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ABSTRACT 

In eastern Canada, studies of kelp-urchin systems have been generally restricted to 

small spatial (few 100s m2) and temporal (<5 years) extents by the traditional scuba-based 

monitoring techniques employed. Investigation of the drivers of kelp distribution over 

multiple spatiotemporal scales (including broad spatial [<km2] and temporal [years] 

extents) and in regions poorly studied is key to assessing the stability of these systems and 

understanding regional specificities of kelp dynamics across eastern Canada. This thesis 

investigates the factors controlling kelp distribution and the stability of kelp-urchin systems 

in southeastern Newfoundland (SEN) and the northern Gulf of St. Lawrence (nGSL) over 

multiple spatiotemporal scales by applying traditional and novel techniques. In a scuba-

based manipulative field experiment in SEN, no significant effect of urchin density was 

observed on the rate of kelp bed destruction from urchin grazing, suggesting that the 

minimal urchin density required to maintain destructive feeding on kelp beds may be equal 

to the lowest density tested (88 urchins·m-2) or lower. The suitability of remote sensing and 

geographic information system (GIS) approaches for mapping kelp in the nGSL was 

assessed by comparing three image classification methods applied to aerial and satellite 

imagery. Supervised classification of satellite imagery (89% accuracy) and visual 

classification of aerial imagery (90% accuracy) were the best methods. Visually classified 

imagery from the nGSL was used to compute spatial pattern metrics quantifying kelp 

distribution patterns. These metrics showed that kelp distribution is not uniform, as kelp 

patches exhibited considerable variation in size and geometric complexity. Kelp presence 

was negatively correlated with depth, urchin density, and exposure to waves. Investigation 

of kelp distribution patterns from imagery acquired in six years between 1983 and 2016 in 
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the nGSL revealed an increase in kelp cover since 1999. Harsh oceanographic conditions 

in late winter and spring were correlated with decreased kelp cover and smaller, more 

numerous kelp patches. Kelp patches persisting through time were more frequent in shallow 

areas. Overall, this thesis increases knowledge of scale dependency in the drivers of kelp 

distribution in eastern Canada. It speaks to the importance of exploring multiple scales to 

understand, predict, and mitigate changes in in kelp-urchin systems.  
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1.1. DRIVERS OF SPECIES DISTRIBUTION  

In both terrestrial and marine systems, understanding the drivers of species 

distribution and their impact on species coexistence, diversity patterns, as well as 

community resilience, represents a crucial and active area of ecological research (Brown et 

al., 2016; Chesson, 2000; Elith and Leathwick, 2009). Based on studies from different 

systems, it is generally recognized that abiotic drivers define the boundaries of the 

fundamental niche in which a species can establish and grow, based on its physiological 

limits (Chase and Leibold, 2003). Within these boundaries, variations in abiotic conditions 

can influence the species’ abundance, dispersion, and long-term resilience (Boulangeat et 

al., 2012; Buma and Wessman, 2012; Ehrlen and Morris, 2015; Perkol-Finkel and Airoldi, 

2010). On the other hand, biotic interactions also influence species distribution in a variety 

of ways including by modulating resource availability (competition and facilitation) or 

altering consumer-resource dynamics (predation and herbivory; Louthan et al., 2015; Van 

Dam, 2009; Wisz et al., 2013). Indeed, the role of herbivory as a major driver of species 

distribution and community structure has been extensively documented in various systems 

(Holmes and Webster, 2011; Lodge et al., 1998; Suzuki et al., 2013; Vergés et al., 2009); 

in particular, the consumption of habitat forming species (e.g., macroalgae, trees) affects 

functionally important attributes of ecosystems by altering rates of primary production, 

nutrient cycling, and species interactions (Abbas et al., 2012; Filbee-Dexter and Scheibling, 

2014; Pagès et al., 2012). As such, herbivory has significant consequences for biodiversity 

patterns, productivity, and ecosystem resilience (Burkepile, 2013; Poore et al., 2012; 

Thrush et al., 2008).  
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It is generally accepted that patterns in species distribution and the processes driving 

them are scale-dependant (Huston, 1999; Kendall et al., 2011; Schneider, 2001). Hence, 

biotic and abiotic factors modulating species distribution at one spatial and/or temporal 

scale may not have a dominant impact at another scale (Karlson and Cornell, 1998; Lecours 

et al., 2015; Turner et al., 1989). It is often proposed that abiotic (e.g., climatic) drivers play 

a major role in dictating broad-scale (regional, continental, or global) species distribution 

patterns, while biotic interactions such as herbivory are considered to prevail at smaller 

(local) scales (Edwards, 2004; Pearson and Dawson, 2003; Soberón, 2007). However, these 

notions remain under debate; studies have shown that integrating biotic interactions into 

continental-scale species distribution models can greatly improve modelling outcomes 

(Araújo and Luoto, 2007; Boulangeat et al., 2012; Meier et al., 2010), thus implying that 

the effect of biotic parameters is not restricted to small spatial scales. In order to better 

understand scale-dependency in the effects of biotic and abiotic factors, studies must 

specifically investigate the links between these factors and species distribution patterns at 

multiple spatial and temporal scales (Hobbs, 2003; Lecours et al., 2015; Levin, 1992). Yet, 

because multiscale experiments can be difficult to put in place, establishing single-scale 

studies targeting a spatial or temporal scale which has been overlooked in a particular 

system can be of great use in providing a new perspective (Hobbs, 2003; Lecours et al., 

2015).  

The field of landscape ecology offers a spatially explicit framework for the study of 

the causes and consequences of spatial patterning in ecosystems (Fu et al., 2011; Turner, 

2005; Turner et al., 2001). Key research topics of this field are centered around identifying 

links between spatial patterns in species distribution (e.g., spatial arrangement, patch size, 
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or diversity) and ecological processes, quantifying the importance of scale on the patterns 

observed, and understanding the effects of changes in spatial patterns on ecosystem 

functioning (Fu et al., 2011; Pittman, 2017; Turner et al., 2001). Methods from landscape 

ecology based on remote sensing techniques (used to survey and map landscapes over broad 

spatial extents, e.g., <km2) have been routinely applied in terrestrial systems to assess 

species distribution patterns and their ecological drivers over multiple spatiotemporal 

scales (Frohn and Lopez, 2017; Naveh and Lieberman, 2013; Turner, 2005). For example, 

spatial pattern metrics (also known as landscape metrics) are commonly employed to 

quantify the composition, configuration, and complexity of habitat patches within a 

landscape from remotely acquired imagery or distribution maps (Gustafson, 1998; 

Mcgarigal and Marks, 1995). Approaches developed in terrestrial landscape ecology are 

increasingly applied to marine systems to address questions relative to species distribution, 

patch dynamics, and fragmentation, which cannot be fully investigated without a broad-

scale perspective (Boström et al., 2011; Grober-Dunsmore et al., 2007; Pittman, 2017; 

Qingzhong et al., 2004; Wedding et al., 2011). In marine systems, these approaches are 

particularly valuable for the study of habitat-forming foundation species (sensu Dayton, 

1972) such as macroalgae and seagrasses. Because the loss of foundation species has wide-

ranging consequences on diversity, productivity, and ecosystem services (Ellison et al., 

2005; Filbee-Dexter and Scheibling, 2014; Thomson et al., 2015), a strong understanding 

of the drivers and consequences of the spatial distribution of foundation species is crucial 

to predict and mitigate changes to these ecosystem. 

 

1.2. KELP-URCHIN SYSTEMS 
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Brown algae of the order Laminariales, called kelp, are foundation species found 

along ~25% of the world’s coastlines (Filbee-Dexter and Scheibling, 2014; Steneck et al., 

2013). These macroalgae generally develop on rocky substrate in areas of largely cold, 

nutrient rich water such as temperate coastal zones and upwelling zones, in depths up to 

10-25 m (Bartsch et al., 2008; Steneck et al., 2002). Kelp sporophytes are perennial, with 

some species reaching individual longevity of up to 25 years (Smale et al., 2013; Steneck 

and Dethier, 1994). Kelp forests (i.e., with floating surface canopies) and beds (i.e., 

completely submerged) are some of the most productive habitats on earth (Mann, 1973); 

by forming biogenic habitats with complex three-dimensional structures, kelps provide 

habitat for mobile fauna and substratum for sessile fauna and algae (Dayton, 1985; Smale 

et al., 2013; Steneck et al., 2002). Kelp beds have been identified as important refuge and 

nursery ground for a variety of pelagic and benthic species (Smale and Wernberg, 2013; 

Steneck et al., 2002), including commercially important species of fish (Gotceitas et al., 

1995; Norderhaug et al., 2005) and crustaceans (Johnson and Hart, 2001). In addition to 

enhancing local biodiversity and secondary productivity, kelp also provide valuable 

ecosystem services, including nutrient cycling and coastal protection (Beaumont et al., 

2007; Smale et al., 2013).  

Abiotic factors such as nutrient availability (Dayton et al., 1999; Hernandez-Carmona 

et al., 2001), light conditions (Henley and Dunton, 1997), ice scouring (Gagnon et al., 2004; 

Keats et al., 1985), wave action (Bekkby et al., 2009; Frey and Gagnon, 2015; Hepburn et 

al., 2007), and temperature (Buschmann et al., 2004; Fredersdorf et al., 2009) have been 

shown to modulate kelp presence and growth. However, herbivory by sea urchins has been 

identified as the main driver of kelp distribution in many systems (Gagnon et al., 2004; 
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Konar et al., 2014; Lauzon-Guay and Scheibling, 2007; Norderhaug and Christie, 2009), 

and destructive grazing by sea urchins is a major cause of kelp deforestation worldwide 

(Filbee-Dexter and Scheibling, 2014; Graham, 2004; Ling et al., 2015). Because of this 

relationship, so-called kelp-urchin systems often present a dichotomous community 

structure, divided between kelp communities and urchin barrens. In the latter, fleshy 

seaweed are scarce as they are consumed by the numerous sea urchins and encrusting 

coralline algae is abundant, thus presenting lower levels of biodiversity and productivity 

than kelp communities (Chapman and Johnson, 1990; Christie et al., 2009).  

Kelp beds and urchin barrens are generally found side by side with the boundary 

between the two being largely determined by urchin grazing (Gagnon et al., 2004; Konar 

and Estes, 2003). In some systems, these communities alternate temporally, creating phase 

shifts in which a system transitions from a kelp-dominated state to an urchin-dominated 

state, or vice-versa (Filbee-Dexter and Scheibling, 2014; Simenstad et al., 1978; Steneck et 

al., 2013). Phase shifts are generally caused by variations in urchin density, either becoming 

too low for the urchins to effectively graze on kelp (causing a shift from urchin- to kelp-

dominated states) or increasing so high that urchins destructively consume the kelp and 

prevent its recolonization in the barren (causing a shift from kelp- to urchin-dominated 

states; reviewed in Filbee-Dexter and Scheibling, 2014). In most kelp-urchin systems where 

phase shifts have been documented, the threshold urchin density required for forward (kelp-

to-urchin) shift is up to an order of magnitude higher than the density required for a reverse 

(urchin-to-kelp) shift, indicative of a discontinuous phase shift (deYoung et al., 2008; 

Filbee-Dexter and Scheibling, 2014; Scheffer et al., 2001). This type of transition signals 

the presence of alternate stable states (also called multiple stable states), in which each state 
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1) can exist under the same environmental conditions, 2) persists after the driver of the 

transition (in this case, urchin density) is relaxed or reversed (i.e., the system presents 

hysteresis), and 3) is maintained through feedback mechanisms which confer resilience to 

small perturbations or fluctuations in urchin density (Filbee-Dexter and Scheibling, 2014; 

Scheffer et al., 2001).  

General understanding of the drivers of phase shifts in kelp-urchin systems vary 

greatly among regions. In areas where phase shifts are numerous, factors controlling urchin 

populations have been identified as modulating phase shifts (Filbee-Dexter and Scheibling, 

2014). In eastern Canada, for instance, transitions between kelp- and urchin-dominated 

states have been well documented in Nova Scotia where several phase shifts have occurred 

since the 1960s (Breen and Mann, 1976; Scheibling et al., 1999). In this region, overgrazing 

by the green sea urchin, Strongylocentrotus droebachiensis, after pulse recruitment events 

lead to abrupt transitions from kelp- to urchin-dominated states over several kilometres of 

coastline (Hart and Scheibling, 1988). Similarly, in the Gulf of Maine and the North Pacific, 

removal of urchin predators such as predatory fish (cod, haddock and wolfish) and sea 

otters, respectively, led to increases in urchin populations and facilitated shifts from kelp- 

to urchin-dominated states (Oshurkov et al. 1988, Steneck et al., 2004, Watson & Estes 

2011). Once created, urchin barrens persist for several years through a series of stabilizing 

feedback mechanisms; for example, urchin grazing pressure in barrens prevents 

recolonization of kelp and the barren state facilitates urchin settlement (Filbee-Dexter and 

Scheibling, 2014). Urchin populations do not tend to crash with the exhaustion of their food 

source; rather, these consumers can survive for long time periods (up to several years) in 

kelp-depleted barren grounds by consuming biofilm while decreasing their growth rate and 
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gonad size (Lang and Mann, 1976). In Nova Scotia, a reverse shift from urchin- to kelp-

dominated states can be triggered by disease outbreaks (caused by the pathogenic amoeba 

Paramoeba invadens; Feehan et al., 2013; Jones, 1985) which decimate urchin population 

and release kelp from urchin grazing pressure (Scheibling et al., 1999).  

Yet, phase shifts between kelp beds and urchin barrens are not ubiquitous and several 

regions worldwide present either community state without exhibiting large-scale phase 

shifts (Filbee-Dexter and Scheibling, 2014; Johnson et al., 2019; Krumhansl et al., 2016). 

For example, extensive urchin barrens are found along the coast of the northern Gulf of St. 

Lawrence (nGSL) and southeastern Newfoundland (SEN) and, unlike the cyclical shifts 

observed in Nova Scotia, these barrens appear to have remained present for decades, 

without exhibiting large-scale shifts in community states (Gagnon et al., 2004; 

Himmelman, 1984, 1991; Keats et al., 1985). These regions are dominated by urchin 

barrens but still sustain small, shallow (generally <8 m) kelp beds (Frey and Gagnon, 2015; 

Gagnon et al., 2004; Himmelman and Dutil, 1991). Urchins generally form feeding fronts 

at the deeper edge of these kelp beds and graze through the latter during summer, pushing 

back the kelp bed edge at a rate up to 2.5 m·mo-1 (Frey and Gagnon, 2015; Gagnon et al., 

2004). During winter when urchins are less active due to colder temperature (Frey and 

Gagnon, 2015; Siikavuopio et al., 2006), kelp recruitment occurs and kelp beds can recover, 

generally over a few metres (DFO, 2013; Gagnon et al., 2004; Scheibling et al., 1999). In 

both the nGSL and SEN, kelp-urchin systems appear to be locked in an urchin-barren state 

where urchin grazing dictates the distribution of kelp beds (Frey and Gagnon, 2015; 

Gagnon et al., 2004) while the lack of either urchin predators or diseases allows urchin 

populations to maintain high densities (Himmelman et al., 1983; Johnson et al., 2019; 
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Scheibling, 1997). While the threshold urchin density necessary to maintain grazing on 

kelp beds in summer in the nGSL region has been estimated to be ~5 kg·m-2 (Gagnon et 

al., 2004), such information is lacking for the SEN region. In addition, an understanding of 

the conditions required for a large-scale phase shift from urchin- to kelp-dominated states 

remain largely unexplored in both regions but is necessary to identify the drivers of stability 

and predict change in community states in these systems.  

In eastern Canada, the biology and ecology of kelp has been scrutinized over the past 

few decades; however, studies have generally been limited to small spatial (few 100s of m2 

at most) and temporal (3-5 years) extents due to the difficulty of monitoring completely 

submerged benthic systems (Filbee-Dexter et al., 2019; Frey and Gagnon, 2015; Gagnon 

et al., 2004; Lauzon-Guay and Scheibling, 2007). Indeed, traditional kelp monitoring 

generally relies on time consuming and costly SCUBA-based methods, often forcing 

researchers to constrain the spatiotemporal extent of their studies. Hence, drivers of kelp 

distribution at broad spatiotemporal scales (km2, years to decades) remain poorly 

understood, despite the recognized importance of multi-scale observations to properly 

document how alternative stable state systems are established and maintained in natural 

systems (Petraitis and Latham, 1999). Addressing this lack of knowledge requires the 

exploration of novel techniques to monitor submerged kelp distribution at various 

spatiotemporal scales. As such, approaches from landscape ecology that take advantage of 

recent advances in the precision and accessibility of remote sensing and geographic 

information system (GIS) technologies are an ideal alternative to small-scale SCUBA-

based methods. For kelp-urchin systems in particular, these approaches will allow the study 

of kelp distribution patterns (including the abundance, shape, area, and clustering of kelp 
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beds) and of the boundary dynamics between kelp and urchin communities at broad 

spatiotemporal scales unexplored so far.  

 

1.3. MAIN OBJECTIVES AND THESIS STRUCTURE 

The present thesis investigates the factors leading to the apparent stability of kelp 

beds and urchin barrens observed in southeastern Newfoundland (SEN) and the northern 

Gulf of St. Lawrence (nGSL), Canada. It aims to assess small-scale (m2) interactions 

between kelp and urchins and identify the thresholds urchin density required to maintain 

the destructive grazing on kelp bed in SEN by applying traditional SCUBA-based 

monitoring techniques (Chapter II). Another aim of this thesis is to investigate kelp 

distribution patterns and their drivers at broad spatiotemporal scales (km2) which have been 

largely overlooked in studies of kelp-urchin systems to date due to the restrictions imposed 

by traditional sampling methods (i.e., SCUBA). To that effect, a combination of remote 

sensing techniques, landscape ecology approaches, and modelling techniques are applied 

in three of the core chapters (Chapters III, IV, and V) to assess broad-scale (km2) kelp 

distribution patterns in the Mingan Archipelago, nGSL, and investigate the causes and 

consequences of the configuration, complexity, and stability of kelp aggregates over time. 

This GIS-based investigation of kelp dynamics was conducted in the Mingan Archipelago 

due to the reasonable knowledge of kelp dynamics at the metre scale in that region from 

previous studies (Gagnon et al., 2004; Gagnon et al., 2005; Himmelman, 1991) offering a 

basis for comparison of broader scale studies. 

Specifically, Chapter II focuses on the effect of herbivore pressure on kelp bed 

destruction and recovery in southeastern Newfoundland. While the threshold urchin density 
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required to consume kelp beds has been the subject of investigation in other areas of eastern 

Canada, information regarding urchin density and feeding in SEN is still scarce. Because 

the threshold urchin density for kelp bed destruction and the thresholds for phase shifts 

between kelp- and urchin-dominated community states vary among regions (e.g., between 

nGSL and Nova Scotia; Gagnon et al., 2004; Lauzon-Guay and Scheibling, 2007), 

investigating the effect of urchin density on kelp bed destruction in Newfoundland provides 

insight in the kelp-urchin dynamics of this understudied region. A manipulative field 

experiment was designed to identify the threshold urchin density required to maintain 

destructive grazing upon kelp beds and to examine the effects of environmental factors (i.e., 

temperature and wave action as estimated by flow acceleration) on urchin activity at one 

site in SEN over two consecutive summers (2015 and 2016).  

Chapters III, IV, and V form a trilogy which sets aside the traditional kelp monitoring 

techniques and explores alternative methods based on remote sensing and GIS technologies 

to investigate kelp-bed dynamics across various scales. Initially, the applicability and 

accuracy of such methods needed to be investigated in the context of completely submerged 

kelp systems. Therefore, Chapter III aimed to establish the foundation of a simple, 

accessible, and robust set of remote sensing and GIS-based methods to quantify the spatial 

distribution of completely submerged kelp beds over broad (km2) spatial extents. This 

chapter tested the suitability of conventional image classification methods (i.e., a software-

led unsupervised classification, a software-led supervised classification, and a visual 

classification by a trained observer) for mapping kelp from digital aerial and satellite 

imagery of ~2.5 km2 of seabed in the Mingan Archipelago (nGSL).  
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The findings from Chapter III were used as a basis for the work presented in Chapter 

IV. In the latter, the most accurate method for kelp bed detection identified in Chapter III 

(i.e., visual classification of aerial imagery) was applied to imagery of the shallow subtidal 

fringe of five islands in the Mingan Archipelago. This imagery acquired in 2016 represents 

a snapshot of kelp distribution and was used to quantify kelp distribution patterns by 

measuring spatial pattern metrics to describe and compare the patterns in kelp distribution 

among islands within the archipelago. In addition, this chapter examines the correlations 

between kelp presence and physical and biotic parameters (namely depth, slope, exposure 

to waves, and urchin density) to identify potential drivers of kelp distribution at a broad 

spatial scale (km2).  

Lastly, Chapter V examines temporal variations in kelp bed distribution in the 

Mingan Archipelago by applying the methods described in Chapter IV to a time-series of 

aerial imagery covering the same extent of seabed. Aerial images were acquired in six years 

between 1983 and 2016. Spatial pattern metrics were used to quantify the spatial 

characteristics of kelp beds in each year studied, including kelp coverage, number of kelp 

patches, mean patch area, and largest patch index, which were then correlated with 

atmospheric or oceanographic conditions to identify potential drivers of temporal changes 

in kelp distribution patterns. The effects of depth, bottom slope, and exposure to waves on 

the persistence of kelp beds and variability in cover type over time were assessed to identify 

drivers of stability and change in this system. The analyses conducted in this chapter 

represent the most spatially and temporally broad investigation of the drivers of kelp bed 

distribution and stability in the Gulf of St. Lawrence to date and present a novel broad-scale 

perspective of the variability in distribution patterns of completely submerged kelp beds. 
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The four core chapters of this thesis (Chapters II, III, IV, and V) were written in a 

format compatible with publication in the primary scientific literature as stand-alone 

papers, which explains the repetition of some biological, ecological, or technical 

information among chapters. The last chapter of this thesis (Chapter VI) summarizes the 

main findings of the research and their contribution to advancing our understanding of kelp-

urchin systems and presents future research avenues.  
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2.1. ABSTRACT 

Green sea urchin (Strongylocentrotus droebachiensis) feeding aggregations (fronts) 

modulate community structure of shallow rocky reefs in eastern Canada through their 

grazing of kelp, but the minimum urchin density required to destructively graze through 

kelp beds varies within this region. The present study uses a manipulative field experiment 

to identify the threshold urchin density required to maintain destructive feeding on kelp 

beds in southeastern Newfoundland and examine the effects of environmental factors 

modulating urchin activity (temperature and flow acceleration) on urchin movement and 

grazing. The experimental setup consisted of enclosures secured to the seafloor (~5 m deep) 

at the interface between kelp bed and urchin barren. Each enclosure was stocked with 

urchins to create front densities representing 0%, 25%, 50%, 75%, 100%, and 125% of the 

natural urchin front density in the study area and monitored using underwater videography 

biweekly over two summers. An adjacent unmanipulated control site was monitored over 

14 months. Results obtained within the experimental setup showed an increase in the rate 

of kelp bed retreat over time during summer. However, no effect of urchin density, 

temperature, or flow acceleration was detected on the rate of kelp bed retreat in the 

experimental setup. The combined effect of the density treatment applied, Julian date, and 

year influenced urchin front density in the experimental setup, with the two highest density 

treatments (100% and 125% of the natural front density) showing stronger decreases in 

front density over time compared to other treatments. In the unmanipulated control site, 

kelp bed retreat increased with increasing temperature, and urchin density in the barren 

zone (~2 m from the kelp bed) decreased with increasing temperature while it increased 

with increasing wave action. Overall, results suggest that the minimal urchin front density 
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necessary for the destructive grazing of kelp beds during summer is either equal to the 

lowest density treatment tested (25% of the natural urchin front density, i.e., 88 urchins·m-

2) or may be lower. Urchin density in the barren ground several metres away from the kelp 

bed are higher than this estimated threshold (~150 urchins·m-2), supporting the idea that 

urchin grazing pressure maintains the area locked in an urchin-dominated state.  

 

2.2. INTRODUCTION 

The formation of feeding groups or aggregations is observed in both terrestrial and 

marine species, either as a strategy to facilitate the capture of prey (Clua and Grosvalet, 

2001; Stander, 1992) or reduce predator attacks during feeding (Grand and Dill, 1999; 

Studd et al., 1983), or as a consequence of the patchy distribution of food (Fiedler and 

Bernard, 1987; Hoffmayer et al., 2007; Wilson and Richards, 2000). A common example 

of feeding aggregations is the formation of feeding fronts in which consumers form a 

narrow band which moves in a progressive, linear fashion along a food gradient (Breen and 

Mann, 1976; Lauzon-Guay et al., 2008). Feeding fronts are observed in a variety of animals 

such as ungulates (Gueron and Liron, 1989), insect larvae (Burrows and Balciunas, 1997), 

and marine invertebrates (Kayal et al., 2012; Lauzon-Guay et al., 2008; Silliman et al., 

2005), and their feeding pressure can regulate the abundance and distribution of prey 

populations (Silliman et al., 2013). For instance, in marine benthic systems, high-density 

urchin fronts are created by the accumulation of urchins at the edge of macroalgal beds 

(e.g., as observed in Strongylocentrotus droebachiensis, Lauzon-Guay and Scheibling, 

2007b; and Heliocidaris erythrogramma, Wright et al., 2005) where their concentrated 

grazing pressure can decimate macroalgal populations and subsequently prevent their 
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regeneration (Filbee-Dexter and Scheibling, 2014; Johnson and Mann, 1988; Silliman et 

al., 2013), thus modulating benthic community structure.  

In temperate and sub-polar shallow reef systems, large brown seaweeds of the order 

Laminariales, called kelp, create 3-D structures which enhance habitat complexity, 

productivity, and biodiversity (Dayton, 1985; Estes et al., 2004; Steneck et al., 2002). In 

such systems, sea urchins are dominant grazers which preferentially consume kelp by 

forming extensive feeding fronts at the deeper edge of kelp beds, leaving behind barren 

grounds largely devoid of fleshy seaweed and dominated by encrusting calcified algae 

(Himmelman, 1984; Scheibling and Hatcher, 2007; Scheibling et al., 1999; Steneck et al., 

2002). The presence of urchin fronts consuming and pushing back the edge of kelp beds 

creates a sharp boundary between kelp bed and urchin barren (Gagnon et al., 2004; Lauzon-

Guay et al., 2008; Lauzon-Guay and Scheibling, 2007b; Scheibling et al., 1999). Large-

scale shifts between kelp bed-dominated and urchin barren-dominated community states 

(termed phase shifts or regime shifts) have been reported worldwide following sporadic or 

cyclical variations in urchin densities (reviewed in Filbee-Dexter and Scheibling, 2014; 

Ling et al., 2015; Norderhaug and Christie, 2009). Field observations suggest that urchins 

must exceed a threshold density to effectively (and destructively) consume kelp beds 

(reviewed in Filbee-Dexter and Scheibling, 2014; Lauzon-Guay et al., 2009). Kelp-urchin 

systems demonstrate hysteresis as the urchin density required to maintain a system as 

urchin-dominated is generally an order of magnitude lower than that required to produce a 

shift from kelp- to urchin-dominated states (Filbee-Dexter and Scheibling, 2014; Ling et 

al., 2015). 
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In eastern Canada, the green sea urchin, Strongylocentrotus droebachiensis, 

preferentially feeds on kelp and modulates seasonal and annual variations in kelp 

abundance (Frey and Gagnon, 2015; Gagnon et al., 2004; Gagnon et al., 2005; Lauzon-

Guay and Scheibling, 2007c; Scheibling et al., 1999). In this region, feeding fronts of 

S. droebachiensis can destructively graze through kelp beds at rates up to 4 m·mo-1 in 

summer (Gagnon et al., 2004; Lauzon-Guay, 2007; Scheibling et al., 1999). Urchins 

grazing reduces the spatial distribution of kelp beds in summer (Frey and Gagnon, 2015; 

Gagnon et al., 2004; Keats, 1991), but kelp recruitment and growth during winter generally 

allow kelp beds to reform. When kelp beds become depleted, urchin populations endure in 

barren grounds with minimal food intake by consuming calcified encrusting algae, biofilm, 

and algal drift (Lang and Mann, 1976). Urchin movement and grazing vary locally based 

on kelp bed attributes, as increasing kelp biomass and stipe density decrease the rate of 

advance of urchin fronts, which can also vary depending on the algal species present 

(Lauzon-Guay and Scheibling, 2007b; Lauzon-Guay et al., 2009; Wright et al., 2005). 

Additionally, urchin behaviour is strongly modulated by environmental parameters as 

increasing wave action decreases urchin movement and feeding, mainly because the latter 

are inhibited by the sweeping motion of algal fronds in swell (Gagnon et al., 2006; Konar 

and Estes, 2003), while increasing temperature (up to a threshold) increases feeding activity 

(Feehan et al., 2012; Frey and Gagnon, 2015; Konar and Estes, 2003; Lauzon-Guay and 

Scheibling, 2007b, c). Therefore, density thresholds for kelp bed destruction cannot readily 

be extrapolated among regions and investigation of how local environmental conditions 

modulate kelp-urchin interactions is crucial to understand and predict community shifts. 
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In eastern Newfoundland (Canada), environmental conditions appear ideal for kelp 

bed growth with cold (-1 to 16°C) nutrient rich water, exposed and moderately-exposed 

shorelines, and abundant hard substratum (Bekkby et al., 2009; Catto et al., 2003; Frey and 

Gagnon, 2015; Kerrison et al., 2015). Yet, kelp beds in this region are limited to narrow 

bands near the water’s edge in shallow (<6 m) areas (Himmelman, 1970; Himmelman, 

1984; Keats, 1991). Extensive urchin barrens appear to have persisted through several 

decades (Frey and Gagnon, 2015, 2016; Himmelman, 1970; Himmelman, 1984), likely due 

to the lack of top-down control on urchins. Indeed, predation pressure is generally low as 

the cryptic behaviour of small (<15 mm test diameter) urchins protects them from predation 

from crabs, fish, sea stars, or conspecifics, while the large spines and solid test of larger 

individuals make them difficult to consume (Himmelman and Steele, 1971; Jennings and 

Hunt, 2010; LeGault and Hunt, 2016; Scheibling and Hamm, 1991). In addition, water 

seems too cold for the development of paramoebiasis which regulates urchin populations 

in more southern regions of eastern Canada (Buchwald et al., 2015; Scheibling et al., 1999). 

Hence, persistently high urchin densities appear to be the main factor restricting kelp bed 

distribution in eastern Newfoundland and keeping this system locked in an urchin-

dominated state (Johnson et al., 2019). However, the threshold urchin density necessary to 

maintain destructive grazing upon kelp bed is unknown; comprehensive testing of the 

effects of population density on urchin front formation and kelp bed destruction is needed 

to better understand mechanism maintaining the urchin-dominated state and the potential 

drivers of barrens-to-kelp community shifts in an environment such as Newfoundland 

subjected to chronic high wave action and persistently low sea temperature. 
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 The present study uses a manipulative field experiment to examine the relationships 

between urchin density, environmental factors (namely temperature and flow acceleration, 

as a proxy for wave action), and kelp bed destruction in one bay of southeastern 

Newfoundland. Its main objective is to identify the threshold urchin density required to 

maintain destructive grazing of kelp beds. Two main hypotheses are being tested: 1) that 

the urchin density needed to maintain destructive grazing upon a kelp bed (i.e., threshold 

density) is lower than the natural urchin front density observed in the area, as is the case in 

Nova Scotia and the northern Gulf of St. Lawrence where the observed front densities are 

generally higher than the estimated density thresholds (Gagnon et al., 2004; Lauzon-Guay 

and Scheibling, 2007b; Scheibling et al., 1999); and 2) that front formation and the rate of 

advance of the urchin front into a kelp bed increases with increasing urchin density but 

decrease under low temperature and high flow acceleration. To that effect, enclosures were 

installed at the deeper edge of a kelp bed, stocked with specific densities of urchins varying 

from 25 to 125% of the natural urchin front density in the study area, and monitored using 

underwater videography over two summers. An adjacent unmanipulated control site was 

monitored over a 14-month period (which overlapped with the two summers during which 

the enclosures were monitored) to quantify variations in urchin density and grazing year-

round.  

 

2.3. MATERIAL AND METHODS 

2.3.1. Study area 

The present study was conducted on the south portion of Flat Rock Cove 

(47°42'08.18'' N, 52°42'29.30'' W), Newfoundland (Canada), opposite to the mouth of the 
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cove which opens to the Atlantic Ocean in the northeast direction (Figure 2.1). Hence, this 

portion of the cove is highly exposed to waves and swell originating from the northeast. 

This study area was chosen because its rocky substrate and kelp bed structure (see below) 

are typical of those found on exposed shores of southeastern Newfoundland. Seabed in this 

area is composed of bedrock platforms gently sloping seaward at an angle of 10 to 30° 

(Catto et al., 2003), extending from above the water surface to a depth of ~15 m. The 

bedrock is generally flat with scattered crevices of a few centimetres in width and depth, 

and small ledges (generally <50 cm in height). A continuous kelp bed composed mainly of 

Alaria esculenta and scattered Laminaria digitata dominates the 0-5 m depth range over 

~150 m along the south shore of the cove. At the deeper edge of the kelp bed, green sea 

urchins, Strongylocentrotus droebachiensis, form grazing fronts with densities up to 400 

urchins·m-2 (preliminary observations). An extensive urchin barrens with lower urchin 

densities (~150 urchins·m-2) extends from the kelp bed edge to a depth of at least 15 m. 

Thin encrusting coralline algae (Lithotamnion glaciale) covers most of the bedrock in the 

urchin barren. Small (<1 m2) patches of the brown seaweeds Desmarestia viridis and 

Chordaria flagelliforma are present in the barren near the kelp bed. Scattered stands of the 

grazing-resistant kelp Agarum clathratum are also present at depths between 6 and 10 m. 

Sea temperature in coastal southeastern Newfoundland generally ranges from ~0°C in 

winter (March to May) to ~12 to 16°C in early August (Blain and Gagnon, 2013; Caines 

and Gagnon, 2012) and was monitored in the study area throughout the study (see Section 

2.3.4)  
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Figure 2.1. Location of the study area in Flatrock cove (Newfoundland, Canada), highlighted in red. 
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2.3.2. Experimental setup  

To quantify the effect of urchin density on kelp bed destruction, a field experiment 

was conducted in which urchin densities were manipulated within enclosures placed at the 

interface between kelp bed and urchin barren. Enclosures were delimited by 50-cm high 

fences built with 1) aquaculture netting, with a mesh aperture of 2.5 cm (Polyethylene 

netting 1.8 mm by 50 mm); 2) heavy metal chains (link diameter 9.5 mm) sewn along the 

bottom of the netting to weight it down; and 3) small plastic floats (~12 x 6 cm, oval shaped) 

attached every metre along the top of the netting to hold the fence upright in the water 

column while allowing it to sway gently with wave surge (see Appendix 2.A for details). 

Preliminary laboratory trials in an oscillatory wave tank showed that this mesh size has 

little impact on water flow, but efficiently restricts the transit of urchins >3 cm in diameter 

as they are unable to pass through the mesh’s openings and have difficulty climbing the 

flexible, swaying mesh. Once laid down on the seabed, the heavy chain conformed to small 

topographic irregularities of the bedrock, thus preventing the passage of urchins under the 

fence through cracks and crevices.  

Fences were positioned to form elongated corridors perpendicular to the kelp-barren 

interface, so that each corridor measured 1 m in width and 4 m in length, extending ~2.5 m 

in the barren and ~1.5 m in the kelp bed (Figure 2.2.A and B). Fences were secured to the 

seabed with eyebolts drilled into the bedrock at the extremities and mid-length of each 

corridor (Figure 2.2.A). The corridors were closed at the barren extremity to prevent urchin 

displacement to and from the adjacent barren but were opened at the extremity situated in 

the kelp bed. Urchin movement towards the corridors from the kelp bed was deemed 

negligible since urchins are generally in low densities within kelp beds (Frey and Gagnon,  
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Figure 2.2. Panel A: Schematic representation of the position of fences (dashed lines) and 

eyebolts (circles) forming the corridors at the kelp-barren interface in the experimental 

sites. This example shows the configuration of the corridors at site 4 (see below) in 2015. 

Letters within each corridor identify the six experimental urchin density treatments at this 

site in 2015, where N = Natural density, H = High density, M = Medium density, L = Low 

density, V = Very low density, and C = Control corridor (see section 2.3.2 for details). 

Experimental treatments were randomly assigned to each corridor at each site following a 

complete-block design and re-randomized each year. Panel B: Picture of the corridors built 

at site 4 in 2015 prior to the start of the experiment (Photo: Anne P. St-Pierre). Panel C: 

Position of the four experimental sites (labeled 1 to 4) and the control site (labelled “C”) 

within the study area. 
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2015) and their displacement is greatly impeded by the presence of kelp stipes and algal 

whiplash (Konar, 2000; Konar and Estes, 2003; Velimirov and Griffiths, 1979). As urchins 

consumed kelp within the corridors, the latter were extended by the installation of 

additional fences to ensure that these barriers extended in the kelp bed for at least 1.5 m to 

limit the possibility of urchins crossing to adjacent corridors as kelp was depleted.  

The layout of this experiment was based on a randomized complete blocks design 

(Quinn and Keough, 2002). Four blocks (hereafter called “sites”, Figure 2.2C) were 

established, with six corridors per block. The six experimental urchin front density 

treatments (described below) were randomly assigned to corridors such that each treatment 

occurred once within each site and each site contained all treatments. Hence, each site is 

considered a replicate of the experiment. The front density treatments included: 1) Natural 

urchin density of 350 urchins·m-2, representing the average mid-summer front density 

based on Gagnon et al. (2004) and preliminary observation in the study area; 2) High 

density [438 urchins·m-2], representing 125% of the mid-summer average; 3) Medium 

density [263 urchins·m-2], representing 75% of the mid-summer average; 4) Low density 

[175 urchins·m-2], representing 50% of the mid-summer average; 5) Very low density [88 

urchins·m-2], representing 25% of the mid-summer average; and 6) Control corridor, where 

urchins were removed at the onset of the trial but no urchins were subsequently added. 

Control corridors were open at the barren extremity, thus allowing urchin to move freely 

between the barren and the kelp bed edge within that corridor. In this experiment, closed 

corridors without urchins (i.e., complete urchin removal without colonization) were not 

implemented as a treatment because this is not representative of the local conditions. Upon 

installation of the fences at each of the four sites, all urchins were removed from within the 
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enclosures and the experimental urchin densities were manually recreated. Divers collected 

urchins in the nearby barren and placed the pre-determined number of urchins within 1 m 

of the kelp bed edge in each corridor to mimic an urchin front. Only urchins of 3 to 6 cm 

in test diameter (t.d.) were used because they dominate urchin fronts at the lower limit of 

kelp beds in eastern Canada (Dumont et al., 2004; Gagnon et al., 2004; Himmelman, 1986) 

and were abundant in the study area. To ensure that the presence of seaweed other than kelp 

did not influence the results, patches of Desmarestia viridis and Chordaria flagelliformis 

present in the experimental corridors were removed prior to the start of the experiment. 

In addition to the four experimental sites, a fifth site was used as an unmanipulated 

control area (hereafter “control site”, Figure 2.2C) in which no fences were installed. 

Instead, the six 1-m wide corridors within the control site were only delineated by eyebolts 

drilled into the bedrock ~2.5 m away from the kelp bed edge. These eyebolts helped identify 

the edges of the corridors during data collection. In this unmanipulated control site, urchins 

could move along the kelp bed edge as well as between the barren and the kelp bed, thus 

allowing the observation of natural, unrestricted movement patterns. 

The five sites were distributed along the kelp-barren interface at a depth of 3 to 6 m 

over a longitudinal distance of ~50 m and positioned so that the control site was placed in 

the center of the study area with two experimental sites on each side (Figure 2.2C). The 

position of each site was chosen to minimize the distance between sites while avoiding 

major topographical features in the seabed (e.g., protruding rocks, large crevices) which 

could reduce the effectiveness of the fences in stopping urchin movements.  

This experiment took place over two consecutive summers, as the experimental setup 

was installed and monitored in the summers of 2015 and 2016 but removed during winter. 
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In 2015, the experiment started on 3 August 2015 with the establishment of the urchin 

density treatments in the experimental corridors. Subsequently, the sites were visited bi-

weekly for data collection (see below, section 2.3.4) from 5 August until 20 September 

2015, at which time strong wave action damaged the experimental setup beyond repair and 

forced the retrieval of the fences from the seabed. In 2016, the experimental setup was 

installed in June, and the experiment started with the establishment of the urchin density 

treatments in the experimental corridors on 26 June 2016. The sites were then visited bi-

weekly for data collection from 29 June until 6 October, 2016. Urchin density treatments 

applied to each corridor were assigned randomly within each site independently for each 

year. The control site, where urchin densities were not manipulated, was monitored year-

round from summer 2015 to fall 2016. This site was visited bi-weekly for data collection 

from 5 August 2015 to 24 November 2015, three times during winter and spring due to 

limited site accessibility and harsh weather (4 January, 24 March, and 11 May, 2016), and 

bi-weekly from 29 June to 6 October 2016. Kelp beds showed similar coverage among sites 

at the beginning of the trials, as determined by comparisons of the proportion of seabed 

covered by kelp in the first metre of the kelp bed, kelp blade length, and kelp blade width 

among sites (one-way ANOVAs, with χ2 (4, n=35)=3.29 and p=0.51, χ2 (4, n=35)=1.35 and 

p=0.85, χ2 (4, n=35)=3.38 and p=0.50, respectively for proportion of seabed covered, blade 

length, and blade width). In 2016, the kelp bed at site 3 showed important damage caused 

by broken fences; this site was therefore removed from further analyses.  

 

2.3.3. Image acquisition and data extraction  
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Underwater videography was used to measure kelp bed destruction and monitor 

urchin aggregation within the study sites. Every two weeks, each corridor at each site was 

filmed with a submersible video camera system (Sony HDV 1080i/MiniDV with an 

Amphibico Endeavor housing) held by a scuba diver at a distance of approximately 1.5 to 

2 m above the seabed and filming downward, hence capturing on video a width of ~1.25 m 

of seafloor. Videos were obtained on days of relatively low swell to facilitate filming. To 

record these videos, the diver started at the barren extremity of the corridor and filmed the 

length of the corridor by swimming at a slow and steady pace towards the kelp bed. Video 

recording was stopped once the diver reached at least 1 m of continuous kelp bed (without 

patches of exposed seabed). The video segments were digitized and converted into 

individual images with PanoraGen.DV v1.0, with one image corresponding to an entire 

individual corridor. Each image was analyzed with Image J v1.44p (National Institute of 

Health) to (1) quantify the rate of kelp bed destruction, and (2) monitor urchin density 

within each corridor.  

To quantify the rate of kelp bed destruction by urchin grazing, the distance between 

the lower edge of the kelp bed and permanent benchmarks at the barren extremity of each 

corridor was measured and compared for successive collection dates. This measurement 

was calculated from the images as the linear distance between the corridor’s barren 

extremity, marked by eyebolts drilled into the seabed at the corridor’s corners (Figure 

2.2A), and the lower edge of the first patch of kelp encountered in the corridor measuring 

a minimum of 50 cm in width and length (i.e., measurement perpendicular and parallel to 

the corridor’s length, respectively). This minimum kelp patch size was chosen to represent 

the lower edge of the kelp bed because kelp tends to be sparser and distributed in patches 



 

38 

 

in late fall and winter rather than as a continuous bed, making the kelp bed edge more 

difficult to discern. Thus, a kelp patch covering at least half the width of the corridor was 

chosen to represent the edge of the kelp bed. Differences in the distance between the 

extremity of the corridors and the edge of the kelp bed on successive collections yielded an 

estimate of kelp retreat, used as a proxy of kelp bed destruction. Kelp retreat is commonly 

used as a measure of urchin grazing because the sharp transition between kelp and barrens 

created by urchin grazing fronts and the movement of the kelp-barren interface that they 

cause over time is easily measurable. Urchin grazing is distinguishable from other factors 

that could affect kelp survival (e.g., infestation by bryozoans, dislodgement by wave action 

or ice scouring, natural kelp natural senescence) which create a different mosaic visible 

across entire kelp beds rather than only at the interface. 

To monitor changes in urchin density, the number of urchins within a 30 x 30 cm 

quadrat was measured at two positions within each corridor: 1) at the leading edge of the 

urchin front (i.e., front zone) to quantify density at the grazing front where urchins are in 

contact with and feeding on kelp, and 2) at a distance of ~2 m from the lower kelp bed edge 

towards the barren (i.e., barren zone), within the limits of the corridors, to quantify density 

away from the kelp bed where urchins are too far to be in contact with or feed upon kelp 

sporophytes. Both quadrats were drawn on the imagery of each corridor for each collection 

date with the software Image J v1.44p (National Institute of Health) and the number of 

urchins whose test was more than half within the quadrat was recorded. The absolute 

position of the quadrats shifted from one sampling date to the next as the kelp bed edge 

retreated.  
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2.3.4. Monitoring of environmental parameters 

Temperature was recorded throughout the experiment every 30 min with a 

temperature logger with a precision of ±0.5°C (HOBO Pendant; Onset Computer 

Corporation) secured to an eyebolt at a depth of 5 m. Daily mean water temperature was 

calculated for the entire duration of the field observations, from August 2015 to October 

2016 (Figure 2.3). Temperature at the site ranged from approximately -1°C in March and 

early April to ~15°C in August, with a peak of temperature reaching ~19°C in October 

2016. Given the size (~50 m in width) and depth (3 to 5 m) of the study area, as well as 

frequent turbulence caused by waves, stratification of the water column was very unlikely 

and the temperature measured was considered an accurate representation of the entire study 

area. Temperature data was used as a predictor in the statistical analyses, as detailed in 

Section 2.3.5 below.  

The wave environment was quantified with a modified underwater relative swell 

kinetics instrument (URSKI; Figurski et al., 2011, see Appendix 2.A for details) which 

contained a submersible accelerometer (±0.105 g, HOBO Pendant G Acceleration, Onset 

Computer). The accelerometer was housed in a cylindrical, 8-cm long perforated container 

epoxied to one end of a 90-cm long, sealed, slightly positively buoyant ABS pipe (8 cm in 

diameter). The other end of the pipe was tethered with an 18-cm twine to an eyebolt drilled 

into the seabed. In still water, the structure stood vertically in the water column with the 

section containing the accelerometer at the upper, un-tethered extremity of the structure 

(~1.15 m above the seabed). In presence of water motion, the free end of the instrument 

was pushed and tilted with a direction and speed consistent with prevailing water flows. 

Every 30 seconds, the accelerometer recorded its instantaneous acceleration in response to  
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Figure 2.3. Temperature (Panel A, in °C) and relative Flow acceleration (Panel B, in m·s-

2) in the study area from August 2015 to November 2016. Vertical lines identify days on 

which data collection (i.e., acquisition of underwater imagery and measurement of urchin 

densities) took place (see section 2.3.2 and 2.3.3), while black dots represent temperature 

and flow acceleration (in panels A and B, respectively) on each day of data collection.  
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passing waves in the X- (vertical), Y- (horizontal), and Z- (horizontal) axes. The sum of 

the instantaneous acceleration vectors in Y- and Z-axes was calculated by trigonometry and 

represents the flow acceleration parallel to the seabed to which sea urchins were exposed. 

Flow acceleration was used as a proxy of the intensity of water motion. The flow 

acceleration obtained by the accelerometer yields values in m·s-2, but the accelerometer 

could not be calibrated in situ with a current meter due to logistical constraints. Thus, flow 

accelerations presented in this study should be considered as relative rather than absolute 

values. Daily mean flow acceleration was calculated for the entire duration of the field 

observations, from August 2015 to October 2016 (Figure 2.3). Throughout the study period, 

flow acceleration ranged from 0.7 m·s-2 to 7.2 m·s-2. Preliminary analyses did not show 

considerable differences in flow accelerationat the eastern extremity, center, and western 

extremity of the study area. Because bottom topography and depth were highly similar 

across the five sites within the study area, flow acceleration was considered uniform 

throughout the study area. Flow acceleration data was used as a predictor in the statistical 

analyses, as detailed in Section 2.3.5 below. 

 

2.3.5. Statistical analyses  

Univariate analyses were conducted for the following three response variables: 1) 

rate of kelp bed retreat, 2) urchin density in the front zone, and 3) urchin density in the 

barren zone. For data obtained within the experimental setup, separate three-way 

ANCOVAs were conducted for each of the three response variables above, with the fixed 

factors Treatment (categorical, 6 levels; Natural, High, Medium, Low, and Very low 

densities, and Control corridor), Julian date (continuous), and Year (categorical, 2 levels; 
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2015 or 2016). Because the experiment was replicated at four sites, the factor Site 

(categorical) was used as a random blocking factor. For data from 2015, Site had 4 levels. 

In 2016, the kelp bed within site 3 was damaged due to broken fences and this site was 

consequently removed from analyses to ensure consistency. Hence, for data from 2016, the 

factor Site had 3 levels. For data obtained at the control site, separate two-way ANCOVAs 

were conducted for each of the three response variables above, with the fixed factors Julian 

date (continuous) and Year (categorical, 2 levels; 2015 or 2016), as well as Corridor 

(categorical, 6 levels) as a random blocking factor. Two-way ANCOVAs with the fixed 

factors Temperature (continuous) and Flow acceleration (continuous) were also applied to 

each of the three response variables above, separately for the data from the experimental 

setup (using Site as a random blocking factor) and from the control site (using Corridor as 

a random blocking factor). Because environmental conditions occurring over several days 

prior to data collection might affect the urchins’ behavior and feeding, temperature and 

flow acceleration were averaged over the week preceding data collection (i.e., the seven 

days prior to measurement of kelp bed retreat in the field) and these average values were 

used in statistical analyses. 

All ANCOVAs were conducted using the “lmer” function from the “lme4” package 

(Bates et al., 2015) in R 3.5.0 (R Development Core Team, 2018). For all analyses, the 

assumption of homogeneity of the variance was verified by examining the distribution of 

the residuals and the assumption of normality of the residuals was verified by examining 

the normal probability plot of the residuals (Snedecor and Cochran, 1989). Assumptions 

were met for all analyses. Comparisons of 95% confidence intervals were used to detect 

differences among slopes. All analyses were applied to the raw data. A significance level 
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of 0.05 was used in all analyses. All slope estimates are presented with standard errors 

(mean ± SE) unless stated otherwise. 

 

2.4. RESULTS 

2.4.1. Rate of kelp bed retreat 

Within the experimental sites during summer, the rate of kelp bed retreat was 

significantly affected by the factor Julian date, but not Treatment or Year (see Appendix 

2.B, Table 2.B.1). The rate of kelp bed retreat increased by 0.05 ± 0.02 m·mo-1 for each 

increase of one day in Julian date throughout summer (Figure 2.4). However, large 

variations were observed in the data. Within the control site year-round, the rate of kelp 

bed retreat was not significantly affected by the factors Julian date nor Year (Table 2.B.2).  

In the experimental sites during summer, no effect of the factors Temperature, Flow 

acceleration, or their interaction was detected on the rate of kelp bed retreat (Table 2.B.3). 

For the data from the control site collected year-round, a significant effect of the factor 

Temperature was detected on the rate of kelp bed retreat (Table 2.B.4), with an increase of 

0.29±0.11 m·mo-1 for each increment of 1°C in water temperature (Figure 2.5). 

 

2.4.2. Urchin densities at the front 

Within the experimental sites in summer, the density of urchins at the front was 

significantly affected by the triple interaction between the factors Treatment, Julian date, 

and Year (Table 2.B.5, Table 2.1). In the high, natural, and low density treatments, urchin 

density at the front decreased as Julian date increased in both 2015 and 2016. The rate of 

decrease in front density in these three treatments ranged from -0.6 urchin·m-2·d-1 in the 
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Figure 2.4. Relationship between the rate of kelp bed retreat (in m·mo-1) and Julian date 

for observations obtained during summer within the experimental sites (r2=0.046, 

p=0.004). Because de factors Treatment and Year did not have a significant effect on the 

rate of kelp bed retreat within the experimental sites (see Table 2.B.1), data is pooled over 

the two years in which the experiment took place (2015 and 2016) and over the six 

experimental density treatments.  
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Figure 2.5. Relationship between the rate of kelp bed retreat (in m·mo-1) and temperature 

(°C), for observations obtained year-round (i.e., from August 2015 to October 2016, see 

section 2.3.2) within the control site (r2=0.152, p=0.009). Because the factor Flow 

acceleration did not have a significant effect on the rate of kelp bed retreat within the control 

site (see Appendix 2.B, Table 2.B.4), flow acceleration is not shown. Data from both years 

(2015 and 2016) was pooled for analyses of environmental parameters (see section 2.3.5). 
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Table 2.1. Estimates of slope obtained from the three-way ANCOVA examining the effect 

of Treatment (Natural, High, Medium, Low, and Very low densities, and Control corridor), 

Julian date (continuous variable), and Year (2015 and 2016) on the density of urchins at 

the front, which indicated a significant effect of the triple interaction between these factors 

(see Table 2.B.5 and Sections 2.3.5 and 2.4.2). Estimates with different letters are 

significantly different from each other based on comparison of the lower and upper 95% 

confidence interval (CI) around the slope estimate. See Figure 2.6 for a visual 

representation of each slope.  

 

Year Treatment Slope estimate Lower 95% CI Upper 95% CI Letter 

      

2015 High -5.182 -8.354 -2.010 a 

 Natural -3.396 -6.810 0.018 ab 

 Medium 0.432 -2.136 3.000 abcd 

 Low -0.669 -3.117 1.779 abcd 

 Very low 0.812 -0.758 2.382 bc 

 Control corridor 1.809 0.351 3.267 d 

      

2016 High -1.865 -2.704 -1.025 abc 

 Natural -0.851 -1.885 0.183 bc 

 Medium -0.967 -1.822 -0.112 bc 

 Low -0.654 -1.658 0.351 bc 

 Very low -0.942 -1.400 -0.484 bc 

 Control corridor -0.521 -1.099 0.058 bc 
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low density treatment in 2016 (i.e., average front density decreased from 129 ± 102 

urchin·m-2 at the beginning to 56 ± 56 urchin·m-2 at the end of the experiment) to maximum 

rate of -5.2 urchin·m-2·d-1 in the high density treatment in 2015 (i.e., average front density 

decreased from 419 ± 103 urchin·m-2 at the beginning to 150 ± 14 urchin·m-2 at the end of 

the experiment; Table 2.1, Figure 2.6). The negative slopes in the high and natural densities 

treatments observed for 2015 were 1.8 to 9.9 times more pronounced than any other 

negative slopes (Table 2.1, Figure 2.6). In the medium and very low density treatments, as 

well as in the control corridors, front densities showed an increase as Julian date increased 

in 2015 with rates of 0.4 urchin·m-2·d-1 (i.e., average front density increased from 183 ± 19 

urchin·m-2 at the beginning to 175 ± 56 urchin·m-2 at the end of the experiment), 0.8 

urchin·m-2·d-1 (from 103 ± 27 urchin·m-2 at the beginning to 111 ± 16 urchin·m-2 at the end 

of the experiment), and 1.8 urchin·m-2·d-1 (from 0 urchin·m-2 at the beginning to 89 ± 48 

urchin·m-2 at the end of the experiment) respectively (Figure 2.6). However, front density 

decreased as Julian date increased in 2016 in these three treatments, with rates of -1.0 

urchin·m-2·d-1 (i.e., average front density decreased from 137 ± 16 urchin·m-2 at the 

beginning to 37 ± 31 urchin·m-2 at the end of the experiment), of -0.7 urchin·m-2·d-1 (from 

118 ± 13 urchin·m-2 at the beginning to 0 urchin·m-2 at the end of the experiment), and of -

0.5 urchin·m-2·d-1 (from 62 ± 57 urchin·m-2 at the beginning to 0 urchin·m-2 at the end of 

the experiment), respectively; (Figure 2.6). In 2015, null densities were only observed in 

the low and very low density treatments as well as the control corridors. However, null 

densities were observed in corridors from all treatments in 2016, particularly at the end of 

the season (end of August, September, and October). Within the control site year-round,  
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Figure 2.6. Relationship between urchin density at the front and Julian date, for 

observations obtained in summer within the experimental sites. Each panel represents one 

level of the six experimental urchin front density treatments applied, including the natural 

average mid-summer front density in the study area (350 urchins·m-2), the high, medium, 

low, and very low densities representing respectively 125%, 75%, 50%, and 25% of the 

mid-summer average, and the control corridors (see section 2.3.2 for details). Data from 

2015 is identified by white circles and dashed lines, while data from 2016 is identified by 

gray circles and full lines. Slopes not sharing the same letter are significantly different 

based on comparison of the 95% confidence interval for the slope estimates. Because the 

triple interaction between the factors Treatment, Julian date, and Year was significant 

(p=0.003, Appendix 2.B, Table 2.B.5), the 12 regression lines present in this figure are 

compared simultaneously. 
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urchin density at the front was not significantly influenced by the factors Julian date, Year, 

or their interaction (Table 2.B.6).  

Within the experimental sites during summer, analyses showed no effect of the 

factors Temperature and Flow acceleration, or their interaction on urchin density at the 

front (Table 2.B.7). Within the control site year-round, urchin density at the front was not 

influenced by either Temperature or Flow acceleration, or their interaction (Table 2.B.8). 

 

2.4.3. Urchin density in the barren 

Within the experimental sites in summer, urchin density in the barren zone (i.e., at 

a distance of ~2 m from the lower kelp bed edge towards the barren) was significantly 

affected by the interaction between Julian date and Year, but not by Treatment (Table 

2.B.9). Urchin density in the barren at the experimental sites increased as Julian date 

increased in 2015 at a rate of 0.2 urchin·m-2·d-1, but decreased as Julian date increased in 

2016 at a rate of -0.2 urchin·m-2·d-1 (Figure 2.7A). However, the data shows large variation 

in urchin density in the barren on both years (Figure 2.7). Within the control site year-

round, urchin density in the barren zone was significantly affected by the interaction 

between Julian date and Year (Table 2.B.10). Urchin density in the barren at the control 

site increased as Julian date increased in 2015 at a rate of 1.3 urchin·m-2·d-1 (meaning that 

average barren density increased from 0 urchin·m-2 in August to 89 ± 29 urchin·m-2 in 

November), but decreased as Julian date increased in 2016 at a rate of -0.4 urchin·m-2·d-1 

(meaning that average barren density decreased from 83 ± 26 urchin·m-2 in January to 15 ± 

10 urchin·m-2 in October), also with large variations in the densities observed (Figure 

2.7B). 
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Figure 2.7. Relationship between urchin density in the barren zone (i.e., at a distance of 

~2 m from the lower kelp bed edge towards the barren) and Julian date in 2015 (white 

circles, dashed line) and 2016 (gray circles, full line). Panel A presents data obtained in 

summer within the experimental sites (r2=0.014 in 2015 and r2=0.037 in 2016). The two 

slopes are significantly different from each other (p=0.048 for the interaction between 

factors Julian date and Year, see Appendix 2.B Table 2.B.9). Because the factor Treatment 

did not have a significant effect (Table 2.B.9), data are pooled over the six experimental 

density treatments. Panel B presents data obtained year-round within control site (r2=0.247 

in 2015 and r2=0.186 in 2016). The two slopes are significantly different from each other 

(p<0.001 for the interaction between factors Julian date and Year, see Appendix 2.B Table 

2.B.10).  
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The factors Temperature, Flow acceleration, or their interaction had no effect on 

urchin density in the barren zone within the experimental sites during summer (Table 

2.B.11). At the control site year-round, urchin density in the barren zone was significantly 

affected by the interaction between the factors Temperature and Flow acceleration (Table 

2.B.12). These two factors had an opposite effect, as urchin density in the barren decreased 

with increasing temperature and increased with increasing wave action (Figure 2.8).  

 

2.5. DISCUSSION 

The present study is the first experimental investigation of the threshold urchin 

density at the grazing front required to maintain kelp bed destruction in eastern 

Newfoundland. Results obtained within the experimental setup appeared highly variable 

and did not reveal a clear urchin density threshold necessary to maintain kelp bed 

destruction. Instead, the results suggested that the rate of kelp bed retreat in the 

experimental setup was not modulated by urchin density but increased over time throughout 

summer, being approximately 4.5 times higher in late than early summer. Temperature and 

flow acceleration had no effect on any of the variables measured within the experimental 

setup, but these factors had an interactive and opposite influence on the density of urchins 

in the barren of the control site, as the density observed decreased with increasing 

temperature but increased with increasing flow acceleration. At the control site, kelp bed 

retreat was affected by temperature only, being slightly negative (indicative of a slight kelp 

bed expansion) at temperatures below 2°C and increasing at the rate of ~0.3 m·mo-1 for 

each increment of 1°C up to temperatures of ~16°C. 
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Figure 2.8. 3D plot of the multiple regression of urchin density in the barren zone (in 

urchins·m-2) with the factors Temperature (°C), and Flow acceleration (m·s-2) as 

independent variables, for observations obtained year-round (i.e., from August 2015 to 

October 2016, see section 2.3.2) within control site. Data from both years (2015 and 2016) 

was pooled for analyses of environmental parameters (see section 2.3.5 and Appendix 2.B 

Table 2.B.12).  
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Urchin front density and kelp bed consumption 

Both hypotheses that (1) the urchin density needed to maintain destructive grazing 

upon kelp bed (i.e., threshold density) is lower than the natural urchin front density 

observed in the area, and (2) front formation and the rate of advance of the urchin front into 

the kelp bed increases with increasing urchin density but decreases under low temperature 

and high flow acceleration were not fully supported by the results obtained. In the present 

study, no correlation was detected between urchin density in the experimental setup and 

kelp bed retreat, suggesting that the lowest urchin density tested (88 urchins·m-2, i.e., 25% 

of the natural front density in the study area) may be higher than the urchin density needed 

to maintain destructive grazing upon kelp beds by green sea urchins in eastern 

Newfoundland during summer. At the control site, the potential relationship between the 

rate of kelp bed retreat and urchin density at the front was visually examined but no linear 

trend nor threshold was immediately evident in the data. Hence, these results suggest that 

the threshold urchin density to maintain destructive grazing upon kelp beds is either at or 

below 88 urchins·m-2 and that the rate of kelp bed consumption is not modulated by urchin 

density above this threshold. In the barren ground near the study sites, urchin densities of 

~150 urchins·m-2 were observed (unpublished data), suggesting that even the urchin density 

several metres away from the kelp bed is high enough to cause destructive grazing of kelp 

beds and prevent kelp recolonization far into the barren grounds. Hence, these results 

support the idea that the high urchin density and their grazing pressure maintain this system 

locked in an urchin-dominated state and prevents large-scale shifts to a kelp-dominated 

state (Johnson et al., 2019).  
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The estimated threshold density (≤88 urchins·m-2) and the lack of relationship 

between urchin density and the rate of kelp bed retreat observed in the present study are 

similar to those reported for the northern Gulf of St. Lawrence by Gagnon et al. (2004). 

These authors estimated the threshold urchin density below which urchin fronts cannot 

significantly consume kelp beds to be ~102 urchins·m-2 (or ~5 kg·m-2) and did not observe 

a significant relationship between urchin biomass and the rate of kelp bed retreat. Hence, 

observations from eastern Newfoundland (i.e., present study) and the Gulf of St. Lawrence 

(Gagnon et al., 2004) contrast with the trends observed in Nova Scotia, where the rate of 

advance of urchin fronts into kelp beds is positively correlated with front density (Lauzon-

Guay and Scheibling, 2007b; Scheibling et al., 1999) and where a much lower density 

threshold (~31 urchins·m-2) has been estimated . Differences in the morphology and density 

of the dominant kelp species among regions have been suggested as a potential cause for 

the disparity among these regions. Indeed, the dominant kelp species in the Gulf of St. 

Lawrence and in southeastern Newfoundland is Alaria esculenta (Frey and Gagnon, 2015; 

Gagnon et al., 2005; Himmelman, 1991), which is much smaller and more prostrate than 

Laminaria longicruris which dominates kelp beds in Nova Scotia (Scheibling and Gagnon, 

2009; Scheibling et al., 1999). Because of this morphological difference, A. esculenta tends 

to move more easily in the water column and create algal whiplash close to the seabed even 

under very light wave action (P. Gagnon, personal observations) which greatly inhibits 

urchin movement and feeding as these invertebrates are highly sensitive to physical contact 

with moving structures (either natural, such as macroalgae, or synthetic; Gagnon et al., 

2006; Konar, 2000; Lauzon-Guay and Scheibling, 2007c; Velimirov and Griffiths, 1979). 

In addition, A. esculenta forms beds with a higher density of stipes than L. longicruris, and 
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stipe density has been shown to slow down the advance of urchins into kelp beds (Lauzon-

Guay and Scheibling, 2007b). Although results from the present study found no effect of 

flow acceleration on the rate of kelp bed retreat and urchin aggregation at the front 

(discussed below), it is possible that permanently high wave action experienced at the site 

combined with the presence of the easily-moving A. esculenta fronds largely impeded the 

urchins from advancing into and destructively grazing the kelp bed. Hence, a higher density 

of urchins may be necessary to immobilise the sweeping fronds of A. esculenta, leading to 

higher threshold densities, although further studies are required to determine the exact 

threshold urchin density in Newfoundland.  

Data compiled in a recent review of large-scale phase shifts between community 

states within kelp systems worldwide by Filbee-Dexter and Scheibling (2014) indicates that 

the threshold urchin biomass required for a transition from urchin- to kelp-dominated states 

(termed “reverse shift”) is generally 77 to 91% lower than the threshold for a shift from 

kelp- to urchin-dominated states (termed “forward shift”). In comparison, these authors 

estimated that the urchin biomass required to maintain a system as urchin-dominated is an 

order of magnitude lower than the biomass required to produce a forward shift. In the 

present study, because of the small spatial scale of the experiment (1-m wide corridors) and 

relatively short temporal span, the results obtained provide information on the conditions 

needed for the maintenance of a community state rather than its origin via phase shift 

(Petraitis and Latham, 1999). Therefore, the estimated threshold of ≤88 urchins·m-2 

described above does not illustrate the threshold required for a phase shift from urchin- to 

kelp-dominated community state, but rather the threshold urchin density below which 

urchins cannot destructively graze through kelp beds. Further studies will be needed to 
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specifically quantify the threshold urchin density causing a shift from urchin- to kelp-

dominated states, but data from the present study suggest that a severe perturbation causing 

urchin density to decline at least below the threshold for kelp bed destruction would be 

needed for kelp bed expansion into urchin-dominated barren grounds to occur (i.e., urchin 

population decline greater than 75%). Moreover, the threshold estimated in the present 

study represents the urchin density necessary to destructively consume kelp beds during 

summer only. Because of the yearly cycle observed in kelp systems, in which urchins graze 

upon kelp beds largely during summer while kelp recruitment and kelp bed recovery occurs 

during winter when urchins are less active (DFO, 2013; Frey and Gagnon, 2015; Gagnon 

et al., 2004; Scheibling et al., 1999; Siikavuopio et al., 2006), this threshold may not be 

indicative of the minimal urchin density necessary to consume kelp beds in winter. Hence, 

the temporal extent studied must be taken into account when interpreting and comparing 

results from such threshold analyses. Within the control site, the rate of kelp bed expansion 

during winter was similar to the rate of kelp bed retreat in summer, suggestive of a balanced 

cycle of urchin grazing and kelp recovery. However, urchin grazing during winter may be 

limiting the expansion of the kelp bed further into the barren. 

 

Environmental parameters  

Results from the present study showed no significant correlation between 

temperature, flow acceleration, and any of the response variables measured in the 

experimental setup (i.e., rate of kelp bed retreat, urchin front density, urchin density in the 

barren). However, the influence of environmental parameters was observed in the control 

site. Results from the control site partly support the hypothesis that both kelp bed 
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destruction and the formation of urchin front are reduced at low temperature and high wave 

action. The positive correlation observed between kelp bed retreat and temperature at the 

control site is consistent with the increasing feeding rate of the green sea urchin in eastern 

Newfoundland with increasing temperature up to a threshold of 12°C (Frey and Gagnon, 

2015). Despite this threshold, the rate of kelp bed retreat in the present study continued to 

increase with temperature past 12°C, as was observed during another field study in the same 

region (Frey and Gagnon, 2015) and may be caused by the natural senescence of kelp 

sporophytes. Increasing temperature causes degradation and mortality of kelp sporophytes, 

especially in Alaria esculenta for which the lethal temperature is estimated at 16°C (Munda 

and Lüning, 1977). Frey and Gagnon (2015) reported deterioration of kelp sporophytes in 

eastern Newfoundland starting in mid August, as water temperature reached an annual peak 

in late summer, and continuing into fall. In addition to changes in water temperature over 

time, the trends in wave action observed in the present study (strong storms in October in 

2015, gradually increasing severity of wave action from August to November in 2016 as 

indicated by high flow accelerations) may also have contributed to damaging kelp fronds. 

Therefore, it is not possible to disentangle the effects of urchin grazing from the effects of 

high late-summer temperature on kelp bed degradation in this field experiment by 

measuring the rate of kelp bed retreat only. For example, studies quantifying the 

degradation of kelp beds through summer in the absence of urchin grazing pressure (e.g., 

through large-scale urchin exclusion experiments) would be needed to estimate the 

proportion of kelp degradation linked to adverse effects of temperature and wave action on 

kelp sporophyte.  
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Within the control site, densities of urchins in the barren zone (~2 m away from the 

kelp bed) decreased with increasing temperature and increased with increasing flow 

acceleration, with an interactive effect of these two environmental parameters. Urchin 

feeding and movement are known to increase with water temperature and to decrease with 

increasing wave action (Feehan et al., 2012; Frey and Gagnon, 2015, 2016; Lauzon-Guay 

and Scheibling, 2007c). Therefore, in situations of high water flow and low temperatures 

when feeding is deterred, urchins may be prone to move away from the kelp bed to avoid 

the whiplash of kelp blades which could dislodge them (Frey and Gagnon, 2016; 

Himmelman and Steele, 1971; Konar, 2000; Velimirov and Griffiths, 1979). As urchin 

movement is slowed in high wave action, urchins may minimize the distance travelled 

which explains the increases in urchin densities in the barren close to the kelp bed observed 

in this study. When temperature and flow conditions improve, these urchins would then be 

able to move towards the kelp bed and quickly initiate feeding. Although not statistically 

significant, a slight increase in urchin density at the front was observed with increasing 

temperature and decreasing flow, further supporting the idea that urchins respond to 

changes in environmental parameters by moving towards or away from the kelp bed 

depending on the suitability of the conditions for grazing. Surprisingly, temperature and 

flow acceleration did not affect urchin density (either at the front or in the barren) in the 

experimental setup. Other abiotic factors, such as microhabitat heterogeneity or kelp debris 

distribution, should be investigated to identify other potential drivers of front and barren 

density patterns. 
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Limitations of the study 

Two types of controls were used in the present study; first, each experimental site 

contained a control corridor, which was emptied of urchins at the start of the experiment 

but allowed the movement of urchins from the barren towards the kelp bed by an opening 

at the barren end. Secondly, an unmanipulated control site was monitored, where no 

corridors were installed thus allowing the movement of urchins both between the barren 

and kelp bed and along the kelp bed edge without obstruction. It was expected that urchin 

densities within the control corridors would gradually increase to match those in the control 

site because of directional movement of individual urchins towards food sources (Garnick, 

1978; Mann et al., 1984; Scheibling and Hamm, 1991) although urchin displacement is 

largely random (Dumont et al., 2006; Lauzon-Guay and Scheibling, 2007a; Lauzon-Guay 

et al., 2006). It was expected that urchins would move into the open corridors to take 

advantage of the readily available kelp resources as Lauzon-Guay and Scheibling (2007b) 

showed that urchins redistribute their densities at the front to concentrate in areas of highest 

food availability, especially when kelp is being depleted in adjacent areas. However, urchin 

front densities within the control corridors remained low in both summer (19.0 ± 8.6 

urchins·m-2) compared to the control site (93.7 ± 11.1 urchins·m-2, up to 355 urchins·m-2), 

suggesting that redistribution was limited. Yet, it cannot be excluded that the presence of 

fences may have limited recolonization of the control corridors despite the large opening 

at the barren end of each control corridor. Since whiplash created by macroalgae or flexible 

synthetic structures swaying in the water column and brushing against urchins inhibits 

urchin movement (Konar, 2000; Lauzon-Guay and Scheibling, 2007c; Velimirov and 

Griffiths, 1979), it is possible that the movement of the fences limited urchin displacement 
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within the experimental setup, including the open-ended control corridors. After removal 

of the fences in fall 2015, urchin densities at the front appeared more evenly distributed in 

the study sites (A. P. St-Pierre, personal observations), supporting the findings of Lauzon-

Guay and Scheibling (2007b) regarding the redistribution of urchins along kelp bed edges 

and suggesting that along-edge movement is more important for the spatial redistribution 

of urchin densities at the front than barren-to-edge movement.  

Important interannual variations were observed in urchin density at the front (within 

the experimental sites) and density in the barren zone (within the experimental sites and the 

control site). Interannual differences in kelp bed distribution were also observed, as kelp 

beds within Flatrock Bay seemed more fragmented in 2016 than in 2015. As urchin grazing 

and front advance are known to be negatively correlated with kelp density (Lauzon-Guay 

and Scheibling, 2007b), interannual differences in urchin aggregation behavior may be 

partly explained by differences in the density and distribution of kelp patches as discussed 

above. However, these differences may also partly be an artefact stemming from the 

different range of collection dates each year. This possibility is particularly likely for data 

from the control site, where sampling dates in 2015 ranged from August to November, but 

extended from January to October in 2016, thus spanning a wider range of seasonal and 

temperature variations in the latter year. This suggests that the timescale over which 

investigations are conducted may impact the results, given the interannual differences 

observed as well as the yearly cycle of kelp bed retreat from grazing (summer) and kelp 

bed recovery (winter). Additional studies in Flatrock Bay would be necessary to quantify 

the variability in kelp cover over several years and measure its influence on kelp-urchin 

dynamics. 
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The present study is the first manipulative experiment conducted in southeastern 

Newfoundland aiming to understand how urchin density affects kelp bed destruction and 

urchin aggregation to provide insights into the factors regulating kelp-urchin dynamics in 

this region. It suggests that the threshold urchin front density necessary to maintain 

destructive grazing of kelp beds during summer is at or below 88 urchins·m-2 and that 

increasing urchin density above this threshold does not further modulate the rate of kelp 

bed consumption. Given that this threshold is lower than the urchin density observed in the 

barren adjacent to the study sites, urchin densities within the study area appear to be too 

high to allow the expansion of kelp beds into the barren grounds and thus may be 

maintaining this system locked in an urchin-dominated state, similar to what has been 

suggested in the northern Gulf of St. Lawrence (Gagnon et al., 2004; Johnson et al., 2019). 

Further studies are required to test the generality of the results over broader spatial and 

temporal scales in eastern Newfoundland and to investigate if more intense variations in 

urchin densities (i.e., lower densities affecting a greater area) could influence the stability 

of the kelp-urchin system in this region and generate a phase shift from urchin- to kelp-

dominated states.  
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CHAPTER III 

 

 

 

Kelp-bed dynamics across scales: Enhancing mapping capability with 

remote sensing and GIS 1 

  

                                                 
1 St-Pierre, A.P., Gagnon, P., 2020. Kelp-bed dynamics across scales: Enhancing mapping capability with remote 

sensing and GIS. J Exp Mar Biol Ecol 522, 151246. 
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3.1. ABSTRACT  

Kelp are important drivers of productivity and biodiversity patterns in cold-water and 

nutrient-rich rocky reefs. Scuba- and boat-based methods are routinely used to study 

submerged kelp beds. However, these time-consuming and labor-intensive methods enable 

monitoring of kelp beds or the factors and processes that control their distribution over only 

small spatial (few 100s of m2) and temporal (<5 years) extents. Remote sensing and 

geographic information system (GIS) technologies are increasingly used to compare marine 

species distribution over multiple spatiotemporal scales. However, there is currently no 

clear framework and limited demonstration of their potential for studies of broad-scale 

changes in completely submerged kelp beds. The present study aims to establish the 

foundation of a simple, accessible, and robust set of remote sensing and GIS-based methods 

to address key questions about the stability of subtidal kelp beds across multiple spatial and 

temporal scales. It tests the suitability of conventional image classification methods for 

mapping kelp from digital aerial (acquired on board a helicopter) and satellite (SPOT 7) 

imagery of ~250 ha of seabed around four islands in the Mingan Archipelago (northern 

Gulf of St. Lawrence, Canada). Three classification methods are compared: 1) a software-

led unsupervised classification in which pixels are grouped into clusters based on similarity 

in spectral signature among pixels; 2) a software-led supervised classification in which 

pixels are assigned to categories based on similarity in the spectral signature of pixels and 

that of reference data from each category; and 3) a visual classification carried out by a 

trained observer. Supervised classification of satellite imagery and visual classification of 

aerial imagery were the top methods to map kelp, with overall accuracies of 89% and 90%, 

respectively. Unsupervised classification of both types of imagery showed poor 
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discrimination between kelp and non-kelp benthic classes. Kelp bed edges were more 

difficult to identify on satellite than aerial imagery because the former presented poorer 

contrasts and a lower spatial resolution. Kelp bed edges identified with visual classification 

appeared artificially jagged for both types of imagery, mainly because of the coarse (225-

m2) spatial units used for this classification. Kelp bed edges were smoother on maps created 

with the unsupervised and supervised classifications, which used 1-m-pixel images. The 

present study demonstrates that conventional remote sensing and GIS methods can 

accurately map submerged kelp beds over large spatial domains in the Mingan Archipelago 

or in other benthic systems with similar oceanic conditions and a largely dichotomous 

(kelp-barrens) biological makeup. 

 

3.2. INTRODUCTION 

Kelp (large brown seaweeds of the order Laminariales) are key drivers of productivity 

and biodiversity patterns in cold-water and nutrient-rich, shallow rocky reefs (Dayton, 

1985; Tegner and Dayton, 2000). Kelp typically form structurally complex aggregates, 

known as kelp beds or forests, which provide critical habitat to a variety of fish and 

invertebrates (Estes et al., 2004; Ling, 2008; Steneck et al., 2002). Worldwide, large-scale 

shifts from kelp-dominated to urchin-dominated community states have occurred following 

increases in the intensity of urchin grazing on kelp, or as a result of climate-driven shifts in 

species distribution (Ling et al., 2015; Steneck et al., 2002; Vásquez et al., 2007; Wernberg 

et al., 2016). Although these shifts between community states affect 10s to 100s of km2 of 

coastal habitats (Filbee-Dexter and Scheibling, 2014; Krumhansl et al., 2016; Moy and 

Christie, 2012), most studies of subtidal kelp systems, including distributional aspects, have 
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been conducted over small spatial (few hundreds of metres) and temporal (less than five 

years) scales mainly because of the limitations of the time-consuming and labor-intensive 

scuba techniques typically employed (Gagnon et al., 2004; Lauzon-Guay and Scheibling, 

2007; Scheibling et al., 1999; Van Rein et al., 2009). Such studies provide valuable 

information about local kelp bed dynamics. However, distributional patterns of kelp and 

the underlying ecological drivers may vary across scale (Cavanaugh et al., 2010; Schneider, 

2001; Turner et al., 1989; Van Rein et al., 2009), and hence repeated measurements of kelp 

abundance and the ecological drivers of change at broad spatial and temporal scales are 

desirable over inferences from small scale patterns. 

In the northern Gulf of St. Lawrence (Canada), mixed kelp beds dominated by 

Alaria esculenta (Linneaus) and Laminaria digitata (Hudson) often form a fringe from the 

lower intertidal to depths of 7 m. Dense (up to 400 individuals m-2) aggregations of green 

sea urchins, Strongylocentrotus droebachiensis (Müeller), known as urchin fronts, 

typically form at the lower edge of the beds, more so in summer. Urchin fronts destructively 

graze the beds as they move in shallower water, leaving behind extensive barrens largely 

devoid of fleshy macroalgae (Gagnon et al., 2003; Gagnon et al., 2004; Himmelman, 1991). 

The Mingan Archipelago is a group of more than 40 islands along the northern shore of the 

Gulf of St. Lawrence, between Anticosti Island and Québec’s Middle North Shore. The 

shallow seascape around these islands presents the biological characteristics described 

above, with a spatial dominance of barrens over kelp beds within the first 10 m of water 

(Gagnon et al., 2003; Gagnon et al., 2004; Himmelman, 1991).  
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Scuba-based research carried out around many islands since the early 1980s, suggests 

that urchin barrens can persist for decades, mainly because of sustained urchin grazing (see 

Gagnon et al., 2003; Gagnon et al., 2004; Gagnon et al., 2005; Himmelman, 1991; Narvaez 

Diaz, 2018). This situation differs from that in more southerly regions of eastern Canada 

with warmer waters, in particular Nova Scotia, where outbreaks of a pathogenic amoeba 

have sporadically decimated urchin populations, causing large-scale shifts in kelp/barrens 

community states (Filbee-Dexter and Scheibling, 2012, 2014; Lauzon-Guay et al., 2009). 

The presumed stability of the kelp bed and barrens states across the Mingan Archipelago 

is not backed by a rigorous, broad-scale assessment of temporal changes in the spatial 

extent of each community state. Also, factors that control the broad-scale stability, or lack 

thereof, of these community states are largely unknown. Synoptic approaches that depend 

less on scuba techniques, more on mass acquisition and analysis of data, must be developed 

to properly address the frequency, causes, and consequences of community phase shifts in 

this and other systems, at scales that enable significant gains in ecological knowledge and 

ability to manage marine resources. 

Broad-scale marine habitat mapping programs increasingly rely on remote sensing 

and geographic information system (GIS) technologies (Finkl and Makowski, 2014; Green 

et al., 2000; McCarthy et al., 2017), which provide several key advantages over traditional 

scuba-based techniques. First, acquisition of imagery (or other types of data) with airborne 

or spaceborne sensors can be much quicker and cover much larger areas, including in 

remote locations (Cavanaugh et al., 2010; Deysher, 1993; Green et al., 2000; Van Rein et 

al., 2009). Orbiting satellites revisit the same locations on the earth’s surface at regular 

intervals, thus acquiring core information for community change analysis (Brooks et al., 
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2015; Lyons et al., 2011; Yang and Yang, 2009). High-resolution satellite images covering 

a variety of spatial domains are publicly (and sometimes freely) available (e.g., Worldview-

1 to 4 [0.31 to 0.46-m pixels], Quickbird [0.65-m pixels], SPOT7 [1.5-m pixels], 

PlanetScope [3-m pixels], and RapidEye [5-m pixels]), therefore facilitating access to core 

data. Secondly, images can be georeferenced, projected, and analyzed in a GIS, and 

spatially matched with environmental factors to explore the causes and consequences of 

changes of a given community component (Garza-Pérez et al., 2004; Kendrick et al., 2000; 

Lathrop et al., 2001; Silva et al., 2008). Despite these advantages, mapping of subtidal 

benthic communities based on optical imagery acquired from above the sea surface can be 

challenging, mainly because of the exponential attenuation of sunlight passing through the 

water column (Green et al., 2000; Jerlov, 1976). This phenomenon, which further varies 

with the type of oceanic water (Jerlov, 1976; Maritorena et al., 1994; Mobley, 1994) 

ultimately alters the spectral values of the seabed and benthos recorded by the camera and, 

in turn, the ability to correctly classify benthic community types (Ackleson, 2003; Gagnon 

et al., 2008; Green et al., 2000). Because of this challenge, studies of submerged vegetation 

from remotely acquired optical imagery have largely been in benthic habitats overtopped 

by optically shallow (low-turbidity) waters (Andréfouët et al., 2004; Gullström et al., 2006; 

Hedley et al., 2012; Hochberg and Atkinson, 2003; Hu et al., 2015; Kendrick et al., 2000; 

Lyons et al., 2011).  

Most studies that have used optical remote sensing to map kelp have focused on tall 

species (e.g., the giant kelp, Macrocystis pyrifera) that form forests and grow tissues at or 

near the sea surface, therefore substantially reducing the risk of misclassification (Bell et 

al., 2015a; Bell et al., 2015b; Cavanaugh et al., 2010; Cavanaugh et al., 2011; Friedlander 
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et al., 2018; Grove et al., 2002; Nijland et al., 2019; Stekoll et al., 2007). The greater 

challenge of detecting largely submerged, low-lying kelp species from above the sea 

surface, like is the case in the Mingan Archipelago, might partly explain the rarity of studies 

that have mapped completely submerged kelp beds with optical remote sensing (Casal et 

al., 2011; Malthus and Karpouzli, 2003; Simms and Dubois, 2001; Vahtmäe et al., 2012). 

Water column correction techniques can be applied to improve the accuracy of 

classification maps of benthic habitats (Hoang et al., 2015; Sagawa et al., 2012; Zoffoli et 

al., 2014), yet their complexity may limit their implementation. Remote sensing and GIS 

technologies evolve rapidly (Finkl and Makowski, 2014; Frohn and Lopez, 2017; 

McCarthy et al., 2017), becoming increasingly powerful and complex. As highlighted by 

Andréfouët (2008), the perspective and objectives of “map producers” (e.g., remote sensing 

specialists) whose main goal is to develop highly effective methods, differ from those of 

“map users” (e.g., scientists and managers) who are primarily interested in creating 

trustable and adaptable products (e.g., habitat classification maps and accuracy metrics) in 

simple ways. As map users, those with a prime interest in studying submerged kelp bed 

dynamics, i.e., marine benthic ecologists, may not be familiar with, or have access to, 

specialized, cutting-edge remote sensing technologies. These non-specialists would 

therefore benefit from a demonstration of the gain in information that simple and accessible 

remote sensing and GIS technologies can provide.  

The present study is the first of a series aimed at developing and presenting a simple 

and accessible, yet robust set of remote sensing and GIS-based approaches to address key 

questions about the stability of kelp beds across multiple spatial and temporal scales. The 

series uses the Mingan Archipelago as a study system because of its relative simplicity (see 
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details in section 3.3.1) and the opportunity that previous scuba-based studies offer to 

compare patterns and drivers of kelp stability across scales (Gagnon et al., 2003; Gagnon 

et al., 2004; Gagnon et al., 2005; Himmelman and Dutil, 1991; Narvaez Diaz, 2018). The 

present study’s main objective is to identify the most reliable methodology to quantify the 

distribution of completely submerged kelp that subsequent studies can use to generate core 

information to quantify biological and ecological patterns and their natural drivers. This 

objective is accomplished by testing the suitability of three conventional classification 

methods for kelp detection and mapping: 1) a software-led unsupervised classification in 

which clusters of pixels are identified based on the similarity in spectral signature among 

pixels and the user subsequently assigns the clusters to a cover class (in the present case, 

either “kelp” or “non-kelp”); 2) a software-led supervised classification in which the user 

provides field reference data to identify the spectral characteristics of each cover class, then 

each pixel is assigned to a class by the software based on spectral similarity; and 3) a visual 

classification in which a trained observer identifies the presence of either cover class on the 

imagery across a grid of points. Each classification method was applied to digital aerial 

(acquired on board a helicopter) and satellite (SPOT 7) imagery covering nearly 250 ha of 

seabed around four islands. The imagery was acquired at times of optimal sea-state 

conditions to facilitate image classification. Each method’s operational and logistical 

advantages and limitations are discussed to guide the choice of a particular methodology 

for systems similar to the Mingan Archipelago’s but where access to resources may differ. 

  

3.3. MATERIALS AND METHODS 

3.3.1. Study system 
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The study system encompassed the seabed around four islands in the Mingan 

Archipelago: Île à Firmin (westernmost), Île du Havre, Île aux Goélands, and Petite île au 

Marteau (easternmost; Figure 3.1). The seabed in this system is mainly composed of 

bedrock and boulders, with occasional patches of cobble, gravel, or sand in areas with low 

hydrodynamic forces (Gagnon et al., 2004). This system was chosen because it presents 

characteristics facilitating the application and validation of the methods described below. 

First, kelp beds composed mainly of Alaria esculenta and Laminaria digitata, and to a 

lesser extent Agarum clathratum (Dumortier), Saccharina longicruris (Bachelot de la 

Pylaie), and Saccorhiza dermatodea (Bachelot de la Pylaie), develop at depths of 0 to 7 m 

and are generally more abundant on southern, wave-exposed sides of the islands (Gagnon 

et al., 2004). These thick, dark-colored beds are followed in deeper water by green sea 

urchin (Strongylocentrotus droebachiensis) barrens colonized by a thin, light-colored layer 

of live and dead encrusting coralline algae, mainly Lithothamnion glaciale (Kjellman) 

(Figure 3.2.B, Gagnon et al., 2004). Such a dichotomous division of the benthos into two 

biologically and spectrally distinct community types, hereafter termed “kelp” and “non-

kelp”, is compatible with the application of a simple image classification method. Second, 

the transition between kelp beds and barrens is often clear-cut, mainly because of grazing 

by urchin fronts advancing over the lower edge of the beds (Figure 3.2, Gagnon et al., 

2004). Sharp transitions between these two spectrally different community types further 

facilitate identification on imagery (Figure 3.2.D and 3.2.E). Third, seabed slope is gentle, 

on average ~3% as calculated from bathymetry data, with no major sudden shifts in 

topography. Such a mild, gradual change in slope and the shallow depth range (0 to 7 m) 

on which the present study focuses limit effects of attenuation of light by the water column 
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Figure 3.1. Location of study areas (shaded polygons) at Île à Firmin, Île du Havre, Île aux 

Goélands, and Petite île au Marteau in the western sector of the Mingan Archipelago, 

northern Gulf of St. Laurence, eastern Canada. 
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Figure 3.2. A) Kelp bed [mainly Alaria esculenta] at a depth of ~2 m within the Île du 

Havre study area (photo: Anne P. St-Pierre). B) Green sea urchin 

(Strongylocentrotus droebachiensis) barrens with a few kelp patches at a depth of 6 m 

within the Île du Havre study area (photo: Anne P. St-Pierre). C) Sharp transition between 

the lower edge of a kelp bed and upper edge of an urchin barrens caused by an urchin 

grazing front advancing over kelp at a depth of ~2 m within the Île du Havre study area 

(photo: Anne P. St-Pierre). D) Satellite [SPOT 7] image of a portion of the Île du Havre 

study area. E) Aerial image of the same portion shown in D (photo: Patrick Gagnon). 
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on benthic spectral signatures (Green et al., 1996; Green et al., 2000), therefore eliminating 

the need to apply water column correction. All these characteristics reduce the likelihood 

of misclassifying both community types. 

Monospecific stands of the grazing-resistant, perennial kelp A. clathratum and annual 

brown seaweed Desmarestia viridis (Müller) that cover up to a few 10s of m2 can develop 

in the barrens at depths of up to 15 m (Gagnon et al., 2003; Gagnon et al., 2004; Gagnon et 

al., 2005). Agarum clathratum stands are considered a stable component of barrens, 

whereas stands of D. viridis are ephemeral, with annual recruitment and die-off in late 

winter and early fall, respectively (Blain and Gagnon, 2014; Gagnon et al., 2003; Gagnon 

et al., 2004; Gagnon et al., 2005). These stands typically develop in areas of low to 

moderate wave action, along the lower edge of A. esculenta beds (A. clathratum) or in the 

barrens (A. clathratum and D. viridis; Gagnon et al., 2003; Gagnon et al., 2004; Gagnon et 

al., 2005). While A. clathratum and D. viridis are not consumed by sea urchins and grow 

outside of mixed kelp beds in this region, they are not generally considered as part of kelp 

beds. However, these seaweeds could not be distinguished from mixed kelp beds on the 

imagery. As discussed later (see Discussion), there was low potential for misclassification 

of D. viridis stands as kelp and other non-kelp macroalgae were rare within the study area, 

covering only ~6% of the seabed (see section 3.2.3). In total, 248.4 ha of seabed were 

classified, with respectively 15, 62, 13, and 10% of this surface at Île à Firmin, Île du Havre, 

Île aux Goélands, and Petite île au Marteau. 

To identify the most accurate classification method (out of the three methods tested) 

for kelp detection and mapping in the Mingan Archipelago system, the procedures applied 

were grouped under four modules detailed in the sections below and summarized 
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schematically (Figure 3.3): (1) image acquisition and pre-processing [section 3.3.2]; 

(2) ground truthing [section 3.3.3]; (3) image classification [section 3.3.4]; and (4) 

accuracy assessment [section 3.3.5]. These modules combine satellite (Satellite Pour 

l’Observation de la Terre; SPOT 7), aerial (digital), and underwater (digital) seabed 

imagery of the study area, as well as bathymetric data and conventional image classification 

techniques and accuracy assessment metrics. Some of the key remote sensing and GIS 

terms employed are underlined and defined in a separate section (Appendix 3.A). 

 

3.3.2. Image acquisition and pre-processing 

The two types of remotely sensed imagery used in the present study - one SPOT 7 

satellite image and multiple aerial photographs acquired with a basic digital camera - align 

with the overarching goal of establishing simple and reliable ways to map subtidal kelp 

cover over large tracts of seabed. Original imagery differed in spatial coverage (175 to 1015 

times larger on SPOT 7 than on aerial images), spatial resolution (14 to 320 times lower on 

the SPOT 7 image), and contrast (lower on the SPOT 7 image). These differences enabled 

the comparison of the accuracy of classification maps derived from a readily available 

commercial product (SPOT 7 image) and imagery that is logistically more challenging and 

time-consuming to acquire and process (aerial photographs). The SPOT 7 image, acquired 

on 11 August, 2016, in the hour preceding low tide, encompassed the entire study system. 

It was taken after four days with low winds (16.4 ± 1.1 km h-1, based on data from 

Environment Canada [http://climate.weather.gc.ca]) and no precipitation and contained no 

cloud cover or surface waves. Aerial photographs were acquired sequentially with overlap 

from Petite île au Marteau to Île à Firmin on board a helicopter flown at an altitude of 
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Figure 3.3. Break down of steps in each of the four methodological modules used in the 

present study. (1) Image acquisition and pre-processing: satellite imagery of the study area 

was used as a base map to georectify [dashed arrow within box 1] corresponding aerial 

imagery. Both sets of images were digitally balanced to enhance contrast between kelp and 

other benthic components. Bathymetric mask was applied to restrict analysis to shallow (0 

to 7 m deep) seabed. (2) Ground truthing: bathymetric data acquired in situ with an 

echosounder and from the Canadian Hydrographic Service [CHS] were used to support 

delineation of each study area and image classification [dashed arrows from box 2 to box 

1]. Benthic photo quadrats acquired within each study area were used to validate the 

presence and absence of kelp on satellite and aerial imagery and support image 

classification and accuracy assessment [dashed arrows from box 2 to boxes 3 and 4]. (3) 

Image classification: pre-processed satellite and aerial imagery and ground truth data were 

used to create maps of kelp distribution from three different classification methods: 

unsupervised, supervised, and visual. (4) Accuracy assessment: classification accuracy for 

each of the six thematic maps created was calculated based on test location ground truth 

data [dashed arrow from box 2 to box 4]. 

 

 

  



 

87 

 

~300 m. They were taken with a hand-held digital camera (Nikon Coolpix AW130) at low 

tide on 8 July, 2016, after four days of low winds (14.1 ± 0.8 km h-1, based on data from 

Environment Canada [http://climate.weather.gc.ca]) and no precipitation. None of the 

images contained cloud cover or surface waves. We deliberately chose dates and times of 

image acquisition for each image source with best possible sea conditions (i.e., low waves, 

low winds, low turbidity) to facilitate image classification. These conditions minimized the 

amount of suspended particles in the water column and glare from sunlight reflection at the 

sea surface, enabling viewing the seabed clearly to depths of up to ~8 m on both satellite 

and aerial images (Figure 3.2.D and 3.2.E). Water-column data enabling quantifying water 

turbidity were not available. Yet, water clarity was highest for the region at this time of the 

year (P. Gagnon, personal observations over multiple years). Logistical considerations 

prevented acquiring aerial photographs on a day for which a SPOT image was available. 

Based on previous research and observations of kelp recruitment periods and urchin grazing 

in the area, the temporal gap between the acquisition of the two types of imagery is deemed 

small enough not to create a significant difference in kelp distribution (Gagnon et al., 2003; 

Gagnon et al., 2004; Gagnon et al., 2005).  

One key aspect affecting the quality of image classification is the spectral resolution 

of images. In theory, a higher spectral resolution yields greater spectral differences among 

image pixels with different objects or biota, thus increasing separability (Green et al., 

2000). Spectral resolution refers to the number and width of spectral bands in an image, 

such that images with multiple spectral bands (channels) generally have a greater spectral 

resolution and are preferred over panchromatic (one band) images (Green et al., 2000). 

Furthermore, in optically deep waters like was the case in the present study, short (blue and 
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green) wavelengths penetrate deeper than long (red and near-infrared) ones (Jerlov, 1976; 

Maritorena et al., 1994; Mobley, 1994). Consequently, sensors with a greater number of 

bands recording in the shorter wavelengths typically produce more useful imagery of 

completely submerged benthic features than sensors with a greater number of bands 

recording in the longer wavelengths (infrared wavelengths are completely filtered out 

within the first few centimetres of water, and hence useless; Lillesand et al., 2014). Yet, the 

expertise and software and hardware needed to process and classify images also increase 

with the number of spectral bands (Bioucas-Dias et al., 2013; Green et al., 2000). 

Accordingly, images with only few bands may provide sufficient resolution when dealing 

with low habitat complexity, like in the present study.  

Both satellite and aerial images were true color composite images. The SPOT 7 image 

was pan sharpened to a spatial resolution (pixel size) of 1.5 m and orthorectified by the 

image provider (Land Info Worldwide Mapping LLC, Colorado, USA). The three bands 

forming the satellite image covered the 455 to 525 nm (blue), 530 to 590 nm (green), and 

625 to 890 nm (red) ranges. Spatial resolution of aerial photographs varied between 7 and 

20 cm depending on camera (helicopter) height and angle. Although the aerial photographs 

were 3-band (blue, green, and red) color composite images, the specific wavelengths 

recorded in each band is unknown. Aerial photographs were georectified and mosaicked 

(Lillesand et al., 2014) to create a single image of the four islands using the SPOT 7 image 

as the registration template and six to 14 photographs per island (based on the size of the 

study area and quality of the photographs) with side overlap among photographs. During 

mosaicking, 10 to 15 ground control points per photograph were used and a projective 

transformation was applied. This transformation was chosen over other common types of 
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transformation because it yielded the lowest root mean square residual error (between 1.2 

to 9.5 m), and the best visual match to the satellite imagery. During mosaicking, contrast 

and brightness of each aerial photograph were adjusted with ArcGIS’ Contrast and 

Brightness function to facilitate kelp detection and reduce variation among photographs. 

Contrast and brightness were also adjusted on the SPOT 7 image to facilitate kelp detection. 

To facilitate data processing and analysis, all individual layers were converted to a common 

map coordinate system (Universal Transverse Mercator Projection, Zone 20N, North 

American Datum 1983). All raster datasets were resampled to a 1-m grid cell size with the 

nearest neighbour resampling algorithm (Lillesand et al., 2014). Atmospheric and 

radiometric corrections, which correct for or calibrate irregularities in pixel values due to 

atmospheric distortion or instrumentation errors, were not applied because only one 

satellite image was used (Andréfouët, 2008; Green et al., 2017; Song et al., 2001). These 

corrections should be applied to calibrate pixel values prior to analysis when using multiple 

satellite images acquired at the same or different times. (Green et al., 2017; Lillesand et al., 

2014). The SPOT 7 image and mosaics of aerial photographs were cropped to keep only 

seabed between 0 and 7 m deep (see section 3.3.3). Light attenuation in the water column 

was indirectly accounted for by adding bathymetry as a 4th band to both types of imagery 

as a means of improving classification with the unsupervised and supervised classification 

methods (see section 3.3.3). 

 

3.3.3. Ground truthing  

Bathymetry 
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Preliminary analysis of bathymetric charts for the Mingan Archipelago obtained from 

the Canadian Hydrographic Service (CHS) revealed inaccuracies in the 0 to 5 m depth 

range. Bathymetry across the study area was therefore acquired with a boat-mounted depth 

sounder (Lowrance Hook5 recreational fishfinder, vertical precision of 0.1 m) equipped 

with a GPS unit. A horizontal accuracy below 5 m was estimated for the GPS unit by 

comparing the position of features on the SPOT 7 image (e.g., docks, roads, rocky features 

across the study area) with in situ measurements of their position with the depth sounder’s 

GPS unit. In total, 404 depth soundings were acquired, with 83, 226, 57, and 38 soundings 

at Île à Firmin, Île du Havre, Île aux Goélands, and Petite île au Marteau, respectively. 

Bathymetric data were corrected for tidal elevation at the time of measurement. This was 

done by subtracting tidal amplitude (precision of 0.1 m, based on water level observations 

by the Department of Fisheries and Oceans Canada [www.waterlevels.gc.ca]) from in situ 

depth measurements. A bathymetric chart encompassing the four study areas was created 

with ordinary kriging based on the self-acquired, corrected bathymetric data and the 10-m 

isobath on CHS’ 2002 bathymetric chart. This map, which had a grid cell size of 1 m 

(Figure 3.4), was incorporated to the GIS platform used to classify images (see section 

3.3.4), both to crop the SPOT 7 image and mosaic of aerial photographs (hereafter termed 

“aerial mosaic”) to the targeted 0 to 7 m depth range, and as a means of potentially 

improving classification accuracy (Gagnon et al., 2008). The SPOT 7 image and the aerial 

mosaic contained three bands (layers) of spectral information for each image pixel; one for 

each of the red, green, and blue wavelengths. The addition of the 4th non-spectral 

bathymetric band (see above) created a 4-band raster.  
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Figure 3.4. Bathymetry of the study system used to map kelp from satellite and aerial imagery with locations of ground truth data 

acquisition (see summary of methodological details in Figure 3.3).  
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Complementary data 

The three image classification methods used required in situ data about the presence 

and absence of kelp for training purposes (in the case of supervised and visual 

classifications) and to calculate classification accuracies (see sections 3.3.4 and 3.3.5). Kelp 

occurrence at multiple locations across the four study areas was determined between 23 

July and 29 July, 2016. To facilitate field work, sampling locations in each study area were 

pre-determined with a random point generator (Create Random Points tool in ArcGIS 

v10.3.1, Esri, 2015). The number of locations in each area was proportional to the size of 

the area, with a minimum distance of 15 m between locations to ensure that two ground 

truthing locations did not fall within a single grid intersect used for image classification 

(see section 3.3.4). The nearly even distribution of the locations enabled a spatially 

balanced sampling design. However, 86 of the 415 pre-determined locations (~21%), were 

not sampled because they were deeper than the 7-m limit or too shallow to be safely 

accessed with the boat used for the survey. Of the 329 locations sampled 63, 197, 34, and 

35 were at Île à Firmin, Île du Havre, Île aux Goélands, and Petite île au Marteau, 

respectively. At each location, a down-facing drop camera system (GoPro Hero 3 in an 

underwater housing, attached to a metal frame) was lowered to 1 m above the seabed. The 

height of the camera allowed photographing the seabed within an 80 x 80-cm plot. In total, 

231 locations contained one or more kelp sporophytes and 98 had none. The 329 locations 

were divided into: 1) a training dataset [60% of the locations] used to guide the supervised 

classification and to train an observer in recognizing kelp on the imagery prior to visual 

classification; and 2) a test dataset [40% of the locations] used to quantify the accuracy of 
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each classification method (see section 3.3.5). To ensure that both datasets were spatially 

balanced among the four study areas and evenly represented each benthic cover class 

(“kelp” and “non-kelp”), a stratified randomized selection method was applied to divide 

the locations into training and test datasets. This was done by randomly selecting (without 

replacement) and assigning to the training dataset 60% of the locations from each benthic 

cover class within the study area of each of the four islands and assigning the remaining 

40% to the test dataset.  

 

3.3.4. Image classification  

Three image classification methods commonly used in benthic habitat mapping 

studies (Brown et al., 2011; Green et al., 2000) were considered: 1) unsupervised [software-

led]; 2) supervised [software-led]; and 3) visual [observer-led]. Each method was applied 

to both the satellite imagery and aerial mosaic for comparison purposes. All methods 

employed a binary classification scheme, whereby the image was divided into either of two 

benthic classes: “kelp” or “non-kelp”. Kelp species could not be discriminated given the 

type and resolution of the images.  

Unsupervised classification was carried out in ArcGIS v10.3.1 with the Interactive 

Self-Organizing (ISO) Cluster Unsupervised Classification algorithm (Esri, 2015) and 

default settings (minimal number of pixel in a valid class = 20, sample interval = 10). This 

algorithm separates pixels of input raster images into a user-defined number of clusters 

based on similarities of pixels’ spectral signatures. It is generally recommended that the 

number of clusters be at least five times that of cover (benthic) classes (two in the present 

study), and that each cluster contains at least 10 times as many pixels as the number of 
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bands in the imagery (four in the present study; Green et al., 2000; Lillesand et al., 2014). 

For each type of imagery, outputs were created with various numbers of clusters (10, 15, 

20, 30, and 40), with 20 providing the best spatial distribution of the two target classes 

based on visual comparisons with the imagery and complementary field data. Each cluster 

created by the ISO Cluster algorithm was subsequently assigned to either of the two benthic 

classes (kelp or non-kelp) by the user based on visual comparison with the original imagery 

and field data to create a thematic map of the spatial distribution of both benthic classes.  

Supervised classification was carried out in ArcGIS v10.3.1 with the Maximum 

Likelihood Classification (MLC) tool (Esri, 2015). This technique consists of two steps. 

First, the training dataset created from ground truth data (see section 3.3.3) is used to 

identify, on the imagery, multiple areas representative of each benthic class. The digital 

signature of each area, which is based on the numerical values contained in the four bands 

[red, green, blue, and bathymetry] of each pixel that form the area, is used to create a 

signature file, which defines the mean numerical values (and their variance) for each 

benthic class, on each type of imagery. Second, the MLC tool assigns each pixel in the 

input raster image to a benthic class based on the similarity between the pixel’s digital 

signature and the signature of the classes identified in the signature file. Once all pixels 

have been assigned to classes, the MLC tool produces a thematic map showing the 

distribution of the two benthic classes. 

Visual classification was carried out by an observer (A. P. St-Pierre) trained to 

recognize kelp presence and absence on the imagery from the position and cover type of 

ground-truthed locations. A grid with evenly spaced points was overlaid on each type of 

images. The distance between adjacent points, 15 m, was consistent with the approximate 
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scale of earlier studies of kelp bed dynamics in the Mingan Archipelago (Gagnon et al., 

2004; Gagnon et al., 2005). The 225-m2 (15 x 15 m) area surrounding each point was 

categorized as “kelp” when 50% or more of the area contained kelp or as “non-kelp” when 

kelp was less than 50%. Visual classification is based on human perception of shapes, color, 

and contrasts within an image rather than on numerical values contained in the various 

bands of information of individual image pixels, and thus is more easily applied to small 

areas rather than individual pixels. Consequently, the observer must be trained to recognize 

the visual characteristics of kelp on the imagery prior to conducting the classification. 

Observer training in the present study was achieved by overlying the training dataset 

created from the ground truth data on the imagery to identify areas where the field data 

confirmed the presence or absence of kelp. The observer compared the color, brightness, 

tone, and shape of known kelp and non-kelp areas, and applied this knowledge to classify 

the rest of the imagery by matching brightness, tone, and contrasts. In general, the dark 

(blue-brown) areas, covered in kelp, contrasted sharply with the surrounding light 

(greenish) areas, devoid of kelp (Figure 3.2.D and 3.2.E). Thematic maps were prepared 

based on the classification of each point in the grid, for the satellite and aerial imagery 

separately.  

 

3.3.5. Accuracy of classification 

To identify which combination of classification method and image source yielded the 

most precise kelp distribution map, the accuracy of the six thematic maps produced with 

the unsupervised, supervised, and visual classification methods (applied to the satellite and 

aerial imagery separately) was quantified and compared with accuracy metrics commonly 
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used in the field of remote sensing (Green et al., 2000; Lillesand et al., 2014). This was first 

done qualitatively by examining the thematic maps visually, to evaluate if patterns 

suggestive of artefacts from the original imagery (e.g., sharp differences in contrast 

between images) were present. The proportion of the study area classified into each benthic 

class was calculated for each thematic map and compared. The similarity among thematic 

maps was assessed by calculating the proportion of spatial overlap in the distribution of 

each benthic class, to identify the location and extent of areas consistently classified as kelp 

or non-kelp by all classification methods. The proportion of spatial overlap was also 

calculated for all possible pairs of thematic maps. To quantitatively assess classification 

accuracy, contingency tables, also known as confusion or error matrices, were constructed 

based on the test dataset (40% of the ground truth data) and used to calculate accuracy 

measures traditionally used in the field of remote sensing (Lillesand et al., 2014). In 

contingency tables, the agreement between the true benthic class observed at a location in 

situ (based on analysis of ground truth data) and the benthic class attributed to the same 

location by the classification is assessed for each location sampled in the field and compiled 

for each benthic class individually. Hence, the proportion of correctly or incorrectly 

classified locations in a class can be compared with that of the other classes (see Appendix 

3.B for contingency tables from the present study). Overall accuracy and kappa coefficient 

were both calculated from each of the six contingency tables. Overall accuracy, which 

ranges from 0 to 100%, indicates the proportion of correctly classified locations (all classes 

included). Kappa coefficient, which ranges from -1 to 1, indicates how well the 

classification agrees with ground truth data, with values ≤ 0 indicating chance agreement 

(a meaningless classification) and values of 1 a perfect agreement between ground truth 
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and classified data. Producer’s accuracy and user’s accuracy were used to compare the 

accuracy of detection of each benthic class separately. Producer’s accuracy is the 

proportion of locations correctly classified in a given class, whereas user’s accuracy is the 

proportion of locations classified in a given class that are actually present under the same 

class on the seabed. See Landis and Koch (1977) and Lillesand et al. (2014) for further 

discussion of these statistics.  

 

3.4. RESULTS 

3.4.1. Visual assessment of thematic maps 

The satellite imagery (which encompassed the entire study area) appeared grainy, 

with relatively coarse spatial resolution and poor contrast between benthic features (Figure 

3.5.A). Kelp and non-kelp pixels on the thematic map created from unsupervised 

classification were highly segregated, forming small, discontinuous clusters scattered 

across the seabed around the four islands (Figure 3.5.B). With the supervised classification, 

kelp formed larger, more continuous patches, which also better matched their true 

distribution on the satellite image (Figures 3.5.A and 3.5.C). In comparison, kelp cover 

appeared higher with the visual classification, with long and jagged boundaries (Figures 

3.5.A and 3.5.D). 

The aerial imagery exhibited better contrasts and delineations between spectrally 

different benthic features than the satellite imagery (Figures 3.5.A and 3.6.A). However, 

contrary to the satellite imagery, there was considerable variation in color, tone, and 

contrast from one photograph to the next (Figure 3.6.A) despite efforts to spectrally  
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Figure 3.5. Satellite (SPOT 7) imagery of the study system in the Mingan Archipelago 

(from west to east; île à Firmin, île du Havre, île aux Goélands, and Petite île au Marteau) 

(A) and associated thematic maps obtained with the three image classification methods 

tested: unsupervised (B), supervised (C), and visual (D). 
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Figure 3.6. Aerial imagery (mosaic of aerial photographs) of the study system in the 

Mingan Archipelago (from west to east; île à Firmin, île du Havre, île aux Goélands, and 

Petite île au Marteau) (A) and associated thematic maps obtained with the three image 

classification methods tested: unsupervised (B), supervised (C), and visual (D). 
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equalize them during mosaicking. The consequences of this spectral variation were 

particularly apparent in the thematic map obtained from the unsupervised classification on 

which: (1) large tracts of seabed classified as kelp contained no kelp on the aerial imagery 

and vice-versa; and (2) delineations between areas with or without kelp sometimes 

followed the margins between adjacent photographs (Figure 3.6.B). Kelp distribution with 

the supervised classification more closely matched that on the aerial imagery, although 

some artifacts similar to those noted for the unsupervised method remained, particularly 

around Île à Firmin and along the eastern half of Île du Havre (Figure 3.6.C). As observed 

with the satellite imagery, kelp cover appeared higher with the visual classification, with 

coarse boundaries encompassing smaller areas with no kelp on the aerial imagery (Figures 

3.5.D, 3.6.A, and 3.6.D).  

 

3.4.2. Spatial overlap in distribution of benthic classes 

Overall, the six classification methods similarly classified 32% of the study area as 

kelp (25%) or non-kelp (7%; Table 3.1). The remaining 68% was classified differently by 

at least one classification method and was scattered across the area, particularly at the 

deeper end (5-7 m) with 86% of the seabed classified differently (Figures 3.4 and 3.7, Table 

3.1). The proportion of seabed classified as kelp varied among classification methods, from 

52% in the unsupervised classification of aerial imagery to 74% in the visual classification 

of satellite imagery (Table 3.2). With a spatial overlap of 81% in seabed classified as kelp, 

supervised classification of satellite imagery and visual classification of aerial imagery 

yielded the most similar kelp bed distributions, followed closely by visual classifications  
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Table 3.1. Depth-specific proportions of the study area classified as kelp or non-kelp by 

the six classification methods used (unsupervised, supervised, and visual applied to both 

types of imagery) or classified differently by at least one classification method. 

 

 Cover 

Depth Kelp Non-kelp Different 

    

0 – 1 m 30.6% 0.8% 68.6% 

1 – 3 m 43.7% 7.0% 49.3% 

3 – 5 m 22.2% 9.0% 68.8% 

5 – 7 m 6.3% 7.5% 86.2% 

    

Overall 25.3% 7.2% 67.5% 
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Figure 3.7. Location and extent of seabed consistently classified as kelp or non-kelp by the six classification methods used 

(unsupervised, supervised, and visual applied to both types of imagery) or classified differently by at least one classification 

method. 
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Table 3.2. Coincidence matrix showing the proportion (%) of overlap in seabed classified as kelp or non-kelp (kelp; non-kelp) 

within each pair of comparison of classification methods used. Bolded values in the bottom row indicate overall proportions of the 

seabed classified as kelp or non-kelp with each classification method. 

 

    Satellite  Aerial 

    Unsupervised Supervised Visual  Unsupervised Supervised Visual 

         

Satellite        

 

Unsupervised - - -  - - - 

Supervised 68.1; 45.9 - -  - - - 

Visual 78.9; 46.8 73.0; 52.5 -  - - - 

         

Aerial        

 

Unsupervised 56.6; 35.9 63.5; 55.7 58.3; 36.2  - - - 

Supervised 58.9; 37.8 77.2; 79.6 62.6; 41.2  70.0; 66.7 - - 

Visual 73.5; 38.8 81.3; 70.6 80.4; 58.3  64.0; 50.9 73.8; 63.2 - 

         

Overall 70.8; 29.2 58.3; 41.7 73.5; 26.5  52.0; 48.0 53.3; 46.7 65.5; 34.5 
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of both types of imagery at 80% overlap in kelp distribution (Table 3.2). As to seabed 

classified as non-kelp, supervised classification applied to both types of imagery yielded 

the most congruent results with 80% overlap (Table 3.2). The most dissimilar patterns of 

kelp and non-kelp distributions were with the unsupervised classification method applied 

to both types of imagery, with spatial overlaps of 57% and 36%, respectively (Table 3.2). 

 

3.4.3. Accuracy of classifications 

Unsupervised classification applied to satellite and aerial imageries yielded the 

lowest overall accuracy (respectively 70% and 66%) and kappa coefficient (respectively 

0.261 and 0.273) among the six classification methods used (Table 3.3). Supervised and 

visual classifications outperformed unsupervised classifications, as shown by gains of 14% 

to 24% in overall accuracy (Table 3.3). Visual classification of aerial imagery was the most 

accurate method (overall accuracy: 90%; kappa coefficient: 0.757), followed closely by 

supervised classification of satellite imagery (overall accuracy: 89%; kappa coefficient: 

0.744; Table 3.3). 

Visual classification of aerial imagery and supervised classification of satellite 

imagery exhibited the highest producer’s accuracy for the kelp (97%) and non-kelp (95%) 

classes, respectively, as well as the highest user’s accuracy for the non-kelp (91%) and kelp 

(98%) classes, respectively (Table 3.3). Producer’s accuracy was lowest with unsupervised 

classification of kelp on aerial imagery (68%) and of non-kelp on satellite imagery (44%; 

Table 3.3). User’s accuracy was lowest with unsupervised classification of kelp on satellite 

imagery (76%) and of non-kelp on aerial imagery (46%; Table 3.3).  
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Table 3.3. Classification methods used for mapping kelp and non-kelp benthic classes and associated measures of accuracy. 

Producer’s, user’s, and overall accuracies are in %. Numbers in parentheses are the 95% confidence intervals. 

 

  Producer’s accuracy User’s accuracy Overall 

accuracy 

Kappa 

coefficient   Kelp Non-kelp Kelp Non-kelp 

        

Satellite       

 Unsupervised 81.1 (±8.6) 43.9 (±16.4) 76.0 (±9.1) 51.4 (±18.0) 69.5 (±8.3) 0.261 

 Supervised 85.6 (±7.8) 95.0 (±8.0) 97.5 (±4.1) 74.5 (±12.9) 88.5 (±5.9) 0.744 

 Visual 92.2 (±6.1) 53.7 (±16.5) 81.4 (±8.0) 75.9 (±17.3) 80.1 (±7.2) 0.499 

        

Aerial       

 Unsupervised 67.5 (±10.3) 62.5 (±16.3) 80.0 (±9.8) 46.3 (±14.2) 65.8 (±8.6) 0.273 

 Supervised 80.0 (±8.8) 82.5 (±13.0) 91.1 (±6.9) 64.7 (±14.1) 80.8 (±7.2) 0.581 

 Visual 96.6 (±4.3) 75.6 (±14.4) 89.6 (±6.6) 91.2 (±11.0) 90.0 (±5.5) 0.757 
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3.5. DISCUSSION  

Spaceborne or airborne infrared imagery is increasingly used to map floating 

canopies of kelp forests at the sea surface (Bell et al., 2015b; Cavanaugh et al., 2010; 

Nijland et al., 2019; Stekoll et al., 2007). Canopy maps are then used to estimate subsurface 

kelp distribution and biomass as well as the influences of various physicochemical factors 

on them (Bell et al., 2015a; Cavanaugh et al., 2010; Cavanaugh et al., 2011; Friedlander et 

al., 2007). Completely submerged kelp beds are more difficult to detect because infrared 

wavelenghts emitted by the sun filter out completely by the time they reach kelp near the 

seabed. Shorter wavelenghts that better penetrate water have been used to map submerged 

kelp beds (Casal et al., 2011; Hoang et al., 2015; Sagawa et al., 2012; Simms and Dubois, 

2001; Vahtmäe et al., 2012). However, progress in this area has been relatively slow with 

only a handful of studies that have specifically quantified and compared the ability to create 

accurate maps of submerged kelp bed distribution with simple remote sensing and GIS 

tools (Casal et al., 2011; Gagnon et al., 2008; Uhl et al., 2016). By comparing several 

accessible, yet simple and robust methods, the present study helps guide map users (sensu 

Andréfouët, 2008) in the choice of suitable approaches to map completely submerged kelp 

beds in optically deep, yet bathymetrically shallow benthic systems.  

The present study demonstrates that satellite and aerial optical imagery, together with 

basic image classification methods, can produce accurate maps of submerged kelp bed over 

large (several km2) tracts of seabed. Overall accuracies of maps from supervised 

classification of satellite imagery (89%), and visual classification of aerial imagery (90%) 

matched those of studies of submerged aquatic vegetation in temperate and tropical waters 

(Gagnon et al., 2008; Green et al., 2000; Mumby and Edwards, 2002; Pasqualini et al., 
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2005; Valta-Hulkkonen et al., 2003). These accuracies were also above the 85% threshold 

generally judged satisfactory for management purposes (Anderson, 1976; Congalton and 

Green, 2008; Hayes and Sader, 2001). Although in principle both methods can be used 

interchangeably, some logistical considerations, discussed below, might favor the choice 

of one method over the other. 

Image classification based on unsupervised clustering methods only require minimal 

user input (typically assigning class names to spectral clusters output by software) and field 

reference data (Thomson, 1998). Unsupervised methods are particularly accurate when 

spectral differences among classes are well defined (Rozenstein and Karnieli, 2011; 

Thomson, 1998). However, this is rarely the case in aquatic habitats since light attenuation 

by water reduces spectral separability (Green et al., 2000). The application of water column 

correction techniques can increase the accuracy of unsupervised and supervised 

classifications (Hoang et al., 2015; Mumby et al., 1998; Sagawa et al., 2012; Zoffoli et al., 

2014). However, such techniques are generally too complex to be easily implemented by 

map users. Unsupervised methods often yield accurate classifications for lakes, wetlands, 

and seagrass meadows (Dogan et al., 2009; Gullström et al., 2006; Luo et al., 2016), but 

are generally outperformed by supervised methods in other marine habitats (Calvert et al., 

2015; Gagnon et al., 2008; McCarthy and Halls, 2014). In the present study, the selected 

approach of unsupervised classification of either type of imagery showed poor 

discrimination between kelp and non-kelp benthic classes, indicating that this method is 

inadequate to detect submerged kelp beds in the Mingan Archipelago. This method should 

therefore be used with caution to study kelp bed distribution in systems with similar 

biological makeup and oceanic conditions.  
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Supervised classification methods typically produce readily interpretable thematic 

maps of only the cover classes of interest, and usually outperform unsupervised 

classification when the training dataset encompasses the spectral variation in each cover 

classes (Calvert et al., 2015; Green et al., 2000; Lillesand et al., 2014). Supervised 

techniques perform less well when the spectral signature of one or more classes is highly 

variable or classes show little spectral differences (Green et al., 2000; Lillesand et al., 2014; 

Lu and Weng, 2007). Thus, supervised methods may require more field sampling to ensure 

that reference data capture variability in the signature of each target class. For the Mingan 

Archipelago, where kelp and non-kelp benthic classes are spectrally quite distinct, 

supervised classification performed well, especially with the satellite imagery. Supervised 

classification of satellite imagery was only ~2% less accurate than visual classification of 

aerial imagery, the most accurate method (90%). These results are consistent with those of 

Casal et al. (2011) who mapped kelp beds along the Galician coast with accuracies of 80 to 

90% with visual or supervised classifications of satellite imagery (SPOT 4).  

Visual classification is somewhat subjective because it centers on the ability of an 

observer to visually separate benthic classes. Yet, this method has proved highly successful 

to identify benthic features in different types of subtidal systems worldwide (Andrew and 

O'Neill, 2000; Drake, 1996; Kendrick et al., 2000; Walker, 2009). As with contextual 

editing and object-oriented classification (Baatz et al., 2008; Green et al., 2000; Whiteside 

and Ahmad, 2005), visual classification has the advantage of accounting simultaneously 

for patch shape, size, and contrast. By relying on the detection of changes in color, in the 

present case sharp contrasts at kelp bed edges, this method is more robust to cross-image 

changes in light intensity caused, for example, by variation in water turbidity. In the present 
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study, visual identification of kelp bed edges was more difficult on satellite than aerial 

imagery because of poorer contrasts on the former and coarseness of the original satellite 

imagery (6-m pixels color imagery, pansharpened to 1.5-m pixels, and resampled to 1-m 

pixel). Moreover, kelp bed edges identified with visual classification appeared artificially 

jagged for both types of imagery, mainly as a result of the minimum mapping unit (MMU; 

Saura, 2002) of 225 m2 in the classification grid used with this method. Kelp bed edges 

were much smoother on the maps created with the unsupervised and supervised 

classifications, which were based on 1-m-pixel images and thus had a much smaller MMU. 

The size of the grid in the visual classification was intentionally large, to strike an 

acceptable balance between the minimal spatial scale over which to assess kelp presence 

(or absence) and the amount of time required to classify the imagery. Yet, because the 

MMU determines the amount of details within a map, the user’s goals and analysis of the 

information mapped should guide the choice of appropriate MMU and classification 

method (Saura, 2002). Both the spatial scale of kelp assessment and classification time can 

be adjusted based on needs and resources. Visual classification necessitated 30 to 45 h of 

work for each type of imagery (including observer training), while unsupervised and 

supervised classifications were generally completed within 6 to 10 h.  

In the present study, supervised and unsupervised classifications yielded more 

accurate maps of kelp distribution with satellite than aerial imagery. Aerial imagery 

presented better contrasts and more contextual details than the satellite imagery, which 

generally yields higher accuracy in automated classification (Green et al., 2000). However, 

in the present case variation in contrast and color among the aerial photographs could not 

be completely corrected for during mosaicking, introducing noise picked up by the 
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unsupervised and supervised classifications. Conversely, satellite imagery showed less 

pronounced but more uniform contrasts across the study area, making it more suitable than 

aerial imagery for supervised and unsupervised classification.  

Ground truth data is essential to define spectral classes for supervised classification, 

train the observer for visual classification, and assess image classification accuracy (Green 

et al., 2000; Lillesand et al., 2014). In the present study, four people completed boat-based 

ground truthing in about 100 h, including time to familiarize with the sampling gear. This 

approach enabled sampling a relatively large tract of seabed (~250 ha) much quicker than 

if scuba-based mapping techniques had been used (Frey and Gagnon, 2015; Gagnon et al., 

2004; Lauzon-Guay, 2007; Rinde et al., 2014; Scheibling et al., 1999). Urchin fronts in 

eastern Canada, including in the Mingan Archipelago, can destroy kelp beds at a rate as 

high as 4 m month-1 during summer (Gagnon et al., 2004; Lauzon-Guay, 2007; Scheibling 

et al., 1999). These fast changes in community states stress the necessity of synchronizing 

ground truthing and image acquisition not to introduce extraneous data variability, an 

aspect largely disregarded in previous studies (Anderson et al., 2007; Simms and Dubois, 

2001). Ground truth data in the present study were collected in mid-July, whereas above 

sea-level imagery was acquired in early July (aerial) and early August (satellite), 

respectively. Given the small temporal window (~1 month) over which all data were 

acquired, kelp loss to urchin grazing likely contributed very little to the errors of 

classification reported. 

The study area was limited to shallow (<7 m deep) seabed because light scattering 

and attenuation by the water column prevented visual separation of kelp and non-kelp 

benthic classes in deeper water (Green et al., 2000). For the same reason, Simms and 



 

113 

 

Dubois (2001) also limited their assessment of kelp biomass from satellite imagery of the 

Gulf of St. Lawrence to <7 m deep. Echo sounders or automated underwater vehicles 

(AUVs) equipped with cameras could help map macrophyte distribution on deeper seabed 

(Bewley et al., 2012; Calvert et al., 2015; Marzinelli et al., 2015; Minami et al., 2010). 

Spectral resolution of both satellite and aerial imagery was insufficient to separate kelp 

species within beds or kelp beds from monospecific stands of Desmarestia vidiris. Thus, 

stands of D. viridis were likely classified as kelp, potentially overestimating kelp cover. 

However, D. viridis occurred in less than 10% of the 329 benthic photo quadrats acquired 

around the four islands and was observed without kelp only in 2% of the benthic photo 

quadrats. These results suggest that a negligible portion of the imagery classified as kelp 

was actually D. virdis. Non-kelp macroalgae, including D. viridis and turf algae, were rare 

within the study area, covering altogether only ~6% of the seabed. Furthermore, 26% of 

the photo quadrats contained strictly non-kelp macroalgae, and the latter covered only 

17% of the photo quadrats’ area. Hence, these quadrats contained mainly bare rock, which 

the image classification methods used identified as non-kelp. The low abundance of non-

kelp macroalgae and predominantly small (a few 10s of cm2) clusters they formed, suggest 

that their misclassification as kelp was negligible. More advanced sensors, such as 

multispectral or hyperspectral imagers with a higher spectral resolution, could increase the 

ability to identify and map benthic vegetation, yet would necessitate a more specialized 

workforce, software, and hardware (Gagnon et al., 2008; Lathrop et al., 2006; Uhl et al., 

2016; Valle et al., 2015). The two benthic classes used were sufficient to map the relatively 

simple and largely dichotomous structure of the benthic system studied. A greater number 
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of classes may be needed to create accurate maps of kelp distribution in systems with more 

complex benthic structures (e.g., Casal et al., 2011), in which case images with a better 

spectral resolution than that in the present study (including a greater coverage of the blue 

to yellow wavelengths) could be required (Green et al., 2000; Mumby and Edwards, 2002). 

In the present study, the acquisition of satellite and aerial imagery was planned and 

executed with the goal of acquiring imagery at times of optimal sea state and water clarity 

to maximize image quality and the accuracy of the classification maps produced from it 

(Green et al., 2000; Green et al., 2017). Therefore, all images were acquired at low tide on 

cloudless days (to maximize light penetration to, and reflection from, the seabed), prior to 

zenith (to minimize glare on the imagery), and following several days with low winds and 

no precipitation (to limit water turbulence and freshwater runoffs). Satellite and aerial 

images were each acquired on a single day, with less than a month separating both days. 

These precautions provided the best images possible for our study system, while enabling 

trustable comparisons between any set of maps. Our results suggest that the classification 

methods tested could be used to study temporal changes in the distribution and abundance 

of submerged kelp, provided that consistently high quality can be achieved across an image 

time series, which, as mentioned above, is best achieved under optimal sea conditions. For 

studies of change over time, collection of ground-truth data at the time of each image 

acquisition would be an asset to increase confidence in the information extracted from map 

products (Green et al., 2000; Lillesand et al., 2014). Preliminary tests with imagery 

acquired across a range of sea state and turbidity may be required to identify the minimal 

environmental requirements for accurate classification.  
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Scuba- and boat-based sampling methods are used extensively for benthic habitat 

mapping and monitoring (Filbee-Dexter et al., 2016; Himmelman, 1991; Lauzon-Guay et 

al., 2009; Matarrese et al., 2004; Polovina et al., 1995; Smale and Moore, 2017; Van Rein 

et al., 2009; Vásquez et al., 2007). These time-consuming and labor-intensive methods are 

useful to study small-scale (i.e., a few 100s of m2 over <5 y) ecological patterns, but present 

two major limitations for larger-scale applications. First, the methods used for small-scale 

benthic monitoring often are inadequate to work at large extents because of practical 

limitations. Second, factors and processes that drive species distribution often differ across 

scales, and thus results from small-scale studies can rarely be extrapolated to larger scales 

with confidence (Edwards, 2004; Levin, 1992; Schneider, 2001; Turner et al., 2001). Yet, 

the development of reliable models of benthic community and ecosystem dynamics is 

largely based on repeated quantification of species distribution over increasingly large 

spatiotemporal scales (Lecours et al., 2015; Wiens, 1989). Multiscale monitoring is 

particularly important for systems that exhibit multiple stable states and for management 

purposes (Groffman et al., 2006; Moffett et al., 2015; Petraitis and Dudgeon, 2004). 

Because remote sensing and GIS enable mapping and comparing species distribution over 

multiple spatial and temporal scales, they are increasingly used to assess the stability and 

resilience of marine systems (Knudby et al., 2013; Knudby et al., 2014; Moffett et al., 2015; 

Scopélitis et al., 2009). 

Kelp-barrens systems often exhibit characteristics of multiple stable state systems, 

including sudden shifts in, and sharp boundaries between, kelp- and urchin-dominated 

community states (Filbee-Dexter and Scheibling, 2014; Ling et al., 2015; Moffett et al., 

2015). Accurate knowledge of the factors and processes that control the stability and 
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resilience of kelp-barrens systems is crucial to predict and mitigate large-scale shifts of 

these ecologically and economically important systems (Groffman et al., 2006; Moffett et 

al., 2015; Petraitis and Dudgeon, 2004). The present study identifies supervised 

classification of satellite imagery and visual classification of aerial imagery as the top two 

methods to map kelp distribution, and from there study kelp-barrens dynamics, in the 

Mingan Archipelago. More broadly, it demonstrates that conventional remote sensing and 

GIS methods can be used to accurately map and monitor submerged kelp beds over large, 

yet largely unexplored, spatial and temporal domains. This operational improvement 

should provide “non-specialist map users” (sensu Andréfouët, 2008) like most kelp 

ecologists, with the ability to address novel questions relating to alternative stable state 

theory, including the effects of landscape heterogeneity on the stability of community states 

and basins of attraction (St-Pierre et al., in prep). 
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Kelp-bed dynamics across scales: Assessing distribution patterns with 
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4.1. ABSTRACT 

 Spatial pattern metrics are used to investigate the links between a species’ 

distribution patterns and underlying ecological drivers at multiple spatiotemporal scales. 

These metrics, in combination with remotely acquired imagery offer a novel approach for 

the study of kelp-urchin systems and enable the study of drivers of kelp distribution at broad 

(<km2) spatial scales difficult to achieve through traditional scuba-based methods. This 

study uses aerial imagery of 2.85 km2 of shallow (<7 m) seabed around five islands in the 

Mingan Archipelago (northern Gulf of St. Lawrence, Canada) to (1) quantify kelp 

distribution patterns with spatial pattern metrics and (2) examine correlations between kelp 

presence and physical and biotic parameters. The imagery was classified visually and 

divided into two benthic classes based on cover type: kelp and non-kelp. Kelp covered 62% 

of the study area, with substantial variation (46% to 87%) among islands. Kelp and non-

kelp patches varied in size from 225 to 891,225 m2, while exhibiting considerable variation 

in geometric complexity. Over 80% of the kelp patches were relatively small (< 1350 m2), 

although the fewer, larger patches contained most (98%) of the kelp-covered seabed and 

were located in shallower water, near the coastline. Both the kelp and non-kelp benthic 

classes were highly aggregated as suggested by clumpiness indices of 0.67 and 0.59, 

respectively. Variability in spatial pattern metrics and kelp coverage among spatial scales 

indicate that kelp distribution is not uniform among islands in the Mingan Archipelago and 

suggest that the spatial extent over which observations are obtained strongly influences the 

patterns detected. Increasing depth, urchin density, and relative exposure to waves 

independently led to a decrease in kelp presence, with depth having the strongest 

correlation, followed by urchin density and relative exposure. By increasing knowledge of 
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the physical and biological factors regulating the distribution and configuration of kelp beds 

at spatial scales largely unexplored to date, this study is a step towards a comprehensive 

understanding of scale-dependent processes regulating submerged kelp bed dynamics.  

 

4.2. INTRODUCTION 

Landscape ecology aims to identify the relationships between patterns in species 

distribution and ecological processes over a range of spatial and temporal scales (Fu et al., 

2011; Turner et al., 2001; Turner et al., 1989). To that effect, many spatially explicit 

approaches have been developed to quantify spatial patterns in terrestrial landscape 

components (e.g., forest patches; Haines-Young and Chopping, 1996; Uuemaa et al., 2013). 

In particular, approaches combining remote sensing, distribution maps, and spatial pattern 

metrics (also known as landscape metrics; Gustafson, 1998; Mcgarigal and Marks, 1995; 

Wedding et al., 2011) were developed to assess the composition and spatial configuration 

of landscapes and can be easily applied over extensive areas (up to thousands of km2). 

Spatial pattern metrics provide a quantitative assessment of the abundance, diversity, shape, 

connectivity, and clustering of landscape components, which is fundamental for the 

understanding of the spatial structure and dynamics of landscapes (Cushman et al., 2008; 

Frohn and Lopez, 2017; McGarigal et al., 2012). These metrics have been routinely used 

to monitor forests (Maier et al., 2008; Matte et al., 2015), mangroves (Manson et al., 2003; 

Romero-Berny et al., 2015) and wetland habitats (Kelly et al., 2011; Li et al., 2005), to 

identify the causes and consequences of changes in spatial distribution patterns on 

community structure and biodiversity.  
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Seascape ecology, the marine counterpart of landscape ecology, generally applies 

approaches developed in terrestrial systems to marine communities (Boström et al., 2011; 

Irlandi et al., 1999; Pittman, 2017; Wedding et al., 2011). One advantage of these 

approaches is their applicability over spatial scales much greater than what is generally 

feasible through traditional techniques; indeed, traditional in situ monitoring methods 

applied to benthic systems are often spatially and temporally limited because of the 

technical and logistical challenges of working in submerged systems (e.g., scuba-based 

methods, as in Gagnon et al., 2004; Lauzon-Guay and Scheibling, 2007; Van Rein et al., 

2009). Because ecological processes are scale dependent (Lecours et al., 2015; Levin, 1992; 

Schneider, 2001), studies conducted at various spatiotemporal scales are crucial to gain a 

better understanding of scale-dependency in species distribution patterns and their drivers. 

For systems exhibiting alternate stable states in particular, the conceptual and analytical 

framework of seascape ecology is key to investigate complex questions relative to seascape 

structure and function, and to identify scale-dependent drivers of stability and change that 

can lead to shifts in community states (Boström et al., 2011; Moffett et al., 2015).  

Approaches from seascape ecology, in particular the use of spatial pattern metrics, 

are a promising tool for the study of submerged kelp-urchin systems. These systems found 

on shallow rocky reefs are composed of two distinct benthic communities: 1) kelp beds, 

where large brown seaweed (Laminariales) create extensive 3-D structures enhancing 

habitat complexity, productivity, and biodiversity (Dayton, 1985a; Steneck et al., 2002; 

Tegner and Dayton, 2000), and 2) urchin barrens, where sea urchins are numerous, erect 

macroalgae are sparse, and habitat complexity is low (reviewed in Filbee-Dexter and 

Scheibling, 2014). Kelp-urchin systems are considered as candidates for alternate stable 
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states because cyclical large-scale shifts between kelp-dominated and urchin-dominated 

states have been documented in many regions, affecting areas of up to several km2 and 

strongly reducing the productivity and structural complexity of these benthic systems 

(Filbee-Dexter and Scheibling, 2014; Simenstad et al., 1978; Steneck et al., 2013). Urchin 

barrens are often considered as a collapsed state of the kelp-urchin system (Filbee-Dexter 

and Scheibling, 2014). Despite the ecological importance of kelp beds, studies of the 

drivers of submerged kelp distribution to date have remained limited to relatively small 

spatial extents (m2 to 10s of m2) because of the labor-intensive and time-consuming scuba-

based techniques generally used. 

In eastern Canada, studies employing such techniques identified grazing by green sea 

urchin, Strongylocentrotus droebachiensis, as main driver of submerged kelp distribution 

at the scale of m to 10s of m due to its intensive and destructive grazing of kelp beds (Frey 

and Gagnon, 2015; Gagnon et al., 2004; Scheibling et al., 1999). Metre-scale observations 

suggest winter ice scouring also affects kelp distribution in this region (Gagnon et al., 2004; 

Keats et al., 1985). In Norway, kelp distribution has been shown to vary with depth, light 

conditions, and exposure to waves (Bekkby et al., 2009; Lüning, 1990; Rinde and Sjøtun, 

2005). Although studies conducted in this region encompassed broad spatial extents 

(hundreds of km2 in some studies of latitudinal trends), they still generally rely on point-

based data collection (quadrat collections, presence/absence, or density measurements) 

limited to a few 10s of m at discrete sites (Moy and Christie, 2012; Rinde et al., 2014; Rinde 

and Sjøtun, 2005). Research focusing on broader, continuous spatial extents (km2) is 

needed to identify whether kelp distribution and spatial patterning are driven by abiotic 

factors (i.e., depth, slope, exposure to waves), herbivore pressure (urchins grazing), or a 
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combination of both when examined over broad spatial scales. Such investigations should 

benefit the study of boundary dynamics and alternate stable states in kelp-urchin systems 

by improving the understanding of scale-dependent processes affecting kelp distribution 

patterns; they will require the simultaneous use of a large enough spatial coverage and 

sufficiently precise spatial resolution, which can be addressed with remote sensing and 

seascape ecology approaches. 

Recently, St-Pierre and Gagnon (2020) showed that simple image classification 

techniques applied to remotely sensed imagery can accurately detect shallow (<7 m) 

submerged kelp beds in the Mingan Archipelago (northern Gulf of St. Lawrence, Canada). 

These authors identified the visual classification of aerial imagery and the supervised 

classification of satellite imagery as the top two methods for kelp detection, yielding overall 

accuracies >89% (St-Pierre and Gagnon, 2020) which are highly satisfactory for ecological 

analyses and management purposes (Congalton and Green, 2008; Hayes and Sader, 2001). 

The Mingan Archipelago possess a generally clear water column and largely dichotomous 

division of the seabed (between kelp-covered and kelp-devoid areas) which facilitate kelp 

bed detection on remotely sensed imagery. Hence, this archipelago constitutes an ideal 

study system for the investigation of spatial patterning in kelp bed distribution at broad 

spatial scales (i.e., km2) largely unexplored to date. 

The present study uses remotely sensed imagery of shallow subtidal (< 7 m) zones of 

the Mingan Archipelago to (1) quantify spatial patterns in the distribution of kelp-covered 

and kelp-devoid benthic communities using spatial pattern metrics, and (2) examine 

correlations between kelp presence over a broad spatial scale and physical and biotic factors 

using modelling techniques. First, the spatial characteristics of kelp beds are obtained by 
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computing spatial pattern metrics quantifying the proportional abundance, shape, area, and 

clustering of kelp beds. These metrics are compared among islands within the archipelago. 

Secondly, the relative influence of depth, bottom slope, exposure to waves, and urchin 

density on kelp distribution is assessed by comparing 11 models built from combinations 

(additive or multiplicative) of these four factors based on ecological hypotheses. For 

example, based on studies from other regions, it is hypothesized that increasing depth 

reduces the probability of kelp presence due to decreasing light availability and water 

movement, which can be detrimental to kelp growth and allow for intensive urchin grazing 

(Bekkby et al., 2009; Hepburn et al., 2007; Lauzon-Guay and Scheibling, 2007). It is also 

hypothesized that increased urchin density decreases the probability of kelp presence due 

to grazing pressure (Frey and Gagnon, 2015; Lauzon-Guay et al., 2008; Wright et al., 

2005). More complex models address hypotheses related to the combined effects of the 

factors studied, such that increasing water movement from the interactive effect of depth, 

slope, and exposure to waves increase the probability of kelp presence by limiting urchin 

movement and feeding (Frey and Gagnon, 2015, 2016; Kawamata, 1998; Laur et al., 1986). 

 

4.3. MATERIAL AND METHODS 

4.3.1. Study area 

The study area encompasses the subtidal fringe along the coast of five islands in the 

Mingan Archipelago (Québec, Canada): Île Niapiskau (westernmost), Île à Firmin, Île du 

Havre, Île aux Goélands, and Petite île au Marteau (easternmost; Figure 4.1). The biological 

community in the study area is largely dichotomous, being dominated at shallow (0-7 m)  
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Figure 4.1. Location of the study area (pale blue) and of fine-scale study units (dark blue) at Île Niapiskau, Île à Firmin, Île du 

Havre, Île aux Goélands, and Petite île au Marteau, in the western sector of the Mingan Archipelago, northern Gulf of St. Lawrence, 

eastern Canada. 



 

135 

 

 depths by mixed kelp beds (mainly Alaria esculenta, but also Laminaria digitata, 

Saccharina longicruris, and Saccorhiza dermatodea), and followed in deeper water by 

green sea urchin (Strongylocentrotus droebachiensis) barrens (Figure 4.2; Gagnon et al., 

2004). By forming grazing fronts at the lower edge of kelp beds, sea urchins create a clearly 

defined boundary between kelp-covered and kelp-devoid seabed which is distinguishable 

from remotely sensed imagery (St-Pierre and Gagnon, 2020). This clear division between 

benthic communities is ideal for the application of spatial pattern metrics, which requires 

the presence of discrete patches of different cover types (in this case, patches of kelp and 

non-kelp benthic cover classes, see section 4.3.3). Since kelp beds are more abundant in 

the shallow subtidal zone (0-7 m) on the generally south-facing, wave-exposed coast of 

these islands (Gagnon et al., 2004), the present study focuses on these areas where kelp 

beds are more likely to be found (Figure 4.1). Within the study area, most of the seabed is 

composed of bedrock and boulders, with sporadic patches of cobble, gravel, or sand in areas 

of presumably lower hydrodynamic forces. The study area covers 2.85 km2 and extends 

over a longitudinal distance of ~14 km. The area studied at Île Niapiskau, Île à Firmin, Île 

du Havre, Île aux Goélands, and Petite île au Marteau, represents respectively 12.8, 12.9, 

54.3, 10.9, and 9.1% of the total study area. 

Monospecific stands of the grazing-resistant perennial kelp Agarum clathratum, and 

of the annual brown seaweed Desmarestia viridis are observed within the study area in 

zones of moderate wave action. These stands cover up to a few 10s of m2 in the barrens at 

depths of up to 15 m, developing along the lower edge (A. clathratum) or outside 

(A. clathratum and D. viridis) of kelp beds (Gagnon et al., 2003; Gagnon et al., 2004;  
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Figure 4.2. A) Kelp bed [mainly Alaria esculenta] at a depth of ~2 m at Île Niapiskau. B) 

Sharp transition between the lower edge of the kelp bed and upper edge of an urchin barrens 

caused by an urchin grazing front advancing over kelp at a depth of ~2 m. C) Green sea 

urchin (Strongylocentrotus droebachiensis) barrens with a few kelp patches at a depth of 

6 m (Photos: Anne P. St-Pierre).  
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Gagnon et al., 2005). Although stands of A. clathratum and D. viridis could not be 

spectrally distinguished from kelp beds on the remotely sensed imagery, preliminary 

analysis of ground truth data suggests that misclassification of these stands as kelp beds is 

negligible (estimated at ~2%, as discussed in St-Pierre and Gagnon, 2020).  

 

4.3.2. Image acquisition and field measurements  

Aerial imagery was used to characterize the distribution of kelp beds within the study 

area. Procedures for the acquisition, georectification, and mosaicking of the aerial imagery 

are detailed in St-Pierre and Gagnon (2020). Essentially, digital photographs were acquired 

on 8 July, 2016, with a hand-held camera (Nikon Coolpix AW130), on board a helicopter 

flown at an altitude of ~300 m after four days of low winds and no precipitation. The 

photographs’ resolution and area of the field of view varied from 8 to 17 cm per pixel and 

from 0.08 to 0.52 km2, respectively. A satellite image (SPOT 7) of the area acquired on 11 

August, 2016 (i.e., one month after acquisition of aerial imagery), was used to georectify 

the digital photographs and combine them into a mosaic encompassing the five islands’ 

study areas in ArcMap 10.3.1 (Esri, 2015). Depending on the size of each island’s study 

area and quality of the photographs (e.g., due to glare, variable overlap between adjacent 

images, or angle of view), 6 to 14 photographs per island were used to build the mosaic. 

Contrast and brightness were enhanced on each aerial photograph individually during the 

mosaicking process to increase the visibility and reduce variations in color between the 

mosaicked photographs.  

Using the methodology detailed in St-Pierre and Gagnon (2020), a bathymetric map 

of the study area was prepared by interpolation (ordinary kriging, 1-m grid cell size) in 
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ArcMap 10.3.1 (Esri, 2015). This interpolation was based on 504 in situ depth 

measurements obtained across the entire study area and the location of the 10-m isobath 

obtained from bathymetric charts (Canadian Hydrographic Services, published in 2002). 

Using this bathymetric map, the mosaic of photographs was trimmed to discard all areas 

outside the 0 to 7 m depth range (Figure 4.3) in ArcMap 10.3.1 (Esri, 2015), because the 

present study focuses only on these areas where kelp presence is most probable (see section 

4.3.1). To facilitate data processing and analysis, the mosaic and bathymetric map were 

converted to a common map coordinate system (Universal Transverse Mercador 

Projection, Zone 20N, North American Datum 1983), and the mosaic of photographs was 

resampled to a 1-m grid cell size using a nearest-neighbour resampling algorithm.  

Underwater imagery collected at each of 360 locations throughout the study area 

between 23 July and 29 July, 2016, was used to 1) determine kelp presence/absence and 

use this information as ground reference for image classification and accuracy calculation 

(see St-Pierre and Gagnon, 2020 for details), and 2) measure urchin density. At each 

location, a photograph covering an 80 x 80 cm portion of the seabed was taken using a drop 

camera system consisting of a GoPro Hero 3 camera in an underwater housing secured 

face-down ~1 m above the seafloor onto a metal frame. The bottom portion frame was 

visible on each photograph and equipped with a visible scale to allow measurement of 

urchin size from the photographs (see below). Urchin density was measured by counting 

the number of urchins visible on each photograph and used in statistical analyses of kelp 

distribution (see section 4.3.5). Sampling locations were randomly selected within each 

island’s study area in proportion to the size of the latter, to yield a spatially balanced 

sampling design. Kelp was present at 233 of the 360 locations surveyed (65%).  
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Figure 4.3. Map of the specific study area on the southward-facing subtidal fringe of five 

islands in the Mingan Archipelago, showing the bathymetry (within the 0 to 7 m depth 

range, Panel A), bottom slope (in degrees, Panel B), relative exposure index (REI, Panel 

C), and urchin density (in urchins·m-2 Panel D). Urchin density is shown only for the 360 

locations surveyed during ground truthing. 

 

 

  



 

141 

 

4.3.3. Data extraction from aerial imagery  

The aerial imagery of the seabed was divided into kelp and non-kelp benthic classes 

using the proven visual classification method described in St-Pierre and Gagnon (2020). 

This method was deemed the most accurate for the classification of aerial imagery from the 

Mingan Archipelago’s shallow subtidal zone (St-Pierre and Gagnon, 2020). In short, a 

sampling grid with intersects spaced at 15-m intervals was overlaid on the mosaicked 

imagery. The 225-m2 area (15 x 15 m) surrounding each grid intersect was examined 

individually and assigned to either of two benthic classes: 1) “kelp”, if over 50% of it was 

covered by kelp, or 2) “non-kelp”, if less than 50% of it was covered by kelp. A grid 

intersect was excluded from the classification if over 50% of the area surrounding it was 

outside of the study area or was indistinguishable (e.g., due to glare). Less than 2% of the 

intersects were excluded. In total, 12,654 grid intersects were included in the analyses. The 

classification was conducted by a single observer to ensure consistency and yielded an 

overall accuracy of 89.6% and a Kappa coefficient of 0.77, both deemed largely 

satisfactory.  

 

4.3.4. Kelp coverage and spatial pattern metrics  

To investigate the effect of the extent of sampling area on observed kelp distribution, 

kelp coverage was calculated over three spatial extents: 1) the entire study area [~2,8 km2 

of seabed], 2) each island separately [varying from 0.26 to 1.55 km2], and 3) fine-scale 

units of ~200 x 200 m [~40,000 m2] randomly distributed without overlap and completely 

within the study area (Figure 4.1). The size of the fine-scale units was chosen to represent 

the spatial extent of local mapping projects which could be conducted within a reasonable 
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time frame using intensive SCUBA or boat-based surveys, based on the authors’ personal 

experience and common kelp bed mapping techniques (Chapter 1; Gagnon et al., 2004; 

Kimura et al., 2012). This yielded a total of 30 fine-scale units distributed among islands 

based on the size of each island’s study area. The fine-scale units at Petite île au Marteau 

were rectangular rather than square (still ~40,000 m2) because the study area at this island 

was too narrow to accommodate 200 x 200 m square units. 

To quantify the spatial configuration of kelp and non-kelp features, a series of spatial 

pattern metrics were calculated with FRAGSTATS software version 4 (McGarigal et al., 

2012). In the present study, a “patch” is defined as an element in the seascape delineated as 

a distinct entity, i.e., a discrete, contiguous area identified as either kelp or non-kelp. The 

eight-neighbour rule was used in this analysis, whereby any of the eight cells surrounding 

a pixel were considered part of a patch if they had the same value as the central pixel. The 

eight-neighbour rule was chosen over the four-neighbour rule as it was judged more 

representative of the distribution and connectivity of kelp patches in the field. The borders 

of the imagery were not considered as edges because they are not true boundaries between 

patches created by biological communities; rather, these boundaries are created by the 

extent of the mosaicked photographs. The background (pixels outside of the study area) 

was considered as no data instead of a zero (0) value, and thus was ignored in the 

calculations (McGarigal et al., 2012). A parsimonious suite of six meaningful and 

complementary metrics was selected to minimize redundancy among metrics (Cushman et 

al., 2008; see Table 4.1 for details), which included: 1) Largest patch index, which yields 

the percentage of seascape comprised by the largest patch of each benthic class; 2) Patch  
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Table 4.1. Spatial pattern metrics examined in the present study. All metrics were calculated with FRAGSTATS (v.4, Amherst, 

MA; McGarigal et al., 2012). 

Metric 

Abbreviated 

FRAGSTATS 

command 

Range Unit Description 

     

Largest patch 

index 

LPI 0–100 Percent (%) Percent of seascape comprised by the largest patch of 

each benthic class. 

Patch area  AREA 

 

0–∞ Square metres 

(m2) 

Area of each patch in each benthic class. Minimum, 

mean, and maximum patch areas are reported.  

Patch density  PD 1–∞ (N/A) Number of patches in each benthic class divided by the 

size of the area studied (in km2), which measures the 

extent of subdivision or fragmentation of a benthic 

class. 

Shape index SHAPE 1–∞ (N/A) Measure of patch complexity based on the ratio of the 

patch’s perimeter to the perimeter of a standard shape 

(square) of the same surface area. Mean value for each 

benthic class is reported. 

Mean nearest 

neighbour distance 

ENN 0–∞ Metres (m) Measure of the Euclidean distance to the nearest 

neighbouring patch of the same benthic class. Mean 

value for each benthic class is reported. 

Clumpiness index CLUMPY -1–1 (N/A) Measure of aggregation within each benthic class, 

where -1 represents patches maximally disaggregated, 

0 represents a random distribution, and 1 represents 

maximal aggregation. 
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area, calculated for each individual patch; 3) Patch density, which reports the number of 

patches per km2 in each benthic class; 4) Shape index, which quantifies the complexity of 

a given patch; 5) Mean nearest neighbour distance, which is the average distance between 

patches of the same benthic class; and 6) Clumpiness index, which measures patch 

aggregation within each benthic class. These metrics are descriptive tools which, taken 

together, provide an insight into the ecological processes occurring within the studied 

seascape. The chosen metrics assess categorical map patterns (or patch mosaics) but do not 

intrinsically quantify or correct for spatial autocorrelation in the distribution of patches (see 

McGarigal et al., 2012 for further details regarding the use and limitations of these metrics). 

Exploration of spatial pattern metrics were conducted separately for 1) the entire study area, 

and 2) each island’s study area, to compare the patterns observed at two contrasting scales. 

Spatial pattern metrics were not calculated for the fine scale units because the quantity and 

complexity of data generated would have made it nearly impossible to contrast results 

meaningfully among units.  

 

4.3.5. Relationships between environmental factors and kelp distribution 

To investigate the relationship between environmental factors and kelp distribution, 

model selection (Burnham and Anderson, 2002) was applied to determine which 

combination of four explanatory variables best describes kelp distribution in the Mingan 

Archipelago. These explanatory variables, explained in more details below, are 1) depth, 

2) bottom slope, 3) relative exposure to waves, and 4) urchin density. Because urchin 

density can fluctuate between >500 urchins·m-2 in grazing fronts and <10 urchins·m-2 in 

barren areas less than 30 m away (Gagnon et al., 2003; Gagnon et al., 2004, A. P. St-Pierre, 
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personal observation), interpolation of this variable between locations sampled in the field 

would not be an accurate representation of actual field densities. Therefore, statistical 

analyses were conducted using only the 360 grid intersects for which urchin densities were 

calculated using underwater imagery (see section 4.3.2) and values of depth, bottom slope, 

and exposure to waves were extracted only for these grid intersects.  

 

Depth 

The precise bathymetric map of the study area (see section 4.3.2, Figure 4.3A) was 

used to calculate depth at each of the 360 grid intersects used for model selection. Using 

the Focal Statistics tool in ArcMap 10.3.1 (Esri, 2015), average depth was calculated for 

the 225 m2 of seafloor surrounding each grid intersect. Average depth of the seafloor 

surrounding an intersect was used in analyses instead of depth directly below the intersect 

to better represent the area surveyed for kelp presence in its entirety.  

 

Bottom slope 

Bottom slope (0 to 90°, Figure 4.3B) was calculated with the Slope tool in Arc Map 

10.3.1 (Esri, 2015), based on the interpolated bathymetric map. Using the Focal Statistics 

tool in ArcMap 10.3.1, average slope was calculated for the 225-m2 area surveyed around 

each 360 grid intersects used for model selection. Average slope of the seafloor surrounding 

an intersect was used in analyses instead of the slope directly below the intersect to better 

represent the area surveyed for kelp presence in its entirety. 

 

 



 

146 

 

Relative exposure to waves 

A relative exposure index (REI, Figure 4.3C) was used as a proxy of exposure to 

waves and calculated following the procedure outlined by Garcon et al. (2010) which 

combines mean wind velocity, mean wind direction, and effective fetch. Daily wind data 

recorded at the meteorological station of Havre St Pierre Airport (~10 km from the study 

area) in the 12 mo before acquisition of aerial imagery (i.e., July 2015 to June 2016) was 

obtained from the web archives of Environment Canada 

(http://climate.weather.gc.ca/historical_data/search_historic_data_e.html). This data was 

used to calculate 1) the yearly average of maximum wind gust velocity (V) from the daily 

maximum wind speed (m·s-1); and 2) the directional percentage frequency (Pi) of winds, 

calculated as the proportion of days (%) during which wind occurs from each of the 16 

compass directions (see below). Wind velocity and directional percentage frequency were 

calculated over a 12-month period to capture the range of conditions occurring across 

seasons. Effective fetch (F) is defined as the distance from a site to the nearest wave-

obstructing obstacle (U.S. Army Corps of Engineers, 1984). For any given point intersect, 

effective fetch was calculated along each of 16 compass directions (i.e., 1 to 16 compass 

headings, from N, NNE, NE, etc. in 22.5° increments from 0 to 360°) using the Fetch tool 

in the Waves toolbox (Rohweder et al., 2012) in ArcGIS 10.3.1 (Esri, 2015). REI was 

calculated for each of the 360 grid intersects used in analysis by applying the following 

equation (Garcon et al., 2010; Keddy, 1982): 

𝑅𝐸𝐼 =  ∑( 𝑉 ∙ 𝑃𝑖  ∙  𝐹𝑖  )

16

𝑖=1
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where i is the ith of 16 compass headings, V is the mean wind velocity in m s-1, Pi is the 

wind direction frequency (%), and Fi is the effective fetch in kilometres. It is important to 

note that the REI here does not take water depth into account and is therefore a measure of 

exposure at the water’s surface only. Possible interactions between depth and exposure 

were considered when preparing the models to be compared (see below).  

 

Urchin density 

Urchin densities were calculated from the underwater imagery collected at 360 

locations during ground truthing (see section 4.3.2, Figure 4.3D). Densities were calculated 

based on the number of urchins of >2 cm in diameter visible on the 80 x 80 cm photograph 

of the seabed acquired at each sampling location, as urchins of <2 cm in diameter were not 

readily visible on the imagery. 

 

Model selection  

A mixed model approach was applied to examine the relative influence of depth, 

bottom slope, exposure to waves (estimated by the REI), and urchin density on kelp 

presence. Binomial generalized linear mixed models (GLMM) with a combination of these 

four factors as fixed exploratory variables and Island as a random variable (categorical 

factor) were fitted to kelp presence data. To restrict the number of models to ecologically 

meaningful ones, the combinations of fixed factors to be tested in each model was chosen 

based on specific ecological hypotheses related to the factors studied (see Table 4.2), rather 

than testing all possible combinations of factors. These models assume that kelp presence  
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Table 4.2. Hypotheses and corresponding models used in model selection to investigate 

the relationship between kelp distribution and a combination of four explanatory variables, 

i.e., depth, bottom slope, relative exposure index (REI, a measure of exposure to waves), 

and urchin density (see section 4.3.5). The + symbol indicates an additive effect between 

parameters, while the * symbol indicates an interactive effect between parameters. 
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Model 

number 
Hypothesis tested Fixed factors 

   

1 Kelp presence decreases with increasing depth (because of 

decreasing light availability).  

Depth 

2 Kelp presence decreases with increasing urchin density 

(due to the grazing pressure of the urchin). 

Urchin density 

3 Kelp presence decreases with increasing depth and 

increasing urchin density, with an additive effect of both 

parameters.  

Depth + Urchin 

density 

4 Kelp presence increases with increasing wave action 

caused by the interaction between depth and relative 

exposure index (note that REI calculated in the present 

study and is a measure of exposure at the sea surface only, 

although wave action decreases with depth). 

Depth*REI 

5 Kelp presence increases with wave action (an interactive 

effect of depth and relative exposure) and slope (additive 

effect). 

Depth*REI + 

Slope 

6 Kelp presence decreases with wave action (an interactive 

effect of depth and relative exposure) and slope (additive 

effect) and decreases with increasing urchin density.  

Depth*REI + 

Slope + Urchin 

density 

7 Kelp presence increases with wave action (an interactive 

effect of depth and relative exposure) and decreases with 

urchin density.  

Depth*REI + 

Urchin density 

8 Urchin density and wave action (calculated as the 

interaction of depth and relative exposure) have an 

interactive, negative effect on kelp presence. 

Depth*REI*Urc

hin density 

9 Kelp presence decreases with increasing depth and with 

increasing relative exposure, without interaction between 

parameters. 

Depth + REI 

10 Kelp presence decreases with increasing depth and urchin 

density, but increases with increasing relative exposure, 

without interactive effect between parameters. 

Depth + REI + 

Urchin density 

11 Kelp presence decreases with increasing depth, slope, and 

urchin density, but increases with increasing relative 

exposure, without interactive effect between parameters. 

Depth + REI + 

Slope + Urchin 

density 
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is dependent on local factors and do not include the potential effect of kelp bed proximity. 

Further studies would be required to investigate the effects of kelp patch proximity on 

recruitment in our study area before such variable could be adequately included in the 

model (which falls outside the scope of the present study). To select between competing 

models, the Akaike’s information criterion (AIC) was calculated for each model and 

compared. AIC is an estimate of model fit which accounts for model complexity by 

applying penalties based on the number of factors present in a model (Burnham and 

Anderson, 2002). Hence, in model comparisons using AIC, the most informative model is 

the one which yields the lowest AIC. Models with an AIC difference (Δi, i.e., the difference 

between the AIC value of model i, where i represents any of the models tested, and the 

lowest AIC value among all models tested) of less than 2 have substantial support 

(Anderson, 2007) and are considered not meaningfully different from each other, indicating 

the presence of pretending variables which are not informative (Burnham and Anderson, 

2002; Leroux, 2019). Therefore, the best fitting model was selected as the most 

parsimonious model out of those with a Δi<2.  

Generalized linear mixed models were fitted in R 3.3.2 (R Development Core Team, 

2018) using the functions “glmer” in the “lme4” package (Bates et al., 2014). Residuals of 

the best fitting model were examined graphically for normality, independence, and 

homoscedasticity, and did not display violations of these assumptions. Given the large 

difference in range of values among the four explanatory variables, all explanatory 

variables were rescaled prior to running GLMMs. Scaling of each explanatory variable 

consisted of subtracting the explanatory variable’s median from each original value 

(centering) and dividing by the standard deviation. Applying this scaling and centering 
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method also allowed the coefficient estimates (i.e., slope coefficients) to be directly 

comparable, thus enabling comparisons in the magnitude of the effect of each explanatory 

variable (Welham et al., 2015). Odds ratios represent the rate of change in the odds of an 

event occurring (i.e., kelp presence) given a change of one unit of the explanatory variable 

and are calculated as the antilog of the coefficient estimate (eestimate or eβ1, Quinn and 

Keough, 2002). Since the variables were scaled before analysis, the units of the odds ratios 

from the model output are one standard deviation of the variable rather than the original 

unit of the variable. Odds ratios were calculated from the parameter estimates from the 

most informative model, and subsequently back-transformed to be reported on each 

explanatory variable’s original scale. 

 

4.4. RESULTS 

Kelp coverage and spatial pattern metrics 

At the broadest spatial scale studied (entire study area), kelp was present over 62.5% 

of the seabed (Figure 4.4 and 4.5). At the intermediate spatial scale (each island taken 

separately), kelp coverage showed differences of up to 41.0% among islands, being the 

lowest at Île Niapiskau with 46.3% coverage and highest at Île aux Goélands with 87.3% 

coverage (Figure 4.5). Within the finest-scale units (200 x 200 m), kelp coverage showed 

greater variability than the coverage measured at the intermediate scale (islands); kelp 

coverage varied from 2.7% in one fine-scale unit at Île du Havre to 100% in one unit at Île 

aux Goélands (Figure 4.5).  

Largest patch index values indicate that, at all islands except Île Niapiskau, the largest 

contiguous kelp patch covered between 42.6% (Petite île au Marteau) and 81.7% (Île du  
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Figure 4.4. Map issued from the visual classification of the aerial imagery acquired around the five studied islands in the Mingan 

Archipelago showing the distribution of the kelp (brown) and non-kelp (green) benthic classes. 
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Figure 4.5. Comparison of kelp cover (%) as measured within the study area of each island 

(columns), and within fine-scale units of approximately 200 x 200 m (~40,000 m2; gray 

circles). The number of fine-scale units at each island was determined proportionally to the 

size of each island’s study area, for a total of 30 sites (with 4 at Île Niapiskau, 4 at Île à 

Firmin, 16 at Île du Havre, 3 at Île aux Goélands, and 3 at Petite île au Marteau). The bar 

furthest to the right represents the overall kelp cover (62.5%) calculated over the entire 

study area. 
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Havre) of each island’s study area (Figure 4.6A). In contrast, the largest kelp patch 

observed at Île Niapiskau covered only 24.4% of that island’s study area. Largest patch 

index for the non-kelp benthic class varied between 5.9% (Île aux Goélands) and 33.4% 

(Île à Firmin), except at Île Niapiskau where the largest patch index for non-kelp reached 

53.3%.  

Patch area was highly variable for both benthic classes. Kelp patch area varied from 

225 m2 (all islands except Petite île au Marteau, where minimum was 450 m2) to 891,225 

m2 (Île du Havre, Figure 4.6B and 4.7). Among islands, maximum kelp patch area showed 

variation of up to one order of magnitude (Figure 4.7). Similar variations were observed in 

non-kelp patches, with a minimum of 225 m2 (all islands) and a maximum of 311,850 m2 

(Île du Havre, Figure 4.7C). Maximum non-kelp patch size varied considerably among 

islands, being 17 times greater at Île du Havre than Île aux Goélands. Maximum non-kelp 

patch size at Île Niapiskau, Île à Firmin, and Petite île au Marteau varied between 46,575 m2 

and 193,500 m2 (Figure 4.6B and 4.7). At Île du Havre, Île aux Goélands, Petite île au 

Marteau, and in the entire study area, kelp patches were on average 6.5 times larger than 

non-kelp patches; 16.8 to 24.6 patches·km-2 for the kelp benthic class and 51.7 to 74.3 

patches·km-2 for the non-kelp benthic class; Figure 4.6C). Contrary to this trend, the mean 

patch area for kelp was 48 and 27% lower than non-kelp patches at Île Niapiskau and Île à 

Firmin, respectively. Standard error around the values of mean patch area were substantial 

for both benthic classes at all islands, suggesting large variation in patch size for kelp and 

non-kelp patches throughout the study area (Figure 4.6B). Frequency distribution of patch 

size from both benthic classes shows that 81 and 77% of patches were smaller than 1350  
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Figure 4.6. Spatial pattern metrics for the kelp (white) and non-kelp (gray) benthic classes. 

Metrics were calculated individually for each of the five islands and for the entire study 

area. Panel A shows the largest patch index (%). Panel B shows patch area where bars 

represent the mean (in m2, ± SE) and symbols represent minimum (diamond) and maximum 

(circles) values. Panel C shows patch density (number of patches per km2). Panel D shows 

shape index (unitless, mean ± SE). Panel E shows Euclidian nearest neighbour distance (in 

m, mean ± SE). Panel F shows clumpiness index (unitless). Details regarding each metric 

are presented in Table 4.1. 
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Figure 4.7. Frequency distribution of patch size (surface area, in m2) for the kelp (left side 

panels, from A to F) and non-kelp benthic classes (right side panels, from G to L) for each 

island and the entire study area. Note the exponential scale of the abscissas and various 

scales along the ordinates. 
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m2 in the kelp and non-kelp benthic classes, respectively, with only 1 to 15 larger patches 

present per island (Figures 4.7).  

Mean shape index differed among islands, with more complex kelp patches observed 

at Petite île au Marteau (2.4 ± 0.7) and Île Niapiskau (1.6 ± 0.4) compared to the other 

islands. Île Niapiskau also presented the most complex non-kelp patches with shape indices 

averaging 1.6 ± 0.6, followed by Île à Firmin with 1.5 ± 0.3. Shape indices over the entire 

area were similar for the kelp and non-kelp benthic classes, with values of 1.5 ± 0.1 and 1.3 

± 0.2 respectively (Figure 4.6D). 

Mean (Euclidean) nearest neighbour distance among patches of the same benthic 

class calculated over the entire study area were of 34.8 ± 1.2 and 42.7 ± 1.9 m for the kelp 

and non-kelp benthic classes, respectively (Figure 4.6E). This metric was relatively stable 

among islands, ranging from 30.0 to 38.5 m and from 31.2 to 44.7 m for the kelp and non-

kelp benthic classes, respectively (Figure 6E). Clumpiness indices yielded values of 0.59 

and 0.67 over the entire study area for kelp and non-kelp cover respectively, indicating a 

relatively high degree of aggregation for both benthic classes (Figure 4.6F). Clumpiness 

indices varied among islands from 0.34 (Île aux Goélands) to 0.64 (Île Niapiskau) for the 

kelp benthic class, and from 0.56 (Île à Firmin) to 0.72 (Île du Havre) for the non-kelp 

benthic class. The clumpiness index of the kelp benthic class was 9, 13, 69, and 32% higher 

than the non-kelp benthic class at Île Niapiskau, Île du Havre, Île aux Goélands, and Petite 

île au Marteau, respectively (Figure 4.6F). At Île à Firmin, the clumpiness index of the non-

kelp benthic class was 5% lower than that of the kelp benthic class (Figure 4.6F).  
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Model selection 

Results from model selection (Table 4.3) indicated that three models had low AIC values 

and were equally well fitting the dataset (Δi <2). Of these three models, Model 10 which 

includes the additive effects of the variables depth, REI, and urchin density was the most 

parsimonious and therefore was used for subsequent analyses (Table 4.3, see section 4.3.5 

for details). Regression coefficient estimates (i.e., slope coefficients) from this model, 

which represent the log-odds of the presence of kelp, yielded values of -1.32, -0.86, 

and -1.01 for the variables depth, REI, and urchin density, respectively. Comparison of the 

coefficient estimates is possible because the exploratory variables were scaled prior to 

analyses. In this case, coefficient estimates from Model 10 showed that depth had the 

strongest influence on kelp presence (Table 4.4), being 1.5 times greater than the influence 

of REI, and 1.3 times greater than that of urchin density (Table 4.4). The influence of urchin 

density on kelp presence was 1.2 times higher than the effect of REI (Table 4.4). Based on 

odds ratios, Model 10 indicates that for every increase of one metre in depth, the odds of 

kelp presence declined by 0.15 (Table 4.4). Similarly, for every increase of one unit in REI 

and of one urchin·m-2 (urchin density), the odds of kelp presence declined by 0.00002 and 

0.008, respectively (Table 4.4).  

 

4.5. DISCUSSION  

Characterizing species-habitat relationships at multiple scales is crucial for a 

comprehensive understanding of the scale-dependent ecological processes driving species 

distribution (Lecours et al., 2015; Petraitis and Latham, 1999). For instance, the  
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Table 4.3. Outcome of model selection applied to determine the relative influence of four explanatory variables (Depth, Relative 

Exposure Index [REI], Slope, and Urchin density) on kelp presence (see Section 4.3.5 for details). AICi is the value of the Akaike 

Information Criterion (AIC) calculated for model i (where i represents any of the 11 models tested), and Δi is the difference 

between the AIC of the best fitting model and that of model i. k represents the number of parameters, Exp(−0.5Δi) represents the 

relative likelihood of model i, and wi represents the Akaike weights. The + symbol indicates additive effects, while the * symbol 

indicates interactive effects among model factors. Model 10 (bold) was selected as the most informative. 

 

Model 

number 
Fixed explanatory variables in each model k AICi Δi Exp(-0.5Δi) wi 

       

Model 11 Depth + REI + Slope + Urchin density 6 315.2 0 1.000 0.395 

Model 10 Depth + REI + Urchin density 5 315.7 0.4 0.803 0.317 

Model 6 Depth * REI + Slope + Urchin density 7 317.2 2.0 0.370 0.146 

Model 7 Depth * REI + Urchin density 6 317.6 2.4 0.302 0.119 

Model 8 Depth * REI * Urchin density 9 321.0 5.8 0.054 0.022 

Model 3 Depth + Urchin density 4 345.6 30.3 0.000 0.000 

Model 9 Depth + REI 4 362.9 47.7 0.000 0.000 

Model 4 Depth * REI 5 364.4 49.2 0.000 0.000 

Model 5 Depth * REI + Slope 6 366.0 50.8 0.000 0.000 

Model 1 Depth 3 386.2 71.0 0.000 0.000 

Model 2 Urchin density 3 388.5 73.3 0.000 0.000 
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Table 4.4. Coefficient estimate (β), p-values, and odds ratios for the explanatory variables in Model 10, which was selected as 

the most informative by comparison of Akaike’s Information Criterion (AIC; see Table 4.3 and Section 4.3.5). Odds ratios 

indicate the relative change in the odds of kelp being present at a given location, for an increase of one unit in the exploratory 

variable. As the explanatory variables were scaled and centered prior to analyses, the odds ratios represent the change in odd for 

an increase of one standard deviation of the exploratory variable. The odds ratios were back-transformed to present the change 

in odds for an increase of one unit of the explanatory variable (first column from the right). All changes in odds represent declines 

in the odds of kelp being present, since the coefficient estimates are of negative values.  

 

Exploratory 

variable 
β (±SE) p-value 

Change in odds per one standard 

deviation of the exploratory 

variable (i.e., odds ratio; eβ) 

Standard 

deviation of the 

initial data 

Change in odds per unit 

of the exploratory 

variable 
      

Intercept 0.8718 <0.001 - - - 

Depth -1.32 (± 0.19) <0.001 0.266 1.79 m 0.15 per m 

REI -0.86 (± 0.17) <0.001 0.423 24750.54 units 0.00002 per unit 

Urchin density -1.01 (± 0.16) <0.001 0.366 44.67 urchins·m-2 0.008 per urchin·m-2 
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combination of fine- and broad-scale approaches showed that distribution patterns of giant 

kelp at the scale of 10s to 100s of km2 are strongly influenced by oceanographic factors 

(e.g., El Niño events or North Pacific Gyre Oscillations, Cavanaugh et al., 2011; Edwards, 

2004), while biological and physical factors occurring at the scale of a few metres are the 

main drivers of local distribution patterns (e.g., grazing, substrate stability, and canopy 

shading, Dayton, 1985a; Dayton et al., 1992). Approaches developed in terrestrial ecology 

to measure landscape heterogeneity using spatial pattern metrics are increasingly applied 

to link distribution patterns in habitat-forming marine benthic species and their drivers at 

various spatial scales (Boström et al., 2011; Huntington et al., 2010; Wedding et al., 2011). 

For submerged kelp-urchin systems, these metrics enable the assessment of seascape 

patterns at broad spatial scales (km2) largely unexplored to date; they provide a new 

perspective for the study of boundary dynamics and community shifts which could not be 

obtained through traditional methods and which is crucial to assess the long-term stability 

and resilience (or lack thereof) of these systems. The present study contributes to the 

understanding of kelp distribution patterns and their drivers in the northern Gulf of St. 

Lawrence by exploring new approaches using spatial analyses and modelling techniques 

applied at a broad spatial scale (km2). Results indicate that kelp distribution (based on kelp 

coverage and spatial pattern metrics) is not uniform among islands in the Mingan 

Archipelago and suggest that the spatial extent over which observations are obtained 

strongly influences the patterns detected. Results from model selection indicate that both 

biotic and abiotic factors influence kelp distribution, since increasing depth, urchin density, 

and relative exposure to waves were all independently correlated to a decrease in the odds 

of kelp presence, with depth having the strongest effect.  
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Substantial variation in kelp coverage was observed in the fine-scale units (200 x 200 

m) studied, with some units being practically devoid of kelp (2.7% kelp cover) while others 

had continuous (100%) kelp coverage. When measured over the intermediate spatial scale 

(i.e., each island separately), variations in kelp coverage were less pronounced, ranging 

from 46.3 to 87.3% among islands. Overall kelp coverage calculated for the entire study 

area was of 62.5%. Based on these observations of kelp coverage and the fact that spatial 

pattern metrics varied greatly among islands (particularly largest patch index, patch area, 

and patch density), the present study suggests the spatial extent over which a study is 

conducted strongly influences the patterns observed in terms of coverage and distribution 

patterns. Hence, extrapolating observations of kelp distribution from fine-scale (10s or 100s 

m2) monitoring projects to greater spatial extents (km2) may lead to unreliable estimates. 

Care should be taken in determining the spatial extent and resolution needed in studies of 

kelp bed distribution. Also, spatial pattern metrics are highly dependent on the resolution 

and minimal mapping unit employed during image classification (Fassnacht et al., 2006; 

Kendall et al., 2011; Saura, 2002). Because the grid intersects used during image 

classification in the present study covered 225 m2, kelp and non-kelp features of a smaller 

size were not identified. Thus, only patterns of kelp distribution encompassing at least 

several 100s of m2 can be obtained from interpretation of these metrics.  

In the present study, patch size and density of both kelp and non-kelp benthic classes 

displayed wide variations within islands and among islands. Within islands, the smallest 

patches observed covered only one grid intersect (225 m2) and the largest formed long, 

connected areas with a varying degree of geometric complexity. Among islands, maximum 

kelp patch area showed variation of up to one order of magnitude and mean kelp patch area 
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showed up to 475% difference. These variations in patch size and density among islands 

may stem from differences in environmental parameters such as depth and exposure to 

waves (discussed below), substrate, or topography, although further data is required to 

assess the effects of the latter two. Differences in urchin density among island may also 

influence kelp patch size, as urchin grazing is known to modulate the extent of kelp beds 

at the scale of m to 10s of m (Frey and Gagnon, 2015; Gagnon et al., 2004; Scheibling et 

al., 1999). In this study, a strong negative correlation was observed between urchin density 

and largest patch index calculated for the kelp class, although mean kelp patch showed no 

clear trend with urchin density among islands (data not shown). At the largest spatial scale 

studied (entire study area), over 80% of all kelp patches measured less than 1350 m2 (6 grid 

intersects), suggesting that the study area is characterized by numerous small kelp patches 

with only few large patches. However, these few large patches contain most (98%) of the 

kelp-covered seabed. As large kelp patches form continuous and unfragmented habitat, they 

may contribute to a higher biodiversity of kelp-associated species and be more resilient to 

grazing than smaller patches (Norderhaug et al., 2005; Reeves et al., 2015; Sievers et al., 

2016). For instance, biomass and abundance of fish are positively correlated with kelp patch 

area in Californian kelp forests (Deza and Anderson, 2010). It is unclear from the data at 

hand whether kelp beds were initially forming large unfragmented patches and were 

subsequently divided (e.g., by urchin grazing) or if the kelp beds developed directly as 

variably sized patches, for example due to localized differences in substrate. 

Similar to patch size, the degree of aggregation of habitat patches influences diversity 

patterns, animal movement, and genetic diversity (Alberto et al., 2010; Bender et al., 2003; 

Billot et al., 2003; Jackson and Fahrig, 2014). In the present study, clumpiness indices (a 
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measure of aggregation) showed that kelp patches are aggregated to a degree that varied 

among islands, as indices calculated for each of the five islands varied between 0.34 and 

0.64, while the study area as a whole had a relatively high degree of aggregation with an 

index value of 0.59. Aggregation of kelp patches may be modulated by spore dispersal 

patterns, as kelp spores generally tend to remain within a few m to 10s of m of their parental 

patch but can be dispersed over several hundred m (Fredriksen et al., 1995; Gaylord et al., 

2002; Norton, 1992). Thus, the strength and direction of currents transporting spores may 

differ among and within islands, creating patterns in which new kelp patches form close by 

or far away from the parent patch. As is the case for patch size, the aggregation of kelp 

patches may also depend on the intensity of urchin grazing pressure which determines the 

position of kelp bed edges (Frey and Gagnon, 2015; Gagnon et al., 2004; Konar et al., 2014; 

Scheibling et al., 1999). Although intensive urchin grazing may increase the distance 

between neighbouring patches (thus decreasing the clumpiness index), data from the 

present study suggest a positive correlation between average urchin density and clumpiness 

indices at each island (data not shown). Further studies are needed to elucidate the 

mechanisms driving this trend. Other physical factors such as substrate type, topography, 

and local currents should be investigated as potential drivers of kelp patch aggregation, as 

they modulate both kelp settlement and urchin activity (Feehan et al., 2012; Flukes et al., 

2012; Laur et al., 1986; Muth, 2012).  

Model selection results showed that increasing depth, urchin density, and relative 

exposure to waves all independently lead to a decrease in kelp presence, with depth having 

the strongest effect followed by urchin density and exposure to waves. The relationship 

between depth and kelp presence can be easily visualized on the kelp distribution map 



 

167 

 

created in the present study, as extensive kelp patches are generally present along the coast 

while smaller dispersed patches more frequently form in deeper areas. These results support 

observations from studies in the northeast Atlantic, which showed kelp are more frequent 

in shallow water (Bekkby et al., 2009; Rinde et al., 2014; Svendsen and Kain, 1971). 

Increased kelp presence near the surface may stem from better light conditions and 

increased water motion which stimulate nutrient intake and photosynthesis (Hepburn et al., 

2007; Hurd, 2000). The greater water motion near the surface compared to deeper area may 

also affect kelp presence indirectly because wave-induced movement of algal fronds deters 

displacement and feeding in several urchin species including S. droebachiensis (Dayton, 

1985b; Himmelman and Steele, 1971; Konar, 2000; Velimirov and Griffiths, 1979). Given 

this relationship, it was surprising that the interaction between depth and relative wave 

exposure did not improve modelling outcomes. Since the study area only encompassed 

shallow (0-7 m) zones generally exposed to the open waters of the Gulf of St. Lawrence, it 

is possible that this interaction may become more significant if a wider range of depths and 

exposure levels were studied.  

Although water motion can have positive effects on kelp growth (Hepburn et al., 

2007; Hurd, 2000; Sjotun and Fredriksen, 1995), strong wave action can also lead to blade 

damage and dislodgement from the substratum (Krumhansl and Scheibling, 2011; 

Thomsen et al., 2004). Contrary to the initial hypothesis, the present study shows kelp 

presence decreases with increasing exposure to waves. In the northeast Atlantic, studies by 

Bekkby et al. (2009), Rinde et al. (2014), and Pedersen et al. (2012) reported a positive 

correlation between wave exposure and kelp presence. In these studies, kelp presence was 

compared among sites within a wide gradient of wave exposure, from sheltered to highly 
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exposed coasts. In contrast, the present study focuses on the exposed shores within the 

Mingan Archipelago, therefore targeting wave exposed areas since kelp is rarely present 

on protected shores in this area (Gagnon et al., 2004, P. Gagnon, personal observations; 

Himmelman, 1991). Favorable growth conditions and difficulty of access by urchins have 

been suggested to explain the enhanced kelp presence in areas of high wave exposure in 

other regions (Lauzon-Guay and Scheibling, 2007; Merzouk and Johnson, 2011; Rinde et 

al., 2014). Yet, results from the present study suggest that moderately exposed shores (i.e., 

the lower end of the exposure gradient studied here) are more favorable than highly exposed 

areas for kelp species growing in the Mingan Archipelago. This may be due to damage to 

sporophytes, dislodgement, or impeded settlement of kelp recruits caused by strong waves 

and increased ice scouring in areas of high exposure (Filbee-Dexter and Scheibling, 2012; 

Krumhansl and Scheibling, 2011; Saunders and Metaxas, 2008).  

The hypothesis that increased urchin density decreases the likelihood of kelp 

presence was supported by results from the present study, since urchin density was 

identified as the second most important variable influencing kelp presence, after depth. As 

urchin densities often reach up to 300 urchins·m-2 in feeding aggregations near kelp beds 

in the Mingan Archipelago (Gagnon et al., 2004; Himmelman and Nédélec, 1990), the fact 

that the odds of kelp presence declined by 0.008 for each increase of a single urchin per m2 

confirms that urchin grazing is an important driver of kelp distribution in that region. In 

barren areas, the presence of urchin limits kelp resettlement and may preclude the formation 

or large, connected kelp patches (Breen and Mann, 1976; Chapman, 1981; Gagnon et al., 

2004; Scheibling et al., 1999). A clear example of this is found at Île Niapiskau, which 

presents the lowest percent cover of kelp and smaller, less connected patches than the other 
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islands studied, as well as the highest value for largest patch index and percent cover for 

the non-kelp benthic class. Île Niapiskau also had the highest urchin density; ground-truth 

data at this island showed an average urchin density of 77 urchins·m-2, with 12 locations 

out of the 45 surveyed containing over 100 urchins·m-2. In comparison, urchin densities at 

each of the other four islands studied averaged 18 to 33 urchins·m-2, with only 1 to 8 

locations per island having densities >100 urchins·m-2. These findings suggest that high 

urchin density limits the formation of large, continuous kelp patches in the Mingan 

Archipelago, although more testing is needed to identify the threshold urchin density 

required to produce such effects and the drivers of differences in urchin density among 

islands.  

Large-scale phase shifts between kelp-dominated and urchin-dominated states have 

been observed worldwide (Krumhansl et al., 2016; Ling et al., 2015; Steneck et al., 2002), 

including in Nova Scotia (Filbee-Dexter and Scheibling, 2014; Lauzon-Guay et al., 2009). 

These shifts are mainly caused by dramatic variations in urchin density and because they 

occur over extensive areas (up to 10s of km2), they have a profound effect on biodiversity 

patterns which can be maintained over decades (Filbee-Dexter and Scheibling, 2014; Ling 

et al., 2015; Steneck et al., 2002; Steneck et al., 2013). In the Mingan Archipelago, several 

field-based research projects on benthic invertebrates and algae have occurred over the past 

30 years (see work by J.H. Himmelman, L.E. Johnson, and their students). Based on these 

projects, the shallow benthic communities in this region has been generally described as 

including relatively small, shallow kelp beds near coastlines and extensive urchin barrens 

in deeper areas, without having undergone major shifts in the spatial dominance of either 

kelp or urchins at a broader (km2) scale. Hence, the kelp-urchin system in this region 
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appears to be relatively stable over time. The apparent temporal stability of this system at 

broad (km2) spatial scales may be explained by the fact that kelp distribution is correlated 

with depth and exposure to waves (i.e., two abiotic parameters which do not vary 

temporally) as shown in the present study. As urchin density modulates annual and seasonal 

variations in the position of the kelp-barren interface at small spatial scales (few 10s m2; 

Gagnon et al., 2004), this factor (which was also correlated with kelp presence in the present 

study), may have a more local influence and lead to the differences in kelp bed patterning 

observed among islands, while the effects of depth and exposure to waves may affect 

broader spatial and temporal scales.  

Given the global (Krumhansl et al., 2016) and regional (Filbee-Dexter et al., 2016; 

Moy and Christie, 2012; Pehlke and Bartsch, 2008) kelp forest declines observed over the 

past decades, understanding the causes and consequences of spatial patterns in kelp 

distribution in these systems is crucial from ecological and management standpoints. The 

present study is the first investigation of spatial patterns in the distribution of completely 

submerged kelp beds. Results of spatial pattern metrics demonstrate that kelp beds form an 

irregular seascape with patches of diverse sizes in shallow subtidal zones in the Mingan 

Archipelago. Modelling results show a strong correlation between kelp presence and depth, 

urchin density, and relative exposure to waves, but no significant effect of bottom slope or 

any interactions among parameters on kelp distribution. This study increases knowledge of 

the physical and biological factors regulating kelp distribution at a broad spatial scale and 

is a step forward towards a comprehensive understanding of scale-dependent processes 

regulating submerged kelp bed distribution. Spatial pattern metrics applied to the study of 

subtidal kelp ecosystems are a promising technique for monitoring these ecosystems over 
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extended spatial and temporal scales (e.g., years), as well as evaluating the effects of natural 

and anthropogenic disturbances on kelp bed distribution and recovery to better inform 

management practices.  
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Kelp-bed dynamics across scales: Stability and drivers of kelp 

distribution patterns over broad spatiotemporal scales 
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5.1. ABSTRACT  

Drivers of stability and change in benthic systems operate at multiple spatiotemporal 

scales. In submerged kelp bed systems, most studies to date have been limited to fine 

spatiotemporal scales due to the scuba-based monitoring techniques applied, which limits 

our understanding of the occurrence and drivers of broader patterns. The present study 

applies remote sensing and landscape ecology approaches to investigate spatial 

configuration and persistence of kelp beds over broad spatial (km2) and temporal (decades) 

extents in the Mingan Archipelago (Gulf of St. Lawrence, Canada). Aerial imagery 

covering 2.85 km2 of shallow (<7 m) seabed surrounding five islands was acquired every 

five to 11 years between 1983 and 2016 (six sampling years in total). The imagery was 

visually classified and divided into two benthic classes based on cover type: kelp and non-

kelp. Spatial pattern metrics were used to quantify the spatial characteristics of kelp beds 

in each of the six years studied (including kelp coverage, number of kelp patches, mean 

patch area, and largest patch index) and to examine the correlations between these metrics 

and atmospheric or oceanographic conditions. Results showed that kelp cover increased 

from 1999 to 2016 and that harsh oceanographic conditions in late winter to spring (e.g., 

long ice-covered season, high North Atlantic Oscillation index) lead to a decrease in kelp 

cover, smaller mean patch size, and increased number of patches. The distribution of kelp-

covered areas was relatively stable over time, with 75% of the total area exhibiting two 

changes in cover type or less over the entire study period. Analysis of the effects of depth, 

bottom slope, and exposure to waves on the persistence of kelp beds and variability in cover 

type showed a significant effect of depth only, indicating that shallow seabed withstands 

fewer changes in cover type over time compared to deeper areas and that kelp beds 
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persisting through time are found in shallow areas. The present study offers a novel, broad-

scale perspective of the variability in distribution patterns of completely submerged kelp 

beds in the northern Gulf of St. Lawrence and the drivers of long-term stability in kelp-

urchin systems. 

 

5.2. INTRODUCTION 

Understanding the biotic and abiotic drivers of species distribution is necessary to 

predict shifts in community structure and ecosystem functioning (Boulangeat et al., 2012; 

Leach et al., 2016; Meier et al., 2010). Given that biological and environmental processes 

regulating species distribution are scale-dependent (Schneider, 2009; Turner et al., 1989), 

investigations of species distribution patterns should encompass various spatial and 

temporal scales (Hobbs, 2003; Lecours et al., 2015). However, technical limitations often 

dictate the scale at which studies are conducted, leading to sporadic and spatially limited 

sampling (Lecours et al., 2015; Wheatley and Johnson, 2009). This is especially true in 

marine benthic studies where data gathering is generally costly and time consuming (e.g., 

when applying scuba techniques). Yet, quantifying temporal trends in species distribution 

across broad spatial (km2 to 10s of km2) and temporal (multiple years) extents is essential 

to assess the stability and resilience of marine systems and to build strong inferences of the 

impacts of changing environmental conditions on benthic communities (Magurran et al., 

2010; Reed et al., 2015; Thrush et al., 2009). This is particularly important to predict change 

in systems where alternate stable states exist, because state shifts lead to dramatic changes 

in biological composition, productivity, and ecosystem services (Beisner et al., 2003; 

Moffett et al., 2015; Petraitis and Latham, 1999).  
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In cold-water shallow rocky reef environments, kelp-urchin systems are generally 

considered as candidates for alternate stable states (Filbee-Dexter and Scheibling, 2014; 

Konar and Estes, 2003; Simenstad et al., 1978; Steneck et al., 2013). In these systems, 

large-scale shifts may occur between two states: 1) a kelp bed state, characterized by the 

spatial dominance of large brown seaweed (Laminariales) creating structurally complex, 

productive, and biodiverse habitats, and 2) an urchin barren state in which the benthic floor 

is mostly devoid of erect fleshy macroalgae, is dominated by sea urchins, and presents 

relatively lower habitat complexity and biodiversity (reviewed in Filbee-Dexter and 

Scheibling, 2014). In a recent meta-analysis of regional and global trends in kelp 

abundances over the past half-century, Krumhansl et al. (2016) examined worldwide 

ecoregions where kelp occurs and identified that 38% of these ecoregions showed declines 

in kelp populations, 27% showed increases, and 35% showed no detectable changes. These 

changes in kelp distribution have various causes and, in some cases, were linked to large-

scale shifts between kelp bed and urchin barren states (Krumhansl et al., 2016 and 

references within). However, Krumhansl et al. (2016) observed a high degree of variability 

in the direction and magnitude of kelp distribution changes among and within ecoregions. 

Because of this variability, these authors suggest that kelp dynamics are strongly influenced 

by local stressors (i.e., affecting specific sites or regions, such as pollution, harvesting, 

competition with invasive species, or variations in urchin densities) rather than global 

drivers. Yet, because of the poor spatial and temporal resolution of the available data in 

many ecoregions, estimates of kelp distribution changes calculated by Krumhansl et al. 

(2016) may not reflect drivers of kelp change at relevant scales.  
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In eastern Canada and northern Europe, sea urchin densities are the main driver of 

kelp distribution at the metre scale (Gagnon et al., 2004; Lauzon-Guay and Scheibling, 

2007a) and variations in urchin density can lead to state shifts between urchin-dominated 

and kelp-dominated states (Lauzon-Guay et al., 2009; Steneck et al., 2002). In addition, 

environmental factors such as ice scouring (Gagnon et al., 2004; Keats et al., 1985), wave 

action (Bekkby et al., 2009; Frey and Gagnon, 2015), and temperature (Fredersdorf et al., 

2009; Fredriksen et al., 1995) have also been shown to modulate kelp distribution. 

However, assessments of kelp distribution patterns in these systems have been limited to 

small spatial (few 100s m2 at most) and temporal (<5 years) extents given the limitations 

of scuba sampling techniques generally used to monitor kelp beds (e.g., Frey and Gagnon, 

2015; Gagnon et al., 2004; Lauzon-Guay and Scheibling, 2007b). Correlations between 

environmental factors and kelp distribution patterns at broader spatiotemporal scales 

remain largely unexplored yet necessary to gain a clearer understanding of scale-dependent 

processes modulating kelp bed stability and distribution patterns (Edwards, 2004).  

Approaches relying on remote sensing and landscape ecology are increasingly used 

to address multiscale questions pertaining to the spatial configuration, drivers, and 

persistence of species distribution patterns (Boström et al., 2011; Uuemaa et al., 2013). In 

particular, spatial pattern metrics are routinely applied in terrestrial systems to quantify the 

spatial arrangement and connectivity of habitat patches over broad spatial extents from 

maps or remotely sensed imagery (Turner et al., 2001). The use of spatial pattern metrics 

is rising in marine seascape studies as they provide a suitable approach to quantify seascape 

configuration, monitor temporal changes, and explore correlations between the spatial 

configuration of habitats and environmental conditions through space and time (Boström 
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et al., 2011; Wedding et al., 2011). For kelp-urchin systems, such approaches present an 

opportunity to identify drivers of stability and change in kelp distribution patterns and test 

the tenets of alternate stable states theory at spatiotemporal scales unattainable through 

traditional (scuba-based) monitoring techniques.  

The kelp-urchin system in the Mingan Archipelago (northern Gulf of St. Lawrence) 

is an ideal study system for the investigation of the temporal stability and spatial 

configuration of kelp beds over broad (km2) expanses of seabed. A mainly dichotomous 

division of the seabed is observed in this system, with mixed kelp beds near coastlines and 

green sea urchin (Strongylocentrotus droebachiensis) barrens extending from the edge of 

kelp beds to >15 m (Chapters 2 & 3, Gagnon et al., 2004; Gagnon et al., 2005). Because of 

this and the generally clear water column, kelp beds can be easily identified using remote 

sensing techniques. Indeed, a companion study conducted in this area demonstrated that 

completely submerged shallow (<7 m) kelp beds can be accurately detected and mapped 

by applying a visual classification technique to aerial imagery, yielding 90% overall 

accuracy (St-Pierre and Gagnon, 2020). From the precise kelp distribution map thus 

created, the spatial configuration of kelp beds can then be assessed using spatial pattern 

metrics. These techniques have been applied successfully to quantify spatial patterns in the 

distribution of kelp in the Mingan Archipelago from aerial imagery obtained at a single 

occasion (Chapter IV). By applying the same proven techniques to a time-series of aerial 

imagery, it becomes possible to investigate the stability of kelp beds and their resilience to 

changing environmental conditions. Hence, the availability of a time-series of aerial images 

encompassing the shallow subtidal zone of several islands of the Mingan Archipelago 

(acquired in part by Parks Canada’s surveys of coastline erosion in this area) dating back 
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to 1983 provides a unique opportunity to quantify the stability of kelp beds in this region 

over several decades. In addition, sound knowledge of the factors modulating kelp 

distribution at the metre scale within the Mingan Archipelago over short time periods (<3 

years, Gagnon et al., 2004; Gagnon et al., 2005) allows for strong comparison of the 

patterns and drivers of kelp distribution across scales. 

The present study is the first to apply approaches based on remote sensing and 

landscape ecology to monitor submerged kelp bed dynamics with both the fine spatial 

resolution and broad spatiotemporal coverage necessary to assess the stability of kelp 

systems beyond current knowledge. Using aerial imagery from the Mingan Archipelago 

between 1983 and 2016 (six sampling occasions in total), the first aim of this study is to 

assess correlations between kelp distribution patterns and environmental conditions. Kelp 

distribution was measured at each sampling occasion by calculating spatial pattern metrics 

quantifying the proportional abundance, shape, area, and clustering of kelp beds. An 

exploratory analysis of the correlations between these metrics and atmospheric or 

oceanographic conditions was conducted to identify potential drivers of kelp distribution 

patterns. The second aim of this study is to quantify the temporal stability of kelp beds and 

to measure the relative influence of physical site characteristics (depth, bottom slope, and 

exposure to waves) on kelp bed persistence by applying model comparison techniques.  

 

5.3. MATERIAL AND METHODS 

5.3.1. Study site 

The Mingan Archipelago consists of a chain of ~20 islands and 1000 islets scattered 

over >150 km along the north shore of the Gulf of St. Lawrence (Québec, Canada). This 
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study focuses on five islands from the western portion of the archipelago, spread over a 

longitudinal distance of ~14 km: Île Niapiskau (westernmost), Île à Firmin, Île du Havre, 

Île aux Goélands, and Petite île au Marteau (easternmost; Figure 1). A summary description 

of the study site is presented below, with more details in Chapter IV. The Mingan 

Archipelago was chosen for the present study due to 1) the reasonable knowledge of kelp 

dynamics at the metre scale in this region from previous studies (Gagnon et al., 2004; 

Gagnon et al., 2005; Himmelman, 1991) offering a basis for comparison of broader scale 

studies; and 2) the availability of high-resolution aerial imagery acquired in that region 

every five to 11 years since 1983 (see section 5.3.2), in part by Parks Canada for coastal 

erosion monitoring. In the Mingan Archipelago, kelp beds are more abundant on the 

islands’ generally south-facing shores (i.e., exposed to the open waters of the Gulf of St. 

Lawrence), in shallow (0-7 m) subtidal zones (Gagnon et al., 2004). Because the objective 

of the present study was to examine the factors driving kelp distribution in areas where kelp 

beds dominate, the study area was confined to the 0-7 m depth zone on the south-facing 

shores of the five islands mentioned above to focus the sampling effort in areas where kelp 

beds presence is most probable (Figure 5.1). Boulders and bedrock are the main substrate 

types throughout the study area, with sporadic patches of cobbles, gravel, or sand.  

Two subtidal communities dominate the shallow (0-7 m) nearshore zone: 1) mixed 

kelp beds, mainly of Alaria esculenta but often including Laminaria digitata, 

Saccharina longicruris, Agarum cribosum, and Saccorhiza dermatodea, and 2) green sea 

urchin (Strongylocentrotus droebachiensis) barrens extending from the edge of kelp beds 

to >15 m. The transition between kelp beds and barrens is generally clearly defined because  
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Figure 5.1 General location of the western sector of the Mingan Archipelago (boxed) within the Gulf of St. Lawrence (eastern 

Canada) and of the Anticosti Channel oceanographic region (hatched) as defined by Galbraith et al. (2017). The enlarged area 

shows the location of the study area (shaded subtidal areas) at Île Niapiskau, Île à Firmin, Île du Havre, Île aux Goélands, and 

Petite île au Marteau. 
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of aggregations of green sea urchins (called grazing fronts) at the lower edge of kelp beds 

which destructively graze upon kelp, leaving behind barren areas. Because this sharp 

transition can be identified on aerial imagery, the study area can easily be divided into two 

benthic classes, i.e., kelp and non-kelp benthic classes, using a simple image classification 

technique (see below and St-Pierre and Gagnon, 2020).  

 

5.3.2. Acquisition, pre-processing, and classification of aerial imagery  

The aerial imagery used to monitor the distribution of kelp in shallow (< 7 m) areas 

of the Mingan Archipelago was acquired at 6 occasions since 1983. The imagery was 

acquired over a single day during summer (early July to early August) in 1983, 1988, 1999, 

2004, 2009, and 2016. The imagery consisted of scan-digitized black and white aerial 

photograph obtained from a plane flying at an altitude of ~1550 m (1983, 1988, and 1999, 

provided by Parks Canada), color digital photographs obtained with a hand-held camera 

from a helicopter flying at an altitude of ~300 m (2004 and 2016), and panchromatic digital 

images acquired with a plane flying at an altitude of ~4175 m (2009, provided by Parks 

Canada). All imagery was acquired on cloudless, windless days. Pixel size and the area 

covered by a single photograph varied among photographs and years (8 cm to 1 m, and 

0.08 km2 to ~14 km2, respectively). Although color images were available for some 

sampling years, all imagery was converted to black and white using the Grayscale function 

in ArcMap 10.3.1 (Esri, 2015) to avoid potential classification discrepancies between black 

and white and color pictures. Imagery from each year was georectified, mosaicked, 

resampled to 1-m pixels, and trimmed to discard all areas outside the target 0-7 m depth 

range following the procedures and rationale detailed in St-Pierre and Gagnon (2020). 



 

191 

 

In a companion study, St-Pierre and Gagnon (2020) demonstrated that visual 

classification of aerial imagery was the most accurate method for the detection of shallow 

(<7 m) subtidal kelp beds, yielding an overall accuracy of 90%. Hence, the same proven 

visual classification method was applied here. Essentially, a sampling grid with intersects 

spaced at 15-m intervals was overlaid on top of each mosaic of aerial images. A trained 

observer examined the 225-m2 area (15 x 15 m) surrounding each grid intersect and 

assigned it to either of two benthic classes: 1) “kelp”, if over 50% of it was covered by kelp, 

or 2) “non-kelp”, if less than 50% of it was covered by kelp. If over 50% of the area 

surrounding a grid intersect was outside the limit of the study area, the grid intersect was 

discarded. Only grid intersects visible on the imagery from all six years were retained for 

further analysis, yielding a total of 10,308 grid intersects each year. The grid was overlaid 

in the exact same position on top of each mosaic to ensure that a given grid intersect covered 

the same area of the seabed at each collection. Potential misclassification of non-kelp 

seaweed (e.g., Desmarestia viridis) as kelp beds is considered to be negligible (discussed 

in St-Pierre and Gagnon, 2020). All classifications were conducted by the same observer 

to ensure consistency. 

As this visual classification method relies on the ability of an observer to identify 

kelp and non-kelp benthic classes on imagery, the observer was trained to differentiate 

these two benthic classes based on their visual characteristics by comparing locations 

covered by and devoid of kelp identified from ground truth data acquired in 2016 (detailed 

in St-Pierre and Gagnon, 2020). Preliminary analyses confirmed that an observer trained to 

recognize kelp from color imagery obtains a similar accuracy when classifying black and 

white imagery (Appendix 5.A, section 1). In addition, preliminary analyses confirmed that 



 

192 

 

the knowledge gained by an observer trained to recognize kelp beds on aerial imagery from 

a single year can accurately classify (1) imagery from a nearby area acquired in the same 

year but for which ground truth data was not used during the observer’s training (Appendix 

5.A, section 2), and (2) imagery from the same area acquired in different years for which 

ground truth data was not used in the training process (Appendix 5.A, section 3).  

 

5.3.3. Spatial pattern metrics and correlations with oceanographic and atmospheric 

conditions 

To assess variation in the spatial characteristics of kelp and non-kelp benthic classes 

over time, spatial pattern metrics were calculated using the software FRAGSTATS version 

4 (McGarigal et al., 2012). For this analysis, “patch” refers to a discrete, contiguous 

landscape element, such as a distinct entity identified as either kelp or non-kelp during 

image classification. The seven metrics selected for analysis are: 1) percentage of seabed 

covered by the benthic class (in %), 2) largest patch index (in %), 3) patch area (in m2), 4) 

number of patches, 5) shape index (unitless), 6) mean Euclidean nearest neighbour distance 

(in m), and 7) clumpiness index (unitless). Further details pertaining to these metrics are 

presented in Chapter IV. The metrics chosen for this analysis form a parsimonious and 

complementary combination which describes the geometric characteristics and spatial 

arrangement of patches of either cover type, while minimizing redundancy between metrics 

(Cushman et al., 2008). Metrics were calculated separately for each year sampled. For 

metrics calculations within FRAGSTATS, the eight-neighbour rule was applied, and the 

borders of the mosaicked photographs do not represent true boundaries between patches 

created by biological communities. Background pixels with no value were considered as 



 

193 

 

no data and thus were ignored in calculations (McGarigal et al., 2012). Spatial pattern 

metrics were calculated for both the kelp and the non-kelp benthic classes; however, since 

the emphasis of this study is on kelp distribution patterns, results pertaining to the non-kelp 

benthic class are not discussed but are appended (Appendix 5.B). 

To study the relationships between the spatial distribution of kelp beds each year and 

variations in oceanographic and atmospheric conditions, each metric was plotted against 

physical oceanographic data obtained from long-term data series. In this exploratory 

analysis, the oceanographic and atmospheric parameters studied included: 1) monthly and 

seasonal averages of sea surface temperature for the summer months (May to September, 

i.e., period during which urchin grazing on kelp is high); 2) the number of weeks with sea 

surface temperature above 10°C (considered warmer than average for the region); 3) 

maximum ice volume and anomalies in ice volume (relative to the 1981–2010 climatology; 

Galbraith et al., 2017); 4) first and last day of ice occurrence; 5) duration of the ice season 

(in days); 6) sum of standardized anomalies in sea surface temperature (relative to the 

1981–2010 climatology; Galbraith et al., 2017); and 7) North Atlantic Oscillation (NAO) 

index calculated over different time periods (yearly, spring, and winter indices). These 

oceanographic and atmospheric parameters were chosen because they may influence 

various aspects of kelp’s life cycle. For instance, kelp growth is modulated by changes in 

temperature, light availability, and salinity arising from variations in sea temperature and 

ice cover because they can affect cell physiology and photosynthesis (Fredersdorf et al., 

2009). Sea temperature may also influence urchin grazing, especially in summer when 

these grazers are more active, and indirectly affect kelp distribution (Frey and Gagnon, 

2015; Lauzon-Guay and Scheibling, 2007b). Physical damages to kelp sporophytes can be 
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inflicted by strong, repeated storm events or ice scouring, which can degrade kelp blades 

or forcibly detach holdfasts (Keats et al., 1985). Increased water movement, such as that 

created by waves and storms, can also yield higher release and dispersal of zoospores than 

calm conditions in some kelp species (Gordon and Brawley, 2004; Reed et al., 1988). 

Changes in current strengths, temperature, and salinity may also influence propagule 

dispersal and survival (Fredriksen et al., 1995). While correlations with water turbidity and 

phytoplankton concentrations would have been of interest for the present study, these data 

were not available for the study area over all six collection dates and were therefore not 

included in analyses. Further details regarding these parameters and their source are 

provided in Table 5.1. When possible, data reported for the Anticosti Channel was used as 

it encloses the study sites (Figure 5.1). For parameters where data specific to the Anticosti 

Channel was unavailable, data averaged over the Gulf of St. Lawrence was used (Table 

5.1). The oceanographic and atmospheric conditions were quantified for the year of image 

acquisition (i.e., 1983, 1988, 1999, 2004, 2009, and 2016, up to the date of image 

acquisition each year), as well as one year prior to image acquisition (i.e., 1982, 1987, 1998, 

2003, 2008, and 2015) to investigate potential temporally-lagged effects of these 

parameters on kelp distribution, for example if extreme weather events could have a long-

term effect on kelp distribution. Correlations between each spatial pattern metric and each 

oceanographic or atmospheric parameter were examined separately for data acquired 

during the year of image acquisition and the years prior to acquisition. All correlations were 

assessed by calculating Pearson’s coefficient of correlation and p-value (α=0.05). Only 

statistically significant correlations are described below and presented graphically, but 

results for all correlations tested are presented in Appendix 5.C.  
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Table 5.1 Environmental parameters assessed for their correlation with spatial pattern 

metrics. “C” indicates that the data was acquired concurrent to the year of imagery 

acquisition (i.e., 1983, 1988, 1999, 2004, 2009, 2016). “P” indicates data acquired for the 

year preceding image acquisition (i.e., 1982, 1987, 1998, 2003, 2008, 2015). The North 

Atlantic Oscillation (NAO) index used for averaging consists of monthly values calculated 

by the National Oceanic and Atmospheric Administration (NOAA) using a station-based 

definition based on pressure differences between Lisbon (Portugal) and Reykjavik 

(Iceland). Further details regarding the calculation of this index can be found on NOAA’s 

Climate Prediction Center website: 

https://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml. 
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Environmental parameter 
Time of 

acquisition 
Description Data source 

     

Sea surface temperature (SST)    

 May average C, P Monthly average SST for the month of May calculated 

via Advanced Very High Resolution Radiometer 

(AVHRR) remote sensing, or from buoy data for 1983 

(AVHRR data not available) for the Anticosti Channel 

region. 

Galbraith et al. 

(2017); DFO 

(2018) 

 June average C, P Monthly average SST for the month of June calculated 

via AVHRR satellite images or from buoy data for 1983 

(AVHRR data not available) for the Anticosti Channel 

region. 

Galbraith et al. 

(2017); DFO 

(2018) 

 July average C, P Monthly average SST for the month of July calculated 

via AVHRR satellite images or from buoy data for 1983 

(AVHRR data not available) for the Anticosti Channel 

region. 

Galbraith et al. 

(2017); DFO 

(2018) 

 August average P Monthly average SST for the month of August 

calculated via AVHRR satellite images or from buoy 

data for 1983 (AVHRR data not available) for the 

Anticosti Channel region. 

Galbraith et al. 

(2017); DFO 

(2018) 

 September average P Monthly average SST for the month of September 

calculated via AVHRR satellite images or from buoy 

data for 1983 (AVHRR data not available) for the 

Anticosti Channel region. 

Galbraith et al. 

(2017); DFO 

(2018) 
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 May to July average C, P SST averaged from May to July, based on values from 

the Anticosti Channel calculated via AVHRR satellite 

images or from buoy data for 1983 (AVHRR data not 

available) for the Anticosti Channel region. 

Galbraith et al. 

(2017); DFO 

(2018) 

     

Number of weeks above 10°C P Number of weeks with SST above 10°C each year, 

calculated for the Anticosti Channel region. 

Galbraith et al. 

(2017); DFO 

(2018) 

     

Sum of standardized 

anomalies in sea surface 

temperature 

C, P Composite sea-surface temperature index measuring the 

overall state of the system (positive and negative values 

representing warm and cold conditions, respectively), 

calculated for the Gulf of St. Lawrence. Anomalies are 

calculated relative to the 1985–2010 climatology. 

Galbraith et al. 

(2017); DFO 

(2018) 

     

Ice cover    

 Anomaly in ice volume C, P Normalized anomalies in ice volume, i.e., deviation 

from the 1981-2010 average, calculated for the Gulf of 

St. Lawrence. 

Galbraith et al. 

(2017) 

 Maximum ice volume C, P Maximum volume of ice recorded. Galbraith et al. 

(2017) 

 Date of first ice 

occurrence 

C, P First day of ice occurrence in Julian days, with 

minimum threshold being 5% of the largest ice volume 

ever recorded in the Anticosti Channel region. 

Galbraith et al. 

(2017) 
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 Date of last ice 

occurrence 

C, P Last day of ice occurrence in Julian days, with minimum 

threshold being 5% of the largest ice volume ever 

recorded in the Anticosti Channel region. 

Galbraith et al. 

(2017) 

 Duration of ice season C, P Number of days during which ice was present, i.e., 

when a threshold of 5% of the largest ice volume ever 

recorded was exceeded in the Anticosti Channel region.  

Galbraith et al. 

(2017) 

     

North Atlantic Oscillation 

(NAO) index 

   

 Yearly C, P Averaged for the 12 months before image acquisition 

(August to July). 

NOAA (2018) 

 Spring C, P Averaged for the 4 months before image acquisition 

(April to July). 

NOAA (2018) 

 Winter C, P Averaged for the winter before image acquisition 

(December to March). 

NOAA (2018) 
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5.3.4. Effects of site characteristics on the stability of kelp bed distribution  

Kelp stability and cover type variability indices 

Two indices were used to assess the effects of site characteristics (depth, bottom 

slope, and exposure to waves, see below) on the distribution of kelp beds over time. First, 

a kelp stability index (KSI) was calculated based on the presence or absence of kelp at each 

grid intersect on the aerial imagery of each year. Each intersect in each year received a 

value of 1 if classified as “kelp” and a value of 0 if classified as “non-kelp” (see Section 

5.3.2). The KSI was calculated as the sum of the value given a grid intersect in each year, 

such that a sum of 6 indicated the presence of a temporally stable kelp bed (i.e., kelp beds 

were present in all six years studied) and 0 indicated the presence of a temporally stable 

non-kelp area (i.e., kelp beds were absent in all six years studied). Intermediate values (1 

to 5) indicated that the cover type had changed over time at least once. The KSI indicates 

where kelp beds tend to be found repeatedly (i.e., over several collections), and helps 

identify areas of temporally stable persistent kelp beds, but provides little information on 

the frequency at which benthic cover type changed. For example, a KSI of 3 for a given 

grid intersect could indicate that kelp was present for the first three collection years and 

absent for the last three collections (i.e., one change in cover types between the 3rd and 4th 

collections), but could also mean that kelp was present every other collection year, thus 

changing cover type between each collection (i.e., five changes in cover type). To assess 

this variation, the cover type variability index (CTVI) was calculated by counting the 

number of times that the cover type identified in one grid intersect changed between one 

year and the subsequent year studied. A change in cover type between one studied year and 

the next was given a value of 1 and the absence of change was given a value of 0. Thus, a 
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CTVI of 0 indicated that no changes in cover type occurred for a given grid intersect over 

the studied time period, while a value of 5 indicated that the cover type change between 

each pair of successive years studied (i.e., between 1983 and 1988, between 1988 and 1999, 

between 1999 and 2004, between 2004 and 2009, and between 2009 and 2016). These two 

indices allowed the identification of areas where kelp beds tend to be more present and 

temporally stable, as well as areas where kelp may be present frequently but where cover 

type vary among collection years. The length of the gap between collection years was not 

included in the indices, as it was not mathematically possible to do so while keeping the 

indices’ outcome interpretable and biologically meaningful.  

 

Site characteristics 

The KSI and CTVI were used in statistical analyses to assess the effects of depth, 

slope, and exposure to wave action on each index separately. These three site characteristics 

were chosen because they do not change over time and are known to directly or indirectly 

affect kelp growth and urchin grazing at small (m to 10s of m) spatial scales (de Bettignies 

et al., 2013; Frey and Gagnon, 2015; Lauzon-Guay and Scheibling, 2007b; Reed et al., 

2011). Hence, it was hypothesized that their effect may also occur at broader scales. Depth, 

bottom slope (in degrees, 0 to 90°), and a relative exposure index (REI) were calculated for 

each grid intersect following the procedures outlined in Chapter IV. Essentially, values of 

depth and bottom slope were obtained from a bathymetric map and averaged over the 225-

m2 area around a given grid intersect. Relative exposure index (REI) was calculated for 

each grid intersect by applying the procedure outlined by Garcon et al. (2010) and detailed 

in Chapter IV. This index combines mean wind velocity, direction, and effective fetch by 
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applying the following equation (Fonseca and Bell, 1998; Garcon et al., 2010; Keddy, 

1982): 

𝑅𝐸𝐼 =  ∑( 𝑉 ∙ 𝑃𝑖  ∙  𝐹𝑖  )

16

𝑖=1

 

where i is the ith of 16 compass headings, V is the mean wind velocity in m·s-1, Pi is the 

wind direction frequency (%), and Fi is the effective fetch in kilometres. Mean wind 

velocity and wind direction frequency were calculated based on daily wind reading at Havre 

Saint Pierre Airport (~10 km north of the study area) recorded during the 12 months before 

image acquisition in 1988, 1999, 2004, 2009, and 2016. Effective fetch (F), defined as the 

distance from a site to the nearest wave-obstructing obstacle (U.S. Army Corps of 

Engineers, 1984), was calculated along each of 16 compass directions (i.e., 1 to 16 compass 

headings, from N, NNE, NE, etc. in 22.5° increments from 0 to 360°) for each grid intersect. 

 

Statistical analysis 

The KSI, CTVI, and site characteristics were calculated for each grid intersect 

individually. However, it was not possible to use the data at this resolution for statistical 

analyses due to technical difficulties, including strong deviations from statistical 

assumptions (mainly normality of residuals and independence) arising despite the use of 

correct generalized linear models and spatial autocorrelation structures as determined from 

graphical inspection of the models’ residuals and semi-variograms. These difficulties likely 

stemmed from the high level of similarity between adjacent grid intersects. To bypass this 

problem, the data were aggregated into larger units (see below) subsequently used for 

analyses, which allowed the models to better fit assumptions. Data aggregation was done 
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by grouping grid intersects using a regular grid of square polygons of 45 m width. This size 

of squares for aggregation was chosen because it yielded at least 100 square units per 

islands which were then used for analysis (1145 squares in total, with 115, 157, 611, 137, 

and 125 squares at Île Niapiskau, Île à Firmin, Île du Havre, Île aux Goélands, and Petite 

île au Marteau, respectively) and consistently had nine grid intersects within each square 

(except at the edges of the study area, see below). The values of KSI, CTVI, depth, slope, 

and REI for each square unit were obtained by averaging the values from each grid intersect 

within a square. Only the average value of the square unit was used for statistical analysis. 

Due to the irregular shape of the study area, fewer grid intersects were sometimes present 

in squares at the edges of the study area. To avoid biases at the edges of the study area 

caused by variation in the number of grid intersects used for averaging, only squares 

containing more than five grid intersects were used in analyses. 

A mixed model approach was applied to examine whether KSI and CTVI are 

influenced by depth, bottom slope, and exposure to waves (estimated by the REI). A series 

of linear mixed models (LMM) were fitted to the KSI and CTVI data separately, with a 

combination of these three site characteristics as fixed effects, “Island” as a random effect 

(categorical factor with five levels; referring to the study area of which island the grid 

intersect is situated), and an exponential correlation structure. This correlation structure 

was included in the models to account for spatial autocorrelation between nearby squares. 

With an exponential correlation structure, the correlation between any two data points (in 

this case, any two square units) is assumed to decrease exponentially with increasing 

distance between the data points. This correlation structure was chosen as it corresponded 

to that observed in semi-variograms obtained from the raw data. All possible combinations 
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of the three site characteristics as explanatory variables (both additive and multiplicative 

interactions) were used to construct and compare a total of 14 models (Tables 5.2 and 5.3). 

Akaike’s information criterion (AIC) was calculated for each model and used to select the 

most informative model. AIC is an estimate of model fit which accounts for model 

complexity by applying penalties based on the number of factors present in a model 

(Burnham and Anderson, 2002). AIC differences (Δi) were calculated as the difference 

between the AIC value of a given model (i.e., model i) and the lowest AIC value obtained 

among all models. The best fitting model was selected as the most parsimonious out of 

those with a Δi<2, because models with less than Δi<2 have substantial support (Anderson, 

2007) and are considered not meaningfully different from each other, indicating the 

presence of pretending variables (Burnham and Anderson, 2002; Leroux, 2019). All LMMs 

were fitted in R 3.3.2 (R Development Core Team, 2018) using the functions lme in the 

‘nlme’ package (Bates et al., 2014). Residuals of the best fitting model were examined 

graphically for normality, independence, and homogeneity of variances, and did not display 

any violations of these assumptions. Because of the large difference in range of values 

among the three explanatory variables, all explanatory variables were rescaled prior to 

running LMMs and model selection. Scaling consisted of subtracting the explanatory 

variable’s median from each original value (centering) and dividing by the standard 

deviation. Applying this scaling and centering method allowed the coefficient estimates 

(i.e., slope coefficients) to be directly comparable, thus enabling comparisons in the 

magnitude of the effect of each explanatory variable (Welham et al., 2015).  
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Table 5.2. Outcome of model selection for the Kelp Stability Index (KSI). AICi is the value 

of the Akaike Information Criterion (AIC) calculated for model i, and Δi is the difference 

between the AIC of the best fitting model and that of model i. Value of k represents the 

number of parameters in each model. Exp(−0.5Δi) represents the relative likelihood of 

model i, and wi represents the Akaike weights. The “+” symbol indicates additive effects, 

while the “*” symbol indicates interactive effects among model factors. Model 1 (bold) 

was selected as the most informative model and used for subsequent analyses, because it is 

the most parsimonious among models with Δi<2. REI refers to the relative exposure index 

(see Section 5.3.4). 

 

Model 

number 
Fixed factors k AICi Δi Exp(-0.5Δi) wi 

       

01 Depth 5 3101.38 0.00 1.00 0.72 

04 Depth + REI 6 3105.35 3.97 0.14 0.10 

12 REI * Slope + Depth 8 3106.16 4.78 0.09 0.07 

05 Depth + Slope 6 3106.65 5.27 0.07 0.05 

07 Depth * REI 7 3108.26 6.88 0.03 0.02 

08 Depth *Slope 7 3108.45 7.06 0.03 0.02 

11 Depth * REI * Slope 11 3109.90 8.52 0.01 0.01 

10 Depth + REI + Slope 7 3110.63 9.25 0.01 0.01 

13 Depth * Slope + REI 8 3112.36 10.98 0.00 0.00 

14  Depth * REI + Slope 8 3113.61 12.23 0.00 0.00 

03 Slope 5 3235.12 133.74 0.00 0.00 

09 REI * Slope 7 3237.31 135.93 0.00 0.00 

06 REI + Slope 6 3238.85 137.46 0.00 0.00 

02 REI 5 3240.34 138.96 0.00 0.00 
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Table 5.3. Outcome of model selection for the Cover Type Variability Index (CTVI). AICi 

is the value of the Akaike Information Criterion (AIC) calculated for model i, and Δi is the 

difference between the AIC of the best fitting model and that of model i. Value of k 

represents the number of parameters in each model. Exp(−0.5Δi) represents the relative 

likelihood of model i, and wi represents the Akaike weights. The “+” symbol indicates 

additive effects, while the “*” symbol indicates interactive effects among model factors. 

Model 1 (bold) was selected as the most informative model and used for subsequent 

analyses, because it is the most parsimonious among models with Δi<2. 

 

Model 

number 

Fixed factors in each 

model 
k AICi Δi Exp(-0.5Δi) wi 

       

01 Depth 5 2529.92 0.00 1.00 0.61 

04 Depth + REI 6 2531.39 1.48 0.48 0.29 

05 Depth + Slope 6 2535.36 5.44 0.07 0.04 

07 Depth * REI 7 2537.01 7.10 0.03 0.02 

10 Depth + REI + Slope 7 2537.2 7.31 0.03 0.02 

02 REI 5 2537.53 7.62 0.02 0.01 

03 Slope 5 2538.45 8.53 0.01 0.01 

06 REI + Slope 6 2540.54 10.63 0.01 0.00 

12 REI * Slope + Depth 8 2541.53 11.61 0.00 0.00 

08 Depth *Slope 7 2541.63 11.72 0.00 0.00 

14  Depth * REI + Slope 8 2542.91 12.99 0.00 0.00 

13 Depth * Slope + REI 8 2543.60 13.68 0.00 0.00 

09 REI * Slope 7 2544.84 14.92 0.00 0.00 

11 Depth * REI * Slope 11 2559.04 29.12 0.00 0.00 
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5.4. RESULTS 

5.4.1. Overview of spatial pattern metrics 

Kelp coverage across the study area varied among years, from a minimum of 44% in 

1983 to a maximum of 62% in 2016 (Table 5.4). Maps of kelp presence for each of the six 

years studied are presented in Appendix 5.D. Kelp coverage showed an increase over four 

consecutive sampling occasions since 1999. The amount of change in kelp coverage (in %) 

was calculated for each possible pair of images; it ranged from a decrease of 11% (between 

1988 and 2016) and an increase of 18% (between 1983 and 2016), but no significant 

correlation was observed between the number of years between two images and the change 

in kelp coverage (Pearson’s r = 0.08, p-value = 0.774; Figure 5.2). Largest patch indices 

for the kelp benthic class showed strong variations among years, with a low of 10% 

observed in 1988 and a high of 31% in 2016 (Table 5.4). Kelp patch area varied 

considerably within and among years; the lowest mean patch area was observed in 1988 

with 10,710 ± 3043 (SE) m2, while the highest mean patch area was observed in 2016 with 

32,130 ± 16,670 m2 (Table 5.4). Years 1983 and 1988 were characterized by small, 

numerous kelp patches, as opposed to the larger, fewer kelp patches observed from 1999 

to 2016, particularly in the latter (Table 5.4). Shape indices, mean nearest neighbour 

distance, and clumpiness indices calculated for the kelp benthic class showed little variation 

among years (Table 5.4).  

 

5.4.2. Correlation between spatial pattern metrics and environmental parameters  

Assessment of the correlations between spatial pattern metrics calculated for the kelp 

benthic class and environmental parameters from the same year as image acquisition  
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Table 5.4. Outcome of the spatial pattern metrics calculated for the kelp benthic class on imagery from each of the six years 

studied. Mean values are presented with standard error (±SE). 

 

Year 

Percent 

cover 

(%) 

Largest 

patch 

index (%) 

Patch area (m2) Number 

of 

patches 

Mean shape 

index 

Mean nearest 

neighbour 

distance (m) 

Clumpines

s index Min. Mean Max. 

             

1983 44.19 15.37 225 13,665 ± 5443 356,400 75 1.59 ± 0.10 40.56 ± 1.81 0.65 

1988 52.18 10.28 225 10,710 ± 3043 238,500 113 1.55 ± 0.10 36.10 ± 1.20 0.50 

1999 48.39 11.42 225 22,006 ± 7553 264,825 51 1.89 ± 0.18 42.26 ± 2.85 0.59 

2004 52.33 21.26 225 20,228 ± 8901 492,975 60 1.65 ± 0.14 42.67 ± 2.40 0.63 

2009 59.43 30.76 225 24,182 ± 12,872 713,475 57 1.64 ± 0.13 38.67 ± 2.27 0.63 

2016 62.34 31.14 225 32,130 ± 16,670 722,250 45 1.64 ± 0.19 42.23 ± 2.91 0.61 
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Figure 5.2. Relationship between the amount of change in kelp cover (in %) for each 

possible pair of images and the number of years between collection date of the images. 
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indicated six correlations as statistically significant (Table 5.D.1, Figure 5.3). Several 

spatial pattern metrics were correlated with the spring NAO indices, ice conditions, and sea 

surface temperature. Kelp percent coverage was negatively correlated with NAO indices 

calculated for the spring (April to July; Pearson’s r = -0.868, p = 0.025 Table 5.D.1, Figure 

5.3A), indicating that kelp coverage decreases after periods of increased storm frequency 

and colder temperatures characteristic of high NAO indices. Ice coverage had a significant 

impact on the number and size of kelp patch, as mean kelp patch area was negatively 

correlated with the duration of the ice-covered season (Pearson’s r = -0.866, p = 0.026 

Table 5.D.1, Figure 5.3B) and the number of kelp patches was positively correlated with 

the date of last ice occurrence (Pearson’s r = 0.840, p = 0.036 Table 5.D.1, Figure 5.3C). 

Shape indices were positively correlated with the sum of standardized anomalies in surface 

temperature (Pearson’s r = 0.878, p = 0.022 Table 5.D.1, Figure 5.3D), indicating that warm 

conditions are correlated with more complex patch shapes, and clumpiness indices were 

positively correlated with the average sea surface temperature measured in July (Pearson’s 

r = 0.818, p = 0.047 Table5. D.1, Figure 5.3E). Although mean nearest neighbour distance 

between kelp patches was significantly correlated with the date of last ice occurrence 

(Pearson’s r = -0.882, p = 0.020 Table 5.D.1), this correlation was not further investigated 

nor presented graphically because values calculated for mean nearest neighbour distance 

were very low and stable temporally (from 36.10 ± 1.20 m to 42.67 ± 2.40 m) thus 

variations in mean nearest neighbour distance are likely of little biological significance.  

Assessment of the relationships between spatial pattern metrics calculated for the 

kelp benthic class and oceanographic or atmospheric parameters from the year prior to 
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Figure 5.3. Relationships between spatial pattern metrics calculated for the kelp benthic 

class and environmental parameters measured in the same years as the collections occurred. 

Only statistically significant correlations are shown (p<0.05, see Appendix C, Table 5.C.1). 

Pearson correlation coefficient (r) is indicated for each correlation (n = 6). NAO index 

refers to the North Atlantic Oscillation Index (see Section 5.3.3). 
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image acquisition identified five statistically significant correlations (Table 5.D.2, Figure 

5.4). In this analysis, sea surface temperature, the NAO index, and ice coverage were 

identified as factors modulating kelp distribution. Sea surface temperature was correlated 

to several metrics; kelp percent coverage and largest patch indices for kelp were positively 

correlated with average August sea surface temperature calculated in the year prior to image 

acquisition (Pearson’s r = 0.921, p = 0.026 and Pearson’ r = 0.981, p = 0.003, respectively, 

Table 5.D.2, Figure 5.4A and 5.4B), while mean kelp patch area was positively correlated 

with average September sea surface temperature calculated in the year prior to image 

acquisition (Pearson’s r = 0.877, p =0.022 Table 5.D.2, Figure 5.4C). Mean kelp patch area 

was also correlated with the NAO indices for the spring (April to July) in the year prior to 

image acquisition (Pearson’s r = 0.816, p = 0.048 Table 5.D.2, Figure 5.4D). Number of 

kelp patches was negatively correlated with the date of first ice occurrence (Pearson’s 

r = -0.869, p = 0.025 Table 5.D.2, Figure 5.4E).  

 

5.4.3. KSI and CTVI distributions 

Of the 10,308 grid intersects classified, 17% had a Kelp Stability Index (KSI) of 6, 

indicating that a given grid intersect was classified as a kelp-covered in all six years studied, 

while 15% had a KSI of 0, indicating that a given grid intersect was classified as non-kelp 

in all six years studied (Figures 5.5 and 5.6). KSI shows variation both among islands and 

within the study area of each island. At three of the five islands studied (Île Niapiskau, Île 

à Firmin, and Petite île au Marteau), high KSI values tend to be found near the coastline 

while lower values are found in deeper areas away from shore (Figure 5.5). This trend was 

less clear at Île du Havre and Île aux Goélands, where KSI values appear to be distributed 
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Figure 5.4. Relationships between spatial pattern metrics calculated for the kelp benthic 

class and environmental parameters measured in the year prior to each collection occurring. 

Only statistically significant correlations are shown (p<0.05, see Appendix 5.C, Table 

5.C.2). Pearson correlation coefficient (r) is indicated for each correlation. (n = 6, except 

for panel B where n = 5). NAO index refers to the North Atlantic Oscillation Index (see 

Section 5.3.3). 
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Figure 5.5. Panel A: Spatial distribution of the Kelp Stability Index (KSI) values across 

the study area. KSI was calculated as the sum of the presence/absence values from each 

grid intersect on the imagery from each year, such that a value of 6 indicated the presence 

of a temporally stable kelp bed (i.e., kelp beds were present in all six years studied) and 0 

indicated the presence of a temporally stable non-kelp area (i.e., kelp beds were absent in 

all six years studied). Intermediate values indicated that the cover type had changed over 

time at least once (see Section 5.3.4). Panel B: Spatial distribution of the Cover Type 

Variability Index (CTVI) values across the study area. CTVI was calculated by counting 

the number of times that the cover type identified in one grid intersect changed between 

one year and the subsequent year studied. Thus, a CTVI of 0 indicates that no changes in 

cover type occurred for a given grid intersect over the studied time period, while a value of 

5 indicates that the cover type changed between each pair of successive years studied (see 

Section 5.3.4). 
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Figure 5.6. Percent cover of each value of the Kelp Stability Index (KSI) and Cover Type 

Variability Index (CTVI) for each island and for the study area as a whole. Note that the 

KSI values range from 0 to 6, while the CTVI values range from 0 to 5 (see Section 5.3.4 

and Figure 5.5 for details regarding these two indices).  
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more evenly across the depth range. All possible KSI values (0 to 6) were present in similar 

proportions across the entire study area, with each possible value covering 10 to 17% of 

the seabed (Figure 5.6F). KSI values were also present in similar proportion at Île 

Niapiskau, Île du Havre, and Petite île au Marteau (Figure 5.6A, C, and E). In contrast, low 

KSI values (KSI = 1) were more frequent at Île à Firmin (covering 26% of the seabed at 

this island, Figure 5.6B), while high KSI values (KSI = 5 or 6) were more frequent Île aux 

Goélands (covering 29 and 21% of the seabed at this island, respectively, Figure 5.6D).  

Inspection of the Cover Type Stability Indices (CTVI) showed that 45% of the study 

area presented a low variation in cover type over time (CTVI = 0 or 1), while 8% presented 

high variation (CTVI = 4 or 5; Figures 5.5 and 5.6). Across the entire study area, CTVI 

values of 0 were the most frequent as they covered 32% of the seabed, while CTVI values 

of 5 were the least frequent, covering 1% of the seabed (Figure 5.6). Trends in the spatial 

distribution of the CTVI values are difficult to distinguish visually on the map (Figure 5.5). 

CTVI values of 0 and 2 were the most frequently observed at all islands (covering between 

23 and 36% of the seabed), except at Île aux Goélands where CTVI values of 1 were the 

most frequent (covering 27% of the seabed) followed by CTVI values of 2 and 0 (covering 

23 and 21% of the seabed, respectively). 

 

5.4.4. Model selection  

Results from model selection applied to the Kelp Stability Index (KSI) data 

indicated that Model 01, which only includes depth as fixed factor, was the most 

informative model (Table 5.2). Coefficient estimate from this model showed that KSI 

decreases by 0.62 for every increase of 1 m in depth. (Table 5.5). Hence, the KSI  
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Table 5.5. Coefficient estimates for Model 01, which only contained the variable Depth (selected as the most informative by 

comparison of Akaike’s Information Criterion (AIC); see Table 5.3 and 5.5 and Section 5.3.4), applied to Kelp Stability Index 

(KSI) and to the Cover Type Variability Index (CTVI). As the data was scaled prior to analyses, both the scaled and back-

transformed coefficients are presented, with 95% confidence intervals (CI).  

 

Exploratory 

variable 

Scaled coefficient  Standard 

deviation of 

initial data 

Back-transformed coefficient 

Estimate Lower 95% CI Upper 95% CI Estimate 
Lower 95% 

CI 

Upper 95% 

CI 

                 

KSI        

 Intercept 3.44 2.94 3.94 NA NA NA NA 

 Depth -1.13 -1.31 -0.95 1.83 m -0.62 -0.72 -0.52 

         

CTVI        

 Intercept 1.65 1.49 1.81 NA NA NA NA 

 Depth 0.19 0.09 0.28 1.83 m 0.10 0.05 0.15 
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is inversely related to depth, meaning that kelp beds persisting through time (high KSI) are 

found at shallow depths while non-kelp areas persisting through time (low KSI) are in 

deeper areas. 

Results from the model selection applied to the Cover Type Variability Index 

(CTVI) data indicated that Model 01, which only includes depth as fixed factor, was the 

most informative model (Table 5.3). Coefficient estimate from this model showed that 

CTVI increases by 0.10 for every increase of 1 m in depth. (Table 5.5). Hence, the CTVI 

is positively related to depth, meaning that areas of shallow depth generally withstand fewer 

changes in cover type over time (low CTVI) compared to deeper areas where changes are 

more frequent (high CTVI).  

 

5.5. DISCUSSION 

Recognition of the concept of scale in ecology has led to the identification of scale-

dependent biological and environmental processes regulating species distribution in 

numerous ecosystems (Lecours et al., 2015; Levin, 1992; Schneider, 2001). Yet, identifying 

these scale-dependent processes remains a challenge in ecological studies as technical 

limitations often force a trade-off in data collection between the spatial scale at which 

studies are conducted, and the accuracy and precision of the data acquired (Brennan et al., 

2002; Lecours et al., 2015; Wheatley and Johnson, 2009). New perspectives into the scale-

dependency of processes driving species distribution can be gained either by the adoption 

of multiscale approaches or by exploring species-environment relationships at scales 

generally overlooked in a given system.  
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The present study addresses the lack of broad-scale information regarding the 

distribution patterns of submerged kelp beds by applying landscape ecology approaches 

rather than the restrictive traditional scuba-based monitoring methods generally used in 

such systems. By using archival aerial imagery and GIS techniques to monitor kelp bed 

distribution in the Mingan Archipelago (northern Gulf of St. Lawrence, Canada) over the 

course of 33 years, this study revealed patterns in kelp bed spatial distribution at an 

unprecedented spatiotemporal scale. Overall, significant correlations were detected 

between oceanographic conditions measured in late winter and spring and the spatial 

configuration of kelp beds (namely kelp coverage, patch size, and patch number). Over 

time, an increase in kelp bed coverage was observed from 1999 to 2016. In addition, 

examination of the Kelp Stability Index (KSI) and Cover Type Variability Index (CTVI) 

showed that the distribution of kelp-covered areas is temporally stable, with only 8% of the 

study area exhibiting a highly variable cover type. These two indices are modulated by 

depth but not by bottom slope nor exposure to waves. 

 

Effects of environmental conditions on kelp distribution patterns  

In eastern Canada, kelp sporophytes are perennial and beds are known to withstand 

canopy loss in late summer and fall, followed by recruitment during winter and bed 

expansion during the following cold months until late spring (DFO, 2013; Krumhansl and 

Scheibling, 2011; Scheibling et al., 1999). Results from the present study suggest that 

environmental conditions measured in winter and late spring drive kelp bed configuration 

observed in summer. Indeed, positive North Atlantic Oscillation (NAO) indices in late 

spring (April to July), which cause increased storm frequency and colder temperatures in 
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eastern Canada (Hurrell, 1995), as well as long-lasting ice cover lead to decreased kelp 

coverage and smaller, numerous kelp patches. Ice scouring and high wave action (e.g., 

caused by storms), can abrade kelp sporophytes and make them more vulnerable to 

breakage, detachment from the substratum, and canopy loss (Castorani et al., 2018; Filbee-

Dexter and Scheibling, 2012; Keats et al., 1985). Increased damage to kelp sporophytes 

during periods of high storm frequency (i.e., high NAO index) causing sporadic increases 

in wave action, and long ice-covered season would explain the decreased kelp coverage 

and more fragmented seascape observed during summer. In addition, light attenuation 

caused by the presence of ice may provide sub-optimal growth conditions. Although kelp 

are well adapted to low-light conditions, growth and survival respond to changes in light 

availability (Sjøtun et al., 2006) and may be negatively affected by prolonged light 

limitations under thick, long-lasting ice (Dunton, 1985; Gendron, 1989; Krause‐Jensen et 

al., 2012). A similar effect of ice coverage on kelp distribution has been observed in 

Greenland, where the duration of the ice-free period is a strong predictor of the latitudinal 

gradient in Arctic kelp production and depth expansion (Krause‐Jensen et al., 2012). 

Changes to climatic conditions and ice regimes are expected to affect kelp survival and 

distribution in several Arctic regions (reviewed in Filbee-Dexter et al., 2019) and may have 

similar effects in temperate areas such as the Mingan Archipelago where kelp distribution 

is also linked to ice cover. 

Late-winter and spring conditions measured one year prior to image acquisition (15 

to 18 months before) showed no correlation with kelp distribution. However, sea surface 

temperature in late summer (August and September, i.e., 11 to 12 months prior to image 

acquisition) was correlated with increases in kelp coverage, mean patch area, and largest 
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patch index measured in summer almost a year later. This result is counterintuitive given 

that high water temperature slow kelp growth and induce natural senescence in some kelp 

species; for example, A. esculenta, which is abundant at the study site, undergo natural 

senescence at temperature of 16-17°C (Fredersdorf et al., 2009; Munda and Lüning, 1977). 

Based on this relationship, decreases in kelp coverage following episodes of high 

temperature were expected. Yet, one indirect mechanism by which late summer 

temperature may modulate kelp distribution patterns is through the regulation of its grazer’s 

activity. The green sea urchin, Strongylocentrotus droebachiensis, is a major consumer of 

kelp in eastern Canada (Gagnon et al., 2004; Scheibling et al., 1999), whose grazing activity 

is regulated by water temperature (Frey and Gagnon, 2015; Lauzon-Guay and Scheibling, 

2007b). Indeed, Frey and Gagnon (2015) showed that grazing increases with temperature 

but drops markedly above a threshold of 12-15°C in a population of urchins in eastern 

Newfoundland where summer temperature generally peaks at ~16°C in summer (Chapter 

1; Blain and Gagnon, 2013), similar to temperatures in the Mingan Archipelago (Galbraith 

et al., 2017; Himmelman et al., 2008). Hence, it is hypothesized that decreased grazing 

pressure from urchins under high late summer temperatures may leave a higher number of 

kelp sporophytes un-grazed, allowing for greater expansion of kelp beds through the winter 

and yielding the observed high kelp coverage and large patch sizes the following summer.  

Correlations presented here show a strong relationship between summer kelp 

distribution patterns over a broad spatial extent (km2) and oceanographic conditions during 

winter and spring months. These results suggest that oceanographic conditions have a direct 

effect on kelp distribution rather than an indirect effect derived from the modulation of 

urchin grazing pressure because urchins are least active in winter and spring due to cold 
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temperatures and increased wave action (Chapter II; Frey and Gagnon, 2015). Similar 

effects of large-scale oceanographic conditions have been described in the Pacific, where 

El Niño events and the North Pacific Gyre Oscillations modulate the distribution and 

biomass of giant kelp (Macrocystis pyrifera) over broad spatial extents (10s to 100s of km2) 

and decadal time scales by regulating wave disturbance and nutrient availability (Bell et 

al., 2015; Cavanaugh et al., 2011; Edwards, 2004).  

Comparison of the results from metre-scale studies taking place in the Mingan 

Archipelago which identified urchin grazing as the main driver of kelp presence (Gagnon 

et al., 2003; Gagnon et al., 2004; Gagnon et al., 2005) and the kilometre-scale patterns 

observed in the present study may suggest that biological drivers (i.e., urchin grazing) 

regulate small-scale distribution of kelp while oceanographic conditions affect large-scale 

kelp distribution patterns. However, the link between water temperature, urchin grazing, 

and changes in large-scale kelp distribution patterns described above contradicts this idea 

and suggests that overlooking the links between direct, local effects (e.g., grazing) and 

indirect, large-scale effects (effect of temperature on grazing) may lead to a simplistic 

interpretation. Further investigation of scale-dependency in the effects of biotic and abiotic 

drivers are needed to fully comprehend their relative contribution to kelp distribution 

patterns, for example by investigating the effects of harsh winter conditions (especially the 

presence and movement of the ice cover) on kelp growth and recruitment at the metre scale, 

or by assessing the correlations between kelp distribution patterns and changes in urchin 

populations over broad spatial scales. 
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Drivers of kelp bed stability  

Two indices were used in the present study to examine kelp distribution over time: 

1) the Kelp Stability Index (KSI) which identifies where kelp beds are found repeatedly 

(i.e., over several collections), and 2) the Cover Type Variability Index (CTVI) which 

calculates the number of changes in cover type among collections (see section 5.3.4 for 

details). Examination of these indices showed that 45% of the study area presented a stable 

cover type through time (i.e., cover type changing once or less). Kelp beds in the Mingan 

Archipelago were more temporally persistent in shallower parts of the study area (higher 

KSI) whereas the cover type is more variable in deep areas (CTVI increases with depth). 

This is consistent with a previous study (Chapter IV) which showed depth as the most 

important factor explaining kelp presence at broad spatial scale (km2) in the Mingan 

Archipelago. This trend in kelp persistence may be caused by greater light availability in 

shallow water favoring kelp growth or by higher wave action and water flow near the 

surface limiting the activity and grazing of sea urchins. Indeed, urchin movement and 

feeding are deterred by seaweed motion created by high water flows or intense wave action 

(Himmelman and Steele, 1971; Konar, 2000; Velimirov and Griffiths, 1979), suggesting 

that modulation of kelp distribution by urchin grazing is limited to the deeper, more wave-

protected edges of kelp beds (Gagnon et al., 2004; Ling et al., 2015; Scheibling et al., 1999). 

Surprisingly, exposure to wave action and bottom slope, which affect hydrodynamic 

conditions and urchin grazing (Frey and Gagnon, 2015; Lauzon-Guay and Scheibling, 

2007b), were not found to impact the KSI or CTVI. While high exposure to wave action 

generally provides kelp with a refuge from grazing pressure compared to more sheltered 

sites (Hepburn et al., 2007; Pedersen et al., 2012; Rinde et al., 2014; Sivertsen, 1997), the 
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present study shows that small variations in exposure and bottom slope have little effect on 

the long-term persistence of kelp beds along exposed shorelines. 

The presence of more persistent kelp beds at shallow depth suggests that sporadic 

disturbance from ice scouring occurring near the surface has less weight on regulating the 

temporal persistence of kelp beds than continued urchin grazing occurring at greater depths. 

As spore dispersal is limited to short distances in most kelp species (Fredriksen et al., 1995; 

Norton, 1992), these persistent kelp patches in shallow water may be an important source 

of spores maintaining recruitment in nearby deeper areas where cover type varies over time. 

Further studies are needed to quantify the contribution of these shallow persistent kelp 

patches to recruitment in nearby kelp-devoid areas.  

Kelp coverage in the Mingan Archipelago changed by <8% between consecutive 

sampling years. A gradual increase in kelp coverage was observed from 1999 to 2016 (from 

48 to 62%). This finding is consistent with those of Krumhansl et al. (2016) who estimated 

that kelp bed coverage is either stable or increasing for the Gulf of St. Lawrence ecoregion 

(although this estimate was based on metre-scale experimental data only). The local 

increase in kelp coverage observed here contrasts with trends in nearby regions of Nova 

Scotia (89% average decrease in kelp canopy cover since 1982; Filbee-Dexter et al., 2016) 

and the Gulf of Maine (shifts to filamentous and turf algae between mid-1990 and mid-

2000; Dijkstra et al., 2017; Steneck et al., 2013). In these two regions, fluctuations in urchin 

grazing pressure and increasing temperature favoring the settlement of epiphytes, which in 

turn cause kelp overgrowth leading to breakage and dislodgement, are the main causes of 

decline in kelp distribution (Filbee-Dexter et al., 2016; Filbee-Dexter and Scheibling, 2012; 

Steneck et al., 2013). Hence, the gradual increase in kelp coverage from 1999 to 2016 in 
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the Mingan Archipelago may be linked to difference in urchin and epiphytes population 

dynamics compared to more southern regions. First, urchin populations in the Mingan 

Archipelago persist at very high densities (Gagnon et al., 2004; Himmelman, 1991; 

Narvaez Diaz, 2018) due to the limited top-down control mechanisms as both urchin 

predators and urchin diseases are rare in the area (Himmelman et al., 1983; Johnson et al., 

2019; Scheibling, 1997). Secondly, colder water temperatures in the Mingan Archipelago 

(summer maximum ~16°; Galbraith et al., 2017) can limit the growth of epiphytes on kelp 

fronds. In particular, temperature-mediated outbreaks of the introduced epiphytic bryozoan 

Membranipora membranacea which cause major decreases in kelp canopy cover in eastern 

Canada (Saunders and Metaxas, 2008; Scheibling and Gagnon, 2009; Scheibling et al., 

1999) are still rare in the northern Gulf of St. Lawrence, where this bryozoan nears the 

northern edge of its distribution range (Caines and Gagnon, 2012). Hence, stability of the 

Mingan Archipelago’s kelp may be caused by a lack of large-scale variations in urchin and 

epiphytes population.  

 

Limitations and future directions 

The observed trend in kelp coverage from 1999 to 2016 is characterised by a slow, 

gradual increase over time rather than a sharp, large-scale shift. The latter would have been 

expected in situations of sudden release of the kelp from grazing pressure, for example 

following mass urchin mortalities as observed in kelp-urchin systems presenting multiple 

stable states (reviewed in Filbee-Dexter and Scheibling, 2014; Steneck et al., 2013). The 

fact that only minor changes in overall kelp coverage were observed between successive 

collections (8% change in kelp cover at most) suggests that no large-scale state shifts have 
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occurred over the studied period and supports the idea that the Mingan Archipelago is 

locked in an urchin-dominated state without alternate cycles (Johnson et al., 2019). 

However, the temporal gap between successive image collection in the present study, 

varying from 5 to 11 years, limits interpretation of the trends observed. These uneven gaps 

make it possible that a large-scale shift between urchin-dominated and kelp-dominated 

community states may have occurred without being detected. In Nova Scotia, forward shifts 

from urchin-dominated to kelp-dominated states can occur over the course of 18 months 

(Johnson and Mann, 1988), but urchin populations then require roughly a decade to recover 

densities capable of producing a backward shift to an urchin-dominated state (Steneck et 

al., 2002). Assuming a similar timeline would apply in the Mingan Archipelago and given 

the 5 to 11-year gap between consecutive image acquisitions in the present study, it appears 

unlikely that a full cycle from urchin-dominated to kelp-dominated state and back to urchin-

dominated state could have occurred without being detected. Also, it was not possible to 

include the length of the temporal gap between image acquisitions in the calculation of the 

kelp indices (KSI and CTVI) while retaining biologically meaningful and logical index 

values. Hence, these indices consider kelp distribution to be static between collections, 

meaning that a kelp bed observed at a given location in one collection could disappear and 

reappear before the next collection and still be recorded as temporally stable between the 

two sampling occasions. Low sampling frequencies (i.e., long time intervals between 

collections) increase the possibility of change being undetected and can underestimate the 

rate of change in the variable observed (Leecaster and Weisberg, 2001; Miller‐Rushing et 

al., 2008). Thus, future studies applying a similar methodology as the one presented here 
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should aim to collect imagery at more regular intervals, ideally yearly, to avoid this 

potential bias.  

The present study is the most spatially and temporally broad analysis of the drivers 

modulating kelp distribution and stability in the Gulf of St. Lawrence to date. By exploring 

kelp distribution patterns at a broad spatiotemporal scale, this study shows that ice and 

wave conditions during the peak period for kelp growth and bed expansion (i.e., late winter 

and spring) drive kelp bed configuration in summer. This suggests that variations in ice 

coverage expected from climate changes will likely have a strong influence on kelp 

distribution patterns in the Gulf of St. Lawrence. Also, late summer temperature influenced 

kelp distribution patterns, likely through the modulation of urchin grazing, suggesting that 

the urchins’ influence on kelp distribution is present at large (km2) as well as small (m2) 

spatial scales. The presence of more temporally persistent kelp beds at shallow depth 

suggests that sporadic disturbances from ice scouring occurring near the surface have less 

weight on dictating the temporal persistence of kelp beds than continued urchin grazing 

occurring at greater depths. The local, gradual increase in kelp coverage from 1999 to 2016 

and the lack of large-scale shifts in kelp distribution during the study period distinguish the 

Mingan Archipelago from more southern regions of the Northwest Atlantic, as an example 

of a resilient, non-cyclical kelp-urchin system. Together, these results offer a novel broad-

scale perspective of the variability in the distribution patterns of completely submerged 

kelp and the long-term stability of kelp-urchin systems. Similar time-series analyses based 

on remotely acquired imagery and landscape ecology approaches should be applied in kelp 

systems where alternate stable states are known to occur, to test the generality of the 

findings obtained in the Mingan Archipelago’s stable system. 
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6.1. SUMMARY  

As foundation species, kelp have long been known to increase biodiversity and 

productivity patterns in shallow rocky reef systems (Dayton, 1985; Estes et al., 2004; Mann, 

1973; Steneck et al., 2002). Following the loss of kelp habitats, drastic changes in species 

distribution, community structure, and ecosystem functioning have been documented in 

many regions (Filbee-Dexter and Scheibling, 2014; Ling, 2008; Steneck et al., 2002) 

highlighting the importance of understanding the drivers of kelp distribution patterns to 

predict and mitigate these changes. In eastern Canada, kelp beds are frequent features of 

subtidal seascape, being present on shallow rocky reefs along the shores of the Gulf of St. 

Lawrence, the Maritimes provinces, and Newfoundland. Yet, studies of kelp systems have 

been somewhat limited geographically, mainly being conducted on the Atlantic coast of 

Nova Scotia (Filbee-Dexter and Scheibling, 2012; Johnson and Mann, 1988; Lauzon-Guay 

and Scheibling, 2007; Scheibling et al., 1999) with few studies in the Mingan Archipelago 

(northern Gulf of St-Lawrence; Gagnon et al., 2004; Gagnon et al., 2005; Himmelman, 

1991) and Newfoundland (Caines and Gagnon, 2012; Frey and Gagnon, 2015; Keats, 

1991). However, kelp distribution patterns and their driving mechanisms may differ among 

regions due to differences in kelp species dominance (e.g., kelp beds in Nova Scotia are 

dominated by Saccharina latissima while this species is absent in eastern Newfoundland; 

Merzouk and Johnson, 2011) and environmental characteristics (e.g., summer water 

temperature in Nova Scotia is several degrees warmer than in the other two regions; 

Merzouk and Johnson, 2011). Investigations conducted in poorly studied regions can 

provide an insight into the local mechanisms driving kelp distribution patterns and, when 

compared to results obtained in other regions, allow for a more comprehensive 
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understanding of the generalities and regional specificities in kelp dynamics across eastern 

Canada.  

Another important gap in our knowledge of kelp distribution patterns and their drivers 

stems from technical limitations; due to the cost-intensive and time-consuming scuba-based 

methods generally employed for kelp monitoring, most studies have been restricted to small 

spatial (few 100s m2) and temporal (<5 years) extents, and the dynamics occurring at 

broader spatiotemporal scales remains largely unexplored. Despite the usefulness of scuba-

based studies for the understanding of small-scale patterns in kelp-urchin dynamics and 

kelp distribution, extrapolation of their findings to broader scales raises concern because 

ecological processes are generally scale dependent (Lecours et al., 2015; Levin, 1992; 

Schneider, 2001). Hence, approaches specifically designed to investigate kelp distribution 

at broad or multiple spatiotemporal scales are needed to increase understanding of the scale-

dependent processes modulating the stability and resilience of kelp systems.  

The main objective of this research project was to investigate the factors controlling 

kelp distribution and the stability of kelp-urchin systems in southeastern Newfoundland 

and the Gulf of St. Lawrence to deepen our understanding of kelp-urchin dynamics in 

eastern Canada. Specifically, this thesis aimed to 1) identify the threshold urchin density 

required to maintain the destructive grazing on kelp bed at small spatial scales (m2) at one 

site in southeastern Newfoundland [Chapter II], 2) quantify broad-scale (km2) kelp 

distribution patterns in the Mingan Archipelago (northern Gulf of St. Lawrence) by 

measuring spatial pattern metrics and identify environmental drivers of kelp presence 

[Chapter IV], and 3) examine temporal variations in broad-scale (km2) kelp bed distribution 

patterns in the Mingan Archipelago and investigate correlations between these distribution 
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patterns and oceanographic or atmospheric conditions [Chapter V]. In order to fulfill the 

last two objectives, a framework for the detection of shallow submerged kelp beds from 

remotely acquired (aerial or satellite) imagery had to be developed and tested (Chapter III).  

 

6.1.1. Urchin density and kelp bed destruction in southeastern Newfoundland 

Chapter II examined the relationships between urchin density, environmental factors 

(namely temperature and flow acceleration, a proxy for wave action), and kelp bed 

destruction in southeastern Newfoundland, aiming to identify the threshold urchin density 

required to maintain kelp bed destruction. Enclosures were built at the interface between 

kelp bed and urchin barren, which were stocked with urchin densities representing between 

25% and 125% of the natural urchin front density in the study area and monitored over two 

summers. Results highlighted an increase in kelp bed retreat (a measure of kelp bed 

destruction) over time during summer, but no effect of urchin density, temperature, or flow 

acceleration. The density of urchins at the front within the enclosures was influenced by 

the interaction between Julian date, year, and the urchin density treatment applied. 

Observations in an adjacent un-manipulated control site over a 14-month period indicated 

that kelp bed retreat increased with increasing temperature and that urchin density in the 

barren zone (~2 m from the kelp bed) decreased with increasing temperature while it 

increased with increasing wave action. These results suggest that the threshold urchin front 

density necessary to maintain kelp bed destruction at the study site in summer is at or below 

the lowest density treatment applied (25% of the natural urchin front density at the study 

site, i.e., 88 urchins·m-2), and that increasing urchin densities above this threshold does not 

increase the rate of kelp bed destruction.  
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6.1.2. Framework for broad-scale (km2) kelp bed detection  

Chapter III tested the suitability of conventional image classification methods for 

mapping kelp distribution from remotely acquired imagery. It aimed to compare simple and 

robust methods to help guide scientists that are not familiar with remote sensing techniques 

in the choice of suitable approaches to map completely submerged shallow kelp beds. Three 

classification methods were compared: 1) a software-led unsupervised classification which 

groups pixels based on similarity in their spectral signature; 2) a software-led supervised 

classification in which pixels are assigned to categories based on similarity in the spectral 

signature of the pixel and that of reference data from each category; and 3) a visual 

classification carried out by a trained observer. These three classification methods were 

applied to digital aerial (acquired on board a helicopter) and satellite (SPOT 7) imagery of 

~250 ha of shallow (<7 m) seabed in the Mingan Archipelago (northern Gulf of St. 

Lawrence, Canada). The results clearly demonstrated that simple image classification 

techniques can accurately detect fully submerged kelp beds. Indeed, high levels of accuracy 

were obtained with the visual classification of aerial imagery (overall accuracy of 90%) 

and the supervised classification of satellite imagery (overall accuracy of 89%), which were 

the top two methods. Hence, this study serves as a framework for future application of these 

methods in completely submerged kelp bed systems, which will allow kelp ecologists to 

move beyond the spatially and temporally restrictive limits of traditional scuba-based 

sampling methods to explore kelp distribution dynamics over broader spatial and temporal 

domains.  
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6.1.3. Patterns of spatial distribution of kelp beds in the Mingan Archipelago  

Chapter IV aimed to quantify kelp distribution patterns over a broad spatial extent 

(km2) in the northern Gulf of St. Lawrence by using spatial pattern metrics and to examine 

correlations between kelp presence and physical and biotic parameters. In this chapter, the 

best method for kelp detection from aerial imagery identified in the previous chapter (i.e., 

visual classification) was applied to map kelp presence from aerial imagery obtained in 

2016 around five islands in the Mingan Archipelago. The spatial characteristics of kelp 

beds were examined by computing spatial pattern metrics quantifying the proportional 

abundance, shape, area, and clustering of kelp beds. These metrics showed substantial 

variation in kelp cover (46% to 87%) among islands, as well as considerable variations in 

kelp patch size (225 to 891,225 m2) within and among islands. The majority of kelp patches 

were of relatively small size (over 80% of patches measuring <1350 m2), but the few larger 

kelp patches present in the study area, generally in shallow water near the coastline, 

enclosed most (98%) of the kelp-covered seabed. Overall, these spatial pattern metrics 

showed that kelp distribution is not uniform among islands and suggested that the spatial 

extent over which observations are conducted strongly influences the patterns detected. 

Moreover, this chapter investigated the relative influence of depth, bottom slope, exposure 

to waves, and urchin density on kelp presence by applying model selection techniques. 

Results showed that increasing depth, urchin density, and exposure to waves independently 

led to a decrease in kelp presence, with depth having the strongest effect.  

 

6.1.4. Temporal trends in kelp distribution in the Mingan Archipelago  

Chapter V investigated the spatial configuration and persistence of kelp beds in the 
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Mingan Archipelago over broad spatial (km2) and temporal (decades) extents. Specifically, 

changes in kelp distribution over time were monitored using aerial imagery of the study 

area acquired every five to 11 years between 1983 and 2016, by applying the visual 

classification method for kelp detection described in Chapter III. Spatial pattern metrics 

were computed to quantify the spatial characteristics of kelp beds, including kelp coverage, 

number of kelp patches, mean patch area, and largest patch index, and used to investigate 

the relationship between these metrics and changes in oceanographic and atmospheric 

conditions. Results showed that kelp cover increased from 1999 to 2016, and that high 

storm frequency, cold temperatures, and long-lasting ice cover led to a decrease in kelp 

coverage and smaller, numerous kelp patches. Two indices were developed to quantify the 

stability of kelp beds (Kelp Stability Index, or KSI) and the variation in cover type (Cover 

Type Variability Index, or CTVI) across the study area. Modelling techniques were used to 

examine the effect of depth, bottom slope, and exposure to waves on these indices. Results 

indicated that kelp beds persisting through time (high KSI) are more present at shallow 

depths, as the latter generally experiencing fewer changes in cover type over time compared 

to deeper areas. Overall, 45% of the study area presented a stable cover type through time 

(i.e., cover type changing once or less) and only 8% of it exhibiting a highly variable cover 

(i.e., cover type changing 4 or 5 times over the study period).  

 

6.2. IMPORTANCE OF THE STUDY 

The present study provides novel information pertaining to the dynamics between 

kelp and urchins in regions where studies have been limited to date, and at spatiotemporal 
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scales largely overlooked in studies of completely submerged kelp systems. Chapter II 

presents the first manipulative experiment conducted in southeastern Newfoundland 

aiming to understand how urchin density affects kelp bed destruction and urchin 

aggregation. It demonstrated that the local threshold urchin density causing kelp bed 

destruction through grazing during summer is at or below 25% of the natural urchin front 

density at the study site. Although kelp beds are able to recover during winter and expand 

over roughly the area grazed by urchins during summer, this study suggests that urchin 

densities within the study area are too high to allow the expansion of kelp beds farther into 

the barren and thus maintain this system locked in an urchin-dominated state, preventing a 

large-scale shift to a kelp-dominated state.  

Chapter III proved the usefulness of remote sensing and GIS-based methods to detect 

kelp beds in shallow, completely submerged areas. Using the framework presented in this 

chapter, kelp ecologists will be better able to develop broad-scale monitoring programs in 

systems with characteristics (i.e., depth and turbidity profiles) similar to the Mingan 

Archipelago. This operational improvement increases our ability to explore kelp 

distribution patterns at broad spatiotemporal scales and to investigate how stable states are 

established and maintained in kelp-urchin systems. Chapter IV clearly demonstrated the 

usefulness of the methods described in Chapter III for the investigation of the spatial 

patterns in kelp distribution over a broad (km2) spatial scale and established that the spatial 

extent over which observations are conducted strongly influences the distribution patterns 

detected. As the first investigation of kelp distribution patterns using spatial pattern metrics, 

this study determined that the shape, size, and density of kelp patches vary spatially within 

a few km2. This study also identified depth, exposure to waves, and urchin density as factors 
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regulating the presence of kelp beds over broad spatial scales, thus providing novel 

information for the understanding of scale-dependent processes regulating submerged kelp 

bed distribution. Chapter V is the most spatially and temporally broad analysis of the 

drivers modulating kelp distribution patterns and kelp bed stability in the Gulf of St. 

Lawrence to date. As such, it increases knowledge of the environmental parameters driving 

the spatial distribution of kelp patches and the stability of kelp beds over time. Importantly, 

this study observed a gradual increase in kelp coverage from 1999 to 2016 in the Mingan 

Archipelago and a lack of large-scale shifts in kelp distribution during the study period; 

these two characteristics distinguish the Mingan Archipelago from more southern regions 

of the Northwest Atlantic, as an example of a temporally-stable, non-cyclical kelp-urchin 

system. In addition, results from this chapter provide a baseline with which to compare kelp 

distribution in the Mingan Archipelago in the future and assess the trajectory of this system 

over time.  

Overall, this research project offers a novel broad-scale perspective of the variability 

in distribution patterns of completely submerged kelp and of the long-term stability of kelp-

urchin systems. It increases knowledge of scale dependency in the drivers of kelp 

distribution patterns while exploring these drivers in regions poorly studied to date. This 

research project speaks to the importance of exploring multiple scales to understand the 

dynamics of species distribution, which will allow for the better prediction and mitigation 

of change in kelp-urchin systems.  
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6.3. FUTURE DIRECTIONS 

By applying a combination of traditional (Chapter II) and novel (Chapters III, IV, 

and V) techniques for the study of submerged kelp beds, this research project provided new 

information on the dynamics of kelp systems in two regions of eastern Canada where few 

studies have been conducted to date. However, it also highlighted areas which deserve 

further attention, some of which are outlined below.  

Chapter II determined that the threshold urchin density required to maintain 

significant grazing upon a kelp bed at the study site was either equal to the lowest density 

tested (i.e., 88 urchins·m-2), or may be lower. Further studies are needed to investigate if 

severe declines in urchin density below this threshold would trigger a kelp bed expansion 

into the urchin barren of a sufficient magnitude to produce a shift from urchin- to kelp-

dominated states. Such investigation would require the use of large-scale disturbance plots. 

Further testing is also needed to determine if these results are representative of the 

southeastern Newfoundland region as a whole and to disentangle the effects of urchin 

grazing from those of high late-summer temperature on kelp bed degradation.  

In Chapter III, we purposely chose to compare classification methods that were 

simple to execute with the aim of building a framework that would be accessible to non-

specialist map users (sensu Andréfouët, 2008) such as kelp ecologists who need access to 

reliable maps but may not be familiar with cutting-edge advances in remote sensing and 

GIS technologies. Investigation of more technically complex methods such as object-based 

classification (Wang et al., 2004) could be of interest to more advanced users, as these 

methods have the potential to increase the precision and speed of the classification. Also, 

visual classification techniques, although highly efficient for the detection of submerged 
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kelp beds on aerial imagery, have the disadvantage of yielding only presence/absence data 

and hence could not be used to estimate kelp biomass. Further testing would be needed to 

establish an effective classification method to estimate kelp biomass and to identify more 

numerous benthic classes, which would require a more meticulous examination of per-pixel 

reflectance, thorough calibration and careful image pre-processing. Investigation of the 

gain in accuracy obtained when using imagery with more numerous and/or narrow spectral 

bands may help researchers aiming to classify more complex benthic systems (e.g., with 

more habitat classes, or classes that are more difficult to distinguish than in the present 

study).  

Chapters IV and V used spatial pattern metrics to quantify the configuration of 

completely submerged kelp beds, which is an approach that has not yet been applied to kelp 

bed systems elsewhere. As such, it highlighted several future directions of research, like 

the need to investigate if the patterns observed in the Mingan Archipelago are 

representative of other areas of eastern Canada and to determine if the observed patterns 

are driven by variations in abiotic or biotic conditions directly affecting kelp dispersal and 

growth or indirectly affecting kelp by influencing the behaviour of urchins. Monitoring of 

urchin population density at broad spatial scales (km2) across the Mingan Archipelago over 

several years, in conjunction with the monitoring of kelp distribution patterns and 

environmental parameters, would help disentangle the direct and indirect drivers of kelp 

distribution patterns. Also, Chapter V determined that kelp distribution patterns were 

correlated with the North Atlantic Oscillation index (NAO index) and ice cover, but further 

studies are needed to establish a causal link and the mechanisms through which these 

environmental conditions affect kelp survival, dispersal, and patch configuration.  
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While the present study mainly focused on quantifying kelp distribution patterns and 

their drivers, another interesting research avenue would be to investigate the consequences 

of the spatial patterns observed on kelp communities. For example, assessing the impacts 

of kelp patch size and patch density on the biodiversity of kelp-associated species would 

be informative of the effects of spatial configuration on community structure. 

Fragmentation and patch structure influence herbivory in seagrass (Gera et al., 2013; Pagès 

et al., 2014) and could have a similar effect on kelp-urchin dynamics. Determining to what 

extent kelp patch size and density influence the temporal stability of kelp beds would also 

provide critical information on the resilience of these systems, for example by investigating 

if large kelp patches occur in a same geographical location for longer periods (i.e., years) 

than small patches or by quantifying the contribution of shallow persistent kelp patches to 

recruitment in nearby kelp-devoid areas.  

Finally, the present study confirmed that, when considered over broad spatial (km2) 

and temporal (decades) extents, the Mingan Archipelago constitutes a resilient, non-

cyclical kelp-urchin system locked in an urchin-dominated state. Further studies evaluating 

the effects of natural and anthropogenic disturbances on kelp bed distribution patterns in 

this area will be needed to better understand the limits of this resilience and identify the 

threshold for phase shifts between states in this region. Such knowledge will be useful to 

predict possible changes in this system, for example as a result of changing ocean climate, 

and inform management practices. 
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APPENDIX 2.A: Further details regarding field equipment: fences used to create 

urchin enclosures and modified underwater swell kinetic instrument (URSKI) 

 

The figures below show equipment built specifically to be used in the field in the 

present study. In this field experiment, urchin densities were manipulated within enclosures 

placed at the interface between kelp bed and urchin barren (see section 2.3.2 for details). 

Enclosures were delimited by 50-cm high fences, which are depicted and described in 

Figure A.1. During the experiment, the wave environment was quantified using a modified 

underwater relative swell kinetics instrument (URSKI; Figurski et al., 2011), which is 

depicted and described in Figure A.2.  
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Figure A.1. Photographs of the fences used to create urchin enclosures (photos by Anne P. 

St-Pierre). Panel A shows a section of fence laid on the ground upon assembly of the fence 

components. All fences were 50 cm high and built from aquaculture netting (Polyethylene 

netting 1.8 mm by 50 mm, mesh aperture of 2.5cm), heavy metal chains (link diameter 9.5 

mm) sewn along the bottom of the netting, and small plastic floats (approximately 12 cm 

by 6 cm, oval shaped) attached every metre along the top of the netting. Panels B and C 

show the fences after installation in the field, when they were secured to the seafloor with 

eyebolts. The heavy chain weighed down the fence to ensure it remained on the seafloor 

and conformed to the topography of the latter, while the floats held the fence upright in the 

water column and allowed it to gently sway with wave surge.  
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Figure A.2. Modified underwater relative swell kinetics instrument (URSKI; see section 

2.3.4). Panel A shows the instrument upon fabrication, which consists of a cylindrical 

housing (h.) which holds the accelerometer, a slightly buoyant cylinder (b.c.) which 

maintains the instrument upright in the water column, and a tether (t.) affixed to the bottom 

of the buoyant cylinder which was used to secure the instrument to an eyebolt drilled in the 

seabed. Panel B shows a close-up view of the housing, where the removable screw-in cap 

of the device is being held out of the housing to show the submersible accelerometer (s.a.) 

attached inside. The housing and cap were designed to facilitate retrieval and replacement 

of the accelerometer underwater by simply manipulating the cap without needing to bring 

the entire instrument to the surface. Panel C shows the instrument after installation in the 

field, secured to an eyebolt (e.) drilled into the seabed. A temperature logger (t.l.) was 

attached to the same eyebolt and is also visible on this photograph.  
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APPENDIX 2.B: Outcome of statistical analyses (see Material and Methods – 

Statistical analysis for a detailed description of each analysis) 

 

 

Table 2.B.1. Summary of three-way ANCOVA (applied to raw data) examining the effect 

of Treatment (Natural, High, Medium, Low, and Very low densities, and Control corridor), 

Julian date (continuous variable), and Year (2015 or 2016) on the rate of kelp bed retreat 

(m·mo-1) in the experimental sites during summer. The factor Site was included in the 

analyses to account for variability inherent to this random factor, but not shown in the table 

as statistics pertaining to this factor are irrelevant for the present study.  

 

Source of variation df χ2 p 

    

Treatment 5 5.919 0.314 

Julian date 1 8.208 0.004 

Year 1 3.474 0.062 

Treatment x Julian date 5 6.751 0.240 

Treatment x Year 5 3.721 0.590 

Julian date x Year 1 3.663 0.056 

Treatment x Julian date x Year 5 3.926 0.560 

    

df = degrees of freedom; p = p value 
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Table 2.B.2. Summary of two-way ANCOVA (applied to raw data) examining the effect 

of Julian date (continuous variable) and Year (2015 or 2016) on the rate of kelp bed retreat 

(m·mo-1) in the control site year-round. The factor Corridor was included in the analyses to 

account for variability inherent to this random factor, but not shown in the table as statistics 

pertaining to this factor are irrelevant for the present study. 

 

Source of variation df χ2 p 

    

Julian date 1 0.211 0.646 

Year 1 1.815 0.178 

Julian date x Year 1 1.933 0.164 

    

df = degrees of freedom; p = p value 
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Table 2.B.3. Summary of two-way ANOVA (applied to raw data) examining the effect of 

Temperature (continuous) and Flow acceleration (continuous) on the rate of kelp bed retreat 

(m·mo-1) in the experimental sites during summer. The factor Site was included in the 

analyses to account for variability inherent to this random factor, but not shown in the table 

as statistics pertaining to this factor are irrelevant for the present study.  

 

Source of variation df χ2 p 

    

Temperature 1 0.038 0.845 

Flow acceleration 1 0.139 0. 709 

Temperature x Flow acceleration 1 0.038 0.845 

    

df = degrees of freedom; p = p value 
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Table 2.B.4. Summary of two-way ANOVA (applied to raw data) examining the effect of 

Temperature (continuous) and Flow acceleration (continuous) on the rate of kelp bed retreat 

(m·mo-1) at the control site year-round. The factor Corridor was included in the analyses to 

account for variability inherent to this random factor, but not shown in the table as statistics 

pertaining to this factor are irrelevant for the present study.  

 

Source of variation df χ2 p 

    

Temperature 1 6.805 0.009 

Flow acceleration 1 1.126 0.289 

Temperature x Flow acceleration 1 0.836 0.361 

    

df = degrees of freedom; p = p value 
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Table 2.B.5. Summary of three-way ANCOVA (applied to raw data) examining the effect 

of Treatment (Natural, High, Medium, Low, and Very low densities, and Control corridor), 

Julian date (continuous variable), and Year (2015 or 2016) on the density of urchins 

(urchins·m-2) at the front within the experimental sites during summer. The factor Site was 

included in the analyses to account for variability inherent to this random factor, but not 

shown in the table as statistics pertaining to this factor are irrelevant for the present study. 

 

Source of variation df χ2 p 

    

Treatment 5 38.745 <0.001 

Julian date 1 21.668 <0.001 

Year 1 11.691 0.001 

Treatment x Julian date 5 29.500 <0.001 

Treatment x Year 5 23.825 <0.001 

Julian date x Year 1 7.128 0.008 

Treatment x Julian date x Year 5 18.081 0.003 

    

df = degrees of freedom; p = p value 
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Table 2.B.6. Summary of two-way ANCOVA (applied to raw data) examining the effect 

of Julian date (continuous variable) and Year (2015 or 2016) on the density of urchins at 

the front in the control site year-round. The factor Corridor was included in the analyses to 

account for variability inherent to this random factor, but not shown in the table as statistics 

pertaining to this factor are irrelevant for the present study. 

 

Source of variation df χ2 p 

    

Julian date 1 2.597 0107 

Year 1 1.205 0.272 

Julian date x Year 1 0.004 0.949 

    

df = degrees of freedom; p = p value 
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Table 2.B.7. Summary of two-way ANOVA (applied to raw data) examining the effect of 

Temperature (continuous) and Flow acceleration (continuous) on the density of urchins 

(urchins·m-2) at the front in the experimental sites during summer. The factor Site was 

included in the analyses to account for variability inherent to this random factor, but not 

shown in the table as statistics pertaining to this factor are irrelevant for the present study.  

 

Source of variation df χ2 p 

    

Temperature 1 0.312 0.574 

Flow acceleration 1 0.321 0.571 

Temperature x Flow acceleration 1 0.715 0.398 

    

df = degrees of freedom; p = p value 
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Table 2.B.8. Summary of two-way ANOVA (applied to raw data) examining the effect of 

Temperature (continuous) and Flow acceleration (continuous) on the density of urchins 

(urchins·m-2) at the front at the control site. The factor Corridor was included in the analyses 

to account for variability inherent to this random factor, but not shown in the table as 

statistics pertaining to this factor are irrelevant for the present study.  

 

Source of variation df χ2 p 

    

Temperature 1 0.199 0.656 

Flow acceleration 1 0.859 0.354 

Temperature x Flow acceleration 1 2.913 0.088 

    

df = degrees of freedom; p = p value 
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Table 2.B.9. Summary of three-way ANCOVA (applied to raw data) examining the effect 

of Treatment (Natural, High, Medium, Low, and Very low densities, and Control corridor), 

Julian date (continuous variable), and Year (2015 or 2016) on the density of urchins 

(urchins·m-2) in the barren area in the experimental sites. The factor Site was included in 

the analyses to account for variability inherent to this random factor, but not shown in the 

table as statistics pertaining to this factor are irrelevant for the present study. 

 

Source of variation df χ2 p 

    

Treatment 5 3.351 0.646 

Julian date 1 0.967 0.325 

Year 1 4.066 0.044 

Treatment x Julian date 5 3.436 0.633 

Treatment x Year 5 3.861 0.570 

Julian date x Year 1 3.843 0.048 

Treatment x Julian date x Year 5 3.598 0.609 

    

df = degrees of freedom; p = p value 
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Table 2.B.10. Summary of two-way ANCOVA (applied to raw data) examining the effect 

of Julian date (continuous variable) and Year (2015 or 2016) on the density of urchins in 

the barren in the control site. The factor Corridor was included in the analyses to account 

for variability inherent to this random factor, but not shown in the table as the statistics 

pertaining to this factor are irrelevant for the present study. 

 

Source of variation df χ2 p 

    

Julian date 1 22.715 <0.001 

Year 1 24.261 <0.001 

Julian date x Year 1 32.039 <0.001 

    

df = degrees of freedom; p = p value 
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Table 2.B.11. Summary of two-way ANOVA (applied to raw data) examining the effect 

of Temperature (continuous) and Flow acceleration (continuous) on the density of urchins 

(urchins·m-2) in the barren in the experimental sites in summer. The factor Site was 

included in the analyses to account for variability inherent to this random factor, but not 

shown in the table as statistics pertaining to this factor are irrelevant for the present study.  

 

Source of variation df χ2 p 

    

Temperature 1 5.993 0.014 

Flow acceleration 1 2.163 0.141 

Temperature x Flow acceleration 1 2.575 0.109 

    

df = degrees of freedom; p = p value 
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Table 2.B.12. Summary of two-way ANOVA (applied to raw data) examining the effect 

of Temperature (continuous) and Flow acceleration (continuous) on the density of urchins 

(urchins·m-2) in the barren at the control site. The factor Corridor was included in the 

analyses to account for variability inherent to this random factor, but not shown in the table 

as statistics pertaining to this factor are irrelevant for the present study.  

  

Source of variation df χ2 p 

    

Temperature 1 0.103 0.748 

Flow acceleration 1 8.370 0.004 

Temperature x Flow acceleration 1 4.405 0.036 

    

df = degrees of freedom; p = p value 
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APPENDIX 3.A: Glossary of common terms in remote sensing and GIS used in the 

present study. 

Term Definition Source 

Color composite 

image 

A color image made by assigning a red, green, and 

blue colors to each of the separate monotone bands of 

a multispectral image and then superimposing them.  

1 

Georectification or 

georeferencing 

The process of referencing features in an image or grid 

to a geographic coordinate system using ground 

control points by shifting, rotating, scaling, skewing or 

projecting the image. This process removes the effects 

of tilt or relief from a map or image.  

1 

Ground control 

point (GCP) 

A point on the ground whose location has been 

determined by a horizontal coordinate system or a 

vertical datum. Usually a location in the field at which 

data has been collected for analysis or quality control. 

1 

Kriging An interpolation technique in which the surrounding 

measured values are weighted to derive a predicted 

value for an unmeasured location. Weights are based 

on the distance between the measured points, the 

prediction locations, and the overall spatial 

arrangement among the measured points.  

4 

Nearest neighbour 

resampling 

A technique for resampling raster data in which the 

value of each cell in an output grid is calculated using 

the value of the nearest cell in an input grid. Nearest 

neighbour assignment (or resampling) does not change 

any of the values of cells from the input layer.  

1 

Orthorectification The process of correcting the geometry of an image so 

that it appears as though each pixel were acquired from 

directly overhead. Orthorectification uses elevation 

data to correct terrain distortion in aerial or satellite 

imagery. 

4 

Pan-sharpening or 

resolution merging 

Shorthand for “panchromatic sharpening”; Process of 

sharpening a low-resolution, multiband image by 

merging it with a high-resolution monochrome image.  

1 

Raster A spatial data model, which defines space as an array 

of equally sized cells arranged in rows and columns, 

and composed of single or multiple bands. Each cell 

1 
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contains an attribute value and location coordinates. 

Unlike a vector structure, which stores coordinates 

explicitly, raster coordinates are contained in the 

ordering of the matrix. Groups of cells that share the 

same value represent the same type of geographic 

feature. 

Signature file File that contains multivariate statistics for each class 

or cluster of interest (mean for each class, number of 

cells in the class, and variance-covariance matrix for 

the class) used in supervised classifications (e.g., 

Maximum Likelihood Classification [MLC]).  

3 

Spectral band One layer of a multispectral image that represents data 

values for a specific range of reflected light or heat, 

such as ultraviolet, blue, greed, red, infrared, or radar, 

or other values derived by manipulating the original 

image bands. A standard color display of a 

multispectral image shows three bands, one each for 

red, green, and blue.  

1 

Spectral resolution The range of wavelengths that an imaging system can 

detect which ultimately affects the number of unique 

spectral signatures in the imagery.  

1 

Thematic map A map of the spatial distribution of various classes of a 

theme in a geographical context such as land use and 

land cover, forest type, and hydrogeomorphology. 

Scale and level of details in a thematic map depend on 

its intended application.  

2 

 

Adapted from:  

1 Kennedy, H., 2001. The ESRI Press dictionary of GIS terminology. ESRI Press.  

2 Sahu, K.C., 2007. Textbook of remote sensing and geographical information systems. 

Atlantic Publishers & Dist. 

3 ESRI. ArcGIS Desktop 9.3 Help. Access on February 26 2018; 

http://webhelp.esri.com/arcgisdesktop/9.3  

4 ESRI. Online technical support, GIS Dictionary. Accessed on February 26 2019: 

https://support.esri.com/en/other-resources/gis-dictionary  
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APPENDIX 3.B: Contingency tables for each combination of classification technique 

and image source. 

In each table below, columns show the reference data obtained from ground truthing 

(i.e., test dataset). Sums at the bottom of each column show the total number of locations 

truly belonging to kelp or non-kelp classes (based on reference data). Rows present the 

outcome of the classification applied to the remotely sensed imagery (“Classified data”). 

Sums at the end of each row show the total number of locations attributed to each class 

based on classification. Matrix diagonal (bolded values) shows the number of correctly 

classified locations for each class. All non-diagonal elements in the matrix are locations 

that have been misclassified. For example, with the unsupervised classification of satellite 

imagery (Table 3.B.1), 23 non-kelp locations were misclassified as kelp, while 17 kelp 

locations were wrongly classified as non-kelp.  

For more information on contingency tables, refer to Lillesand et al. (2014) and Green 

et al. (2000). For details of the accuracy metrics used in the present study, refer to section 

3.3.5 and see Landis and Koch (1977) and Lillesand et al. (2014). 
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Table 3.B.1. Contingency table for the unsupervised classification of satellite imagery.  

    Reference data   

  Class Kelp Non-kelp  Sum 

      

Classified data Kelp 73 23  96 

  Non-kelp 17 18  35 

      

  Sum 90 41  131 

      

 

 

Table 3.B.2. Contingency table for the supervised classification of satellite imagery.  

    Reference data   

  Class Kelp Non-kelp  Sum 

      

Classified data Kelp 77 3  80 

  Non-kelp 13 38  51 

      

  Sum 90 41  131 

      

 

 

Table 3.B.3. Contingency table for the visual classification of satellite imagery.  

    Reference data   

  Class Kelp Non-kelp  Sum 

      

Classified data Kelp 83 19  102 

  Non-kelp 7 22  29 

      

  Sum 90 41  131 
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Table 3.B.4. Contingency table for the unsupervised classification of aerial imagery.  

    Reference data   

  Class Kelp Non-kelp  Sum 

      

Classified data Kelp 61 15  76 

  Non-kelp 29 25  54 

      

  Sum 90 40  130 

      

 

 

Table 3.B.5. Contingency table for the supervised classification of aerial imagery.  

    Reference data   

  Class Kelp Non-kelp  Sum 

      

Classified data Kelp 72 7  79 

  Non-kelp 18 33  51 

      

  Sum 90 40  130 

      

 

 

Table 3.B.6. Contingency table for the visual classification of aerial imagery.  

    Reference data   

  Class Kelp Non-kelp  Sum 

      

Classified data Kelp 86 10  96 

  Non-kelp 4 30  34 

      

  Sum 90 40  130 
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References cited in Appendix 3.B:  

Green, E., Mumby, P., Edwards, A., Clark, C., 2000. Remote Sensing: Handbook for 

Tropical Coastal Management. United Nations Educational, Scientific and Cultural 

Organization (UNESCO). 

Landis, J.R., Koch, G.G., 1977. The measurement of observer agreement for categorical 

data. biometrics, 159-174. 

Lillesand, T., Kiefer, R.W., Chipman, J., 2014. Remote sensing and image interpretation. 

John Wiley & Sons. 
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APPENDIX 5.A: Assessment of the transferability of observer training in visual 

classification 

Image classification was conducted visually by an observer trained to distinguish kelp 

and non-kelp benthic classes based on their shade and the contrast between kelp and non-

kelp features. The observer’s training was conducted by comparing the visual 

characteristics of kelp and non-kelp areas from color imagery collected in July 2016 and 

ground truth data (underwater imagery from a drop camera system, acquired at 199 

locations throughout the study area of 4 islands, i.e., Île à Firmin, Île du Havre, Île aux 

Goélands, and Petite île au Marteau) collected within the following three weeks. Further 

details regarding observer training are available in St-Pierre and Gagnon (2020). All 

classifications were completed by the same observer to ensure consistency. Classification 

accuracy was evaluated using contingency tables to calculate the overall accuracy, kappa 

coefficient, producer’s accuracy, and user’s accuracy of each classification. See Landis and 

Koch (1977) and Lillesand et al. (2014) for further discussion of these accuracy statistics. 

 

Section 1. Comparison of accuracy between the classification of color and black-and-

white imagery acquired in 2016 at four islands in the Mingan Archipelago 

To determine if the training acquired by the observer for the identification of kelp 

and non-kelp areas on color imagery yielded similar results when applied to color and 

black-and-white imagery, the observer classified the black-and-white imagery and an 

accuracy assessment was performed (see below). The color imagery acquired in 2016 was 



 

278 

 

converted into black-and-white imagery by using the Grayscale function in ArcMap 10.3.1 

(Esri, 2015), thus providing imagery in both color types for the exact same extent.  

Accuracy assessment of color imagery 

The outcome of the accuracy assessment for color imagery presented in the 

contingency table below (Table 5.A.1) yielded an overall accuracy of 90.0% (with a 95% 

confidence interval of 5.5%), and a Kappa coefficient of 0.76. Producer’s and user’s 

accuracy (with 95% confidence interval) are presented in the table below (Table 5.A.2). 

 

Table 5.A.1. Contingency table from the accuracy assessment of the visual classification 

of color imagery from Île à Firmin, Île du Havre, Île aux Goélands, and Petite île au 

Marteau. 

   Reference data   

  Class Kelp Non-kelp  Sum 

Classified data Kelp 86 10  96 

  Non-kelp 4 30  34 

      

  Sum 90 40  130 

      

 

Table 5.A.2. Producer’s and user’s accuracy calculated from the visual classification of 

color imagery from Île Niapiskau, Île à Firmin, Île du Havre, Île aux Goélands, and Petite 

île au Marteau. 

 Producer’s accuracy (%) User’s accuracy (%) 

   

Kelp cover 96.6 ± 4.3 89.6 ± 6.6 

Non-kelp cover 75.6 ± 14.4 91.2 ± 11.0 
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Accuracy assessment of black-and-white imagery 

The outcome of the accuracy assessment for black-and-white imagery presented in 

the contingency table below (Table 5.A.3) yielded an overall accuracy of 88.5% (with a 

95% confidence interval of 5.9%), and a Kappa coefficient of 0.74. Producer’s and user’s 

accuracy (with 95% confidence interval) are presented in the table below (Table 5.A.4). 

 

Table 5.A.3. Contingency table from the accuracy assessment of the visual classification 

of black-and-white imagery from Île Niapiskau, Île à Firmin, Île du Havre, Île aux 

Goélands, and Petite île au Marteau. 

   Reference data   

  Class Kelp Non-kelp  Sum 

Classified data Kelp 79 8  87 

  Non-kelp 7 36  43 

      

  Sum 86 44  130 

      

 

Table 5.A.4. Producer’s and user’s accuracy calculated from the visual classification of 

black-and-white imagery from Île à Firmin, Île du Havre, Île aux Goélands, and Petite île 

au Marteau. 

 Producer’s accuracy (%) User’s accuracy (%) 

   

Kelp cover 91.8 ± 6.4 90.8 ± 6.6 

Non-kelp cover 81.8 ± 12.5 83.7 ± 12.2 
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Conclusion 

High overall accuracy and Kappa coefficient were obtained for the classification of 

both color and black-and-white imagery. Since the accuracy assessment is reasonably good 

and that the outcome of the classification on both image type is similar, it is concluded that 

visual characteristics of kelp beds on color or black-and-white aerial imagery from the same 

archipelago is equivalent. 

 

Section 2. Accuracy assessment of the visual classification applied to black and white 

imagery acquired in 2016 at Île Niapiskau and Île du Fantôme 

To determine if the training acquired by the observer for the identification of kelp 

and non-kelp areas was spatially transferable, the visual classification technique was 

applied to black and white imagery from two islands (Île Niapiskau and Île du Fantôme) in 

the Mingan Archipelago acquired in July 2016. Ground truth data (underwater imagery) 

collected in the study area of these two islands was also available, since 65 locations had 

been surveyed with a drop camera system in the three weeks following image acquisition 

in 2016. However, this ground truth data was not used in observer training; rather, it was 

only used to assess the accuracy of the classification. Accuracy assessment of classified 

imagery from these two islands is presented below.  
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Accuracy assessment 

The outcome of the accuracy assessment presented in the contingency table (Table 

5.A.5) yielded an overall accuracy of 84.6% (with a 95% confidence interval of 9.5%), and 

a Kappa coefficient of 0.69. Producer’s and user’s accuracy (with 95% confidence interval) 

are presented in the table below (Table 5.A.6). 

 

Table 5.A.5. Contingency table for the visual classification of imagery from Île 

Niapiskau and Île du Fantôme. 

   Reference data   

  Class Kelp Non-kelp  Sum 

Classified data Kelp 25 6  31 

  Non-kelp 4 30  34 

      

  Sum 29 36  65 

      

 

Table 5.A.6. Producer’s and user’s accuracy calculated from the visual classification of 

imagery from Île Niapiskau and Île du Fantôme. 

 Producer’s accuracy (%) User’s accuracy (%) 

   

Kelp cover 86.2 ± 14.3 80.7 ± 15.5 

Non-kelp cover 83.3 ± 13.6 88.2 ± 12.3 

   

 

Conclusion 

High overall accuracy and Kappa coefficient were obtained for the classification of 

imagery from Île Niapiskau and Île du Fantôme. Thus, it is concluded that the knowledge 
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of a trained observer who learned to distinguish the visual characteristics of kelp beds by 

observing and classifying aerial imagery from the same archipelago can be transferred 

spatially for the classification of areas within the Mingan Archipelago which were not used 

during training.  

 

Section 3. Accuracy assessment of the visual classification of black-and-white 

imagery acquired in 2004 at four islands in the Mingan Archipelago 

To determine if the training acquired by the observer for the identification of kelp 

and non-kelp areas was temporally transferable, the classification technique was applied to 

imagery acquired in 2004 at Île à Firmin, Île du Havre, Île aux Goélands, and Petite île au 

Marteau. Ground truth data (underwater imagery) collected in the study area of these four 

islands was also available, since 30 locations had been surveyed with a drop camera system 

in the week following image acquisition in 2004. However, this ground truth data was not 

used in observer training; rather, it was only used to assess the accuracy of the 

classification. Accuracy assessment of classified imagery from these two islands is 

presented below. 

Accuracy assessment 

The outcome of the accuracy assessment presented in the contingency table (Table 

5.A.7) yielded an overall accuracy of 72.7% (with a 95% confidence interval of 16.7%), 

and a Kappa coefficient of 0.43. Producer’s and user’s accuracy (with 95% confidence 

interval) are presented in the table below (Table 5.A.8). 
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Table 5.A.7. Contingency table for the visual classification of imagery collected in 2004 

at Île à Firmin, Île du Havre, Île aux Goélands, and Petite île au Marteau. 

    Reference data   

  Class Kelp Non-kelp  Sum 

Classified data Kelp 16 7  23 

  Non-kelp 2 8  10 

      

  Sum 18 15  33 

      

 

Table 5.A.8. Producer’s and user’s accuracy calculated from the visual classification of 

imagery collected in 2004 at Île à Firmin, Île du Havre, Île aux Goélands, and Petite île au 

Marteau. 

 Producer’s accuracy (%) User’s accuracy (%) 

   

Kelp cover 88.9 ± 17.3 69.6 ± 21.0 

Non-kelp cover 53.3 ± 28.6 80.0 ± 29.8 

   

 

Conclusion 

The overall accuracy and Kappa coefficient obtained for the classification of imagery 

from imagery acquired in 2004 were reasonably high. Thus, it is concluded that the 

knowledge of a trained observer who learned to distinguish the visual characteristics of 

kelp beds by observing and classifying aerial imagery from the same archipelago in 

different years can be transferred for the classification of imagery acquired at different time 

periods, with reasonable confidence in the classification outcome.  
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APPENDIX 5.B: Spatial pattern metrics of the non-kelp benthic class and their 

correlation with oceanographic and atmospheric parameters 

The seven spatial pattern metrics presented in section 5.3.3 were calculated for the 

non-kelp benthic class. Non-kelp coverage showed an opposite trend to kelp coverage, with 

a minimum observed in 2016 (37.66%) and maximum in 1983 (55.81%; Table 5.B.1). 

Largest patch indices for non-kelp benthic class varied between 10.90 (2016) and 14.21% 

(1988; Table 5.B.1). Mean non-kelp patch area showed marked variations among years, 

with lowest value of 5902 ± 2099 m2 in 2016 and highest of 14878 ± 4886 m2 in 1988 

(Table 5.B.1). For any given year, the number of non-kelp patches was always higher than 

the number of kelp patches (Table 5.B.1). While the minimum patch size for both benthic 

classes was always 225 m2 (i.e., the area around a single grid intersect), mean patch size 

was generally higher for the kelp than non-kelp benthic class (all years except 1983; Table 

5.B.1). Maximum patch size was higher in the non-kelp than kelp benthic class between 

1983 and 1999, but higher in the kelp benthic class in 2004 and 2009 (Table 5.B.1). Shape 

indices, mean nearest neighbour distances, and clumpiness indices calculated for the non-

kelp benthic class showed little variation among years (Table 5.B.1). 

Assessment of the correlations between spatial pattern metrics calculated for the non-

kelp benthic class and oceanographic or atmospheric parameters from the same year as 

image acquisition indicated nine correlations as statistically significant (Table 5.B.2, Figure 

5.B.1). Non-kelp percent coverage was positively correlated with the NAO indices 

calculated for the spring (April to July; Pearson’s r = 0.868, Table5. B.2, Figure 5.B.1). 

Largest patch indices for non-kelp was positively correlated with the duration of the ice-



 

286 

 

covered season (Pearson’s r = 0.979, Table 5.B.2, Figure 5.B.1). Number of non-kelp 

patches was negatively correlated with the average sea surface temperature in July 

(Pearson’s r = -0.811, Table 5.B.2, Figure 5.B.1). Shape indices for the non-kelp benthic 

class was positively correlated with both the date of last ice occurrence (Pearson’s r = 0.828, 

Table 5.B.2, Figure 5.B.1) and the duration of the ice-covered season (Pearson’s r = 0.861, 

Table 5.B.2, Figure 5.B.1). Clumpiness indices for non-kelp patches was negatively 

correlated with the date of last ice occurrence (Pearson’s r = -0.893, Table 5.B.2, Figure 

5.B.1). Mean nearest neighbour distance for the non-kelp benthic class was negatively 

correlated with the anomaly in ice volume (Pearson’s r = -0.857, Table 5.B.2), the 

maximum ice volume (Pearson’s r = -0.930, Table 5.B.2), and the date of last ice 

occurrence (Pearson’s r = -0.811, Table 5.B.2), but these correlations are not further 

discussed due to the low and stable values of nearest neighbour distances suggesting that 

variations in mean nearest neighbour distance are likely of little biological significance.  

Assessment of the correlation between spatial pattern metrics calculated for the non-

kelp benthic class and oceanographic or atmospheric parameters from the year prior to 

image acquisition indicated eight correlations as statistically significant (Table 5.B.3, 

Figure 5.B.2). Non-kelp percent coverage was negatively correlated with average August 

sea surface temperature calculated in the year prior to image acquisition (Pearson’s r = -

0.921, Table 5.B.3, Figure 5.B.2). Largest patch indices for non-kelp was negatively 

correlated with the sum of standardized anomalies in sea surface temperature calculated on 

the year prior to image acquisition (Pearson’s r = -0.825, Table 5.B.3, Figure 5.B.2). Shape 

indices for the non-kelp benthic class was negatively correlated with the average August 
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sea surface temperature (Pearson’s r = -0.924, Table 5.B.3, Figure 5.B.2), the date of last 

ice occurrence (Pearson’s r = -0.849, Table 5.B.3, Figure 5.B.2) and the NAO indices for 

spring (April to July; Pearson’s r = -0.897, Table 5.B.3, Figure 5.B.2), all calculated for the 

year prior to image acquisition. Mean nearest neighbour distance for the non-kelp benthic 

class was negatively correlated with the average June sea surface temperature (Pearson’s r 

= -0.854, Table 5.B.3) and positively correlated with average August sea surface 

temperature (Pearson’s r = 0.976, Table 5.B.3) and the NAO indices for spring (April to 

July; Pearson’s r = 0.897, Table 5.B.3), all calculated for the year prior to image acquisition. 

However, correlations with mean nearest neighbour distances are not further discussed due 

to the low and stable values of nearest neighbour distances calculated suggesting that 

variations in mean nearest neighbour distance are likely of little biological significance. 
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Table 5.B.1. Outcome of the spatial pattern metrics calculated for the non-kelp benthic class on imagery from each of the six 

years studied. Mean values are presented with standard error (±SE). 

 

Year 

Percent 

cover 

(%) 

Largest 

patch 

index (%) 

Patch area (m2) 
Number 

of patches 
Shape index 

Mean nearest 

neighbour 

distance (m2) 

Clumpines

s index Min. Mean (± SE) Max. 

             

1983 55.81 13.74 225 14,878 ± 4886 318,600 87 1.39 ± 0.07 41.12 ± 1.91 0.67 

1988 47.82 14.21 225 7922 ± 2818 329,625 140 1.46 ± 0.07 37.50 ± 1.08 0.55 

1999 51.61 13.47 225 12,469 ± 4528 312,300 96 1.39 ± 0.08 38.05 ± 1.19 0.65 

2004 47.67 11.49 225 10,051 ± 3352 266,400 110 1.36 ± 0.07 40.39 ± 1.75 0.66 

2009 40.57 12.96 225 6580 ± 2468 300,600 143 1.33 ± 0.04 40.91 ± 1.54 0.66 

2016 37.66 10.9 225 5902 ± 2099 252,900 148 1.28 ± 0.04 43.66 ± 1.69 0.67 
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Table 5.B.2. Pearson correlation coefficients for correlations between environmental parameters (measured during the year of 

collection) and spatial pattern metrics calculated for the non-kelp benthic class, where bolded values indicate statistical 

significance (p-value < 0.05). See Table 5.1 for details regarding each environmental parameter. 

 Average temperature  Ice conditions  NAO index 
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PC -0.626 0.520 0.509 0.346 -0.045 0.293 0.391 -0.726 0.218 0.608 0.487 0.868 0.036 

LPI -0.465 0.382 -0.216 0.044 -0.173 0.629 0.685 -0.910 0.773 0.979 -0.059 0.345 -0.247 

MPA -0.564 0.681 0.738 0.595 0.184 0.048 0.210 -0.629 -0.083 0.397 0.594 0.789 0.168 

NP 0.534 -0.615 -0.811 -0.576 -0.281 -0.040 -0.215 0.476 0.182 -0.263 -0.532 -0.802 -0.101 

SI -0.483 -0.028 -0.239 -0.331 -0.453 0.761 0.712 -0.663 0.828 0.861 -0.039 0.641 -0.322 

MNND 0.275 0.170 0.319 0.387 0.140 -0.857 -0.930 0.445 -0.811 -0.737 0.401 -0.484 0.511 

CI 0.009 0.460 0.750 0.669 0.616 -0.636 -0.533 0.340 -0.893 -0.641 0.308 -0.136 0.221 

              

* PC: Percent cover, LPI: Largest patch index, MPA: Mean patch area, NP: Number of patches, SI: Shape index, MNND: 

Mean nearest neighbour distance, CI: Clumpiness index. 
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Table 5.B.3. Pearson correlation coefficients for correlations between environmental parameters (measured during the year prior 

to collection) and spatial pattern metrics calculated for the non-kelp benthic class, where bolded values indicate statistical 

significance (p-value < 0.05). See Table 5.1 for details regarding each environmental parameter. 

 Average temperature   Ice conditions  NAO index 
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PC 0.011 0.235 -0.498 -0.921 -0.673 -0.252 -0.128 -0.765 -0.195 -0.456 -0.284 0.563 0.472 0.257 -0.680 -0.576 

LPI 0.395 0.476 -0.068 -0.809 -0.507 0.191 -0.410 -0.825 -0.586 -0.161 -0.606 0.054 0.315 0.093 -0.687 -0.248 

MPA 0.059 0.089 -0.603 -0.718 -0.469 -0.333 0.212 -0.635 -0.211 -0.680 0.025 0.499 0.266 0.061 -0.464 -0.672 

NP -0.081 -0.124 0.512 0.574 0.443 0.263 -0.265 0.472 0.128 0.685 -0.092 -0.514 -0.259 0.016 0.452 0.766 

SI 0.022 0.547 0.012 -0.924 -0.809 0.135 -0.572 -0.722 -0.172 0.187 -0.849 0.390 0.684 0.487 -0.897 -0.183 

MNND -0.332 -0.854 -0.383 0.976 0.633 -0.533 0.393 0.421 0.310 -0.149 0.767 -0.128 -0.507 -0.170 0.897 0.365 

CI 0.103 -0.491 -0.281 0.697 0.473 -0.249 0.591 0.439 0.135 -0.597 0.853 -0.020 -0.452 -0.564 0.560 -0.360 

                 

* PC: Percent cover, LPI: Largest patch index, MPA: Mean patch area, NP: Number of patches, SI: Shape index, MNND: 

Mean nearest neighbour distance, CI: Clumpiness index. 
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Figure 5.B.1. Relationships between spatial pattern metrics calculated for the non-kelp 

benthic class and environmental parameters measured in the same years as the collections 

occurred. Only statistically significant correlations are shown (p<0.05, see Table B.2). 

Pearson correlation coefficient (r) is indicated for each correlation. NAO index refers to 

the North Atlantic Oscillation Index (see Section 5.3.3). 
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Figure 5.B.2. Relationships between spatial pattern metrics calculated for the non-kelp 

benthic class and environmental parameters measured in the year prior to each collection 

occurring. Only statistically significant correlations are shown (p<0.05, see Table B.3). 

Pearson correlation coefficient (r) is indicated for each correlation. NAO index refers to 

the North Atlantic Oscillation Index (see Section 5.3.3). 
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APPENDIX 5.C: Correlations between environmental parameters and spatial pattern metrics calculated for the kelp 

benthic cover class 

Table 5.C.1. Pearson correlation coefficients for correlations between environmental parameters (measured during the year of 

collection) and spatial pattern metrics calculated for the kelp benthic class, where bolded values indicate statistical significance (p-

value<0.05). See Table 5.1 for details regarding each environmental parameter.  
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PC 0.626 -0.520 -0.509 -0.346 0.045 -0.293 -0.391 0.726 -0.218 -0.608 -0.487 -0.868 -0.036 

LPI 0.298 -0.091 -0.017 0.052 0.180 -0.500 -0.631 0.628 -0.551 -0.689 -0.139 -0.700 0.025 

MPA 0.687 -0.153 0.081 0.210 0.603 -0.632 -0.476 0.757 -0.724 -0.866 -0.234 -0.712 0.225 

NP -0.350 -0.183 -0.520 -0.504 -0.809 0.566 0.345 -0.566 0.840 0.761 0.050 0.342 -0.140 

SI 0.288 0.113 0.309 0.340 0.878 0.036 0.460 0.145 -0.243 -0.173 -0.351 0.035 -0.110 

MNND 0.223 0.130 0.761 0.483 0.616 -0.586 -0.373 0.509 -0.882 -0.744 0.300 0.126 0.329 

CI -0.283 0.589 0.818 0.672 0.461 -0.496 -0.483 0.145 -0.771 -0.440 0.415 0.052 0.113 

              

* PC: Percent cover, LPI: Largest patch index, MPA: Mean patch area, NP: Number of patches, SI: Shape index, MNND: Mean 

nearest neighbour distance, CI: Clumpiness index. 
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Table 5.C.2. Pearson correlation coefficients for correlations between environmental parameters (measured during the year prior 

to collection) and spatial pattern metrics calculated for the kelp benthic class, where bolded values indicate statistical significance 

(p-value<0.05). See Table 5.1 for details regarding each environmental parameter. 

 Average temperature   Ice conditions  NAO index 
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PC -0.011 -0.235 0.498 0.921 0.673 0.252 0.128 0.765 0.195 0.456 0.284 -0.563 -0.472 -0.257 0.680 0.576 

LPI -0.031 -0.582 0.144 0.981 0.646 -0.050 0.177 0.698 0.311 0.111 0.557 -0.313 -0.465 -0.395 0.775 0.325 

MPA 0.162 -0.224 0.270 0.813 0.877 0.170 0.743 0.854 0.022 -0.150 0.799 -0.590 -0.768 -0.603 0.816 0.109 

NP -0.296 0.170 -0.092 -0.592 -0.667 -0.115 -0.750 -0.707 0.007 0.508 -0.869 0.332 0.635 0.733 -0.589 0.359 

SI 0.664 0.651 0.371 -0.320 0.273 0.588 0.697 0.329 -0.474 -0.568 0.369 -0.379 -0.398 -0.681 -0.103 -0.729 

MNND -0.075 -0.177 -0.187 0.328 0.336 -0.179 0.722 0.500 0.209 -0.500 0.755 0.072 -0.330 -0.325 0.368 -0.424 

CI 0.060 -0.556 -0.403 0.672 0.236 -0.352 0.392 0.235 0.204 -0.592 0.692 0.202 -0.229 -0.455 0.383 -0.425 

                 

* PC: Percent cover, LPI: Largest patch index, MPA: Mean patch area, NP: Number of patches, SI: Shape index, MNND: Mean 

nearest neighbour distance, CI: Clumpiness index.   
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APPENDIX 5.D: Maps of the distribution of kelp and non-kelp benthic classes in the Mingan Archipelago 

 

Figure 5.D.1. Distribution of kelp and non-kelp benthic classes based on visual classification of aerial imagery acquired in 1983. 

 

 

Figure 5.D.2. Distribution of kelp and non-kelp benthic classes based on visual classification of aerial imagery acquired in 1988. 
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Figure 5.D.3. Distribution of kelp and non-kelp benthic classes based on visual classification of aerial imagery acquired in 1999. 

 

Figure 5.D.4. Distribution of kelp and non-kelp benthic classes based on visual classification of aerial imagery acquired in 2004. 
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Figure 5.D.5. Distribution of kelp and non-kelp benthic classes based on visual classification of aerial imagery acquired in 2009. 

 

 

Figure 5.D.6. Distribution of kelp and non-kelp benthic classes based on visual classification of aerial imagery acquired in 2016. 
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