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ABSTRACT 

Drilling for petroleum is technically engaging, considering the potentially huge risk involved. 

Blowout due to uncontrolled kick represents a scenario that is to be avoided due to disastrous 

consequences, e.g. huge financial loss, environmental damage, and death of personnel. Kick 

occurrence can be prevented if the pore pressure is correctly estimated and the proper drilling 

mud weight employed. Pore pressure prediction is done in shale lithology; hence a fast means of 

proper lithology identification is important for pore pressure prediction. Monitoring downhole 

for pore pressure related hazard therefore includes but is not limited to: monitoring for kick 

occurrence, monitoring for abnormal pore pressure, and monitoring for changes in lithology for 

adequate pore pressure prediction. 

In the field of data science, deep learning is gaining significant interest, which is likely due to its 

potentials and successful applications. Researchers have begun to explore deep learning in 

several areas with close affinity to drilling engineering, such as lithology identification, drilling 

rig state determination, generating logging/other drilling parameters, detecting downhole events, 

and detecting abnormality in data. Therefore, this serves as a motivation to take advantage of 

deep learning capabilities in monitoring downhole conditions during drilling to prevent pore 

pressure based hazardous events. 

In this dissertation, a novel methodology for kick detection using drilling parameters is 

presented. Likewise, a novel methodology for predicting the shaliness of a rock formation using 

drilling parameters is also presented. These methodologies utilized deep learning algorithms in 

order to achieve the desired objectives. Results obtained using field data justified the 

development of methodologies with the capability to capture sequential dependencies.  Cost 

represents a significant factor for utilizing drilling parameters in comparison to the use of highly 
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sophisticated/expensive downhole sensors. As part of this dissertation, a novel approach for pore 

pressure prediction from porosity and resistivity measurement is presented.  The aim of 

combining porosity and resistivity is to explore how the interrelationship between them can 

enhance pore pressure prediction. The methodology developed for combining porosity and 

resistivity performed better than the conventional approach based on field data. Machine learning 

was also employed for pore pressure prediction and better result was also achieved in 

comparison to conventional approach based on the same field data. In summary, this dissertation 

presents several novel methodologies for monitoring different aspects of downhole conditions 

from downhole lithology to downhole drilling events which are important for improved drilling 

safety. 
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Chapter 1 

1. Introduction 

1.1 Background 

Drilling thousands of feet into the ground in search of resources for human energy needs can be 

very expensive and risky. Popular forms of drilling include drilling sedimentary rocks for 

hydrocarbon and drilling geothermal wells to explore for heat energy (Allahvirdizadeh, 2020; 

Lukawski et al., 2014). In this dissertation, the focus is on drilling sedimentary rock for 

petroleum. When drilling for petroleum, the pore pressure or geopressure which refers to the 

pressure of the fluid within the pores of the rock can pose a serious threat to the safety of lives, 

equipment and environment within the vicinity of the drilling operation (Abimbola, 2016; 

Oloruntobi, 2019). Pore pressure, which can result in kick, represents a critical safety factor. One 

of the early important articles in this regard was by Eaton, where methodologies to predict 

geopressure using sonic travel time, conductivity and corrected d-exponent in shale region were 

presented (Eaton, 1975). Accurate prediction of pore pressure (geopressure) facilitates the use of 

safe drilling fluid density (Brahma & Sircar, 2018; Y. Feng et al., 2015). There is the chance that 

pore pressure will exceed mud pressure during drilling, which can lead to kick. Detecting the 

occurrence of kick is important as uncontrolled kick can lead to blowout (Abimbola et al., 2014; 

Khakzad et al., 2013; Khoshnaw et al., 2014; Zhang & Yin, 2017). Downhole pressure sensors as 

well as high resolution flow meters offer useful means of monitoring for kick.  Use of downhole 

sensors requires appropriate design for upward transmission of information. Also, cost, 

installation and maintenance represents challenges of using high resolution flow meter (Reitsma, 

2011). This makes it a worthwhile to study how drilling parameters/surface sensors can be used 

for automatic kick detection.  
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Ensuring safety during drilling involves prediction/detection of events, e.g. kick occurrence, and 

taking appropriate control, e.g. controlling kick. This dissertation does not include drilling/well 

control for safety purposes; instead, the dissertation only focuses on prediction/detection. Several 

fault trees showing probability of blowouts occurring as a consequence of abnormal pore 

pressure and kick control can be found in the following: Tamim et al., (2019), Bijay et al., (2020) 

and Abimbola, (2016). 

Fig. 1.1     Fault tree model for drilling operations. 

Fig. 1.1 is obtained by slightly modifying part of  Fig. 2 in the article by Abimbola et al., (2014). 

Fig. 1.1 is a fault tree which shows the events that can lead to blow out. In the same article by 

Abimbola et al., (2014), twenty different kick causing events (abnormally pressured zone, 

swabbing, insufficient equivalent circulating density (ECD), loss circulation, inadequate hole fill 
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up, operator error, bad cementing, stuck pipe etc.,) and their probabilities were presented. 

Among these events, abnormally pressured zone had the highest probability. Fig. 1.2 shows the 

relative percentage of the top events that can cause kick based on their probabilities. 

 

Fig. 1.2   Probability of kick causing events. 

 

From Fig. 1.2, it can be seen that abnormally pressured zone with a relative percentage of 57% is 

majorly responsible for kick. This shows the benefit of accurately predicting pore pressure. The 

light-yellow coloured sections of Fig. 1.1 shows the focus of this dissertation towards enhancing 

drilling safety.  

Predicting pore pressure (in order to identify abnormally pressured zone) also has its challenges. 

There are uncertainties in important variables which influence pore pressure prediction such as 

wireline log data, porosity and lithology (Oughton et al., 2018). Overpressure mechanisms can 

be due to compaction disequilibrium, fluid expansion or transfer mechanism (Tingay et al., 
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2009). Overpressures in sedimentary rocks are primarily caused by compaction disequilibrium 

(Tingay et al., 2009; Zhang, 2013); this is often observed as higher than the porosity expected at 

a given depth based on the normal porosity trend for the rock (Zhang, 2013). Compaction 

disequilibrium as a means of observing changes in pore pressure has been used in estimating 

pore pressure using several log measurements such as sonic log and resistivity log (Zhang, 

2011). Fig. 1.3 was obtained by slightly modifying part of Figure 2 in the article by Oughton et 

al., (2018). Fig. 1.3 is a pore pressure-porosity parameter dependency network model based on 

mechanical compaction. The focus of Fig. 1.3 is on porosity. Other articles consulted for Fig. 1.3 

are: Tingay et al., (2009), Maxwell, (1964) and Saleh et al., (2013).    

 

Fig. 1.3   Porosity dependency network model for pore pressure prediction  

The arrows in Fig. 1.3 (also in Fig. 1.4) shows the direction of influence between parameters. For 

example, the porosity in a section of a rock will influence the resistivity and sonic velocity/transit 

time that can be measured in that section of the rock.  As shown in  Fig. 1.3, pore pressure 
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variations can be captured by sonic and resistivity logs because these logs (sonic and resistivity) 

are sensitive to porosity anomaly caused by pore pressure variations (Tingay et al., 2009).  

Although porosity deviation from normal trend (compaction disequilibrium) represents the 

conventional means by which overpressure is estimated, Fig. 1.3 shows that lithology also 

influences porosity and improper lithology identification can cause erroneous pore pressure 

prediction from porosity deviation. Thus, proper lithology identification plays a significant role 

in achieving accurate pore pressure prediction. Based on this, this dissertation investigates both 

pore pressure prediction and lithology identification.   

A parameter dependency network which utilizes parts of Fig. 1.3 and Fig. 1.1 is presented as Fig. 

1.4. This figure shows the research focus of this dissertation. 

 

Fig. 1.4   Parameter dependency network of research focus 
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The light blue shaded sections of Fig. 1.4 show input parameters which would be used to 

predict/detect the light yellow shaded sections of Fig. 1.4. Lithology will be identified using 

drilling parameters and gamma ray log, pore pressure will be predicted using resistivity log and 

sonic derived porosity log, and kick detection will be done using Standpipe pressure (SPP) and 

d-exponent data. More details are available in Chapter 1.6 of this dissertation. 

 

1.1.1 Brief introduction to machine learning 

Humans possess the abilities to perform complex intelligent tasks for which there are no simple 

equations e.g. ability to observe resemblance among siblings. The field of machine learning is an 

evolving field which seeks to artificially recreate human intelligence. Machine learning therefore 

represents an interesting area of artificial intelligence which involves developing algorithms to 

learn from data   (Freeman & Chio, 2018; Mohammed et al., 2017; Sze et al., 2017). 

Machine learning can operate in supervised mode (if each of the training data are labelled as 

input and output) or unsupervised mode (data are not labelled as input or output).  Machine 

learning is designed to perform the task of classification or regression (if the output data is 

discrete or continuous). Several machine learning algorithms have been developed such as 

simple neural networks, support vector machines, K nearest neighbour, learning decision tree, 

naïve Bayes, convolutional neural networks, etc. Machine learning algorithms differ in terms of 

their capability, ease of implementation and how easy it is to explain the outcome of their 

learning (Freeman & Chio, 2018; Hagan et al., 1996; Haykin, 2009; Mohammed et al., 2017; 

Russell & Norvig, 2010).  
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Deep learning is achieved by exploiting multiple levels of interrelationships among input 

parameters. This enables the interaction of input parameters at different hierarchical levels to be 

utilized for learning. Deep learning can be implemented by using a multiple hidden layer 

network. The multilayer can be structured in a form to enable hierarchical learning (Sze et al., 

2017; Zhang et al., 2018B). Deep learning has achieved state of the art success in several 

domains such as image recognition and audio processing (Chung et al., 2014; Kumar et al., 2017; 

Sundermeyer et al., 2015). Although deep learning has achieved state of the art status in 

comparison to other forms of machine learning algorithms, the performance of deep learning 

would only surpass those of shallow neural networks, medium neural network and traditional 

machine learning when very high amount of data is used for training (Tang et al., 2018). The 

capability of deep learning to utilize hierarchical learning reduces the need for handcrafted 

engineering features. Deep learning is recommended when data is large, the system been 

modeled or data changes rapidly and there is lack of availability of human experts. (Alom et al., 

2019; LeCun et al., 2015; Sze et al., 2017;  Zhang et al., 2018B). 

Deep learning requires a huge amount of data for efficient performance. Therefore, transfer 

learning and pre-training can be done to augment data availability as well as ease up on training 

time. In drilling engineering, pre-training offers the opportunity to utilize data from other 

petroleum fields for a field with limited data. Although deep learning offers the benefit of 

extracting relevant features of data for training, the capabilities of deep learning still hinges on 

the size of training data used.  

Some questions that need to be addressed in the use of machine learning are: what machine 

learning algorithms are suitable for drilling operations, what are the current size of data being 

used in drilling engineering in comparison to other fields such as computer vision, how has the 
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machine learning use progressed with respect to different machine learning algorithms, and what 

can be done to make the best use of machine learning for drilling data.  

 

1.1.2 Kick during drilling and machine learning 

Kick refers to the situation when formation fluid flows into the bottom hole as a result of the 

formation pressure exceeding the bottom hole pressure. While flow measurement indicators are 

good source of kick indication, false alarm represents a major challenge for flow measurement 

indicators. Several windowed threshold based algorithms, e.g. cumulative sum (CUSUM) 

algorithm, have been implemented to reduce false alarm rate (Hargreaves et al., 2001). In 

addition, more work has also been done to optimize kick detection (early detection with reduced 

false alarm) with the use of machine learning algorithms.  

In order to optimally improve kick detection in noisy drilling data, Hargreaves et al., (2001) 

utilized the Bayesian probabilistic approach. The methodology involves developing models for 

inflow and outflow which represents different conditions including steady state, pipe movement, 

pumps on and kick. A Bayesian frame work is used to match the drilling data with the models 

and the probability outcomes can be used to indicate the event that the set of drilling data 

belongs to. Although testing showed some occurrences of false alarm, comparison with CUSUM 

algorithm showed improved sensitivity. 

Nybo et al., (2008A) aimed at establishing a proof of concept that machine learning algorithms 

can be used to augment the performance of a physical model for false alarm reduction in kick 

detection. This approach combines an artificial intelligence (AI) approach called echo state 

network (ESN) with a physical model in order to reduce false alarm rate in kick prediction from 
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fluid flow measurements using time series data. The physical model was an advanced dynamic 

flow model found in Petersen et al., (2006). The ESN which is a kind of artificial neural network 

with memory capabilities was chosen due to time dependent relationship in the data of the 

training parameters. For the combined AI and physical model, the ESN is used to predict a 

residual which will not be accounted for by the output from the physical model. The residual is 

obtained from the training data by subtracting physical model prediction of flow from actual 

measured flow. The ESN was trained to predict residual using pump rate and mud density. 

Experiment result shows that combining both physical and AI yielded a lower false alarm rate in 

comparison to stand alone physical model or standalone AI approach (Nybo et al., 2008A). Nybo 

et al., (2008B) also went ahead to show the benefit of using knowledge embedded in time series 

representation of drilling data for the purpose of mitigating false kick alarm (i.e., temporal 

relationship in data), as opposed to using basic threshold detection.  For this purpose, two 

algorithms with data-memory capabilities (Auto Regressive Integrated Moving Average 

algorithm and the ESN) were used separately. For training, change in active volume is taken as 

output and pump rate is taken as input. The results of the use of these algorithms showed 

improvement in mitigating false Alarm. 

Kamyab et al., (2010) utilized focused time-delay neural network (FTDNN) which is an 

algorithm with data-memory capabilities for kick detection. Data from 4 wells of 3 different 

fields were used for training, and the data was divided such that training data had 2 kicks and 

validation data also had two kicks. Several input parameters numbering 13 where used 

individually for predicting kick detection using the neural network. The input parameters 

considered were flow in, mud weight, total SPM (strokes per minute), RPM (revolutions per 

minute), torque, pump pressure, drag forces, weight on bit, hook load, rate of penetration, drilled 
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depth, suction pit and active pits totalizer. Results show that the pit volume indicators (suction 

pit, active pits totalizer) were the most important for detection followed by pump pressure. In 

using the FTDNN, several factors are to be considered for optimal performance. These are: 

sampling frequency of the data, method used for data normalization and kick probability 

threshold value. 

Conventional surface sensors could suffer from calibration drift. In order to improve the 

robustness of conventional sensors, Pournazari et al., (2015) utilized machine learning 

algorithms for pattern recognition. The machine learning implementation can also be used to 

augment the performance of a sensor which performs detection using physics-based calibration. 

Kick detection using the machine learning algorithms was based on trends in pit volume and 

flow out which occurs during drilling, pipe tripping and connections. The algorithms for training 

were intended for event classification and rig activity classification. The types of event include 

kick, lost circulation and fracture breathing. For drilling activity classification, time series data 

for bit speed, flow rate, pump stroke and pump stroke rate of change were used. In order to 

detect abnormal deviations in pit volume and flow-out signals, moving window averaging 

technique in combination to symbol aggregate approximation was employed. Machine learning 

algorithms can then be trained based on the patterns obtained from pit volume and flow out 

signals for event classification. Three different classifiers (Naïve Bayes, Decision tree and 

Random forest) were employed and the random forest classifier performed best (Pournazari et 

al., 2015).  

In the article by Xie et al., (2018), wavelet neural network was utilized for kick prediction. 

Wavelet analysis offers several benefits such as denoising and analysis of time series data with 

non-stationary data at different frequencies. Genetic algorithm was used for optimizing the 
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neural network.  The following input data were used in training for kick detection: rate of 

penetration, mass per unit volume of a drilling fluid (synonymous with mud density), mud 

weight of circulating fluid, mud weight going into the well, mud weight going out of the well 

and mud depth. According to the article, the use of genetic algorithm made training faster with 

improved prediction. Fjetland et al., (2019) utilized long short-term memory recurrent neural 

network (LSTM-RNN) on simulated data using the following input parameters Flow rate in, flow 

rate out, standpipe pressure, choke pressure, choke opening, bit pressure and bit depth for kick 

detection.  

It can be observed that input parameters such as flow rate, standpipe pressure, mud density, pit 

volume, rate of penetration, torque, weight on bit have been explored for kick detection using 

machine. Further work would be to get new measurable or derived parameter which can be used 

for kick detection in order to improve reliability of kick detection. 

 

1.1.3 Pore pressure and drilling 

For conventional drilling, it is desirable to keep mud weight gradient above pore pressure 

gradient in order to prevent kick. However, formation fracture can result when the mud weight 

gradient exceeds formation fracture gradient. It is therefore important to accurately predict pore 

pressure in order to design a safe drilling mud weight (density) window (Brahma & Sircar, 2018; 

Feng et al., 2015; Osarogiagbon et al., 2021).  

Pore pressure prediction is carried out in shale lithology based on expected normal hydrostatic 

values and actual measured values of the following indicating parameters: resistivity, porosity, 

velocity, d-exponent, hydromechanical specific energy etc., (Eaton, 1975; Oloruntobi, 2019; 
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Zhang, 2011).  Equation (1.1) represents the foundation from which pore pressure estimation is 

done using the indicating parameters (resistivity, porosity, velocity etc.,). 

𝑆𝑣 =  𝑆𝑒 + 𝛼𝑃.                          (1.1) 

In Equation (1.1), 𝑃 refers to pore pressure,  𝑆𝑣 refers to overburden stress,  𝑆𝑒 refers to vertical 

effective stress and 𝛼 refers to effective stress coefficient. 𝛼 is usually assumed to be 1 (Zhang, 

2013). However, for deep reservoir or reservoirs with high cementation, 𝛼 may vary significantly 

from 1 (Amiri et al., 2019; Dassanayake et al., 2015; Mao et al., 2018; Sayers et al., 2002; 

Zhang, 2013). Core data have been obtained for which effective stress coefficient value as low as 

0.55 was estimated (Civan, 2021).   

Determining the value of 𝛼 can be challenging because it can be influenced or modelled as a 

function of factors such as porosity, confining pressure, pore geometry, pore pressure, 

cementation, clay content etc., (Alam et al., 2012; Frempong & Butt, 2006; Luo et al., 2015; Xu 

et al., 2006). 

In addition to the challenge of determining the value of 𝛼, changes in the indicating parameters 

may also be due to other factors other than pore pressure, e.g. resistivity may change due to 

changes in salt concentration of brine in the rock, temperature, fluid type, shale content, texture, 

and type of clay (Saleh et al., 2013). Based on this, several indicating parameters can be utilized 

to improve accuracy. The type of indicating parameters as well as the manner in which the 

indicating parameters can be efficiently combined can also be explored.    
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1.1.4 Lithology identification during drilling 

Pore pressure prediction can be done using either velocity or resistivity or porosity values 

obtained in shale lithology (Eaton, 1975; Zhang, 2011). This shows the importance of 

appropriate lithology determination. Gamma ray log represents a typical means of detecting 

shale lithology in siliciclastic environment (Assaad, 2008; Clavier et al., 1971; Larionov, 1969; 

Olayiwola & Bamford, 2019; Oloruntobi & Butt, 2019; Oloruntobi, 2019; Stieber, 1970; Yusuf 

et al., 2019). Although gamma ray measurements can be obtained directly through logging while 

drilling (LWD), there are benefits of obtaining gamma ray measurements with the use of drilling 

parameters. Such benefits include economy (because drilling parameters are already part of 

standard parameters obtained while drilling) and improved reliability due to chances of LWD 

failing (Salehi et al., 2017; Zhang et al., 2018A). Several drilling parameters such as the rate of 

penetration (ROP) and d-exponent have been used for lithology identification. However, there is 

still the need to factor in the effect of other parameters such as bit type, bit wear, torque etc., ( 

Oloruntobi & Butt, 2020). Based on this, it is important to explore means of capturing the 

relationship between gamma ray log and all relevant drilling parameters. 

 

1.2 Research problem 

In an attempt to improve overall safety during drilling, this research focuses on developing 

methodologies for predicting/detecting downhole conditions/events such as kick occurrence, 

pore pressure and lithology during drilling. In doing this, some principal research questions of 

concern are: 

1. What are the regular data sizes available for use? 
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2. What input parameters should be considered? 

3. What useful features/attributes and interrelationship among input parameters should be 

exploited? 

4. How can deep learning be best used with input parameters or attributes of input 

parameters? 

An attempt was made to answer these questions macroscopically (with a broad view) by carrying 

out a survey (Chapter 2). In Chapters 3-5, attempts will be made to provide more detailed 

solutions to some or all of these questions as pertaining to kick, pore pressure and lithology.  

 

1.3  Research objective 

The primary research objective is the application of deep learning in modeling downhole 

conditions during drilling for safety enhancement. In order to achieve this objective, attempt will 

be made to develop methodologies for extracting useful features/attributes from 

measuring/logging parameters obtained during drilling.  Deep learning algorithms can then 

utilize the features/attributes for discrete/continuous event detection/prediction. The 

interrelationship among input parameters will also be explored by analysing the parameters. This 

is useful especially when the data size is not large enough for adequate deep learning 

implementation. Based on the primary objective, sub-objectives will involve modeling the 

following: Kick detection, pore pressure prediction and shale lithology identification.  

 



 

15 
 

1.4  Research scope 

1. The method of learning utilized in this dissertation is the supervised machine learning 

mode. 

2. For kick detection, the output event to be detected is qualitatively classified as kick 

occurred or no-kick occurred. Further work could be to estimate kick severity or 

hydrocarbon influx rate into the well during drilling using deep learning. The input 

parameters to be considered are those that can be measured near the surface (not near bit 

pressure sensors) such as rate of penetration, rotary speed, standpipe pressure etc. 

3. For pore pressure prediction, resistivity log and porosity derived from sonic log will be 

utilized. Other possible means of deriving porosity log include neutron and density log 

(Kamel & Mabrouk, 2003). Porosity log developed from different sources (sonic, neutron 

etc.,) could significantly perform differently for pore pressure prediction (Tingay et al., 

2009). 

4. For shale lithology identification, gamma ray log generation using a methodology based 

on deep learning will be implemented in this dissertation. Other lithology identification 

logs such as photoelectric absorption log, self-potential log and neutron log (Ehsan & Gu, 

2020; Fertl, 1987) could be utilized in future work. 

 

1.5  Research tasks 

1. Conduct a survey to understand the gaps in the use of supervised machine learning for 

pressure related safety/hazardous events during drilling as well as to observe the 

progress in the use of deep learning for drilling activities. This will provide information 

on the suitability of drilling data size currently used for deep learning, relevant input 
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parameters and what needs to be done to make the best use of deep learning with 

reference to detecting/predicting drilling related safety events. 

2. Explore the use of deep learning for kick detection using relevant attributes of d-

exponent data and standpipe pressure data. 

3. Explore the interrelationship between porosity and resistivity for pore pressure 

prediction.  

4. Explore the use of deep learning on gamma ray log generation using interrelationship 

between drilling parameters.  

 

1.6  Dissertation structure 

The methodologies developed in this dissertation can be included into conventional drilling 

approaches in order to improve safety conditions during drilling. Fig. 1.5. shows integration of 

the different aspects of this dissertation.   



 

17 
 

 

           

  

Fig. 1.5   Integrating the different research modules of this dissertation      

                                            

In Fig. 1.5, the boxes with light yellow background show the contribution of this dissertation 

towards improving safety during drilling, the light red background show the event that the 

contribution of this dissertation aims to prevent. It should be noted that lithology determination, 

pore pressure prediction and kick detection (three of the four light yellow background in Fig. 

1.5) are activities that are constantly being carried out during drilling because of their critical 

effect on safety. The dissertation is organized using manuscript style. Chapters 2 to 5 correspond 

to four journal articles which report the research described in this PhD dissertation. In addition, 
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the Thesis conclusion is presented in Chapters 6. The structure of this dissertation is described in 

Table 1.1. 

Table 1.1   Dissertation chapters and their titles 

Chapter Title 

2 Review and analysis of supervised machine learning algorithms for hazardous 

events in drilling operations 

3 A new methodology for kick detection during petroleum drilling using long short-

term memory recurrent neural network 

4 Combining porosity and resistivity log for pore pressure prediction 

5 Gamma ray log generation from drilling parameters using deep learning 

6 Thesis conclusion 

 

Chapter 2 involved studying the use of supervised machine learning in a wide range of pressure 

based hazardous drilling events such as kick, kick, fracture, lost circulation and stuck pipe. 

Because the events are pressure based, the study also included the use of supervised machine 

learning on pore pressure, equivalent circulation density and bottom hole circulating pressure. By 

considering a wide number of events (e.g. kick, fracture, lost circulation etc.,) instead of only 

focusing on kick and pore pressure, a more robust conclusion on the use of machine learning can 

be obtained. Chapter 2 also involved studying deep learning and its use on several drilling 

activities such as lithology identification, drilling rig state determination, generating 
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logging/other drilling parameters and detecting abnormality in data. This also served as a guide 

in developing the methodology for generating gamma ray log for lithology identification. 

In Chapter 3, a survey was done to identify a new parameter which can be used for kick 

detection using a deep learning methodology and d-exponent was identified. The survey 

identified two groups of kick identification parameters which are: drilling parameter group (the 

same as d-exponent which is derived from weight on bit, rate of penetration, rotary speed and bit 

size) and flow parameter group (which utilizes flow in, flow out, standpipe pressure). It was 

observed that the flow paddles for measuring flow in and flow out rate can more easily become 

faulty. Hence only the Standpipe pressure was selected from the flow parameter group. A 

methodology which extracted relevant attributes from d-exponent and Standpipe pressure and 

trained these attributes to detect kick with the use of long short term recurrent neural network (a 

renowned deep learning algorithm) was developed and the methodology was tested with field 

data.   

For pore pressure prediction, increase in porosity above the normal trend indicates higher pore 

pressure, this also corresponds directly to a proportional decrease in resistivity when Archie’s 

cementation exponent is constant. However, a disproportionate change in resistivity when 

porosity changes, indicates changes in Archie’s cementation exponent. Cementation represents a 

significant factor that can influence pore pressure prediction. In Chapter 4, the goal was to 

combine resistivity and porosity for pore pressure prediction by deriving an equation which 

utilizes porosity and resistivity in a way that captures changes in cementation effect. Field data 

was used for testing.   

In Chapter 5, the goal was to able to generate gamma ray log (an established shale lithology 

identifier) from drilling parameters due to advantages of improved reliability at little to no cost 
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and the ability to obtain data at bit point. The hydro-mechanical specific energy (HMSE) 

equation which incorporates several drilling parameters (torque, weight on bit, bit diameter, 

rotary speed, rate of penetration, flow rate, bit pressure drop at the nozzle and hydraulic energy 

reduction factor) will be presented as a robust means of capturing lithology changes with the use 

of drilling parameters. A methodology was developed which utilized HMSE and deep learning 

for gamma ray log generation. Several deep learning algorithms were explored in the 

methodology development in order to understand their suitability. Field data was used for 

testing.   

 

1.7  Novelty and contributions 

The main contributions of this PhD dissertation are: 

1. A survey which points out the current progress and challenges in the use of supervised 

machine learning for pressure-based drilling hazard. 

2. The development of a new methodology for kick detection which uses long short-term 

memory recurrent neural network on relevant features of standpipe pressure and d-

exponent data for kick detection. 

3. The development of a methodology which combines porosity and resistivity for pore 

pressure prediction by accounting for changes in cementation effect. 

4. The development of a methodology for generating gamma ray log from drilling 

parameters using deep learning for lithology identification. 
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1.8  Conclusions 

The purpose of this dissertation is to improve safety of drilling operation by focusing on pore 

pressure-based hazards. The dissertation focuses on developing methodologies for 

detecting/predicting downhole conditions, the results of which can serve as input to drilling 

decisions for the overall safety of operations.  

This chapter introduces the challenges and approach adopted in order to achieve the purpose of 

this dissertation. The overall structure of the dissertation is also presented in this chapter. 

 

1.9 Nomenclature 

𝛼   Effective stress coefficient 

𝑃   Actual pore pressure to be predicted (psi) 

𝑆𝑒   Vertical effective stress (psi) 

𝑆𝑣   Overburden stress (psi)   

 

1.10 Acronyms 

CUSUM  cumulative sum  

ECD  equivalent circulating density  

ESN  echo state network  

FTDNN focused time-delay neural network  

HMSE  hydro-mechanical specific energy 

LSTM  long short-term memory           

LWD  logging while drilling  

ROP  rate of penetration 



 

22 
 

RPM   revolutions per minute 

RNN   recurrent neural network 

SPP  standpipe pressure 

SPM  strokes per minute 
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Chapter 2 

 

2. Review and analysis of supervised machine learning algorithms for 

hazardous events in drilling operations 

 

Preamble 

In line with the primary objective of this dissertation as presented in section 1.3 of Chapter 1, 

this chapter provides a review of applications of machine learning methods in the study of 

hazardous conditions during drilling, as well as special focus on the use of deep learning in 

drilling related activities. This study provides insight into the progress and challenges in the use 

of machine learning methods. The knowledge obtained from this chapter aided in the 

development of the methodologies of the other chapters of this dissertation. Such aid include 

choice of machine learning algorithms, manner in which machine learning algorithms should be 

used and some possible consequences of the machine learning algorithms used.  

I (Augustine Uhunoma Osarogiagbon) have contributed to Conceptualization, Methodology, 

Formal Analysis, Software, Investigation, Writing - Original Draft, and Writing - Review & 

Editing of this work, while Dr. Ramachandran Venkatesan contributed to Methodology, Formal 

Analysis, Writing - Review & Editing, Supervision, and Project Administration;  Dr. Faisal Khan 

contributed to Conceptualization, Methodology, Formal Analysis, Writing - Review & Editing, 

Supervision, and Project Administration; and Dr. Paul Gillard contributed to Formal Analysis, 

Writing - Review & Editing, and Supervision. A version of this chapter is published in the 

Journal of Process Safety and Environmental Protection, Volume 147, March 2021, Pages 367-

384, https://doi.org/10.1016/j.psep.2020.09.038.  

https://doi.org/10.1016/j.psep.2020.09.038
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Abstract 

Results of bibliometric analysis and a detailed review are reported on the use of supervised 

machine learning to study hazardous drilling events. The bibliometric analysis attempts to 

answer pertinent questions related to progress in the use of supervised machine learning for 

hazardous events due to drilling fluid density/mud weight. The analysis indicates artificial neural 

network as the most popular algorithm among researchers. Also, deep learning, random forest 

and support vector machine have gained momentum in recent use. 

A critical review of literature on hazardous events and supervised machine learning algorithms is 

presented. This review was done to observe how the algorithms were used, their relative 

successes, limitations, as well as input parameters which aided in detection or estimation by the 

machine learning algorithms. An introduction to deep learning and a review of literature on the 

use of deep learning with respect to operations involving drilling parameters is presented. The 

review on deep learning and drilling parameters covered the following operations: lithology 

identification, drilling rig state determination, generating logging/other drilling parameters and 

detecting abnormality in data. 

The study highlights need of publicly accessible large database with data from different oilfields 

for development of machine learning algorithms. These algorithms could be used globally for the 

enhancement of machine learning for new fields or fields with limited data. The availability of 

such large database would aid researchers in improving or customizing deep learning algorithms 

in line with the unique needs of drilling activities.    

Keywords: Machine learning; artificial intelligence; deep learning; bibliometric analysis; 

drilling operation; drilling safety; petroleum industry 
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2.1 Introduction 

The activities of the oil and gas industry can pertain to upstream, midstream or downstream. 

Upstream activities involve reservoir characterization, drilling and production of crude products. 

Midstream mainly involves processing, storage, marketing and transportation of the output from 

upstream. Downstream activities include receiving outputs from the midstream, refining the oil 

and performing distribution of petroleum products (PSAC, 2018). Several challenges 

encountered in the oil and gas industry can benefit from the use of machine learning. For 

example, in the area of drilling, machine learning can be applied towards pore pressure 

prediction (Ahmed et al., 2019a), in reservoir characterization, machine learning can be used in 

predicting reservoir properties at locations without core or appropriate log data ( Osarogiagbon et 

al., 2015) and machine learning can also be used to forecast oil production rate (Mamudu et al., 

2020).  

Hazardous events are undesirable as they can lead to loss of time, loss of money, loss of human 

abilities and loss of lives. Sadly, the oil and gas industry has had its share of disastrous accidents 

which can be traced to certain events. A popular case is the Macondo blowout which resulted in 

an estimated loss of over 14 billion dollars (Mason, 2019). During drilling, hazardous events 

which are directly caused or highly influenced by the use of wrong drilling fluid density includes 

kick, formation fracture, lost circulation and stuck pipe ( Abimbola et al., 2015). If these events 

are not properly monitored and controlled, they could lead to accidents.  Predicting the 

occurrence of these events can be challenging due to the number of influencing parameters. Kick 

can occur due to several classes of factors related to hydrostatic head (e.g. abnormal pore 

pressure, insufficient mud density, lost circulation), cement (e.g. inadequate bonding, casing 

centralization),  or pressure control equipment for managed pressure drilling (Tamim et al., 
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2019). This shows that robust mathematical models might be required to predict or detect kick as 

a function of causing factors.  

The impact of hazardous events on oil and gas operations cannot be over-emphasized. 

Occurrence of blowouts or shutting/relieving a well to prevent blowout represents huge losses to 

the oil and gas industry. Thus, there are several publications which present methodologies for 

early detection, prediction, and mitigation of hazardous events in the oil and gas industry. Some 

studies showing methodologies for analysis and detection of drilling related hazards can be 

found in (Abimbola et al., 2015; Sun et al., 2018a). This work aims to summarize the efforts of 

authors in using supervised machine learning in the area of drilling with regards to hazardous 

events. This can thus provide pointers to where there are obvious rooms for improvement. 

Machine learning has attracted considerable interest in the oil and gas industry and Table 1 lists 

selective review papers on the use of machine learning for petroleum exploration/production 

applications. 

 

Table 2.1   Selective reviews on the use of machine learning in oil and gas operations. 

Source Focus of articles 

(Bravo et al., 2014) Popularity/acceptability of artificial intelligence among different 

segments of oil and gas workers. 

(Agwu et al., 2018) Literature review on artificial intelligence and drilling fluid. 

(Alkinani et al., 

2019a) 

The use of artificial neural network in different categories 

(exploration, drilling, production, and reservoir engineering) of oil 

and gas operations. 
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(Noshi & Schubert, 

2018) 

Descriptions of commonly used machine learning 

techniques/algorithms in the drilling industry with the aim of 

exposing the merits and demerits of these algorithms for drilling 

applications. 

(Bello et al., 2015) Review of artificial intelligence in drilling. 

 

Although several literature reviews on the use of machine learning or artificial intelligence for 

petroleum applications have been reported, to the best of our knowledge, (i) no bibliometric 

analysis on trend in usage of supervised machine learning and hazard events in drilling related 

activities of the petroleum industry is available, (ii) no general review on the use of deep learning 

on drilling parameters have been done. In addition, this work aims to present the limitations in 

the current usage of supervised machine learning for hazardous events with respect to drilling. 

This work is structured as follows: Section 2.2 gives an introduction to machine learning, Section 

2.3 gives an introduction to deep learning, Section 2.4 describes factors that can influence the use 

of machine learning, Section 2.5 describes bibliometric analysis used to obtain trend in use of 

machine learning algorithms, Section 2.6 describes results of bibliometric analysis, Section 2.7 

presents review of articles on machine learning and hazardous events in drilling engineering, 

Section 2.8 presents review of articles on deep learning and drilling parameters, Section 2.9 

presents gaps in machine learning implementations, and conclusion is given in Section 2.10. 
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2.2 Introduction to machine learning 

It is very convenient to have a simple and well-defined equation which solves a problem. 

However, it is often difficult to do this for many real-life problems. For example, while it is easy 

for a person to identify members of a family from their looks, there is no simple equation for this 

(Russell & Norvig, 2010). These forms of challenges are a key reason why computation is 

moving in the direction of simulating how human reason. Although machine learning and 

artificial intelligence are used interchangeably, machine learning is a subset of artificial 

intelligence. Artificial intelligence deals with the ability of computers/machines to take decisions 

and act like humans. However, some of these decisions may not require learning, e.g. the door of 

a house opening when an object is close to it may be termed artificial intelligence, but this could 

have been done by using a motor that is activated whenever the path between a photo detector 

and a light emitting diode is obstructed. On the other hand, machine learning refers to the 

situation where the door control system has to go through some training example in order to 

realize the appropriate event required for the door to open. In the field of drilling, an example of 

the application of machine learning is when a kick detection system learns the values of 

parameters such as standpipe pressure, torque, etc. that indicates the occurrence of kick after 

feeding the kick detection system with some sets of data. Therefore, machine learning involves 

the use of algorithms or procedures by an artificial system to learn from data (Freeman & Chio, 

2018; Mohammed et al., 2017; Sze et al., 2017). 

Machine learning can be classified into supervised learning, unsupervised learning and 

reinforcement learning. For supervised learning, a system is given some inputs and their 

corresponding output or targets; the system then tries to build a relationship between the inputs 

and outputs. The goal of the relationship built through supervised learning is to predict the 
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outputs for a set of inputs that were not used during learning. Unsupervised learning refers to the 

case whereby a system is given a set of data without any specification (input or output); the 

system then tries to discover any possible form of relationship among this set of data. 

Reinforcement learning refers to learning based on experience, i.e. a system interacts with an 

environment and learns based on the consequence of its actions. An example of reinforcement 

learning application is a robot learning how to adjust mud weight (mud density) during drilling 

through simulations. The robot could use the outcome of its choices in deciding the right and 

wrong values of mud weight to use at different drilling scenarios. There is also semi-supervised 

learning, which results when some of the data are labeled as in the case of supervised learning 

and some of the data fall under the category of unsupervised learning (Mohammed et al., 2017). 

For the purpose of this dissertation, the focus will be on supervised learning. In addition to 

categorizing machine learning based on learning mode (supervised, unsupervised and 

reinforcement learning), machine learning can be categorized as performing the task of 

classification or regression based on the qualitative or quantitative nature of output data.  

Machine learning performs the task of classification when the output is qualitative in nature. 

Likewise, machine learning performs regression when the output is quantitative in nature (James 

et al., 2013). For example, if the machine learning task is to detect the downhole drilling 

condition at a given point in time if kick occurred or loss circulation occurred or if the downhole 

is at a balanced drilling condition, then such task is termed classification. Also, when the goal of 

a machine learning algorithm is to estimate overbalance pressure value or quantity of gas influx 

per seconds, then such task is termed regression.   

Several supervised machine learning algorithms can be found in literature. Some common once 

are: classification/decision tree, random forest, k nearest neighbor, support vector machine, 
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artificial neural network, naïve Bayes, linear regression and linear discriminant analysis 

(Freeman & Chio, 2018; Mohammed et al., 2017; Russell & Norvig, 2010). While some machine 

learning algorithms may be more robust than others in terms of learning accuracy, other factors 

such as speed of implementation, ease of interpreting results, nature of supervised machine 

learning task (classification or regression), nature and amount of input and output data, as well as 

the complexity of the model to be learnt, are important to consider when deciding the machine 

learning algorithm to employ. For example, linear regression offers the advantage of easy 

implementation and ease of result interpretation in comparison to artificial neural network. 

However, linear regression will not perform as good as artificial neural network when the 

relationship between input and output to be learnt is not linear. More information on machine 

learning can be found in (Freeman & Chio, 2018; Hagan et al., 1996; Haykin, 2009; Mohammed 

et al., 2017; Russell & Norvig, 2010). 

 

2.3 Introduction to deep learning 

Deep learning results from the application of multi hidden layer neural network for learning (Sze 

et al., 2017) (Zhang et al., 2018b). The beauty of deep learning is that it works by exploiting 

several levels of interrelationships among input parameters. With this, deep learning can learn 

important features of the input parameters at different hierarchical levels of input data 

interaction. Deep learning has been successfully applied to several domains such as image 

recognition and audio processing. Deep learning represents the future of machine learning 

(Pouyanfar et al., 2018), not only because the founding principle is based on exploiting how 

humans and animal learn (Sze et al., 2017), but its performance is outstanding in comparison to 

other machine learning algorithms when sufficient data is available (Feng et al., 2019; Zhang et 



 

35 
 

al., 2018b). For example, convolution neural network is a form of deep learning algorithm and it 

represents the state of art for image classification (Kumar et al., 2017). According to the article 

by Arulkumaran et al., the application of deep learning in the field of reinforcement learning has 

taken reinforcement learning to heights that were previously unattainable (Arulkumaran et al., 

2017). Due to this, deep reinforcement, which is the outcome of the use of deep learning for 

reinforcement learning is poised towards revolutionizing the world of artificial intelligence 

(Arulkumaran et al., 2017). 

The major motivation for the need for deep learning can be understood by studying Fig. 2.1.  

 
Fig. 2.1   Performance as a function of data availability for different machine learning algorithms 

 

Fig. 2.1 is an approximate reconstruction of machine learning performance as a function of data 

size shown in (Tang et al., 2018). Fig. 2.1 shows that deep learning becomes more successful 

than other forms of machine learning when very large amount of data is used for training. 
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However, for very small data, deep learning is less efficient compared to other machine learning 

algorithms. Similar performance plot of deep learning in comparison to other machine learning 

algorithms as a function of amount of data can be found in (Alom et al., 2019; Alyafeai & 

Ghouti, 2020). 

The ability of deep learning to capture hierarchal representation of information in the training 

data during the course of training reduces the need to use handcrafted engineering features which 

is common in traditional machine learning approaches. Deep learning is recommended when 

data is extremely large, data and system behavior changes rapidly and there is significant 

limitation in human expert/analytical means of solving the task. Based on this, task such as 

weather forecasting, image and speech recognition provides the avenue for which deep learning 

can be judiciously explored (Alom et al., 2019; LeCun et al., 2015; Sze et al., 2017; Zhang et al., 

2018b). The main draw back with the use of large data for which deep learning is suited for is 

high computation resources requirement. Thus, deep learning users need to plan for time 

required for training, memory storage of data, power/energy requirement and cost. Reviews have 

also been carried out on challenges and progress in hardware and software platforms for deep 

learning implementation (Alom et al., 2019; Hatcher & Yu, 2018; Sze et al., 2017). It is worth 

noting that tech giants also offer services (Amazon Web Services, Google Cloud, Azure, Alibaba 

cloud, Baidu cloud etc.,) to aid with the use of deep learning (Li et al., 2019).    

The area of deep learning of recent is gaining increased interest from researchers and based on 

this, it can be inferred that the applications of deep learning is bound to increase at least in the 

nearest future. Several reviews have been carried out on deep learning. These reviews focused on 

several aspects of deep learning including algorithms, fields of applications, challenges and 

future use. Table 2.2 show some of these review articles and some of the deep learning networks 
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which the articles focused on (indicated by the ✔ sign). The acronyms of terms used in Table 2.2 

are: Convolutional Neural Network (CNN), Deep Belief Network (DBN), Restricted Boltzmann 

Machine/Deep Boltzmann Machine (BM), Recurrent Neural Network (RNN), Recursive Neural 

Network (ReNN), Generative Adversarial Network (GAN), Auto-Encoder (AE), Stacked Auto-

Encoder (SAE), Variational Auto-Encoder (VAE).  

 

Table 2.2   Some general references on deep learning algorithms and applications  
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CNN ✔ ✔ ✔ ✔ The architecture of CNN was inspired by the visual 

cortex organization in animals, which utilizes spatial 

locality or relationship in image data. Utilizing this form 

of structure helps to reduce computation cost (W. Liu et 

al., 2017). CNN has been be used for image and video 

recognition (Hatcher & Yu, 2018).  

BM ✔ ✔ ✔ ✔ The network aims to learn how to reproduce desired or 

acceptable values of a vector of input parameters 

connected in the visible layer with high probability 

(Salakhutdinov & Hinton, 2012; Zhang et al., 2018b). 

The BM can be used for reduction of data dimensionality 

(Mohammadi et al., 2018), collaborative filtering (Du et 

al., 2017) and event classification (Sharan & Moir, 2017). 

DBN ✔ ✔ ✔ ✔ The DBN is identical to the BM except that each layer of 

the DBN can be trained greedily. Thus the connections 

between two layers in the DBN can be made to be 

directed, whereas the connections between two layers in 

BM are undirected. This improves the network’s 

interrelationship based on the trained data for DBN in 

comparison to BM; however, this could make the DBN 
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less robust to new sets of data (Pouyanfar et al., 2018). 

RNN ✔ ✔ ✔   RNN is Built to exploit sequential relationship in data, 

e.g. previous inputs in time or space could influence 

current output. Therefore, RNN requires memory for 

storage of past inputs or computed values (Zhang et al., 

2018a). RNN and its variant LSTM-RNN have been used 

for language modeling (Sundermeyer et al., 2015).  

ReNN ✔      This network aims to capture structural relationship (tree-

like structure) amongst a set of data (Ditzler et al., 2015; 

Socher et al., 2011). ReNN have been used for processing 

natural language sentences (Socher et al., 2011). 

GAN ✔   ✔   The goal of a generative model of a GAN is to capture 

the training data statistical distribution. This can be used 

to generate results that are not part of the training data but 

can trick an observer to think it belongs to the training 

data (Goodfellow et al., 2014). GAN can be used for 

synthesizing human images (Creswell et al., 2018).  

AE , 

SAE 

& 

VAE 

 ✔ ✔ ✔ ✔ AE encodes and decodes data with a goal of compressing 

the data. Doing so results in extracting useful information 

while filtering out irrelevant information (W. Liu et al., 

2017). The basic unit of an AE is the feed forward neural 

network whose target is the same as the inputs (W. Liu et 

al., 2017). Stacking several AE results in a SAE (Zhang 

et al., 2018a).  The VAE encodes and decodes data like 

the SAE, but the latent parameters of VAE are forced to 

assume a specific statistical distribution (Ma et al., 2020; 

Pouyanfar et al., 2018). Thus additional data can be 

obtained by sampling from the latent distribution thereby 

making it a generative model. VAE was used for anomaly 

detection in (Sun et al., 2018b).  

 

 

2.4 Factors that can influence the progress in the use of machine learning 

Considering that machine learning requires a computing device to learn from data, the factors to 

be considered are training data and computing packages.  

Training data presents two major forms of problems which are: the availability of sufficient data 

for training and the time/resources required to train massive amount of data. Fortunately this 
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challenges can be ameliorated by public availability of data sets and the use of transfer learning. 

One question probably could be how large should a dataset be for deep learning? A general list 

of datasets in different research areas has been compiled in Wikipedia (Mohammadi et al., 2018; 

Pu et al., 2020; Wikipedia, 2020). The number of instances (e.g. number of images for 

learning/testing in image detection based machine learning) corresponding to the dataset with the 

highest number of instances is selected for each research area and shown in Fig. 2.2. 

 

Fig. 2.2   Research areas and their top dataset in terms of quantity of data 

 

Fig 2.2 shows 6 out of the 9 research areas having instances greater than one million. This could 

serve as a guide in setting up a database in petroleum drilling engineering for deep learning. 

With the availability of a large dataset in a research area, transfer learning and pre-training can 

be exploited. Transfer learning refers to the situation whereby learning achieved by training a 

machine learning to perform a task in a given domain can be exploited in learning how to 
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perform another task in the same domain or similar task in another domain or another task in 

another domain. For example, a neural network called X that is trained with data from field X to 

predict porosity from drilling parameters may become useful for pore pressure prediction using 

drilling parameters in field X. Likewise, the neural network X may also be useful in porosity 

prediction in field Y. There is also a possibility that neural network X could aid in pore pressure 

prediction in field Y.  Transfer learning provides the opportunity to gain from previously learnt 

knowledge and this could translate to continuous improvement in performance when the 

algorithm is continuously updated with available data. Transfer learning/pre-training is used to 

mitigate the challenge of obtaining sufficient data for a given task and to save time and energy 

required to train large data sets (Alom et al., 2019; Pan & Yang, 2010; Weiss et al., 2016). This 

is even more obvious with deep learning where large amount of data is required for good 

performance as shown in Fig. 2.1. In deep learning, transfer learning can be implemented by first 

pre-training with the data from which learning is to be transferred from before any or both of the 

following is done: (1) fine-tuning some/all of the weights and biases of the deep learning 

algorithm with the actual data of primary interest (2) freeze the weights and biases but train the 

final classifier/regression layer. The option to be adopted after pre-training depends on the 

relative difference in quantity and nature of the pre-training and primary training data. For 

example, freezing weights and biases is recommended over fine-tuning when the primary dataset 

is very small in comparison to the pre-training dataset  (Alom et al., 2019). A possible 

application of pre-training in drilling engineering can be recommended with the occurrence of 

this two scenarios: (1) There is a public or easily accessible drilling dataset called data V which 

has millions of instances/data points of drilling parameters (e.g. torque, weight on bit etc.,) and 

sonic compressional velocity from different oil fields, (2) a researcher plans to build a sonic 
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compressional velocity prediction model for field W using deep learning but has only obtained 

few hundred of instances/data point of drilling parameters and sonic compressional velocity for 

field W. Pre-training is encouraged in this situation in that there could be a global/general rule 

governing the relationship between drilling parameters and sonic compressional velocity which 

should first be learnt from data V.  After this, data W can be brought in for the deep learning 

algorithm to capture the relationship unique to field W.  

The availability of user-friendly machine learning frameworks (computing software packages) 

can encourage researchers to use these algorithms. (Alom et al., 2019) listed 19 popularly used 

platforms for deep learning, some of which can also be used for other supervised machine 

learning algorithms. The platforms are: Tensorflow, Caffe, Keras, Theano, Torch, PyTorch, 

Lasagne, DL4J, Chainer, DIGITS, CNTK, MatConvNet, MINERVA, MXNET, OpenDeep, 

PuRine, PyLerarn2 and TensorLayer, LBANN. The first year for which each of these platforms 

were made available to the public was obtained by checking their release date/document 

availability year. Based on this, a plot was made as shown in Fig. 2.3 to observe the number of 

platforms available from 2000 to 2019.   
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Fig. 2.3   Observation of trend in platform availability 

 

It can be observed in Fig. 2.3 that there is a significant increase in the number of platforms 

available from 2014 upwards. Bibliometric analyses will be performed to observe if there is an 

observable correlation between platform availability and machine learning use.  

 

2.5 Bibliometric analysis methodology 

The databases considered for this work are Scopus and OnePetro. The main advantage of using 

Scopus is that it is the largest abstract and citation database of peer reviewed literature (Elsevier, 

2020). OnePetro was used because it primarily focuses on oil and gas activities.  

It is very tough to anticipate the precise words that authors used in capturing their intentions. 

Based on this, the search words were selected to obtain a fair representation of most documents 

of our interest. The database search involves four classes of search words/phrases. The first class 

was for supervised machine learning algorithms, the second class was aimed at constraining the 

0

5

10

15

20

25

30

35

40
N

u
m

b
e

r 
o

f 
 f

ra
m

e
w

o
rk

s

Years



 

43 
 

results to oil and gas operations, the third class was to indicate that drilling represent our area of 

interest and the fourth class was for the hazardous events. For OnePetro database search, the 

second class of words/phrases was omitted because OnePetro already focuses on oil and gas 

operations. 

For the first class, nine categories of search words are available depending on the type of 

supervised machine learning algorithm for which search is to be made for. These categories are: 

Linear regression category 

 "linear regression*" OR “logistic regression*” OR “ordinary least squares regression*” OR 

“stepwise regression*” OR “multivariate adaptive regression spline*” OR “principal component 

regression*” OR “partial least squares regression*” OR “projection pursuit regression*” OR 

“ridge regression*” 

Discriminant analysis category 

 “*linear discriminant analysis" OR “mixture discriminant analysis” OR “quadratic discriminant 

analysis” OR “flexible discriminant analysis” 

Decision tree category 

"classification tree*" OR "decision tree learning*” OR “*regression tree*” OR “m5 model tree*” 

OR “chi-squared automatic interaction detection*” OR “decision stump*”  

Random forest category 

"decision forest" OR "random forest” 

Instance based category 

"k nearest neighbo*" OR “k-nearest neighbo*” OR “locally weighted learning*” OR “learning 

vector quantization*” 
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Artificial neural network category 

"neural network*" OR “radial basis function network*” 

Support vector category 

"support vector machine*" OR “support vector regression*” 

 Bayesian based category 

"*naive bayes*" OR “averaged one-dependence estimator*”  OR “bayesian belief network*” OR 

“bayesian network*” OR “Hidden Markov model*”OR “Conditional random field*” 

Deep learning category 

"Auto Encoder*" OR "Adversarial Network*" OR "Recursive Neural Network*" OR  

"Boltzmann Machine*" OR "Deep Belief Network*" OR "gated recurrent unit*" OR "Long short 

term memory" OR  "Recurrent Network*"  OR "Recurrent Neural Network*" OR 

"Convolutional Neural Network*" OR "Convolutional Network*" OR "deep learning*" 

Combining the four classes in order to search for all articles in the linear regression category 

gives the search words/phrases using Scopus database as shown:   

("linear regression*" OR “logistic regression*” OR “ordinary least squares regression*” OR 

“stepwise regression*” OR “multivariate adaptive regression spline*” OR “principal component 

regression*” OR “partial least squares regression*” OR “projection pursuit regression*” OR 

“ridge regression*”) 

AND 

("petroleum" OR "oil" OR "gas" OR "hydrocarbon*" OR "offshore*" OR "subsea*" OR 

“reservoir*” OR “formation*” OR “rock”) 
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AND 

("drilling*") 

AND 

(“kick*" OR “pipe sticking*” OR “stuck pipe*” OR “fracture*” OR “lost circulation*”) 

The supervised machine learning algorithms were obtained from (Freeman & Chio, 2018; 

Mohammed et al., 2017; Russell & Norvig, 2010; Shaier, 2020). The focus is on supervised 

machine learning algorithms, and as such, algorithms such as k-means clustering, self organizing 

map, principal component analysis etc., are not included in the search term. We choose not to 

include terms such as Gradient Boosting or AdaBoost because they are meant to improve the 

performance of supervised machine learning algorithms such as decision tree. Optimization 

algorithms such as genetic algorithm, ant colony etc., were not included because optimization 

algorithms are used as a training tool for supervised machine learning algorithms. Although the 

artificial neural network category also covers deep learning algorithms such as convolution 

neural network and recurrent neural network, a separate category was introduced for deep 

learning in order to observe the relative interest in deep learning. Curly bracket and asterisks 

were used to enhance accuracy of search. For example, “neural network” will search for “neural 

network” or “neural-network” as a unit. Excluding curly bracket will select an article that has the 

words “neural” and “network” not used together. Also, the use of asterisk sign (*) in the example 

"k nearest neighbo*" will search for "k nearest neighbour", "k nearest neighbor", "k nearest 

neighbours" and "k nearest neighbors" 

Hazardous events that can be directly incurred or can be highly influenced by overbalance or 

underbalance drilling conditions were selected. These can be obtained from end events of Fig. 3 
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and Fig. 4 in the article by (M. Abimbola et al., 2015). The title, abstract and keywords fields of 

the contents of Scopus database were used for searching. Searching was done for all years of 

available documents in the database. The search method utilized was not case sensitive. 

Although there are chances of authors using abbreviations without giving the full meaning, 

abbreviations have different meanings in different contest. Hence, abbreviations were not used as 

search words. 

The significant difference between the search used for OnePetro and that used for Scopus is that 

the use of asterisk (*) for stem word utilization was absent for OnePetro. Based on this, words 

and their plural equivalent were used for OnePetro search. For example, the linear regression 

category search with OnePetro was done by the following: 

("linear regression" OR "linear regressions" OR “logistic regression” OR "logistic regressions" 

OR “ordinary least squares regression” OR "ordinary least squares regressions" OR “stepwise 

regression” OR "stepwise regressions" OR “multivariate adaptive regression spline” OR 

"multivariate adaptive regression splines" OR “principal component regression” OR "principal 

component regressions" OR “partial least squares regression” OR "partial least squares 

regressions" OR “projection pursuit regression” OR "projection pursuit regressions" OR “ridge 

regression” OR "ridge regressions"  ) 

AND  

("Drilling") 

 AND  

("kick" OR "pipe sticking" OR "stuck pipe" OR "fracture" OR "fractured" OR "fractures" OR 

"lost circulation") 
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2.6 The results of bibliometric analyses 

The bibliometric search was done on 27th July, 2020 and the total search result for the different 

categories of supervised machine learning algorithms is presented in Fig. 2.4. 

 
Fig. 2.4   Total number of supervised machine learning algorithms 

 

Fig. 2.4 clearly shows artificial neural network leading in popularity for hazardous events in 

drilling. A breakdown of the relative use of the algorithms over the years is shown in Fig. 2.5. 

This gives an indication of usage trend over time. 
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Fig. 2.5   The trend in the use of supervised machine learning algorithms 

 

It can be observed in Fig. 2.5 that the relative use of deep learning, support vector machine and 

random forest algorithms have recently gained momentum (between 2014 to 2019). This is 

similar to the observation in Fig. 2.3 where the availability of software platforms gained 

significant increase from around 2014. Thus, there is the likelihood that researchers in drilling 

engineering are directly or indirectly benefiting from the availability of more software platforms 

for machine learning. A justifiable reason why researchers would prefer deep learning, support 

vector and random forest is because of their performance. While deep learning is recommended 

for large amounts of data (as discussed in Section 2.3), SVM and random forest can be ranked 

among the best sets of machine learning classifiers for non-large scale problems as observed in 

(Fernández-Delgado et al., 2014). In Fernández-Delgado et al., (2014), 179 machine learning 
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classifiers from 17 machine learning family were tested using 121 datasets. Overall, the random 

forest family came out best followed by the SVM family. 

 

2.7 Review of machine learning and hazardous events in drilling 

engineering 

When pressure gradient due to drilling fluid density is below pore pressure gradient, kick can 

occur. On the other hand, when pressure gradient due to drilling fluid density is more than 

formation fracture gradient, formation fracture can also occur. When these events are not 

properly controlled, blow out or well collapse could occur (Abimbola et al., 2014; Khakzad et 

al., 2013; Khoshnaw et al., 2014; Zhang & Yin, 2017). This therefore necessitates a drilling fluid 

density window of operation in order to avoid both extremes i.e. too high or too low drilling fluid 

densities (Brahma & Sircar, 2018; Feng et al., 2015). Table 2.3-2.6 contains review on the use of 

machine learning on the following drilling hazardous events: kick, formation fracture, lost 

circulation and pipe sticking/stuck pipe. In addition, Table 2.7 shows a summary of reviews on 

the use of machine learning in determining the following parameters: pore pressure, equivalent 

circulating density (ECD) and bottom hole circulating pressure (BHCP). These parameters were 

considered because they directly influence the hazardous events of Tables 2.3-2.6.  
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Table 2.3   Machine learning and kick 
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The change in trend of casing 

pressure and SPP data enabled 

kick and loss detection using 

the Bayes discriminant 

algorithm. 
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Using genetic algorithm as an 

optimization methodology to 

train the back propagation 

neural network improved 

prediction accuracy in 

comparison to the conventional 

implementation of back 

propagation neural network 

(using gradient of error function 

which could result in being 

stuck at a local minima). 
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Table 2.4   Machine learning and fracture/fracture pressure 
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predicting fracture gradient. 
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90% were achieved for fracture 

pressure. 



 

53 
 

(A
b
d
id

eh
, 
2
0
1
6
) 

Petrophysical log 

energy using caliper, 

sonic, density and 

lithology (PEF) log 

obtained in fractured 

zone. 

li
n
ea

r 
&

 
p
o
w

er
 

re
g
re

ss
io

n
 

D
at

a 
fr

o
m

 
o
n
e 

w
el

l 
w

er
e 

u
se

d
 

fo
r 

li
n
ea

r 
an

d
 

p
o
w

er
 

eq
u
at

io
n

 

fi
tt

in
g
 

(n
o
 

se
p
ar

at
io

n
 

b
et

w
ee

n
 

te
st

 
an

d
 

tr
ai

n
 d

at
a)

. 
 

Power regression yielded better 

correlation coefficient than the 

linear regression in estimating 

fracture density. 
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a.

  
 

The ant tracking attribute from 

seismic review enhanced 

detection of small faults and 

large-scale fractures in the 

buried hill reservoir. 

(R
o
y
 e

t 
al

.,
 2

0
1
8
) 

Tensile strength, P-

wave velocity and S-

wave velocity. 

A
N

N
, 
F

IS
, 
A

N
F

IS
, 
M

R
A

 

3
6
 d

at
a 

se
ts

 w
er

e 
u
se

d
 f

o
r 

tr
ai

n
in

g
, 

1
0
 d

at
a 

se
ts

 w
er

e 

u
se

d
 

fo
r 

te
st

in
g
 

th
e 

d
ev

el
o
p
ed

 m
o
d
el

. 

In predicting mode-I fracture 

toughness, ANFIS (adaptive 

neuro-fuzzy inference system) 

performed best, followed by 

FIS (fuzzy inference system) 

and ANN. The MRA (multiple 

regression analysis) performed 

least. 
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Table 2.5   Machine learning and lost circulation 
A

rt
ic

le
 s

o
u
rc

e 

Input parameters 

M
ac

h
in

e 
le

ar
n
in

g
 

al
g
o
ri

th
m

 

D
at

a 
si

ze
 u

se
d

 

findings 

(A
li

re
za

 e
t 

al
.,
 2

0
1
1
) 

Eighteen parameters were 

considered, these include: present 

depth of well from ground surface, 

Asmary formation top from 

ground surface, northing and 

easting of the considered well, bit 

size, average output of pump in 

gallon per minutes, average pump 

pressure, MW, solid percent of 

drilling fluid and amount of loss of 

circulation in day pervious of 

considered day. A
N

N
 

D
at

a 
fr

o
m

 3
2
 w

el
ls

 w
er

e 
u
se

d
. 

A
b
o
u
t 

7
0
%

 o
f 

in
p
u
t 

d
at

a 
w

er
e 

u
se

d
 

fo
r 

tr
ai

n
in

g
, 

1
5
%

 
fo

r 

te
st

in
g
 a

n
d
 1

5
%

 f
o
r 

v
al

id
at

io
n
. R value for training is 0.95, 

for testing is 0.76 and for 

validation is 0.82. 

(T
o
re

if
i 

&
 R

o
st

am
i,

 2
0
1
4
) 

Geographic coordinates (east and 

north), the current depth, depth of 

formation tip, ROP, formation 

type, annulus volume, mud 

pressure, flow rate of mud pump, 

mud pump pressure, filter cake 

viscosity, solid content, plastic 

viscosity (PV), yield point (YP), 

initial strength and final strength 

after 10 min. 

A
N

N
 

1
,6

3
0
 

d
at

a 
se

ts
 

fr
o
m

 
3
8
 

w
el

ls
 

w
er

e 
u
se

d
. 

6
0

%
 o

f 
th

e 
d
at

a 
w

er
e 

u
se

d
 f

o
r 

tr
ai

n
in

g
, 

2
0
%

 o
f 

th
e 

d
at

a 

w
er

e 
u
se

d
 f

o
r 

v
al

id
at

io
n
 a

n
d
 2

0
%

 

o
f 

th
e 

d
at

a 
w

er
e 

u
se

d
 f

o
r 

te
st

in
g
. 

Modular neural network 

performed better than 

multilayer perceptron 

networks in terms of 

accuracy for the data used. 

(H
ai

b
o
, 

L
; 

T
an

g
, 

Y
; 

L
i,

 X
; 

L
u
o
, 

2
0
1
4
) 

Casing pressure and SPP. 

 

 

B
ay

es
 d

is
cr

im
in

an
t 

T
h
e 

se
ct

io
n
 o

f 
Y

Y
L

 w
el

l 
fr

o
m

 

3
1
2
3
.5

 m
 t

o
 3

1
3
3
.6

 m
 w

as
 u

se
d

 

fo
r 

tr
ai

n
in

g
. 

T
h

e 
se

ct
io

n
 o

f 
Y

Y
 

w
el

l 
fr

o
m

 3
1
2
2
.1

 m
 t

o
 3

1
3
1
.4

 m
 

w
as

 u
se

d
 f

o
r 

te
st

in
g
. 

The change in trend of 

casing pressure and 

standpipe pressure data 

enabled kick and loss 

detection using the Bayes 

discriminant algorithm. 
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(W
u
 e

t 
al

.,
 2

0
1
6
) 

21 factors where considered. These 

include: unreasonable design of 

drilling fluid density, flow meter 

failure, natural micro fracture, low 

formation fracture pressure, large 

formation porosities, casing 

failure, cement failure, increased 

running drillpipe rate, effect of 

high temperature, high drilling 

fluid viscosity, large rig pump out 

and high pump pressure. 

D
y
n
am

ic
 B

ay
es

ia
n
 n

et
w

o
rk

 

L
it

er
at

u
re

/e
x
p

er
t 

 
v
ie

w
 

w
as

 
u
se

d
 

in
 

o
b
ta

in
in

g
 p

ri
o
r 

p
ro

b
ab

il
it

ie
s.

 

The risk of lost circulation 

was considered for the 

following phase or 

scenarios: “not circulating”,  

“tripping in” and 

circulating. The circulating 

scenario had the highest 

occurrence probability of 

lost circulation. The factors 

"reasonable drilling fluid 

density" and "availability of 

the components of MPD 

system" were the most 

significant contributors to 

lost circulation for the 

circulating scenario.  

(F
ar

 &
 H

o
ss

ei
n
i,

 2
0
1
7
) 

MW, depth, pump pressure and 

flow rate of pump. 

A
N

N
 

D
at

a 
w

er
e 

o
b
ta

in
ed

 
fr

o
m

 
3
 

w
el

ls
. 

7
0
%

 o
f 

th
e 

d
at

a 
w

er
e 

fo
r 

tr
ai

n
in

g
, 

1
5
%

 o
f 

th
e 

d
at

a 
w

er
e 

u
se

d
 f

o
r 

v
al

id
at

io
n
 a

n
d
 1

5
%

 o
f 

th
e 

d
at

a 
w

er
e 

u
se

d
 f

o
r 

te
st

in
g
. Lost circulation increases 

with increase in pump 

pressure as well as MW but 

decreases by increase in 

pump flow rate due to hole 

cleaning and cutting 

transportation. 

(W
u
 e

t 
al

.,
 2

0
1
9
) 

Mud flow out paddle, SPP, total 

volume of pit and mud flow in 

rate. 

B
ay

es
ia

n
 i

n
fe

re
n
ce

 a
lg

o
ri

th
m

 

T
h
e 

d
at

a 
u
se

d
 f

o
r 

v
al

id
at

in
g
 t

h
e 

al
g
o
ri

th
m

 
h
ad

 
d
at

a 
p
o
in

t 

in
te

rv
al

 
o
f 

5
 

se
co

n
d
s 

an
d
 

th
e 

d
at

a 
ti

m
e 

ra
n
g

ed
 f

ro
m

 2
0
:2

0
:0

7
 

to
 2

2
:3

4
:5

7
. 

Combining dynamic-

threshold-based diagnosis 

and Bayesian estimation can 

improve performance. 
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(S
ab

ah
 e

t 
al

.,
 2

0
1
9
) 

Depth, northing, easting, hole size, 

weight on bit (WOB), pump rate, 

pump pressure, bit revolution per 

minute (RPM), viscosity, shear 

stresses at shear rates of 600 and 

300 RPM, gel strength, drilling 

time, drilling meterage, solid 

percent obtained from retort test, 

formation type, pore pressure, 

drilling mud pressure and 

formation fracture pressure. 

D
ec

is
io

n
 t

re
e,

 A
N

N
, 
A

N
F

IS
  

1
9
0
0
 d

at
a 

p
o
in

ts
 f

ro
m

 6
1
 w

el
ls

 

w
er

e 
u
se

d
. 

7
0
%

 
o
f 

th
e 

d
at

a 

p
o
in

ts
 

w
er

e 
u
se

d
 

fo
r 

tr
ai

n
in

g
 

an
d
 3

0
%

 w
er

e 
u
se

d
 f

o
r 

te
st

in
g
. Decision tree performed 

best. Although ANN and 

ANFIS had better results for 

smaller number of variables, 

the decision tree became 

more efficient as the 

number of variables 

increased. 

(E
ze

ak
ac

h
a 

&
 S

al
eh

i,
 2

0
1
9
) 

Cedar fiber concentration and 

fracture width.  

li
n
ea

r 
re

g
re

ss
io

n
 

E
x
p
er

im
en

ts
 w

er
e 

p
er

fo
rm

ed
 t

o
 

o
b
ta

in
 

fl
u
id

 
lo

ss
 

fo
r 

d
if

fe
re

n
t 

ce
d
ar

 
fi

b
er

 
co

n
ce

n
tr

at
io

n
 

an
d

 

fr
ac

tu
re

 w
id

th
, 

th
er

eb
y
 r

es
u
lt

in
g
 

in
 9

 d
at

a 
p
o
in

ts
. 

Analysis of variance 

showed that changes in 

cedar fiber concentration 

and vertical fracture width 

affect dynamic fluid loss. 

Experimental results also 

showed that fracture 

orientation and positioning 

also influences dynamic 

fluid loss. 

(A
b
b
as

 e
t 

al
.,
 2

0
1
9

) 

Lithology, MW, flow rate, ROP, 

circulating pressure, inclination, 

solids content, fluid loss, RPM, 

WOB, YP, PV, marsh funnel 

viscosity, 10-second gel strength, 

10-minute gel strength, azimuth, 

measured depth and hole size. 

A
N

N
, 

su
p
p
o
rt

 
v
ec

to
r 

m
ac

h
in

es
 

(S
V

M
) 

T
h
e 

to
ta

l 
d
at

a 
p
o
in

t/
ca

se
s 

o
f 

1
1
2
0
 

w
as

 
u
se

d
. 

T
h
e 

d
at

a 
w

as
 

sp
li

t 
at

 a
 r

at
io

 o
f 

3
:1

 f
o
r 

tr
ai

n
in

g
 

an
d
 t

es
ti

n
g
. 

SVM performed slightly 

better than ANN. Based on 

the significances of the 

input parameters, lithology, 

MW, flow rate, rate of 

penetration, circulating 

pressure, inclination and 

solids content were most 

significant.  
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Table 2.6   Machine learning and pipe sticking 
A

rt
ic

le
 s

o
u
rc

e 

Input parameters 

M
ac

h
in

e 
le

ar
n
in

g
 

al
g
o
ri

th
m

 

D
at

a 
si

ze
 u

se
d

 

findings 

(H
em

p
k
in

s 
et

 a
l.

, 
1
9
8
7
) 

Measured depth, true 

vertical depth (TVD), 

average drill gas, 

connection gas, maximum 

drill gas, trip gas, review 

angle, MW, PV, YP, 10-

seconds gel strength (GS), 

10-minutes GS, water loss, 

filtrate pH, filtrate chloride, 

filtrate calcium, oil percent, 

water percent, hole size, 

flow rate, drill-collar OD, 

bit depth, bottom hole 

assembly (BHA) length, 

drill collar length, drag, 

time stuck, torque and 

percent solids.   M
u
lt

iv
ar

ia
te

 d
is

cr
im

in
an

t 
an

al
y
si

s 

1
3
1
 c

as
es

 f
o

r 
st

ic
k
in

g
 i

n
 a

d
d
it

io
n
 t

o
 o

th
er

 n
o

n
 

st
ic

k
in

g
 c

as
es

 w
er

e 
u
se

d
 f

o
r 

tr
ai

n
in

g
 a

n
d
 4

7
 

ca
se

s 
fr

o
m

 3
5
 w

el
ls

 w
h
er

e 
u
se

d
 f

o
r 

te
st

in
g
. 

Multivariate discriminant 

analysis was used to 

differentiate between 

mechanically stuck, 

differentially stuck and 

non-stuck wells with 

high success rate of 81 

%. 

(S
h
ad

iz
ad

eh
 e

t 
al

.,
 2

0
1
0
) 

pH (alkalinity of mud), GF 

(geometric factor which is 

a function of the dimension 

of the hole, BHA and drill 

collar), YP, PV, 10-minute 

GS, chloride content, RPM, 

ROP, differential pressure 

and annular velocity. 

A
N

N
 

T
h
e 

d
at

as
et

 u
se

d
 f

o
r 

d
y
n

am
ic

 c
o
n
d
it

io
n
 h

ad
 

1
5
5
 n

o
n
 s

tu
ck

 c
as

es
 a

n
d
 4

0
 s

tu
ck

 c
as

es
. 

T
h
e 

d
at

as
et

 
u
se

d
 
fo

r 
st

at
ic

 
co

n
d
it

io
n
 
 
h
ad

 
1
5
6

 

n
o
n
 
st

u
ck

 
ca

se
s 

an
d
 
 
7
5
 
st

u
ck

 
ca

se
s.

 
T

h
e 

d
at

a 
w

as
 s

p
li

t 
in

to
 t

ra
in

in
g
, 

v
al

id
at

io
n
 a

n
d
 

te
st

in
g
 a

cc
o
rd

in
g
 t

o
 t

h
e 

ra
ti

o
 8

0
%

, 
1
0
%

 a
n
d

 

1
0
%

 f
o
r 

b
o
th

 d
y
n
am

ic
 a

n
d
 s

ta
ti

c 
co

n
d
it

io
n
s.

 For dynamic conditions, 

the following parameters 

were more significant: 

differential pressure, pH, 

GF, RPM, ROP and PV. 

For static conditions, 

differential pressure, GF, 

pH, YP, PV and GS were 

more significant. The 

algorithm was able to 

achieve overall 

prediction accuracy 

greater than 90%. 
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(A
li

re
za

 e
t 

al
.,
 2

0
1
1
) 

Type of formation, top of 

the formation in meter, dip 

of the well at the desired 

point, depth which well 

was deviated, size of last 

casing or liner run in well, 

depth of last casing or liner 

in the well, bit size, MW, 

Marsh funnel viscosity, 

PV, YP, initial GS and 10 

minutes GS. 

A
N

N
 

T
h
e 

to
ta

l 
d
at

a 
h
ad

 
2

6
6
 

d
at

a 

p
o
in

ts
 

w
it

h
 

1
6
6
 

d
at

a 
p
o
in

ts
 

co
rr

es
p
o
n
d
in

g
 

to
 

st
u
ck

 
p
ip

e 

o
cc

u
rr

en
ce

 
an

d
 

1
0
0
 

d
at

a 
p
o
in

t 

h
av

in
g
 n

o
 p

ro
b
le

m
. 

A
b

o
u
t 

7
0
%

 

o
f 

in
p
u
t 

d
at

a 
w

er
e 

u
se

d
 

fo
r 

tr
ai

n
in

g
, 

1
5
%

 
fo

r 
te

st
in

g
 

an
d

 

1
5
%

 f
o
r 

v
al

id
at

io
n
. 

R value for training is 

0.95, for testing is 0.76 

and for validation is 0.82. 

(J
ah

an
b
ak

h
sh

i 
et

 

al
.,
 2

0
1
2
) 

Differential pressure, hole 

depth, mud filtrate 

viscosity, fluid loss, solid 

content, PV, YP, initial GS, 

10 minutes GS, BHA, still-

pipe time and hole-size. 

S
V

M
, 
A

N
N

  

T
h
e 

to
ta

l 
d
at

a 

p
o
in

ts
/s

am
p

le
s 

is
 

2
1
4
. 

7
0
%

 
w

as
 

u
se

d
 

fo
r 

tr
ai

n
in

g
 

an
d
 

3
0
%

 
w

as
 

u
se

d
 f

o
r 

te
st

in
g
. 

SVM yielded better 

results than ANN. 
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Table 2.7   Machine learning, pore pressure, ECD and BHCP 
A

rt
ic

le
 s

o
u
rc

e 

O
u
tp

u
t 

Input parameters 

M
ac

h
in

e 
le

ar
n
in

g
 

al
g
o
ri

th
m

 

D
at

a 
si

ze
 u

se
d

 

findings 

(C
h
ao

 e
t 

al
.,
 2

0
1
5
) 

P
o
re

 p
re

ss
u
re

 

Seismic wave 

impedance and 

overburden pressure 

data. 

 
A

N
N

 

D
at

a 
fr

o
m

 w
el

l 
IE

 w
h
ic

h
 s

p
an

s 
fr

o
m

 a
b
o
u
t 

7
0
0
 

m
 t

o
 2

7
0
0
 m

 w
as

 u
se

d
 f

o
r 

tr
ai

n
in

g
. 

T
es

ti
n
g
 w

as
 

d
o
n
e 

u
si

n
g

 
d
at

a 
o
f 

w
el

l 
W

Z
 

w
it

h
 

th
re

e 
d

at
a 

p
o
in

ts
 o

f 
p
o
re

 p
re

ss
u
re

 o
b
ta

in
ed

 f
ro

m
 f

o
rm

at
io

n
 

p
re

ss
u
re

 t
es

ti
n
g
. 

Prediction accuracies above 

90% were achieved. 

(A
h
m

ed
 e

t 
al

.,
 2

0
1
9
a)

 

P
o
re

 p
re

ss
u
re

 

WOB, RPM, ROP, 

MW, bulk density, 

porosity and 

compressional time. 

A
N

N
 

2
4
5
 

d
at

a 
p
o
in

ts
 

w
er

e 
u
se

d
. 

7
0
%

 o
f 

th
e 

d
at

a 
w

er
e 

u
se

d
 f

o
r 

tr
ai

n
in

g
 a

n
d
 3

0
%

 f
o
r 

te
st

in
g
. 

An empirical equation from 

the neural network for pore 

pressure prediction was 

presented. This offers the 

benefit of not requiring prior 

pressure trend for pore 

pressure prediction. 

(A
h
m

ed
 

et
 

al
.,

 

2
0
1
9
b
) 

P
o
re

 p
re

ss
u
re

 

WOB, RPM, ROP, 

MW, bulk density, 

porosity and 

compressional time. 

S
V

M
, 

A
N

N
, 

R
B

F
, 
  

fu
zz

y
 

lo
g
ic

 
&

 

fu
n
ct

io
n
al

 

n
et

w
o
rk

s 
2
4
5
 

d
at

a 
p
o
in

ts
 

w
er

e 
u
se

d
. 

7
0

%
 o

f 

th
e 

d
at

a 
w

er
e 

u
se

d
 

fo
r 

tr
ai

n
in

g
 

an
d

 

3
0
%

 f
o
r 

te
st

in
g
. 

Test with all algorithm had 

the coefficient of 

determination (R2) greater 

than 0.99 and average 

absolute percentage error 

(AAPE) values less than 

0.4%. 
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(V
eg

a 
et

 a
l.

, 
2
0
1
6
) 

E
C

D
 

Time, depth, hole 

depth, TVD, 

standpipe pressure, 

internal pressure, 

flow, torque, annular 

pressure, inclination, 

RPM, WOB, 

temperature and 

block position. A
N

N
 

5
0
0
0
 d

at
a 

p
o
in

ts
 w

er
e 

u
se

d
 

fo
r 

tr
ai

n
in

g
 

an
d

 

5
0
0
0
 d

at
a 

p
o
in

ts
 w

er
e 

u
se

d
 f

o
r 

v
al

id
at

io
n
. 

The goal was to have an 

effective control system for 

smart monitoring and 

regulation of the 

ECD. The neural network 

based controller offered 

faster disturbance rejection 

than classic feedback 

controller. 

(A
b
d
el

g
aw

ad
 e

t 
al

.,
 2

0
1
9

) 

E
C

D
 

ROP, MW and 

drillpipe pressure 

(DPP). 

A
N

N
 a

n
d
 A

N
F

IS
  
  

2
3
7
6
 
d
at

a 
p
o

in
ts

 
w

er
e 

u
se

d
 

in
 t

h
e 

w
o
rk

. 
A

p
p
ro

x
im

at
el

y
 

7
0
%

 
d
at

a 
p
o
in

ts
 
w

er
e 

u
se

d
 

fo
r 

tr
ai

n
in

g
 

an
d
 

3
0
%

 
d
at

a 

p
o
in

ts
 w

er
e 

u
se

d
 f

o
r 

te
st

in
g
. 
  

 

Analysis was performed to 

observe the correlation 

between the input parameters 

and ECD. The DPP and MW 

had very high correlation 

coefficient with ECD, unlike 

the ROP. Testing achieved 

correlation coefficient (R) 

greater than 0.99 for both 

training and testing of both 

algorithms.  

(A
lk

in
an

i 
et

 a
l.

, 
2
0
1
9

b
) 

 E
C

D
 

MW, YP, PV, RPM, 

flow rate, WOB and 

nozzles total flow 

area. 

A
N

N
 

O
v
er

 1
0
0
,0

0
0

 d
at

a 
p
o
in

ts
 

fr
o
m

 
o
v
er

 
2
0
0
0
 

w
el

ls
 

w
er

e 
u
se

d
 

in
 

th
e 

w
o
rk

. 

7
0
%

 
o
f 

th
e 

d
at

a 
p
o
in

ts
 

w
er

e 
u
se

d
 

fo
r 

tr
ai

n
in

g
, 

1
5
%

 f
o
r 

v
er

if
ic

at
io

n
 a

n
d
 

1
5
%

 f
o
r 

te
st

in
g
. 

The resulting equation of the 

neural network and the 

equations which can be used 

in normalizing the inputs and 

de-normalizing the output 

were presented. With these 

equations, a desired ECD can 

be designed. 
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ANN optimized by ant 

colony and ANN optimized 

by genetic algorithm 

performed better than that of 

conventional back 

propagation ANN. 
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Several factors 
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pore pressure, mud 

loss, improper 
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used for the fault-

tree analysis. B
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Abnormal pore pressure and 

swabbing were found to be 

the major contributors for 

low hydrostatic head. 
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2.7.1 Summary of review on machine learning for detecting/predicting kick, 

fracture, lost circulation, stuck pipe, pore pressure, ECD and BHCP 

In summary, the following could be observed for kick. 

(i) The tripping out phase/state has the highest probability of experiencing kick among 

the different drilling state. 

(ii) Several parameters have been exploited for kick detection which includes, pressure 

parameters (e.g. standpipe pressure, casing pressure), mud weight, flow rate, 

conductivity, rate of penetration, temperature and depth.   

(iii)  ANN is very common and the optimization algorithm used for the ANN plays a 

critical role in performance. 

(iv) The change in trend of input parameters can be exploited for kick detection.  

 

In summary, the following could be observed for fracture. 

(i) Parameters with capability to capture strength/density of materials such as seismic 

data, sonic log and density log are very important. 

(ii) ANN is very common and exhibited the capability to perform better than existing 

correlation equations.  

(iii) The performance of machine learning can be enhanced with appropriate de-noising 

and fuzzy logic implementation.   

 

In summary, the following could be observed for lost circulation.  

(i) The circulating phase has the highest probability of experiencing lost circulation 

among the different drilling state/phase/scenario. 
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(ii) The following parameters significantly influence lost circulation: pressure data (e.g. 

standpipe, casing, pump pressure), drilling fluid density, flow rate, lithology and rate 

of penetration. Also, the concentration of lost circulation materials and nature of well 

fracture are important for evaluating fluid loss. 

(iii) ANN was more popularly used. Other machine learning algorithms such as SVM and 

random forest had better performance. 

(iv) The performance of machine learning can be enhanced by considering trend/dynamic 

nature of data.  

 

In summary, the following could be observed for stuck pipe. 

(i) The following parameters, differential pressure, alkalinity of mud, geometric factor, 

rotary speed, rate of penetration, plastic viscosity, yield point and gel strength are 

important for stuck pipe prediction.  

(ii) ANN is more popular, but SVM performed better than ANN, based on the literature 

surveyed. 

(iii) It is possible for machine learning to distinguish between mechanical and differential 

sticking.  

 

In summary, the following could be observed for pore pressure, ECD, BHCP. 

(i) For pore pressure, drilling parameters such as weight on bit, rotary speed, penetration 

rate, mud density (mud weight) and parameters with capability to capture 

strength/density of materials such as seismic data, sonic log, density log and porosity 
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log were utilized. A close look at the drilling parameters shows that they form the 

bulk of input parameters required to compute corrected d-exponent.  

(ii) Drill pipe pressure and mud weight have very good correlation with equivalent 

circulating density. Other drilling conditions/activities such as swabbing can increase 

pressure head loss. An empirical equation which utilizes several parameters was also 

developed for computing equivalent circulating density. 

(iii) ANN was commonly used and the optimization algorithm used for the ANN plays a 

critical role in performance. 
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2.8 Literature review on the deep learning and drilling parameters 

In this section, we aim to observe how deep learning have been utilized with drilling parameters. 

Table 2.8   Applications of deep learning with drilling parameters 
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Input parameters and 

dimension used.  

(It should be noted that all 

input window size per output 

instance are one dimensional 

unless otherwise stated) 
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The input parameters are: 

surface data consists of high 

frequency torque, tension, 

RPM, WOB and triaxial 

acceleration data measured at 

100 Hz. Downhole channels 

include torque, RPM and 

acceleration measured at 40 Hz 

but resampled to 100 Hz. The 

window of input considered for 

each output is 60 seconds. 
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With training data enhancement by 

augmentation, accuracy for the 

validation set improved from 96% to 

99% and precision for the validation 

set improved from 73% to 97%. 
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Two input, “Rotary RPM” and 

rotary torque were used. 

Moving window of 20 seconds 

was employed to obtain sets of 

data, i.e. current drilling state 

depends on the last 20 seconds 

of data. The data had a 

frequency of 1 data point per 

second. 
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The input data sets were treated as 

image like data but with the following 

similarities/difference.  

(1) While image has three channels for 

red, green and blue, the input data of 

this work uses two channels for rotary 

RPM and torque. 

(2) While image is in 2 dimension, the 

data in this work is in 1 dimension. 

 

Test result had f1 score ≥ 0.99 and 

accuracy of over 99%.  
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The input parameters are: 

surface measured WOB and 

crown block position. 

An input sequence window of 

20 seconds was used for each 

output. 

D
o
w

n
h
o
le

 W
O

B
 

R
N

N
 

S
y
n
th

et
ic

 
d
at

a 
fr

o
m

 
si

m
u
la

ti
o
n
s 

w
er

e 
u
se

d
. 

T
h
e 

n
u
m

b
er

 o
f 

tr
ai

n
in

g
 

d
at

a 
se

t 
is

 1
0
,8

0
0
. 

T
h
e 

n
u
m

b
er

 o
f 

te
st

 d
at

a 
se

t 
is

 3
0
0
0
. 

 

The algorithm was applied to data 

obtained different simulated models: 

linear, non-linear and various sea 

wave conditions. 

Visual observation of test results 

shows good performance for linear 

and non linear models, although some 

types of nonlinear implementation had 

lesser performance.  

The algorithm also performed well for 

different sea wave conditions as 

observed by R2 values exceeding 0.9 

in most cases. 
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The input parameters are: 

ROP, RPM, rotational torque 

and drilling force. 

Equivalent two-dimensional 

structures of gray values (pixel 

image format) were obtained 

from the input drilling 

parameter data. This was to 

present input data in suitable 

form for training with CNN. 

The input data for each case is 

a 2D array of 76 by 76 

dimension. 
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Results from a case study had error of 

performance less than 10% in 

comparison to results obtained from 

standard laboratory. The mean error 

for UCS obtained using the CNN 

algorithm was lower than that obtained 

using the Mohr–Coulomb criterion, 

based on data from the case study.  
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The input parameters are: flow 

rate in, flow rate out, SPP, 

choke pressure, choke opening, 

bit pressure and bit depth. Data 

was sampled at 1 Hz. 
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 Algorithm achieves early kick 

detection with delay generally less 

than 4 seconds, except for very small 

influx values for which the algorithm 

failed to detect influx. 
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The input parameters are: 

RPM, block position, hook 

load, flow rate, surface WOB, 

slip status, surface torque and 

SPP.  

Each input case/sample has a 

time window of 256 seconds. 
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97.5% accuracy was reached for rig 

state prediction on test data. 
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The input parameters are: RPM 

and accelerations in two lateral 

axes. 

Three channels with window 

size of 128 were used. 
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Applying the algorithm achieved 

accuracy of 97% for testing. 
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The input parameters are: 

WOB, RPM, MW, PV, YP, 

flow rate, total flow area and 

unconfined compressive 

strength. A delay line 

(window) of 4 was used. 
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R2 for training, validation and test data 

all exceeded 0.92. 
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The input parameter used is 

drilling string vibration at a 

sample frequency of 20Hz. 

Butterworth high pass filter 

and short-time Fourier 

transform were applied to pre-

process the drill string 

vibration. The pre-processed 

signal was expressed in 2D 

image formats for machine 

learning. 
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 Macro-precision (average precision) of 

0.90 and macro-recall (average recall) 

of 0.893 were achieved for the test 

data. 
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The input parameters: Depth, 

ROP, WOB, flow rate, and 

mechanical specific energy 

were used for predicting 

porosity and density. 

The input parameters: ROP, 

WOB, torque and mechanical 

specific energy were used for 

predicting compressional 

sonic.  

Each input case or instance has 

50 time steps and each time 

steps has 5 channels. The five 

channels are for five input 

drilling parameters.  
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Although correlation was low for test 

data (between 0.4 and 0.6), the figure 

showing test results indicated that the 

trends in the data were captured by the 

algorithm applied.  
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The input parameters comprise 

of Hook load, RPM, depth, 

torque, flow and gamma ray. 

The sampling interval used for 

the parameter was 3s. For each 

output instance, a window of 

1000 s was used for the input 

signals. 
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The algorithm was able to identify 

missing data points as well as outliers 

and sensor drift in data.   
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Table 2.8 shows deep learning algorithms been used with drilling parameters for drilling rig state 

determination (e.g. tripping), drilling event identification (e.g. kick), lithology identification, 

generating logging/other drilling parameters and detecting occurrence of abnormality in data. 

 

2.9 Gaps in the use of machine learning in drilling events as observed in 

literature survey 

Several issues were observed which were chiefly based on training data as well as the nature of 

deep learning algorithms. These are: 

1. For most cases, each article used data different from that used in other articles. This  can likely 

translate to machine learning algorithms which may only be successful for the field data they 

trained with. 

2. Nearly all data set used for machine learning implementation had data points/instances less 

than a million, with many of the dataset having instances less than a thousand. This suggest 

possible room for improvement based on results shown in Fig. 2.2. 

3. Nearly all data set used for training are not publicly available. 

4. Deep learning algorithms used were not primarily designed or customized for drilling 

activities. For example, CNN and its variants were chiefly customized for image detection, and 

LSTM-RNN was developed to learn complex sequential relationship such as those in 

audio/language modeling or detection task  (Chung et al., 2014; Hochreiter & Schmidhuber, 

1997).  
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Based on these observed limitations, publicly accessible database with data from different 

oilfield is needed. Incentives for establishing publicly available and updatable drilling dataset 

include: 

1. Transfer learning becomes easy to achieve. 

2. More researchers in drilling engineering can easily conduct research with machine learning as 

the huddle of obtaining data would have been reduced 

3. Competition for best performing machine learning algorithms becomes feasible. This would 

enhance development of machine learning algorithms well customized and suited for drilling 

problems. 

 

2.10 Conclusions 

Results of bibliometric analysis in the area of supervised machine learning in hazard related 

events during drilling clearly indicate a growing trend in the use of machine learning. The results 

of a review of the literature on supervised machine learning for hazardous drilling events -- kick, 

fracture, lost circulation, and stuck pipe -- are reported. In addition, some studies in the 

application of supervised machine learning on pore pressure, equivalent circulation density and 

bottom hole circulating pressure are also discussed because of the close relationship between 

these quantities and hazardous drilling events. A review of deep learning and drilling parameters 

is also presented. In addition to these, gaps in machine learning usage and the means by which 

such gaps can be mitigated is also provided. The conclusions based on the bibliometric analysis 

and reviews are presented here.  

The following are the conclusions based on the bibliometric analysis detailed in this chapter: 
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(i) Artificial neural network is the most popular among all supervised machine learning 

tools considered.  

(ii) Bibliometric analysis shows deep learning, random forest and support vector machine 

algorithms are gaining momentum in terms of recent usage by researchers. 

(iii) Deep learning is recommended when a large amount of data is available, while 

random forest and support vector machine are recommended for non-large scale 

classification problems. 

(iv) Increasing availability of different computing platforms has likely aided research in 

the use of machine learning especially, deep learning.   

The following are the conclusions based on a detailed review on kick, fracture, lost circulation, 

stuck pipe, pore pressure, equivalent circulation density and bottom hole circulating pressure. 

(i) ANN appears to be the dominant algorithm in popularity. The performance of ANN 

can be affected by the optimization algorithm used. Fuzzy logic can be applied with 

ANN to improve performance. 

(ii) In other to aid machine learning, proper de-noising is recommended. Also, the 

trend/dynamic nature of data can be exploited for machine learning. 

(iii) The input parameters used by authors in predicting/detecting kick, fracture, lost 

circulation, stuck pipe, pore pressure, equivalent circulating density have been 

presented. 

(iv) The probability of the occurrence of a hazardous event is influenced by the drilling 

state/phase, e.g. the risk of kick is highest at the tripping out phase most likely due to 

high speed of tripping out. 
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(v) In specific cases, SVM performed better than ANN. However, it worthy to note that 

for big data, deep learning which is an offshoot of ANN is expected to perform better. 

The following are the conclusions based on review on deep learning of drilling parameters: 

(i) With developments in deep learning algorithms and more availability of computing 

platforms, it is expected that the capabilities of deep learning will be exploited to get 

better results from big data than from conventional/traditional machine learning.   

(ii) Researchers are now beginning to use deep learning on drilling parameters for 

lithology identification, drilling rig state determination, drilling event identification, 

generating logging/other drilling parameters and detecting abnormality in data (data 

pre-processing). 

(iii) CNN and RNN (including its variants e.g. LSTM-RNN) appear to be the most 

commonly used deep learning algorithms. 

The following are the gaps in the use of machine learning: 

(i) There is an absence of publicly accessible global database of drilling data. Typically, 

researchers perform machine learning based on the data from a particular oil field .  

The results of such analysis may not be generalizable.  

(ii) Almost all datasets used had data points or instances fewer than a million, with many 

of the datasets having instances less than a thousand. Therefore, a lot of these datasets 

may not fully benefit from the capabilities of deep learning.  

(iii) Most datasets used are not publicly available.  

(iv) Most of the deep learning algorithms used were not primarily customized for drilling 

activity.  
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Based on these observed gaps, publicly accessible database with data from different 

oilfield is recommended as this will help researchers and industrial users to obtain more 

generalizable results, perform transfer learning to compensate for a new field with limited 

data and also encourage development of machine learning algorithms in line with the 

unique needs of drilling data/task. 

 

2.11   Acronyms 

ANFIS  adaptive neuro-fuzzy inference system 

ANN  artificial neural network 

ANOVA analysis of variance 

BHA  bottom hole assembly  

BHCP   bottom hole circulating pressure  

CNN  convolutional neural network  

ECD  equivalent circulating density  

FIS  fuzzy inference system  

GS   gel strength 

MPD  managed pressure drilling  

MRA  multiple regression analysis 

MW  mud weight  



 

73 
 

PV  plastic viscosity 

RNN  recurrent neural network  

ROP  rate of penetration  

LSTM   long short-term memory 

SPP  stand pipe pressure  

SVM   support vector machines  

SVR  support vector regression 

RBF  radial basis function 

RPM   revolutions per minute 

TCN  temporal convolutional network 

TVD  true vertical depth  

WOB  weight on bit  

YP  yield point  
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Chapter 3 

 

3. A new methodology for kick detection during petroleum drilling 

using long short-term memory recurrent neural network 

 

Preamble 

This chapter addresses an objective of this dissertation as outlined in Section 1.3 which is 

exploiting how relevant features of drilling parameters can be utilized by deep learning algorithm 

for kick detection. The methodology presented in this section aims to improve early kick 

detection without false alarm which is vital for drilling safety, as presented in Section 1.1. and 

Section 1.6. 
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Abstract 

Kick is a downhole phenomenon which can lead to blowout, and so early detection is important. 

In addition to early detection, the need to prevent false alarm is also useful in order to minimize 

wastage of operation time. A major challenge in ensuring early detection is that it increases the 

chances of false alarm. While several data-driven approaches have been used in the past, there is 

also ongoing research on the use of derived indicators such as d-exponent for kick detection. 

This chapter presents a data-driven approach which uses d-exponent and standpipe pressure for 

kick detection. The data-driven approach presented in this chapter serves as a complementary 

methodology to other stand-alone kick detection equations, and uses d-exponent and standpipe 

pressure as inputs.        

This chapter proposes a methodology which uses the long short-term memory recurrent neural 

network (LSTM-RNN) to capture temporal relationships between time series data comprising of 

d-exponent data and standpipe pressure data with the aim of increasing the chances of achieving 

early kick detection without false alarm. The methodology involves obtaining the slope trend of 

the d-exponent data and the peak reduction in the standpipe pressure data for training the LSTM-

RNN for kick detection.  Field data is used for training and testing. Early detection is achieved 

without false alarm. 

Keywords: Drilling; kick detection; machine learning; long short-term memory (LSTM); 

recurrent neural network (RNN); time series data   
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3.1 Introduction 

Machine learning is an interesting field which involves finding relationship amongst data. There 

is a lot of interest in machine learning because of its success in challenging domains such as 

speech recognition, medical imaging, etc. (Alom et al., 2019). The level of success achieved in 

solving a task through the use of machine learning depends on the training data as well as the 

type of machine learning algorithm used. For example, while convolution neural network (CNN) 

is designed to take advantage of spatial relationship in two-dimensional data, recurrent neural 

network (RNN) is designed to explore temporal relationships in data (Alom et al., 2019). 

During drilling for exploration/production of hydro-carbon, kick (i.e. influx of hydrocarbon into 

the well bore) can occur. This can be very dangerous especially if it is a gas influx, as this can 

lead to blowout when the gas influx is not properly controlled. Therefore, occurrence of kick is 

detected by locating sensors to monitor drilling parameters.  Some parameters typically 

monitored for kick detection are torque, rate of penetration (ROP), weight on bit (WOB), flow 

differential and stand pipe pressure (SPP). Kick is typically indicated by sudden increase in 

torque, increase of outflow over inflow, decrease in SPP, increase in ROP and decrease in WOB. 

Equation 1 describes the d-exponent also known as the normalized rate of penetration. The d-

exponent can be used as a means by which kick occurrence can be identified; this was 

demonstrated in the article by Mao et al.,(Y. Mao & Zhang, 2019) and by Tang et al., (Tang et 

al., 2019).   

d-exponent =  
log (

𝑅𝑂𝑃

60𝑁
)

log (
12𝑊𝑂𝐵

106𝐷𝑏
)
 ,              (3.1) 

where 𝑁 refers to rotary speed and 𝐷𝑏 refers to bit size.  
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Several researchers have utilized machine learning and a combination of different sensors for 

kick detection. This can be seen in Table 3.1. 

Table 3.1   Listing of selected techniques for kick detection using machine learning that have 

been reported since 2001 

Article source Input parameters Methodology 

(Hargreaves et 

al., 2001) 

Inflow and outflow Bayesian classifier 

(Nybo et al., 

2008a) 

Pump rate  and mud density Echo state network and 

physical model 

 (Nybo et al., 

2008b) 

Pump rate Auto-regressive integrated 

moving average algorithm 

and echo state network 

(Kamyab et al., 

2010) 

Active pit totalizer, suction pit, pump pressure 

(many parameters were tested but just these three 

detected kick) 

Focused time-delay neural 

network 

 

(Haibo et. al., 

2014) 

Casing pressure and SPP Bayesian classifier 

(Yin et al., 

2014) 

SPP, drilling time, cell volume, outlet flow rate, 

outlet conductivity, outlet volume density, outlet 

temperature, total hydrocarbon gas volume,  C1 

component content 

Backpropagation neural 

network 

(Pournazari et 

al., 2015) 

Pit volume, SPP, flow-out and flow-in  Naïve Bayes, decision tree, 

random forest  

(Liang et al., 

2019) 

Casing pressure and SPP Genetic algorithm 

accelerated backpropagation 

neural network  

(Alouhali et al., 

2018) 

Pressure gauges, flow meters, hook load, ROP, 

torque, pump rate, and WOB 

Decision tree, k-nearest 

neighbor, sequential 

minimal optimization 

algorithm, artificial neural 

network  and Bayesian 

network 

(Xie et al., 

2018) 

ROP, mass per unit volume of  drilling fluid 

(“Schlumberger definition”), mud weight (MW) 

going into the well, MW going out of the well, 

MW of circulating fluid  and depth of well 

Genetic wavelet neural 

network 

(Fjetland et al., 

2019) 

Flow rate in, flow rate out, SPP, choke pressure, 

choke opening, bit pressure and bit depth 

LSTM-RNN 
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In addition to the articles on machine learning approach for kick detection presented in Table 

3.1, a systematic approach for kick detection was presented in the article by Vajargah & van 

Oort, (2015). The systematic approach shows how kick occurrence can be detected by observing 

flow in, flow out, pit gain, pump pressure and annular pressure profile. 

Sensor data used for kick detection in several cases are time series in nature. When temporal 

relationship exist in sensor time series data, the event indicated at a time (kick or no kick) could 

be described as a function of the sensor reading both at that particular time, as well as sensor 

readings at earlier times in order to improve the accuracy of kick detection. For example, 

temporal relationship can be observed in Fig. 3 of the article by Hargreaves et al., (2001). This 

figure shows that flow out ramps up over a period of time in response to kick. We can observe 

that using the flow out value at an instant in time is not sufficient to indicate kick occurrence. 

Instead, several consecutive values of flow out will be needed in order to observe the trend or 

pattern of flow out over time for accurate kick detection.  

Several dynamic neural network algorithms such as focused time delay neural network, classical 

recurrent neural network, recursive neural network can be utilised in learning temporal 

relationships in data. When it comes to learning long term temporal relationships in data, the 

long short-term memory recurrent neural network (LSTM-RNN) offers the advantage of 

overcoming the gradient vanishing problem which makes it difficult for other dynamic neural 

network algorithms to learn long term dependencies. The LSTM-RNN achieves this by having 

an architecture made up of memory cell, input gate, forget gate and output gate (Graves, 2012).  

The objective of our work is to develop a methodology which can help achieve automatic, early 

and accurate detection of kick onset using d-exponent and standpipe pressure data. While effort 

has been made to develop equations, which can be used to detect kick as a function of d-
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exponent, standpipe pressure and flow measurement data, a lot of uncertainties are still 

encountered. For example in the article by Tang et al., (Tang et al., 2019), kick indicating 

parameters (namely, flow-in rate, flow-out rate, SPP, WOB and ROP) were used in two 

equations. These equations are: (i) drilling parameter group (DPG) which is the same as d-

exponent; (ii) flow parameter group (FPG) which utilises flow-in rate, flow-out rate, 

compressibility of the drilling mud (𝐶𝑚) and SPP as shown by Equation 3.2.  

𝐹𝑃𝐺 = 𝑓𝑙𝑜𝑤 𝑜𝑢𝑡 −  
𝑓𝑙𝑜𝑤 𝑖𝑛

𝐶𝑚 ×(𝑆𝑃𝑃−𝑃𝑟)
 ,            (3.2) 

where 𝑃𝑟 represents reference pressure which is 14.7 psig at ground surface. 

Also, in the article by Mao & Zhang, (2019), DPG, FPG and pit volume gain were used for kick 

detection. The methodology used in Tang et al., (2019) was also applied in Mao & Zhang, 

(2019). 

Although FPG, DPG and pit volume gain can be utilised together for kick detection, some 

challenges such as: (i) the ratio by which the probability of kick occurrence using DPG,  FPG 

and pit volume gain are combined for early kick detection with minimal chances of false alarm, 

(ii) the tolerance value of DPG, FPG and pit volume gain adopted for accurate kick detection, 

and (iii) the threshold value of kick-risk index (KRI) to indicate kick show areas for further 

research (Tang et al., 2019). The benefit of machine learning is that with sufficient training data, 

the machine learning algorithm can capture the relationship between input parameters/equations 

such as the ratio by which the inputs are combined for kick detection. In this chapter, data-driven 

approach using LSTM-RNN is implemented to utilize the relationship between SPP and d-

exponent in order to achieve early detection of kick without false alarm. The industrial 

significance of the proposed methodology is that it can improve the chances of obtaining 
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automatic, accurate, and early kick detection with sufficient training SPP and d-exponent data for 

different scenarios of kick and no-kick periods during drilling.      

This chapter is structured as follows. Section 3.2 describes the proposed kick detection 

methodology. Section 3.3 describes the data used for verification of the methodology. Section 

3.4 reports the result obtained by using the proposed methodology on the data described in 

Section 3.3. Concluding remarks are provided in Section 3.5.    
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3.2 METHODOLOGY 

The flowchart of the proposed methodology is presented in Fig. 3.1. Detailed description of the 

methodology is presented in subsequent subsections. 

 

Fig. 3.1   Proposed data-driven methodology for kick detection 
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3.2.1 Obtaining peak reduction in SPP data 

This process is made up of the following: (i) filter out noise, (ii) estimate change in trend of data, 

(iii) trap surgical changes in data, and (iv) normalize using minimum value (maximum absolute 

value). 

 

3.2.1.1 Filtering out noise 

A low pass filter can be used to filter out noise from the SPP data. A low pass Kaiser window 

finite impulse response type 1 filter with a discrete time cut-off frequency of 0.01π rad, stop band 

attenuation of 50 dB, and filter length of 51 is used.  A simple moving average filter can also be 

used to achieve the same goal.   

 

3.2.1.2 Estimating change in trend of data 

Considering that the occurrence of kick causes reduction in SPP, the aim of this section is to 

quantify reduction in SPP at a point in time as a function of all previous SPP data obtained 

during drilling. Equation (3.3) shows how to obtain the change in trend data 𝑆𝑃𝑃𝑑𝑡 at time 𝑡 

using the current SPP data 𝑆𝑃𝑃𝑡 at time 𝑡 and all previous SPP data. 

𝑆𝑃𝑃𝑑𝑡 =  𝑆𝑃𝑃𝑡 −
1

𝑡−1
 ∑ 𝑆𝑃𝑃𝑖

𝑡−1
𝑖=1 .                                                                                              (3.3) 
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3.2.1.3 Trapping surgical changes in data 

For situations where reduction in SPP due to kick occurs in a transient manner, emphasis should 

be placed on the peak reduction in SPP in comparison to the other values of SPP which occurs 

after the onset of kick. The MATLAB code for implementing this is: 

for i = 2:length(𝑆𝑃𝑃𝑑) 

    if (𝑆𝑃𝑃𝑑(𝑖) > 𝑆𝑃𝑃𝑑(𝑖 − 1) ) 

       𝑆𝑃𝑃𝑑(𝑖)  = 𝑆𝑃𝑃𝑑(𝑖 − 1); 

    end 

end 

𝑆𝑃𝑃𝑑 represents the change in trend of SPP for a case (a time series drilling scenario) using 

Equation 3.3. 

 

3.2.1.4 Normalize data using minimum value (maximum absolute value) 

Once the modified 𝑆𝑃𝑃𝑑 is obtained for all training cases using the algorithm in section 3.2.1.3, 

the modified 𝑆𝑃𝑃𝑑 values for all training cases are normalized by dividing them by the their 

minimum value. For example, if there are only two training cases A and B such that the modified 

𝑆𝑃𝑃𝑑 for training case A is 0, -2, -6, -7, -9 and the modified 𝑆𝑃𝑃𝑑 for training case B is 0, -1, -

2, -3; then the minimum 𝑆𝑃𝑃𝑑 of all training cases will be -9. Therefore, the normalised 𝑆𝑃𝑃𝑑 

for case A would be 0, 2/9, 6/9, 7/9, 1 and that for case B would be 0, 1/9, 2/9, 3/9. The 

minimum value of all modified 𝑆𝑃𝑃𝑑 training data is also used to normalize the modified 𝑆𝑃𝑃𝑑 

data for the testing case. This is because one does not know what the minimum modified 𝑆𝑃𝑃𝑑 

data for the testing case will be during field implementation.   
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3.2.2 Obtaining slope trend of d-exponent data 

The process is made up of three parts which are (i) filter out noise, (ii) slope extraction by the use 

of a sliding window, and (iii) normalize data using mean and standard deviation of each case. 

 

3.2.2.1 Filter out noise 

Similar to in Section 3.2.1.1, a low pass filter for suppressing noise is also applied. 

 

3.2.2.2 Slope extraction by the use of a sliding window 

The slope of the d-exponent data with respect to time gives some information about kick 

occurrence during drilling (Tang et al., 2019). Therefore, the slope of the d-exponent data is used 

for kick detection analysis. The slope of the d-exponent data at every corresponding point in time 

is obtained using a sliding window. The size of the sliding window should be large enough to 

suppress random variations in the slope of the d-exponent data.   

 

3.2.2.3 Normalize data using mean and standard deviation of each case 

The d-exponents of each case to be used for training is normalised using their respective mean 

and standard deviation. For example, assume that case 2, case 3 and case 4 are used for training 

and case 1 is used for testing. If one represents the extracted slope of the d-exponent data of case 

3 as 𝑆𝐷3, the mean of 𝑆𝐷3 as 𝜇𝑐3 and the standard deviation of  𝑆𝐷3  as 𝑠𝑐3, then Equation 3.4 

gives the normalised slope of the d-exponent data. 
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𝑁𝑆𝐷3𝑡 = (𝑆𝐷3𝑡 −  𝜇𝑐3)/𝑠𝑐3.             (3.4) 

𝑆𝐷3𝑡 represents the slope of the d-exponent data for case 3 at time 𝑡, where 𝑁𝑆𝐷3𝑡 represents 

the corresponding normalized value. In the same manner, the slopes of the d-exponent data of the 

other training cases are also normalized. For the test case, authors assume that they do not know 

what its final mean and standard deviation would be. In order to normalise the testing data, 

authors concatenated the extracted slope of the d-exponent of all the training cases and obtain the 

mean and standard deviation of the concatenated data. The mean and standard deviation are then 

used to obtain the normalised slope of the d-exponent of the test data.  

  

3.2.3 Machine learning implementation  

Although the LSTM-RNN is the main machine learning algorithm used in this work, the simple 

artificial neural network (ANN) which is also referred to as fully-connected neural network in 

some literature e.g. (D. Zhang et al., 2018) will also be tested. This can provide a justification for 

preferring the more sophisticated LSTM-RNN. This is similar to the approach utilised in the 

article by Zhang et al., (Zhang et al., 2018), where simple ANNs and LSTM-RNNs were used to 

estimate missing log information, and the LSTM-RNN performed better than the simple ANN 

implementation. This section is made up of four parts which are: 

(i) introduction to simple ANN, (ii) introduction to LSTM-RNN, (iii) configuration of the 

LSTM-RNN and simple ANN, and (iv) training of an ensemble of the LSTM-RNNs and an 

ensemble of the simple ANNs. 
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3.2.3.1 Simple ANN 

A simple ANN is typically made up of the input layer, one or more simple hidden layers and an 

output layer. Fig. 3.2 describes the simple ANN used in this work. 

 

 

 

Fig. 3.2   A simple ANN (diagram drawn with the aid of the website (Lenail, 2019)) 

 

The input layer is given two selected inputs: slope trend of d-exponent data and peak reduction in 

SPP data. Fig. 3.2 shows the hidden layer with 5 nodes. Actual implementation could require 

much larger number of nodes in this layer in order to achieve effective training. The output layer 

is equipped with softmax function, and has two nodes because the task involves classifying the 

output as either kick or no-kick, with one of the nodes responsible for evaluating the probability 

of having a kick event while the other node is responsible for evaluating the probability of 

having no-kick event. Therefore, during detection, the output node with the higher probability 

dictates if the event is a kick or no-kick. Data reaching the nodes of both hidden and output 

layers is obtained by multiplying the data from the preceding layers with weight values shown by 

the link lines in the figure. These data reaching a node in these layers are then summed up and 

passed through an activation function to get the corresponding output of that node. The link lines 

Input layer Hidden layer with hyperbolic 

tangent activation function 
Output layer with softmax 

activation function 
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are shown in different shades of colours in the figure in order to indicate variability in weight 

values which typically occur amongst the weights of a neural network implementation. For 

example red colours represent positive weights values, blue colours represent negative weight 

values, and the lightness of the colour indicates the magnitude of the weight. Each node also has 

a trainable bias input value. More information on ANNs can be found in Hagan et al., (1996).  

 

3.2.3.2 LSTM-RNN 

The main difference between the LSTM-RNN implementation and the simple ANN 

implementation in this work is that the hidden layer of the simple ANN implementation is 

replaced by an LSTM layer for the LSTM-RNN implementation. Before presenting the hidden 

layer (LSTM layer) of a LSTM_RNN implementation, let us first consider the hidden layer of a 

simple RNN implementation. This difference between the simple ANN and simple RNN can be 

observed by considering one of the nodes in the hidden layer of Fig 3.2. Fig. 3.3 compares a 

node in the hidden layer for simple ANN implementation shown in Fig. 3.3a and for a simple 

RNN implementation shown in Fig. 3.3b. 

 
Fig. 3.3a          Fig. 3.3b         

Fig. 3.3   A hidden layer node in simple ANN and RNN a. ANN b. RNN 
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In Fig. 3.3, 𝑊𝑥, 𝑊𝑦 and 𝑊𝑜 are neural network weights, 𝑏 represents bias, 𝑋𝑡 and 𝑌𝑡 represents 

inputs, 𝑂𝑡 represents output, A represents activation function and D is a time delay function.  

For the simple ANN implementation, output (𝑂𝑡) at time 𝑡 is simply a function of the two inputs 

(𝑋𝑡 , 𝑌𝑡) at time 𝑡 as shown by Equation 3.5. For the simple RNN, the output at time 𝑡 is not only 

a function of the inputs at time 𝑡, but also a function of the output at time 𝑡 − 1, as shown by 

Equation 3.6. The output at time 𝑡 − 1 is achieved by passing the output through a time delay 

function, D. In equations (3.5) and (3.6), 𝑓{𝑧} represents the application of an activation function 

such as hyperbolic tangent to 𝑧.  

𝑂𝑡 = 𝑓{(𝑋𝑡  ×  𝑊𝑥) + (𝑌𝑡  ×  𝑊𝑦) + 𝑏},           (3.5) 

𝑂𝑡 = 𝑓{(𝑋𝑡  ×  𝑊𝑥) + (𝑌𝑡  ×  𝑊𝑦) +  𝑏 + (𝑂𝑡−1 ×  𝑊𝑜)}.         (3.6) 

From Equation (3.6), it can be observed that 𝑂𝑡−1 is also a function of 𝑋𝑡−1, 𝑌𝑡−1 and 𝑂𝑡−2. This 

shows that the output from the node in RNN implementation can capture both the present input 

values and all past input values to the node. This gives the simple RNN an advantage over the 

simple ANN implementation when temporal relationship occurs between the output and input 

data at different time steps. Although the simple RNN is designed to capture temporal 

relationships in data, the problem of vanishing gradient limits this capability when a series data is 

very long. The article by Hochreiter et al., (Hochreiter & Schmidhuber, 1997), gives a detailed 

explanation of how the LSTM implementation overcomes this challenge.  A simple 

diagrammatic description of an LSTM unit working with 1 input is shown by Fig. 3.4.  
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Fig. 3.4   LSTM unit 

 

For the LSTM shown in Fig. 3.4, the output 𝑂𝑡 at time 𝑡 is a function of the output gate and 

memory cell value 𝐶𝑡 at time 𝑡. The memory cell value at time 𝑡 is a function of the input gate, 

forget gate, cell gate/candidate and previous memory cell value 𝐶𝑡−1. Each of the four gates 

operates as a function of the current input value 𝑋𝑡 and the previous output value 𝑂𝑡−1. 

Equations (3.7) to (3.10) summarise this (Hochreiter & Schmidhuber, 1997; D. Zhang et al., 

2018). 

𝐺𝑖𝑡 = 𝐹𝑠{(𝑋𝑡  × 𝑤𝑖) + (𝑂𝑡−1  × 𝑣𝑖) + 𝑏𝑖},           (3.7) 

𝐺𝑓𝑡 = 𝐹𝑠{(𝑋𝑡  × 𝑤𝑓) + (𝑂𝑡−1  × 𝑣𝑓) + 𝑏𝑓},           (3.8) 

𝐺𝑐𝑡 = 𝐹ℎ{(𝑋𝑡  × 𝑤𝑐) + (𝑂𝑡−1  × 𝑣𝑐) + 𝑏𝑐},           (3.9) 
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𝐺𝑜𝑡 = 𝐹𝑠{(𝑋𝑡  × 𝑤𝑜) + (𝑂𝑡−1  × 𝑣𝑜) + 𝑏𝑜},              (3.10) 

where 𝐺𝑖𝑡 refers to control gate, 𝐺𝑓𝑡 refers to forget gate, 𝐺𝑐𝑡 refers to cell candidate or gate, 𝐺𝑜𝑡 

refers to output gate. 𝑤𝑖, 𝑤𝑓, 𝑤𝑐, 𝑤𝑜, 𝑣𝑖, 𝑣𝑓, 𝑣𝑐 and 𝑣𝑜 are weights associated with the 

respective gates, while 𝑏𝑖, 𝑏𝑓, 𝑏𝑐 and 𝑏𝑜 are the corresponding bias values for their respective 

gates. It should be noted that 𝐹𝑠 and 𝐹ℎ are sigmoid (logistic) and hyperbolic tangent activation 

functions, as shown by Equations (3.11) and (3.12).  

𝐹𝑠{𝑧} =  
1

1+ 𝑒−𝑧 ,            (3.11)  

𝐹ℎ{𝑧} =  tanh (𝑧).             (3.12) 

Equation (3.13) shows how the memory cell value is updated as a function of its previous value, 

the forget gate, the input gate and the cell gate. 

𝐶𝑡 = (𝐺𝑓𝑡 × 𝐶𝑡−1) + (𝐺𝑐𝑡  ×  𝐺𝑖𝑡).               (3.13) 

The output from the LSTM unit is shown in Equation (3.14) as a function of output gate and 

memory cell value. 

𝑂𝑡 = 𝐺𝑜𝑡  × 𝐹ℎ{𝐶𝑡}.                        (3.14) 

With the introduction of the LSTM, improvement has been achieved in comparison to traditional 

RNN in a number of applications. An example of this is language modeling by Sundermeyer et 

al., (Sundermeyer et al., 2015). 
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3.2.3.3 Configuration of the LSTM-RNN and simple ANN  

A large number of hidden layer weights can help the neural network capture more information 

(Hagan et al., 1996).  This observation motivates the use of a large number of LSTM units for 

LSTM-RNN implementation and a large number of hidden layer nodes for simple ANN 

implementation. However, more weights will result in the requirement of more training time or 

computing resources as well as the possibility of poor training due to overfitting (Hagan et al., 

1996). In this chapter, the number of LSTM hidden layer units and the number of hidden layer 

nodes for simple ANN were chosen to sufficiently capture the learnable features of the data. 

Table 3.2 shows the configuration of the neural networks implemented. 

Table 3.2   Configuration of the LSTM-RNN and simple ANN 

 LSTM-RNN Simple ANN 

Input layer 2 inputs for sequence data 2 inputs for sequence data 

Hidden layer 50 LSTM units 1000 nodes with hyperbolic 

tangent activation function  

Output  layer 2 nodes with softmax 

activation function 

2 nodes with softmax activation 

function 

 

 

3.2.3.4 Training an ensemble of LSTM-RNNs and an ensemble of simple 

ANNs   

Several factors, such as the optimization algorithm used, number of training epochs, 

regularization  method etc., can influence the learning performance as well as training time of the 

neural network implemented (Alom et al., 2019). The Adam optimization algorithm was used for 
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training, although other optimization algorithms such as RMSProp could also be successfully 

used for training, Adam was chosen simply because it combines the advantages of  RMSProp 

(good for handling cases with on-line settings) and AdaGrad (good for handling sparse gradients) 

(Kingma & Ba, 2014). In order to prevent error due to exploding gradient, the gradient errors 

could be clipped at an absolute maximum value of 15, based on a case study in the PhD 

dissertation by Mikolov (Mikolov, 2012). Because the task is to perform binary classification, 

rather than regression, the optimization algorithm aimed at minimizing cross entropy error rather 

than root mean square error of the training data (Bishop, 2006). Table 3.3 summarises the 

approach used for training the configured LSTM-RNN and simple ANN.  

Table 3.3   Training the LSTM-RNN and simple ANN algorithms 

Training options Method/Value used Reason 

Optimization algorithm Adam A recent and robust method (Alom et al., 

2019; Kingma & Ba, 2014). 

Regularization method L2 Regularization Based on the articles (Alom et al., 2019; 

Kingma & Ba, 2014) 

Factor for L2 Regularization 0.0004 Based on the article (Alom et al., 2019). 

Gradient threshold method L2 norm Based on the articles (Kingma & Ba, 2014; 

Pascanu et al., 2013). 

Gradient threshold value 15 Inspired by the work (Mikolov, 2012). 

Maximum Epochs 50 Sufficient for learning the test data.  

Initial learning rate 0.001  Based on the article (Kingma & Ba, 2014). 

𝛽1 0.9 Based on the article (Kingma & Ba, 2014). 

𝛽2 0.999 Based on the article (Kingma & Ba, 2014). 

𝜖 0.00000001  Based on the article (Kingma & Ba, 2014). 

 Training type Offline training  
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Weights were initialized using Gaussian distribution with a mean value of 0 and a standard 

deviation value of 0.01. The bias values were initialised to 0. Variations can occur in terms of 

detection time for the same RNN-LSTM configuration and training data when training is done at 

different point in time. This is due to the random initialization of the parameters of the network. 

The mode of learning/training implemented for ANN and LSTM-RNN of this work is supervised 

learning.  

An ensemble of LSTM-RNNs was used because random errors from several classifiers can be 

suppressed by averaging (Anifowose et al., 2017). Based on this, a committee (or an ensemble) 

of thirty independent LSTM-RNNs of the same configuration were used for training; and 

detection was done by considering the mode output (majority decision) of the committee of 

LSTM-RNNs at each point in time. Similarly, an ensemble of thirty independent simple ANNs 

with the same configuration was also used for training and detection. MATLAB R2018b and 

R2019a were used for the simulations. 

 

3.3 Data used for verifying methodology 

The data used for this study were obtained from the article by Tang et al., (Tang et al., 2019). 

The smoothed DPG (d-exponent) data and SPP data of Fig. 6, Fig. 8, Fig. 10 and Fig. 12 

(representing cases 1, 2, 3 and 4,) in Tang et al., (2019) were obtained. This was done by reverse 

engineering the figures using WebPlotDigitizer and UN-SCAN-IT software. These software have 

been used in some articles for data extraction and analysis (Mani et al., 2018; Phattanawasin et 

al., 2016). The figures obtained through reverse engineering resemble their original counterparts. 

While it can be argued that the data obtained through reverse engineering will have some errors, 
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the ability of an algorithm to learn and perform detection despite the imperfection in the data 

obtained could be seen as a plus for the algorithm; this is comparable to having a machine 

learning method that is developed with regularization capabilities to enhance learning with noisy 

data (Foresee & Hagan, 1997). The data obtained was processed to have a time axis resolution of 

1 second. Fig. 3.5 to Fig. 3.12 shows the SPP and d-exponent data obtained for case 1 to 4.  

 

Fig. 3.5   SPP data for case 1 

 

 

Fig. 3.6    D-exponent for case 1 
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Fig. 3.7   SPP data for case 2 

 

Fig. 3.8   D-exponent for case 2 

 

Fig. 3.9   SPP data for case 3 
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Fig. 3.10   D-exponent for case 3 

 

 

 

Fig. 3.11   SPP data for case 4 

 

 
 

Fig. 3.12   D-exponent for case 4 
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3.3.1 Estimated time of kick occurrence 

The task is defined as a binary classification problem, and so the output data event is described 

as either kick or no-kick. Because the ANN and LSTM-RNN to be implemented will undergo 

supervised learning, the output/target data will be specified as a kick or no-kick event at every 

point in time for which we have SPP and d-exponent data. The no-kick event occurs from start 

time (based on the drilling data) till the time just before kick onset, while the kick event occurs 

from the point of kick onset till the end of data collected; this can be seen in the figures in 

Section 3.4.  

Table 2 in the article Tang et al., (2019) shows the estimated kick onset time, which is obtained 

by observing the trend in the DPG (d-exponent) data. This kick onset time given in Table 2 of 

Tang et al., (2019) has a resolution of 1 min. Because the SPP and d-exponent data obtained 

through reverse engineering has a resolution of 1 second, the d-exponent data is further 

scrutinized to obtain the time in seconds when the kick is most likely to have occurred. This is 

done by: (i) considering the d-exponent data points between -30 seconds and +30 seconds of the 

kick onset time given by Table 2 of Tang et al., (2019), (ii) obtaining the time with the maximum 

d-exponent value within the region of consideration, and (iii) choosing the next time value after 

the time with the maximum d-exponent value as the kick onset time. This is because the kick 

onset is estimated as the time when the d-exponent data begins to deviate from the previously 

noticed increasing trend (Tang et al., 2019). Table 3.4 gives the kick onset time from Tang et al., 

(2019) and the higher resolution kick onset time obtained by further observing the d-exponent 

data. 
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Table 3.4   Actual kick onset time from the article Tang et al., (2019) and the higher resolution 

actual kick onset time obtained by close scrutiny of the d-exponent data 

Case Kick onset time from 

Tang et al., (2019) in 

hours and minutes 

Kick onset time by further scrutiny of the d-

exponent data in hours, minutes and seconds 

1 01:06 01:06:29 

2 10:52 10:51:31 

3 12:07 12:06:41 

4 18:37 18:36:41 

 

    

3.3.2 An example of obtaining peak reduction in SPP data  

The figures showing peak reduction in SPP data assuming case 1 is to be used for testing and 

cases 2, 3 and 4 used for training are provided as supplementary data in Appendix A (Section 

3.6).  Fig. 3.13 clearly shows relatively high values of the peak reduction in the SPP data after 

kick onset time (01:06:29, as shown in Table 3.4 for case 1). 

Fig. 3.13   Peak reduction in SPP data for case 1. In this scenario, case 2, 3 and 4 are for training 

while case 1 is for testing 
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3.3.3 An example of obtaining the slope trend of the d-exponent data 

The figures showing the slope trend of the d-exponent data assuming case 1 is to be used for 

testing and cases 2, 3 and 4 used for training are provided as supplementary data in Appendix B 

(Section 3.7). It should be noted that the d-exponent data obtained has noisy variations already 

suppressed. This was done by using a median filter with a kernel size of 51 (Tang et al., 2019). 

Thus, the step described in section 3.2.2.1 (Filtering) is skipped. The methodology implemented 

in Tang et al., (2019) utilized long sliding window of 3 minutes, 5 minutes and 1 minute; this 

gives an indication that window sizes within this range can be utilized for the d-exponent data 

obtained. Therefore, sliding window sizes of 2 minutes, 3 minutes and 4 minutes are used for 

obtaining the slope of the d-exponent data. Fig. 3.14 shows that higher slope values of d-

exponent data are likely to be in the region of no kick. 

 

Fig. 3.14   Slope trend of d-exponent data for case 1 (using sliding window of 3 minutes). In this 

scenario, cases 2, 3 and 4 are for training while case 1 is for testing 

 

3.4 Results and discussion  

Considering that data corresponding to four cases are available, four categories of training and 

testing will be done. Category 1 involves using all data points/samples of case 2, case 3 and case 

4 to train while all data points/samples of case 1 is used for testing. Category 2 involves training 

with all data points/samples of cases 1, 3 and 4 while all data points/samples of case 2 is used for 
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testing. Category 3 involves training with all data points/samples of cases 1, 2 and 4 while all 

data points/samples of case 3 is used for testing. Category 4 involves training with all data 

points/samples of cases 1, 2 and 3, while all data points/samples of case 4 is used for testing.  In 

addition, the final part of this section (section 3.4.5) compares the result obtained with the 

proposed methodology to that of published methodology. All figures of section 3.4 are a plot of 

kick/no-kick event vs time. In the vertical axis of the figures of section 3.4, the value 1 represents 

kick and 0 represents no-kick event. 

 

3.4.1 Category 1 testing  

Fig. 9 and Fig. 10 provide a graphical illustration of the performance of the methodology. Fig. 

3.15 represents the actual events that are of interest to detect and Fig. 3.16 shows detection with 

the LSTM-RNN implementation and sliding window size of 4 minutes for obtaining the slope of 

the d-exponent. Fig. 3.16 shows that the algorithm can detect the kick event to a good degree 

after a short delay. 
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Fig. 3.15   Actual kick or no-kick event for case 1 

 

 

Fig. 3.16   Kick onset detection for case 1 using LSTM-RNN with peak reduction in standpipe 

pressure data and slope trend of d-exponent data (using sliding window size of 4 minutes) as 

input 

 

Table 3.5   Kick onset time for category 1 testing 

 Actual 

kick 

Algorithm / window size for computing slope of d-exponent 

LSTM-RNN 

/ 2 minutes 

LSTM-RNN 

/ 3 minutes 

LSTM-RNN 

/ 4 minutes 

Simple ANN 

/ 3 minutes 

Onset time 01:06:29 01:08:05 01:08:09 01:08:09 01:06:53 

Delay in detection 

relative to kick 

occurrence time 

 00:01:36 00:01:40 00:01:40 00:00:24 

Table 3.5 shows that the LSTM-RNN and simple ANN detected kick for the d-exponent sliding 

window sizes considered without false alarm. The results also show that detection time was very 

similar for the different sliding window sizes considered for the LSTM-RNN methodology.   
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3.4.2 Category 2 testing  

Fig. 3.17 shows the actual kick and no-kick events and Fig. 3.18 shows detection with the 

LSTM-RNN implementation and sliding window size of 4 minutes for obtaining the slope of the 

d-exponent. Fig. 3.18 shows that the methodology proposed can detect the events to a good 

degree with insignificant delay for the sliding window size of 4 minutes. 

 
 

Fig. 3.17   Actual kick or no-kick event for case 2 
 

 

 

Fig. 3.18   Kick onset detection for case 2 using LSTM-RNN with peak reduction in standpipe 

pressure data and slope trend of d-exponent data (using sliding window size of 4 minutes) as 

input 
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Table 3.6   Kick onset time for category 2 

 Actual 

kick 

Algorithm / window size for computing slope of d-exponent 

LSTM-RNN 

/ 2 minutes 

LSTM-RNN 

/ 3 minutes 

LSTM-RNN 

/ 4 minutes 

Simple ANN 

/ 3 minutes 

Onset time 10:51:31 11:01:52 10:52:42 10:51:32 11:01:20 

Delay in detection 

relative to kick 

occurrence time 

 0:10:21 0:01:11 0:00:01 0:09:49 

Table 3.6 shows that the LSTM-RNN and simple ANN detect kick for the d-exponent sliding 

window sizes considered without false alarm. Although the use of different sliding window sizes 

still resulted in successful detection, there is a significant variation between detection time 

achieved between the 2 minutes sliding window and the 4 minutes sliding window. A possible 

reason for this is that while the d-exponent shows a decreasing trend at around 10:52 AM, the 

SPP data shows decreasing trend at around 11:02 AM (Tang et al., 2019). 

 

3.4.3 Category 3 testing  

Fig. 3.19 shows the actual kick and no-kick events and Fig. 3.20 shows detection with the 

LSTM-RNN implementation and sliding window size of 4 minutes for obtaining the slope of the 

d-exponent. Fig. 3.20 also shows that the algorithm can detect the events to a good degree 

although with some delay. Table 3.7 shows that the LSTM-RNN and simple ANN detected kick 

for d-exponent sliding window sizes considered without false alarm. 
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Fig. 3.19   Actual kick or no-kick event for case 3 

 

Fig. 3.20   Kick onset detection for case 3 using LSTM-RNN with peak reduction in standpipe 

pressure data and slope trend of d-exponent data (using sliding window size of 4 minutes) as 

input 

 

Table 3.7   Kick onset time for category 3 

 Actual 

kick 

Algorithm / window size for computing slope of d-exponent 

LSTM-RNN / 

2 minutes 

LSTM-RNN 

/ 3 minutes 

LSTM-RNN 

/ 4 minutes 

Simple ANN 

/ 3 minutes 

Onset time 12:06:41 12:12:20 12:12:16 12:11:45 12:07:58 

Delay in 

detection relative 

to kick 

occurrence time 

 00:05:39 00:05:35 00:05:04 00:01:17 

 

 

3.4.4 Category 4 testing 

Fig. 3.21 shows the actual kick and no-kick events and Fig. 3.22 shows detection with the 

LSTM-RNN implementation and sliding window size of 4 minutes for obtaining the slope of the 
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d-exponent. Fig. 3.23 shows multiple false alarm when simple ANN is used as opposed to the 

nearly perfect detection with LSTM-RNN shown in Fig. 3.22. Table 3.8 also shows that the 

LSTM-RNN detected kick for the sliding window sizes considered without false alarm. 

Unfortunately, the simple ANN had multiple false alarms. Based on this, several configurations 

were tested for simple ANN implementation. Also, different window sizes for extracting slope of 

d-exponent data were also tried, but all resulted in false alarm. These results are summarized in 

Table 3.9. 

Fig. 3.21   Actua l kick or no-kick event for case 4 

 

Fig. 3.22   Kick onset detection for case 4 using LSTM-RNN with peak reduction in standpipe 

pressure data and slope trend of d-exponent data (using sliding window size of 4 minutes) as 

input 

Fig. 3.23   Kick onset detection for case 4 using simple ANN with peak reduction in standpipe 

pressure data and slope trend of d-exponent data (using window size of 4 minutes) as input. 
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Table 3.8   Kick onset time for category 4 

 Actual 

kick 

Algorithm / window size for computing slope of d-exponent 

LSTM-RNN / 

2 minutes 

LSTM-RNN 

/ 3 minutes 

LSTM-RNN 

/ 4 minutes 

Simple ANN 

/ 3 minutes 

Time 18:36:41 18:37:18 18:37:02 18:36:42 False alarm 

Delay in 

detection relative 

to kick 

occurrence time 

 00:00:37 00:00:21 00:00:01  

 

 

Table 3.9   Summary of different trials for case 4 using different simple ANN configurations 

Number of nodes 

in first hidden 

layer 

Number of additional 

hidden layers with 

1000 nodes 

False 

alarm(s) 

occurred?  

Time of 

first false 

alarm 

occurrence 

Sliding window 

size for d-exponent 

slope extraction 

100 None Yes 18:20:36 3 minutes 

1000 None Yes 18:20:33 3 minutes 

5000 None Yes 18:28:24 3 minutes 

10,000 None Yes 18:28:37 3 minutes 

1000 1 Yes 18:28:36 3 minutes 

1000 3 Yes 18:28:25 3 minutes 

1000 None Yes 18:20:58 2 minutes 

1000 None Yes 18:20:02 4 minutes 

 

 

3.4.5 Validation of the developed methodology 

Table 3.10 compares the results obtained using the proposed methodology (using LSTM-RNN 

and a sliding window length of 3 minutes) with those in Table 2 of Reference Tang et al., (2019) 

(also using 3-minute long sliding window). It should be noted that the aim of the comparison is 
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not to claim superiority of methodology but to show that the methodology presented here can 

complement the methodology presented in Mao & Zhang, (2019) and Tang et al., (2019). The 

methodology of Mao & Zhang, (2019) and Tang et al., (2019) can be used without having a 

database for training, whereas the methodology presented here is a data driven approach. 

Table 3.10     Comparison of results: proposed methodology vs Tang et al. (Tang et al., 2019) 

Case 

Number / 

Category 

Kick 

occurrence 

time   

Methodology of Tang et al., (2019)  

(Time only available in hours and 

minutes) 

Proposed methodology 

using LSTM-RNN 

1 01:06:29 01:10 01:08:09 

2 10:51:31 11:05 10:52:42 

3 12:06:41 12:11 12:12:16 

4 18:36:41 18:41 18:37:02 

 

Although the delay in kick detection for case 3 using our proposed methodology was between 5 

and 6 minutes, the reservoir influx was observed at 12:21 (equivalent to a delay of about 14 

minutes) was 11 bbl or 1.75 m3 (Tang et al., 2019). Hence, the reservoir fluid influx for case 3 

using our proposed methodology was less than 2 m3, and this is still safe based on the guidelines 

in the article by Yin et al., (2019).  

The performance of the proposed LSTM-RNN methodology depends on the quantity of training 

data. More training data will offer the LSTM-RNN a better opportunity to capture the 

relationship between input parameters required to detect kick. Although it may be suggested that 

only SPP should be considered as the input in order to achieve faster kick detection, test with 
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only SPP input (neglecting d-exponent data) resulted in false alarm in 2 of the 4 cases. This 

shows the benefit of considering multiple independent input sources.     

One of the extra requirements of using a data driven approach is the requirement of training time 

and software/hardware to perform training.  The training time depends on several factors such as 

computational strength (e.g. number of processing cores/units), size of data etc. For example, the 

training time achieved by using Nvidia GeForce GTX 1050 through MATLAB R2018b is shown 

in Table 3.11.   

Table 3.11   Training time for the different categories 

Case Number / Category Average training time for an LSTM-RNN in seconds 

1 8  

2 5  

3 8 

4 8 

 

The training time values in Table 3.11 need to be multiplied by 30 to get total training time, this 

is because we utilized an ensemble of thirty identical LSTM-RNNs for a category. This results in 

about 240 seconds (4 minutes) for each of three categories of training and 150 seconds for one 

category. While this training time may not be too high, the value could increase when more 

training data is available.  

Although the work presented here utilized data driven approach for d-exponent and SPP, further 

work could involve utilizing data driven approach for d-exponent and FPG, considering that FPG 

utilizes both SPP and flow measurements as shown by Equation 3.2. Although the data in Tang 

et al., (2019) may be used for this, the flow paddle malfunctioned in one of the cases thereby 
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limiting the available cases from 4 to 3. One of the draw backs of data driven approach is that it 

depends on the availability of data. However, once sufficient training data is available, the data 

driven approach provides a valuable means of complementing direct equation approach. The 

Article Mao & Zhang, (2019) indicates the availability of data from 15 wells with 24,546 drilling 

hours of 23 kick events. The data driven methodology proposed in this work can be used for the 

data in Mao & Zhang, (2019). This is because Mao & Zhang, (2019) contains more drilling time 

data and kick events in comparison to Tang et al., (2019) and the performance of data driven 

methodology especially with the use of deep learning is likely to improve with more data as seen 

in Figure 7 of Alom et al., (2019) and Figure 2 of Tang et al., (2018).          

 

3.5 Conclusions 

We have proposed a methodology for the successful use of data-driven approach for kick 

detection by using an ensemble of LSTM-RNNs. The aim of using LSTM-RNN is to overcome 

the challenges of learning how to utilize d-exponent and stand pipe pressure data for early kick 

detection without false alarm. 

The use of an ensemble of LSTM-RNNs is able to achieve early kick detection without miss and 

false alarm in all the four drilling cases considered here, whereas the ensemble of simple ANNs 

is able to do the same only for three out of the four cases. It could be argued that the performance 

of the simple ANN may improve with a sufficient amount of training data and or certain network 

configuration/training options.  

Comparing the result of the methodology presented here with the result achieved in Tang et al., 

(2019) shows that the ensemble LSTM-RNN methodology being introduced here can be used to 
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complement the methodology used in Tang et al., (2019) and Mao & Zhang, (2019) with 

sufficient training data.  

It is recommended that continual training and testing be conducted by acquiring more data in 

order to improve the confidence in the proposed method prior to field implementation. This is 

generally the requirement for any machine learning based method, as performance depends on 

the data used in training it. Therefore, it is recommended that petroleum drilling companies set 

up accessible large database of sensor data and the corresponding events in order to facilitate the 

implementation of the methodology proposed here for kick detection during drilling. 

 

3.6 Appendix A. Peak reduction in SPP data assuming case 1 is to be used 

for testing and cases 2, 3 and 4 used for training 

 

Fig. 3.24 Peak reduction in SPP data for case 1  
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Fig. 3.25   Peak reduction in SPP data for case 2 

 

 

Fig. 3.26   Peak reduction in SPP data for case 3 

 

 

Fig. 3.27   Peak reduction in SPP data for case 4 
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3.7 Appendix B. Slope trend of the d-exponent data assuming case 1 is to be 

used for testing and cases 2, 3 and 4 used for training 

 
 

Fig. 3.28   Slope trend of d-exponent data for case 1 (using sliding window of 3 minutes) 
 
 

 

Fig. 3.29   Slope trend of d-exponent data for case 2 (using sliding window of 3 minutes) 

 

 

Fig. 3.30   Slope trend of d-exponent data for case 3 (using sliding window of 3 minutes) 
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Fig. 3.31   Slope trend of d-exponent data for case 4 (using sliding window of 3 minutes) 

 

3.8 Nomenclature 

𝑆𝑃𝑃𝑡  Standpipe pressure data at time 𝑡  

𝑆𝑃𝑃𝑑    Change in trend of a complete time series data 

𝑆𝑃𝑃𝑑𝑡  Change in trend of a standpipe pressure data at time 𝑡 

𝑆𝐷  Slope of a complete time series d-exponent data 

𝑆𝐷𝑥   Slope of a complete time series d-exponent data of a particular case named 𝑥 

𝜇𝑐𝑥  Mean of 𝑆𝐷𝑥 

𝑠𝑐𝑥  Standard deviation of 𝑆𝐷𝑥 

𝑁𝑆𝐷3𝑡  Normalised 𝑆𝐷𝑥 
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3.9 Acronyms 

DPG  Drilling parameter group 

ANN     Artificial neural network 

FPG  Flow parameter group 

LSTM  Long short-term memory 

RNN  Recurrent neural network 

SPP  Standpipe pressure 

WOB  Weight on bit 

ROP  Rate of penetration 
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Chapter 4 

 

4. Combining porosity and resistivity logs for pore pressure prediction 

 

Preamble 

This chapter addresses an objective of this dissertation as outlined in Section 1.3, which is 

exploiting interelationship between parameters for pore pressure prediction. The methodology 

presented in this chapter aims to enhance the accuracy of combining sonic porosity and 

resistivity data for pore pressure prediction. Accurate pore pressure prediction is vital for drilling 

safety, as presented in Section 1.1. and Section 1.6. 

I (Augustine Uhunoma Osarogiagbon) have contributed to Conceptualization, Methodology, 

Formal Analysis, Software, Investigation, Writing - Original Draft, and Writing - Review & 

Editing of this work, while Dr. Olalere Oloruntobi’s contributed to Methodology, Formal 

Analysis, Writing - Review & Editing;  Dr. Faisal Khan contributed to Conceptualization, 

Methodology, Formal Analysis, Writing - Review & Editing, Supervision, and Project 

Administration; Dr. Ramachandran Venkatesan contributed to Methodology, Formal Analysis, 

Writing - Review & Editing, Supervision, Project Administration; and Dr. Paul Gillard 

contributed to Conceptualization, Methodology, Formal Analysis, Writing - Review & Editing, 

and Supervision. A version of this chapter has been submitted in the Journal of Petroleum 

Science and Engineering.  
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Abstract 

Pore pressure prediction represents an important safety aspect of drilling engineering. Accurate 

pore pressure prediction is required for appropriate mud weight usage. Kick can occur when mud 

weight is lower than pore pressure gradient and this can result in disastrous events such as 

blowout when the kick is not properly controlled. Likewise, too high mud density can fracture 

the reservoir which can lead to several problems. Thus, the need to research on means of 

improving accurate pore pressure prediction during drilling is in order. 

In this article, two methodologies are presented. One of the methodologies is developed to utilize 

resistivity data for pore pressure prediction, and the other methodology is developed if resistivity 

and porosity data are available for pore pressure prediction. Several methodologies already exist 

for pore pressure prediction with resistivity data. Therefore, the methodology presented in this 

article is compared to other resistivity-based methodologies in order to observe their pore 

pressure prediction capabilities. Field data is used for testing prediction performance in terms of 

mean absolute percentage error, root mean square error and Pearson product moment correlation 

coefficient. Results of the test show that the methodology developed in this article performed 

best. 

Different logging/measurement parameters are used for pore pressure prediction e.g. resistivity 

log, sonic velocity, corrected d-exponent, etc. One way to improve accuracy of pore pressure 

prediction is utilizing pore pressure prediction from different logging/measurement parameters. 

For the other methodology which utilizes resistivity and porosity for pore pressure prediction, the 

methodology is proposed to utilize the change in Archie’s cementation exponent. This is because 

the effect of cementation on pore pressure prediction could become significant at greater depths. 

Testing with field data showed that this methodology also performs better than simply averaging 
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pore pressure prediction from resistivity and porosity logs using other conventional equations. In 

addition to the methodology developed for combining porosity and resistivity log for pore 

pressure prediction, machine learning can also be utilized. Results obtained using artificial neural 

network indicate better performance in comparison to simply averaging predictions from 

conventional means of using resistivity and porosity.    

Keywords: Pore pressure; resistivity; porosity; overburden stress; drilling, kick; effective stress 

coefficient; vertical effective stress; cementation, artificial neural network, machine learning.       

 

4.1 Introduction 

The importance of accurately predicting pore pressure during drilling cannot be over- 

emphasized. This is because mud weight should be higher than pore pressure gradient to prevent 

kick (except for special cases e.g., underbalanced drilling), and mud weight should be lower than 

formation fracture gradient to prevent formation fracture (except when fracture is clearly 

intended). Uncontrolled kick can lead to disastrous consequences such as blowout; likewise, well 

fracture not properly managed can lead to loss circulation, kick, well collapse, etc. (Abimbola et 

al., 2015; Sadiq & Nashawi, 2000). Therefore, accurate pore pressure prediction is important in 

designing a drilling mud weight (density) window of operation in order to prevent the use of too 

high or too low drilling mud weight (Brahma & Sircar, 2018; Feng et al., 2015; Oloruntobi et al., 

2020;  Osarogiagbon et al., 2021). 

Several methodologies developed for pore pressure prediction refer to the relationship between 

overburden stress, vertical effective stress and pore pressure as a reference point. These 

equations often use sensing parameters such as resistivity, sonic velocity, corrected drilling 
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exponent, porosity, hydro mechanical specific energy, etc. (Eaton, 1975; Oloruntobi, 2019; 

Zhang, 2011). Despite successes achieved with the use of these parameters, limitations in 

accuracies can occur due to the nature of the reservoir. For example, resistivity, which is used for 

pore pressure prediction, is also sensitive to porosity, salinity, etc. (Saleh et al., 2013). Likewise, 

porosity changes can also be influenced by chemical processes such as cementation and 

dissolution, thereby making it more challenging to predict pore pressure based on porosity 

changes (Swarbrick, 2001). Due to numerous challenges of achieving accurate pore pressure 

prediction, the use of multiple approaches to enhance accuracy is recommended.  

This work introduces a novel approach which combines resistivity and porosity measurements 

for pore pressure prediction, by exploring possible interrelationship between porosity and 

resistivity. In addition, a novel means of utilizing resistivity for pore pressure prediction is also 

presented. The industrial significance of this research work is that it offers a new set of 

methodology with the potential to improve accuracy of pore pressure prediction in comparison to 

methodologies in use. This chapter is structured as follows. Section 4.2 provides a general survey 

on pore pressure prediction models, Section 4.3 presents the methodology of this work, Section 

4.4 describes the data used for testing the methodology presented, Section 4.5 describes results 

obtained, and Section 4.6 presents conclusion. 

 

4.2 Review of pore pressure prediction models 

Based on Terzaghi’s soil bearing capacity theory, it has been shown that the overburden stress at 

a point is supported by the rock matrix and the fluid in the rock matrix, as shown by Equation 

(4.1) (Eaton, 1975; Liu et al., 2018).  
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𝑆𝑣 =  𝑆𝑒 + 𝑃,                                       (4.1) 

where 𝑃 refers to pore pressure,  𝑆𝑣 refers to overburden stress and  𝑆𝑒 refers to vertical effective 

stress. Trapped fluid in the reservoir can therefore experience overpressure in comparison to the 

normal hydrostatic pressure due to the overburden stress. The overburden stress is a function of 

bulk density (Equation (4.2)), and bulk density can be obtained from log data.   

𝑆𝑣 = 0.433 ∫ 𝜌𝑑𝑍
𝑍

𝑜
,                                   (4.2) 

where 𝑍 represents depth and 𝜌 represents formation bulk density (Eaton, 1975; Liu et al., 2018;  

Oloruntobi et al., 2018; Oloruntobi & Butt, 2019). The properties of a rock formation, such as 

resistivity, sonic/seismic velocity and corrected d-exponent, normally follow an increasing trend 

with depth. However, the presence of an over pressured fluid within the rock can cause 

resistivity, sonic velocity and corrected d-exponent values to differ from the expected values 

following the normal trend. Equation (4.1) forms the foundation by which many pore pressure 

methodologies (e.g. by Eaton) were developed. 

In the article by Eaton (1975), equations by which pore pressure can be estimated as a function 

of sonic velocity or resistivity or corrected d-exponent data were presented as described by 

Equation (4.3).  

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑍
)(

𝑥𝑜

𝑥𝑛
)𝑘,                      (4.3) 

where 
𝑃

𝑍
 represent the predicted pore pressure gradient, 

𝑃𝑛

𝑍
 represents the normally expected 

hydrostatic pressure gradient and  
𝑆𝑣

𝑍
 represents overburden stress gradient. 

𝑥𝑜

𝑥𝑛
 refers to the ratio 

of the observed data to the normally expected data for resistivity parameter or sonic/seismic 

velocity parameter or corrected d-exponent parameter. The Eaton’s coefficient 𝑘 can take a value 
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of 1.2 for pore pressure prediction using resistivity data or corrected d-exponent data, and 𝑘 can 

take a value of 3 for sonic/seismic velocity data. For pore pressure measurement based on 

sonic/seismic velocity where transit time is used as an indication of velocity, Equation (4.3) is 

modified to yield Equation (4.4). 

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑍
)(

∆𝑡𝑛

∆𝑡𝑜
)3,                         (4.4) 

where ∆𝑡𝑛 is the normally expected transit time at that depth, ∆𝑡𝑜 is the observed transit time at 

the depth. 

Pore pressure can also be predicted using log of resistivity.  Foster & Whalen (1965) presented 

an equation which shows how pore pressure can be obtained from normal shale resistivity 𝑅𝑛 

and observed shale resistivity 𝑅𝑜 as shown in Equation (4.5) (Foster & Whalen, 1965; 

Oloruntobi, 2019). 

𝑃

𝑍
=

𝑃𝑛

𝑍
 +  

0.535

Z×log (𝑆)
 log (

𝑅𝑛

𝑅𝑜
).                   (4.5) 

In Equation (4.5), log (𝑆) represents the slope of the formation factor vs depth plot.   

Bowers pointed out that outside under compaction, fluid expansion can also result in 

overpressure (Bowers, 1995). The significance of overpressure due to fluid expansion is that it 

can cause the velocity-stress relationship in the rock to deviate from the expected trend (virgin 

curve) and follow an unloading curve. Based on this, he presented equations for evaluating the 

vertical effective stress as a function of sonic/acoustic velocity with and without the effect of 

fluid expansion. 

𝑉 = 5000 + 𝐴(𝑆𝑒
𝐵).               (4.6)  
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Equation (4.6) shows velocity (𝑉) as a function of vertical effective stress 𝑆𝑒 without the effect 

of fluid expansion. 𝐴 and 𝐵 are parameters that can be obtained by fitting data.  

𝑉 = 5000 + 𝐴[𝑆𝑒𝑀𝑎𝑥(𝑆𝑒/𝑆𝑒𝑀𝑎𝑥)1/𝑈]𝐵.                (4.7) 

Equation (4.7) shows velocity (𝑉) as a function of vertical effective stress 𝑆𝑒 with the effect of 

fluid expansion causing the velocity-stress relationship to assume the unloading curve. 𝐴 and 𝐵 

are the same for Equation (4.6). 𝑈 is a parameter which describes how plastic the sediment has 

become. For example, when 𝑈 is infinity, the deformation experienced by the rock due to the 

fluid expansion is irreversible, and a value of 1 shows no permanent deformation. 

𝑆𝑒𝑀𝑎𝑥 can be obtained as a function of 𝑣𝑚𝑎𝑥 as given by Equation (4.8). 

𝑆𝑒𝑀𝑎𝑥 =  (
𝑉𝑀𝑎𝑥−5000

𝐴
)1/𝐵,                    (4.8) 

where 𝑆𝑒𝑀𝑎𝑥 and 𝑉𝑀𝑎𝑥 represent vertical effective stress and velocity, respectively, at the onset 

of unloading from the plot of velocity versus vertical effective stress curve. The methodology by 

Bowers therefore presents a more accurate means of pore pressure prediction in comparison to 

the methodology by Eaton when fluid expansion more significantly contributes towards over 

pressure in comparison to under compaction. However, the Eaton’s approach can also work very 

well if the exponent factor 𝑘 in Equation (4.3) is properly chosen. For example, in the article by 

Bowers (1995), for regions were overpressure was mainly due to fluid expansion rather than 

under compaction, setting the value of 𝑘 to 5 instead of the traditional value of 3 in the Eaton’s 

model for pore pressure prediction using velocity, resulted in good prediction.   

Several other models have been developed for pore pressure prediction including:  

i. Miller’s method (Zhang, 2011, 2013) 
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𝑃 =  𝑆𝑣 −
1

𝜆
ln (

𝑉𝑚−𝑉𝑚𝑙

𝑉𝑚−𝑉𝑝
),                (4.9) 

where 𝑉𝑚 is the sonic velocity in the shale matrix, 𝑉𝑚𝑙 is the sonic velocity at ground 

surface, 𝑉𝑝 is the compressional velocity at our depth of interest, 𝜆 is an empirically 

obtained parameter which defines the rate of velocity increase with effective stress. For 

the case where the rock follows the “unloading curve”, Equation (4.10) is used. 

𝑃 =  𝑆𝑣 −
1

𝜆
ln [𝑎𝑚 (1 −

𝑉𝑝−𝑉𝑀𝑎𝑥

𝑉𝑚−𝑉𝑚𝑙
)],                   (4.10) 

where 𝑉𝑀𝑎𝑥 represents the velocity at the onset of unloading,  𝑎𝑚 is normally 1.8 and it 

can be obtained as shown: 𝑎𝑚 =  
𝑉𝑝

𝑉𝑀𝑎𝑥
 . 

ii. Tau model (Zhang, 2011, 2013) 

𝑃 =  𝑆𝑣 − 𝐴𝑠  (
𝐶−∆𝑡

∆𝑡−𝐷
)𝐵𝑠,                     (4.11) 

where ∆𝑡 is the compressional transit time, 𝐴𝑠 and 𝐵𝑠 are fitting parameters from data. 𝐶 

and 𝐷 are normally 200 𝜇𝑠/𝑓𝑡 and 50 𝜇𝑠/𝑓𝑡 respectively.  

iii. Model by Liu et al. (L. Liu et al., 2018) 

𝑃 = 𝑎(𝑉𝑡
𝑏 − 𝑉𝑏),           (4.12) 

where 𝑉𝑡 is a theoretical velocity given by Equation (4.13). 

𝑉𝑡 =  𝑉0 + 𝑠 ∗ 𝑍,           (4.13) 

where 𝑍 represents depth, 𝑉0 and 𝑠 represents constants. 𝑉 is the measured seismic/sonic 

velocity. 𝑎 and 𝑏 are constants which relates effective stress 𝑆𝑒 to velocity 𝑉 as shown by 

Equation (4.14). 𝑏 could be assumed to be equal to 3.  

𝑆𝑒 = 𝑎𝑉𝑏.                        (4.14) 

iv. Compressibility method (Azadpour et al., 2015) 
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𝑃 =  (
(1−𝜑)𝐶𝑝𝑆𝑒

(1−𝜑)𝐶𝑝−𝜑𝐶𝑃
)𝛾,                (4.15) 

where 𝜑 represents porosity, 𝐶𝑝 represents pore compressibility, 𝑆𝑒 is the vertical 

effective pressure determined from the difference between overburden pressure and 

hydrostatic pressure, and 𝛾 is a constant which could range from 0.9 to 1. The pore 

compressibility was also expressed as a function of porosity as shown in Equation (4.16). 

𝐶𝑝 =  
10−6

0.444+0.131ln (𝜑)
 𝑝𝑠𝑖−1.                      (4.16)  

In the article by Azadpour et al., (2015), comparison was made between Eaton, Bowers 

and compressibility methods for pore pressure prediction using a gas field in the Persian 

Gulf basin. This comparison revealed that the Eaton and compressibility method 

performed better than the Bowers method. The Eaton method with exponent coefficient 

(𝑘 in Equation (3)) of 0.5 performed best. 

v. Multi regression model (Deng et al., 2017) 

Empirical equations were presented to predict pore pressure for shallow soft clay 

formation as shown: 

𝑉𝑚 =  𝐴1𝜌𝑚 + 𝐴2𝜎 + 𝐴3𝑣𝑠ℎ,                                (4.17) 

𝑉𝑓 = 𝐵1𝜌𝑓 + 𝐵2𝜌𝑝 +  𝐵3𝑇,          (4.18) 

𝑉𝑝 =  (𝑉𝑚)(1−𝜑) × (𝑉𝑓)𝜑,                     (4.19) 

where 𝑉𝑚 represents p-wave velocity for the rock skeleton, 𝑉𝑓 represents p-wave velocity 

for the formation fluid, 𝑉𝑝 represents the p-wave velocity at a given position, 𝜑 represents 

porosity, 𝑣𝑠ℎ represents shale content, 𝑇 represents temperature, 𝜌𝑚 represents density of 

framework of rock, 𝜌𝑓 represents the density of fluid and 𝜌𝑝 represents equivalent density 
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of formation pore pressure. 𝐴1, 𝐴2, 𝐴3, 𝐵1, 𝐵2 and 𝐵3 represent coefficients to be 

determined from regression on the given data. 

vi. Pore pressure from porosity (Zhang, 2011;  Zhang, 2019)  

In the article by Zhang (2011), pore pressure was modeled as a function of porosity, and 

porosity in turn was modelled as a function of sonic velocity. Porosity normally decreases 

as a function of depth as shown by Equation (4.20). Therefore, an abnormality in the 

porosity trend is an indication of under compaction. 

𝜑𝑛 =  𝜑𝑔𝑒−𝑐𝑍,            (4.20) 

where 𝜑𝑔 is the porosity at mudline, 𝜑𝑛 is the normal porosity trend, 𝜑𝑜 is the actual 

shale porosity at depth below mudline  𝑍, and 𝑐 is compaction constant. Equation (4.21) 

relates porosity to pore pressure.  

 
𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑍
) (

𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑜
)

𝑐𝑍
).                    (4.21) 

The parameters in Equation (4.21) have the same definitions as those of Equations 4.3 and 4.20. 

Several researches have shown that Equation (4.1) may not be accurate for reservoirs located at 

great depth or regions with high cementation effect (Dassanayake et al., 2015; Mao et al., 2018). 

Equation (4.22) represents a more robust model for developing pore pressure prediction 

equations in comparison to Equation (4.1) (Amiri et al., 2019; Dassanayake et al., 2015; Mao et 

al., 2018; Sayers et al., 2002; Zhang, 2013). 

𝑆𝑣 =  𝑆𝑒 + 𝛼𝑃.                         (4.22) 

In Equation (4.22), 𝛼 refers to effective stress coefficient; all other parameters in Equation (4.22) 

have the same definitions as those in Equation (4.1). A review of several possible means of 

evaluating 𝛼 can be found in (Mao et al., 2018). Equation (4.23) represents a theoretical means 
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of evaluating 𝛼 for isotropic rocks (Biot, 1941; Njiekak & Schmitt, 2019; Nur & Byerlee, 1971; 

Shen et al., 2017). 

𝛼 = 1 −  
𝐶𝑠

𝐶𝑣
,             (4.23) 

where 𝐶𝑠 is the compressibility of the solid material, 𝐶𝑣 is the compressibility of the total 

volume. In the work by Mao et al. (2018), it was shown that the effective stress coefficient can 

take values in the range of φ to 1, where φ refers to porosity. The effective stress coefficient 

value of 1 models rock without cementation and effective stress coefficient value of φ models 

rock with perfect cementation (Mao et al., 2018; Zhang, 2013). Considering that effective stress 

coefficient can vary based on reservoir properties, several empirical equations have also been 

developed to capture the mathematical relationship between effective stress coefficient and 

porosity. These empirical equations were developed for different lithologies, porosity values, 

extent of consolidation etc. A summary of some of these equations can be found in Amiri et al. 

(2019). Sarker & Batzle (2008) recommended depth varying values of effective stress coefficient 

to be used for pore pressure prediction as opposed to varying Eaton’s coefficient (𝑘 in Equation 

(4.3)), because effective stress coefficient is a rock property. They recommended that depth 

varying effective stress coefficient could be obtained by back calculating from calibration wells 

where pressure data have already been obtained.     

We have not come across any methodology which explores the interrelationship between 

resistivity and porosity for pore pressure prediction. The review on pore pressure prediction has 

shown that there remains a lot to explore on developing pore pressure prediction models. For 

example, even though correlations have been developed between porosity and effective stress 

coefficient, Frempong & Butt (2006) showed that effective stress coefficient can be influenced 
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by porosity, pore geometry, pore pressure and confining pressure. In addition, other factors such 

as clay content/lithology (Luo et al., 2015), fracture (Xu et al., 2006) and cementation (Alam et 

al., 2012) can influence effective stress coefficient. The significance of cementation on pore 

pressure prediction has encouraged us to develop a porosity-resistivity pore pressure relationship 

that can capture Archie’s cementation exponent, because Archie’s cementation exponent is 

influenced by degree of cementation (Glover, 2009). 

 

4.3 Methodology for pore pressure prediction  

The main outcome of this chapter is to present two new equations for pore pressure prediction, 

which are Equation (4.24) and Equation (4.25). 

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑍
) (

𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑜
)

𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑛
)

 ×  
𝑙𝑜𝑔𝑒(

𝑅𝑠𝑓

𝑅𝑛
)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)
)

1

2

,          (4.24) 

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑍
) ( 

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑛
)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)
).                       (4.25) 

In Equation (4.24) and Equation (4.25), 𝑅𝑛 and 𝑅𝑜 have the same meaning as those of Equation 

(4.5) and  𝑅𝑠𝑓 represents the resistivity scaling factor which can be determined empirically in a 

similar manner to Eaton’s coefficient 𝑘 of Equation 3. All other parameters of Equation (4.24) 

and Equation (4.25) have the same definitions as those of Equation (4.20) and Equation (4.21). 

Equation (4.24) can be used if resistivity and sonic porosity data are available, and Equation 

(4.25) can be used if only resistivity data is available for pore pressure prediction. Equation 

(4.24) can be referred to as cementation-exponent approach while Equation (4.25) can be 

referred to the resistivity component of the cementation-exponent approach. Equation (4.24) is 
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referred to as cementation-exponent approach because it is the same as Equation (4.26) (see 

section 4.9). 

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑍
) (( 

1

𝑚𝑜
 − 

𝑙𝑜𝑔𝑒(𝜑𝑔)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)
 )  ÷ ( 

1

𝑚𝑛
 −  

𝑙𝑜𝑔𝑒(𝜑𝑔)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑛
)
  ))

1

2

,              (4.26) 

where 𝑚𝑛 is the normal Archie’s cementation exponent obtained from the normal porosity and 

normal resistivity trend models.  𝑚𝑜 is the observed Archie’s cementation exponent obtained 

from actual porosity and resistivity measurements. Hence in Equation (4.26), pore pressure 

prediction at a particular depth depends on the deviation of actual cementation exponent at that 

depth location from the normally expected cementation exponent at the same depth location 

based on the rock compaction trend. The details on how Equation (4.24) and Equation (4.25) are 

derived are presented in section 4.3.1. In addition to Equation (4.24), artificial neural network 

also offers an additional means of exploring the interrelationship between resistivity log and 

porosity log for pore pressure prediction. More details on how artificial neural network is utilized 

in this work can be found in Section 4.3.2. The flowchart of the methodology is presented in Fig. 

4.1. 
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Fig. 4.1   Flowchart showing use of developed methodology for pore pressure prediction 

 

4.3.1 Developing the cementation-exponent approach 

Generally, depth compaction trends exist in rocks (Magara, 1980). For example, porosity 

generally reduces with depth, and Equation (4.20) is an example of such a porosity-depth 

relationship. Likewise, for a given rock type (e.g. shale) completely saturated by a single fluid 

type (e.g. salt water), resistivity will also have a trend of increasing with depth (Zhang, 2011; 

Zhao et al., 2018). The major reason for this is that shale has higher resistivity than salt water, 

and porosity (which represents the fraction of volume that salt water can occupy in a rock) 

reduces with depth.  Archie’s equation relates resistivity to porosity, as well as how rock 
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cementation can influence this relationship. Equation (4.27) shows how Archie’s cementation 

exponent 𝑚 is related to resistivity of brine saturated rock formation 𝑅𝑜, rock formation water 

resistivity 𝑅𝑤 and tortuosity factor or structural parameter 𝛿 which can be occasionally assumed 

as 1 (Archie, 1942; Saner et al., 1996; Sethi, 1979) . 𝜑𝑜 refers to porosity in Equation (4.27). 

Although Archie’s equation was initially adopted for sandstone/carbonates formations 

(Worthington, 1993), it has also been used for shale formation (Yu & Aguilera, 2011; Zhang, 

2019).    

𝑅𝑜

𝑅𝑤
=

𝛿

𝜑𝑜
𝑚.                  (4.27) 

Equation (4.21) provides a means by which logarithm of porosity is used for pore pressure 

prediction and Equation (4.5) also presents a means by which the logarithm of resistivity reading 

can be used for pore pressure prediction. Therefore, Equation (4.21) is modified to accommodate 

for the effect of variation in rock formation resistivity measurements.  

Equation (4.5) can be expressed as Equation (4.28) with the meaning of 𝐾1 shown in Equation 

(4.29). 

𝑃

𝑍
=  

𝑃𝑛

𝑍
+  𝑘1 log(

1

𝑅𝑜
) − 𝑘1 log(

1

𝑅𝑛
),                              (4.28)     

𝐾1 =  
0.535

Z× log (𝑆)
.              (4.29)  

Equation (4.28) shows that increase in log(
1

𝑅𝑜
) leads to increase in pore pressure but increase in 

log(
1

𝑅𝑛
) leads to decrease in pore pressure. This can be used in enhancing Equation (4.21) by 

including log(
1

𝑅𝑜
) and log(

1

𝑅𝑛
) which yields Equation (4.30).  
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𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑍
) (

𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑜
)

𝑐𝑍
 ×  

𝑙𝑜𝑔𝑒(
1

𝑅𝑛
)

𝑙𝑜𝑔𝑒(
1

𝑅𝑜
)
).                 (4.30)  

Equation (4.30) can be made more general by introducing parameters 𝑅𝑠𝑓 and D, thereby 

yielding Equation (4.31).  

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑍
) ((

𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑0
)

𝑐𝑍
) (

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑛
)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)
))𝐷.                     (4.31)      

The purpose of introducing parameter 𝑅𝑠𝑓 is to include a tortuosity factor and formation water 

resistivity because we aim to transform Equation (4.31) to account for Archie’s cementation 

exponent of Equation (4.27). The parameter 𝑅𝑠𝑓 can be termed resistivity tuning parameter or 

resistivity scaling factor because it can adjust the effect of resistivity reading on pore pressure 

prediction. For example, when 𝐷 = 1 and 𝑅𝑠𝑓 tends to infinity or zero, Equation (4.31) tends to 

Equation (4.21). Considering that Equation (4.31) involves multiplying both porosity indicators 

and resistivity indicators for pore pressure prediction, the constant 𝐷 which can be termed gain 

equalization factor serves as a means of tempering the effect. 𝐷 can be given a value of 1/2 in 

order to perform a square root operation.  

Considering that 𝑐𝑍 = 𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑔 𝑒−𝑐𝑍
); and from Equation (4.20), 𝜑𝑛 =  𝜑𝑔𝑒−𝑐𝑍, Equation (4.32) 

therefore shows a broader description of 𝑐𝑍. 

𝑐𝑍 = 𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑛
).             (4.32) 

Equation (4.32) can be substituted into Equation (4.21) and Equation (4.31) to yield Equation 

(4.33) and Equation (4.34) respectively.  
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𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑍
) (

𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑜
)

𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑛
)
),           (4.33) 

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑍
) (

𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑜
)

𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑛
)

 ×  
𝑙𝑜𝑔𝑒(

𝑅𝑠𝑓

𝑅𝑛
)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)
)

1

2

.          (4.34) 

Table 4.1   Comparing Equation (4.33) and Equation (4.34) 

Equation (4.33) (predicting pore 

pressure from porosity).  

Equation (4.34) (obtained by enhancing Equation 

(4.21) in order to consider both porosity and 

resistivity). 

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑍
) (

𝑙𝑜𝑔𝑒 (
𝜑𝑔

𝜑𝑜
)

𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑛
)

) 𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑍
) (

𝑙𝑜𝑔𝑒 (
𝜑𝑔

𝜑𝑜
)

𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑛
)

 × 
𝑙𝑜𝑔𝑒(

𝑅𝑠𝑓

𝑅𝑛
)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)

)

1
2

 

 

Table 4.1 shows the similarity between Equation (4.33) and Equation (4.34) in terms of using 

porosity and resistivity deviations from normal trends for pore pressure prediction. For example,  

𝜑𝑔 and 𝑅𝑠𝑓 represent constant values, 𝑙𝑜𝑔𝑒 (
𝜑𝑔

𝜑𝑜
) of porosity corresponds to 𝑙𝑜𝑔𝑒(

𝑅𝑠𝑓

𝑅𝑜
) of 

resistivity, likewise 𝑙𝑜𝑔𝑒 (
𝜑𝑔

𝜑𝑛
) of porosity corresponds to 𝑙𝑜𝑔𝑒(

𝑅𝑠𝑓

𝑅𝑛
) of resistivity. For rock 

formation sections, where 𝑚, 𝑅𝑤 and 𝛿 are constant, 𝑙𝑜𝑔𝑒(𝑅𝑜) has a linear relationship with 

𝑙𝑜𝑔𝑒(𝜑𝑜) as shown by Equation (4.35), which can be derived From Equation (4.27). Also, both 

𝜑𝑛 and 𝑅𝑛 varies exponentially with depth (Zhang, 2011). 

𝑙𝑜𝑔𝑒(𝑅𝑜) =  −𝑚𝑙𝑜𝑔𝑒(𝜑𝑜) +  𝑙𝑜𝑔𝑒(𝛿𝑅𝑤).               (4.35) 
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Equation (4.34) can be expressed as Equation (4.36) by substituting in 𝑚 of Equation (4.27) as 

shown in section 4.9.  

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑍
) (( 

1

𝑚𝑜
 − 

𝑙𝑜𝑔𝑒(𝜑𝑔)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)
 )  ÷ ( 

1

𝑚𝑛
 −  

𝑙𝑜𝑔𝑒(𝜑𝑔)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑛
)
  ))

1

2

.              (4.36) 

 

4.3.2 Training and testing with artificial neural network 

Artificial neural network (ANN) is the most popular machine learning approach used in 

petroleum drilling related studies (Osarogiagbon et al., 2021). More information on how the 

ANN operates can be found in (Alom et al., 2019; Hagan et al., 1996; Osarogiagbon et al., 2020). 

The simple ANN will be utilized to observe how machine learning can be of benefit in exploring 

the relationship between resistivity and porosity for pore pressure prediction. The data of each of 

the six input parameters; 𝑅𝑛,  𝑅𝑜, 𝜑𝑛, 𝜑𝑜, 𝑍, 
𝑆𝑣

𝑍
 and the output parameter (RFT) used for training 

are standardized (normalized) by subtracting their respective mean before dividing by their 

respective standard deviation. For example, Equation (4.37) shows how depth is standardized 

before feeding into the ANN. 

𝑍 𝑠𝑡𝑑_𝑡𝑟𝑎𝑖𝑛 = (𝑍𝑡𝑟𝑎𝑖𝑛 − 𝜇𝑍)/𝜎𝑍,           (4.37) 

where 𝑍𝑡𝑟𝑎𝑖𝑛 represents the part of 𝑍 that will be used for training, 𝜇𝑍 represents the mean of 

𝑍𝑡𝑟𝑎𝑖𝑛, 𝜎𝑍 represents the standard deviation of 𝑍𝑡𝑟𝑎𝑖𝑛, and 𝑍 𝑠𝑡𝑑_𝑡𝑟𝑎𝑖𝑛 represents the standardized 

depth that will be directly fed into ANN for training. 

After training the ANN, the data of the input parameters (𝑅𝑛,  𝑅𝑜, 𝜑𝑛, 𝜑𝑜,  𝑍, 
𝑆𝑣

𝑍
) for testing are 

also standardized by using the mean and standard deviation of the training data of there 

respective counterpart before feeding them into the trained ANN.  For example, Equation (4.38) 

shows how depth is standardized before feeding into the ANN for testing. 

𝑍 𝑠𝑡𝑑_𝑡𝑒𝑠𝑡 = (𝑍𝑡𝑒𝑠𝑡 −  𝜇𝑍)/𝜎𝑍,           (4.38) 
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where 𝑍𝑡𝑒𝑠𝑡 represents the part of 𝑍 that will be used for testing and 𝑍 𝑠𝑡𝑑_𝑡𝑒𝑠𝑡 represents the 

standardized depth that will be directly fed into ANN for testing. All other parameters in 

Equation (4.38) have the same definitions as those in Equation (4.37). 

After feeding the trained ANN with the standardized test data of the input parameters, the output 

of the ANN (𝑅𝐹𝑇𝑠𝑡𝑑_𝑡𝑒𝑠𝑡) is re-adjusted by removing the effect of standardization using Equation 

(4.39). 

𝑅𝐹𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = (𝜎𝑅𝐹𝑇  ×  𝑅𝐹𝑇𝑠𝑡𝑑_𝑡𝑒𝑠𝑡) + 𝜇𝑅𝐹𝑇,             (4.39) 

where 𝜇𝑅𝐹𝑇 and 𝜎𝑅𝐹𝑇 represents the mean and standard deviation of the part of the RFT data 

used for training, and 𝑅𝐹𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 represents the predicted pore pressure gradient by the ANN 

implementation. 

The configuration used in training the ANN is presented in Table 4.2 

Table 4.2   Summary of ANN configuration 

s/n Parameter Value 

1 Number of hidden layers  1 or 2.   

2 Number of hidden layer nodes 

considered 

5, 10, 20, 30. (the number of nodes with best 

training result will be selected) 

3 Hidden layer activation  Hyperbolic tangent 

4 Output layer activation function Linear 

5 Optimization algorithm Gauss-Newton approximation to 

Bayesian regularization (Foresee & Hagan, 

1997) 

6 Maximum training iteration 100  

 

The training performance of the ANN configurations used in pore pressure prediction can be 

found in Section 4:12.    
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4.4 Data used for testing the model 

The data for this work is the same as the data illustrated in Figures 6 and 11 of the paper by 

Zhang (2011).  

Fig. 4.2   Resistivity data (Zhang, 2011; Zhang, 2019)  

 

Fig. 4.3   Porosity data (Zhang, 2011; Zhang, 2019) 
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Fig. 4.4   Overburden gradient (OBG) and measured pore pressure gradient (RFT) (Zhang, 2011;  

Zhang, 2019) 

 

Figures 4.2, 4.3 and 4.4 illustrate the data that was used in testing the cementation-exponent 

approach presented in this chapter. The value of the normal hydrostatic pressure gradient 

(NHPG) used is 8.7 ppg. In order to obtain uniform values of  porosity, resistivity and OBG 

across the rock sections for which pore pressure prediction will be computed (5000 to 12000 ft. 

below sea level), linear interpolation was employed (Mathwork, 2020a) and the resulting 

interpolated data had a resolution of 0.5 ft.  

 

4.5 RESULTS AND DISCUSSION 

This section has five parts, and the aims of the subsections are: 

i. Section 4.5.1 shows that sensitivity of the methodology developed in this article as a 

function of  𝑅𝑠𝑓. 
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ii.  Section 4.5.2 explains the general procedures by which the methodology developed in 

this article is compared to conventional approach for pore pressure prediction.  

iii. Section 4.5.3 demonstrates the capability of the cementation-exponent approach in 

capturing the relationship between resistivity/porosity and pore pressure by using all RFT 

data, i.e. all data is used for training, and their performance is observed. 

iv. Section 4.5.4 divides the field data into training and testing, explains the methodology 

developed in this article, and compares conventional approach and ANN  in terms of their 

ability to perform pore pressure prediction on test data after been trained with the training 

data.  

v. Section 4.5.5 provides discussion on the results and the methodologies. 

 

4.5.1 Sensitivity analysis of the cementation-exponent approach 

Considering that several possible values of 𝑅𝑠𝑓 can be used, the results obtained by using 

different values of 𝑅𝑠𝑓 will be presented. Fig. 4.5 shows how varying values of 𝑅𝑠𝑓 can influence 

performance. 
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Fig. 4.5   Pore pressure prediction using different values of resistivity scaling factor (Rsf) for the 

cementation-exponent approach 

 

Fig. 4.5 shows that lower values of 𝑅𝑠𝑓 (around 3.0) perform better for pore pressure prediction 

at depth below sea level greater than 11000 ft., whereas higher values of 𝑅𝑠𝑓 (around 4.0) 

perform better for pore pressure prediction at depth below sea level lesser than 10000 ft.  

 

4.5.2 Comparing the capability of the methodology developed to perform 

pore pressure prediction  

Comparison will be done based on: 

i. The use of only resistivity data,  

ii. The use of resistivity and sonic porosity data.  

For use of only resistivity data, the approach developed in this chapter will be compared with the 

method developed by: 

i. Eaton as shown by Equation (4.3),  
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ii. Whelan and Foster as shown by Equation (4.5). 

For use of resistivity and sonic porosity, the cementation-exponent approach and ANN will be 

compared with a conventional means of combining multiple source of the same information 

(simple averaging) as described by Equation (4.40).  

𝑃

𝑍(𝑎𝑣𝑒𝑟𝑎𝑔𝑒)
 =

1

2
 × ( ( 

𝑃

𝑍
 𝑓𝑟𝑜𝑚 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.3) 𝑜𝑟 (4.5))  +  

𝑃

𝑍
 𝑓𝑟𝑜𝑚 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.21) ).    (4.40) 

Equation (4.40) is a simple and practical means of combining porosity and resistivity for pore 

pressure prediction by averaging the pore pressure predicted using the porosity approach by 

Zhang (2011) and the better option between the resistivity approach by Eaton (1975) and the 

resistivity approach by Foster & Whalen (1965). 

Quantitative comparison of prediction by the methodologies will be done in terms of mean 

absolute percentage error (MAPE), root mean square error (RMSE) and square of the Pearson 

product moment correlation coefficient (R square). This will be with reference to the measured 

pore pressure gradient (RFT data) serving as ground truth data.  

Empirical parameters such as 𝑘 for Eaton’s approach, 𝑅𝑠𝑓 for the cement-exponent approach  

and log (𝑆) by Foster & Whalen (1965) strongly influences the performance of their respective 

methodologies. Hence, each methodology is trained by varying its empirical parameter over a 

range and the performance of these methodologies as a function of their respective empirical 

parameter can be evaluated. This is done to obtain the best performance that each methodology 

can achieve. The performances of each methodology as a function of their respective empirical 

parameters can be found in Section 4.10 and Section 4.11. The summaries of the performances 

(minimum MAPE, minimum RMSE and maximum R square) from the figures of Section 4.10 

and Section 4.11 are presented in Table 4.4 and Table 4.7.  
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4.5.3 Observing performance of the cementation-exponent approach with all 

RFT data available. 

In this section, all RFT data (24 data point) will be used for training to determine how robust the 

methodology can be in terms of capturing the relationship between pore pressure and 

resistivity/porosity data. This approach is similar to that done in Eaton (1975) in order to observe 

performance as a function of Eaton’s coefficient 𝑘. Table 4.3 shows the statistical summary of 

the data used for this work.   

Table 4.3   Summary of all field data used in studying the robust nature of the methodologies 

Number of 

data points: 

24 

Depth (ft. 

below sea 

level) 

Normal 

Resistivity 

(ohm m) 

Actual 

Resistivity 

(ohm m) 

Normal 

Porosity 

Actual 

Porosity 

OBG 

(ppg) 

RFT 

(ppg) 

Arithmetic 

mean  

10578 1.835 1.132 0.065 0.193 15.221 11.543 

Harmonic 

mean 

10492 1.833 1.126 0.062 0.192 15.216 11.529 

Standard 

deviation 

941 0.058 0.079 0.015 0.013 0.296 0.406 

Minimum 

Value 

9162 1.748 1.000 0.048 0.176 14.768 11.115 

Maximum 

Value  

11729 1.907 1.223 0.089 0.209 15.571 12.222 

Mode None None 1.17707 None None None None 

Skewness -0.310 -0.288 -0.563 0.448 -0.419 -0.366 0.579 

Kurtosis -1.573 -1.574 -1.457 -1.539 -1.796 -1.580 -1.374 

R square 

(with respect 

to RFT) 

0.755 0.761 0.621 0.714 0.031 0.738 1.000 

The summary of results obtained using Table 4.3 is presented as Table 4.4. The detailed results 

from which Table 4.4 was obtained can be found in Section 4.10 
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Table 4.4   Best performance values obtained using the approach developed in this dissertation in 

comparison to conventional approaches for all field data (approximated to two decimal places) 

 

Resistivity data only Resistivity and Porosity data 

Cementation-

exponent 

approach 

Eaton’s 

approach 

Foster 

and 

Whelan’s 

approach 

Cementation-

exponent 

approach 

Conventional 

approach 

(Equation (40)) 

Minimum MAPE 

(%) 
2.26 3.02 6.45 1.28 1.61 

Minimum RMSE 0.31 0.42 0.84 0.20 0.24 

Maximum R square 0.86 0.85 0.60 0.86 0.86 

 

Table 4.4 shows that the cementation-exponent approach performed best, closely followed by 

Eaton’s approach.    

 

4.5.4 Dividing data into training and testing to demonstrate field application  

As shown in Fig. 4.21, the first 75% of the RFT data is used for training and the last 25% is used 

for testing. This shows a typical field application in which data initially acquired is first used to 

develop a model; thereafter, the developed model is then used for prediction. Section 2 shows the 

typical fraction of total data used for training, which varied from around 70% to 90%.   
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Fig. 4.6   Separating RFT data into training and testing part  

 

The statistical summary of the data used for training and testing are presented in Table 4.5 and 

Table 4.6 respectively. 

Table 4.5   Statistics of data used for training 

Number of 

data points: 18 

Depth (ft. 

below sea 

level) 

Normal 

Resistivity 

(ohm m) 

Actual 

Resistivity 

(ohm m) 

Normal 

Porosity 

Actual 

Porosity 

OBG 

(ppg) 

RFT 

(ppg) 

Arithmetic 

mean  

10207 1.812 1.106 0.070 0.191 15.108 11.358 

Harmonic 

mean 

10145 1.810 1.101 0.068 0.189 15.104 11.351 

Standard 

deviation 

793 0.049 0.074 0.013 0.015 0.256 0.283 

Minimum 

Value 

9162 1.748 1.000 0.055 0.176 14.768 11.115 

Maximum 

Value  

11154 1.870 1.177 0.089 0.209 15.409 12.216 

Mode None None 1.17707 None None None None 

Skewness -0.070 -0.062 -0.192 0.124 0.024 -0.082 1.828 

Kurtosis -2.039 -2.044 -1.963 -1.988 -2.220 -2.037 3.485 

R square (with 

respect to 

RFT) 

0.554 0.556 0.463 0.537 0.454 0.547 1.000 
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Table 4.6   Statistics of data used for testing 

Number of 

data 

points: 6 

Depth (ft. 

below sea 

level) 

Normal 

Resistivity 

(ohm m) 

Actual 

Resistivity 

(ohm m) 

Normal 

Porosity 

Actual 

Porosity 

OBG 

(ppg) 

RFT 

(ppg) 

Arithmetic 

mean  

11692 1.9048 1.2122 0.0484 0.1990 15.5614 12.0975 

Harmonic 

mean 

11692 1.9048 1.2121 0.0484 0.1990 15.5614 12.0969 

Standard 

deviation 

28 0.0018 0.0101 0.0003 0.0005 0.0072 0.0863 

Minimum 

Value 

11660 1.9027 1.2018 0.0479 0.1983 15.5530 12.0180 

Maximum 

Value  

11729 1.9072 1.2229 0.0487 0.1995 15.5713 12.2222 

Mode None None None None None None None 

Skewness 0.1682 0.1686 0.0024 -0.1653 -0.1682 0.1861 0.5538 

Kurtosis -2.6597 -2.6591 -3.3198 -2.6643 -2.6597 -2.5829 -2.1582 

R square 

(with 

respect to 

RFT) 

0.6645 0.6643 0.8201 0.6656 0.6645 0.6522 1.0000 

 

The summary of the results obtained using data of Table 4.5 for training and Table 4.6 for testing 

is shown in Table 4.7. Section 4.11 and Section 4.12 shows how training was done. 
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Table 4.7   Results of pore pressure prediction with test data after training 

 Resistivity data only Resistivity and Porosity data 

Cementation 

exponent 

approach  

Eaton’s 

approach 

Foster 

and 

Whelan’s 

approach 

Cementation-

exponent 

approach 

Conventional 

approach  

(Equation 

(40)) 

Artificial 

Neural 

Network 

MAPE 

(%)  

Training 

minimum 

1.35 2.15 4.77 0.89 1.09 0.64 

Testing 5.11 7.05 13.22 2.64 3.27 0.85 

 

RMSE 

Training 

minimum 

0.24 0.32 0.64 0.20 0.22 0.14 

Testing 0.55 0.76 1.38 0.24 0.33 0.12 

 R 

square 

Training 

maximum 

0.64 0.64 0.46 0.62 0.62 0.75 

Testing 0.79 0.79 0.82 0.77 0.79 0.87 

 

From Table 4.7, it can be observed that the cementation-exponent approach performed better 

than conventional approaches due to minimum error (MAPE and RMSE) achieved. However, 

from the same Table 4.7, it can be observed that ANN performed best. 

 

4.5.5 Discussion 

Results in Section 4.5 shows that the approach by Foster & Whalen (1965) performed poorer 

than the approach by Eaton (1975). This could be one of the reasons why the approach by Eaton 

is more popular than that by Foster & Whalen. Even though the cementation exponent approach 

slightly performed better than Eaton’s approach (≈ 0.7% for resistivity approach in Table 4.4) 

when all data was used, splitting the data into training and testing shows that the cementation-
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exponent approach even performed better by a wider margin (≈ 2.0% for resistivity approach in 

Table 4.7).  

The cementation-exponent approach shows better performance than conventional approach when 

only resistivity was considered and when both resistivity and sonic porosity were considered. A 

valid argument is that the superior performance of the cementation-exponent approach when 

both resistivity and sonic porosity were considered was chiefly due to the resistivity component 

of the cementation-exponent approach. Based on this, a quick test was done to determine the 

performance of simply averaging the resistivity arm of the cementation-exponent approach with 

the porosity approach by Zhang (2011). This resulted in a slight drop in MAPE performance by 

≈ 0.2 % in comparison to the complete cementation-exponent approach developed in this article 

for combining resistivity and porosity for pore pressure prediction (Equation (4.24)). This slight 

change in performance may not be sufficient to come up with a valid conclusion. However, the 

results obtained in this work encourage more test with field data, especially at depths where the 

effect of cementation is clear. Another reason why testing with different field data is 

recommended, is to be able to obtain a universal value for resistivity scaling factor. This will 

make it possible for an estimated pore pressure prediction to be carried out in new fields without 

drilling data.  

Machine learning indeed represents a recommended means of performing prediction when 

sufficient training data is available. The development of simplified pore pressure equations, such 

as Equations (4.3),(4.5),(4.21) and (4.24), are recommended because they can be easily used in a 

field with limited data. For example, in a new field where resistivity data is to be used for pore 

pressure prediction, a value of 1.2 for Eaton’s coefficient can be used when data is limited (as 

shown in Section 4.2). The value of Eaton’s coefficient can then be fine-tuned as more data for 
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the well/field is obtained. The acceptability of the Eaton’s coefficient value of 1.2 as a good 

approximation can be observed in several articles where it has been used in different fields 

(Nhabanga & Ringrose, 2019; Ugwu & Nwankwo, 2014; Zhang, 2011). In the case of machine 

learning, researchers are beginning to develop equations from trained data that can be utilized for 

pore pressure. For example, in Ahmed et al., (2019), an equation for pore pressure prediction was 

developed by training ANN with the following input: density, porosity, compressional sonic 

time, weight on bit, drilling rotational speed in revolutions per minute, drilling rate of penetration 

and mud weight. In the same article by Ahmed et al., (2019), 245 data points from one well were 

available with 70% used for training and 30% for testing. The MAPE for both training and 

testing were less than 0.3%. Although the use of ANN has shown to be successful, there is the 

need for developed ANN equations to be tested with data from a different field in order to 

observe their robustness.   

Some limitations that should be considered with respect to the methodologies presented in this 

work are:  

1. The porosity utilized in this work was derived from sonic log. Other possible means of 

deriving porosity log include neutron and density log (Kamel & Mabrouk, 2003). 

Porosity log developed from different sources (sonic, neutron etc.,) could significantly 

perform differently for pore pressure prediction (Tingay et al., 2009). 

2. For the field data used in testing the methodologies in this work, compaction 

disequilibrium was the main cause of overpressure. Other mechanisms that cause 

overpressure are fluid expansion or transfer mechanism (Tingay et al., 2009). The value 

of empirical coefficients can be influenced by the overpressure causing mechanism. For 

example, in the article by Bowers, (1995), Eaton’s coefficient was given a value far from 
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what was typically recommended in order to achieve good prediction. This is because 

fluid expansion was the main cause of overpressure.  

  

4.6 Conclusions 

This chapter presents two methodologies for pore pressure prediction; one of the methodologies 

utilizes only resistivity data and the other utilizes both resistivity and porosity data for pore 

pressure prediction. The aim of the research was to present methodologies which can perform 

better than popular means of utilizing resistivity or a combination of resistivity and porosity for 

pore pressure prediction.  

Effective stress coefficient influences pore pressure prediction and our literature review showed 

that variation in effective stress coefficient from its traditional value of 1 can be expected in 

several reservoirs. Several factors such as cementation effect, shaliness can influence effective 

stress coefficient which would in turn affect pore pressure prediction. Based on this, the porosity-

resistivity approach developed in this article was fashioned to predict pore pressure as a function 

of changes in Archie’s cementation exponent. This approach was termed cementation-exponent 

approach. 

Field data was used to test the cementation-exponent approach against conventional means of 

pore pressure prediction. Two sets of analyses were performed. The first set of tests were aimed 

at observing the capability of the cementation-exponent approach to capture the relationship 

between pore pressure and resistivity or a combination of resistivity and porosity. The second set 

of analysis was done to observe how the cementation-exponent approach can accurately predict 

pore pressure when part of the field data was used for training/developing and the other part was 
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used for testing/predicting. The results of these two sets of analyses showed that the 

cementation-exponent approach performed better than their conventional counterparts in terms of 

mean absolute percentage error and root mean square error. Machine learning was also utilized 

to explore the interrelationship between resistivity and porosity data for pore pressure prediction. 

Artificial neural network was utilized as the machine learning approach and the following inputs 

were used in training the ANN: normal shale resistivity, observed shale resistivity from log, 

normal shale porosity, observed shale porosity obtained from logging parameter, overburden 

gradient, and depth. Field data was also used for training and testing with ANN. The results from 

ANN testing performed best. Thus, this chapter also demonstrated that ANN can be used as a 

viable means of pore pressure prediction. 

The pore pressure prediction methodologies (cementation-exponent approach) developed in this 

article introduces a parameter that is termed resistivity scaling factor. It is recommended that 

additional research be carried out to determine the most suitable values for the parameter. 

Although the methodologies presented in this article were successfully tested with data from one 

field, more testing is recommended to gain deeper insight about their performance at great 

reservoir depth where cementation effect is expected to be more significant. 

 

4.7 Nomenclature 

𝛼   Effective stress coefficient 

𝛿   Tortuosity factor 

𝑐   Compaction constant (ft-1) 

𝐶𝑣   Compressibility of the total volume (psi-1) 
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𝐶𝑝   Pore compressibility (psi-1) 

𝐶𝑠   Compressibility of the solid material (psi-1) 

𝐷   Gain equalization factor 

∆𝑡𝑛   Normally expected transit time (microsecond/ft) 

∆𝑡𝑜   Observed transit time (microsecond/ft) 

𝑘   Eaton’s coefficient 

𝑙𝑜𝑔 (𝑆)  Slope of the formation factor vs depth plot (ft-1)   

𝑚   Archie’s cementation exponent 

𝑚𝑛   Normal Archie’s cementation exponent 

𝑚𝑜   Observed Archie’s cementation exponent 

𝜌   Formation bulk density (g/cm3) 

𝜌𝑓   Density of fluid (g/cm3) 

𝜌𝑚   Density of framework of rock (g/cm3) 

𝜌𝑝   Equivalent density of formation pore pressure (g/cm3) 

𝑃   Actual pore pressure to be predicted (psi) 

𝑃𝑛   Normal/hydrostatic pore pressure (psi) 

𝑅𝑛   Normal shale resistivity (ohm-m) 

𝑅𝑜   Observed shale resistivity (ohm-m) 

𝑅𝑠𝑓   Resistivity scaling factor (ohm-m) 

𝑅𝑤   Formation water resistivity (ohm-m) 

𝑆𝑒   Vertical effective stress (psi) 

𝑆𝑒𝑀𝑎𝑥   Vertical effective stress at the onset of unloading (psi) 

𝑆𝑣   Overburden stress (psi)   
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𝑇   Temperature (°C) 

𝜑   Porosity                                                                                                                                         

𝜑𝑔  Mudline porosity 

𝜑𝑛   Normal porosity  

𝜑𝑜   Shale porosity obtained from logging parameter 

𝑣𝑠ℎ   Shale volume 

𝑉   Sonic velocity (kft/s) 

𝑉𝑓   Sonic velocity in the formation fluid (kft/s) 

𝑉𝑚   Sonic velocity in the shale matrix (kft/s) 

𝑉𝑚𝑙   Sonic velocity at ground surface (kft/s) 

𝑉𝑝   Sonic compressional velocity (kft/s) 

𝑉𝑀𝑎𝑥                Velocity at the onset of unloading (kft/s) 

𝜆  Empirically obtained parameter which defines the rate of velocity increase with 

effective stress 

𝑥𝑜/𝑥𝑛    Ratio of observed to the normally expected pore pressure indicating parameter                                                                                                     

𝑍   True vertical depth (ft) 

 

4.8 Acronyms 

ANN  artificial neural network 

MAPE  mean absolute percentage error                      

NHPG  normal hydrostatic pressure gradient 

OBG   overburden gradient 
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R square  Pearson product moment correlation coefficient 

RMSE  root mean square error 

RFT             measured pore pressure gradient from the repeat formation tests  

 

4.9 APPENDIX A: Deriving Pore pressure as a function of Archie’s 

cementation coefficient 

Equation (4.A1) is the same as Equation (4.34). 

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑧
) (

𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑜
)

𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑛
)

 ×  
𝑙𝑜𝑔𝑒(

𝑅𝑠𝑓

𝑅𝑛
)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)
)

1

2

,                    (4.A1) 

Equation (4.A1) can also be written as Equation (4.A2) using the law that 1 =  −1 ÷ −1, 

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑧
) (

−𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑜
)

−𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑛
)

 ×  
𝑙𝑜𝑔𝑒(

𝑅𝑠𝑓

𝑅𝑛
)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)
)

1

2

.         (4.A2) 

Applying the laws of logarithm and indices transforms Equation (4.A2) into Equation (4.A3) and 

Equation (4.A4).          

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑧
) (

𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑜
)

−1

𝑙𝑜𝑔𝑒(
𝜑𝑔

𝜑𝑛
)−1

 ×  
𝑙𝑜𝑔𝑒(

𝑅𝑠𝑓

𝑅𝑛
)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)
)

1

2

,         (4.A3) 

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑧
) (

𝑙𝑜𝑔𝑒(
𝜑𝑜
𝜑𝑔

)

𝑙𝑜𝑔𝑒(
𝜑𝑛
𝜑𝑔

)
 ×  

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑛
)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)
)

1

2

.                    (4.A4) 

Rearranging Equation (4.A4) results in Equation (4.A5). 
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𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑧
) (

𝑙𝑜𝑔𝑒(
𝜑𝑜
𝜑𝑔

)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)
 ×  

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑛
)

𝑙𝑜𝑔𝑒(
𝜑𝑛
𝜑𝑔

)
)

1

2

.             (4.A5) 

Applying the laws of logarithm transforms Equation (4.A5) into Equation (4.A6). 

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑧
) (

𝑙𝑜𝑔𝑒(𝜑𝑜)− 𝑙𝑜𝑔𝑒(𝜑𝑔)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)

 ×  
𝑙𝑜𝑔𝑒(

𝑅𝑠𝑓

𝑅𝑛
)

𝑙𝑜𝑔𝑒(𝜑𝑛)− 𝑙𝑜𝑔𝑒(𝜑𝑔)
)

1

2

.       (4.A6) 

Equation (4.A6) can be mathematically written as Equation (4.A7) and Equation (4.A8). 

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑧
) (

𝑙𝑜𝑔𝑒(𝜑𝑜)− 𝑙𝑜𝑔𝑒(𝜑𝑔)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)

 ÷  
𝑙𝑜𝑔𝑒(𝜑𝑛)− 𝑙𝑜𝑔𝑒(𝜑𝑔)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑛
)

)

1

2

,       (4.A7) 

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑧
) (( 

𝑙𝑜𝑔𝑒(𝜑𝑜)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)
 −  

𝑙𝑜𝑔𝑒(𝜑𝑔)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)
 )  ÷ ( 

𝑙𝑜𝑔𝑒(𝜑𝑛)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑛
)
 − 

𝑙𝑜𝑔𝑒(𝜑𝑔)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑛
)
  ))

1

2

.     (4.A8) 

Equation (4.A9) is the same as Equation (4.27). 

𝑅𝑜

𝑅𝑤
=

𝛿

𝜑𝑜
𝑚.            (4.A9) 

Equation (4.A10) can be obtained from Equation (4.A9) by making 𝑚 the subject of Equation 

(4.A9). 

𝑚 =  
 𝑙𝑜𝑔𝑒(𝛿 × 𝑅𝑤 / 𝑅𝑜)

𝑙𝑜𝑔𝑒 (𝜑𝑜)
.                      (4.A10) 

If 𝑅𝑠𝑓 of Equation (4.A8) is equal to  (𝛿 ×  𝑅𝑤) of Equation (4.A10), then Equation (4.A11) and 

Equation (4.A12) can presented based on Equation (4.A10). 

 𝑚𝑜 =  
 𝑙𝑜𝑔𝑒(𝑅𝑠𝑓 / 𝑅𝑜)

𝑙𝑜𝑔𝑒(𝜑𝑜)
,                     (4.A11) 
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𝑚𝑛 =  
 𝑙𝑜𝑔𝑒(𝑅𝑠𝑓 / 𝑅𝑛)

𝑙𝑜𝑔𝑒(𝜑𝑛)
.                     (4.A12) 

Equation (4.A11) and Equation (4.A12) can be substituted into Equation (4.A8) to yield 

Equation (4.A13). 

𝑃

𝑍
=  

𝑆𝑣

𝑍
− (

𝑆𝑣

𝑍
−

𝑃𝑛

𝑧
) (( 

1

𝑚𝑜
 − 

𝑙𝑜𝑔𝑒(𝜑𝑔)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑜
)
 )  ÷ ( 

1

𝑚𝑛
 −  

𝑙𝑜𝑔𝑒(𝜑𝑔)

𝑙𝑜𝑔𝑒(
𝑅𝑠𝑓

𝑅𝑛
)
  ))

1

2

.                   (4.A13) 

 

4.10 APPENDIX B: MAPE, RMSE and R square performance obtained by 

using all data for training with summary presented in Table 4.4 

 

Fig. 4.7   MAPE performance of the resistivity component of the cementation-exponent approach 

as a function of resistivity scaling factor (Rsf) 
 

 

Fig. 4.8   MAPE performance of Eaton’s resistivity approach as a function of Eaton’s coefficient 

(k) 
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Fig. 4.9   MAPE performance of Foster & Whelan’s resistivity approach as  a function of the 

Slope of formation factor depth curve 

  

 

 

 

Fig. 4.10   MAPE performance of cementation-exponent approach as a function of resistivity 

scaling factor (Rsf) 

 

 

Fig. 4.11   MAPE performance of conventional simple averaging approach as a function of 

Eaton’s coefficient (k) 
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Fig. 4.12   RMSE performance of the resistivity component of the cementation-exponent 

approach as a function of resistivity scaling factor (Rsf) 

 

 

Fig. 4.13   RMSE performance of Eaton’s resistivity approach as  a function of Eaton’s 

coefficient (k) 

 

 

Fig. 4.14   RMSE performance of Foster & Whelan’s resistivity approach as  a function of the 

Slope of formation factor depth curve 
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Fig. 4.15   RMSE performance of cementation-exponent approach as a function of resistivity 

scaling factor (Rsf) 

 

 

Fig. 4.16   RMSE performance of conventional simple averaging approach as a function of 

Eaton’s coefficient (k) 

 

 

Fig. 4.17   R square performance of the resistivity component of the cementation-exponent 

approach as a function of resistivity scaling factor (Rsf) 
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Fig. 4.18   R square performance of Eaton’s resistivity approach as  a function of Eaton’s 

coefficient (k) 

  

 

Fig. 4.19   R square performance of Foster & Whelan’s resistivity approach as a function of the 

Slope of formation factor depth curve 

 

 

Fig. 4.20   R square performance of cementation-exponent approach as a function of resistivity 

scaling factor (Rsf) 
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Fig. 4.21   R square performance of conventional simple averaging approach as a function of 

Eaton’s coefficient (k)  
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4.11 APPENDIX C: MAPE, RMSE and R square performance obtained by 

using 75% of data for training with summary presented in Table 4.7 

 

Fig. 4.22   MAPE training performance of the resistivity component of the cementation-exponent 

approach as a function of resistivity scaling factor (Rsf) 

 

 

Fig. 4.23   MAPE training performance of Eaton’s resistivity approach as a function of Eaton’s 

coefficient (k) 

 

 

Fig. 4.24   MAPE training performance of Foster & Whelan’s resistivity approach as  a function 

of the Slope of formation factor depth curve 
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Fig. 4.25   MAPE training performance of cementation-exponent approach as a function of 

resistivity scaling factor (Rsf) 

 

 

Fig. 4.26   MAPE training performance of conventional simple averaging approach as a function 

of Eaton’s coefficient (k) 

 

 

 

Fig. 4.27   RMSE training performance of the resistivity component of the cementation-exponent 

approach as a function of resistivity scaling factor (Rsf) 
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Fig. 4.28   RMSE training performance of Eaton’s resistivity approach as a function of Eaton’s 

coefficient (k) 

 

 

Fig. 4.29   RMSE training performance of Foster & Whelan’s resistivity approach as  a function 

of the Slope of formation factor depth curve 

 

 

Fig. 4.30   RMSE training performance of cementation-exponent approach as a function of 

resistivity scaling factor (Rsf) 
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Fig. 4.31   RMSE training performance of conventional simple averaging approach as a function 

of Eaton’s coefficient (k) 

 

 

Fig. 4.32   R square training performance of the resistivity component of the cementation-

exponent approach as a function of resistivity scaling factor (Rsf) 

 

 

Fig. 4.33   R square training performance of Eaton’s resistivity approach as  a function of 

Eaton’s coefficient (k) 
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Fig. 4.34   R square training performance of Foster & Whelan’s resistivity approach as a function 

of the Slope of formation factor depth curve 

 

 

Fig. 4.35   R square training performance of cementation-exponent approach as a function of 

resistivity scaling factor (Rsf) 

 

 

Fig. 4.36   R square training performance of conventional simple averaging approach as a 

function of Eaton’s coefficient (k) 
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4.12 APPENDIX D:  ANN configuration and training performance with best 

result presented in Table 4.7 

 

Table 4.8   ANN training performance for different configurations 

ANN structure MAPE (%) RMSE R square 

One hidden layer with 5 nodes 0.64 0.14 0.75 

One hidden layer with 10 nodes 0.65 0.15 0.74 

One hidden layer with 20 nodes 0.66 0.15 0.74 

One hidden layer with 30 nodes 0.66 0.15 0.74 

Two hidden layer. 1st hidden layer has 20 nodes, 

second hidden layer has 10 nodes 1.33 0.22 0.74 
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Chapter 5 

5. Gamma ray log generation from drilling parameters using deep 

learning 

Preamble 

This chapter addresses an objective of this dissertation as outlined in Section 1.3 which is 

exploiting how drilling parameters can be utilized by deep learning algorithm for real time 

lithology identification. The use of drilling parameters for gamma ray log generation offers an 

economic means of improving the accuracy of shale lithology identification. Section 1.1. and 

Section1.6. show that shale lithology identification is a necessary step for pore pressure 

prediction which is vital for drilling safety. 

I (Augustine Uhunoma Osarogiagbon) have contributed to Conceptualization, Methodology, 

Formal Analysis, Software, Investigation, Writing - Original Draft, and Writing - Review & 

Editing of this work, while Dr. Olalere Oloruntobi contributed to Conceptualization, 

Methodology, Formal Analysis, Writing - Review & Editing;  Dr. Faisal Khan  contributed to 

Conceptualization, Methodology, Formal Analysis, Writing - Review & Editing and 

Supervision; Dr. Ramachandran Venkatesan contributed to Methodology, Formal Analysis, 

Writing - Review & Editing and Supervision; and Dr. Stephen Butt contributed to Methodology, 

Writing - review & editing and Project administration. A version of this chapter has been 

published in the Journal of Petroleum Science and Engineering, Volume 195, December 2020, 

107906, https://doi.org/10.1016/j.petrol.2020.107906.  
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Abstract 

Lithology identification plays a vital role in defining the petroleum reservoir. Although well 

logging represents the traditional means of obtaining petrophysical data for lithology 

identification, there could be cases where logging while drilling instruments may fail during 

drilling. This chapter presents an approach that utilizes drilling parameters obtained from mud 

logging and measurement while drilling (MWD) for real-time prediction of gamma ray log 

which is used as a lithology identifier. In this chapter, several machine learning methodologies, 

such as simple recurrent neural network (RNN), long short-term memory recurrent neural 

network (LSTM-RNN), temporal convolution network (TCN), gated recurrent unit (GRU) 

network, nonlinear autoregressive network with exogenous inputs (NARX) and simple artificial 

neural network (ANN) were tested for their ability to capture the relationship between hydro-

mechanical specific energy (computed from drilling parameters) and gamma ray log. A recently 

drilled exploration gas well in the tertiary deltaic system of the Niger delta basin will be used as 

a case study. Base on the field data, the results show that the TCN and simple RNN performs 

best.  The receptive field of the TCN plays a significant role in its performance, and therefore, 

the LSTM-RNN can be made to perform comparable to that of TCN/simple RNN if the LSTM-

RNN is manually made to work with an optimal window of input data points for each output data 

point. The size and nature of the data (volume, velocity, variety, and veracity) is likely a 

significant factor in the performance of the machine learning methodologies. Thus, it is 

recommended to focus on obtaining the best receptive field of the data during the machine 

learning development phase.  

Keywords: Deep learning; Logging while drilling; Measurement while drilling; Lithology; 

Drilling parameters; Gamma ray log; NARX; RNN; TCN; LSTM; GRU; ANN 
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5.1 Introduction 

Lithology identification provides a means of defining the size, boundary, and property (e.g. 

permeability) of petroleum reservoirs. The gamma ray log provides a means of identifying 

changes in lithology in the siliciclastic environment. Equations which relate the volume of shale 

and gamma ray index have been developed (Assaad, 2008; Clavier et al., 1971; Larionov, 1969; 

Olayiwola & Bamford, 2019; O. Oloruntobi & Butt, 2019; Oloruntobi, 2019; Stieber, 1970; 

Yusuf et al., 2019). While the use of logging while drilling (LWD) offers a useful means of 

identifying subsurface lithology in real-time, there are several downhole drilling conditions 

where the application of LWD may prove insufficient. For example, using the conventional 

LWD sensors (e.g. gamma ray log sensor) that are often placed behind a mud motor or rotary 

steerable system to determine the coring point of a very thin reservoir. Under this scenario, the 

entire thickness of the reservoir may be unknowingly drilled before the LWD sensors are able to 

pick the reservoir tops. While the near bit LWD sensors allow lithology identification a few 

distances behind the bit, it is costly and often not run. Therefore, the possibility of obtaining 

drilling parameters at bit point offers significant benefits for lithology prediction (Oloruntobi & 

Butt, 2020a). 

In poor borehole conditions (excessive breakouts and washouts), the LWD data may produce 

erroneous readings. Therefore, the objective of this work is to provide a means of predicting 

gamma ray log in real-time using a parameter obtained from the drilling data in siliciclastic 

environments. This will provide a means of identifying subsurface lithology at relatively no extra 

cost since drilling parameters are readily available in real-time. The new method will allow 

engineers to predict subsurface lithology when LWD data is missing/incomplete due to LWD 
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instrument failure, borehole enlargement, or economic reason (Salehi et al., 2017; D. Zhang et 

al., 2018).  

Generating values of logging parameters with machine learning represents an interesting area of 

petroleum Geoscience/Engineering. For example, in the article by Zhang et al. (2018), logging 

parameters (high-resolution acoustic log, borehole compensated sonic log and density) were 

generated from other logging parameters (gamma ray, caliper, spontaneous potential and 

amplitude difference of micro potential and micro gradient) using LSTM-RNN. In the article by 

Gholami & Ansari (2017), porosity was generated from seismic attributes using a committee of 

optimized ANN, optimized support vector regression, and optimized fuzzy logic. There have 

also been research interests in generating logging parameters from drilling parameters. In the 

article by Kanfar et al. (2020), logging parameters were generated from drilling parameters using 

an Inception-based convolutional neural network combined with TCN. i.e., porosity and density 

were generated from depth, rate of penetration, weight on bit, flow rate, and mechanical specific 

energy, while compressional sonic was generated from the rate of penetration, weight on bit, 

torque and mechanical specific energy.  

The work described in this chapter will test the performance of several conventional machine 

learning algorithms (especially those with sequence modeling capabilities) on their ability to 

generate gamma ray log using drilling parameters. This is industrially significant as it offers an 

additional means of predicting gamma ray log data at the bit and reconstructing missing sections 

within the gamma ray log when sufficient gamma ray log and drilling parameter data is available 

for a well. The chapter is structured as follows. Section 5.2 describes the drilling parameters used 

in this work for gamma ray log generation. Section 5.3 introduces the machine learning 
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algorithms used. Section 5.4 presents the methodology. Section 5.5 describes the results 

obtained. Section 5.6 provides a conclusion. 

 

5.2 Drilling parameter data for lithology identification  

Several attempts have been made to predict lithology using drilling parameters such as the rate of 

penetration (ROP) and d-exponent. However, these parameters do not account for factors such as 

bit type, bit wear, torque, and bit hydraulic energy. To overcome these shortcomings (except for 

bit hydraulic energy), the concept of mechanical specific energy (MSE) was proposed by Teale 

(1965). It is given by: 

𝑀𝑆𝐸 =  
𝑊𝑂𝐵

𝐴𝑏
+  

120𝜋𝑁𝑇

𝐴𝑏𝑅𝑂𝑃
.                  (5.1) 

The MSE, as shown in Equation (5.1), is the sum of the axial and rotary energy required to 

remove a unit of rock.  𝑊𝑂𝐵 refers to the downhole weight on bit (lb), 𝐴𝑏 refers to bit area (in2), 

𝑁 refers to rotary speed (rpm), 𝑅𝑂𝑃 refers to the rate of penetration (ft/hr), and 𝑇 refers to torque 

(lb-ft). In order to account for the effect of weakening the rock ahead of the bit, the hydraulic 

energy in the bit can be added to the MSE. This results in the hydro-mechanical specific energy 

(HMSE), as shown in Equation (5.2) (Oloruntobi et al., 2018;  Oloruntobi & Butt, 2019a). 

𝐻𝑀𝑆𝐸 =
𝑊𝑂𝐵

𝐴𝑏
+  

120𝜋𝑁𝑇

𝐴𝑏𝑅𝑂𝑃
+ 

1154𝜂∆𝑃𝑏𝑄

𝐴𝑏𝑅𝑂𝑃
.               (5.2) 

𝐵𝑖𝑡 ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 =
1154𝜂∆𝑃𝑏𝑄

𝐴𝑏𝑅𝑂𝑃
 .            (5.3) 

Here, 𝜂 refers to hydraulic energy reduction factor, ∆𝑃𝑏 refers to bit pressure drop at the nozzle 

(psi), 𝑄 refers to flow rate (gpm). 



 

183 
 

For polycrystalline diamond compact (PDC) bits, 𝜂 can be computed using Equation (5.4).  

𝜂𝑃𝐷𝐶 𝑏𝑖𝑡 = 1 −  (
𝐽𝑆𝐴

𝑇𝐹𝐴
)−0.122.                         (5.4) 

Here, JSA refers to junk slot area (in2) and TFA refers to flow area (in2).  

For roller cone bits (RCB), 𝜂 can be computed using Equation (5.5). 

𝜂𝑅𝐶𝐵 = 1 −  (
0.15 𝐵𝑖𝑡 𝑎𝑟𝑒𝑎

𝑇𝐹𝐴
)−0.122.             (5.5) 

The pressure drop at the nozzle can be computed using Equation (5.6). 

∆𝑃𝑏 =  
𝑀𝑊 𝑄2

10858 𝑇𝐹𝐴2.               (5.6) 

Here, 𝑀𝑊 refers to mud weight (PPG) and 𝑄 refers to flow rate (gpm),  

In addition to lithology changes, several other factors, such as rock compaction and bit wear, can 

also influence HMSE. For example, rock compaction typically increases with depth, which leads 

to an increase in HMSE. Also, bit wear, which usually increases with depth, can lead to an 

increase in HMSE. To account for the rock compaction effect, a porosity compaction model 

proposed by Athy (1930) is applied to Equation (5.2) to yield Equation (5.7). 

𝐻𝑀𝑆𝐸𝑑𝑛 = (
𝑊𝑂𝐵

𝐴𝑏
+  

120𝜋𝑁𝑇

𝐴𝑏𝑅𝑂𝑃
+  

1154𝜂∆𝑃𝑏𝑄

𝐴𝑏𝑅𝑂𝑃
)∅0𝑒−𝐾𝑍.           (5.7) 

Here, 𝐻𝑀𝑆𝐸𝑑𝑛 represents the depth-effect normalized HMSE. ∅0 refers to the surface or 

mudline porosity, 𝑍 refers to true vertical depth (ft), and 𝐾 refers to the compaction coefficient 

(1/ft).The values of ∅0 and 𝐾 can be obtained from offset wells. Oloruntobi & Butt (2020a) 

showed an observable correlation between gamma ray log and 𝐻𝑀𝑆𝐸𝑑𝑛. Therefore, the goal of 

the work described in this chapter is to capture the relationship between 𝐻𝑀𝑆𝐸𝑑𝑛 and gamma ray 
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log using machine learning. One benefit of using 𝐻𝑀𝑆𝐸𝑑𝑛 is that it provides an expert means of 

capturing the inter-relationship between the various drilling parameters (torque, weight on bit, bit 

size etc.,) before applying machine learning. This is beneficial when training data is limited in 

size.  

 

5.3 Machine learning algorithms 

The motivation for considering several machine learning algorithms is because of the possibility 

of having different relative performance of machine learning algorithms for different task. For 

example, LSTM-RNN, which has achieved success for a complex task such as language 

modeling (Sundermeyer et al., 2015), performed poorer than Autoregressive Integrated Moving 

Average (ARIMA) for time series forecasting (Han, 2018). In an article by Chen, (2020); LSTM-

RNN, ARIMA and XGBOOST (T. Chen & Guestrin, 2016; J. Tang et al., 2020; K. Zhou et al., 

2020) were used for time series forecasting. The results in the article showed that ARIMA 

performed best in terms of root mean square error whereas XGBOOST and LSTM-RNN had 

better results than ARIMA in terms of mean absolute percentage error.  

Tang et al., (2018) showed that the relative performance of machine learning methodologies can 

vary as a function of data size. Therefore, it is not out of place to observe the performance of 

different machine learning algorithms. In machine learning, the concept of big data is not only 

defined in terms of volume, but also with respect to velocity, variety, and veracity (L’heureux et 

al., 2017). 
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5.3.1 Artificial neural network (ANN) 

A simple or shallow ANN is made up of an input layer, one or few simple hidden layers and an 

output layer (Alom et al., 2019). An example is presented in Fig. 5.1.   

 
Fig. 5.1   An ANN with one hidden layer, one input (Xt) and one output (Yt) 

 

In Fig. 5.1, the input layer comprises of the input. The hidden layer comprises of the following 

weights w1, w2 and w3, biases b1, b2 and b3, node activation functions 𝑓1(),  𝑓2() and 𝑓3() and 

computed values ℎ1𝑡, ℎ2𝑡 and ℎ3𝑡.  The output layer comprises weights wa, wb and wc, node 

activation function 𝑓𝑜() and computed value 𝑌𝑡. The node represented by the circular shape O 

in Fig. 5.1 is a summation point. Equations 5.8 to 5.11 is required to compute the output or target 

value 𝑌𝑡 as a function of input value 𝑋𝑡. Note that 𝑋𝑡 means parameter 𝑋 varies with a sequence 

indicating parameter, likewise 𝑌𝑡, ℎ1𝑡 , ℎ2𝑡  and ℎ3𝑡.  The sequence indicating parameter could be 

time or space. For example, if  𝑌𝑡 represents output at time 𝑡, then 𝑌𝑡−1 represents output at time 

𝑡 − 1.  

ℎ1𝑡 =  𝑓1( 𝑤1 ×  𝑋𝑡  +  𝑏1 ),                   (5.8) 

ℎ2𝑡 =  𝑓2( 𝑤2 × 𝑋𝑡  +  𝑏2 ),                   (5.9) 
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ℎ3𝑡 =  𝑓3( 𝑤3 × 𝑋𝑡  +  𝑏3 ),                 (5.10) 

𝑌𝑡 =  𝑓𝑜( 𝑤𝑎 ×  ℎ1𝑡  + 𝑤𝑏 ×  ℎ2𝑡  + 𝑤𝑐 ×  ℎ3𝑡   +  𝑏𝑜 ).       (5.11) 

The hidden layer activation functions e.g. 𝑓1(), 𝑓2() and 𝑓3() of Fig. 5.1 are non-linear. 

Recommended non-linear activation functions for hidden layer include hyperbolic tangent 

(Hagan et al., 1996), SELU (Klambauer et al., 2017), RELU and ELU (Clevert et al., 2016). If 

the task is regression or fitting (in contrast to classification), a linear activation function can be 

used in the output layer, i.e. 𝑓𝑜() of Fig. 1 (Hagan et al., 1996).  

 

5.3.2 Recurrent neural network (RNN)  

The main difference between a simple ANN and a simple RNN is a feedback connection in the 

hidden layer of a RNN. Fig. 5.2 shows this difference.  

 
Fig. 5.2a          Fig. 5.2b 

Fig. 5.2   A hidden layer node connection in ANN and RNN a. ANN b. RNN 

 

Fig. 5.2a represents one of the nodes in the hidden layer of Fig. 5.1 and Fig. 5.2b shows an 

addition of a unit delay D which passes the output of 𝑓1() back into the node in order to realize a 

simple RNN. This results in the modification of Equations 5.8, 5.9 and 5.10. For example, ℎ1𝑡 

for a simple RNN is given by Equation 5.12 (Alom et al., 2019; Elman, 1990). 

ℎ1𝑡 =  𝑓1( 𝑤1 ×  𝑋𝑡  + 𝑤𝑜 ×  ℎ1𝑡−1 +   𝑏1 ).               (5.12) 
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From Equation 5.12, it can be observed that ℎ1𝑡 is a function of ℎ1𝑡−1and 𝑋𝑡. Likewise, ℎ1𝑡−1 is 

a function of ℎ1𝑡−2 and 𝑋𝑡−1.  This shows that ℎ1𝑡 can capture the present and all past values of 

input 𝑋. From Equation 11, 𝑌𝑡 is a function of ℎ1𝑡. Therefore for a simple RNN, the output at 

present time is a function of the present and all past values of input.  

 

5.3.3 Nonlinear autoregressive network with exogenous inputs (NARX) 

A NARX model predicts the value of an output variable as a function of past values of output as 

well as past and present values of input (Hagan et al., 1996). The NARX is very similar to a 

simple RNN. The main differences are: (i) in the feedback connection for NARX, 𝑌𝑡−1 is fed 

back to the hidden layer nodes instead of feeding back ℎ1𝑡−1, ℎ1𝑡−2 or ℎ1𝑡−3; (ii) delay lines are 

added to take in past input values. A hidden layer node connection for a NARX implementation 

that uses the last two previous input values in addition to the present input value and immediate 

previous output value is shown in Fig 5.3.  

 
Fig. 5.3   A hidden layer node for NARX 
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Equation 5.12 is modified to give Equation 5.13 in order to compute ℎ1𝑡 for the NARX 

implementation of Fig. 5.3. 

ℎ1𝑡 =  𝑓1( 𝑤1 × 𝑋𝑡  +  𝑤11 × 𝑋𝑡−1 +  𝑤12 ×  𝑋𝑡−2 +  𝑤𝑜 × 𝑌𝑡−1  +  𝑏1 ).          (5.13) 

 

5.3.4 Long short-term memory recurrent neural network (LSTM-RNN) 

The problem of vanishing gradient limits the capability of simple RNN to capture sequential 

relationship in a very long series of data. The article by Hochreiter & Schmidhuber (1997), gives 

a detailed explanation of how the LSTM implementation overcomes this challenge.  Fig. 4 shows 

an LSTM unit which replaces the hidden layer of a simple RNN shown in Fig. 2b in order to 

obtain the LSTM-RNN. 

 
Fig. 5.4   Hidden layer unit of LSTM-RNN 

 

In the LSTM of Fig. 5.4, the following components aid learning during training. They are: input 

gate 𝐺𝑖𝑡, forget gate 𝐺𝑓𝑡, cell candidate 𝐺𝑐𝑡 and output gate 𝐺𝑜𝑡. Each of the four components 
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operates as a function of the current input value 𝑋𝑡 and the previous ℎ1 value i.e.  ℎ1𝑡−1. 

Equations (5.14) to (5.17) summarise this (Alom et al., 2019; D. Zhang et al., 2018).  

𝐺𝑖𝑡 = 𝐹𝑠{(𝑋𝑡  × 𝑤𝑖) + (ℎ1𝑡−1  × 𝑣𝑖) + 𝑏𝑖},          (5.14) 

𝐺𝑓𝑡 = 𝐹𝑠{(𝑋𝑡  × 𝑤𝑓) + (ℎ1𝑡−1  × 𝑣𝑓) + 𝑏𝑓},          (5.15) 

𝐺𝑐𝑡 = 𝐹ℎ{(𝑋𝑡  × 𝑤𝑐) + (ℎ1𝑡−1  × 𝑣𝑐) + 𝑏𝑐},          (5.16) 

𝐺𝑜𝑡 = 𝐹𝑠{(𝑋𝑡  × 𝑤𝑜) + (ℎ1𝑡−1  × 𝑣𝑜) + 𝑏𝑜}.          (5.17) 

𝑤𝑖, 𝑤𝑓, 𝑤𝑐, 𝑤𝑜, 𝑣𝑖, 𝑣𝑓, 𝑣𝑐 and 𝑣𝑜 are weights associated with the respective components, while 

𝑏𝑖, 𝑏𝑓, 𝑏𝑐 and 𝑏𝑜 are the corresponding bias values for their respective components. 

It should be noted that 𝐹𝑠 and 𝐹ℎ are sigmoid (logistic) and hyperbolic tangent activation 

functions, as shown by Equations (5.18) and (5.19).  

𝐹𝑠{𝑧} =  
1

1+ 𝑒−𝑧,               (5.18)  

𝐹ℎ{𝑧} =  tanh (𝑧).              (5.19) 

The LSTM has a memory cell value 𝐶 which is updated during training. The memory cell value 

at  𝑡 is a function of the input gate, forget gate, cell candidate at 𝑡 and memory cell value at 𝑡 −

1. This is shown by Equation (5.20). 

𝐶𝑡 = (𝐺𝑓𝑡 × 𝐶𝑡−1) + (𝐺𝑐𝑡  ×  𝐺𝑖𝑡).               (5.20) 

For the LSTM unit, ℎ1𝑡 is a function of output gate and memory cell value as shown by 

Equation (5.21).  

ℎ1𝑡 = 𝐺𝑜𝑡  × 𝐹ℎ{𝐶𝑡}.                        (5.21) 
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5.3.5 Gated recurrent unit (GRU) network  

The GRU can be considered as a simplified derivative of LSTM with some variations. Despite 

the relative simplification of GRU, its performance is still comparable to that of LSTM-RNN 

(Alom et al., 2019). The GRU replaces the input gate, forget gate, output gate and cell candidate 

of LSTM with update gate 𝐺𝑢𝑡, reset gate 𝐺𝑟𝑡 and hidden state candidate 𝐺ℎ𝑡. These are shown 

by Equations (5.22)-(5.24) (Alom et al., 2019; Chung et al., 2014; G.-B. Zhou et al., 2016). 

𝐺𝑢𝑡 = 𝐹𝑠{(𝑋𝑡  × 𝑤𝑢) + (ℎ1𝑡−1  × 𝑣𝑢) + 𝑏𝑢},            (5.22) 

𝐺𝑟𝑡 = 𝐹𝑠{(𝑋𝑡  × 𝑤𝑟) + (ℎ1𝑡−1  × 𝑣𝑟) + 𝑏𝑟},             (5.23) 

𝐺ℎ𝑡 = 𝐹ℎ{(𝑋𝑡  × 𝑤ℎ) + ((𝐺𝑟𝑡  × ℎ1𝑡−1)  × 𝑣ℎ) + 𝑏ℎ}.            (5.24) 

ℎ1𝑡 for the GRU unit is computed as shown by Equation (5.25).  

ℎ1𝑡 = ℎ1𝑡−1 × (1 − 𝐺𝑢𝑡) +  𝐺ℎ𝑡  ×  𝐺𝑢𝑡.                     (5.25) 

 

5.3.6 Temporal convolution network (TCN) 

The convolutional neural network (CNN) which uses convolutional layers in deep learning has 

achieved state of the art success in image processing (Kumar et al., 2017). While the CNN is 

traditionally designed for 2D input data (W. Liu et al., 2017), convolutional layers have also 

found success in deep learning architectures for 1 D sequential data. The temporal convolutional 

network (TCN) architecture (Bai et al., 2018) and WaveNet architecture (Oord et al., 2016) 

represent examples of such deep learning architectures for 1 D sequential data. Fig. 5.5 shows a 

convolution unit of a TCN/WaveNet required to learn sequential relationship in 1 D data.   
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Fig. 5.5   A dilated causal convolution unit with dilation factors of d = 1, 2, 4, 8 and filter size of 

2 (Oord et al., 2016)  

 

The dilated causal convolution unit can be defined by its filter size (number of input to filter 

shown by the circle/ellipse shape in the hidden and output layers of figure 5.5), dilation factors 

(as observed by the fixed intervals between input entries to a filter) and number of hidden layers. 

Thus, the dilation factors, number of hidden layers and filter (also called kernel) size can be 

designed to capture a required receptive field. For example, the dilated causal convolutional unit 

of Fig. 5.5 is designed to learn the relationship between 16 consecutive sequential input data 

points (receptive field) and an output data point. Equation (5.27) shows how the receptive field 

(𝑅𝐹) of a causal convolution unit can be evaluated for an architecture where the dilation factor 𝑑 

of the 𝑛𝑡ℎ convolutional layer is given by Equation (5.26) (Mathwork, 2020c). 

𝑑 =  2𝑛−1,                         (5.26) 

𝑅𝐹 = ((𝐹𝑠 − 1) × (2𝐿 − 1)) + 1.           (5.27) 

In Equation (5.27), 𝐹𝑠 represents filter size, 𝐿 represents the number of convolutional layers (𝐿 =

4 for Fig 5.5). 
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It was reported that the TCN can achieve better performance than LSTM-RNN for complex 

machine learning task (Bai et al., 2018). One drawback of TCN in comparison to simple RNN, 

NARX, LSTM-RNN and GRU network is that the receptive field is required to be specified in 

TCN. This represents an additional parameter which can significantly affect performance if not 

properly selected, e.g. TCN can perform poorly if the kernel size and dilation are smaller than 

what is required to capture the effective memory required for a task (Bai et al., 2018). More 

detailed information on TCN can be found in Bai et al., (2018); Mathwork, (2020b); and Rémy, 

(2020). 
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5.4 Methodology 

The flowchart of the methodology is presented in Fig. 5.6 

 

Fig. 5.6   Methodology for gamma ray log generation using drilling parameters and machine 

learning 
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5.4.1 Drilling parameters and gamma ray data for training and testing 

The data of drilling parameters needed to compute 𝐻𝑀𝑆𝐸𝑑𝑛 is obtained along with the gamma 

ray log. It is expected that the 𝐻𝑀𝑆𝐸𝑑𝑛 and gamma ray log used for training would be sufficient 

to capture the relationship in the test data. Equation (5.7) is used in computing the 𝐻𝑀𝑆𝐸𝑑𝑛 of 

the well. Detailed explanation on the computation of 𝐻𝑀𝑆𝐸𝑑𝑛 for a well can be found in the 

article by Oloruntobi & Butt, (2020). 

 

5.4.2 Filtering and standardization 

Moving average (mean) with a length of 5 was applied as a filter to the gamma ray log in order 

to suppress noisy variations. The same filtering operation was done to the 𝐻𝑀𝑆𝐸𝑑𝑛 data. After 

filtering, the resulting gamma ray log and 𝐻𝑀𝑆𝐸𝑑𝑛 data are standardized for machine learning 

(Hagan et al., 1996). The data are standardized using the mean and standard deviation of the 

training data as shown by Equations (5.28), (5.29) and (5.30). Assume that the gamma ray log 

for training after filtering is 𝐺𝑡𝑟𝑎𝑖𝑛, the 𝐻𝑀𝑆𝐸𝑑𝑛 data for training after filtering is 𝐻𝑡𝑟𝑎𝑖𝑛, the 

𝐻𝑀𝑆𝐸𝑑𝑛 data for testing after filtering is 𝐻𝑡𝑒𝑠𝑡. 𝜇𝐺 and 𝜎𝐺 represent the mean and standard 

deviation of 𝐺𝑡𝑟𝑎𝑖𝑛, respectively, and 𝜇𝐻 and 𝜎𝐻 represent the mean and standard deviation of 

𝐻𝑡𝑟𝑎𝑖𝑛, respectively. 𝐺𝑡𝑟𝑎𝑖𝑛 𝑛 and 𝐻𝑡𝑟𝑎𝑖𝑛 𝑛 represent the standardized input and target for 

training, while 𝐻𝑡𝑒𝑠𝑡 𝑛 represents the standardized input for testing. 

𝐺𝑡𝑟𝑎𝑖𝑛 𝑛 = (𝐺𝑡𝑟𝑎𝑖𝑛 −  𝜇𝐺)/𝜎𝐺,           (5.28) 

𝐻𝑡𝑟𝑎𝑖𝑛 𝑛 = (𝐻𝑡𝑟𝑎𝑖𝑛 −  𝜇𝐻)/𝜎𝐻,           (5.29) 

𝐻𝑡𝑒𝑠𝑡 𝑛 = (𝐻𝑡𝑒𝑠𝑡 −  𝜇𝐻)/𝜎𝐻.           (5.30) 
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After training the neural network, 𝐻𝑡𝑒𝑠𝑡 𝑛 will be fed into the neural network, and this will 

produce an output (𝐺𝑜𝑢𝑡𝑝𝑢𝑡). This output is re-adjusted by removing the effect of 

standardization using Equation (5.31). 

𝐺𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 = (𝜎𝐺  ×  𝐺𝑜𝑢𝑡𝑝𝑢𝑡) + 𝜇𝐺.              (5.31) 

Here, 𝐺𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 represents the generated gamma ray log that can be used for identifying 

changes in lithology. 

 

5.4.3 Configuration and training of the machine learning algorithm 

The summary of the configurations and training options for the various machine learning 

algorithms used is presented in Table 5.1. It should be noted that several numbers of hidden units 

for TCN, LSTM and GRU were tried as well as different dilations for TCN to observe 

performance. The results are reported in section 5.2. 

Table 5.1   Summary of machine learning configuration and training 

S/N Parameter TCN LSTM and 

GRU 

Simple ANN, simple 

RNN and NARX 

1 Number of LSTM/GRU units (equivalent 

number for TCN) 

(i) 4 (ii) 10 (iii) 

20 

For 

LSTM: 

(i) 3 (ii) 10 

For GRU: 

(i) 4 (ii) 10 

- 

2 Number of hidden layer nodes for ANN, 

simple RNN and NARX 

- - 15 for simple ANN,       

10 for simple RNN, 

10 for NARX 

3 Delay lines added to consider past input 

for NARX (Fig. 5.3) 

  9 
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4 Filter (kernel) size for TCN 2 - - 

5 Dilations for TCN.  

5 different configurations were tried in 

order to test the performance of the 

following receptive fields (𝑅𝐹): 

8,16,32,64 and 128 

 (i) 1,2,4   

(ii) 1,2,4,8  

(iii) 1,2,4,8,16  

(iv) 1,2,4,8,16,32  

(v) 

1,2,4,8,16,32,64  

- - 

6 Number of hidden layers (number of 

stacks of residual blocks for TCN) 

1 1 1 

7 Padding for TCN Causal  - - 

8 Use skip connections  False  - - 

9 Dropout rate 0 0 - 

10 Hidden layer activation (activation used 

in the residual blocks for TCN, cell 

candidate for LSTM and hidden state 

candidate for GRU) 

Hyperbolic 

tangent 

Hyperbolic 

tangent  

Hyperbolic tangent 

11 Optimization algorithm Adam (Kingma & 

Ba, 2014) 

Adam GNBR (Foresee & 

Hagan, 1997) 

12 use batch normalization in the residual 

layers 

False  - - 

13 Maximum training iteration 100 100 100 

 

In order to minimize error due to random initialization of the weights, each training and testing is 

repeated thirty times and the mean result is reported. This is recommended when data set is small 

(Mathwork, 2020b). MATLAB and Keras (Rémy, 2020) were used for implementing the 

algorithms. 
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5.5 The results obtained by applying the methodology on a well data   

To demonstrate the application of the proposed methodology, a gas well (Fig. 5.7) in the central 

swamp region of the Niger Delta basin is used as the case study. The Niger Delta is an 

extensional rift basin that consists of clastic sediments up to about 12 km thick at the central of 

the basin (Oloruntobi et al., 2019; Oloruntobi & Butt, 2020b; Oloruntobi et al., 2020). 

   
Fig. 5.7   The location map for well A used for training and testing 

 

Fig. 5.8 shows the drilling parameter data (torque, rotary speed, flow rate, rate of penetration, 

weight on bit, mud weight and equivalent circulating density i.e. ECD), the LWD parameter 

(gamma ray), pore pressure (PP) and bottom hole pressure (BHP) of the well.  
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Fig. 5.8   Drilling and logging data of well A 

  

In order to perform depth-effect normalization as shown by Equation (5.7), an offset well was 

used to obtain the appropriate values of ∅0 and 𝐾. This yielded ∅0 as 0.54 and 𝐾 as 0.0001 

(Oloruntobi & Butt, 2020a). 
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5.5.1 Denoising  

For easy interpretation, outliers in the gamma ray log can be suppressed using low pass filter 

described in Section 5.4.2. The result of filtering is shown in Fig. 5.10 (compare with Fig. 5.9 

before filtering).  

                                                   
Fig. 5.9   Gamma ray log before filtering 

 

 
Fig. 5.10   Gamma ray log after filtering 

            

The 𝐻𝑀𝑆𝐸𝑑𝑛 result obtained using Equation (5.7) is also filtered using the same filter described 

in Section 5.4.2. Fig. 5.11 compares the filtered gamma ray log and filtered 𝐻𝑀𝑆𝐸𝑑𝑛 data for 

well A. 



 

200 
 

 
Fig. 5.11   Comparing depth normalized hydro-mechanical specific energy with gamma ray log 

 

Visual inspection shows a good match between gamma ray and 𝐻𝑀𝑆𝐸𝑑𝑛 in Fig. 5.11. In order to 

get more insight into the relationship between the gamma ray and 𝐻𝑀𝑆𝐸𝑑𝑛 data of Fig 5.11, a 

plot of the 𝐻𝑀𝑆𝐸𝑑𝑛vs Gamma ray is shown in Fig. 5.12. 

 
Fig. 5.12   Plot of HMSEdn versus gamma ray log to observe correlation 

 

Due to the smilingly linear relationship in Fig. 5.12, results obtained using linear, quadratic, 

exponential, power and logarithm regression will also be compared with that obtained using the 

machine learning algorithms described in Section 5.3. Two categories of training and testing will 
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be performed. The first category is for far end gamma ray log generation, the second category is 

for missing log interval generation. 

 

5.5.2 Far end gamma ray log generation 

This task is equivalent to real time prediction of logging parameter values at drilling depth where 

we already have values for drilling parameters. For this task, both 𝐻𝑀𝑆𝐸𝑑𝑛 and gamma ray log 

of Fig. 5.11 are split into training and testing parts as shown in Fig. 5.13. The initial 75% of the 

data (1428 data points) is used for training and the remaining 25% of the data (477 data points) is 

used for testing.      

 
Fig. 5.13   Separating the gamma ray log and HMSEdn data into training and testing part 

 

When testing for simple RNN, NARX, LSTM-RNN and GRU, all past available standardized 

filtered 𝐻𝑀𝑆𝐸𝑑𝑛 (training data) are first fed into the network before feeding in the standardized 

filtered test 𝐻𝑀𝑆𝐸𝑑𝑛 data. This is because we anticipate the first test output value to also depend 

on previous sequence step input (explained in the last paragraph of section 5.3.2).  
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The training and testing results are presented in Table 5.2 and the results are sorted based on 

mean absolute percentage error (MAPE) on test data. It should be noted that the results of Table 

5.2 is not intended for comparing the superiority of machine learning algorithms, rather the 

results shows that size and complexity of data (as explained in Section 5.3.0) as well as 

configuration of machine learning algorithms can significantly affect performance. Although 

TCN and simple RNN performed better than LSTM-RNN (Table 5.2), it was observed that when 

the LSTM-RNN was forced to use a given window of input data (present plus previous 31 input 

data points) for each output data point as shown in Table 5.3, the LSTM-RNN performance 

improved significantly. Although we expect LSTM-RNN to appropriately learn the extent of 

long/short term sequential dependencies without defining a fixed window of input, the data used 

in this work may not be large enough for such learning. To observe the benefit/statistical stability 

of repeating each simulation 30 times, the ratio of standard deviation to mean output of each 

simulation (σ/μ) was also evaluated. Table 5.2 also includes performance of different regression 

models such as linear, exponential, logarithmic etc., (rows with S/N 23-27). The performance of 

these regression models are poor in comparison to the other machine learning methodologies. In 

Table 5.2, N/A means not applicable.  
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Table 5.2   Summary of result for far end prediction 

S/N Method used Train Test 

σ/μ (%) RMSE  MAPE (%) σ/μ (%) RMSE  MAPE (%) 

1 TCN with 20 units and 𝑅𝐹 =32 3.02 3.17 2.59 10.62 15.20 20.69 

2 TCN with 4 units and 𝑅𝐹 =32 4.89 8.76 10.55 8.98 14.03 20.72 

3 TCN with 10 units and 𝑅𝐹 =32 4.36 5.04 5.16 11.78 15.05 20.77 

4 Simple RNN 4.80 9.01 10.59 18.25 12.96 20.94 

5 TCN with 4 units and 𝑅𝐹=64 5.79 7.98 10.06 9.97 14.76 23.39 

6 TCN with 10 units and 𝑅𝐹 =16 4.54 7.05 8.06 9.12 16.11 24.34 

7 NARX 4.78 7.33 7.93 21.81 13.99 24.42 

8 TCN with 10 units and 𝑅𝐹 = 128 4.04 2.70 2.73 15.17 15.79 24.80 

9 TCN with 4 units and 𝑅𝐹 =128 6.51 6.93 8.60 13.31 15.54 24.99 

10 TCN with 10 units and 𝑅𝐹 = 64 4.20 4.16 3.89 13.67 15.61 25.02 

11 TCN with 4 units and 𝑅𝐹=16 4.42 9.72 12.23 6.93 15.52 25.14 

12 TCN with 20 units and 𝑅𝐹=16 3.76 4.99 4.84 10.36 16.50 25.70 

13 TCN with 20 units and 𝑅𝐹 =128 2.33 0.85 0.88 12.80 16.09 26.13 

14 TCN with 20 units and 𝑅𝐹 =64 2.93 1.90 1.65 12.23 16.86 26.23 

15 TCN with 4 units and 𝑅𝐹 = 8 3.38 10.89 14.54 4.83 15.95 27.29 

16 TCN with 10 units and 𝑅𝐹 =8 3.74 9.33 11.69 5.58 16.86 27.56 

17 LSTM-RNN with 3 units  0.06 12.53 17.01 0.08 15.88 27.99 

18 TCN with 20 units and 𝑅𝐹=8 4.39 7.67 9.35 7.66 17.63 28.52 

19 GRU with 4 units 1.31 12.38 16.94 1.72 16.81 30.68 

20 LSTM-RNN with 10 units 0.04 12.38 16.42 0.06 17.37 32.00 

21 Simple ANN 0.92 11.88 15.52 1.67 18.12 32.84 

22 GRU with 10 units 0.50 12.42 16.69 0.82 17.67 32.88 

23 Regression: Exponential N/A 13.19 19.84 N/A 19.08 35.72 

24 Regression: Logarithmic N/A 13.76 20.98 N/A 19.64 36.28 

25 Regression: Quadratic N/A 12.78 18.41 N/A 19.17 36.58 

26 Regression: Linear N/A 12.78 18.45 N/A 19.20 36.70 

27 Regression: Power N/A 14.71 24.01 N/A 20.73 39.31 

 

Table 5.3   Result obtained by constraining the LSTM-RNN to use a fixed window of input 

S/N Method used  Train  Test 

σ/μ  (%) RMSE  MAPE (%) σ/μ (%) RMSE  MAPE (%) 

1 LSTM-RNN with 10 units and 𝑅𝐹= 

32 

4.57 

7.97 9.15 

12.04 

12.63 20.57 

2 LSTM-RNN with 3 units and 𝑅𝐹= 32 2.77 11.05 13.44 5.49 13.54 22.17 

 

Fig. 5.14 a, 5.14 b, and 5.14 c respectively show the gamma ray by TCN (20 units and RF =32), 

actual gamma ray (ground truth) and gamma ray by simple RNN for the test region of the far end 

log generation task.  
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Fig. 5.14 a: Far end gamma ray log by TCN 

 

 
Fig. 5.14 b: Ground truth for far end gamma ray log 

 

Fig. 5.14 c: Far end gamma ray log by simple RNN 
 

Fig. 5.14   Far end gamma ray log result 
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Fig. 5.14 a, b and c shows that the gamma ray generated by simple RNN and TCN though not 

perfect, still has a good resemblance to the actual gamma ray data. 

 

5.5.3 Window interval gamma ray log generation 

This defines a situation where there are missing sections at the beginning or within gamma ray 

log. For this category of task, only the simple RNN and TCN will be considered due to the 

performance they achieved in Section 5.5.2. In this section, three different tasks which involve 

prediction of different intervals are described. Figures 5.15-5.17 respectively shows the sections 

of the gamma ray log that are used for training and testing. 

 

Fig. 5.15   Train and test data for window interval task 1 

 

The missing log for window interval task 1 was selected to verify if simple RNN can generate 

the beginning section of a log, even though it was trained with the later part of the log. For 

interval task 1, the training section included 1439 data points and the test section included 466 

data points. Window interval task 2 and 3 zooms into other sections of the gamma ray log with 
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great changes as shown in Fig. 5.16 and Fig. 5.17 respectively.  The missing section to be 

predicted for interval task 2 is about 47.71 ft and that for task 3 is 54.75 ft. For interval task 2, 

the training section included 1855 data points and the test section included 50 data points. Also, 

for interval task 3, the training section included 1855 data points and the test section included 50 

data points. 

 
Fig. 5.16   Train and test data for window interval task 2 

 

 

Fig. 5.17   Train and test data for window interval task 3 

 

Table 4 summarizes the training and testing performance for window interval task 1, 2 and 3. 
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Table 5.4   Summary of window interval task 

Task 1 Task 2 Task 3 

 Train Test Train Test Train Test 

RMSE MAPE 

(%) 

RMSE MAPE 

(%) 

RMSE MAPE 

(%) 

RMSE MAPE 

(%) 

RMSE MAPE 

(%) 

RMSE MAPE 

(%) 

RNN 8.73 11.56 12.54 11.26 8.57 10.64 20.81 28.40 8.97 11.20 12.81 23.94 

TCN 3.23 2.95 13.13 11.24 3.86 3.74 15.47 24.68 3.73 3.41 14.82 26.69 

 

Table 5.4 shows an overall similarity in performance between simple RNN and TCN.  

Fig. 5.18 a, 5.18 b and 5.18 c show the gamma ray by TCN, actual gamma ray (ground truth) and 

gamma ray by simple RNN for the test region of interval task 1, for visual comparison. 
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Fig. 5.18 a: Interval task 1 gamma ray log by TCN 

 

 
Fig. 5.18 b: Ground truth for interval task 1 gamma ray log 

 

 
Fig. 5.18 c: Interval task 1 gamma ray log by simple RNN 

 

Fig. 5.18   Interval task 1 gamma ray log result 
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Fig. 5.19 a, 5.19 b and 5.19 c show the gamma ray by TCN, actual gamma ray (ground truth) and 

gamma ray by simple RNN for the test region of interval task 2, for visual comparison. 

 
Fig. 5.19 a: Interval task 2 gamma ray log by TCN 

 

  
Fig. 5.19 b: Ground truth for interval task 2 gamma ray log 

 

 

 

Fig. 5.19 c: Interval task 2 gamma ray log by simple RNN 

 

Fig. 5.19   Interval task 2 gamma ray log result 
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Fig. 5.20 a, 5.20 b and 5.20 c show the gamma ray by TCN, actual gamma ray and gamma ray 

(ground truth) by simple RNN for the test region of interval task 3, for visual comparison. 

 
Fig. 5.20 a: Interval task 3 gamma ray log by TCN 

 

 

Fig. 5.20 b: Ground truth for interval task 3 gamma ray log 

 

         

Fig. 5.20 c: Interval task 3 gamma ray log by simple RNN 

 

Fig. 5.20   Interval task 3 gamma ray log result 
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The comparative overall performance of simple RNN with respect to TCN shows the ability of 

simple RNN to learn the extent of sequential dependency of input parameters for the field data 

considered.   

 

5.6 Discussion  

Although the work in this section was on the use of 𝐻𝑀𝑆𝐸𝑑𝑛 for gamma ray log generation, the 

separate parameters which are used in computing 𝐻𝑀𝑆𝐸𝑑𝑛 can be independently used to 

generate gama ray log using machine learning. A comparison was done using 𝐻𝑀𝑆𝐸𝑑𝑛 and the 

separate parameters (weight on bit, torque, rate of penetration, mud weight, true vertical depth, 

flow rate, and rotary speed). Other parameters such as bit area were excluded because they had 

constant values. A summary of the comparison using far end gamma ray log generation (Section 

5.5.2) using the same machine learning configuration is presented in Table 5.5. 

Table 5.5   Comparing performance between HMSEdn and the separate use of drilling parameters 

for gamma ray log generation 

S/N Method used 

Train Test 

RMSE  MAPE (%) RMSE  MAPE (%) 

1 Simple ANN with 𝐻𝑀𝑆𝐸𝑑𝑛 11.88 15.52 18.12 32.84 

2 Simple ANN with separated parameters 4.68 5.35 19.22 35.77 

3 Simple RNN with 𝐻𝑀𝑆𝐸𝑑𝑛 9.01 10.59 12.96 20.94 

4 Simple RNN with separated parameters 2.77 3.08 20.00 36.51 

 

Table 5.5 results show that the use of 𝐻𝑀𝑆𝐸𝑑𝑛 performed better. This result does not aim to rule 

out any possibility of obtaining better result with the use of separated parameter, but rather it 

shows that significant benefit can be achieved using  𝐻𝑀𝑆𝐸𝑑𝑛. 
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Some factors that can affect performance of machine learning are:  

1. Data size i.e. sufficient training data to capture the anticipated input-output relationship in 

the test data. For example, neural networks can perform erroneously when extrapolating 

(Hettiarachchi et al., 2005).  

2. Data density i.e. regular availability of data at short depth intervals (Tresp & Briegel, 

1998). For example, data which have sensor values recorded at every 1 ft during drilling 

will likely be better for analysis than having data for which sensor values are recorded 

every 10 ft. In this work, the data depth interval had a mean value of 1.0504 ft and 

standard deviation of 0.6243 ft. The total data point is 1905 covering a depth from about 

9690 ft to 11690 ft (values given to the nearest foot). 

 

5.7 Conclusions 

This chapter presents an approach for utilizing drilling parameters for generating gamma ray log. 

This involved computing the depth-effect normalized hydro-mechanical specific energy 

(𝐻𝑀𝑆𝐸𝑑𝑛) from drilling parameters. Machine learning was used to capture the relationship 

between 𝐻𝑀𝑆𝐸𝑑𝑛 and gamma ray log in order to perform two categories of task: (i) generation 

of gamma ray log at far end of the well which is required for real time lithology analysis, and (ii) 

generation of missing sections within the gamma ray log. 

Several machine learning algorithms (simple ANN, simple RNN, NARX, LSTM-RNN, GRU 

network and TCN) were used for generation of gamma ray log at the far end of the well. The test 

result shows GRU and LSTM-RNN performing poorer than simple RNN. This performance is 

likely due to the nature of the data used. However, the performance of LSTM-RNN significantly 
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improved when made to use a window of input points for each output point. By nature, the TCN 

requires its receptive field to be defined and it was observed that the receptive field played a 

significant role in the performance of the TCN. Therefore, it is recommended that emphases 

should be placed on obtaining the best receptive field during the development phase of the deep 

learning algorithm before applying it for prediction. Also, it is important to consider several 

machine learning algorithms (both simple and complex) and their configurations especially when 

dealing with data from a single well.  

The simple RNN and TCN were used for generating different missing sections within the gamma 

ray log. The overall performances of both simple RNN and TCN for this category of task were 

similar. Further investigation is recommended to explore the possibility of using data from 

several wells to aid machine learning performance.  

     

5.8 Nomenclature 

∆𝑃𝑏   bit pressure drop (psi)                                                                                                           

∅0  mudline porosity                                                                                                     

𝐴𝑏  bit area (in2) 

𝐷𝑏  bit diameter (in2) 

𝑅𝐹   receptive field 

𝐻𝑀𝑆𝐸  hydro-mechanical specific energy (psi) 

𝐻𝑀𝑆𝐸𝑑𝑛    depth-effect normalized 𝐻𝑀𝑆𝐸 (psi) 

𝐽𝑆𝐴  junk slot area (in2)                                                                                                                 

𝐾   compaction coefficient (1/ft)                                                                               
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𝑀𝑆𝐸   mechanical specific energy (psi)  

𝑀𝑊  mud weight (PPG) 

𝑁  rotary speed (rpm) 

𝜂    hydraulic energy reduction factor  

𝑄  flow rate (gpm) 

PDC  polycrystalline diamond compact 

𝑅𝑂𝑃   rate of penetration (ft/hr) 

𝑇   torque (lb-ft) 

𝑇𝐹𝐴  flow area (in2) 

𝑊𝑂𝐵   weight on bit (lb) 

𝑍   true vertical depth (ft) 

 

5.9 Acronyms 

ANN  artificial neural network  

CNN  convolutional neural network           

GRU  gated recurrent unit  

LSTM  long short-term memory           

LWD  logging while drilling  

MAPE  mean absolute percentage error                     

MWD  measurement while drilling 

NARX  nonlinear autoregressive network with exogenous inputs 

RMSE  root mean square error 

RNN   recurrent neural network 



 

215 
 

TCN  temporal convolution network 
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Chapter 6 

6. Thesis conclusion 

 

6.1 Summary of work done in dissertation 

This dissertation presents an integrated approach for monitoring downhole conditions in order to 

detect drilling hazard based on geo pressure (reservoir pore pressure) during drilling, with deep 

learning being the primary methodology of interest for this dissertation.  

Based on the focus of dissertation, a survey was done to understand the trend in the use of 

supervised machine learning methodology for pore pressure-based hazard during drilling. Some 

important outcomes of the research are: 

 Deep learning, random forest and support vector machine methodologies are gaining 

significant increase in their use. This could be due to capabilities of these algorithms i.e. 

deep learning is recommended for large amount of data while SVM and random forest 

are recommended for smaller scale data classification. 

 The survey presented machine learning methodologies, input parameters and size of 

training/testing data for kick, fracture, lost circulation, stuck pipe, pore pressure and 

equivalent circulation density. 

 The trend/dynamic nature of drilling data can be exploited in machine learning. 

 Researchers are now beginning to use deep learning on drilling parameters for lithology 

identification, drilling rig state determination, drilling event identification, generating 

logging/other drilling parameters and detecting abnormality in data (data pre-processing). 
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Also, CNN and RNN (including its variants e.g. LSTM-RNN) appears to be the most 

commonly used deep learning algorithms. 

 There is absence of publicly accessible global database of drilling data. Researchers 

typically perform machine learning based on data from a particular oil field. The results 

of such analysis may not be generalizable.  

Based on the survey, machine learning algorithms with the ability to capture trend or sequential 

relationship in data such as RNN were used in this dissertation. Kick occurrence represents the 

primary event which can lead to blow out if not well managed. Hence, a data driven approach 

built on the use of LSTM-RNNs was developed for kick detection. The approach involves 

obtaining relevant attributes from d-exponent and standpipe pressure data. These attributes were 

fed to an ensemble of LSTM-RNNs in order to train them for kick detection. The objective of the 

kick detection approach was to ensure early kick detection and as much as possible to prevent 

occurrence of false alarms. Field data was used in testing the kick detection methodology 

developed and the methodology was successful i.e., early kick detection without false alarm were 

achieved. The sequential relationship learning capabilities of the LSTM-RNN was beneficial. 

This is because, the use of different configurations (different number of nodes, different number 

of hidden layers) of simple ANN performed less successfully in comparison to the use of LSTM-

RNN.   

Kick occurrence can be prevented if pore pressure can be accurately predicted and the right 

drilling mud weight is used. Based on this, a contribution towards pore pressure prediction was 

included in this dissertation.  A methodology which combines porosity and resistivity was 

developed for pore pressure prediction. Although porosity and resistivity can be individually 

used for pore pressure prediction, the aim of the methodology was to explore interrelationship 
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between porosity and resistivity for pore pressure prediction. Reviews of previous articles show 

that the effect of cementation on pore pressure prediction represents an area of exploration. 

Archie’s cementation factor uses the relationship between porosity and resistivity to explain 

degree of cementation in a rock formation. This therefore served as a motivation to develop pore 

pressure prediction as a function of Archie cementation factor (which is a function of both 

porosity and resistivity). The methodology developed was tested with field data and promising 

results were achieved i.e., the methodology yielded a better result in comparison to simply 

averaging of pore pressure obtained by conventional porosity and resistivity approach. However, 

more work is recommended in order to observe the performance of the methodology as a 

function of depth (or regions with expected high cementation effects), as well as the most 

suitable value(s) for the resistivity scaling factor introduced in the methodology. Although 

machine learning was not used in this part of the dissertation, it is anticipated that machine 

learning will become viable for pore pressure prediction when much data is made available.    

Gamma ray log generation from drilling parameters (hydro-mechanical specific energy) using 

deep learning is presented in this dissertation. Gamma ray log serves as a means of lithology 

identification e.g. shaliness of a rock formation.  Pore pressure prediction is done in shale 

lithology; thus it is important to accurately determine if the drilling bit is in a shale formation. 

The use of drilling parameters offers the benefit of being able to determine lithology at bit point. 

During machine learning development phase, it is recommended that effort is placed in 

determining the best window size of sequential input points for each output point.    

The contribution of this dissertation towards monitoring downhole conditions during drilling for 

safety operation can be summarized as: 
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 Survey work on the application of machine learning for pressure based downhole safety 

conditions during drilling. 

 The use of LSTM-RNN for kick detection using standpipe pressure and d-exponent data. 

 Pore pressure prediction in shale lithology using a methodology which integrates porosity 

and resistivity values. 

 Use of deep learning in generating gamma ray log from drilling parameters for 

identifying shale lithology. 

 

6.2 Suggested future research 

Several suggestions are presented below: 

6.2.1 Quantitative analyses for kick  

In this dissertation, kick detection was qualitative (kick or no-kick). The use of deep learning for 

quantitative estimation of kick offers the benefit of tracking progress in reservoir fluid influx for 

efficient well control.  

6.2.2 Additional parameter to explore for pore pressure prediction 

In this dissertation, the interrelationship between sonic porosity and resistivity were explored for 

pore pressure prediction. The corrected d-exponent represents another parameter which has been 

used for pore pressure prediction. To enhance pore pressure prediction, the interrelationship 

between corrected d-exponent, sonic porosity/resistivity can be explored for pore pressure 

prediction either with the use of machine learning or by hand handcrafting/theoretical approach 

or a combination of both.  
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6.2.3 Other logs for lithology identification 

Although the focus in this dissertation in terms of lithology detection was to generate gamma ray 

log from drilling parameters using deep learning, there are other logs outside of gamma ray log 

which can be used for identifying lithology. Such logs offer optional means of detecting changes 

in lithology by the application of deep learning on drilling parameters. Example of such logs 

include photoelectric absorption log, self-potential log and neutron log.  

6.2.4 Data availability 

Machine learning (especially deep learning) thrives on the availability of large data for training. 

Thus, the availability of more open source drilling data from different oil fields is very much 

welcome. With the availability of more data, transfer learning/pre-training could be explored in 

utilizing multiple field and well data for gamma ray log generation from drilling parameters 

(with emphases on hydro mechanical specific energy) and kick detection using relevant attributes 

of standpipe pressure and d-exponent data. Pore pressure prediction also represents a drilling 

engineering area which has not benefited much from machine learning.   

  

 

 

 

 


