code. and

considera ble time and effort have been spent in trying to make this sectio n of code

as efficient as possible. To accomplish this a (2 x L ) x (2 x L ) am)' is used. where

~(fO - r...) is repeated in eachof t he 4 L x L sectioes of the large array. Because

of the periodici ty assumed in equation 211, 6.nding the correct interac tion between

the spin that !las rota ted and all other spins can be accomplished by assuming the

rota ted spin is at the origin of tbe system . By sto ring the larger array . st ep ping

through memory is now done partially in unit strides and partially in strides of 2L.

which is a more efficient method of acCf:SSing memory then acet'SSing arra y elemen ts

in a random ceder .

The code used to perfo rm the update of the effective field is given below. T he

variables w ee , Wyy, Wxy, and wee are the interaction matri ces for (a3) equ al to

sx , !-'Y. xy (and yx) and D , respectivel y. Wxz and Wyz are zero in a two-dimensio nal

syst em, and Wxy "" \\-'yx. Hx, Hy, and Hz are arra ys which store the effect ive field

in the x. )". and z directions . Note tbat the twc-dlmensi oeal ana}' have been stored.

as one-dimensional arra ys, because this allows a more efficif:Dt access to the array'S,

The varia bles rowspin and cclspin refer to the row and column of the spin which has

rotated and deltax, delta y and deltaz are the changes in the x, y and z components

of the rota ted spin. This upd ate loop is one of the benchmar ks used. in evalua.ting

the efficiency of the code on the diffennt mac::hinesused. to do the simulations.
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2.4 Benchmarks

BenchmarJrin g the ~Ionte Car lo cod e is important for a number of reasons . The

most obvious is that it gives an indication of ho"l' efficiently one is ma..IdnI: use of the

available compu tational resources. It also allows one to gauge if c:hangl5 to a code

have imp roved the performance and how significant that improvement is (or perha ps

even how much a change in the code has degrad ed the performance). Monte Carlo

simula tio tlSwith long-range interactions require very high. pe rform.a.ncecompu tational

resources, which are exp ensi ve, and should not be wasted or used inefficiently . T he

sim ula tions which consti tute a large portion of th e new results in this thesis would

not have been feasi ble using the compu tational resourcesavailable only five}-eanago.

Th e simulations presented in this thesis were ron on a number of different ccmpue-

en . using resources provided. by IDany sources . At Memorial Uni vt'nity of Newfound-

land the cod e 1VaS fU.Il. on a Silicon Gra phics R.t,OOO Crimson. a DEC 2100j ASOOMP.

a DEC JOOjM 600, and a DE C A..U' 3400. Thro ugh a scholarship provided by T he



High Performan ce Compu ting Cen tre in Calgary, Albert a, lLCC('5,5 "f8S gran ted to their

Fujitsu VP X240, which is a vecto r supercomputer with a peak ra te of 2,5 gigaftops,

(2,5 )( lOt floa tin g point operations per second ), Access to a 6-1nod e Conn ectio n ).Ia·

chine a (e MS' , wali obtained from the HLRZ ResearchCentre in Julich , Germany.

T he C~15 is a massi~y par allel machine. Th e Pit tsburgh Supe rcomp utin g Center

and Digital Equipment Corporati on graciously provided time on an .. processor DEC

8-/.00/300 .

In benchm ar.ki.ngthe perfo rmance of th e code used fur the simula tio ns, two impe r­

ta nt measures were used . T he first is a floating point opera tions per second (flop/s)

ra ting £Or the basic kernel which u pdates the effective field matrix and is shown

above. The second is a measure of the time per ~Ionte Carlo step per site. This

second benchmark is the CPU time required to pick a new sta te, decide wheth er to

accept the [lew state. and to update the syste m assuming the chan ge was accepted.

Th e time/~ICs/site is calculated using a 40 )( 40 system. For the two supercomputers

used in t his work, particularly the Coonecti.OD.Machine 5 (eMS) . th eir performance

relati ve to the worksta t ions would be better if lar ger systems were used , al though the

amount of memory then beco mes a concern. On the DEC Alpha 8400 5/300. beach­

marks wert gathered Icr a Foruan n and a Fortran90 code. Th e DEC Alp ha 8-100

5/ 300 is a shar ed memo ry multi processor. and the Fortran90 code was develo ped to

take advantage of the parallel na ture of the machine . Th erefore ben chma.rks are givm

for the Foruan90 code using bo th 1 processor and using -I processors. Th e ~Iflop/s



rating allows the cc mpaeiscn of tbe efficiency of ~b code to tbat oroth er programs on

the various machines and to the pnk efficiency of the machine . The t ime per :Mollte

Ca rlo step per spin is a !('SlI general b('Dchmark since it is a comparison of the speed

of th e m.acllines for this one problem, but it is ebe more informative to the physicist .

since it is more closely related.to the real tim e to complete a simulation.

In Table 1 both sets of benchmarb are shown for some of the machines which

bave been used to eese the code. [t should be noted that the programming experience

of the aut hor in a high- performan ce environment is somewhat limited an d some of the

benchmark numbers re.llect this fact . In particular the: numbers for th e CMS ve very

much in.lluenced by th e limited opponunity to interact with people with expe rience in

this enviro nment . Co mpariso n of the:M.llopf s ratings on the various machines to their

peak ~I fiopfs ra tings , showsth at the code is using the hard ware very efficientl y. Th e

numbe rs showing the tim ef MCsf site also reflect the type: of problem treat ed, Th e

main CP U int ensive loop in the program is perfectly \-ectorisa ble and parall elisable.

but the mapping from the £4 array to the £2 array makes the algorithm less th ao

ideal for th e distribut ed memory of the CM 5. On the CMS it is mo re effici('Dt to

store the entire L4 interaction ma trix. Thus the Mftop/ s rating for th e C:\15 is very

impressive, while the tim e per MCs/ site is 1('Sll so. This is because parts of the cod e

must be done serially and the massi vely parallel nature of the CMS is wasted , and

because communication beeween the nodes is necessary '"th each spin rota tion. Th e

DEC 8-100/300 is a very new machin e which feat ures 64 bit memory addre;;singand



shared memory with -I processors (on the machine which was used. fot this stud y},

The abili~- to address large AmOlUlts of memory allowed. the use of the full L4arTa~-s.

and the shared memory architecture also reduced. the t ime per ste p requir ed fur

communication.

~Iacb.ine Benchmark * 1 tim e/:\ ICs/site Peak rate
in MB.op/s in seconds in Mflop/ s

SC I Crimson R4000 11.1 5.s3 x 10 so
IBM 320t{ 16.7 4.87 x 10 50
DEC 3400 300 A..'<.P 32.2 2JH x 10- 133
DEC 2100 A500MP 55.0 2.24 x 10- 190
DEC 8400/300 1 CPUJ90) 71.2 1.63 x 10- 600
DEC 8400/300 (1 CPUl77) 129.3 5.87 x 10- 600
IBM 590 R6000 151.2 5.68 x 10- 256
DEC 8400 300 (4 CPU.t90) zso.s 3.06 x 10 1400
Fujitsu VPX240 / 10 398.4 1.82 x 10- 1400
C~15 (64 proc::) 510.0 1.11 x 10 2560

Table 2.1: Benchmar ks of the code using a 40 x 40 lattice . Th ese benchmarks ar e
provided only fur interest. The timin gs were not all done unde r equivalent toad
conditions or in eceordeece with generally accepted procedures. The peak ~Iftop/s

ra te was obtained from various sources and should be "rie~ as an estimate . (The
third column Cor the CMS is not a misprint)

2.5 A ty pical sim ulation

In a simulation th e choice of various pa.rame tets n~ for the simula t ion

depend upo n a number of factors. For exam ple the choice of n, depends very much

on how close the tempera ture of [he simulation is [0 any phase transitions. :'"ear

the transition te mpera ture , where one ~uires a Larger number of ini tialisation steps .



10

n = 20 )'ICs/site is normally used. while in a simulation away from the critic al

region Tl is typically 10 )"ICsjsite. As a reminder, n is the Dumber of steps along a

trajectory required to allow correlations to effectively decay to zero. and hence it is

also the number of Monte Carlo steps between taking sampl es of the syst em when

calculating thermodynamic averages. A typical simulation consists of 10000 to ooסס10

initialisation steps per spin followed by from to' to 108 more ).ICs/site for collect ing

data.

As was stated earlie r there is an aft to simulations much as the re is an art to doing

experim ents and. as in experiments, reproducibility of results is one of the best tests.

The code used for the simulations has been modified.many times during the period of

this study. These modifications have always been coupled with attempts to improve

the efficiency of the code and to better take advant age of the available hardw are.

In these efforts the code was rewrit ten no less tha n four times, and each time the

results were compared with our previous results and those published by others to

confirm that the program was functioning properly, The effort allocated to redoing

simula tions and confirming old re mits has led to a set of code in which the author

has a great deal of confidence.



II

Chapter 3

The uniaxial dipolar model:

Ground states

3.1 Introduction

In this chapter the ground state properties for a two-dimensional spin system

011 a square lattice ar e exa mined. It is ass umed t hat the crys t alline elect ric fields

are sufficiently large that the orientation of the magnet dipoles is constrained to lie

perpen dicu lar to the pla ne of the magnetic film. This corresponds to the case of

K -+ 00 in the Hamiltonian of equation 1.5. In this case the components of the

magnetic dipoles within the plane of the film will be zero. Thus Or = (7 ", = 0 and the

Hamiltonian reduces to

11. = L 'o'(;;.) r"(;;. - f;,,)o'(fm) - ~ L 0'(;;')0'(;;'), (3.1)
r~,f'... cr:.........>
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where " . = ± l. In the absence of the dipolar interaction. the above Hamiltoni an

reduces to t he well known Ising model [831. which can be solved exactly in [ \ ",,0­

di mensions [8-1) and which has been the subjec t of considerable theoret ical smd y.

For J > 0 and in the absence of the dipolar interacti on. the ground state is r.he

ferromagnetic state. while for J < 0 the ground state is the pure antiferromagneetic

st ate. where each spin is anti-aligned with its four nearest neighbours. For the p,ue

dipo lar system (J = 0) the ground st ate is an antiferromegnet ic st ate where t he

spins form ferromagnet ic rows along one axis which are ordered antife rr om agnet ic;J.Uy

along the second axis. The ground state for the uniaxial mode l, that incl udes both t he

exchange and tbe dipolar interactions, is somewhat more complex. Our preliminlU'Y

Monte Carlo studies revealed that gradually increasing J from zero did not induce a

transition from the aatiferromagnetic ground state of the pu re dipolar system to t he

ferromagnetic ground state of the ferromagnetic Ising system as one might expectl6].

Inst ead the Monte Carlo studies revealed a sequence of transitions with increasin~ J

between states in which the magnetic dipoles formed stripes along one of the princi pal

axes of the squa re latt ice. A typical stripe configuration is shown in figure 3.1.

A review of the publi shed litera tur e at that time revealed that no one had repor ted

seeing these phases in a Monte Carlo simulation, and considerable effort was expen. ied

in rigorously checking the code and in obtaining analytical and numerical results for

the energy of various ground st ate configurations. While no Monte Carlo res\J.lts

were available , the re were, however, some theoretical results which indicated that {he



Figure 3.1: An example configuration showing the low temper ature ordering in a
stripe phase. (£2 = 128 x 128) and J = 8.9. Black indicates regions where the
magnetic moment points in the +z direction and white shows magnetic moments in
the -z direction.

ground states in this region should be the stripe phases. The earliest of these works

was by Carel and Doniech 146J. Carel and Doniacb showed, using a Ginzburg-Landau

approach. that the stripe phases were stable with respect to the ferromagnetic phase.

Their calculation treated the case of a slab of finite thickness at low temperatures in an

applied field. T hey developed a mean field phase diagram for the system. Published

later, the work of Yafet and Gyorgy[34] used a mean field approach to study domain

formatio n in mono-layers and their result s agreed qualit atively with the results of

Carel and Doniach. Yafet and Gyorgy explicitly treated th e case of a mono-layer,

while Garel and Doniach had considered a film of small, but finite thickness. Yafet and

Gyorgy assumed a finite anisotropy and worked within a continuum approximation, as
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had Carel and Doniadl . The Monte Carlo results of the present stud y were done using

a dlscre ce system and &S5\UD.ed an infinite anisotropy. As cieed by yare t and G~"Orgy

as a private communic ation and later pub lished, Czech and Villain [4.1 reported.

that when the discrete nature of the lattice was retain ed , the stripe phases were

nc longer the ground state. InsteadCzech and Villain predicted th at the ground

statts weald be • sequence of checkerboard pheses, where blocks of frrromagnetically

order ed moments would be arranged antiferromagnetically , much like the arrangement

of b lack and red squares Ona checkerboar d. The difference in the two resul ts was not

surprising considering the sub tle naUlre of th e dipo lar intu&Ction.

The )...lanteCarlo results of the presen t st udy weretherefore somewhat ~ttling

since t hey agreed with the theoretic al predictions based on cont inuum models, but

disagreed with the resul ts which claim ed to retain the discrete nature of the la ttice .

Obvi ousl}"the ~ution of the appumt disc:ttpancy was very important in order

to prope rly understand the results obtained. It wu, therefore, nt'CeS:S3IY to explore

mor e closely the ground sta te energies for the dipol ar systems in the limi ts which are

app ropri at e for the ""fonte Car lo sim ulations.

3.2 G round state ene rgies

f igure 3.2 summarises the low tempera ture results obtained from our earl y Monte

Carl o simulations {20]. The phases shown in the figure are named using 2 [etten and

an optional numbe r. The first letter refers to the ordering along the i direction and
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the seccud len er to the ordering alOllgthe Ii directio n. An f indicates ferremegnetie

ordering and an A indicates anti!enomagnetic ordering. The optional number gives

the width of the fenomagneticaUy ordered stripe in the case where there is a Stripe

phase. For example , AFS refers to a stripe phase in which there are ferromagnetic

stripes of width 8 magnetic momen ts alollg the y din'C'tion, which are ordered an·

tiferromagnetk ally along the i dinction.. The results shown in Figure 3..2 indicate

that as J increases, so does the width of the stripes in the ground state. T he system

size usedto det ermine the phase diagram shown in figure 3.2 was only 16 x 16. Only

a few differen t stripe phases are indicated , as the periodicity of the stripes must be

commensurare with the 5}-stem size &!1d obviously if the stripe width is greater than

or equal to 16 then the system would took ferromagn etic. This is always a concern

in ~ro[lte Carlo simulatio ns with spat ially modulated phases, where the boundary

conditions impose a periodicity on the system. If this imposed periodicity is tIot

commensurate with the natural period of the system, then oae is DOtseeing the true

behaviour of the infinite system. Th ese studies on small systems suggested not only

the ceed for simula tions on 1&rger systems, but also the Deed to be able to determine

the prope r ground state for a given value of J .

In order to predict the oorrect ground state , an expression for the energy of both

stri pe phases and checkerboard must be derived . For a stripe phase of width h, the

exchange interaction cont ribution to the energy is given by

(3.21
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figure 3.2: The phase diagram found. using Monte Carlo simulations with a L' =
16 x 16 system. Of interest in this 5gure is the low temperature region, w!llchshows
that the ground state for some values of J are stripe ph ases . These phases are th e
AFt, AF2, AF4 , and AF8 phases , where the number refers to the width of the stripes.
The vertical lines are est imates of the phase boundaries between the stripe ph ases
based 0[1 energy calculatio ns, as discussed in the text. Temperature is ill units of
gj k B _



while for a checkerboard phase 0( size h by h the exchange ccurn bntlon is

(3.31

T he use of h to describe the charac teristic domain size in the stripe and checkerboard

phases should Dot be confused with the applied field h., the context in which h is

used should lead to no confusion . The expressions for the dipolar contribution to the

energy are not quite as compact. For a stri pe phase

and for & checkerboard phase ,

(3.')

and F2 is defined as

(3.7)

The definitions of fI, G, and Qare all given in Appendix A, in which the exact de-

tails of the calculatio n are presented. Only the IinaI results are presented here along

wit h a discussion of the analysis. These expressions are exact , and can be evaluat ed
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numerically for an y value of h. although one is st ill limit ed by th e com put ation time

required when h is large. This is in C'OD.ttast to the calcula tions of Czech and "1llain.

Carel and Donlach. and Yafer and Gyorgy, " hich are in tended to be approximaticus

valid in the limit of large h. The expressions for th e energy of the stripe and meeke r­

board phases are quite complex.. This is a dinct result of the long.range nat ure of the

di pole-dipole interactioD and the slO'f oonvergence of the sums in equation 3.1. The

sums in equation 3.4 and 3.5 converge quickl y, with sesea figure accuracy generall y

ob tained by taking only terms wit h IGI .:S 5. Th e ene rgies given by equa t ioll5 3.4

and 3.5 for small values of h have been compared to ebcse gi~ by the ~Ionte Carlo

CalculatiOB as an utn. chtck of the Monte Car lo program.

In figure 3.3 the energy of the stripe phases with h = 1, 2,3 , 4, and 5 along with

the energy of the ferro magnetic and antiferro magnetic phases ar e plotted as functions

of J . for J < 0.85 th e ground state is the pure antifenomagnetic sta te preferred by

the dipol ar taterecdou. At J := 0.&5 the ground state changes to a st ripe phase

with h "" 1. As J increases the ground st ate changes to stri pe phases with larger and

larger Strip widt h. T he checkerbo ard phases are never the lowest energy phase (or the

values o( J shown., and there(ore are not shOW'll in figure 3.3. Although it is difficult

to discern from figure 3.3, as J increases, the differences in energy between successive

stripe phases get smaller at any given temp erature. Al so the region o( st ability (or

the lowest energy stri pe phase gets narrower as the stripe width grows. It is evident

in figure 3.3 the.t as h. increases the energy of wt stripe ph.Mebecomes closer to that



of tbe f~rromagn~tiC' phase . [t is not clear if the stripe phases will continu~ to be of

lower~~rg)' than th~ ferro magnetic phase or the chedrerbo&rdphases at larger values

of 1. Howeve r . the ran ge of stri pe widths shown in figure 3.3 is the relevant range

for comparison to the Monte Carlo results . In figure 3.2 the T =0 phase boundaries

prediceed by the above energy cU:ulations an shown as solid \-ertica.l lines. They

are in good agreeme nt with the Mont e Carlo resul ts. While this partially validated

the results of the ~Ionte Carlo simulat ion, which indi ca ted th at the S)"Stem orders

in a stripe phase at low tempera ture rather than a checkerboard ph ase. it did not

resolve the appare nt discrepancy bet1\lftl1 the ground state predictions of continuum

an d discrete cakuJati01ll5.

3 .2.1 In t he Limit of large st r ip e wid t h

figure 3.3 includes only ph.ases up to h =5, and ....hile the results sugge« the

stri pe phases will continue to be the lowestenergy phase for larger values of J , the

results are not conclusive, Thus an asymptotic form of the energy for the vario us

phases as a functio n of J is required . This calculation has been done by Whit ehead

and De'Bdl [SS] and leads to a dipolar contribution to the ~nergy for both the stripe

phases and the checkerboard phases of

~~ E4l,(h) =~, -~ {..t +BIn (h)) T O (~) , (3.8)

with £11"", equal to the di polar contribution to the ferro magnetic state. A. and B all!

positi~ cons tan ts. which differ for the stri pe phases and for the checkerboard phases .
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Figure 3.3: The energy of the stripe phases with h = 1, 2, 3, -I, and 3. as well as
the ferromagnetic and antiferromagnetic phases as functions of J. Temperature is in
units of 9/k• .
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The calculations of .-1. and B are quite difficult. The B's ha\-e been calculated

~xa(:tly for both the chttkerboard and stripe phases [35. 851. f or the stripe phases

8 :: 8. while for the checkerboard phases B :: 16. The difficul ti es associated wtrh

the long-range dipolar interaction manifest themse lves in the calcula tion of the .-I. 's.

To ca1culate the .-1. '5. the energies of the various:phases wen! fit to the functional form

gh-eQ in equation 3.8 using the larger values of h{ h > 50) . f ortunately the higher

order te rms in equation 3.8 are very small and the functional form. holds even for

Stripes as small as h = 10, and for checkerboards as small as h =20. To show how

well this functional form holds the results are plotted in ligun 3.... The slope in

each case yields an estimate of B and the y-tetereepe gives an estimate for ..t, The

agreement between the numerical data and the asymptotic form is excellent. The

estim ates for A from t his analysis are .-1. = 9.105 ± 0.005 for the stripe phases and

A = 2.819 ± 0.005 for the checkerboatd phases.

After combining equa tions 3.2 and 3.3 with equation 3.8 th e total energy of a

st ripe or checkerboard phase as a function of J and h can be writ ten &S

(3.9)

f or stripes one has

II~ E(h) =EF - X(A -2J +BIn(h» +O(-b) , (3.10)

and for the checkerboard phases one has

,,~ £(h) = EF - X (.-l- 4J+ B In(hl ) +0 (;!i) . (3.11)
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Figure 3.4: .\ plot of {h[£1", - Ec",(hl}} as a function of In(h) for the stripe (a) and
checkerboard phases (b) [61.



where £F = £O~ -2J is the combined~rxy of the t"erromap.eticph.ase . The rni.nima

of the energies in equations 3.10 and 3.11 define a lowest ec.ergy domain size for each

class of phases , which is denoted by s-, It is st raightforward to derive that for both

stripe and chedrerboard phases

(3.12)

with ho e exp(l - A/B ) (the e."t&Ct values of B have been substi t uted into the

exponential to obtain the J /4 dependence ). Substituting back into equericus 3.10

and 3.11 leads to aD. expression for E(h*), whic:h is the eDergy of the lowest energy

stat e in each class. The resultin g equatio n for both stripe and checkerboards is

E(h" ) EF -~+O(~) ,

EF- ~exp(-J/4) +O (~) .

(3.13)

(3.14)

Thus both the stripes and c:heckttboards would destabilise the ferromagnetic st ate .

as B and 14J are positive by definition. Which of the two phases is the ground sta te

is determined by the value of B/~. For the stripes B/flo ~ 9.2 ± 0.05 and for the

checkerboard B/ho"'" 1.0 ± 0.05. Th us the stripe phases constitute the ground st ate

in a discrete S)"Stem.

Kaplan and Gehring [351 arrived at a similar conclusion regarding the st ability

of the stripe phase over the checkerboard phase . They also correctly identified the

approxim atio n in the analysis of~ and VUlaio (47) that leads to their conclus:ion

regarding t he sta bility of the checkerboard phase . However a detailed comparison of



the analy~ of Kaplan and Gl"hring with the present results reveals that the continuum

approximation leads to a slightly difl'erent value of the ~fficient ..1, (defined as -I:r6

and ·111'6' fur the stripe phase and the checkerboard phase respectivel y in [35J)for both

the stripe and the checkerboar d phases. This arises as a consequence of the fact that

eorrecdcns to the !nth) term in the asymptotic expansion of the dipolar energy an

very sensiti~ to the na ture of the approximations used in the analysis . While such

coerecnces an relatively small, they are neverth eless significant in calculating the

diJference between the minimum energy of the stri pe and checkerboard phase for a

given value of J . This sena to emphasise the subtle na ture of the dipola.r interaction

and the care that has to be taken in treating a long-range interaction. This point is

also emphasised in the work of Hurley and Singer [511.

.\5 stat ed above, the eesules of Czech and Villain highlight the suhtle nature of

calculations involving the dipolar interaction and it is worthwhile to look more closel)·

at their ana.Iysis . In their analysis they make one improper assumption, which leads

to their conclusion that the checkerboard phase s are the ground sta te. They arrive

at a result similar to equation 3.8 for the dipolar contributions to the energy (their

equa tion (12)) for both the stripes and checks . In this result there is a term .hich

varies as A/ h where A is of order unity. In the expressio n for the cont ribution to the

energy due to the exchange interac tion, there is a term which varies as Jt h. Their

imprope r assumptio n WAS that for J » 1, they assumed tha t they could ignore the

te rm . hich V'Uiesas .-l/ h, since it 1Jil.I be dominated by the term .hich varies as Jl h
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from the l!XCha.llF;e contribut ion. This is equivalene to sttting .4 "" O. an d in fact fe r

large val ues of J , the term they ignore does not contribute significantly to the energy

of eit her the Stripes or the checkerboard phases as both asymptotically approach

the sam e v-alue of the energy. The problem arisesbecause this term does contri bute

signilica.ntiy to the determination of h". By taIdng .4."" 0, Czech and Villain have le t

hO = exp (1+ f) for both st ripes and checks and the de termin at ion of the ground

state is dependent only OD. the B's. One can see qui te clearly how the conclusions

drawn from any analysis will be stro ngly dependent OD.any approximations used to

est im ate A. Kaplan and Gehrin g(3S1also poin ted out the flaw in the argument of

Czech and Villan o

In figure 3.5, the energies of the 1o'ln!Stenergy stripe phase , the lowest energy

checker board phase an d the ferromagnetic phase are aUplotted as functions of J . As

well, the correspo nding set of points found (or small J, from the exact calcula tion

of the ener gies for small stripes and checkerboards are plotted; each point indicates

where th e domain size of the loY>'eSt energy stripe or checkered sta te changes from h

toh + l.

While the work discussed ebove 1VUin still prognss, two related papers were

published (42, 481. The first, by Taylor and Gyorffy (48), dealt 'llt'itha mOD.~laYl!r cou­

pled via dipolar . exch ang e, and spin-or bit interactions. The y calcul ated. the ground

sta te ener gies an d predi cted the existence of stri pe phases in the limit of smallJ,

while maint&in.ing th e discrete na ture of the magnetic moments. They were, bceever.
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figure 31); Compariso n of the energies of the stripe and c::b.eckerboard phases. The
solid line shews the energy calculated from the asymp tot ic expressio n for the st ripe
phase with the coefficients given in the text. The dashed line showst he correspondin g
energies {or the checkerboard phase. Crosses represent the points at whi ch the width
of the st ripes changes from h to h + 1. Diamonds are the correspo nding points for
the checkerboard phases. f or reference, the dot-dashed line and the dc cted line show
the energies of the ferromagnetic and antiferromagnetic phases , respecewely,



unable to det ermine the groun d state in rbe limit of large J as do ne above . and left

this as an open quest ion. .-\bo. they did not discuss tbe WQrk of Caeca and Vill ain

ccnceruing the checkerboard pbases. Their predicted ground sta te energies ma tched

the resul ts found in the above anal ym, within the precision quoted. Taylor and Gr­

orffy also noted that their initial att empts at Monte Carlo simulation had proved

inconclusive, due to meta-s tability effects. Tbere was also a paper by Hurley and

Singer (421 'llll'hicll predicted the exist ence of stripe phases and provided some ),Ionte

Carlo evidence of stripe phases. This work 'IIII'U done on a triangular lat tice using a

latt ice gas model . hence it is not possible to make direct comparisons to tbelr results .

The work of Hurley and Singer is w ry similar to that of Yafet and G}"Otgy'.

3 .3 Summary

The ground starn for a uniaxial spin syst em on a square lattice were esta blished

as a function of the ratio of the shon range~ interaction and the long-range

dipol ar interaction. The ground states for J > 0.85 consist of a series of stri pe phases .

with the stripe width increasing with increasing J, rather than checkerboard phases

as was predict ed prnriousl y. Using the exact v:aJ.ues for the energy of stri pes with

mod erate widths as well as for checkerboard phases of moderate size, the energies of

the two classes of phase were calcula ted anal yt ically in the limit of large J . It was

the n esta blished that the stripe phases are al1'a~ the lower energy phase and will

dest abilise the fenomagnet ic phase even in the limit of J going to infinit) ·.



Chapter 4

The uniaxial dipolar model: Finite

temperature

4.1 In troduct ion

In this chapter, the ~atment of uniaxiaJ. syst ems is ext ended to fini te temperature

using ~loD.te Carlo simulation. In the first half of the chap ter, the moments are

assumed to interact via the dipo lar and excha.ng@ interact ions as in th e previous

chap ter . In the second h&1!of th e cha pt er the effect of an applied e:xtemaJ. field

perpendicular to the film is examin ed .

T he phase behaviour of a uniaxial dipolar model in zero field has been anal ysed by

Czech and Villain (471, for a discrete Ia rrice. Although.,as was shown in the previous

chap ter. Ceecb and Villain essumed the wrong ground state, much ofthrir argument



~ still ~-alid. Cl«h and \ 1lla.in predict a depil:l.ning transit ion e...here the magnetic

superlartice depins itse lf from the underlying square la ttice . Thus the system forms a

HlI.oating solid" at all but the lowest temperatures. These predict ions are based largely

on a mean field analysis of the problem. Ab&nov d aL [SOl have also t rea ted the

problem as part of a moee general treatment of dipolar systems in the continuum limit .

Abaaov et aI. use a phenomenological Hamil tonian. which they write in terms of a

Fourier transform of th e displacement of domain walls from an ordered conJiguration.

The displacement of the nth domain waUis given by ",, {fl . and its Fourier transform

is given by

(4.11

When the Hamil tonian is expanded in terms of the wavenumber associated with the

Fourier transform of the displacement of the domain walls, they obtain a term of the

form It~~. The sign of It determines the stabili ty of the lsiog nematic phase and

hence also determines t he predict ed phase diagram. They lind, to lowest order. It < O.

but show tha t thermal Ilucruariens can lead. to a positive '" by taking the one-loop

eorrecn ce to It. Both predi ctions of Abanov d aI. are shown in figure 4.1. The exact

nat ure of the various phases will.be discussedbelce , but it is important to note that

Abaacv d 111. have not assum ed a uniaxial system in t heir study.

The phase diagram of Abanov et aL shows the effects of temper ature , an app lied

filin perpendicular to the film (H~) and an applied field panI1d to the film (H..,..J

on the phase Mhaviour of a dipol ar system . In this thesis H_ = 0 as the effecu



of a parallel app lied field are not considered . Also Abanov et:4l. have considered

a Heisenberg model. rat her than a unianal model. Therefore the ir phase dia gram

includes a reorientation transi tiOn at TEl, which is not relevant to this chap ter . but

which will be considered in chapter 6. Abanov et aL have named tbe \ "lU10 US phases

based on an analogy to liquid aystal phases . This will be discussed later in the

chapta, but the seecere phase in figure 4.1 refers to the stripe phases . The te trago nal

phase is similar to the stripe phases, but lacks orientational order as will be discussed

below. Abaeov et aL also predict that an Ising-nematic phase may be stable . T his

phase will be defined below. The naming scheme usedto identify the various phase

transiti ons will be described below.

The addi tion of a field furthe r complicates the problem. On the basisof a phe­

nomenological Landau-Ginzburg model, Garel and Doniach (46] predict tha t for suf­

ficiently large applied fields, the stripe phases will be unstable with respect to the

formation of two-dimensional eyliDders or bubbles and postulate tbe phese diagram

shown in figure 4.2. T his phase diagram sh0W8the effects of temper ature and an

applied field directed perpendicular to the film. The bubb le phase consists of com­

pact domains of ferromagIle tically ordered magnetic moments , .hic:b are ordered in

a hexagonaJ pattern , with tbe sunounding moments aligned in the opposite direc ­

tion. Abeaov et «1. predi cted in their work tha t on the square lattice the four-fold

anisotropy of the underlying lattice will stabilise the stripe phases at sufficiently low

temperatures, as shown in figure 4.1. Monte Carlo simula tions have been done on



rhe tri.a.ngu1ar Iat tiee using a Ia.ttic;egas model by Hur ley and Sing er {421, leadin g to

th e phase dia gram shown in figure 4.3. In this figure , S refers to the stripe phase .

H refers to the hexago nal or bubble phase and I refers to the isot ropic phase . T he

phase diagr am of Hurley and Singer is in the dmsity.temperature plane , which makes

it difficult to com pare to th e remits of this thesis. It is possib le, however , to map the

lat t ice gas approach to our stan dard Monte Carlo simulations.

4 .2 Zero field

T he phase diagram shown in the previous chapt er, figure 3.2, is for an ;V =

16 l( 16 system, and a system of this size is too small for f'XtraCting phase beha viour .

xevert heless the Monte Carlo sim ulation. of this small syste m provided. some of the

first simulat ion evidence of some inter est i..ngfinite temperature behaviour . The up per

line i..nfigure 3.2 is • phase boun dary which was detenn.ined. from the peaks in th e

specific heat . The io"f temperature phases act th e ordered stripe phases, but th e

detailed natur e of the higher temperature phase isn't clear in a syste m this small. To

help i..ndete rmining the nature of this phase , the structure fact or W3.S calculated. The

st ruc ture facto r is defined as

(4.2)

In figure -1..& the structure factor is plotted at three tempera tures for J = 6.0: a t

T = 0.5, • low temperature well below the trUlSition line, at T = 3.00, which is
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f igure 4.1: The phase diagram as predicted by Abanov et aL [501. The 6gure (a) is
a prediction for II; > 0 while figure (b) is for II; < o. This phase diagram shows the
sta ble phases as a function of tempe rature, an applied field perpendi cular to the film
and an appliM. field parallel to the film. The scheme used. to name the transi tion
temperatur es by Abanov ee al. is not used in this th esis.
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near the transi tion. and at T = 3.00, which is well a~ the transi t ion. At low

temperature. the peaks in the structure factor are charact mstic of the st ripe phase

with h =4. in which the st ripes are ferro magnetic along tbe i direct ion Just above the

transi t ion , the primary peaks associated. with the FA4 andAF4 phases are present . At

:>till higher eemperarure then is also snueeure with a characteristic IKI which is the

same as tha t iD.the AF<4and FAoIphases . This indicates that the transition migh t not

be a simple crdee-disc eder transiti on as is typically seen in magnetic systems . Thus

larger and more accurate simulations are needed to clarify this work.

4.2. 1 Simulations of large systems

T he extension of the simulations to lar ger systems was carri ed out in collaboration

with I. Boot h/8, 861. Using the ground state calculations as a guid es, two values of J

where caosea for more detailed study. J = 6.0 yields a ground state of stripes with

width h = 4, while J = 8.9 gi~ stripes of width h ,., 8. These two values were

chosen because the lat t ice sizes which could be simulated were initially powers of two

and hence these st ripe widths wouldbe commensurate 11rith the latti ce size (This size

restriction was eventually relaxed in late r versions of the program ).

T he speciJic:heat as a function of temperature for J =6.0 and J =8.9 is shown

in figure 4.5. In both grap hs there ar e two peaks; for J = 6.0 there is a sharp

peak at T = 2.5 followed by a broad peak or hump at T "" 5.0 while for J = 8.9

there is a very sharp peak at T =4.8 and a larger and broader pea k at T =9"; . The
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figure 4.4: Tb e structure factor for a 16 )( 16 system a t threetempereeures. T=.5.00
(a), T ::::3.00 (b), and T=O.50 (e). Temperature is in units of glkB _



(a)

..
I
1
i

i OJI 1
! O.Jl

I
~G2l1

l '~
O,lt

0 011
00

(~TJlQo (b)

Figure -I.S: T he specific b.eat for J := 6.0 on Ii 32 )( 32 lattice (a) and J .. 8.9 0 11 a
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D.aUlI~ of the t1II'Opeaks can be partially discernedby comparing typical configura tions

at various tempera tures and ma tching them with the features in the spect6c beat .

f"igu.re 4.6 shows a seri es of such configur at iol1SCor J = 8.9. At !QW temperature

the . sys tem is orde red in the ground state stri pe phase with onl y small fiuct ua tion.s

at the boundaries. The first peak occurs at To (th e 0 re{en to fact th a t this is an

orientationa! transition. as discussed belmr ) and corresponds to the break up, not of

the st ripes. bu t of the orien ta tiona! order of the stri pes. Thus just a bove To. as shown

in figure -1.6 the syste m is com posed of ext ended. domains where both the tr anslational

and orienta tiooal order of the low temperature phase are absent. Th e secoo.d peak

at T.. (T. is used. in an alogy to the NeeJ. temperature in an anti!erromagnetic ) then

correspo nds to the disordering of these extended domains similar to t hat seen in the

Ising model. This is seen in figure 4.6, where as the temperature is raised the averag e

domain size and distribution oCdomain size; appear very simil ar to those seen in

the Ising model. It is useful to draw an analogy to the phases found in the study

of liquid crys tals . The low tem pera ture phase of the dipolar system is similar to the

sweetie phase of liquid crystals. In the smecne phase in a liquid crystal, the liquid

crystal has poIritional order and Iong.;a.nge orientational order{871. In the dipolar

model the syste m has long-range orie nta tiona.! otd er. The ee ture of th e posi tional

order has no t been determined. Jus t above To one has a tet ragonal phase which no

IOng! r possesses the orientational ord er . At higher tem perature, the stripe> diso rder

and one has the fully disorc:kmi phase. This analogy provides a _ 11known. ini tial



so

basis for classifying the various phases and transitions. Therefore in the rest of this

thes is. the various phases will be referenced using this analogy. One mus t keep in

mind th at in some cases a finn correspondence between the ordering observed in the

dipolar system and the liquid crystal may not have been clearly established.[871_

Figure 4.6 : Typical configurations of a 64 by 64 system at various temperatures for
J "" 8.9. Starting in the upper k ft and moving across the top row th e temperatures
are T :::: 3..50, T _ 4.50. T = 5.50. In the botto m row the temperatures are from
left to righ t T = 6.50, T ::::9.00, and T = 11.0. To in this syste m is app roxima tely
T = 4.8. Temperature is in uni ts of g/k 8 _

This explanation of the two peaks in the specific hea t is oonsisteI1t with th e struc-

ture factor as measured for this larger system. Once again taking just the J = 8.9

sys tem, plots oh he st ruct ure factor , shown in figure4.7, show that below To th ere are

only peeks at those wave WC'ton associ a ted wit h a siDgle orientat ion of the stripes.

Above To. but below Til.. the st ructure (a,ctor shows signi1icant ordtting at all wave

vectors associated. with st ripes of wid th h = 8, regardless of the orienta t ion. As the



tempera ture increases funher the st ructure factor still shors resid ual structure which

gra.duall)· disappears. T hese data were binned. ba.sed. on the ma gnitude of the wave

vector. IKI, and a plot of SUil) V'!I . IK I is shown in figure 4.8. It can be seen that

both above and below To. the oniering in the system is assoc iated .nth the same

value of IKli ie. that which cb.aracterises stripes of width h "" 8. Only at much higher

temperatures are there significant contri butions to the structure factor for other val-

ues of IKI. u the system were completely disordered. there would . of course. be no

peaks in SUKD. as there would be no ordering at any 1V1l.ve vector . (In a finite system

there would be a very broad, and shallow peak.) It is not clear if there is a sharp

phase transition between the tetragonal and the disordered phase .

To st udy the orientation transition more closely an appropria te order parameter

can be defined. In this case an order parameter is needed whichis able to measur e the

orientation of the stripes despite the thermal fluctuations in the domain walls in the

system. Un,. is the number of horizontal bonds separa ting opposi tely aligned nearest

neighbour spins and "" is the nwnbe r of vertical bonds R para ting oppositely align ed

nearest neighbour spins, then an orientational order parameter can be defined as

O".""~'
... + n"

(UI

[f t he stripes are preferentiaJ.ly oriented , then one of either"" or n., will be epprcx-

lma tely zero and jO". 1will be approximately 1. If ther e is no preferred orientation

then n", ::0::n. and 10 ••1will be approximately O. In figure 4.9, (JO••I) has been plot.

ted for three system sizes at J "" 8.9 as a funct ion of temperature . (10 .... 1) is de ar ly
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Figure 4.7: T he st ructure £actor (or a 64 l( 64 system 'rith J .. 8.9 at T =4.60 just
be low To (a), T =5.11 which is just aboveTo (b). and T = 10.0 which is weUebcve
To (c) . To in this system is approximately 4.8. Tempera ture is in units of g/k ll.
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1 at low temperat ures and drops 5harply to 0 (with fi.ni.t~ size d rects) at tbe same

temperature as th~ sharp peak in the specific beee. These plots are consistent with a

continuous transi tion from a phase with a distinguishabl~ orientation to a phase with

no net orienta tion.
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Figure 4.9: The orientational order param eter at J = 8.9 for syste m size N =
322 .48 2 ,642 as a function of temperature. Temperature is in units of 9/k8 .

4.2.2 Dislocatio ns an d di sinclinat ions

The mechanism by which a stripe phase lO8eS its orientationa.lorder is not well

understood. There is speeulat ton that the lOfll!l of orientatioual order is closely a.sso-

d ated with the unbinding of topological defects(SO]; the reasoning is as follows. In



tbe st ripe phase on the square latt ice there are two kinds of topological defects which

are thought to be associated with the loss of cri enraeioual order: dis inclinations and

disloc atio ns. .-\ disloca tion can be regard ed.as a bound pair of disinclin atio ns. Exam­

ples of each are shown in figure " .10. At krIr cemperatures, disinclinations are bound

in pairs . Above & t ransi tio n at wb.idl the bound dislocation pain: un bind, one IlI'OU1d

obse rve no posi t ional order, but long-range orienta tional order [501. This is anal ogous

to what is seen in th e nematic phase in liquid crys tals. Th e resul t of an unbin din g

of disin clinat ions would be th e loss of the ori entational ord er{50I. T his would lead to

the te t ragonal phase in.th e case of the square la ttice .

In the Monte Car lo simulatiou discussed above no evidence is found . lUch in­

dic etes the exist ence of th e nematic phase , as the transitio n appean to be from &

low temp erature smectic- like phase to a tetragonal phase a t higher tempera ture . As

of yet, no one has a t tempted to use Monte Car lo simulations to determine if ei ther

of tbe transitions OCCUlS at the same tempera ture lISthe unbindin g of the predicted

bound pails of disinclinations or dislocations. This is a ~ry difficult measure ment to

mw, larg ely due to the technical.difficulti es of efficiently idel1tifyiDgthe tOpological

defects .

4.2 .3 Summary:Ze ro field

The theo retic al anal ysis of the probl em of II uniaxial dipolar system. by Czech

and Villain [47] predicted a depinning transition. where the magn eti c superlanice



-
(a)

figure 4.10: .-\.n examp le of a dislocation <al and examples of the two types of dis­
inclinations which can occur in the st ripe phases (b) and (e}. These examples are
schemat ics. Black regions have magnetic moments alOD( the posit ive i dir ection.
while white regions have magnetic moments alo ng the - i direction .



depiDs ir5df from the underlying lat t ice. le is feasible to assod are t his tr'&ASition

with the loss of orientational order found. in the }fonte Car lo simula ti ons. There are .

however. some difficulties in making this analogy . In particul ar Czech and Villain

do not predict the comp lete loss of orienta tional and tl"l.ll5lational order seen in the

).Ionte Carlo seudles. As well, the dependen ce of the transition temperature on J

in tbe simula tions is non·trivial. In the analysis of Abanov ee d . done in the limit

of a large. but finite anisotro py. they have tbe added complicatio n of a reorientation

eraestdon. Tbey predict a low temperature sml!Ctic phase whith is similar to the

orient ed phase found in the Monte Carlo simulation, as well as a te tragonal phase .

However while tbe }font e Carlo simuLa.tionsseem to predict a continuous transition.

Abanov et at. predict that the transi t ion is eit her first order, or tha t there exists an

Ising nemat ic pbase, intermediate to the smectic and tetr agonal phase . In the latte r

case the transition would proceed in a manner similar to that predicted for the melting

of a two-dimensional lat tice:. There are limitations to maJcing oomp&risoAS between

t!lis work and the Monte Car lo results. Firs t , Abanov et at. trea t the problem in

the continuum limit and witb finite anisotropy. Second. the Monte Carlo simula tions

are not sufficiendy accurate to discount the possibili ty of the existence of a _ale first

order transition, nor are the simula tions ab le to discount the possibility of a narrow

region between ebe smectic and tetragonal phases wbere a nematic pbase might be

sta ble.



4 .3 F ini t e fie ld

The }olante Carlo analysi5 of the previous sectio ns is now extended to include an

applied field. The Mente Car lo simulati ons were do ne in collaboration with Jessi ca

.-\rlet t [1OJ. As in the case oCzero field , it is not feasib le to complete simul ations for

all possible values of J . so once again two particular values of J have been chosen

for study. The values chosen are the sam e as those usedin the zero field simul atio ns:

J = 6.0 and J '" 8.9.

T he magnetisation is shown in figure 4.11 as a funct ion of temperature for several

values of the applied field . The magnetisation saturates at low te mpe rat ure to ODe

of a few values. This is • eesuhof the discrete nature of the lat tice . In zero field

the stripes of up and down spins are of equal width, hence the ne t magne tisa t ion is

zerc at low tempe rature..oUthe field is increased, it ~ntually becomes energeticali}'

favourable for the stripes oriented parallel to the applied field to become thicker

than those oriented antH )ar aUcl to th e field. T he system also needs to main tain its

periodicity due to the boundary conditions which have been imposed on the system .

The refore th ere are discrete jumps in the magnet isa tioD cornsponding to the parallel

stripe width going from h to h + 1 and the an ti-parallel stripe width going from h

to h - 1. On ce again th e reader is warned that h has been used to refer to both

the a pplied field in reduced uni ts and to the characteris ti c domain size in the stripe

and checkerbo&rd phases . It will be clear from the context. in "hich h is used , .hich

quanti ty one is discussing.
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f igure 4.11: T he magnetisa tion, for various values of the applied field as a function
of temperature. J "" 6.0 on a 32 x 32 latti ce (a), J = 8.9 on a 64 x 64 latt ice (b).
T he fargecircles indicate the location of th e transition from the smect ic phase to the
tetragonal phase. Temperature is in units of g/#;8'



At low temperature the ma gnetisat ion remains almost constan t. .\.1 the temper­

ature is incre ased. the magnetisa tion risesquidcl y to a broad peak and th~n s!owlr

drops. T IUsbehavio ur can be understood by looking at the low energy f1uctuatiOllS of

the domain walls. The low energy fluctuations will consist of single spin Hipssome.

where alODg one of tbe domain walls . These will not occur insignificant numben until

th e tem per at ure reaches . point at which the energy or the excitation is comparable

to kaT . In zero field the energy to flip a spin up and th e energy to ftip • spin down

are equ al. The nwnbezs or IJUch flips ~ also equal and on average th ey have 00 effect

on t he m.agnetisati on. In a field, this degeneracy in energy is removed. Spin flips from

anti-parallel to parallel to the field will begin to occur in significant numb ers at lower

temperatur e than sp in Ilips in the opposite direct ion. Th erefore the magnerisatiou

will increase with temperature once the temperature reaches the activa t ion energy of

the an ti. par allel to parallel spin B.ips. The magn etisa tion will contin ue to rise unt il

the temperature reaches the activation energy for the par allel [0 anti-parallel flips.

Th ese spin flips will decrease the m.agnetisation.

As discussed above. the break up of the orie ntational order is believed. [0 bepre.

cipitated by the £ormation or unbound disinclinations. As the field increases and

the width of the minority st ripes decre ases it takes a sm aller fluctuation to break

these stripes. Th e breaking of a stripe Corms a pair of unboun d disinclinations. Thus

increasing th e field teads to a reduc tion in To . To approaches the limit of the rem­

pera ture !lot which the an ti-parallel to parallel sp in flips are thermally activa ted. This



occurs because rhe spin ftip!S CAn act as nucleati on si tes fer the lOpotogical dera-u.

4 .3.1 The or ientational order paramet er

In the case of zero field , an orientatio nal transition £rom a smecnc phase at (ow

tempera ture to a tetragonal phase at higher temperatures was round. At finite field

a simiIar tr ansi t ion is round by measuring the orienta-tiona! order param eter defined

in equatio n 4.3. (IOhl), the orien tatio na! order parameter, is shown in figure -1.12

fur S1e~ values or the applied field, fur the t1JO ch(llllellvalues or J . At the phase

transi t ion the stripes of the minority spins break up 00 rortll elongated Islands , while

the majori ry stri pes remain until higher tempera tures. In zero field both sets or Stripes

break up at the same tempe rature due to the symmetry or the system . The break

up or one type or stripe is sufficient to destroy the long-lange orientational order.

T he drop in (10 ..,1) in a finite field. particularly ror 1&rge applied fields. is extre mely

sharp . T here is also considerable hysteresis associa ted with the magnetisation and

the avuagt!: intetnal etletg1, _hieb. .auld indicate that the transition is first order.

Although it is difficult to discern within the limits of the simula tion, the results futUld.

are consisUn t with a first order ttans:ition at large values or the applied. field, and

with a weakly first order or a contin uous tr ansi tion in the limit as the applied field

goes to zero.
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Figure 4.12: The orientational order param eter defined by equatio n 4.3 plotted as
a function of temperature for several values of the applied field for J/ 9 = 6.0 on a
32 x 32 lattice (a) and for J/ g =8.9 on a 64 x 64 lattice (b). The solid lines are
guides to the eye only. Temperature is in units of g/"8o



4.3.2 Domains in fini t e field

Above the orientation a! transit ion , the stripes of minority spins break up inro

elcng aced islands . It is possi ble to measure the degree of elongation of the islands as

a £unction of both temperature and fidd. The ec:centtici ty of a configuration can be

defined.as

(' A )

where n~ and n~ are the num ber of horizontal and vert ical bon ds along the perimeter

of the ith island or minority spins in a givenconfiguration and n i is the total number

of spins in the it h island. In figun 4..13 the expectation value fur e is shown ror

various applied fields as a function of temperature. In all cases e drops significantl~·

at the temperature at which the system. loses its orienta-tional order. At high fields

the drop appears to be discontinuous. Even above the transition the islands st ill

retain a measurable eccentricity, which is larger for larger fields.

4.3 .3 The phase d iagram

The (h, T) phase diagram detenniJ:Led&om the Monte Carlo simulations is shown

in figure 4.14. The diagram includes a portio n or the phase boun dary between the

smectic phase and the tetragonal phase. At low tempera ture the Monte Car lo simula-

tions would not allow a determination of the phase behaviour. Points in the diagram

were determined both from simulations in which T WMslowly vari ed at constant field

and simulations iJ:L which the te mpera ture was held find and the field was varied .
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Figure 4.13: The eccentricity as a function of temperature for various values of the
applied field on a 32 x 32 lattice with J =6.0. Temperat ure is in units of g/k g.

While the simulations were all done at positive values of h, the diagram has been

extended to include negative values by assumingthat the uansition temperature is

independent of the sign of h. This phase di&iI&JIl differs from that predicted by

C arel and Doniach[46] since there is no evidence of a bubble phase , and there is no

sharp uansition between the tetragonal and the fully disordered phase. Similar ly. the

phase diagram Abaoov et 01.[SOl. figure 4.1, predicts a phase transition between the

teuagonal and disordered phase. Comparison to the phase diagram of Hurley and

Singer[42) is more difficult as our Monte Carlo simulat ions are not able to describe

the phase behaviour at low tempera tures. Althou gh there is no evidence of the coex-

tsteuce regions predicted by Hurley and Singer, it is pcssible they might be seen at
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results from simulations done at constant temperature. Temperature i:sin units of
gl ka.



temperatures [ower than those wbich have been simulat ed.

4 .4 Summary

:-lotwithstanding the problems associated with comparing the various prtdi ctions

of Cueh and Villa.i.n[471 and Abanov et aI. [SOl to the Monte Carlo results obtained.

there are definite seatemeats whim can be made based on the remtts in zero field.

First , the typ ical sharp order-diso rder phase transition associated with the Ising model

is absent in this model. la. its pl3C1! a broad peak is round in the specific hea t and the

detailed nature of the u ansition to the fully disordered. phase is unclear . Beeweeathe

low temperature ordered phase and the fully disordered. phase, there exists a phase

whim lacks the orientational order otthe low temperature phase, but is composed of

well defined structures with a characteristic period . The transition from the smectic

phase to the tetragonal phase appears to be ccenauous.

The .\loDte Carlo results indic ate tha t, in an applied field as the temperature in·

cresses . the stripe (smectic:)phase melts to an orienta tionally disordered (tetra gonal)

phased which coD.5ista of eloDgated islands. Th e transition can be characterised using

a suitably defined order parameter , which measures t he ceieeteeice of the $}"5tem.,

as was done in the case of zero field. At the transi tion , this order parameter drops

sharp ly to zero with a corresponding peak in th e associated suscepti bility. While the

~Ionte Carlo data are not sufficient to determine t he order of the transition from the

smectic to the tetngonal phase, there is some evidence that it is first orde r for luge



fid ds . but ceeneuc es or at most weakly lint orde r in the limit 311 the applied field

g<H.'5 to zero. T he tetragoD.al phase maps COD.tinuo us!y to the paramagnetic phase

with increasing field, without a well defined trallSition . In the tetr agonal phase the

islan ds retain their elongat ion. There is no evidence in these simula tions of a well

defined. tr ansi t ion to a bubble or hexagonal phase, al though it is possible that it ex­

ists at low tempera ture. This is a signilicant dilferenC'ebeeeeea the phase diagram

found in this work and those predicted. previousl y. One must beer in mind that the

underlying symmetry plays a prominent role in the resul ts found both in the smectic

and in the tetragonal phase. T his is a resul t of the lattice which is included. in our

~IoD.te Carlo studies, but is often omitted. in studies which treat the problem in terms

of a cont inuum .



Chapter 5

The dipolar planar model

T his chapter is a discussioD of the dipo lar planar modeL As in the previous

chapte r the model is twc-dtm enstonel and the magnetic moments lie all the square

lattice. In this chapter the magnetic moments are assume d to beve two components.

The magnetic moments can be thought of as vecto rs confined to lie in the plane of

the 6.1m; le., with only i and i components. Generally this would be due to some

finite anisotropy, such as tha t due to aystal fields . Howevel' only th e C&5e of infinite

anisotropy, which confines the magnet moments to the plane of the film. will be

considered . In te rms of the Hamiltonian given in equation 1.5, the system is also

limited to t he case of J ;;; 0, ii 5: 0, and the aniso tro py is K = - 00. Because the

syste m will DOW have an easy plane (hard z axis ) th e Hamiltonian of equa tion 1.5 can
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be writren in un1U of g as

(5.1)

where the aniso tropy has been dropped, since tr s! O.

T his chap ter contains two separate but rela ted parts. Th e first part of the chap ter

is a classical linearised spin wa~ c.aJ.culation of the low tem perature properties of a

finite sized.S)"SUm. The second part of the chapter eoosists of the results of ~Ionte

Carlo Simulations, including those done at low temperature. The low temperature

results of tbe two calculations are compared dosdy.

Comparing the results is very important because it ts possible for the W Ie size of

the systems used. in the Mont e Car lo sitnula tiotl5 to Iud to incorrect information con-

ceming the ordering in the model. Such is tbe casein the two-dimensional XY mode l,

which appears to orde r in a finite system, but does not ord er in the thermodynamic

limit. CIaS5i.callinearised. spin wave calculatiops for tbe classical twl>dimension.al XY

mode l predict a non-zero value for the order parameter, in a finite size system. at finite

tem~ratures[54I . They also predict that in the limit as the system size goc$ to in.lin-

icy the order parameter goes to zero for all tempentures. Monte Carlo simulations of

the classical two-dimensional XV model, which must be done usin g finite size system,

give neu-aere values for tbe order parameter at finite temperature [881. By comparing

the order param ete r at low temperature found using the Monte Carlo simulations, to

that predicted by the classical spin weve calculations for a similar size system. one

can show that the apparent ordering seen in the simulations of the classical 2·0 XY
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model is the result of the finite size of the sys te m. Thus if ODe coul d simula te an

i.n.6.n.ite syste m, the ordering would not take place . Because of the possi bility tha t the

xlonte Carlo simul atio ns might lead to tecoereee conclusi ons concerning the ordering

in our modeL it is important to analyse the results of the simulations in light of th e

c1assical linearised spin wave calculat ion .

5 .1 The ground state

Despi te the fact th at the model is restricted to include only one interac tion - th e

dipolar inte raction _ the nat ure of the groun d state for this syste m is not trivi al. It

is well known th at the groun d sta te in this model is antiferro magnetic[89]. It is also

continuo usly degenera te. Two puticular groun d state configur atio ns au shown in

figure 5.1. The other ground state spin configuratio ns can be genera ted from eit her

of th ese stat es by means of a complicated set of sublattice rotations. It is easier

to characterise the states belonging to the ground sta te manifold if a simple gauge

transformation of the spins is mad e. This transformation may be writ te n as

S'(f) - (-l). ...(f) ,

S" (f) ~ (_ 1)".•~r (f) .

(5. 2)

(5.3)

Here the a 's are the unt ransforme d spins and the Ss are th e transformed spins. n.,

and n, are the components or th e displacement , in the z and Sfdirections measured

relati ve to an a.rbitrary origin in uni ts of the I&ttice spacin g. The ground st ates
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shown in figur e 5.1 are shown in terms of the gauge transformed. spin varia bles in

figure 5.2. Each configur a t ion in the ground state manifold can be char acterised by

the orientat ion of the vecto r V defined as

V- ~~g(R.I .
. "-

For any ground state configura tion I'VI :::: I , and the inverse is also true.

(5 ...1 )

Zimmerm an et aL [551conside red the problem of a c:Iassical dipol ar planar model

on the hon eycomb lattice as a model for FeCIa-graphite int ercal ated comp ounds

within the mean-fidd approxima tion. Th ey showed tha t the ground state in this

mode l is highly degenera te , even though th e Hamil tonian itself does not possess a

similar symm etry. t:si.ng a mean fidd approach th ey predicted t he existence of an or-

dered phase at low tempera ture and developed a phase diagram in the temperat ure-

applied field plane. Henley [56J and later Prakas h and Henley [51] considered an

anisotropic neares t neighbour model where th ey chose the anisotropy to mat ch the

nearest neighbour port ion of the dipo lar interaction. Their model mimics the ground

sta te degeneracy found in the dipolar models by Zimmerman et IlL in the case of the

honeyco mb lat tice, an d they showed tha t a similar effect is 5eUL 0 11 the square la ttice .

Prakash and Henley showed that spin fluct ua tions in their mode1 1ead to an effective

potential in the free energy, and that this pote ntial has a symmetry detennined by

th e underlying lattice. The y conclude tha t this poten tial is sufficient to induce order-

ing a t low tempe rature and refer to the phenomenon as thermally ind uced magner ic

orde rin g. As .stated . Prakash an d Henley[57j U.!iICd a shon range a pproximation to the
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Figure 5.1: Two examples of ground states for the dipolar planar model.
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Figure 5.2: The groundstate spin configurations corresponding to those in figure 5.1.
but shown in terms oC the gauge transformed spins.



dipolar interaction. and it was unclear how the results for their model would differ

fro m one in which the full long-range nature of the dipolar inte ractio n is included.

Througho ut this chaptet comparisons will be drawn between the results obtained us­

ing the full dipolar int eraction and ebcse obtained from Prakash and Henley's short

range approxima tion.

There are a numbe r of papers which deal with a two-dimensional planar syste m

with dipol ar and ferromagne tic exchang e interactions [60, 62, 67]. In all of these

studies, the exchange interaction is assumed to be dominant and the gro und state is

th erefore ferromagn etic. It is not useful to compare the results found here to t bcse

results. T here have been classical sp in wave studi es on pure dipo lar ~"Stems. Bajaj

er t1L [591have done spin dynamics simulations using the sh OI1 rang e approximations

of Prakash and Henley. They have not , to the best of our knowledge , repe ated the

simula tions with the full dipolar inter act ion. Bedanov[581 has looked a t the problem

of a two-dimensional dipo lar planar mod el on the tri angul ar lattice, and conclud ed

that tbe SJo"SteID orders a t low eemperaeure. Corruccini and Whit e [651. who studied

the qu ant um mech.anical model on the square lat tice in the spin ...ve approximation.

predict that the model does not order at low temperature . Pith and Schwabl (641

have trea ted a similar quantum mechanical model on the square la ttice, and predict

rba t the model will order at low temper at ur e. While none of these papers deals

with tbe model t rea ted in this thesis , the con.fficting predictions do serve to illus trate

tha t considera ble difficulties still exist when ~ating dipo lar inte rac ti ons. and these



subtleties can lead to comple tely contradi cto ry &JJS1\'ers to seem ingly sim ple quest ions .

5 .2 Low temperature behaviour

Th e low tempera ture beh aviour of th e dipolar planar systl!'m can be studied. \;a

a lineerised spiu. ...~ ca.lcula tion. A spin wa~ calcula tion is a vusion of a st.and&rd.

method of solid st ate physics(ol3), by which one par amet erises the states of the sys­

tem in terms of a set of vari abl es which descri bes the st a tes in terms of devia tions

from the groWld state. Expanding the Hamil tonian about the groun d sta te in teI1l13

of these variables . and taking the Lo-st order , eoe-ee ro term leads to a simplified

approximation to the Hamil to nian which describes the low lying excitations of the

syste m. For example, in a ttystal one takes the positio ns of the ions in the ground

sta te and expan ds the Hamil tonian in terms of small deviations abou t these pcsi ­

t iona. The result is a pho non spect rum for the crystaL For a magn etic system the

orie nta tions of th e ma gnetic moments serve to puamett:rise the st a te of the system,

and one can calculate a spin wa~ spectI1Un to lowe$[ ord er in ftuet ua tions in these

orienta tions. Within this approximation, it is pcesible to calculate the free energy,

the order param eter and man y oth er th ermodynamic quantities. In this t hesis the

magnetic system is t reated classically and hence the spin wave an alysis is also a classi ­

cal calcula tion. Quantum~mechanical spin wave analyses of similar mode ls have been

perfo rmed. previously {65, 64].

Among th e benefits of calculating the classical spin Q~ modes of the svst em is
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that rbese modes can be measured experimentally llSinginelastic neutron scan ering[-I3].

Spin waves can also be detect ed in :-lMR stu dies by studying relaxa tion rates [43].

L'nIortUDately. relevant experime nts are not ~t available for comparison. Both tech­

niques would allow a direct compariso n between the predictions of theory and the

results of experiments . It will be inte resting to compare the results of the simulations

presented in this thesis and these experimental results when they become available.

While the cla.ssicaI spin ....ve method is quite po-nuI it still, of course. has

limita tions. The method is valid only in the limit of low tempera ture . and excludes

other possible low energy excitations which are of higher order . This can be \-W}'

significant , as was seen in the history of the classi.ea1 planar model , T he theory of

Mermia and Wagner indicated that the the classical planar model does not have loog-

range ord er at any con-aero temper ature [33J, hence that there is no order-disorder

transitio n in this system . Spin wave calculations of the two-point correlation function

in the classical planac model showed that it decayed with a power-law dependence on

distance at low tempera ture (901_ High temperature series eXpansion (911 indicated

that the twl>point correlatio n functio n should decay exponentially with distance. The

change in the behaviour of the eorre lado a funct ion indicates that there is a phase

change in the system from II phase with power-law decay to one with an exponent ial

decay in the correlation function . T he work of K06terlit z and Th ouless{13. 53, 54],

in which the significance of low energy vortex excitatio ns was treated, led to the

resolution of the apparent discrepancy.



Because of the controveny associated with the classical pIan.u model. th e ex­

tsreuce of a cont inuous symmettY with respect to the rot ation of tbe net magnetic

moment is a wellstudied problem. In the classical planar model , which is a model with

short range exchange interac tions, the continuous symm etry leads to the exist ence of

a gapless spin wave excita tion. Capless means tha t at some value of q,the energy of

the spin wave is zero . The gap generally refers to the minimum energy required to

excite an y of the spin wave modes, hence a. g&pless spin wa\lt! excita tion req uires no

energy to be exci ted. Spin.-ave excita tions have been shown to be sufficient to de­

stroy any long-range orde r at any finite tempera ture in the classicalplanar mod el(33).

Thus there is no traditional order-disorder transition in this model. Zimmerm an et

al. [551realized that the situa tion is somewhat more subtle in the case of a dipolar

interact ion. In the case of a dipolar system, the ground state is highly degenerate and

there is a gapless spin wave excita tion at T =- O. Th e dipolar Hamiltonian itse lf does

not possess a simil ar symmetlY. The questi on is then: Does one observe ord~ in a

planar syste m with only dipolar inttractions? Another way of phrasing this question

is, is there a thermally induced gap in the eigenspectrum wb.icbleads to long-range

order, and does one observe. Kosterlitz-Tho uless phase transition or not?

In order to properly describe the spin wave excitations, a superlartlce with la t tice

spacing 2a and four spins per unit cell, as shown in figure 5.3, must first be defined .

This is necessary because the ground state is an antiferromagneti c state . T he calcula­

tion is done in terms of the gauge transformed spins . since then it is possible to define
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the ground stat~ in termS of tbe angI~ 80 which lt~ makes 'll"iththe r a.'tis. Tbe 5t.t~ of

a spin is given by 8...(R). where R is the positionofthe unit cell and Q :::: 0.1. 2.3 gives

tbe position of the spin within the unit cell. The Hamilt onian can be writt en as a

functioo of the stat e of the spins , 1l «(9}), and then expanded in te rms of ll.uetu atio ns

of those spins abo ut any ,;round state. 1.0math ematicaJ. terms the Hamilto nian is

- - -

I
I, !. I 1 I I I I
I, I, I 1 I 1 I 1
I I 1 I I 1 I I
I I I I I I I 1
I I I I I 1 I I
I I I I I 1 I 1
I 1 I 1 I 1 I I
I 1 I 1 I I I I

f igure 5.3: The uni t cell used in tbe dassicaJ.spin wave calcula tions . A uni t cell is
2a lC 211, and cont ains 4.spins. This figure shows 16 uni t cells. The labelling scheme
used is indicated in the upper [eft unit cell.

e.xpanded in terms of the fluauations of the dinction of the moments :

1l« 8}) 1io+1£1+ 1£1 + . . .

"' + L". (ll' )~"I~ +
• "" . (R, )

~ ~" .(R.)"".~R,) "".~R,) " I_" . (R,) + ," . (',5)

where 90 defines the dtrecncas of the moments in the ground state about which



the Hamiltonian is expanded. Keeping only the lowest order terms in 611..(R) the

Hamiltonian can be written 35

" = '" + 4t= ~?'.(Jl. IG...(Jl.- R,I6B, IR,). (5.6)

~ +~ In dqo9..(qj G..6 (q}6811' (- q), (5.7)

where n is the first Brillouin zone. G,.J(R. - 11;) is defined 35

(5..8)

G"",(q) is quite complica ted and is given in equatio n 8 .27. This exp ression for the

Hamil tonian can be simplified by expressing the fluctuat ions in terms of the elgeu-

vecto rs of Gd(V, which are defined by the equation

(3.9)

where ",, (ri) is the eigenvalue associated with the eigenvector 4>"'(q) and w =0, 1, 2, 3.

~o(q} is chosen such that linlf.....o ~o (q) "" O. A detailed deri vation is given in Ap-

pendix B. In ligures S." and 5.5, ",,( 4) is plotted as a function of if for each branch

of the~ for 80 = 0 and for 80 = 1tj5 , respectively , in the lim Brillouin

zone. Th eS1! figurei show how the long. range na ture of the dipo lar interaction affects

the symmetry of the eigenspectra. T bey also illust rate how the axis about which the

syst em orders can change the eigeuspect ra.

[0 figures 5.6 and S.7, particular cuts throug h q-spaceare shown from the 80 =0

spectra to highlight some features or Dote . First ODI'! can see in both spectra tha t



as q -+ 0 there is one branch tha t goes to eerc . This is a resul t of the continu ously

degenera te groun d st ate , and for q = 0 this is the mode associa ted with the rotation

of ,,~. .-\5 well , one can see that in 5.7, which is a cut along the q~ = '1, direction.

th at there is • branch in the spectrUm which varies linearly with q~ as q-+ O. This is

a mult of the of the non.analytic: nature of Cd , which results from the long-range

nature of the dipo1&rinteraction .

The calculations of Prakas h and Hen1ey{57] were repeated by using a aeeresr

neighbour interac tio n instead of the full dipo lar interactio n. Spectr a equivalent [ 0

those shown in figures 5.6 and 5.7 were calculated using this interaction and an

plotted in ligures 5.8 and 5.9.

5.2.1 Spin wav e s t iffness

The excitation mod e given by Ao is known as a soft mode an d, in the limit of long

wavelengths , the mode can be expressed as

(5.10)

D(ti) is known as the spin wave stiffness or rigidi ty. The name comes from Landau

tbeo ry, when: D(4) plays the role analogous to the restoring force in response to a

fluctuation away from t he ground state. In figure 5.10 the spin wan! stiffness is plott ed

as a funct ion of the direc tion of the wave vector for two ordering angles; one for whe n

the sp ins order parallel to the z-axis and t he second for when tbe spins orde r abou t

the direction at .-5-to t he z-axis . Th e corresponding resuns for the DQteSt. neigb.bour



qx'
qy (a) qx

qy

!OO

(b)

(c) (d)
Figure 5A: The full eigenspectra for 00 = 0 using the full dipolar interaction. ..\0 is
shown in (a).
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Figure 5.5, The full ei ens Y X
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Figure 5.6: Eigeaspecr rum alongthe q, =0 direction using the full dipolar interaction
for 90 =0.
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figure 5.7: Eigenspectrum along th e q6 ::: thtdirec tion using t he full di polar interac­
t ion for 90 =o.
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Figure 5.8: The eigenspectrum along the q. = 0 direction for the nearest neighbo ur
model of Prakash and Hen.ley(57) £01' 90= o.
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Figure 3.9: The eigenspectruzn along the q~ =q.,~n for the Dearest neighbo ur
model of Prakash &Dod Henley[S1J for 90 =O.
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model or Prakash and Heale y are sbown in figure5.10 as dashed. lines ror compariso n.

Xote tba t ",bile the ruults or Prakash and Henley are qual.itath~ly similar to those

described above. includin g the long.ru.ge nature or the dipolar interaction gives rise

to a much larger variation in D (q). On a\lUB.gt D(q) is small er when the full dipolar

interact ion is included in the calculation. This will lead to softer modes. tha t is,

modes ...1UCh require tess ene rgy to exci te , panicular ly near q = a wben t he system

has ordered along one of the axes .

I
.......~// .l

j
I '=W::,,,t _ .-i;.....,/--;;;---.,....;;-....._. -II

.lQ .oj :ht os 1.0

figure S.lO: The spin ...ave stiffness D(q) as a functio n or th e direction of the wave
vect or, for spins ordered along the Z"·axis (left ) .00 along th e diagonal (-15- to the
.:r.axis) (right).

5 .2 .2 Free en er gy

\\' ithin the classical spin wave app roximation one can calculate th e freeenergy as

F = kgT lnZ (H I)
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(5.12)

(5.13)

T he first te rm is the ground state energy (in uni ts or g) and is independent or the

ordering angle 80 • Th e second te rm in equatio n 5.13 will be dependent on the orderin g

anglethrough its dependence on the eigenspectrum.. In figure 5.11 this term is plot ted .

in uni ts of gN ksTj8r, as a functioll of 80 , along with the corr espo nding results for

the nearest neighbour model of Prakash. and Henley. One can see that there is a

greater range in the correction to the free energy. implying tha t the thermal selection

of the ordering angle is increased when the full dipolar interaction is included in the

spin wave calcula tion .

5.2.3 Order parameter

It is also possible to calculate the order parameter wi thin the classical sp in wave

approximation. The order parlJDeter is defined as

+=< iVl >, (5.14)

where V is defined in equation 5.4. To simpliCy t he calcula tion the specific case or

a system ordered abou t the positive z-axis is considered. T he resul ts would be the

same if ordering about the negative z-axisor either the posi tive or the negative y-axis

were considered. One finds

(5.15)
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f igure S.l l : The a.ngu.Iar dependent pan of the correction to the free energy according
to the classicallineat'iRd spin wave theory in units of gNksT/ (81t2) .
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(5.16J

(5.17)

where the integralOYer' (is only!M!r the upper halfofthe Brillouin zone. The integral

will diverge in the thermodynamic limit due to the soft mode for which J.a -t 0 &li

if'-+ o. This implies tha t in the the rmodynamic limit the order par ameter is zero for

all con-zero temperatures and hence that there is nc long-range order at any non-

zero temperat ure in this approximation The details of the calculatio n are presented.

in Appendix B.

In a finite sized system. tbe integral in equat ion 5.11 is repleced by a sum. The

sum will be finite and the result can be compared to both the results of the short

range approximation of Prakashand Henley and more importantly to the results of

the }Ionte Car lo simulat ion . To calcula te the order param eter (or a finite size S)"Stem

b . defined 85 D (q) averaged. over the direction of q, is substi tu ted into equation 5.10.

f or small qtbis term will detennine the qdependence of integrand in equation 5.17,

and this dependence can be easily calculated once the integral has been converted

to a sum. Once again the details of this calculation are relega ted to Appendix B.

Finally one can wri te the order parameter as

~ - 1 - 2,(tn(N) + C),
8. D

(5.18)

where C is a constant to be determin ed, but is independent of .Y, and T. and b =

5.154 X 10- 2 (Following Prakash and Henley would give b .,. 0.1433). Such a size
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depende nce can easily be checked using finit e size analysis .

5.3 Monte Carlo result s

Anennce is now focusedon the results of the Monte Carlo simulations, which will

be interp reted. in the Ught of the resul ts of the Iinearised spin wave theory .

5 .3.1 The order parameter

To begin , the order parameter is considered as a funct ion of tem perature. In

figure 5.12 the magn et isa t ion in terms of th e gauge-transfo rmed spins is plotted as

a function of eempereeure for a number of system sizes, Th e system sizes vary from

.V =8 x 8 up to "V = 128 )( 128. T hese resul ts indicate that the system orders a t low

remperarure . The associa ted magnetic susceptibility, defined as

(5.19)

also has a peak whid!.corresponds to the sharp drop in the order parameter on

warming. Th e susceptibility is plot ted. in figure 5.13. The specific heat, giWD. by

c. = N'r. [UEI'>- (lEI>'] . (5.20J

where E is the internal energy of the system , which is plot ted. in figure 5.1-1. While

the order parameter, susceptibility and the speciJic heat aU indicate that the syst em

orders . one must be cautious. Th e syste ms here are finite. but it is predictions in the
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rbermodyn ami e limi t which are significant. Ie is possible for th~ fini te system to order

at a finite tem perature . but for the syste m in the th ermodynamic Umit to remain

diso rdered a t all futite te mperatures. This is the si tuation in the classical planar

mod el. where in a linite system the magnetisation is non- zero at low tempera tures .

but is identically zero for all non-zero tem peratures in the thermodynamic limit [88}

as was shown in th e classical spin wave calculation in the previous section .

1.0 ""':---~---~---~----,

0.8

1\ 0 .6

§:
V 0.4

0.2

3.0 4 .0

Figure 5.12: The order parameter for systems of various size as a function of temper­
a ture, as found using Monte Car lo simulation. Th e numbers in the legend refer to L .
where the syst em size is L x L. Temperature is in uni ts of g/ k• .
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Figure 5.13: The susceptibility of the order pa.z-amet;er for various size systems as a
function of tem perature, as determin ed from Monte (Arlo simulation. Th e numbers
in the legend refer to L , where the syste m size is L )( L. Th e line> are guides to th e
eye. Temper ature is in units of 9/"B-
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Figure 5.14: The specificheat for various size systems as determinedby Monte Carlo
simulation. The numben in the legend refer to L, where the system size is L x L.
The lines are guides to the eye. Temperature is in units of glk fl _
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To determine if such is the case for this model. the size dependence of tbe order

parameter must be consi dered. One can see in~ 5.15 tha t, I. t low tem pera ture.

the order parameter varies linearly with temperature. This feature is a conseq uence

of the th erm al excitation of the spin waves. A predictio n for this slope was derived

for the case of massless spin waves in equation 5.18. The slope is definffl as

('.21)

In the classical spin wave theory, lim,v_.., A(N ) =:Il/(8'11'D) in N , where iJ is as given

above. Thus . in the thermodynamic limi t , .4 diverges according to this theory. This

is a direct resul t of the existence of the gapless branch in the Iinearised spin wave

theo ry spectrum. and is the reason why the classic al planar model does not exhibit

an ordered state.

In fi~ 5.16, .-t is plotted as a function of In.V.•-1. was obtain ed by fitting

equation 5.2 1 to the low temperature region of th e order parameter as derived from

:\o1outt' Car lo simulation . T he line dr awn in the figure is a least squ ares fit to the

lowest four points. The d a&ical spin wave theory predicts a linear dependence , but

t his theo ry is valid in the limit of lar ge N . Fi tting to the loft$t four points gives

the largest possible estimate: fer the slope. Eft c. then the slope predicted by spin

wave theory is two orders of magnit ude larger th an that of our fit in figure 5.16. As

.v increases , A devia tes from this st raight line and ap proach es a plateau. That A is

independent of .V for large .v rather that depending linearly on,v, suggests that the

orderin g observed in the simulations is not a finite size effect.
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Figure 5.15: Expanded view o( the lowtemperature ~Oll of Jigure5.12. Temperature
is in units of glk• .
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f igure 5.16; The variation of .-I. as a function of in N .



The explanadon of how this ordering comes about revo lves aroun d noting: that

the classical llnearised spin wave theory predict! a gapless mode in the sp in wave

sp ectrum even at finite tem peratures . At linite tempera ture the lack. of a global

in\ -arian ce in the Hamiltonian leads to an effect:i~ anisouop y. This was evident in

the angulAr dependen.ce shown by the free energy in figure 5.11. To properl y tre at

t his anisotro py will require the treat ment orhigher order tI"r1n5 in the sp in waw

expansion of the Hamiltonian. This calcula tion is in ptogress[92]. [t is expected tha t

a self·consistent treatment will yield a gap in the « normalised spin wave spectrum at

finite temperature . This gap will lead to a well defined finite value of A in the limit

of .V -. 00. At present the Monte Carlo da ta would lead to a coaservanve estim ate

that in the limit as N -. co , A(N ) =0.16 ± 0.01.

Henley suggested tha t the aniso tropy can be considered in a manner simila r to

that used for studying a classical planar model with an anisotropy term of the form

(5.22)

added to the Hamil tonian. In the case of the dipolar model, ,.. can be thought of as

a temperature dependent effective aniso tropy. To gm some measure of t he effects of

this anisotropy one can define

(5.23)

which is the field conjugate to "' (T). In figure 5.17 P(T) is plot ted for a N:: -&0 x ",0

syste m for both the dipo lar model and for a number of classical planar models 'lYith



'13

different values of the h.tterm . U the net magnet isat ion is fixedalong one of the axes

then P = 1. while if the magnetisation is fMe to poin t in any direct ion P == O.i"5.

As oae can see in fi.gun 5.li. the classical XV model has P = 0.75 if h.t= O. For a

non-zero ~ P(T) -+ 1 as T -+ 0, since the introduction of the Don-zero ~ destroy'S

the rotational iavariance. For the dipol ar mode l, with no explicit ~ term in the

Ha.milto nian . one can see behaviour which is very similar to that in the classical

planar model with 14 ~ 0.2, but P for the dipolar planac and P for the classical XY

model with ~ == 0.2 are not identica l.

G---e h4-G.O
3---€: h4.o.2
~h4-o.3

"'Oipolar

3.0

Figure 5.17; P(T) for the classical planar model for three values of h... , and for the
dipolar planar model. Temperature is in uni ts of g/kg•

From the informatio n availab le it is possible to determine the effective h. apprex-
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imatelv for a range of temper at ures. Renormalisarion arguments for the classical

plan ar model indi cate tha t any con-zero ~ is a relevan t variable below a « ttain

remperature !901. One can speculate that the argum en ts for the classical planar model

with a four-fold anisotropy can be onied anI" to the dipo lar model and hence the

eJfl'!Ctive h., will be • relevant variable below a certain critical. temperature. This

....ould imply the existe nce of an order-disorder uansition...hidl 9o'Ouid agree with

the ~Ionte Car lo data.

5.3 .2 Corre lation funct ion

The discussion of the effective t.Disotro py leads to an interesting questio n. U the

effecti ve anisotropy is very small near th e transition, as it ap pears to be, then it is

na tural to ask to what exten r the syste m acts like an isot ropic syste m . The classical

plan ar model , which is an isotropic model , does Qot have long-rang e order at any

Don-zero tempe rat ure and hence does not have a standard order-disorder transition.

as discussed above . In th e case of the dassica1 planar model with a.D.anisotropic term

like tha t in l!qU&.tWn 5.22, Jose d rd. (901 have shown using an RG calcul ation that

the model exhibits a continuous transitio n to an eedered state £orany eoa-eero value

of h4 • with non- universal cri tical expone nts . To determine the nature of the tr ansi tion

in the dipolar model , the two-point correla tion function in two of the larger systems is

considered (L2 "" 1600 and L2 "" 4096). Th e two-point corre la tio n function is defined



e l f) - (5 (0). 5 (fl> - (5(0) )(5( f)) . (5.24)

In the classical planar model there is a KOISterliu-Thouless canstnc n. ~ear both

the standard order-disorde r transitio n and the Kostulitz-Th ouless transi tion the cor-

relation function at high temperature has the same form , that being an exponential

decay gi~n by

(5.25)

The corre latio n length { in both models diverges at the cri tic al tem perature, albeit in

different wa~. In figure 5.18, the correlation funct ion is plott ed as a function of If] for

a number of temperatures wellabove Tel in a 40 x 40 system . T he data are consistent

with the expect ed form for 5 « If'\« 15 lattice spacings. This is expected since

the form given in 5.25 is not valid for vuy short distances and finite size dfec ts will

affect the function when Ifl becomes close to half the system size (L = 40). The

correlation length can be determined from the slope of the decay, and theoretically

one could test to see if the correla tion length diverges as predicted by K-T theory

or as predicted for a staoda.rd. contin uous transi tion. Given tha t the data an for

relerive ly sm.aJJ. system sizes and that making this dete nnination. is~ difficult, the

data have not been subjected to that .ld.ndof mist reatm ent . Suffice to say the data

are not sufficiently accure ee to discount the possi bility of either type of transition

On the other hand , the eorreteeice function itself is expected to ha~ different

forms below the critical. temperature. K-T theory predicts that the correlation fucc-
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Figure 5.18: The correlation function for four temperatures above Tc as ca1cu.la[ed
from ~tont.e Carlo simulation of a 40 x 40 system. Temperature is in units of 9/ "8.



do n should decay with a power law de pendence . with the power being temperature

depe ndent , while below a stan dard tranSition the decay is exponential . In figur es

5.19 and 5.20 the correlat ion functio D is plotted as a function of lfl for a number of

tempe ra tures well below Te on semi-log and log~log scales nsp«tivdy. As for the

data abcee Te• one can reasonab ly fit it to a straight line on the semi-log scale for

moderate values of the distance . On the log-log scale it is not possible to get a linear

fit in any appreciable range of Jf!. This is evtdeece that the transition is to an ordered

sta te, and the anisot ropic potentia.! effects the ordering .

-e' ,-- - - - - - - - - ------,

o

Figure 5.19: Correlation function below Te on a semi-log plot for a syste m with
N =40 x 40. Temperature is in units of g/k • .

Although the data are not sufficientl y accura te to determin e the form of the di-
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Figure 5.20: Corre lation function below Tc on a log·log plot (or a system with .V =:
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vergence at the critical te mperature , in figure ~ . 2 1 the corre la t ion functio n is plott ed

as a function of te mperat ure for two syst em sizes, L =40 and 64. Th e peak at T~

wi t h a rap id dro p on eithe r side is consistent with the expected behaviour of ordering

with rota tional aniso tropy. No at~mpt has been made to appl y finite size scaling

techni ques to this data to ob tain quantitati~ results concerning the divergence.

8.0 ,-- - --- _ - ---,

6.0

0>1' 4.0

0.00'';;.0-----,;';;-----;;':;----::;;----;

f igure 5.21: Th e corre la tion lengt h as a function or temperature for .v= .wx 40 (0)
and N = 54 x 64 (0). Th e lines are intended as guides to the eye. Temperature is
in units of g/kB .



5.4 Summary

In this chap ter a dipolar planar model has been st udied. The low temper at ure

prop ert ies found using Monte Caelo simul ation have been interpret ed in the cont ext

of a classical linearised spin wave calculation. Th e Monte Carlo results differ sub,

stalltially £rom th e predi ct ions of the spin wave calcul atio n. A futite size analysis of

the slope of the ord er parameter at low tem perature clearly indicates tha t the depen ­

dence on system size is significandy less than that predicted by the cla5sica1linearised

sp in wave theory and that, Cor largt r systemS, the orde r panmeter approaches a well

defined value. This indica tes that the system does exhi bit an ordered phase at low

te mpe rature . This conj ecture is supported by the analysis of the two-point correle­

tion function which , when consid ered in light of the theory of Jose, implies tha t the

thermally induced aniso uopy lew to a stand&rd continuous transitio n from a hlgh

tempe ra ture disordered phase dirKtly to an ordered phase. By measurio.g the field

ro njugate to the elfe:::ti~ anisotropy some estimate of the approximate size of the

elfecti.ve uisotropy was mad e. HOW'I':W!t in the ~OD of the phase transi tion it was

not possi ble to make an atturaU estimate of the effective anisotropy .

In performing the classi cal spin wave calculat ion some features which were not

present in the nearest neighbour model of Prakash and Henley 157J were ident ified.

For exam ple, the linear beha viour of th e second branch of the spin wave spect ra at

small q is associated with the long-rang e nature of the dipo lar inte raction . Funher

uaJysis of the Monte Carlo results, in particular the low tempe rature dependence of
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the order parameter and the two point corre lation functio n. indicates that the model

orders at low tempera ture along one of the In-plane axes and that the tr ansitio n from

the disor dered phase to the ordered phase is a continuous transition.



Chapter 6

The dipolar Heisenberg model

6.1 Introduction

There have been a num ber of int riguin g experimen tal resul ts concerning dipo lar

thin films , as discussed previously in chap ter 1. T wo in particular are repon ed in

t he work o f Pappas et aL [51, u trell as th&t of Allenspach and Bischof [231 on Fe on

the (100) surface of Cu. Both groups found that th e system exhib ited a reorientatio n

tr ansit ion at .hich the magnttisation switches from ou t-of-plane to in-plane as tbe

temperaeure increases. 'This work has led to a number of other experim ents with

similar results which were discussed in the introduction [24, 25, 26, 21, 28, 29, 30, 31,

321·

The typic al approach to treating this problem theoreti cally has been to st art

with a two-dimensio aaJ. syste m in which the magnetic moments in teract via a ferro-
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magn erie e~ interacti on. a perpendicular mag:nl"Uc surface anisot ropy, and a

dipolar inrer action. T he rela t ive strengths of the interactions are chosen to mimic

th e expected expe rim ent al paramet ers , so the exchang e interacti on and the ~15A are

typically much larg er t han th e dipolar inte ract ion . However , despite itli small rela tive

ma gni tud e. the dipolar inte ractio n pta.ys an impo rt an t role in det erminin g the mag­

netic prope rt ies of these systems . Pre vious studies on nro-dimensional syste ms have

shown tha t including only a ferrom.gnetic exchange and Oil.positive , perpendicular

~ISA. the syste m will order with a transition temperature determined by the ratio of

the exchange interaction and the MSA. f or K IJ > 0, K being the st rength of th e

:\15.-\, t here is a second order phase tranSition to the ferromagnetic: state, with the

momen ts ordere d out-of-p lane , which is in the Ising uni versality class. f or KI J < a

the system is simil ar to the classical XY model and exhib its a Kcsterllts-Tbouless

transition [931.

T he addition of the dipol ar interaction has thne effects :

• 1. Th e anisotropic nAture of the dipolar interaction is able to stabilise the

in-plane ordered state as shown in chapter 5.

• 2. It allows for the possibility of a re-orienra t ion tr ansition.

• 3. It creat es regions in phase space where the ground sta te is a perpe ndicular

st ripe phase as sbown in chap ter 3.

Synems which indude the ferroma gnetic e:a:b.ange, the :'.15A and the dipo lar int er-
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act ion bave recent ly been st udied exte nsively using such methods as Reucrmeliser lon

Group cakula tions[61, 941, mean field calculations[69. 711, Monte Car lo simulation

{72. T3. T-Il, and spin wave analysis [31, 50, 66, 6il. Howe ver previous st udies as-

sumed that the lowest energy in-plane st ate and the lowest energy ou t-of-plane state

were bot h furomagnetic.

6.2 Dipolar dominated syst ems

In this chap ter . a t'IVO-dimellSional , magnetic S)'5tem on the square lat tice is simu -

lated. with the magnetic momen ts being fully tbree-di.mensionaI vectors . In eoarrasr

to the studies discussed above, the magnetic moments in these simula tiol1ll interact

via a dipolar interaction and a magnetic surface enisc cropy, but there is D.O exchange

interact ion. Referrin g to the genera! Hamil tonian of equa tion 1.5, J =O. and the

properties of the system are studied as a functi on of K . In uni ts of g, the Hamil to-

nian eoasid ered in this chapter is gi~ by

,,~ {~ L 'a"(R.Jr-'IR.,Ja'(R,) - KD.r(R.))' } . (6.l )
u , ~

The pure dipolar system is of Ieterese because, while the exchange interact ion

is generally t he dominant interaction in real systems , the dipolar interaction plays

a crucial role in det ermining the phase behaviour and morphology of the magnetic

ordering. T hat being the CaR, removing the extra interaction isolat es the dipolar

interaction somewha t and allows one to probe its effecu more directly . .\ ben er
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und~rstandi.ng aCme dipolanystem D.l.turally &ids in understandi.ng the ferromagnetic

system. Also , the pure dipo lar syste m is a closer approxima tion to some of t he

(RE) B~CU307 compo unds which do not have ferromagnetic ground st at es, than

would an exchange dominated model [14, 15, 16, 17]. This model is also an imp ort ant

limiting case of the full Hamil tonian of equa t ion Ui , hence it is interesting in its own

righ t .

6 .2 .1 The gr ound state

The ground state of the sys«m is dependent on the value 0{ K . For K = 0 it is

the an tifenomagneti c in-plane ground sta te described in chapter 5. T his state can be

charac terised by the ceder parameter

,If" - ~ (I~(-lr''''(flr+ (-I)··q·(fllil). (6.2)

For~ K the ground state becomes the out.of-plane an tiferromagnet ic sta te . This

sta te C&.Il be parameterised by the order parame ter

(6.3)

T hese order parameters allow the c::haracterisa.tion of t he magnetic ord er in terms of

a homogeneous order param eter . Mil is identica.l to the order parameter defined for

the planar model in chapter S. Along with the definit ion of the order parameters we

can define associa ted suscepti bilit ies, XI and X.L. , as

(604)
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(6.51

One of the benefits of the ant iferro magnetic ground stat e, from a computational

point of view, is tha t convergence problems that arise in fen omagnetic groun d states

as a consequence of the long -range character of the dipolar interaction, are less severe

when one is de&1ing with antifenomagnetic ground statts. The limiting case of infinit e

anisotropy has &lready been tre ated in the tiro previous chap ters . K "" +00 is the

lUliaxial case _hich was discussedas a small pan: of chapter 3, _ hile the model with

K = -00 is sim ply the planar model of chapter S.

At T "" 0, the phase boundary beeweea the two phases can be calcula ted by

taking the dipolar energy for both the in-plane stat e, (E...) and out-of-plane state

(E....1) as calculated in chapter 3 and reference (221 and solving for the value of K

where E;... "" E_ - N K . Th e phase boundary at T "" 0 is then foun d to be at

K = 2.44 ±O .Ol.

6.2 .2 Finite tempe rature

Th e reults derived from the Monte Car lo simulations at fini te temper ature are

quit e intriguing . In figures 6.1, 6.2 and 6.3, both M. and MJ,. are plotted as functions

of temperature for di1ferent values of K in a IV = 40 )( 40 syste m.

In figure 6.1, K = 0.50 and th e data indicate that there is a transition from

the paramagnetic phase to an in· plane ordered phase. Thus , in figure 6.1• •\lS goes



Figure 6.1: T he order param eters defined in equations 6.3 and 6.2 as functions of
tempera ture for K =0.5 in a N = 40 x 40 system. Temperature is in units of glks.

Figure 6.2: T he order parame ters defined in equations 6.3 and 6.2 as functions of
temperature for K = 1.50 in & N ,. 40 x ' 05y5telll. Temperature is in units of gl 1cB •
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Figure 6.3: T he order parameters defined in equa tio05 6.3 and 6.2 115 functions of
temperature for K =3.00 in a N = 40 x 40 system. Temperature is in units of g/ k8 .

sharp ly from effectively zero (with finite size effects preventing the average from being

exactly zero) at high tempera ture to a finite value at eon-aero tem perature. Below

this tempera ture it varies approxima tely linear ly lVith tempera ture , and extrapolates

to I at T =O. This is a £a.mili&r resul t of spin wave ucitations preventing complete

ordering at finite T , which was discussed in depth in c:haptet 5 with respect to the

planar model. Ml.' on the other hand , rem&in5effec:tivdy zero for all temperatures.

The temperature dependence of the parall el suscepti bility is shown in figure 6.4, and

the specific heat is shown in figure 6.1. Both quan tit ies have peaks which correspond

to the drop in AIU'

In figure 6.3, K = 3.00 and the data indicate that there is a tra.nsi.tioDfrom the



paramagnetic phase to &11out-of-plen e ordered phase. T hus we see exactly the same

behaviour as was seen at K :::0.5, except that now it is J,(. which becomes non-zero

at T. while .\f~ remains zero at all temperatures. The temperature dependence of the

perpeadicalar susceptibility is shown in figure 6.6. It is consisten t with a continuous

phase transition as is the specific heat which is shown in figure 6.9.

,
I~

f igure 6..1: The susceptibility defined in equations 6.5 and 6.4 as a function of tem­
perature for K::: 0.5 in a N ::: 40 x 40 system. Tempera ture is in units of gliB.

In ligure 6.2, K = 1.50 and the behaviour of the two order parame ters is DOW

\-ery different from tha t observed in figures 6.1 and 6.3. For this value of K the

system starts out in the paramagnetic state at high temperature . As the temperature

is lowered the system orders first in the out-of· p1&ne st ate , so :..1.).. become! non·

zero while .\1., remains zero. As the temper ature is lowered furth er , the system then
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Figure 6.5: The suscepdblliry defined in equat ions 6.5 and 6.4 as a funct ion of tem­
perature for K ::: 1.50 in a N =40 x .wsyseem. Temperature is in unit s of g/ I::B.

f

Figure 6.6: The susceptibility dw ed in ~tions 6.5 and 6.4 as a functionsof
temperature for K:=::: 3.00 in a .V ::: 40 x 4Dsystem. Temperature is in units of g/1::8 .
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Figure 6.7: The specific heat as functio n of temperature for K == 0.5 in a N =40)( 40
system. Tempera ture is in units of gI les.

Figure 6.8: The specific hea t as function of temperature for K '"" 1.50 in a N = 40 )(40
system. Tempera tuu is in units of gI les_



f igure 6.9: Th e specific hut as function of temperature for K ..,3.00 in a .V = -IO x-iO
system. Temper a ture is in units of 9/k8 .

switches such that it orders in-plane; .V, becomes non-zero while .\C effectively drops

to zero. Th e temperat ure dependence of the sptci.fic heat is shown in figure 6.8, and

the perpendicular and parallel susceptibiliti es are shown in figure 6.5.

In figure 6.10 sampl es of the configurations are shown at various temper atures.

with K - L50. to illustrate the levd of order present in the system. The upper

configuration in figure 6.10 is from the paramagne tic phase, while the two lower

configura tions are from ordered phases. Thus in this system there are at least two

transitions; one from the paramagn etic phase to the ordered phase shown in the

middle configuration, and then a transi tion to the second ordered phase shown in the

lowt'5t configura tion . This second tr&nSition is the recriea ta eicn tnnsition "'hich will
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be discussed in more de tail in the foUowing seceioes .

In figures 6. U, 6.12 and 6.13 the order parameters have been plotted for the same

val ues of K as in ligures 6.1. 6.2 and 6.3 respeeri vely, but for a nu.mber of diHerem

system sius. In both figures 6.U and 6.12 the finite size etr~ an consistent with

what is expec ted for a continuous transition. This is not unexpected as in the two

limiting cases discussed above, continuo us transitions were also found [9, UI. The

tr ansitio n from the paramagnetic sta te to the orde red state in figure 6.2 has the same

finite size etr~ seen in figures 6.1 and 6.3. It is reasona ble to conclude tha.t this

transi tion is the same as the order-disorder transition that is observed for the other

choices of K. Thus the results indicat e that an exchange inte raction is oot necessary

for the existence of a reorient atio n transi tion.

6 .2 .3 A closer look a t t he reorient a ti on transit ion

In figure 6.14, the two order parameters are shown in the region near the tr ansiti on

temperatur e. It is clear from this figure tha t the tr ansi tion does not exhibit the finite

size dfecu normally associated with a continuous transitioQ... One does not e beeeee a

ih&rpening in the tr ansition as the syste m size increases as is typi cally observed near a

second order phase transition. At the norientatioD transition the re is a sharp dro p in

the average energy, with considerable hysteresis as the temperature is cycled throu gh

the transition by first increasing and then decreasing the te mpe ra ture . This can be

seen in figure 6.15. This is typical at a first order transi tion . Tbus there is strong



' . ~ ', " '. . :

r.:': '.~ -' .'--_. -.---',..­
##_._-.-.~.- .-~ .-:~~--=---,--­---. , -. ~ -. . --#, .------. ~ , ~ .--. -.-. --. --., ~ . ---.-
-.---#-_#_## -#'.-.~,'--_#:.-~--

----#--. -,- -- #----- -, -- --. -. -.-.---, . ~ , . -. ..
, - • • - - # , ~ • , - - - • ,---, ------, -- ~ -.

, . , , '': : :; . . .
. ... . ' "
"" ', ' ": : ': :, ::.
: I ~ '. '. . ' "

"" " "" " ", ., . " " " , . " " , .
""" " """". . , . . " ", ..
, " ., .. , . . . , .. , .....,. " " , .." . , ..
"" . "". "",
" " " " " """,. ". " ... ." " .
" " " " " "" , ." .,. " "" "" ." ,. " "" ". " .,, ' ..... " ... . ' ., ., "" " """ ,.....' , ... "., ..

Figure 6.10: Exam ples of configurations in the three regions of the phase diagram with
K = 1.50 and L2 = 256. Figures on the left show the projection of the transformed
system into the plane of the film, while the figures on the right show the transfonned
perpendicular components . T = 2.00 (upper ). T = 0.80 (middle). and T = 0.3
(lower). Temp erature is in units of glk".



Figure 6.11: The order par ameters defined in equations 6.3 and 6.2 as functions o{
tempe rature {or K =0.5 for various size systems. Temperature is in units of giles.

Figure 6.12: T he order peramet era defined in equations 6.3 and 6.2 as functions of
tem perature for K = 1.50 for various size systems. Temper ature ill in uni ts of giles .
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Figure 6.13: The orde r parameters defined in aj,u.aUons 6.3 and 6.2 as functiollS of
eemperarure for K =3.00 for various size systeIUS. Temperature is in units of g/"" .

evidence tha t the reorientation trlUlSitioJl is a first ceder transi tiOD. This is consistent

with the previo usly published results concerning the reorientation tr ansi tion found

in ferromagnetic exchan ge dominated. systems [691. This leads to a very interest ing

questio n concernin g how the lines of 5m order tnnsitions are rela ted. when the phase

diagrams fot both S)'5tems are combined.. This question will be discussedin the next

seeetcn,

It is import an t to ecte that the location of the reorientation transi t ion can be

difficult to determine. There is typicall y considerab le hyste resis associat ed with a

first order tr&nSition and that is evident in the results provided by the Monte Carlo

simulation. f or examp le. figure 6.16 shows the perpen dieular order param eter and
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figure 6.14: The order parameters from figure 6.12 in the region of the reorteet a­
do n transition . All dat a shown were collected as t he temperature was decreasin g.
Temperature is in units of g/k s .

figure 6.15 shows the average internal energy as functions of temperature as calcu-

lated using both an increasing tempera ture and a decreasing tempe rature simulation.

The normal practice is to use the final configurat ion of one simulation as the ini-

tiaI configuration of a simula tion at a different temperature , using approxima tely the

first.10% of the Monte Carlo steps to aIlO"Jthe system to reestablish equilibrium at

the new remper aeure. T he change in tempe ra ture is always small , either positive or

negative. The meta- stability is most tro ublesome in the region where the reodente-

tion transi tion temper ature is very low, since thermally induced fluctuations ace very

weak. In this region successive simulations done with decreasing temperature often

will not switch over to the in-plane state even at the lowest simula tion temperatures.

The reorieuraeion can still be observed by starting in the in-plane ordered state and
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performing a set of simulations at increasing" temperatures.

6.2 .4 Phase diagram

In fi.gu.re 6.17 th e resul ts of the Monti! Car lo simul ati ons have been collected

to form a phase diagram. It includes the results shown above as well as a large

number of other simulat ions don e at variousvaluesof K and on a number of different

size syst6IlS. The phase diagram includes the t1rO lines of contin uous crder-discrder

t ransi t ions as well as the line of reorientation t ransi tions . If the line of reorient ation

tr ansi t ions is a line of first order tr ansi tions as it appears to be , then the point at

which it meets the two lines of continuous tIansi t ions is, by definition, a tri-cridcal

point. This point is indicated in figure 6.17 by a Larget riangle and is estimated to lie

at T =0.90 ± 0.05 and K =1.30 ± 0.05.

Th e phase diagram shown in~ 6.17 is redrawnschematicall y in Iigure 6.18(a).

Figure 6.18(b) is a schematic of the phase diagram predicted for an exchange domi­

na ted ferr oma gnet [69, 72, 94J. It is easy to see that while the two phase diagrams

show certain similarities there are a number olfundamental differences . In particular,

th e role played by-the in-plane phase and th e role played by the out-of-plane phase in

the reorienta tion t ransi tio n have been reversed. In the mod el stu died here the tran­

sition is from an in-plane sta te to an out-o f-plane st ate as th e temperature increases.

In the ferromagnetic model the ttansition is from e ut-of-plaa e to in.plane as temper­

arure is incre ased. Therefore the slope of the coexist ence: line is differen t in th e rwo
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figu re 6.15: The average energy as calcula ted with decreasing tempera ture (0) and
with increasing temperature (D) in a 40 J( 40 syste m with K = 1.70. Figure (b) is an
expanded view of the region near the reorientatio n transition showing the hysteresis .
Tempera ture is in units of 9f k ,,-
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Figure 6.16: The aVtta(t perpendicular order p.arameter as caku1ated.nth decreasing
tempera ture (0) and with intteasing temperature (0) in a 40)( 40 system .nth K =
LiD in th e region nar the rt!Orientation transition. Temperature is in uni ts of gIles-
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Figure 6.17: Phase diagr am obtained from Monte Carlo simulation. Region I is
ordered out-of-plane, region II is ordered in-plane , and n!gion III is paramagnetic.
The dashed line is a guide to the e~ b.igh.lightingthe line of lirst-order reorientation
transitions between the t1VOordered st ates. The solid lines are guides to the t)"e

highlighting the two lin~ of seeced order transitions from the paramagnetic state to

one of the two ordered 5U.tes. Points on each line are coded based on system size:
.V = 16%(0, 0 ) . 24%(0, 6 ) , 322(<1, . ), and 4oJ(t>,+) . Temperature is in units of
g/ k B.



models. being negative in the model st udied hu e and positive in the ferromagnetic

model. T he two lines of first order transition belong to a mt order surface in the

T- K· J phase diagram. The nature of this surface is an unresolved problem. which is

comp licated by the ecstence of the stri pe phases discussed. in chapte r 3. S one of the

previous studies considered the 5tripe phases in their ana.Iym.

Figur e 6.18: Schemat ic phase diagram for the dipolar model (a) and the ferromagnetic
e.."(change model (b).

6 .3 Summary

In summary, the phase diagram for a two-dimensional magnetic mo no-layer with

a dipolar interac tion and a magnetic surface anisotro py has been determined. as a

function of K and temperature . Th e phase diagra..mcontains three phases: a pazam-

agnet ic phase, an ordered phase: with the moments in the plane of the film. and an
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ordered pbsse with the moments perpe ndicular to th e film . T he rbree phases appear

to coexist a t a en-critical point. This is the point where the tine of reorientat ion t ran.

smoes. which appur to be first order , meets the two lines of second ceder t ransi tions .

Compariso n of this phase dia gram to that predieted for a system 'll'ith a dominant

ferromagnetic exth.a.nge interaction shows some sim.i1arities, such as the ecsteeeeof a

lirst-order reorien tation transition, but there are interesting differenct'S. In part icular

the sign of the slope of the coexistence line between the two ord ered phases is differ­

ent . thus the role played by the lowest energy par allel phase and the lowest energy

perpendicul ar phase in the reori enta tion tr ansition are reversed. It will be inteftSting

to see how the phase diagram changes as a function of Jts. ...hen pro per collSideratio n

of the stri pe phases is included in the analysis..
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Chapter 7

Conclusion

7.1 Summary of results

Th e goal of the studies upon which this thesis is based was to gain a bet ter unde r­

Standing of th e magneti c properti es of a model for a magnetic thin film. In parti cular.

a major focus was on undemanding the effects of the dipole-dipole interaction on the

phase diagram.

For a ~"Stem in which the magnetic momen ts ~ amstnined to orient perpendic­

ular tothe~, ground state energy calcuLatiotllll were used to establish the ground

sta tes for a system 91ith a short--range exch ange interaction as well as a dipole-dipole

interac tion . It wasshown that these ground states consist of stripe phases, with the

stripe width growing exponentiall y with the ratio of the strength of the exchange

interact ion to the st rength of the dipolar interacti on in the limitof large stripe width .
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This calculatio n helped. clarify • discre panc y be tween the pred icted gfOlUld sta tes

or calculat ions based all. a continuum model and those based all.calcul at ions ....hich

retained the discre te nature of the svseem,

At finit e temperatur e . the :\(onte Carlo stUd)' of the uniaxi al mode l proved to be

ve ry illumina ting . The simula tions showed that th ere was no evi dence of a sharp

order-disorder transition . as is found in the Ising model of ferromagnetism. Instead .

a broad pn.k is found in the specific heat , and t he natur e of the traIISition from

the low eempereture ordered phase to the fully disordered. phase is Do t clear. It

was also shown t hat there exists a phase intermediate to the fully disordered high

temperature phase and the ordered low tempe rature phase. Th e low temper ature

phase consists of stripes which are orientationall y ordered . This intermediate phase.

called the tetr agonal phase . consists of orientationally disordered stripes, The Moure

Carlo results indicated that the transition from the stripe phase to the tet ragonal

phase is contin uous in the absence of an app lied field.

The additio n of an applied field in the uniuial modelleads to • tetragonal pll.a.se

which consists of elongated islands. The transition from the low tempera ture stripe

phase to the tet ragonal phase appears in the Monte Carlo results to be lin t order for

large fields , but the results are not sufficient to det ermine if the transi t ion is weakly

first order or continuous for small fields. As in zero field, the te tragonal phase changes

contin uously to the fully disord ered phase in an app lied field. There is no evidence in

this st udy for the exist ence of a hexagonal or bubbl e phase. It is possible that tbese
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phases are st able in regions of phase space which our Mont~ Carlo simulations were

not able to probe (eg., at very low temperatures in high fields ).

The study of the dipolar planar model has shown that the finiu size effects seen in

order param eter , as calculated by the Monte Carlo simulation., can not be acecuaeed

for by a linearised spin wave caJc::u1&rion. Thi5 fact implies that the ordering observed

in the simulations will persist in the limi t N _ 00. The anal ysis of the t'A'o-point

corre lation funct ion indicates that there is a continu ous transit ion from the fully dis­

ordered phase at high temperature to an ordered phase at low temperature . T he low

temper ature ordered phase is stabilised by a thermall y-induced effective anisotropy.

t he magnitude of which.can be cru dely estimated at law temperature by comparing

the field conjug ate to the effecti ve anisotropy, to the equinlent field in the classical

XY model. Tbe spin wave anal ysis used in this thesis treated the full dipo lar inter­

actio n, including its long-range nature. A numb er of features which are absent if one

app roximates the dipolar interaction with a nearest neighbour exchange interaction

were bighlighted by this analysis.

The 6.na1 aspect of this thesis was a study of a dipo lar Heisenberg model with

a magnetic surface aniso tro py. Using Monte Carlo 5i.mulation to map ou t the phase

diagr am &Ii a function of temperature and the ra tio of the strengths of the magn etic

surface anisotropy and the dipol e-dipole intera ction, it wasshown that this possesses

a [l(M!1 reorienta tion transi tion. Th e phase diagram contained three regions : an

ordered region _ bere the magne tic moments are oriented perpe ndicular to the film,



an ordered rqion .....here the magnetic momeuts are orien ted parall el to the film.

and a peramagner ic phase, Separ ating these regions are two lines of second order

rracstttcas and a singl e line of first order transincas . T hese lines all appear to meet

at a tri-c ridcal pc inr.

7 .2 Future work

While the stu dy upon which this thl"Sisis based was ab le to provid e answer.;to a

number of quesrio as. there~ many _hich remain to be resolved

In the uniaxial model it is still uncl ear what the exact mechanism. is .....hich leads

to the transi t ion from the smeettc phase to the tetragonaJ.phase. While it has been

specul at ed that the t tansition can be understood in terms of the unb inding of topo­

logical defects(50. 38, 101. this has not been 6.rmly est ablished. There is also some

questio n concerning the stability of the hexagonal or bubble phase which h.as been

predicted to exist in an applied field at low tempera ture.

Th e linearised spin wa~ calcul atio n, done as part oB he study of th e planar model

was unab le to provide a suitable approximation scheme . A renorm&lised tre a tm ent

of the spin "a~ which tues into account the higher order te rms in the expansion

may be able to account for these results and provide a more detailed understanding

of the anisot ropy which is present in the mode1[92I. Th e stud y of the dipolar planar

model presented in this thesis is really just a starting point to understanding the

nature of this ~"Stem. The effect of the addition of MI. exchang e int erac t ion or an
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applied field has not been addressed at all. and needs to be ifone hopes to gain a full

understanding of the modeL It is also very impon an t whee one considers potent ial

ap plications of magnetic thin 6.J.ms.

As stat ed in chapter 6, th e study of the dipo lar Heisenberg model presented in

this thesis considers a region of phase space which is quite dilferent from th at of

the othe r gro ups which have been studyin g similar models . Th e results presen ted

here a.o.dthe resul ts of these othe r studies can be combined to define a large r phase

diagram. So far only small pieces of this Luger phase diagram are available and it

is uot comple tely clear how these pieces will lit together . As well, it is necessary to

consi der the results of chaptets 3. 4, and 5 in forming the large r phase diagr am as

each provides a limi ting case . l.n part icular , the existence of the stripe phases has

not yet been consid ered in a.o.y stud y of the dipo lar Heisenberg mod eL :-10 picture

of this mode l will be compl ete without a thor ough investigation of the stripe phases

and rbetr regions of stability in the phase diagram.
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Appendix A

The energy of stripe and

checkerboard phases

In this appendix the dipo lar contributions to the energy of the stripe a.nd the

checker board phases an ca1culatedas functions of the cl1ara.c:uristic domain size h.

For the stripe phases the dla.racteristic size is the t hidmess of the stripe. If the

magnet ic moments are uniaxial and perpendicular to the plane of the film, then the

dipo lar energy can be written as

(.\.1)

which is a simplification of equation 1.5. R..... = ~ - ii.. and aUdisplacemen ts are

scaled by the lattice constant a. T he stripe phases are trans.lationaUy invariant along

the -ydirection and are periodic trit h modulation length A = 2h in the i direction.

Given the symmetry of the stripe phases, the sum.over all spins ii..can be replaced
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by II..sum ever t he spins in a single St ri p of width h and a sum over aJ.lsu perle cdce

vectors Gof the stri pe phase. Therefore the energy can be rewri t ten as

1.\·2'

where the vector f .. :: (n) i' and is oonJi.ned to a single strip. The prime on the sum

over R... is a reminde r tha t the case when if... and f . - G refer to the sam e spin is

excluded. Given the periodici ty of th e square lattice, as well as the symme try of tbe

stri pe ·phases . (J bes been de fined such th at

G=91IU+!hIi· lUI

T he symmetry o f the stripe phasl'S also Jn8Q.5 that C'(R", ) = - O'(R... + hI) ....-tIh

/T(O) E 1.

The syst em will be mad e up of f equi valent spins, where N is the to tal numbe r

of spins in the system. Equation A .2 can then be written as

E= ~ t t 'LC1(G + ni')O'(m:t ) ,
h ..... , .... , c: If".- + GIJ

1.\.<1

with r- = (m - nJr . Equation A.... naturally breaks into two paru. The first pan:

contains the interaction between spins where f ..... "" O. Th e second part containJI all

other int eract ions . Therefore one can write

E = !!.(hc- (-1I"+ ~ ~' '''~)
h f;. lal' .!:'. ::; -;; 1'_+01" lUI

where the prime me~ that the term m = n is excluded from th e sum.
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The evalua tion of the terms appearing in th e above express ion is complica ted b~·

th e !ong.tange char acter of the dipo lar inte ract ion and is best accom plished by a

veriar ic n of the Ewald su.mma.rion technique descri bed. in ear lier work [2. 951. This

allows one to exp ress the above summation in terms of a combina tion of ra pidly

conve rgent series.

Consider the second of the two terms that appear in equa tion ..L 5. In order to

eval ua te this sum. the integral ~prftJentation

is used IUId the sum is written in two parts as

(A.51

(- i) "

~ 1r..... + GI 3
-:k I:(-i)" /,""' dp p'e- I.......-dl·,.
y 'fr d 0*~(- i)" (J: dplh-r'..--<:l·; +

[ dp P',- I'-~''') .

(A.'J

(A.8)

where F1 is an arbi tzary constan t. The second integral appearing in equation A.8 can

be readil) 'evaluated as

[ dPP', -I''''''I·.. ~F, (+_+ GIJ . (.\.9). ~"" +Gr
where F1(r ) is giVftl. by

to yield a rapidly convergent series
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The lUst sum appearing in equa tio n .\..8can also be made rapidly COD\"t'rge nt b}' 000.-

la ttice vect ors to give

where Fl(x ) has been defined as

- ( " - 1/2 )Q= 21l" - h-i + 12Y •

"-'here II and I, are integers.

(A.13)

(A. 14)

The first term appearing in equ atio n A.S can beevalua ted in a similar ma.nner

(_ I )"

EJ01

where, as in th e previous case , the integral has beendivided into two p&rt5 to improve

th e convergence prope rties of the summ ation.

The second term. in equatio n A.i S can be rt'adily evaluated to giw
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where the func t ioll F1(r) was defined earlie r by equation A.lO. The lim tenn in

equa tion .\ .15 can be evalua ted by uansforming the sum over lattice vectors to one

ever reciprocal la tti ce vecrors to give

.....here th e recipreeal Iattice veceorQ is given by equation A.1·1.

This integral can be readily evalu ated. to give

Combining terms one has that

A similar calc:ula.t ion can be carri ed out for the checkerboard phases . One begins

again with equa t ion A.I. The char acterist ic domain is now a squar e of size h by h.

Hence the s~'Stem now possessesperiodicity in both the i and Ii direct ions with a

modulation length. .\ = 2h. Th erefore the sum.~r all spins n can be replaced by

a sum over all spins in a single square of size h )( h and a sum over all super larnce

vectorsG.

E= E ,E E O'(r..+G>:(T",) .
il." ... 1 d IT.- + 0 1:1

(A.2O)

Here the vector r:. is confined to lie in a sing le square of sp ins. For the checkerboard
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phases tnt! superlat ttce vector G is defined 85

(.\ .21)

an d th e symmetry of the system is such that

(.\.2 2)

The system is now made up of t\ equi valent sites and one can write equ ation .-\.20

(A.23)

where both r... and f'", are confined to lie within the single SQuare of spins. l:sing

equ a tion .-\.22, equa tion .\ .23 can be wri tten as

E "" !!... (h2 E ( _ 1 ~.. +ft + f E'L ( - 1)"~~ ) , (A.24)
h2

C:¢CI IGIJ ....1 • • 1 r: Ir..... + GI3

where the prime means that the term m =n is excluded. from the sum . T he calcula-

rion proceeds exaetl.y as for the stripe phases and hence only the conclusion is quoted

here .

E '(L(-l)., ."F' (~I"II + .!.LEE '(-I)""'~)
y J:\.J... JGI' h

1
r;- I - l 1r..... + GI2

+ '~ L l2!F,(m)(1 +.!; EE""" ') - ,." . (A.25)
h Q 2 2'1 h -.= (_1 ~

ln this result the definitions of the functions F1 and F, are &5 given before for the

stripe phase calculat ion, but th e vectors G are as given in equatio n A.21 and Q is

now given by

(.\.2 ')



where i l and 12are integers.
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Appendix B

Spin wave expansion for the

dipolar planar model

B.1 The Hamiltonian

10 this appendix the dipolar Hamil tonian is expanded to leading order in due-

t uatio ns about the ground state. One begins with the dipolu colltributioo to the

In this expression

" ~ ~ L ·a· (f . )I""(f ••).-'(f . ).

'-"..

r.. =~+"rY ,

(B.l )

(B.2)
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where n..,n , =0. ±1 , ±2 . _.define the square lattice and all distances and disp lace­

ments have been scaled by the lattice constant a.

(8.3)

is the dipole-dipole interaction be t1FeeD moments separated by f .... = f'" - r.... T he

sum is a double sum over all teeue e points in the system, excluding n = m. as

indicated by the prime on the sum . The Hamil tonian is then rewrit ten in terms of

the uni t cell defined in figure B.1 using the llotation

(B-' I

(8 .5)

where Ii..is now a vector whk h indicates the position of the origin for a uni t cell

rather then a lattice poin t and is defined by

(B.6)

with nor,n,.= 0, ±1 , ±2 . . .. As shown in figure 8 .1 the vectors, r., define the four

sites in the uni t cell with

r, ""'Oi+ CIY (B.7)

f2=li+ Oli (B.8)

r3 ""Oi + ly (B.9)

~= li+ lli· (8. 10)



The Hamiltoni an can eheu be writt en as

(9. 11)

T he sums ever R... and R.... are sums over all unit cells as given by equation B.6. _ bile

the sums ever u and u an ever spins within a unit cell, Th e prim e on the sum !lO'OI'

indicates tha t {or n =m one must exclude tetm5 wit h u = u. ~ote that terms with

n = m, but l.i 'F II are included. in the sums.

~I
---
r. I, I I r I t I
I, I , I I I I I I
r I r I 1 I r I
I I I ! I I r I
I I r I I I I I
r I t I r I r I
I I I I r I t t
I I I I I I I I

F'igur@ B.l : The unit cell used. in the spin _~ ca1cu1ations . A uni t cell is 2lJ X 2lJ.
and contains '" spins . This figure shows 16 unit eells. The labelling :sch@IIl@ used is
indicated in th@ upper left unit cell.

The ground state can now be charac terised by a single varia ble using the trans-

format ion given below in equarious 8 .12 and 8 .13, which are applied to the magnetic

?'(f) ( - I )....~(f) . (9 .12)



d"'(f) ::: ( - 1).....,.'(1').

T he Hamiltonian can then writt en as

,, =i: L: 'a::( ii,, ) A:: r:::'.~(Ji.. I,
•• _ I n,...

where .-t..~ is given by

(8. 13)

lB.14)

(B.15)

which is just a con"1!'nient manner of representing the teverse of the transform (it is

a.lso the transform itself. since.~ is its own inverse). .-liter the transformation. the

spin. state can be specified by an angle o(it. + r,,) ;;;:8.... , such that

(8. 16)

sin (8......), (B. 17)

As stated previously in the text , all ground states will be charac terised by an angle .

80 , which is the angle the ordered spins make with the r .uis. ~ext the angle 8....

made by the spin at it. + ~ is perturbed by mme small amount 68.... ; so that

6..... -+ 80+ 68... . The Hamiltonian is expanded in terms of these ll.uetua tions, giving

Eo is the groun d stat e energy, while HI is zero by definition and defines the set of

angles 80 esscclae ed with the ground sta te configurations. H.2 gives the lowest order



derivat ives and evaluating the result at 9.... =90, 'Jl2 can be writt en as

'Jl2 = E i: d8i,l.' {-61'.'6iJ t E ( 1 -6j,m.6u' ) E B"''' .-t:~.r:~.:i '''+
j ,j 1' .k'=1 1<=1'" <>4

( 1-6;J61' .k,) ~~.4.~I'~I'Ji }69j" " (B.2O)

where B and C are defined as

8 = ("",(S, ) .m(S,) )
.m(S,) .m'(S,)

c- ( .m'(s') - .m(S,) ) .
-sin(9oJ cos2(90)

vexe. one Fourier transforms the lI.uetuations in the magnetic moments . such that

while the Inverse tr ansfo rm gives

(8. 21)

(8. 22)

where the integral is over the first Brillouin zone. The first Brillouin zone is a square

with -'I > q.. > '1- Two useful results are

~ 10.. eif·(I-!f 'j J(R - H'), (B.23)

E ,«-" j·· "' E'(q-q' +Q), (B.24)

• •



where Q is a reciprccal larnce vector . After substituting equatio n 8 .22 iJuo eqwn ion

8 .20. and simpl.ifyingOIlC can write the Hamil tonian as

wlUch is equivalent to equation 5.1 quoted. in the main text. G...{q) can be written

-....:,~ i:Ell - ;(il);_)~8"' r;:(ill +
". U _ I if

-f;~~(l - ; (ill;••).-t::co· r;:(il), -.. • . (B.261

To simplify later calculations and to highlight feat ures of the ~"Vi.oU5 terms . the q-

depe ndent and q-independent parts of G. ..(q) are separ ated ;

G",,{qi =6...A.. + -Y. ..(q), (B .27)

where

.... -.:,~ i: ."::8"'<>::(0), (B.28)
'If" U n !

>-(j) ~~~c;-a6~ (q) . (B.29)

~(j) ~(l - ; (il)s; )r;:(il) , - .. • . (8.30)

•
To calcula te .1= (q) the stand ard methods of Ewald summations are applied as has

been explained previously in Appendix A and in earlier work [221. The result for

u # v gives



while for II "" II

(B.32)

where r(%;y) is the incomple te Gamma function and erfc(x ) is the complementary

error functio n. In this form it is pcssi ble to diciently calculate ~(q), and hence

the H&miltonian.

B.2 Partition function

This is a. calculation of the partition function of the di polar systems in the spin

wave app roximation for a system of finite size, .v=2L x 2L (L2 units cells and 41.'

spins ). By de finition the partition function is giveu by

z « E oxp (;~) .
all sta tes B

(B.33)



In the sp i..Q "'a~ approximation one can wri te this as

with

H_[«Jl) ] - /T E O(R)G(R- Jl')« Jl'). (B.35).....
F(ii)l specifies the set of orienta tions of all the spins i..Q the system after being"

t ransf ormed by the transfo rm given in equations 8 .12 and B.13. To sim plify the

expressions the following notation is adopted. ~ii) = (.I . 4>,.'~'.4J is a lour com-

ponent vececr _hich gives the orienta tion of the moments in the unit cell "IIithorigin

at R.. Matrices will be denot ed with either a • or -. where the - will signify a diagonal

matrix. Any four component vector will be signified by the - over line. The foUowing

subst itutions are now made:

After Fourier transfofDIatio n the Hamiltonian can be represeaeed by

H_ I. (q')1= E Olq') 'G(,I 0(- '1'
(

(B.36)

(B.3O)

(B.38)

The tempe rat ure dependen ce or is now contained in G (q'). The part ition function

can now be writ ten as
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In changing from int egrals over t:l(R) to integrals over t:l (q). the integra t ion has

chang ed from being cr.~r real fields to an integration over complex fields and hence

mighI ap pear to han Increased the degrees of freedom from 4L2 to aL2. This is

nor the case , since by symmetry ~ (41 = dJ*'( -q) . To adjust for this change the

integr at ions are only over ddJ (ql. where q lies in th e uppe r half of the Brillouin ZODe

(the half above q, =0) . Bear in mind that at thi5 point the 5UDlS over qst ill run ever

the entire Brillouin zone.

Th e nat step is to diagonalise a(q') by changing th e basissuch tha t

The matrix P is chosen such th at

(BA 1)

is dia&onal and hence j:iJ{-if) are the eigenvectors of (;(41 . One defines;: ::: P;

plat e tha t the components of ¢ will he numb ered 0 -+ 3) . Equation 8. 38 can be

rewritten as

H_ I' (;)! = L . (<)'G(q)" (- ,1,
= Lt "' ('11". (<)I'

, .~

= 2L,t'. (q'JI".(q'JI'., .~

(B.42)

(B.43)

(B.44)

where th e >... are th e eigenvalues of G. The sum over q is now ever the upper hal! of

the Brillouin zone. with the factor of 2 accoun ting for th e bot tom half.
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One can now substit ute equation 8 .-1-1 in tO equation 8.3-1to yield

z.; IT.' r:. do(" •xp (-2 i: ,\,,(;) lw.(;)I' ) (BAS)
f - "'" 0 -0

II ' r:. do(;) IT _ (- 2,\" (;)1". (;)1') (BA6)
f -a:> 0 -0

IT.' r:. ~(;) J (;) IT _ (- 2,\,, (;)1".(;)1') (B.<7)
( -- 0 =0

IJ 'J (;) .~ r:. "". (;)_ (-2,\,, (;)1"'.(;)1') , (BA8)

where"J (q) is the Jacobian. One must be careful here as the integration over dw.. (ql

is over the complex plane . Hence one has that

/ "",._ (-2,\,,1": 1) - f dBJ:"1",.1_ (-2,\"1,,. 1' ) (8. ' 9)

- 2r(~) (B.50)

(~) , (8. 51)

and the finalresult is that

Z_ IJ 'J(;)grl:;
_ II ' , <J(;)

( lSft. Ao "

fro m equa tion 8 .53 one can calculate the free energy, which is given by

(8.5 2)

(B.53)

(8. 54)

(B.55)

(8.56)



ISO

B .3 The order parameter

Sow the order parameter, as defined in equation 5.14. is calculat t'd within the

spin wave ap proxima tion for a finite system of size .v =2L x 2L . Without loss of

generali ty it can he assumed that the system orders &long the y direction and hence

th e order parameter can be wri tten as ,

+ ~ :J, (~ t. ",, (o. (R)) ) (B.57)

:J, E E (",, (o.(R))) (B.58)
If;"·

:J, E E (1- ~01 (R)+ . ..) (B.59)
A i_ \

:J,EE('I- gT, EE (ol(R)) +0«01)) (8. 60)
if ,.1 if ;- \

' -gT,E E (01(R) ) (B.61)
I. ,- \

It has been assumed t llat the lluetua tions about the ground state ere small and one

need only calculate eerms of order 4l~ . The second tenn in equa tion 8 .61 can be

written as

TA (N ) gT, E E (01(R)) (8. 62'
il O:-'

gT,~ ~ t. [(~iQ/ dO, (k)) ol(IlVR.+ (8.63)

where .leN ) is defined with coastderable foresight , and T is tempera ture . H IW is the

spin wave approximation to the Hamiltoni an as given by equation 6 .38. Continuing
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by Fourier transform one gets for this second term

TA (.V):: (B.6-I)

W~~~ [(~ 'il l d~i(~)) * >t4>i(q)e~R~ ~a>i«)t~·j(

'XP (- ~t (..)a.(..»)] (B 65)

wiLt [(II' iI l <14>, (,») ~L \o.(<J,,(")"H"
j( ""I (" :i..1 f~

_ (-~t (q" )a.(n)] (B.66)

wit [(II' iII <14>1(.-») {, L"(<JoM)L.""" ··
;.01 f" ,-1 • f~ j(

'XP (- ~t (q") a. (q"») ] (B.67)

wi i: [(II' iII do,(,»)~L•.(;).M),v,u
,.. , <i'" :i- I . fA'

(e- I:, ;'{( IG«()) ] (8.68)

- -!;It [(II' iIldOl(n)D''(;)I,(.-I;';''''''''''l] (B.69)
8L Z ..., .. :i_ I (

-!;l i: [(II' iI 1<14>1(,»)L '210.(.11' (.-'1;, "''''''''''l] (B.70)
8L Z ... I r :i~ 1 f

~-Zl i: [II 'n / d4:i (ti1 E ' 1¢i(q) 12t-U'((~i{I'J] , (B.11)
-IL ..I I' :i_ I (

where the sums have been adjusted to run over only the upper halfof the Brillouin

zone, with the appropriate factor of 2 to compensate. Now one writes the partition

function out in fullso that one has

(8.72)
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When if F q,certain terms in the sum in t he numerator and denomina tor ate

identical and will cancel. One is then left with

_ 2.... ,[fca(41I'i (q) 12e-~(qlC~41J

T.'(.V) - 'L' ~ [[""(<l<."-'''''''-J .
One can diago nalise the matrix as in the previous section such that

G PCP'.

(B.731

(B.O<I

(B.75)

where as before G is diagonal with eigenvalues ),.." and the eigen~tors are given by

tI .. . Thisgives

(B.76)

The Jacobtens in the denominator and numerator are independent of the coordinates

and hence can rome outside the integrals and then cancel. T he memx p-I is the

inverse of P. Because Gis a diagonal matrix one can simplify equation 8. 76 as

TA (N)
_ .1...L; J d;;(<lIP·',;ml' _ (-2l:.,>..-':)

'L' ( [d';(.'_ (-2l:.>"~)

_ .1... L; Jd;;mIP·'';(<lI're.._ (- 2>..>:)
4L2 f fd"'(9) n~-oap (-2),..,,~) .

(B.17)

(B.78)

E.umination of the term IP- t~(q)12 shows that the even terms upon expansion (odd
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:':0\1' the integr al in the denomin ator is identical to that seen in the calcul ation of the

partition func:tion and the result is given in equ atio D.B.51. It is important to recall

that this~al is ever all space in the complex plane . Taking the integral in the

denominator one has

f~dOf Iw"'ldlw"'I!1b"'12e-v....I.....1

2,,"[ dl1tl"'II1>"'12e-v.... '.... i1

2rk
r

W ·

(B.80)

(B.81)

(B.82)

(B.83)

Subsneutio n back into equation B.79 yields as a final result ,

(B.8-I)

(B.83)

(B.86)

Therefore the order parameter (or a finitesize system on the square lat tice can be

written in the sp in ....~ a ppraEimatioD.as

• = I -TA(N )

1 'I
1 - W ~ ',?;:c'

(B.87)

(B.88)

and one is remind ed that A(N ) has been defined rather thaD explicitly calculated at

this poi.nt.
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B. 3.1 Asymptotic b eh av io ur

Calculat ing the order parameter in the limit as N --I> 00 is still not a trivial

calculation. This is due to the soft mode in the eigenspeetrum. The goal is to

, ' 1
T A(N) " w~ 'E>: (8 .89)

For a sys tem of m e N = Lx L the sum over qisover a finite number of terms defined

by

(8 .90)

where n,., = 0, ± 1, ±:2 .. ± (L - 1)/ 2. Three branches of the eigeaspeerrum remain

finite as q ..... O. Th e fourth branch, which will be labelled as "o(q'). doesgo to zero

as q goes to zero an d will ca use difficul ties in the limit of large N . In the limit as

.'Ii -+ 00 the sums over ii for all branches except J.o(qj can be converted to integrals

and evalua ted. That is

! "">"':<l
Teo.

(8 .91)

(8. 92)

where the temp era ture depende nce of >... has been explicitl y extr acted and ell is a

cODStant independent of N for large N . For..\o one must be careful since

(8.93)



I So')

which will lead to a divergence at f= 0 in the limit of N -+ 00 . One can define .\ (ql

such tha t

(8. 941

where lJ is th e average of D(q) over all angles:

(B.95)

where (J is the angle q makes with the ~-u:is. Therefore

sb~ 'Ao~V :: sF~ 'A;V + 8~2 ~ ' D~ (B.96)

"" T~+W~'D~2 (B.91)

The first term is indepeadeet of N in the limit N _ 00 while the second will define

the dolllinant .V dependence. Evaluating the second term giYeS

(B.98)

where Co is a ccnseent independent ot N.

Fin.aJly oombining all the contributions give!S in the li..m.it of large N give!S

1 J 1 1
8N~ 'E:;: -g;jJ(In(N) + C), (8.99)

with C a constant independ ent of N . C includes all th e contri butions de.liD.ed above

and is given by

C =81tiJ (~+Cl +c,+CJ + ,\0.) (8. 100)
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Thus the order parameter as calculated in the lineerised spin wave approximation.

varies in the limitof~ system size N as a functionof temperature and .Y as

~ ~ 1 - 2:.-(ln(N) +C).
8.0

(8 .101)
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