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Abstract 

The effect of porosity, void shape, and aspect ratio on the mechanical behavior of porous ductile 

metals was studied. Traditional finite element models were developed to predict the elastic 

modulus and yield stress of porous representative volume elements as a function of porosity and 

void aspect ratio. Corresponding models were built and tested in ABAQUS for comparison. The 

effect of void shape and aspect ratio on effective mechanical properties was observed and the 

necessity of finite element simulations was confirmed. An algorithm for the generation of realistic 

porous powder-based sintered representative volume element models was fully developed and 

implemented. A series of models were generated and simulations were performed to extract the 

effective stress-strain behavior using continuum mechanics methods. Comparisons to existing 

experimental data for porous sintered metals determined that the three dimensional models 

generated by the novel algorithm accurately predict the elastic, yield, and plastic deformation 

behavior of porous sintered metals.  
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General Summary 

The following work details an investigation into the effect of porosity and pore shape on the 

behavior of porous metals. These porous metals are less dense than expected due to internal 

pockets of gas or empty space called voids. The total volume of the internal voids, as well as the 

shape and aspect ratio of these voids, is known to have a pronounced effect on the stiffness and 

strength of a porous material compared to the fully dense characteristics. The research presented 

here first demonstrates and confirms the effect of void shape and aspect ratio on the mechanical 

properties of metals. An algorithm is then developed to generate models of porous material that 

serve as a more realistic representation of the voids found in 3D printed metals. These new models 

are found to accurately recreate existing experimental data from actual 3D printed metal 

specimens. 
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1. Introduction 

1.1. Background 

 Porosity is a physical property of a material which describes the volumetric fraction of a 

specimen that is effectively void of structurally significant material. For non-composite materials 

the porosity of a specimen is functionally tied to its relative density by Equation 1.1, where 𝜌 is 

the specimen density and 𝜌" is the established fully-sound material density. 

𝑃 = 1 −
𝜌
𝜌"

(1.1) 

 A material may exhibit a reduced density and therefore an increased porosity through a 

variety of mechanical, thermal, or chemical routes, the most prominent being induced porosity 

resulting from fabrication processes such as casting and curing. Porous materials are generally 

understood to contain a multitude of uniformly distributed voids of various shapes and sizes, 

however, this designation incorporates everything from cast metals with gas impurities to cellular 

structures and foams. The voids whose volumetric sum comprises the porosity level have been 

observed to vary wildly in size and shape depending on the fabrication method and post-processing 

of the material. Porosity level is known to be inversely related to various mechanical properties 

including elastic modulus, yield stress, ultimate tensile strength, failure strain, and fatigue strength 

in metals, and many analytical models have been developed to capture the effect of porosity on 

these characteristics. A sizeable list of linear, power, and exponential relationships describing the 

effect of porosity on elastic modulus was tabulated and investigated by Choren et al. in the interest 

of informing additive manufacturing design [1]. 
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  The emergence of additive manufacturing, specifically powder-based metal AM, has 

drastically increased the prevalence of porous materials with non-traditional void shapes. The 

voids found in sintered materials are observed to have a degree of variance that is significantly 

greater than that of non-sintered material voids, as well as more extreme aspect ratios, stress 

concentrators, and potential void interactions. Given the relative novelty and rise in popularity it 

is necessary to investigate the relationship between porosity and mechanical behavior for these 

materials.  

 

Figure 1: Characteristic Pores in Laser-Based Powder Bed Fusion Parts [2] 
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Figure 2: Examples of Void Defects in Non-Optimized EBM Builds with Cylindrical Geometries from 
Ti-6Al-4V Powder [3] 

 

1.2. Thesis Overview 

 The purpose of this thesis was to investigate the effect of porosity on the mechanical 

behavior of porous metals fabricated from a powdered base material by process of sintering, 

specifically the additive manufacturing process of selective laser sintering. The investigations 

conducted include traditional finite element analysis of single-void models, finite element analysis 

simulations of single-void representative volume element models, and the development and testing 

of an algorithm designed to replicate particle mechanics and generate realistic models of porous 

sintered materials for the purpose of finite element simulation. Throughout the course of these 

investigations the effect of porosity, void shape, and void shape characteristics were tested to 
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determine their effect on material behavior. A series of finite element simulations which 

correspond to existing experimental data were conducted using models generated by the novel 

algorithm to gauge the accuracy of the realistic particle-based models. 

 Section 2 presents a literature review and general overview of the concepts and physical 

phenomena investigated in this work. Section 3 examines the behavior of porous materials 

modelled as units with single void inclusions. In this section, traditional finite element methods 

are employed to develop equations that describe the behavior of these single void models. The 

performance of these analytical models is tested against computer simulated models to ascertain 

the significance of non-linear deformations in porous materials and validate further simulations. 

Section 4 outlines the development of a novel algorithm for the generation of microstructural 

models of porous particle-based solids. Section 5 is comprised of the testing and analysis 

performed to verify and validate the algorithm developed in Section 4. 
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2. Literature Review 

 The goal of metal and ceramic-based additive manufacturing (AM) is to fabricate complex, 

near net shape parts rapidly and with minimal tooling cost [4–6]. Selective laser sintering (SLS) 

and selective laser melting (SLM) are two subtly distinct methods of powder-based AM. Powder-

based AM fabricate near-net shape parts primarily via one of two methods: powder bed systems, 

which selectively heat consecutive cross-sections with a controlled laser, and powder feed systems 

which simultaneously heat and deposit material from a moving head [7,8]. The SLM process is 

characterized by the complete melting and solidification of powder base materials during 

fabrication. By contrast, the SLS process heats particles to a temperature below the melting point 

but sufficiently high as to promote the fusion of neighboring particles through solid-state sintering. 

Materials produced via SLS are observed to have a macrostructure similar to sintered compacts 

produced via powder metallurgy (PM) processes. Powder-based sintered metals are observed to 

have decreased grain size compared to the wrought material and mechanical properties that are 

distinct from that of SLM and non-AM material [8–10]. Research from Iebba et al. [11] and a 

recent investigation by Brika et al. [12] indicates a link between the morphology and size 

distribution of powder base particles and the mechanical behavior of corresponding 3D printed 

materials. 

 The naturally occurring void imperfections observed in sintered materials are unique in 

both shape and size compared to the macro-scale voids observed in non-sintered solids, which are 

generally ellipsoidal. This shape disparity has a significant effect on the material’s mechanical 

behaviour [13]. Specifically, void shapes inherent in sintered materials facilitate compaction 

deformation under compressive loading thereby exacerbating the disparity between the tensile and 

compressive elastoplastic behavior of sintered metals [14,15]. The accurate prediction of the 
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mechanical properties of low porosity sintered materials is essential to the process of powder-

based AM design. 

 

Figure 3: Particle Size Distribution PDFs 

 

 

Figure 4: Packing Density Plot for Bi-Modal Particle Size Distribution 
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 Investigations into the mechanical behavior of AM materials have been augmented 

significantly by simulation techniques developed through composite materials research, such as 

the representative volume element (RVE), in concert with modern finite element analysis (FEA) 

[16,17]. Microstructure modelling in particular has proven to be a powerful tool for assessing 

material properties [18]. Modelling and analysis of a microstructural element can accurately 

predict behavior while simplifying the process of parameterization where a descriptive analytical 

model is desired. In the case of porous sintered materials, the microstructure has yet to be modelled 

in a generalized manner such that behavior is accurately predicted [19]. For the purposes of 

simulating a sintered material we have chosen two essential physical measurements: a probability 

distribution function (PDF) of particle radii and the relative density of the finished part. These 

parameters are chosen prior to manufacturing, where the relative density of a completed part is 

determined experimentally or is, in some cases, reported as a function of scan speed, temperature, 

pressure, and/or laser power [20,21].  

 The precise manner of computational solution we have developed is an investigation of the 

homogenized response of a porous sintered material. This entails constructing a pseudo-random, 

geometrically analogous micro- or meso-structure whose mechanical behaviour is equivalent to 

that of physical specimens. Homogenization and generalization of stress-strain behaviour from 

microstructural simulation is made possible by the application of continuum mechanics principles. 

This information is sufficient to evaluate the mechanical behaviour of an arbitrary shape whose 

material properties are known. The continuum approach introduces the assumption that the 

structural element may be treated as an infinitesimally small element surrounded by identical cells 

under identical load conditions. The use of cubic periodic elements for the purposes of 

investigating effective mechanical properties has been validated for porous, powder-based AM 
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metals [22–24]. In addition to vastly simplifying microstructure simulations as a whole, the cost-

effective simulation of infinite cells has been a powerful tool for those studying porous and cellular 

solids.  

 One of the earliest instances of the attempted simulation of porous solids comes from 

Woodmansee [25], who attempted to categorize the response of porous materials by porosity. This 

work was unable to evaluate the behaviour of non-linear materials. From there a variety of non-

random porous and cellular models cropped up for use in particle-reinforced ceramics and the 

investigation of porous material behaviour [26]. The microstructure modelling toolkit Mote3D 

provides tools primarily for the generation of particle-reinforced composite models with support 

for sintered particle modelling, however it does not consider relative density as a parameter, instead 

modelling sintered particles based on sinter neck distance [27]. This method is not appropriate for 

the modelling of sintered AM microstructures as mechanical properties are very sensitive to 

changes in relative density induced by void defects [28,29] and powder morphology [30]. It is 

therefore imperative that a sintered powder model achieve a precise targeted relative density.  



23 
 

3. Pore Shape Effect 

 To study the effect of void shape and void aspect ratio on the mechanical behavior of a 

porous material, a series of finite element analysis simulations were conducted on 3 primary shapes 

at the same fractional porosity level in 2D and 3D. The 2D void shapes used in this study are 

elliptical, rectangular, and equilateral quadrilateral. In 3D the void shapes are ellipsoidal, cuboidal, 

and equilateral octahedral. The aspect ratio refers to the ratio of the primary axis length (in the 

direction of applied load) to the secondary axis length. In 3D the aspect ratio defines both the 1-2 

and the 1-3 axis length ratios. The aspect ratios studied in these simulations are 1:2, 2:3, 1:1, 3:2, 

and 2:1 at a porosity of 4%.  

 The models containing ellipsoidal voids are intended to capture the behavior expected to 

arise from traditionally manufactured porous materials, such as cast metals or resins. These voids 

are generally a result of thermal effects, impurities, or trapped gasses. The quadrilateral/octahedral 

void models represent materials which contain significant stress concentrators aligned normal to 

the direction of applied force, which is akin to the voids we observe in powder-based sintered and 

additive manufactured metals and ceramics. Lastly the rectangular voids show the mechanical 

behavior of a porous material with stress concentrating features that are not explicitly oriented in 

the worst-case configuration, as the quadrilateral voids are.  

3.1.  Analytical Modelling 

 For each of the void shapes, a traditional finite element model was derived to predict the 

effective stiffness and yield stress of the porous material. A unit element containing a void located 

at the center is used to formulate a system of springs in parallel as seen in Figure 5. The axial 
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stiffness of each individual segment is derived by integration through the direction of applied load, 

otherwise known as the analytical stiffness method for a non-uniform bar. 

   

Figure 5: Model & Spring Diagram 

 It can be shown that for the above spring diagram, where 𝑘D = 𝑘E and 𝑘F = 𝑘G the total 

stiffness of the system is: 

𝑘:": =
𝑘D𝑘F
𝑘D + 𝑘F

(3.1) 

Given that the length 𝐿D is a known quantity defined by the porosity and aspect ratio for each 

shape, the stiffness 𝑘D is derived below in matrix form. 

𝑘D = J 𝐵K𝐷	𝐵𝐴	𝑑𝑥

PQ

R

=
𝐸
2𝐿DF

T 1 −1
−1 1 UJ 1	𝑑𝑥

PQ

R

 

𝑘D =
𝐸
2𝐿D

T 1 −1
−1 1 U 	= 	

𝐸

2 V12 − 𝑎W
T 1 −1
−1 1 U 	= 	

𝑬
𝟏 − 𝟐𝒂

T 𝟏 −𝟏
−𝟏 𝟏 U

(3.2) 

Where 𝑎 is the major axis length of the void. The 𝐵 matrix is derived as follows, assuming linear 

displacement under fully elastic strain and using shape functions 𝑁D and 𝑁F as shown. 
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𝑢(𝑥) = 𝑁D𝑑D + 𝑁F𝑑F (3.3) 

𝑁D = 1 −
𝑥
𝐿D

(3.4) 

𝑁F =
𝑥
𝐿D

(3.5) 

𝐵 = 𝑁_ =
1
𝐿D
[𝐿D − 𝑥 𝑥]

𝑑
𝑑𝑥 =

1
𝐿D
[−1 1] (3.6) 

Unlike the derivation from Equation 3.2, the stiffness equation for 𝑘F considers a case where the 

derivate of area with respect to x is non-zero. The function 𝐴(𝑥) varies for each void shape. The 

following section details the derivation of the various model characteristics. 

 

 

Figure 6: Void Shapes at 3:2 Aspect Ratio 
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3.1.1. Elliptical Void Stiffness Derivation 

A regular ellipse is described by the equation Vc
d
W
F
+ V(

e
W
F
= 1 where 𝑎	and 𝑏 are the major and 

minor axis lengths respectively. The area of an ellipse is given by 𝐴 = 𝜋𝑎𝑏 and the aspect ratio 

gives the equation 𝜆 = 𝑎/𝑏. Since the enclosing region is a unit square, the area of the void is 

exactly equal to the porosity 𝑃 of the material. Given some porosity and aspect ratio the 

corresponding axis lengths are developed as follows.  

𝑃 = 𝜋𝑎𝑏 (3.7) 

𝜆 =
𝑎
𝑏 		→ 		𝑏 =

𝑎
𝜆

(3.8) 

𝑃 = 𝜋𝑎 V
𝑎
𝜆W → 		𝑎 = k𝜆𝑃

𝜋
(3.9) 

Where 𝑎 is both the primary axis length and the length of element 2. 

𝑏 =
𝑎
𝜆 =

k 𝑃
𝜆𝜋

(3.10) 

𝐴<3= = 1 − 2𝑏 = 1 − 2k
𝑃
𝜆𝜋

(3.11) 

Length of element 1: 

𝐿D =
1
2 −

k𝜆𝑃
𝜋

(3.12) 
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Stiffness of element 1: 

𝑘D =
𝐸𝐴D
𝐿D

=
𝑬

n𝟏 − 𝟐o𝝀𝑷𝝅 s
(3.13)

 

Stiffness of element 2: 

𝑘F =
𝐸
𝐿FF
J 𝐴F(𝑥)

Pt

R

𝑑𝑥 (3.14) 

Rearranging the equation of an ellipse gives 𝑦, the width of the void, as a function of 𝑥: 

𝑦 = 𝑏k1 − V
𝑥
𝑎W

F
(3.15) 

Area of solid section as a function of 𝑥: 

𝐴F(𝑥) = 0.5 − 𝑏k1 − V
𝑥
𝑎W

F
(3.16) 

We know that in Equation 3.14 the length 𝐿F is equal to 𝑎. Substituting 3.16 into 3.14: 

𝑘F =
𝐸
𝑎F
J0.5 − 𝑏k1 − V

𝑥
𝑎W

F
d

R

𝑑𝑥  

𝑘F =
𝐸
𝑎F
⎣
⎢
⎢
⎡1
2𝑥 −

1
2𝑏𝑥

k1 − V
𝑥
𝑎W

F
−
1
2𝑎𝑏 atan

⎝

⎛ 𝑥

𝑎o1 − V𝑥𝑎W
F

⎠

⎞

⎦
⎥
⎥
⎤

R

d

(3.17) 
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At 𝑥 = 0 the integration term is zero. At 𝑥 → 𝑎 the term o1 − Vc
d
W
F
 approaches zero and the 

arctangent term consequently approaches �
F
. The simplified equation is therefore: 

𝑘F =
𝐸
𝑎F �

1
2𝑎 −

1
4𝑎𝑏𝜋�

(3.18) 

Substituting Equations 3.7 and 3.9 into 3.18: 

𝑘F =
𝐸𝜋
4𝜆𝑃

�2k
𝜆𝑃
𝜋 − 𝑃� =

𝑬𝝅
𝟒𝝀

�k
𝟒𝝀
𝝅𝑷 − 𝟏

� (3.19) 

The total stiffness can be written as follows: 

𝑘:": =
𝐸�2√𝜋𝜆 − 𝜋√𝑃�

2√𝜋𝜆 − 𝜋√𝑃 + 2𝑃√𝜋𝜆
(3.20) 

The effective yield stress of the analytical model is approximated as the overall stress at which 

yield should occur at the weakest cross-section of the model, i.e. the smallest area. The effective 

yield of the unit element model is therefore a function of the material yield stress multiplied by a 

geometric function of porosity an aspect ratio describing the width at the midpoint. 

Effective yield stress equation for a 2D elliptical void: 

𝜎(_ = 𝜎( �1 − 2k
𝑃
𝜆𝜋
� (3.21) 
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3.1.2. Rectangular Void Stiffness Derivation 

 

Figure 7: Rectangular Void Model (2:1 Aspect Ratio) 

𝑃 = 4𝑎𝑏 → 		𝑎 =
1
2√𝜆𝑃

(3.22) 

𝑏 =
1
2
k𝑃
𝜆

(3.23) 

𝐴<3= = 1 −k
𝑃
𝜆

(3.24) 

Length of element 1: 

𝐿D =
1
2
�1 − √𝜆𝑃� (3.25) 

Stiffness of element 1: 

𝑘D =
𝐸𝐴D
𝐿D

=
𝑬

�𝟏 − √𝝀𝑷�
(3.26) 

Stiffness of element 2: 

𝐴F(𝑥) = 0.5 − 𝑏 =
1
2
�1 − k

𝑃
𝜆
� (3.27) 

𝑘F =
𝐸
2𝑎F

J�1 − k
𝑃
𝜆
�

d

R

𝑑𝑥 =
𝐸
2𝑎
�1 −k

𝑃
𝜆
� 
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𝑘F =
𝐸
√𝜆𝑃

∗
�√𝜆 − √𝑃�

√𝜆
=
𝑬
𝝀
�k

𝝀
𝑷 − 𝟏

� (3.28) 

Total stiffness: 

𝑘:": =
𝐸�√𝑃𝜆 − 𝜆�
√𝑃𝜆 − 𝜆 − 𝑃𝜆

(3.29) 

Effective yield stress: 

𝜎(_ = 𝜎( �1 −k
𝑃
𝜆
� (3.30) 

3.1.3. Quadrilateral Void Stiffness Derivation 

 

Figure 8: Quadrilateral Void Model (2:1 Aspect Ratio) 

𝑃 = 2𝑎𝑏 → 		𝑎 = k𝑃𝜆
2

(3.31) 

𝑏 = k 𝑃
2𝜆

(3.32) 

𝐴<3= = 1 − 2𝑏 = 1 −k
2𝑃
𝜆

(3.33) 

Element 1 

𝐿D =
1
2 − 𝑎 =

1
2
�1 − √2𝑃𝜆� (3.34) 
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𝑘D =
𝐸𝐴D
𝐿D

=
𝑬

𝟏 − √𝟐𝑷𝝀
(3.35) 

Element 2 

𝐴F(𝑥) = 0.5 − 𝑏 V
𝑥
𝑎W

(3.36) 

𝑘F =
𝐸
𝑎F
J �

1
2 − 𝑥 �

𝑏
𝑎�
�

d

R

𝑑𝑥 =
𝐸
𝑎F �

1
2 𝑥 −

𝑏
2𝑎 𝑥

F�
R

d

 

𝑘F =
𝐸
𝑎F �

1
2 𝑎 −

1
2𝑎𝑏� = 𝑬n

√𝟐𝝀 − √𝑷
𝟐𝝀√𝑷

s (3.37) 

 

Total stiffness: 

𝑘:": =
𝐸�√2𝑃𝜆 − 2𝜆�

√2𝑃𝜆 − 2𝜆 − 2𝑃𝜆
(3.38) 

Effective yield stress: 

𝜎(_ = 𝜎( �1 −k
2𝑃
𝜆
� (3.39) 

3.1.4. Ellipsoidal Void Stiffness Derivation 

An ellipsoid in 3D is defined by the equation Vc
d
W
F
+ V(

e
W
F
+ V�

�
W
F
= 1, where 𝑎, 𝑏, 𝑐 are the three 

primary axis lengths. In this investigation the ellipsoids are modelled as rotationally symmetric 

about the x-axis, i.e. 𝑏 = 𝑐 and any cross-section of the ellipsoid in the y-z plane produces a circle 

of a well-defined radius. The area of this circle is subtracted from the area of the solid section to 

give the area function 𝐴F(𝑥) for determining stiffness.  

𝑃 =
4
3𝜋𝑎𝑏𝑐 =

4
3𝜋𝑎𝑏

F =
4𝜋𝑎G

3𝜆F
(3.40) 

𝑎 = n
3𝑃𝜆F

4𝜋 s

D
G
→ 		𝑏 = �

3𝑃
4𝜋𝜆�

D
G

(3.41) 
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𝐴<3= = 1 − 𝜋𝑏F = 1 −
1
2
k9𝑃

F𝜋
2𝜆F

�
(3.42) 

Element 1: 

𝐿D =
1
2 − n

3𝑃𝜆F

4𝜋 s

D
G

(3.43) 

𝑘D =
𝐸𝐴D
𝐿D

=
2𝐸

1 − �6𝑃𝜆
F

𝜋 �
D
G
	

=
𝟐𝑬√𝝅𝟑

√𝝅𝟑 − √𝟔𝑷𝝀𝟐𝟑 (3.44)
 

Element 2: 

V
𝑥
𝑎W

F
+ V

𝑦
𝑏W

F
+ V

𝑧
𝑐W

F
= V

𝑥
𝑎W

F
+ 2 V

𝑦
𝑏W

F
= 1 → 		𝑦 = 𝑏k

1
2 �1 − V

𝑥
𝑎W

F
� (3.45) 

In the context of the cross-section, 𝑦 is the radius of the circle therefore 

𝐴F(𝑥) = 1 − 𝜋𝑟F = 1 − 𝜋𝑏F �
1
2�1 − V

𝑥
𝑎W

F
�� 

𝐴F(𝑥) = 1 −
1
8
k36𝜋𝑃

F

𝜆F
�

+
𝜋
2𝜆F 𝑥

F (3.46) 

Note: Equation 5.6 is the area of the entire cross-section, unlike the 2D formulations. The resultant 

stiffness will consequently be modeled as four springs connected in series.  

𝑘F =
𝐸
𝑎F
J1 −

1
8
k36𝜋𝑃

F

𝜆F
�

+
𝜋
2𝜆F 𝑥

F

d

R

	𝑑𝑥 
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𝑘F =
𝐸
𝑎F �𝑥 −

𝑥
8
k36𝜋𝑃

F

𝜆F
�

+
𝜋
6𝜆F 𝑥

G�

R

d

= 𝑬 �k
𝟒𝝅
𝟑𝝀𝟐𝑷

𝟑
− k 𝝅

𝟐𝑷
𝟑𝟔𝝀𝟒

𝟑

� (3.47) 

The total stiffness is developed as follows: 

𝑘:":�D =
2
𝑘D
+
2
𝑘F
→ 		 𝑘:": =

1
2

𝑘D𝑘F
𝑘D + 𝑘F

(3.48) 

For an ellipsoidal void: 

𝑘:": =
𝐸�√48𝜆F� − √𝜋𝑃F� �

√48𝜆F� − √𝜋𝑃F� + 𝑃√6𝜆F� (3.49) 

Effective yield stress: 

𝜎(_ = 𝜎( �1 −
1
2
k9𝑃

F𝜋
2𝜆F

�
� (3.50) 

3.1.5. Rectangular Prism Void Stiffness Derivation 

The 3D rectangular prismatic void used in this study has side lengths [2𝑎, 2𝑏, 2𝑏] and a volume of 

8𝑎𝑏F. 

𝑃 = 8𝑎𝑏F =
8𝑎G

𝜆F → 		𝑎 =
1
2
�𝑃𝜆F� (3.51) 

𝑏 =
1
2
k𝑃
𝜆

�
(3.52) 

𝐴<3= = 1 − (2𝑏)F = 1 − �
𝑃
𝜆�

F
G

(3.53) 
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Element 1: 

𝐿D =
1
2 − 𝑎 =

1
2 V1 −

�𝑃𝜆F� W (3.54) 

𝑘D =
𝐸𝐴D
𝐿D

=
𝟐𝑬

𝟏 − √𝑷𝝀𝟐𝟑 (3.55) 

Element 2: 

𝐴F(𝑥) = 1 − (2𝑏)F = 1 − �
𝑃
𝜆�

F
G

(3.56) 

Since 𝐴F(𝑥) is constant the stiffness of element 2 is developed as follows: 

𝑘F =
𝐸𝐴F
𝐿F

=
𝐸 �1 − V𝑃𝜆W

F
G�

𝑎 =
𝟐𝑬�𝟏 − V𝑷𝝀W

𝟐
𝟑�

√𝑷𝝀𝟐𝟑 (3.57)
 

Effective stiffness (per Equation 5.8): 

𝑘:": =
𝐸�√𝜆𝑃F� − 𝜆�
√𝜆𝑃F� − 𝜆 − 𝜆𝑃

(3.58) 

Effective yield stress: 

𝜎(_ = 𝜎( �1 − �
𝑃
𝜆�

F
G
� (3.59) 

3.1.6. Octahedral Void Stiffness Derivation 

The 3D version of the quadrilateral void shape from 2D is that of an equilateral octahedron, or 

square bipyramid, where the major and minor axis lengths are the distances between opposing 

vertices. 
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The volume of a square bipyramid: 

𝑉 = 𝑃 =
4
3𝑎𝑏

F =
4𝑎G

3𝜆F
(3.60) 

𝑎 = k3𝜆
F𝑃
4

�
→ 𝑏 =

𝑎
𝜆 =

k3𝑃
4𝜆

�
(3.61) 

𝐴<3= = 1 − 4 �
1
2 𝑏

F� = 1 − k9𝑃
F

2𝜆F
�

(3.62) 

Element 1: 

𝐿D =
1
2 − 𝑎 =

1
2 −

k3𝜆
F𝑃
4

�
(3.63) 

𝑘D =
𝐸𝐴D
𝐿D

=
2𝐸

1 − √6𝜆F𝑃� (3.64) 

A cross-sectional view of this void in the y-z plane presents a square for which the distance from 

each vertex to the center is equal to some function 𝑦(𝑥). Since the points lie on a straight line we 

develop the following: 

𝑦(𝑥) = 𝑐D𝑥 + 𝑐F (3.65) 

𝑦(0) = 0 → 		𝒄𝟐 = 𝟎 (3.66) 

𝑦(𝑎) = 𝑐D𝑎 = 𝑏 →		 𝒄𝟏 =
𝒃
𝒂

(3.67) 

The solid area of the cross-section: 

𝐴F(𝑥) = 1 − 2𝑦(𝑥)F = 1 − 2 �
𝑏
𝑎�

F

𝑥F = 𝟏 − 𝟐V
𝒙
𝝀W

𝟐
(3.68) 
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𝑘F =
𝐸
𝑎F
J 1 −

2
𝜆F 𝑥

F𝑑𝑥
d

R

=
𝐸
𝑎F �𝑥 −

2
3𝜆F 𝑥

G�
R

d

=
𝑬�√𝟏𝟐𝝀𝟐𝟑 − √𝟐𝑷𝟐𝟑 �

𝝀√𝟗𝑷𝝀𝟑 (3.69) 

Effective stiffness: 

𝑘:": =
𝐸�√6𝜆F� − √𝑃F� �

√6𝜆F� − √𝑃F� + √6𝑃𝜆F� (3.70) 

Effective yield stress: 

𝜎(_ = 𝜎( �1 − k9𝑃
F

2𝜆F
�

� (3.71) 

3.2. Finite Element Analysis 

 Computational models were constructed for each void shape for finite element analysis in 

ABAQUS. For each unique shape a cell partitioning method was implemented to divide the models 

such that the whole model can be meshed using structured quadrilateral elements (CPS4R) in 2D 

and structured linear brick elements (C3D8R) in 3D.  

 To extract the effective mechanical behavior of a porous material from a single unit cell, 

reference points are placed at the center of the top and bottom faces. A constraint is applied to 

these faces which ensures that the face nodes experience no translation whatsoever relative to their 

respective reference points. The bottom reference point is fully fixed with zero degrees of freedom 

and the top reference point is constrained to only allow for translation in the direction of applied 

force. A displacement is applied to the top reference point with a ramp function which spans the 

simulation step. Output requests for force and displacement are applied to the bottom and top nodes 

respectively. Due to the height and cross-sectional area of the model both being equal to 1, the raw 
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data collected from these nodes corresponds exactly to the effective stress and strain behavior of 

the porous representative volume element model. 

 The model used to define the behavior of the non-porous material is called the deformation 

plasticity model in ABAQUS, which is based on the Ramberg-Osgood relationship shown in 

Equation 3.72. This model uses a yield offset constant and a hardening exponent to accurately 

describe the elastic, yield, and plastic deformation behavior of ductile metals up to the ultimate 

tensile stress.  

𝜀 =
𝜎
𝐸 + 𝛼𝜎 n

𝜎
𝜎(
s
=�D

(3.72) 

 Once simulations are complete, the resultant datasets are analyzed to determine the elastic 

modulus and yield stress of the representative volume element model and consequently the 

expected characteristics of the porous material. The yield stress is computed using the yield offset 

method with the given value 𝛼 as the offset strain. Linear interpolation is used at the point of 

intersection to provide a more precise yield stress. 

 

Figure 9: Rectangular Void at 2:1 AR 

 

Figure 10: Quadrilateral Void at 2:1 AR 



 
 

 

Figure 11: Meshed Elliptical Void at 2:1 AR 

 

3.3. Results & Comparisons 

The following tables illustrate the results of the analytical modelling from Section 3.1 and the finite 

element analysis results for a 4% porous specimen of low strength steel with an elastic modulus 

of 200 GPa and a yield stress of 500 MPa.  

Table 1: 2D Elliptical Void Results 
 

Elastic Modulus Yield Stress 
Aspect Ratio Theoretical Simulated Difference Theoretical Simulated Difference 
2.00 191.3E+9 187.8E+9 1.84% 420.2E+6 445.0E+6 -5.56% 
1.50 191.1E+9 185.0E+9 3.28% 407.9E+6 434.2E+6 -6.07% 
1.00 190.7E+9 179.6E+9 6.18% 387.2E+6 415.5E+6 -6.81% 
0.67 190.3E+9 172.1E+9 10.57% 361.8E+6 391.8E+6 -7.65% 
0.50 189.9E+9 165.1E+9 15.00% 340.4E+6 371.5E+6 -8.38% 

 

Table 2: 2D Rectangular Void Results 
 

Elastic Modulus Yield Stress 
Aspect Ratio Theoretical Simulated Difference Theoretical Simulated Difference 
2.00 191.1E+9 186.7E+9 2.36% 429.3E+6 445.3E+6 -3.59% 
1.50 190.9E+9 184.1E+9 3.66% 418.4E+6 435.6E+6 -3.97% 
1.00 190.5E+9 179.4E+9 6.17% 400.0E+6 419.1E+6 -4.57% 
0.67 189.9E+9 172.9E+9 9.84% 377.5E+6 398.5E+6 -5.25% 
0.50 189.4E+9 167.0E+9 13.47% 358.6E+6 380.7E+6 -5.82% 
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Table 3: 2D Quadrilateral Void Results 
 

Elastic Modulus Yield Stress 
Aspect Ratio Theoretical Simulated Difference Theoretical Simulated Difference 
2.00 191.5E+9 185.4E+9 3.27% 400.0E+6 431.7E+6 -7.34% 
1.50 191.3E+9 181.0E+9 5.71% 384.5E+6 416.1E+6 -7.59% 
1.00 191.1E+9 172.6E+9 10.75% 358.6E+6 390.5E+6 -8.18% 
0.67 190.8E+9 161.3E+9 18.27% 326.8E+6 360.9E+6 -9.44% 
0.50 190.5E+9 151.3E+9 25.93% 300.0E+6 336.0E+6 -10.70% 

 

Table 4: 3D Ellipsoidal Void Results 
 

Elastic Modulus Yield Stress 
Aspect Ratio Theoretical Simulated Difference Theoretical Simulated Difference 
2.00 196.0E+9 198.9E+9 -1.46% 455.5E+6 486.1E+6 -6.30% 
1.50 195.9E+9 196.8E+9 -0.46% 446.0E+6 478.0E+6 -6.68% 
1.00 195.9E+9 193.0E+9 1.52% 429.3E+6 464.2E+6 -7.52% 
0.67 195.8E+9 187.4E+9 4.50% 407.4E+6 446.4E+6 -8.76% 
0.50 195.8E+9 182.1E+9 7.50% 387.8E+6 430.5E+6 -9.93% 

 

Table 5: 3D Rectangular Void Results 
 

Elastic Modulus Yield Stress 
Aspect Ratio Theoretical Simulated Difference Theoretical Simulated Difference 
2.00 191.7E+9 198.2E+9 -3.25% 463.2E+6 489.3E+6 -5.34% 
1.50 191.6E+9 196.2E+9 -2.34% 455.4E+6 480.9E+6 -5.31% 
1.00 191.3E+9 192.7E+9 -0.72% 441.5E+6 467.5E+6 -5.56% 
0.67 191.0E+9 188.1E+9 1.53% 423.4E+6 451.7E+6 -6.27% 
0.50 190.6E+9 183.8E+9 3.69% 407.2E+6 438.2E+6 -7.09% 

 

Table 6: 3D Octahedral Void Results 
 

Elastic Modulus Yield Stress 
Aspect Ratio Theoretical Simulated Difference Theoretical Simulated Difference 
2.00 147.4E+9 197.8E+9 -25.44% 439.2E+6 479.9E+6 -8.48% 
1.50 147.1E+9 195.1E+9 -24.61% 426.3E+6 469.9E+6 -9.28% 
1.00 146.5E+9 189.5E+9 -22.72% 403.5E+6 451.9E+6 -10.73% 
0.67 145.6E+9 181.2E+9 -19.62% 373.5E+6 428.1E+6 -12.75% 
0.50 144.8E+9 173.1E+9 -16.35% 346.7E+6 406.5E+6 -14.71% 
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 The results from tables 1-6 clearly show a trend of diverging from the simulation results at 

lower aspect ratios. This is likely explained by the linear displacement shape functions used to 

construct the stiffness models – more specifically that the linear displacement assumption is more 

appropriate where the change in area through the direction of applied force is more gradual, as it 

is in the high aspect ratio models, than where the area derivative is generally larger as in the low 

aspect ratio models.  

 Another cause for this discrepancy is that the stiffness formulation does not account for the 

non-uniform stress distribution through the solid section caused by significant stress concentration 

at the nodes, which is increased at lower aspect ratios. This is most obvious when considering the 

rectangular comparisons as the model is cleanly separated into sections of constant stiffness 

through the loading axis as this shape is most accurately and simply modelled by the theoretical 

formulation. Figure 13 shows that the increased stresses through the void section are not simply 

transferred through the solid section, but also create a moment reaction in the solid section which 

causes material above and below the void to experience compressive stress. It is due to this 

response that the computational models experience greater deformations at the same effective 

stress. This distribution of concentrated stresses is also thought to be the reason that the theoretical 

models predict a lower yield stress, as the peak stresses are realistically more evenly distributed 

than conceptualized by the stiffness method.  



41 
 

 

Figure 12: Elliptical Stress Distribution 

 

Figure 13: 2D Rectangular Stress Distribution 
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Figure 14: Quadrilateral Stress Distribution 

 

Figure 15: 3D Ellipsoidal Stress Distribution 
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Figure 16: 3D Rectangular Stress Distribution 

 

Figure 17: 3D Octahedral Stress Distribution 
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Figure 18: 2D Elastic Modulus vs. Aspect Ratio 

 

 

Figure 19: 2D Yield Stress vs. Aspect Ratio 
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Figure 20: 3D Elastic Modulus vs. Aspect Ratio 

 

 

Figure 21: 3D Yield Stress vs. Aspect Ratio 
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3.4. Conclusions 

 It is clear from the previous four plots that the aspect ratio and shape characteristics of a 

void inclusion in a representative volume element have significant influence on the mechanical 

behavior of the porous material represented by that model. It is therefore imperative that the porous 

material being investigated through finite element analysis is represented in as realistic a manner 

as possible. In the case of porous powder-based sintered materials it is necessary to simulate the 

powder settling and compaction mechanics which occur during the fabrication process in order to 

accurately replicate the behavior of these materials.  
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4. Model Generation 

 The model generation process begins with the generation of particles in the free-state. 

Given a form of particle size distribution and a user-specified cube side length, spheres of various 

size are placed at randomly chosen point coordinates within the cube. A placement attempt is 

accepted if it does not intersect any of the existing spheres. This loop is broken after a specified 

number of failed placement attempts. A variant of this process is available which prioritizes the 

placement of large particles and modifies attempted particle sizes in proportion to the number of 

remaining attempts. The radius equation for this variant is as follows: 

𝑅3 = 𝑅<3= + (𝛾 − 𝑅<3=) �
𝑖
𝑛�

(4.1) 

Where 𝛾 is the particle radius generated from the size distribution function, 𝑖 is the current attempt 

number and 𝑛 is the maximum number of placement attempts. This processing step effectively 

reduces computational load and mimics the settling behavior of free particles. The resultant free-

state configuration is a densely packed cube of hard spheres where sphere-cube intersections are 

permitted and sphere-spheres intersections are not. 

 The fixed-state is achieved iteratively via two processes: compaction and arrangement. The 

compaction process translates particles proportionally toward the origin, after which the 

arrangement process evaluates each particle’s immediate neighbors and shifts the particle center 

to the point of least total intersection. This process mimics the physical processes of compaction 

and settling to achieve a more realistic geometry. The volumetric void fraction is calculated post-

arrangement to inform the magnitude of the next compaction. This loop breaks when the absolute 

difference between the target void fraction and the calculated void fraction dips below a user-

defined acceptable error. The error formula is shown in the following equation, where 𝑃: is the 

target porosity. By default the acceptable error limit is set to 10�DF.  
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𝑒𝑟𝑟 =
£V1 − 𝑉¤"3¥¦𝑉:":d§

W − 𝑃:£

𝑃:
(4.2) 

 The compaction process begins with two inputs: the free-state particle configuration and 

the target void fraction. An initial compaction of 0.95 is applied – that is, the components of each 

particle are multiplied by the scalar coefficient 0.95, drawing each proportionally towards the 

origin. This new particle configuration is then arranged to achieve a more natural, settled state. 

During the arrangement process each particle is investigated for intersecting neighboring particles 

and consequently translated to the point of least total intersection magnitude (see Figure 24 & 

Figure 25). The resulting particle can be said to be optimally centered within the local region. The 

void fraction is calculated once again and used to extrapolate the next compaction coefficient. For 

an error threshold of |err| < 10�¬ this algorithm is observed to reliably achieve the target porosity 

after fewer than 10 compaction attempts. 

 

 
Figure 22: SEM Image of EOS Grade 5 Titanium Powder [31] 
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Figure 23: Cumulative Particle Size Distribution [30] 

 

4.1. 2D Porosity Computation 

 The volume computation implemented here is algebraic, solving both of the noted flaws. 

In the case of 2D model generation the effective area of a particle is considered to be the segment 

bounded by all active lines of intersection which contains the center point. This area is computed 

by geometric decomposition into areas of single, double, and triple inclusion. A lone particle 

having no intersection with other particles or boundaries consists of one single-included region. A 

particle intersected by one other particle will have one region of double inclusion, that which 

belongs to both particles, and one region of single inclusion. The region of double inclusion must 

be subtracted from the area sum for effective area computation. If this region of double inclusion 

were to be intersected by a third particle or a boundary then this triple included region will have 

been counted three times and subtracted three times, and must therefore be added once more. The 

summation of active regions is governed by the inclusion-exclusion principle of combinatorics. 

The particular definitions in 2D are summarized in Table 7. 
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Figure 24: Initial Particle Position 

 
Figure 25: Post-Arrangement Position

 

Table 7: Inclusion-Exclusion Guide for 2D 
Segment Definition Status 
Individual Particle Included 
Particle Exterior To Unit Boundary Excluded 
Particle Exterior To Two Unit Boundaries Included 
Area Common To Two Particles Excluded 
Area Common To Two Particles Exterior To Unit Boundary Included 
Area Common To Three Particles Included 

 

The area of the region given by a circle-line intersection is found from the equation below. 

𝐴𝑅D(𝐷) = 𝜃𝑟F − 𝐷	𝑟 sin 𝜃 	 (4.3) 

Where 𝐷 is the normal distance from the circle center to the line of intersection and                            

𝜃 = acos	(𝐷 ⁄ 𝑟). In the boundary intersection case depicted in Figure 26 this distance is the 

length of line 𝐴𝐵.  

 In the case of dual boundary intersection depicted in Figure 26B, we observe that the 

removal of double-inclusion regions defined by vectors A and B will in turn subtract the region 

exterior to both boundaries twice. The area of this region must be calculated for re-inclusion. In 
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this special case where vectors A and B are perpendicular the area of this region is found from the 

equation below. This equation represents the deconstruction of the intersected regions into a 

quarter-circle, a rectangle, and one-half of each circular segment.  

𝐴𝑅F(A, B) =
1
2
�𝐴𝑅D(A) + 𝐴𝑅D(B)� + (A ∗ B) −

π
4 𝑟

F (4.4) 

 
Where 𝐴𝑅F(A, B) is the doubly excluded region of the particle from Figure 26B, which is 

intersected by two perpendicular boundary lines of normal distances A & B from the particle 

center. The 𝐴𝑅D terms in this equation represent the single overlap areas from each intersecting 

boundary line, as derived in Equation 4.3. 

   
Figure 26: A) Single Boundary Overlap, B) Dual Boundary Overlap 

 

 The case of circle-circle intersection is handled as two distinct instances of circle-line 

intersection where the line is a common chord defined by the pair of points common to both circles. 

The area to be excluded from each circle is defined by the normal distance from the chord to each 

circle’s center point as seen in Equation 4.5 [32].  

𝐷 =
𝑟¶F − 𝑟·F + 𝐴𝐵

F

2𝐴𝐵
(4.5) 
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Where 𝑟¶ and 𝑟· are the radii of the particle of interest (A) and the intersecting particle (B).  

 
Figure 27: Two-Circle Intersection Properties 

 

The area of circle 𝐴 exterior to the common chord is determined by substitution of Equation 4.5 

into Equation 4.3: 

𝐴𝑅¶,· = 𝛼𝑟¶F − �
𝑟¶F − 𝑟·F + 𝐴𝐵

F

2𝐴𝐵
�𝑟¶ sin 𝛼 (4.6) 

Where 

𝛼 = acos �
𝑟¶F − 𝑟·F + 𝐴𝐵

F

2𝐴𝐵	𝑟¶
� (4.7) 

For the case depicted in Figure 28 where a region common to two circles exceeds the boundary 

line an inclusion correction must be made to account for the region of triple inclusion. In the figure, 

the area of circular wedge 𝐷𝐹𝐸 is constructed from the area of the circular sector defined by 𝛼 and 

the areas of triangles 𝐴𝐷𝐹 and 𝐴𝐸𝐹. 

𝐴𝑅G =
1
2𝛼𝑟¶

F − 𝐴¶¹º − 𝐴¶»º (4.8) 
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Figure 28: Dual Intersection at Boundary 

 

 The area common to three circles is isolated by a similar method of deconstruction. The 

circular triangle 𝐷𝐸𝐹 shown in Figure 29 is a triple included region. The population and 

compaction algorithms are implemented such that a generalized formulation, such as that proposed 

by Fewell, is excessive – the algorithm will not produce the instances of severe overlap that the 

generalized form accounts for [32]. The formulation implemented in this application takes 

advantage of the pre-defined area functions to compute the area of this region accurately. The 

construction is as follows: 

𝐴𝑅¹»º = 𝐴𝑅¶·¼ +
1
2
(𝐴𝑅¶· + 𝐴𝑅¶¼ + 𝐴𝑅·¶ + 𝐴𝑅·¼ + 𝐴𝑅¼¶ + 𝐴𝑅¼·)

−
1
2
(𝛼𝑟¶F + 𝛽𝑟·F + 𝛾𝑟¼F) (4.9)

 

 
Where 𝐴𝑅¶·¼  is the area of triangle 𝐴𝐵𝐶 via Heron’s formula [33], and 𝐴𝑅3¿ is the area of circle 

𝑖 exterior to the common chord of circles 𝑖 and 𝑗 . Angles 𝛼, 𝛽,	and 𝛾 are the angles of the vertices 

of the triangle formed from the particle centers as seen in Figure 29.  
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Figure 29: Three-Circle Intersection 

 

4.2. 3D Porosity Computation 

The inclusion-exclusion criteria for 3D porosity calculation are listed below.  
 

Table 8: Inclusion-Exclusion Criteria for 3D 
Segment Definition Status 
Individual Particle Included 
Volume Exterior To Unit Boundary Excluded 
Volume Exterior To Two Unit Boundaries Included 
Volume Exterior To Three Unit Boundaries Excluded 
Volume Common To Two Particles Excluded 
Volume Common To Two Particles & Exterior To One Boundary Included 
Volume Common To Two Particles & Exterior To Two Boundaries Excluded 
Volume Common To Three Particles Included 
Volume Common To Three Particles & Exterior To One Boundary Excluded 

 
 The volume of each individual particle is combined to produce an initial volume of 

particles. The two subsequently excluded cases (1 sphere – 1 boundary & 2 spheres) are 
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functionally identical where the particle of interest is intersected by one plane. Equation 4.5 

remains the ideal formula for normal distance, in this case from the sphere center to the plane 

defined by the common circle for any sphere-sphere intersection [34]. The volume of the spherical 

cap exterior to one intersecting plane is shown below: 

𝑉�dÁ =
𝜋
3
(𝑟¶ − 𝐿)F(2𝑟¶ + 𝐿) (4.10) 

Where 𝐿 is the normal distance from the intersecting plane to the sphere center. The cases of 

included intersect volumes such as sphere-plane-plane, sphere-sphere-plane, and triple 

overlapping spheres are generalizable in the form of one sphere intersected by two intersecting 

planes. The intersecting planes form a line that intersects the sphere. A projection of the spherical 

cross-section normal to the intersection line is depicted below. 

 
Figure 30: Spherical Segment Exploded View 

 
Figure 31: Spherical Segment Cross-Section 

 

 Any instance of intersection fitting this characterization can be decomposed into two 

separately evaluated volumes, where the orange region of Figure 30 is bisected by the plane 

containing both the intersection line and the sphere center (line “c” in Figure 31). Each of the two 
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resultant segments take the form depicted in Figure 32 for which the volume is calculated as 

follows [35]. 

𝑉 =
1
3 𝑟¶

G Â𝜋 − 2 asin n
𝑟¶ cos𝛼
�𝑟¶F − 𝐻F

sÄ (4.11) 

 

 
Figure 32: Spherical Wedge Area Derivation 

 

 The remaining excluded regions are modelled as the intersection of a sphere and a 

tetrahedron such that one vertex of the tetrahedron is contained in the sphere as outlined by 

Bernardeau et al. [36]. In this case three planes intersect at a point within the sphere. The three 

planes are identified by the normal vector from the plane to the sphere center. This information is 

sufficient to determine all of the necessary quantities: the dihedral angles of each plane-plane 

intersection, the coordinates of four intersection points, and the equation of the plane defined by 

intersection points on the sphere surface. This deconstruction relies on a unique approach to 

determining the volume of a spherical region which utilizes Girard’s theorem. The requisite 

volume calculations rely on these values to evaluate the following values: 
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• The area of the spherical triangle 𝐴𝐵𝐶 given by Girard’s theorem 

• The volume described by the spherical triangle by integration of the area through the radius  

• The volume of the tetrahedron 𝑂𝐴𝐵𝐶, where 𝑂 is the sphere center (𝑉:D) 

• The volume of the tetrahedron 𝑋𝐴𝐵𝐶, where 𝑋 is the triple-plane intersection point (𝑉:F) 

• The volume of three spherical wedges to correct for the spherical triangle volume 

approximation (𝑉ÇD, 𝑉ÇF, 𝑉ÇG) 

Girard’s theorem proposes that a spherical triangle having a spherical excess of 𝐸 = 𝑎 + 𝑏 + 𝑐 −

𝜋, where 𝑎, 𝑏,	and 𝑐 are the angles of intersection at each vertex, is related to the surface area of 

that triangle via the following formula [37]. 

Δ = 𝑅F𝐸 (4.12) 

The spherical lines 𝐴𝐵ÉÉÉÉ, 𝐴𝐶ÉÉÉÉ, and 𝐵𝐶ÉÉÉÉ describe great circular arcs on the sphere surface. As such, 

the spherical excess 𝐸 is entirely independent of the radius. Integrating this area through the radius 

yields the following volume formula.  

𝑉:Ê3 = J 𝜌F𝐸	𝑑𝜌
Ë

R

=
1
3𝑅

G(𝑎 + 𝑏 + 𝑐 − 𝜋) (4.13) 

 The volume 𝑉:Ê3  of the region depicted in Figure 34 is decomposed into tetrahedron 𝑂𝐴𝐵𝐶 

and a triangular spherical cap, each having well defined volumes. The volume of the tetrahedron 

𝑋𝐴𝐵𝐶 seen in Figure 35 (orange) is calculated and added to the known volume of the triangular 

spherical cap (red). The volume of a tetrahedron given four point coordinates is calculated via 

formulation below. 

𝑉Ì¶·¼ =
1
6
Í�𝑂𝐴ÎÎÎÎÎ⃗ × 𝑂𝐵ÎÎÎÎÎ⃗ � ⋅ 𝑂𝐶ÎÎÎÎÎ⃗ Í (4.14) 



 
 

 
Figure 33: Sphere Intersected by Three Planes 

 
Figure 34: Spherical Triangle Volume 

 
 

 
Figure 35: Exploded View 

 
Figure 36: Corrective Spherical Wedges 

 

 These regions are combined to form the purple shape seen in Figure 36. The three 

tetrahedral faces exist on the cutting planes, however, the cap segment is observed to diverge from 

the cutting planes. Where a tetrahedral face is in the plane 𝑋𝐵𝐶 the associated cap face will be in 

the plane 𝑂𝐵𝐶 due to the decomposition method for 𝑉:Ê3. Each of the three remaining wedge 

volumes are calculated as per Equation 4.11. In this case the height 𝐻 is the normal distance from 

plane 𝐴𝐵𝐶 to point 𝑂, and angle 𝛼 is the dihedral angle formed by, for example, planes 𝑂𝐴𝐵 and 
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𝑋𝐴𝐵. Because one plane contains the sphere center point the volume may be evaluated in the 

special simplified form shown in Figure 32. 

The volume computation operations detailed above are implemented in the following manner.  

1. for all spheres: 
2.  Compute whole sphere volume 
3.  if sphere-boundary overlap then 
4.   Store normal vector(s) from sphere center to boundary wall(s) 
5.  for remaining spheres ~i: 
6.   if sphere-sphere overlap then 
7.    Store normal vector from sphere center to common plane 
8.  end for 
9.  for all intersecting planes: 
10.   Compute spherical cap volume from plane q 
11.   for all intersecting planes ~q: 
12.    if plane-plane intersection line in sphere then 
13.     Compute spherical segment volume q-r 
14.    for all intersecting planes ~(q∨r): 
15.     if triple intersection point in sphere then 
16.      Compute triple intersection volume q-r-s 
17.    end for 
18.   end for 
19.  end for 
20.  Combine computed volumes to isolate once-counted volume of sphere i 
21. end for 
22. Sum calculated effective sphere volumes 

 
This order ensures that each unique instance of single, double, and triple plane intersection is 

evaluated a single time. 

4.3. Iterative Porosity Solver 

 Given three known values (boundary length, particle volume, and target porosity) the 

compaction process will begin to alter particle positions, drawing each sphere proportionally 

toward the RVE center until the void fraction is determined to be within an acceptably small 
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margin of the target porosity. This numerical root finding method uses linear extrapolation to 

suggest compaction levels such that the RVE porosity approaches the target porosity with precision 

and efficiency. 

 The mathematical core of the compactor process is a linear equation solver. The solver is 

initially given an entirely non-intersecting list of particles, a boundary length 𝐵", and a target 

porosity 𝑃K. The particle list is fed to a volume calculator function that returns the effective volume 

of the particles, 𝑉ÁdÊ:, contained by a unit cube with a negligible wall thickness. The initial porosity 

is calculated in Equation 4.15. 

𝑝" = 1 −
𝑉ÁdÊ:
𝐵"G

(4.15) 

The initial compaction coefficient is 𝑐" = 1, indicating that the particle coordinates are unaltered. 

It can therefore be written that an arbitrary function 𝑓(𝑐") = 𝑝". If 𝑝" > 𝑃K then a compaction 

coefficient of 0.95 is attempted. This produces a point for 𝑓(𝑐D) = 𝑝D which is used to predict a 

new value for 𝑐F. In the generalized form: 

𝑐3ÕD = 𝑐3 + (𝑐3�D − 𝑐3) �
𝑃K − 𝑝3
𝑝3�D − 𝑝3

� (4.16) 

 This formula extrapolates to produce an estimate for 𝑐= where 𝑓(𝑐=) = 𝑃K using the 

assumption that this function is approximately linear in the region. For a compaction coefficient 

𝑐= < 1, the external RVE boundary is equal to the specified boundary length and the internal 

window is described by internal boundary length 𝐵3 below, giving the RVE shell thickness seen 

in Equation 4.18. 

𝐵3 = 𝑐=𝐵" (4.17) 
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𝑡3 =
1
2
(𝐵" − 𝐵3) =

1
2𝐵"𝑐=

(4.18) 

A second solid volume, the volume of the shell, is now included in the porosity calculation. The 

new porosity equation is shown below. 

𝑉¤"3¥ = 𝐵"G𝑝3 = 𝐵"G − 𝑉ÁdÊ: − 𝑉¦×Ø§§ 	 (4.19) 

𝑝3 = 𝑐3G −
𝑉ÁdÊ:
𝐵"G

(4.20) 

4.4. Particle Arrangement 

 Once a compaction coefficient has been chosen it is applied to the particle coordinates as 

a scalar multiplier. The new particle coordinates are then passed to an arranger function whose 

purpose is to compact particles in a manner best resembling the observed characteristics. This 

function cycles through each particle as in the volume computation function, storing normal 

vectors of intersecting planes from other particles only – boundary wall intersections are not 

considered in this module. The normal vectors are processed into a relocation vector: 

𝑓�𝑂𝐴ÎÎÎÎÎ⃗ � = 𝑓(𝑥, 𝑦, 𝑧) = n1 −
𝑅

�𝑥F + 𝑦F + 𝑧F
s Â
𝑥
𝑦
𝑧
Ä (4.21) 

 In the case where only one intersection plane exists this vector will relocate the particle 

such that no overlap region exists. For particles with more than one plane of intersection, the vector 

sum of the relocation vectors will shift the particle into the position of least overlap. The particle’s 

new position replaces its original coordinates so that the next particle rearrangement evaluation 

considers an up-to-date particle array. The implementation of this arrangement function enhances 

the computational efficiency of the total volume computation by decreasing instances of complex 

intersection among particles (3 and 4 particle overlap) and by simplifying the volumetric 
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decompositions of particle-particle intersections where both particles are centered on a boundary 

wall or boundary edge. In these special cases, the volume of the spherical cap from a two-sphere 

intersection belonging to the interior cube is one-half of the cap volume (shared wall) and one-

quarter of the cap volume (shared edge). The special cases become increasingly more prevalent at 

low porosity. The compaction loop follows the order below: 

1. Compaction coefficient applied 

2. Particle arrangement 

3. Porosity computation 

4. New compaction coefficient calculated 

5. Repeat 

 A convergence condition is implemented within this loop such that the arrangement step is 

skipped where the error measurement |𝑃: − 𝑝3| drops below a specified cut-off. The value of this 

maximum change threshold must be less than the overall maximum error threshold. From this 

point, uniform compaction toward the origin is the sole operation performed on the particle 

coordinates until the target porosity is achieved. 

4.4.1. ABAQUS Implementation 

 Each function described in this document is packaged as a single Python script executable 

from within the ABAQUS user interface. User inputs such as the dimensionality, population 

method, particle size distribution, material properties, analysis type, and mesh properties are 

selected in a graphical window.  

4.4.2. Model Generation 

 The model generation module is handed a particle array and exterior/interior boundary 

lengths from the compaction function. The model generator begins in the part module, generating 

a numbered part for each particle in the array with the specified radius. The final part to be created 



63 
 

is the external shell of the RVE. The shell consists of thin walls which envelop the compacted 

particles to more accurately capture the behavior of the finite element model as an infinite 

continuous material rather than an isolated unit. Moving to the assembly module, a second loop 

includes and translates each generated particle to the specified coordinates. The RVE shell is 

placed in the assembly and merging is performed to produce the final RVE instance. It is at this 

point that material properties may be applied to the model. The default material model is an 

elastoplastic formulation, the parameters of which are shown in Table 9. 

Table 9: Simulated Material Properties 
Material E (GPa) 𝝈𝒚 (MPa) 𝝂 𝜶 n 
CP-Ti 110.0  270.0 0.33 0.13 11.0 
Ti-6Al-4V 110.0  380.0 0.37 0.45 24.0 
316L SS 190.0  460.0 0.25 0.1 8.5 
FSS 80.0 110.0 0.3 0.6 4.7 

 

4.5. Analysis Methods 

 Two analysis methods, elastic and elastoplastic, are used to extract mechanical behavior 

from the geometric model. The main script includes modules which function to configure 

simulations for each analysis method upon completion of the model. In the case of an elastic 

analysis a linear perturbation load step is used. This method applies a small user-defined strain 

(𝜀 = 0.001) in a single increment with no time period. The model’s linear elastic stiffness is 

evaluated from the base state, ignoring any and all plastic deformation that may occur [38]. This 

investigation type is the most rapid and reliable method for computing a structure’s elastic 

stiffness. 

 The elastoplastic analysis method is intended for investigations of large-deformation 

behaviours in tension and compression. The nature of compaction behaviour in sintered materials 
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requires well defined surface self-contact properties. The primary output of this analysis is a 

homogenized stress-strain relationship capturing both elastic and plastic deformation behavior. 

4.5.1. Boundary Conditions 

 The boundary conditions imposed in both elastic and elastoplastic investigations include 

rigid top and bottom surfaces. Each node of a rigid surface is tied to a reference node at the center 

of the face such that these nodes can not move with respect to the reference. A fixed condition is 

applied to the bottom reference point, restricting the bottom surface completely. A displacement 

load is generated for the top reference point such that some non-zero uniaxial displacement is 

applied in the Y-axis during analysis. This condition also restricts rotation of the top surface about 

the X- and Z-axes. Field output requests are instated to capture reaction force at the bottom 

reference node and displacement at the top reference node. 
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5. Simulation Results 

5.1. Geometric Accuracy 

 Models generated by this algorithm are evaluated for their accuracy using mesh-based 

measurement tools native to the ABAQUS environment. The given measurements are 

approximations subject to mild discretization error. Sample population comparisons are tabulated 

below in 2D and 3D at a mean particle radius of one-tenth the unit length. 

 
Table 10: 2D Model Generation Accuracy Comparison 

Porosity Target Area True Area % Diff. 
20% 80.000 79.944 0.070% 
15% 85.000 84.9765 0.028% 
10% 90.000 89.949 0.057% 
5% 95.000 94.9219 0.082% 
4% 96.000 95.894 0.110% 
3% 97.000 96.974 0.027% 

 
 

Table 11: 3D Model Generation Accuracy Comparison 

Porosity Target Volume True Volume % Diff. 
20% 800.000 799.785 0.027% 
15% 850.000 849.155 0.099% 
10% 900.000 899.874 0.014% 
5% 950.000 949.379 0.065% 
4% 960.000 959.409 0.062% 
3% 970.000 968.764 0.127% 

 
 We observe from Table 10 and Table 11 that the model generation applet reliably generates 

specimens accurate to the specified target porosity. The area/volume of the final model is found to 

lie within 0.15% of the target. The area and volume measurements queried by ABAQUS are 

consistently less than the target values. This discrepancy is explained by the discrete mesh-based 

method of volume calculation used by the measurement tool. Points are generated on every surface 
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of the model and connected to form tetrahedra, whose cumulative volume is returned by the query. 

For any continuous curved surface with a non-zero curvature this will produce some discrepancy 

inversely proportional to the mesh resolution. In the case of a concave surface the bridging of any 

two surface points will necessarily fill in a non-existent region, while a convex surface will have 

regions of its surface cropped out. Since every continuous surface is either flat or convex the 

volume measurement tool is expected to consistently under estimate the true model volume. The 

mesh convergence analysis effectively negates the effects of this phenomenon. 

 The following series depicts the iterative model generation process from generation to 

completion for a 2D specimen at 5% porosity. The first step shows the particles as they were 

initially generated. The second step depicts the application of an initial compaction coefficient 

guess of 𝑐 = 0.95, whose purpose it is to produce a second data point to initialize the iterative 

process. Steps 3 depicts the final iteration of the compaction process. This particular model had a 

target area of 95.000 and a measured area of 94.920 for an error of 0.084%. 

 
a) 

 
b) 

 
c) 

Figure 37: 2D Compaction Process a) No Compaction b) Initial Compaction c) Final Microstructure 
 

Figure 38 demonstrates the iterative particle compaction method used here to achieve a precise 

fractional porosity in the microstructure. The error threshold was set to 10�DF in this instance.  
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Figure 39 and Figure 40 depict the particle compaction process in 3D and the porosity convergence 

plot respectively. 

 
Figure 38: 2D Compaction Plot 

 

 
a) 

 
b) 

  
c) 

Figure 39: 3D Compaction Process a) No Compaction b) Initial Compaction c) Final Microstructure 
 

 
Figure 40: 3D Porosity Iteration Plot 
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5.2. Mesh Results 

 Unstructured 2D meshing of a low porosity specimen is shown below at increasing mesh 

resolution. These are composed of CPS4R and CPS3 mesh elements. The regions of high mesh-

density observed in each figure are the result of miniscule voids. The compaction algorithm is 

designed to reduce the prevalence of tiny voids, however the user may choose to manually fill 

problematic voids as required. Unstructured 3D specimen meshes are comprised of second order 

tetrahedral elements. 

5.2.1. 2D Simulation Results – Convergence 

 H-method convergence studies were performed on low- to medium-porosity 2D specimens 

investigating the effect of porosity on elastic modulus. One such convergence plot is shown in 

Figure 41 below.  

 
Figure 41: 2D Modulus Convergence Plot (3.6% Porous CP-Ti) 
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efficiency plot in Figure 42. These analyses were performed on a HP EliteDesk running Windows 

10 with a 3.4 GHz Intel Core i7-6700 processor and 16.0 GB of memory.  

5.2.2. 2D Simulation Results – Accuracy 

 Simulation results for elastic modulus investigations are compared to experimental 

findings in Table 12. The models used in these simulations were generated with a unit length of 

10 and a mean particle radius of 0.5 with a standard deviation of 0.1. A mesh seed was defined 

with a maximum element length of 0.025, thus achieving a quantity of elements deemed sufficient 

by the convergence study. The analysis step used was linear perturbation, whereby a very small 

strain is applied over an arbitrarily small step time assuming linear elastic behavior [38]. We 

observe that the maximum percent difference in elastic modulus between experimental results and 

simulation results is 2.83% when comparing titanium and high-strength steel specimens having 

porosities in the range of 0.9% – 11.7%. 

 
Figure 42: Computational Cost Comparison 
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5.2.3. 3D Simulation Results – Convergence 

 We observe from Figure 43 that the elastic modulus converges at approximately 300,000 

elements. Lower resolution meshes are inhibited by the very small voids found in the final 

specimen, which require at least one seed per edge with a growth rate of 1.1 regardless of the 

global seed size. This growth rate refers to the maximum ratio of adjacent element side lengths in 

the transition zone from a high resolution to a low resolution mesh region.  

5.2.4. 3D Simulation Results – Accuracy 

 3D simulation results for elastic modulus investigations are shown compared to 

experimental findings in Table 12. The models used in these simulations were generated with a 

unit length of 10 and a mean particle radius of 1.0 with a standard deviation of 0.1. A mesh seed 

was defined with a maximum element length of 0.1, thus achieving a quantity of elements deemed 

sufficient by the convergence study depicted in Figure 43. The analysis step used was a linear 

perturbation, as per the 2D simulations. We observe that the maximum percent difference in elastic 

modulus between experimental results and simulation results is 2.39%. 

 
Figure 43: 3D Modulus Convergence Plot 
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Table 12: Elastic Properties Comparison 

Material Porosity (%) Elastic Modulus 
(GPa) 

Simulated (GPa) % Difference 
2D 3D 2D 3D 

CPTi [39] 
0.0 110.0 - - - - 
4.5 95.7 95.47 97.45 0.24% 1.83% 
7.8 86.3 84.56 88.361 2.02% 2.39% 

Ti-6Al-4V [39] 
0.0 110.0 - - - - 
0.9 107.1 105.78 108.012 1.23% 0.85% 
3.5 98.7 98.78 100.361 0.08% 1.68% 

HSSS [40] 
0.0 144.0 - - - - 
4.0 127.2 124.56 130.17 2.08% 2.33% 
7.0 115.9 112.62 116.72 2.83% 0.71% 

HSSS [41] 
0.0 170.0 - - - - 
6.5 138.9 136.54 140.24 1.71% 0.95% 

11.7 118.2 116.98 120.33 1.03% 1.80% 
 

5.3. Large Deformation Simulation Results 

 A series of large deformation analyses were conducted on 2D and 3D specimens in the 

porosity range of 3.5% - 10.3%. The material properties of the experimental specimens are 

tabulated below. Given values for offset and hardening exponent refer to the parameters of the 

deformation plasticity material model which describe the plastic behavior of a fully dense 

specimen. 

 In each of the following large deformation analyses the 2D mesh is constructed of free-

structured linear tri elements of type CPS3 while 3D meshes use free-structured linear tetrahedral 

elements type C3D4. In each case the bottom surface is fixed in place while a ramp displacement 

is applied to the opposite face in a static analysis step with consideration for non-linear geometry 

effects. A maximum increment time period is specified such that the analysis returns a minimum 

of 25 data points along the stress-strain curve.  
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5.3.1. CP-Ti Simulation Results 

 Figure 46 and Figure 44 depict the simulated mechanical behaviour of porous specimens 

of commercially pure titanium in comparison to physical test data from Bourcier et al. [39]. These 

sintered powder-fabricated specimens were loaded in uniaxial tension to failure, with each 

specimen having a failure strain of 𝜀 ≈ 0.1.  

 We observed that, in both trials, the 2D and 3D simulations accurately predict elastic 

modulus as anticipated. The 3D analyses produce stress-strain behaviour that is highly similar to 

physical test data up to the ultimate tensile stress. Analysis of 2D models would appear to over-

predict the effect of porosity on the tensile yield stress by ~40 MPa in the 4.5% porous study and 

~60 MPa in the 7.8% porous model, a percent error of ~14% and ~25% respectively. 

 
Figure 44: CP-Ti Large Deformation Results – 7.8% Porous 
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Figure 45: CP-Ti Large Deformation Results – Stress-Strain Plot 

 
Figure 46: CP-Ti Large Deformation Results – Stress Distribution 
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5.3.2. Ti-6Al-4V Simulation Results 

 Figure 47 depicts the simulated mechanical behaviour of a 3.5% porous specimen of grade 

5 titanium alloy, once again from Bourcier [39]. This sintered powder-fabricated specimen was 

loaded to a failure strain of 𝜀 ≈ 0.06.  

 
Figure 47: Ti-6Al-4V Large Deformation Results – 3.5% Porous 
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of 10.3%, the 3D model analysis gives an accurate prediction of mechanical behavior throughout 

the elastoplastic region. The 2D model analysis in this case under predicts both the elastic modulus 

and the yield stress appreciably. 

 

 
Figure 48: 316L SS Large Deformation Results – 4.5% Porous 

 

 
Figure 49: 316L SS Large Deformation Results – 10.3% Porous 
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5.3.4. Ferrous Sintered Steel Simulation Results 

 Figure 50 shows the comparison between simulation results and physical test data from the 

tensile loading of ferrous sintered steel at 9.8% porosity by Bertini et al. [15].  

 

 
Figure 50: FSS Large Deformation Results – 9.8% Porous 
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protection and stability due to the reduced probability of large void clusters occurring in the same 

plane normal to the direction of applied load. In other words, instances where multiple large voids 

occur in the same region are less frequent and less severe in 3D than in 2D on account of the 

additional dimension. A given cross-section of a porous 3D model might display a region of severe 

weakness due to void inclusions, however, different cross-sections of that same model are unlikely 

to have large void concentrations in the same plane as the first. Consequently the effects of stress 

concentrators do not multiply to induce premature yield in 3D the way that we observe in 2D 

models.  

 
a) Elastic Deformation  

 
b) Effective Yield 

 
c) 2.5% Strain  

 
d) UTS 

Figure 51: 2D Large Deformation Stress Distributions 



 
 

 
a) Elastic Deformation  

 
b) Yield Point 
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Figure 52:  3D Large Deformation Stress Distributions 

5.4. Conclusions 

 Sections 4 and 5 have shown the development and testing of an algorithm which generates 

realistic geometric models of powder-based sintered materials. This algorithm relies on two novel 

processes: one module that rapidly computes the effective volume of a set of intersecting hard 

spheres and a second process designed to realistically simulate the settling and compaction 

behavior of spherical particles. Through extensive testing it has been determined that the algorithm 

quickly, reliably, and accurately produces 2D and 3D representative models from information 

about the particle size distribution and the porosity level of the final material. Finite element 
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simulations show that the full elastoplastic behavior of porous sintered materials from physical 

testing is captured by the corresponding realistic powder-based model.  

 The particle generation and compaction algorithms produced computational models whose 

geometric characteristics bear significant resemblance to sintered powder-based porous materials. 

In particular, the process of iterative particle arrangement captures the phenomenon of free-particle 

settling and compaction more accurately than any non-iterative random particle placement. The 

iterative compaction algorithm in concert with the analytical volume calculator have been proven 

to generate particle-based models of a specified porosity in an automated, precise, and 

computationally efficient manner. Extensive testing of individual volume evaluation functions 

suggests that the discrepancies observed between the calculated and the measured model volumes 

are the result of discretization error inherent in the polygon-based measurement methods.  

 The tools developed present valuable predictions of mechanical behavior as a function of 

fractional porosity. Additionally, the anisotropic nature of the representative models allows 

observations to be made regarding the degree of variance inherent in porous sintered materials. 

Three dimensional porous RVE models are found to capture large-strain behavior more accurately 

than two dimensional models, especially at higher porosities. This may be due to the fact that in a 

pseudo-random system, the weakest cross-sectional line of a 2D model is likely to be weaker than 

the weakest cross-sectional plane of a 3D model. Three dimensional RVEs should always be used 

to model the large deformation behavior of porous materials. 

 The findings of these simulations contribute to our ability to study the effect of void shape, 

void size, and void fraction on the mechanical properties of porous sintered materials. The model 

generation application is a powerful tool for the planning and design of devices that stand to benefit 

from the tailoring of their mechanical behavior. 
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6. Summary 

 In the first two sections of this report, published literature, test data, and scans were 

reviewed to examine the void characteristics of porous materials from various fabrication methods 

and the effect of porosity and void shape on the mechanical behavior of these materials. It was 

determined that both the volumetric fractional porosity and void shape characteristics have a 

significant effect on the elastic and plastic deformation behavior of porous ductile metals. Images 

of novel additive manufactured particle based metals show that the voids which occur in SLS, 

SLM, and EBM materials, as well as sintered solids from powder metallurgy, are highly distinct 

from voids found in non-additive manufactured porous metals. Furthermore, this review of the 

literature found that the available physical test data from sintered porous specimens is scarce. 

 Section 3 of this report investigated the effect of porosity and pore shape on the mechanical 

behavior of porous ductile metals using both a rheological finite element model and computational 

modelling of the same geometries. Fractional porosity, void shape, and void aspect ratio were used 

as controlled variables for the in silico experiments. Results from this investigation concluded that 

the shape and aspect ratio of a void in a ductile material have a significant effect on the elastic 

modulus, yield, and overall elastoplastic deformation behavior of a porous material. The 

effectiveness of the analytical finite element modelling of a porous representative volume element 

as a system of bars with non-uniform cross-sections was tested and it was concluded this model 

could not replicate the stress distributions observed in the simulated model, especially at lower 

aspect ratios. This is suggested to be the reason for the discrepancy in results between the two 

methods.  

 Section 4 provides a novel method for generating representative volume element models 

of the powder based sintered geometries of porous sintered solids. The primary challenge of this 
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work was the development of a system which produces a set of intersecting hard spheres with a 

particular target volume. The secondary outcome was the realistic representation of particle 

settling, compaction, and solidification behavior. The model generation algorithm was tested in 

2D and 3D for accuracy and mesh convergence. These tests determined that the algorithm produces 

realistic models of powder based sintered metals rapidly and with high volumetric accuracy. The 

convergence tests verified that these models are appropriate for use in the finite element simulation 

of porous materials to study effective material behavior.  

 Section 5 takes physical test data from porous metal specimens of titanium and steel and 

builds corresponding models using the novel model generation algorithm. Linear elastic 

simulations are conducted on these models to determine the effective elastic modulus of each. 

Large-strain simulations were conducted to gauge the model’s prediction of yield and the 

elastoplastic deformation behavior in general. It was concluded from these comparisons that the 

procedurally generated 3D models are highly effective at predicting the small and large strain 

behavior of porous sintered metals. 

6.1. Future Work  

 The model generation system presented here has been proven to have significant potential 

pertaining to the further investigation of the behavior of porous sintered solids. Given the novelty 

of these materials and the consequent scarcity of physical test data, this model generation algorithm 

which has been validated for use in tension can be extended to study the compressive, fatigue, and 

damage characteristics of these porous materials. The existence of a realistic representative model 

of the powder-based solids in a finite element environment also facilitates the further study of pore 

collapse mechanisms on the compressive plastic behavior of these materials. Ultimately data from 

these simulations might contribute to the development of homogenized analytical models of the 
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elastoplastic behavior of porous materials parameterized by porosity and void shape 

characteristics. 
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