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Abstract

The effect of porosity, void shape, and aspect ratio on the mechanical behavior of porous ductile
metals was studied. Traditional finite element models were developed to predict the elastic
modulus and yield stress of porous representative volume elements as a function of porosity and
void aspect ratio. Corresponding models were built and tested in ABAQUS for comparison. The
effect of void shape and aspect ratio on effective mechanical properties was observed and the
necessity of finite element simulations was confirmed. An algorithm for the generation of realistic
porous powder-based sintered representative volume element models was fully developed and
implemented. A series of models were generated and simulations were performed to extract the
effective stress-strain behavior using continuum mechanics methods. Comparisons to existing
experimental data for porous sintered metals determined that the three dimensional models
generated by the novel algorithm accurately predict the elastic, yield, and plastic deformation

behavior of porous sintered metals.
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General Summary

The following work details an investigation into the effect of porosity and pore shape on the
behavior of porous metals. These porous metals are less dense than expected due to internal
pockets of gas or empty space called voids. The total volume of the internal voids, as well as the
shape and aspect ratio of these voids, is known to have a pronounced effect on the stiffness and
strength of a porous material compared to the fully dense characteristics. The research presented
here first demonstrates and confirms the effect of void shape and aspect ratio on the mechanical
properties of metals. An algorithm is then developed to generate models of porous material that
serve as a more realistic representation of the voids found in 3D printed metals. These new models
are found to accurately recreate existing experimental data from actual 3D printed metal

specimens.
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1. Introduction

1.1. Background

Porosity is a physical property of a material which describes the volumetric fraction of a
specimen that is effectively void of structurally significant material. For non-composite materials
the porosity of a specimen is functionally tied to its relative density by Equation 1.1, where p is

the specimen density and p,, is the established fully-sound material density.

p=1-£ (1.1)

Po

A material may exhibit a reduced density and therefore an increased porosity through a
variety of mechanical, thermal, or chemical routes, the most prominent being induced porosity
resulting from fabrication processes such as casting and curing. Porous materials are generally
understood to contain a multitude of uniformly distributed voids of various shapes and sizes,
however, this designation incorporates everything from cast metals with gas impurities to cellular
structures and foams. The voids whose volumetric sum comprises the porosity level have been
observed to vary wildly in size and shape depending on the fabrication method and post-processing
of the material. Porosity level is known to be inversely related to various mechanical properties
including elastic modulus, yield stress, ultimate tensile strength, failure strain, and fatigue strength
in metals, and many analytical models have been developed to capture the effect of porosity on
these characteristics. A sizeable list of linear, power, and exponential relationships describing the
effect of porosity on elastic modulus was tabulated and investigated by Choren et al. in the interest

of informing additive manufacturing design [1].



The emergence of additive manufacturing, specifically powder-based metal AM, has
drastically increased the prevalence of porous materials with non-traditional void shapes. The
voids found in sintered materials are observed to have a degree of variance that is significantly
greater than that of non-sintered material voids, as well as more extreme aspect ratios, stress
concentrators, and potential void interactions. Given the relative novelty and rise in popularity it
is necessary to investigate the relationship between porosity and mechanical behavior for these

materials.

Figure 1: Characteristic Pores in Laser-Based Powder Bed Fusion Parts [2]
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Figure 2: Examples of Void Defects in Non-Optimized EBM Builds with Cylindrical Geometries from
Ti-6Al-4V Powder [3]

1.2. Thesis Overview

The purpose of this thesis was to investigate the effect of porosity on the mechanical
behavior of porous metals fabricated from a powdered base material by process of sintering,
specifically the additive manufacturing process of selective laser sintering. The investigations
conducted include traditional finite element analysis of single-void models, finite element analysis
simulations of single-void representative volume element models, and the development and testing
of an algorithm designed to replicate particle mechanics and generate realistic models of porous
sintered materials for the purpose of finite element simulation. Throughout the course of these

investigations the effect of porosity, void shape, and void shape characteristics were tested to
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determine their effect on material behavior. A series of finite element simulations which
correspond to existing experimental data were conducted using models generated by the novel

algorithm to gauge the accuracy of the realistic particle-based models.

Section 2 presents a literature review and general overview of the concepts and physical
phenomena investigated in this work. Section 3 examines the behavior of porous materials
modelled as units with single void inclusions. In this section, traditional finite element methods
are employed to develop equations that describe the behavior of these single void models. The
performance of these analytical models is tested against computer simulated models to ascertain
the significance of non-linear deformations in porous materials and validate further simulations.
Section 4 outlines the development of a novel algorithm for the generation of microstructural
models of porous particle-based solids. Section 5 is comprised of the testing and analysis

performed to verify and validate the algorithm developed in Section 4.
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2. Literature Review

The goal of metal and ceramic-based additive manufacturing (AM) is to fabricate complex,
near net shape parts rapidly and with minimal tooling cost [4—6]. Selective laser sintering (SLS)
and selective laser melting (SLM) are two subtly distinct methods of powder-based AM. Powder-
based AM fabricate near-net shape parts primarily via one of two methods: powder bed systems,
which selectively heat consecutive cross-sections with a controlled laser, and powder feed systems
which simultaneously heat and deposit material from a moving head [7,8]. The SLM process is
characterized by the complete melting and solidification of powder base materials during
fabrication. By contrast, the SLS process heats particles to a temperature below the melting point
but sufficiently high as to promote the fusion of neighboring particles through solid-state sintering.
Materials produced via SLS are observed to have a macrostructure similar to sintered compacts
produced via powder metallurgy (PM) processes. Powder-based sintered metals are observed to
have decreased grain size compared to the wrought material and mechanical properties that are
distinct from that of SLM and non-AM material [8—10]. Research from Iebba et al. [11] and a
recent investigation by Brika et al. [12] indicates a link between the morphology and size
distribution of powder base particles and the mechanical behavior of corresponding 3D printed
materials.

The naturally occurring void imperfections observed in sintered materials are unique in
both shape and size compared to the macro-scale voids observed in non-sintered solids, which are
generally ellipsoidal. This shape disparity has a significant effect on the material’s mechanical
behaviour [13]. Specifically, void shapes inherent in sintered materials facilitate compaction
deformation under compressive loading thereby exacerbating the disparity between the tensile and

compressive elastoplastic behavior of sintered metals [14,15]. The accurate prediction of the
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mechanical properties of low porosity sintered materials is essential to the process of powder-

based AM design.
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Investigations into the mechanical behavior of AM materials have been augmented
significantly by simulation techniques developed through composite materials research, such as
the representative volume element (RVE), in concert with modern finite element analysis (FEA)
[16,17]. Microstructure modelling in particular has proven to be a powerful tool for assessing
material properties [18]. Modelling and analysis of a microstructural element can accurately
predict behavior while simplifying the process of parameterization where a descriptive analytical
model is desired. In the case of porous sintered materials, the microstructure has yet to be modelled
in a generalized manner such that behavior is accurately predicted [19]. For the purposes of
simulating a sintered material we have chosen two essential physical measurements: a probability
distribution function (PDF) of particle radii and the relative density of the finished part. These
parameters are chosen prior to manufacturing, where the relative density of a completed part is
determined experimentally or is, in some cases, reported as a function of scan speed, temperature,
pressure, and/or laser power [20,21].

The precise manner of computational solution we have developed is an investigation of the
homogenized response of a porous sintered material. This entails constructing a pseudo-random,
geometrically analogous micro- or meso-structure whose mechanical behaviour is equivalent to
that of physical specimens. Homogenization and generalization of stress-strain behaviour from
microstructural simulation is made possible by the application of continuum mechanics principles.
This information is sufficient to evaluate the mechanical behaviour of an arbitrary shape whose
material properties are known. The continuum approach introduces the assumption that the
structural element may be treated as an infinitesimally small element surrounded by identical cells
under identical load conditions. The use of cubic periodic elements for the purposes of

investigating effective mechanical properties has been validated for porous, powder-based AM
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metals [22—-24]. In addition to vastly simplifying microstructure simulations as a whole, the cost-
effective simulation of infinite cells has been a powerful tool for those studying porous and cellular
solids.

One of the earliest instances of the attempted simulation of porous solids comes from
Woodmansee [25], who attempted to categorize the response of porous materials by porosity. This
work was unable to evaluate the behaviour of non-linear materials. From there a variety of non-
random porous and cellular models cropped up for use in particle-reinforced ceramics and the
investigation of porous material behaviour [26]. The microstructure modelling toolkit Mote3D
provides tools primarily for the generation of particle-reinforced composite models with support
for sintered particle modelling, however it does not consider relative density as a parameter, instead
modelling sintered particles based on sinter neck distance [27]. This method is not appropriate for
the modelling of sintered AM microstructures as mechanical properties are very sensitive to
changes in relative density induced by void defects [28,29] and powder morphology [30]. It is

therefore imperative that a sintered powder model achieve a precise targeted relative density.

22



3. Pore Shape Effect

To study the effect of void shape and void aspect ratio on the mechanical behavior of a
porous material, a series of finite element analysis simulations were conducted on 3 primary shapes
at the same fractional porosity level in 2D and 3D. The 2D void shapes used in this study are
elliptical, rectangular, and equilateral quadrilateral. In 3D the void shapes are ellipsoidal, cuboidal,
and equilateral octahedral. The aspect ratio refers to the ratio of the primary axis length (in the
direction of applied load) to the secondary axis length. In 3D the aspect ratio defines both the 1-2
and the 1-3 axis length ratios. The aspect ratios studied in these simulations are 1:2, 2:3, 1:1, 3:2,

and 2:1 at a porosity of 4%.

The models containing ellipsoidal voids are intended to capture the behavior expected to
arise from traditionally manufactured porous materials, such as cast metals or resins. These voids
are generally a result of thermal effects, impurities, or trapped gasses. The quadrilateral/octahedral
void models represent materials which contain significant stress concentrators aligned normal to
the direction of applied force, which is akin to the voids we observe in powder-based sintered and
additive manufactured metals and ceramics. Lastly the rectangular voids show the mechanical
behavior of a porous material with stress concentrating features that are not explicitly oriented in

the worst-case configuration, as the quadrilateral voids are.

3.1. Analytical Modelling

For each of the void shapes, a traditional finite element model was derived to predict the
effective stiffness and yield stress of the porous material. A unit element containing a void located

at the center is used to formulate a system of springs in parallel as seen in Figure 5. The axial
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stiffness of each individual segment is derived by integration through the direction of applied load,

otherwise known as the analytical stiffness method for a non-uniform bar.

Figure 5: Model & Spring Diagram

It can be shown that for the above spring diagram, where k; = k, and k, = k5 the total

stiffness of the system is:

kik,

keop = P 3.1

Given that the length L; is a known quantity defined by the porosity and aspect ratio for each

shape, the stiffness k, is derived below in matrix form.

Lq Ly
ﬁzngQQAdxzziLi[_ll ‘11” 1dx
0 0
E _ E _ E _
ﬁZZ_Ll[—ll 11] N —[—11 11] N 1——2a[—11 11] (3.2)

1
2(3-9)
Where a is the major axis length of the void. The B matrix is derived as follows, assuming linear

displacement under fully elastic strain and using shape functions N; and N, as shown.
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u(x) = N1d1 + dez (3.3)

X
N,=1-— (3.4)

Ly

X
= 3.5
N, =1 (35)

1 d 1

= ’:—L— —_— = |- .
B=N L1[1 X x]dx L1[ 1 1] (3.6)

Unlike the derivation from Equation 3.2, the stiffness equation for k, considers a case where the
derivate of area with respect to x is non-zero. The function A(x) varies for each void shape. The

following section details the derivation of the various model characteristics.

Figure 6: Void Shapes at 3:2 Aspect Ratio



3.1.1. Elliptical Void Stiffness Derivation

Yy

2 2
A regular ellipse is described by the equation (g) + (—) = 1 where a and b are the major and

b

minor axis lengths respectively. The area of an ellipse is given by A = mab and the aspect ratio

gives the equation 4 = a/b. Since the enclosing region is a unit square, the area of the void is

exactly equal to the porosity P of the material. Given some porosity and aspect ratio the

corresponding axis lengths are developed as follows.

P = mab
1=2 5 p=2
)
a AP
P=7ra(z)—> a= |—

Length of element 1:
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(3.8)

3.9)

(3.10)

(3.11)

(3.12)



Stiffness of element 1:

EA E
ky = — = (3.13)

Stiffness of element 2:
Ly
E
0
Rearranging the equation of an ellipse gives y, the width of the void, as a function of x:

y=b fl - (g)2 (3.15)

Area of solid section as a function of x:

A,(x) = 05— b /1 - (g)2 (3.16)

We know that in Equation 3.14 the length L, is equal to a. Substituting 3.16 into 3.14:

E |1 1 2 1 X
k,=—|=x —=bx 1—(—) —Eabatan —_— (3.17)

a?|2 2 a . 1_(%)2 O



2
At x = 0 the integration term is zero. At x = a the term /1 — (2) approaches zero and the

arctangent term consequently approaches % The simplified equation is therefore:

k, = (1 1b) (3.18)
2= —(5a—-Zabm .

Substituting Equations 3.7 and 3.9 into 3.18:

. _ Em , AP p _Em| |42 X (3.19)
27 40P T 42\ |mP '

The total stiffness can be written as follows:

_ E(Z\/ﬁ — n\/ﬁ)
kot = T P 4 2P (3.20)

The effective yield stress of the analytical model is approximated as the overall stress at which
yield should occur at the weakest cross-section of the model, i.e. the smallest area. The effective
yield of the unit element model is therefore a function of the material yield stress multiplied by a

geometric function of porosity an aspect ratio describing the width at the midpoint.

Effective yield stress equation for a 2D elliptical void:

o, =0, 1-2 |-= (3.21)
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3.1.2. Rectangular Void Stiffness Derivation

Figure 7: Rectangular Void Model (2:1 Aspect Ratio)

1
P=4ab - a= E\/AP (3.22)
1 |P
== |[= 2
b 5 |7 (3.23)
P
Apin =1— |= (3.24)
y)
Length of element 1:
1
L, = 5(1 —AP) (3.25)
Stiffness of element 1:
EA, E
k, = = (3.26)
YT L T (1-+2P)
Stiffness of element 2:
1 P
=05—-bh==1- [= 27
A,(x) 05b21 7 (3.27)
a
k, = E 1 P dx = E 1 P
27 2q2 214~ 24 A
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__E (A-VP)_E[ |a_
kz_\//l_P* 7 _lj; 1 (3.28)

Total stiffness:

L EWPI-2)
ot JPA— A — PA

p
oy =0y| 1 —j; (3.30)

3.1.3. Quadrilateral Void Stiffness Derivation

(3.29)

Effective yield stress:

Figure 8: Quadrilateral Void Model (2:1 Aspect Ratio)

’P/l
P=2ab- a= - (3.31)

P
b= 77 (3.32)
’ZP
Amin =1- Zb =1- 7 (333)
Element 1
1 1
Li=5-a= 5(1 — 2P (3.34)



EA, E

k., = = 3.35
UL T 1-+2P2 (335)
Element 2
X
A,(x) = 05—b (E) (3.36)
a
el E (A Y _E[ b T
27 g2 ) \2 x(a) x_az[zx 2ax]0
0
k _£<1 1 b)—E —M (3.37)
2= —3(za-zab)= N .
Total stiffness:
E(vV2PA— 21
tot — ( ) (3.38)

V2P — 21— 2PA

Effective yield stress:

2P
oy, =0,| 1— ’7 (3.39)

3.1.4. Ellipsoidal Void Stiffness Derivation

z

N2 ()2 2
An ellipsoid in 3D is defined by the equation (Z) + (;) + (Z) = 1, where a, b, ¢ are the three

primary axis lengths. In this investigation the ellipsoids are modelled as rotationally symmetric
about the x-axis, i.e. b = ¢ and any cross-section of the ellipsoid in the y-z plane produces a circle
of a well-defined radius. The area of this circle is subtracted from the area of the solid section to

give the area function 4, (x) for determining stiffness.

p = rabe = Xpapr = 1 (3.40)
—37Ta C—3T[a = 312 .
1 1
_(3P2)3 b—<3P)§ (3.41)
a= 41 - b= 41 '
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Apin =1— b2=1—13ﬁ 3.42
min m 2 212 (' )

Element 1:
1
L= 1 3PA%\3 (3.43)
1702 4 '
EA 2E 2E{m
ky = le =3 = = (3.44)
1 1 6Plz 3 \/E - VGPA
T
Element 2:

D@+ O =0 2@ =1-y o f(1-()) e

In the context of the cross-section, y is the radius of the circle therefore

R ()

13’367TP2 T
AZ(X) =1 —g A—2+ﬁx2 (346)

Note: Equation 5.6 is the area of the entire cross-section, unlike the 2D formulations. The resultant

stiffness will consequently be modeled as four springs connected in series.
a
. _Efl 13367TP2+ s 2 4
2T g 2 22"
0
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a
o = E X3 367TP2+ T _ 3| 41 3| 2P (3.47)
2T 2" T8 T2 Texrt| T 322P  |362% '

0

The total stiffness is developed as follows:

1 kqik
-1 172
_ N = 3.48
ktOt k1 + kz ktOt 2k1 + kz ( )
For an ellipsoidal void:
E(V482% — YnP?)
(3.49)

k =
ot T 34822 — YmP? + P62

, 13|9P%n
O'y = O'y 1 —E W (350)

3.1.5. Rectangular Prism Void Stiffness Derivation

Effective yield stress:

The 3D rectangular prismatic void used in this study has side lengths [2a, 2b, 2b] and a volume of

8ab?.
8a3 1
P = 8ab? :A_Z_) a=§3\/P/12 (351)
13|P

=— |= 3.52
b > 17 (3.52)

2

P\3
A =1—(2b)2=1— (I) (3.53)
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Element 1:

Li=5-a=2(1-PP)

EA, 2F
Ly 1-3YP2z

Element 2:

A,(0)=1-(@2b)2=1— (5)§

Since A, (x) is constant the stiffness of element 2 is developed as follows:

Effective stiffness (per Equation 5.8):

. E(¥2P% -))
Pt APz — 1= AP

Effective yield stress:

3.1.6. Octahedral Void Stiffness Derivation

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

The 3D version of the quadrilateral void shape from 2D is that of an equilateral octahedron, or

square bipyramid, where the major and minor axis lengths are the distances between opposing

vertices.
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The volume of a square bipyramid:

4
V=P=-ab?= (3.60)

_33/12P b_a_33P (3.61)
= T4 TP m '

1 5 3|Qp2
Amin =1- 4<§b ) =1- ﬁ (362)
Element 1:
Lo 1 B 1 3(3A2P (3.63)
17727973 4 '
EA; 2E
k. = — (3.64)
YU L 1-36A%P

A cross-sectional view of this void in the y-z plane presents a square for which the distance from
each vertex to the center is equal to some function y(x). Since the points lie on a straight line we

develop the following:

y(x) =c1x + ¢, (3.65)
y(0)=0- ¢, =0 (3.66)
y(a) =cqa=b - ¢ =§ (3.67)
The solid area of the cross-section:
A,00) =1-2y(x)2=1-2 (g)z x2=1-2 (;)2 (3.68)
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a

B[ 2 ., _E [ 2 3]“ _ E(V122% - ¥2P2) (3.69)
z—azo Y= 2T 3eX 0 23/9P1 :
Effective stiffness:
E(3\/6/12 — W)
(3.70)

k. . =
ot = Y61 — UP? + V6P 2

3|19P?
0'3’, = O'y 1-— ﬁ (371)

3.2. Finite Element Analysis

Effective yield stress:

Computational models were constructed for each void shape for finite element analysis in
ABAQUS. For each unique shape a cell partitioning method was implemented to divide the models
such that the whole model can be meshed using structured quadrilateral elements (CPS4R) in 2D

and structured linear brick elements (C3D8R) in 3D.

To extract the effective mechanical behavior of a porous material from a single unit cell,
reference points are placed at the center of the top and bottom faces. A constraint is applied to
these faces which ensures that the face nodes experience no translation whatsoever relative to their
respective reference points. The bottom reference point is fully fixed with zero degrees of freedom
and the top reference point is constrained to only allow for translation in the direction of applied
force. A displacement is applied to the top reference point with a ramp function which spans the
simulation step. Output requests for force and displacement are applied to the bottom and top nodes

respectively. Due to the height and cross-sectional area of the model both being equal to 1, the raw
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data collected from these nodes corresponds exactly to the effective stress and strain behavior of

the porous representative volume element model.

The model used to define the behavior of the non-porous material is called the deformation
plasticity model in ABAQUS, which is based on the Ramberg-Osgood relationship shown in
Equation 3.72. This model uses a yield offset constant and a hardening exponent to accurately
describe the elastic, yield, and plastic deformation behavior of ductile metals up to the ultimate
tensile stress.

n—-1
o o
e=—=+ao <—> (3.72)
E ay

Once simulations are complete, the resultant datasets are analyzed to determine the elastic
modulus and yield stress of the representative volume element model and consequently the
expected characteristics of the porous material. The yield stress is computed using the yield offset
method with the given value a as the offset strain. Linear interpolation is used at the point of

intersection to provide a more precise yield stress.

Figure 9: Rectangular Void at 2:1 AR Figure 10: Quadrilateral Void at 2:1 AR
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Figure 11: Meshed Elliptical Void at 2:1 AR

3.3. Results & Comparisons

The following tables illustrate the results of the analytical modelling from Section 3.1 and the finite
element analysis results for a 4% porous specimen of low strength steel with an elastic modulus

of 200 GPa and a yield stress of 500 MPa.

Table 1: 2D Elliptical Void Results

Elastic Modulus Yield Stress
Aspect Ratio | Theoretical Simulated  Difference | Theoretical Simulated  Difference
2.00 191.3E+9  187.8E+9  1.84% 420.2E+6  445.0E+6  -5.56%
1.50 191.1E+9  185.0E+9  3.28% 407.9E+6  4342E+6  -6.07%
1.00 190.7E+9  179.6E+9  6.18% 387.2E+6  415.5E+6  -6.81%
0.67 190.3E+9  172.1E+9  10.57% 361.8E+6  391.8E+6  -7.65%
0.50 189.9E+9  165.1E+9  15.00% 340.4E+6  371.5E+6  -8.38%

Table 2: 2D Rectangular Void Results

Elastic Modulus Yield Stress
Aspect Ratio | Theoretical Simulated  Difference | Theoretical Simulated  Difference
2.00 191.1E+9  186.7E+9  2.36% 4293E+6  4453E+6  -3.59%
1.50 190.9E+9  184.1E+9  3.66% 418.4E+6  435.6E+6  -3.97%
1.00 190.5E+9  179.4E+9  6.17% 400.0E+6  419.1E+6  -4.57%
0.67 189.9E+9  172.9E+9  9.84% 377.5E+6  398.5E+6  -5.25%
0.50 189.4E+9  167.0E+9  13.47% 358.6E+6  380.7E+6  -5.82%




Aspect Ratio
2.00
1.50
1.00
0.67
0.50

Aspect Ratio
2.00
1.50
1.00
0.67
0.50

Aspect Ratio
2.00
1.50
1.00
0.67
0.50

Aspect Ratio
2.00
1.50
1.00
0.67
0.50

Table 3: 2D Quadrilateral Void Results

Difference

3.27%
5.71%
10.75%
18.27%
25.93%

Yield Stress
Theoretical

400.0E+6
384.5E+6
358.6E+6
326.8E+6
300.0E+6

Table 4: 3D Ellipsoidal Void Results

Difference

-1.46%
-0.46%
1.52%
4.50%
7.50%

Yield Stress
Theoretical

455.5E+6
446.0E+6
429.3E+6
407.4E+6
387.8E+6

Table 5: 3D Rectangular Void Results

Difference

-3.25%
-2.34%
-0.72%
1.53%
3.69%

Yield Stress
Theoretical

463.2E+6
455.4E+6
441.5E+6
423.4E+6
407.2E+6

Table 6: 3D Octahedral Void Results

Elastic Modulus
Theoretical Simulated
191.5E+9 185.4E+9
191.3E+9 181.0E+9
191.1E+9 172.6E+9
190.8E+9 161.3E+9
190.5E+9 151.3E+9
Elastic Modulus
Theoretical Simulated
196.0E+9 198.9E+9
195.9E+9 196.8E+9
195.9E+9 193.0E+9
195.8E+9 187.4E+9
195.8E+9 182.1E+9
Elastic Modulus
Theoretical Simulated
191.7E+9 198.2E+9
191.6E+9 196.2E+9
191.3E+9 192.7E+9
191.0E+9 188.1E+9
190.6E+9 183.8E+9
Elastic Modulus
Theoretical Simulated
147 4E+9 197.8E+9
147.1E+9 195.1E+9
146.5E+9 189.5E+9
145.6E+9 181.2E+9
144.8E+9 173.1E+9

Difference

-25.44%
-24.61%
-22.72%
-19.62%
-16.35%
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Yield Stress
Theoretical

439.2E+6
426.3E+6
403.5E+6
373.5E+6
346.7E+6

Simulated

431.7E+6
416.1E+6
390.5E+6
360.9E+6
336.0E+6

Simulated

486.1E+6
478.0E+6
464.2E+6
446.4E+6
430.5E+6

Simulated

489.3E+6
480.9E+6
467.5E+6
451.7E+6
438.2E+6

Simulated

479.9E+6
469.9E+6
451.9E+6
428.1E+6
406.5E+6

Difference

-7.34%
-7.59%
-8.18%
-9.44%
-10.70%

Difference

-6.30%
-6.68%
-7.52%
-8.76%
-9.93%

Difference

-5.34%
-5.31%
-5.56%
-6.27%
-7.09%

Difference

-8.48%
-9.28%
-10.73%
-12.75%
-14.71%



The results from tables 1-6 clearly show a trend of diverging from the simulation results at
lower aspect ratios. This is likely explained by the linear displacement shape functions used to
construct the stiffness models — more specifically that the linear displacement assumption is more
appropriate where the change in area through the direction of applied force is more gradual, as it
is in the high aspect ratio models, than where the area derivative is generally larger as in the low

aspect ratio models.

Another cause for this discrepancy is that the stiffness formulation does not account for the
non-uniform stress distribution through the solid section caused by significant stress concentration
at the nodes, which is increased at lower aspect ratios. This is most obvious when considering the
rectangular comparisons as the model is cleanly separated into sections of constant stiffness
through the loading axis as this shape is most accurately and simply modelled by the theoretical
formulation. Figure 13 shows that the increased stresses through the void section are not simply
transferred through the solid section, but also create a moment reaction in the solid section which
causes material above and below the void to experience compressive stress. It is due to this
response that the computational models experience greater deformations at the same effective
stress. This distribution of concentrated stresses is also thought to be the reason that the theoretical
models predict a lower yield stress, as the peak stresses are realistically more evenly distributed

than conceptualized by the stiffness method.
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Figure 12: Elliptical Stress Distribution

Figure 13: 2D Rectangular Stress Distribution
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Figure 14: Quadrilateral Stress Distribution

Figure 15: 3D Ellipsoidal Stress Distribution
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Figure 16: 3D Rectangular Stress Distribution

Figure 17: 3D Octahedral Stress Distribution
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Figure 18: 2D Elastic Modulus vs. Aspect Ratio

Yield Ratio

1.00
0.95

R v v
9 9 » o
S »v S O« S

0.65

0.60
0.00

Yield Stress vs. Aspect Ratio at 4% Porosity

R - - - Elliptical
@’ —>— Rectangular
— O— Quadrilateral

0.50 1.00 1.50 2.00 2.50
Aspect Ratio

Figure 19: 2D Yield Stress vs. Aspect Ratio
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Figure 20: 3D Elastic Modulus vs. Aspect Ratio

Yield Stress

1.00
0.95

o 2
®©
S W

0.75
0.70
0.65

0.60
0.00

Yield Stress vs. Aspect Ratio at 4% Porosity

- =0~ - Ellipsoidal
—>— Rectangular

— O— Bipyramidal

0.50 1.00 1.50 2.00 2.50
Aspect Ratio

Figure 21: 3D Yield Stress vs. Aspect Ratio
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3.4. Conclusions

It is clear from the previous four plots that the aspect ratio and shape characteristics of a
void inclusion in a representative volume element have significant influence on the mechanical
behavior of the porous material represented by that model. It is therefore imperative that the porous
material being investigated through finite element analysis is represented in as realistic a manner
as possible. In the case of porous powder-based sintered materials it is necessary to simulate the
powder settling and compaction mechanics which occur during the fabrication process in order to

accurately replicate the behavior of these materials.
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4. Model Generation

The model generation process begins with the generation of particles in the free-state.
Given a form of particle size distribution and a user-specified cube side length, spheres of various
size are placed at randomly chosen point coordinates within the cube. A placement attempt is
accepted if it does not intersect any of the existing spheres. This loop is broken after a specified
number of failed placement attempts. A variant of this process is available which prioritizes the
placement of large particles and modifies attempted particle sizes in proportion to the number of

remaining attempts. The radius equation for this variant is as follows:

R; = Rpin + (¥ — Rnin) (%) (4.1)
Where y is the particle radius generated from the size distribution function, i is the current attempt
number and n is the maximum number of placement attempts. This processing step effectively
reduces computational load and mimics the settling behavior of free particles. The resultant free-
state configuration is a densely packed cube of hard spheres where sphere-cube intersections are
permitted and sphere-spheres intersections are not.

The fixed-state is achieved iteratively via two processes: compaction and arrangement. The
compaction process translates particles proportionally toward the origin, after which the
arrangement process evaluates each particle’s immediate neighbors and shifts the particle center
to the point of least total intersection. This process mimics the physical processes of compaction
and settling to achieve a more realistic geometry. The volumetric void fraction is calculated post-
arrangement to inform the magnitude of the next compaction. This loop breaks when the absolute
difference between the target void fraction and the calculated void fraction dips below a user-
defined acceptable error. The error formula is shown in the following equation, where P, is the

target porosity. By default the acceptable error limit is set to 10712,
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-4 -1

err = Viotar (4.2)
P,

The compaction process begins with two inputs: the free-state particle configuration and
the target void fraction. An initial compaction of 0.95 is applied — that is, the components of each
particle are multiplied by the scalar coefficient 0.95, drawing each proportionally towards the
origin. This new particle configuration is then arranged to achieve a more natural, settled state.
During the arrangement process each particle is investigated for intersecting neighboring particles
and consequently translated to the point of least total intersection magnitude (see Figure 24 &
Figure 25). The resulting particle can be said to be optimally centered within the local region. The
void fraction is calculated once again and used to extrapolate the next compaction coefficient. For
an error threshold of |err| < 1072 this algorithm is observed to reliably achieve the target porosity

after fewer than 10 compaction attempts.

Figure 22: SEM Image of EOS Grade 5 Titanium Powder [31]
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Figure 23: Cumulative Particle Size Distribution [30]

4.1. 2D Porosity Computation

The volume computation implemented here is algebraic, solving both of the noted flaws.
In the case of 2D model generation the effective area of a particle is considered to be the segment
bounded by all active lines of intersection which contains the center point. This area is computed
by geometric decomposition into areas of single, double, and triple inclusion. A lone particle
having no intersection with other particles or boundaries consists of one single-included region. A
particle interse<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>