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Abstract 

Data based methods are widely used in process industries for fault detection and 

diagnosis. Among the data-based methods multivariate statistical methods, for example, 

Principal Component Analysis (PCA), Projection to Latent Squares (PLS), and 

Independent Component Analysis (ICA) are most widely used methods. These methods 

in general are successful in detecting process fault, however, diagnosis of the root cause 

is always not very accurate. The primary goal of the thesis is to improve the fault 

diagnosis ability of PCA based methods. In PCA, each Principal Component (PC) is a 

linear combination of all the variables, therefore makes it difficult to identify the root 

cause from the violation of a PC. Sparse Principal Component Analysis (SPCA) is one 

version of PCA that gets a sparse description of the PCA loading matrix making it more 

suitable for fault diagnosis. The present research aims to devise novel strategies to find 

the sparse description of loading matrix, more aligned with process fault detection and 

diagnosis. The thesis also looks into improving the fault diagnosis of PCA using 

clustering methods. The entire thesis can be divided into three major tasks. 

First, a novel fault detection and diagnosis method is proposed based on the Sparse 

Principal Component Analysis (SPCA) approach. This approach incorporates a new 

criterion based on the Fault Detection Rates (FDRs) and False Alarm Rates (FARs) into 

Zou et al.’s (2006) SPCA algorithms. The objective here is to find appropriate the 

(Number of Non-Zero Loadings) NNZLs for SPCs that can result in low FARs and high 

FDRs. A comparison between PCA and four SPCA-based methodes for FDD using a 
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continuous stirred tank heater (CSTH) as a benchmark system is also carried out. The 

results indicate that shortcomings of the PCA can be overcome using the Sparse Principal 

Component Analysis (SPCA) that uses the novel NNZL criterion. The FDR-FAR SPCA 

approach gives the highest FDRs for the SPE statistic (93.8%). 

The second task focuses on developing statistical methods to decide on the non-zero 

elements of the loading elements of SPCA. Rather than using heuristics, the proposed 

methods use the distribution of the loading elements to decide if an element should be set 

to zero.  Two SPCA algorithms are proposed to find the NNZL and its position of each 

PC. The first algorithm is based on bootstrapping of the data, and the second approach is 

based Iterative Principal Component Analysis (IPCA). The proposed methods are 

implemented on a CSTH process to test the performance with PCA- and other SPCA-

based methods for fault detection and diagnosis. The results reveal that the approaches 

have superior performance in fault detection, as well as diagnosis of the root cause of 

fault. Both the Bootstrap-SPCA and Sparse-IPCA methods give the highest FDRs for 

fault 1 for the SPE statistic (99.3% and 95.76%, respectively) 

As the third task, this research combines the clustering (k-means) algorithm and PCA 

algorithm to improve the detection and diagnosis of the fault. PCA has the advantage of 

detecting the fault without the need for data labelling, while clustering is able to 

distinguish data from different fault groups into separate clusters. By combining these 

two algorithms we are able to have better detection and diagnosis of fault and eliminate 
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the need for data labelling. The performance of the proposed method is demonstrated in 

simulated and large-scale industrial case studies.  
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Chapter 1 

1. Introduction 

 

 

 

 

 

1.1. Background 

Regulations and requirements for product quality and process safety are being stricter day 

by day. Monitoring is a key to maintain quality and ensure safety. In general, process 

monitoring can be categorized into two distinct areas: fault detection and fault diagnosis. 

Fault detection serves to provide users with early warnings of process faults (e.g., 

operational errors), whereas fault diagnosis attempts to find their underlying reasons. 

Fault diagnosis is necessary to facilitate troubleshooting responses to the faults (Luo et 

al., 2017). 

Recently, several Multivariate Statistical Process Monitoring (MSPM) methods have 

drawn the interest of researchers and industry personnel in the process monitoring field. 

In particular, data-driven methods are drawing increased attention in relation to 

monitoring of complex chemical plants. In these environments, building sufficiently 

accurate, fundamental law-based mathematical models that include all relevant 

operational data can be challenging and time-consuming. 
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Although univariate statistical techniques are simple to implement, these methods cannot 

correctly distinguish between normal and abnormal changes, which significantly 

increases the number of false alarms. Furthermore, the necessity of separately monitoring 

each variable can easily overwhelm an operator and, hence, it is only possible to monitor 

a few quality variables using the univariate techniques. The multivariate statistical 

process monitoring (MSPM) techniques eliminate some of the limitations of the 

univariate techniques. The multivariate techniques can transform high-dimensional 

process data into lower dimensional space making it possible to monitor high 

dimensional process systems (Kourti and MacGregor, 1995; Bakdi & Kouadri, 2017; Ge 

et al., 2013; Alaei et al., 2013; Jiang et al., 2013). Most of the multivariate techniques are 

very successful in detection of fault. However, diagnosis of the root cause of the fault is 

usually not very precise. In a process system usually process variables are highly 

correlated due to material recycle, heat integration and feedback control. A fault 

originated at any particular location in the process plant quickly impacts many variables 

in the unit and makes diagnosis difficult. Therefore, the goal of this thesis is to improve 

the diagnosis ability of the commonly used fault detection diagnosis techniques, we 

specifically focus on principal component analysis (PCA). Nowadays, principal 

component analysis (PCA) has become the most commonly applied data-driven approach 

to monitor process plants. In highly correlated process data, the original data is projected 

to a feature space where variables, called principal components (PCs), are uncorrelated to 

each other. Usually only the first few PCs in the transformed domain is sufficient to 

express most of the variability in the data.  These transformed variables are linear 
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combinations of the original variables. Instead of monitoring the large dimensional 

variables it is possible to monitor the first few PCs in the transformed domain (Chiang et 

al., 2000). Interpreting outcomes for PCA-based monitoring methods can, however, 

prove challenging, especially with regard to fault diagnosis. This is because each of these 

PCs is a linear combination of all the original variables. Usually, weights of the variables 

to a PC, called loading vector, is used to determine the root cause of the variable.  

However, typically all the elements of the loading vector will be non-zero with several of 

them very close in the values.  Consequently, loading vector values are unable to provide 

sufficiently accurate information on what is causing the fault (Luo et al., 2017; Xie et al., 

2013). To overcome the problem, sparse principal component analysis (SPCA) has been 

proposed. In the SPCA a sparse structure of the loading matrix is obtained. In a loading 

vector several of the elements would be “0”, which makes it easier to diagnose the root 

cause of a fault by looking at the weights of a PC. However, most of these SPCA 

methods have been developed with a goal to have the sparsest structure, without an 

objective of fault detection and diagnosis. In this thesis we bring the focus of SPCA to 

fault detection and diagnosis and demonstrate the utility of the SPCA method in fault 

diagnosis. Subsequently we propose several SPCA algorithms to further improve the fault 

detection and diagnosis capabilities of PCA based methods.   

1.2. Objectives  

The goal of the thesis is to improve the fault detection and diagnosis capabilities of PCA 

based methods. We have taken two routes to achieve the better performance in fault 

detection and diagnosis: (i) through improving the performance of SPCA methods for 



4 

 

fault detection and diagnosis, and (ii) combining PCA with clustering algorithm. The 

main objectives set for the thesis are as follows: 

1. Improve the fault detection and diagnosis ability of the SPCA algorithm through 

calibration of the SPCA method for fault detection and diagnosis. We propose a new 

SPCA method called FDR-FAR SPCA where the sparse structure of the loading 

matrix of the SPCA algorithm were optimized for maximizing fault detection and 

diagnosis performance.  

2. Develop a method to find the distribution of the loading elements and use sound 

statistical basis to determine the “zero” and “non-zero” elements of the loading 

matrix. We propose two new SPCA algorithms that are based on bootstrap methods to 

calculate confidence intervals of the loadings.  

3. Compare the FDD performances of the benchmark SPCA namely, IS [index of 

sparseness], AV [Adjusted variance], NL [Normalization], and the proposed SPCA 

algorithms with the traditional PCA.  

4. Improve the fault diagnosis capabilities of PCA method by combining it with 

clustering algorithm. We propose a method by combining PCA with k-means 

clustering algorithm to detect and diagnose process faults. The proposed method also 

eliminates any need for pre-labelled normal and abnormal data typically needed for 

most machine learning methods. 

1.3. Thesis Structure  

This research is presented in a manuscript styled thesis which involves one published 

journal article and two submitted manuscripts. This thesis includes six chapters as 
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described below. Chapter 1 briefly explains the main aim of fault detection and diagnosis 

(FDD) as well as the benefits of using data-driven methods such as PCA, followed by the 

limitation of the traditional PCA and the motivations of the proposed SPCA approach and 

the objectives of this research. Chapter 2 introduces a comprehensive literature review 

related to various FDD approaches with their advantages and disadvantages. Chapter 3 

proposes a fault detection and diagnosis (FDD) method based on SPCA; in this approach, 

the number of non-zero loadings (NNZL) of SPCAs is selected based on both the false 

alarm rate (FAR) and the fault detection rate (FDR). The criterion is to have lower FAR 

and higher FDR. This was published in the Canadian Journal of chemical Engineering. 

Chapter 4 provides two new SPCA algorithms based on the bootstrap method to calculate 

confidence intervals of the loadings. Sparse principal component analysis using the 

bootstrap method is the subject matter of the second manuscript. This paper was 

published in Chemical Engineering Science. It went through the first review, currently 

undergoing a second round of review. In chapter 5, a fault detection and diagnosis 

method based on clustering (K-means) and principal component analysis (PCA) is 

proposed to detect and diagnose the root cause of the process faults. This paper is ready 

to be submitted. Finally, the summary of the outcomes of this thesis is covered and some 

future directions are provided in chapter 6.  

1.4. Software Used  

All calculations done in the thesis were done on Matlab platform. All the codes are 

written in Matlab for the proposed algorithms. We did extensive Matlab coding in custom 
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m-files as well as used built-in Matlab functions to carry out the calculations. The CSTH 

system built in Matlab Simulink to generate both the normal and faulty data sets.  

1.5. Authorship Statement 
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Chapter 2 

    Literature review 

 

 

 

 

 

 

In recent years, fault detection and diagnosis (FDD) have become important research 

topics in process industries because they can help to ensure normal operation, enhance 

process safety, and maintain product quality. FDD methods are mainly classified into two 

categories: model-based methods, which may be subdivided into qualitative and 

quantitative methods, and process history-based methods (Chiang et al., 2001; 

Venkatasubramanian et al., 2003b, 2003c). This chapter briefly discusses these methods. 

2.1. Quantitative Model-Based FDD Approaches 

2.1.1 The general procedure  

Quantitative model-based methods are based on a fundamental understanding of the 

physics underlying the process being studied. This is used to express the relationships 

between the inputs and outputs of the system using explicit mathematical equations, 

typically based on material- and energy-balance equations (first-principles models). 
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Current FDD approaches model the monitored system primarily using analytical 

redundancy (AR) (Willsky, 1976; Frank, 1990), and employ a mathematical model of the 

monitored system. The residual generator and residual evaluator are generally two 

modules in a model based FDD system. The measurements of the system are compared 

with the process model outputs and the differences are reported as residuals by the 

residual generator, which are received by the residual evaluator which makes decision 

about the faulty or normal state of the process (Isermann, 2005; Chow and Willsky, 

1984). Although the residual should equal zero under an ideal condition, noise, and 

modeling uncertainly in the industrial processes typically result in a non-zero residual 

even during a normal operation. In quantitative model-based tools, the most commonly 

used techniques include diagnostic observers, parity relations, Kalman filters, state-space 

models, input-output relationship, first-principal models, and frequency response models 

(Venkatasubramanian et al., 2003c). A number of papers have evaluated model-based 

FDD approaches (Frank, 1996; Gao et al., 2015; Gertler, 1991, 2015; Isermann, 1997, 

2006; Isermann and Balle, 1997; Katipamula and Brambley, 2005; Simani et al., 2003; 

Venkatasubramanian et al., 2003c). 

2.1.2 Observer-based FDD 

The observer-based FDD schemes function by decoupling the effects of the faults from 

disturbances and diagnosis is performed by combining analytical- and knowledge-based 

redundancy (Frank, 1990). These schemes use a bank of observers by the observer based 

FDD algorithms to generate residuals (Frank and Ding, 1997), each of which is sensitive 
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to a specific fault. Although Observers track the process closely, residuals from unknown 

inputs will be minimal during normal operating conditions. It is assumed that when a 

fault occurs, all observers that are insensitive to the fault will continue to generate small 

residual, whereas those sensitive to the fault will significantly deviate from their normal 

trends and produce residuals of large magnitudes. After these observers are designed for 

specific faults, fault isolation becomes easier; this observer-based methodology was 

successfully implemented by (Yoon and MacGregor, 2000) for a CSTR plant for detecting 

fault. 

Another way called unknown input observer (UIO) is used to remove the effect of 

disturbances. A bank of UIOs was used by (Sotomayor and Odloak, 2005) under model 

predictive control (MPC) to diagnose different types of faults in inputs, outputs, and model 

parameters. A technique was proposed by (Zarei and Poshtan, 2010) to design non-linear 

UIO, where the gain of the observer was estimated using an unscented transformation. 

2.1.3 Kalman filter and its variants 

In chemical industries, the Kalman filter (KF) is also used as a state estimator. A general 

procedure for Kalman filtering is to estimate all process states; then residuals can be 

evaluated to indicate the presence of a fault by comparing the estimated process states 

with their measured values (Benkouider et al., 2009, Chang and Chen, 1995, Hanlon and 

Maybeck ,2000; Arasaratnam & Haykin,2009; Hwang et al., 2009; Simani et al.,2000).  

However, classical KFs are not optimal when the system is non-linear and so the 

extended KF (EFK) and unscented KF (UKF) were developed. Using the Taylor series 

expansion, EKF linearizes the model, while UKF determines a set of sigma points and 
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transform each through the non-linear function to compute a Gaussian distribution from 

the transformed and weighted points (LaViola, 2003). The results obtained by these 

approaches indicate that UKF has better performance with highly non-linear system 

compared to the KF and EKF (Wan and Van Der Merwe, 2000). 

2.1.4 FDD using parity relations 

Examining parity equation relation came early as a common model based fault detection 

approach. It forms residuals as the difference between the system and model outputs, 

with the assumptions that there is no process uncertainty or modelling errors; the parity 

relations are linear, and the explicit model can explain all faults (Patton and Chen, 1991). 

However, it is difficult to build an explicit model, and noise causes uncertainty in the 

measurements, which may make the residuals non-zero. Several studies have investigated 

parity relation- or equation-based fault detection techniques (Patton and Chen, 1994; 

Gertler, 1997; Odendaal and Jones, 2014; Zhong et al., 2015). 

Parity relation-based fault detectors for multiple sensors generate residuals from a fully 

decoupled parity equation that is only sensitive to a particular sensor fault; the relations 

are used to estimate faults using a recursive least-squares method (Song and Zhang,2002; 

Chan et al.,2006). However, because the parity relation approach is only valid when 

operating conditions are approximately linear, it is difficult to apply this approach to 

batch or nonlinear processes where operating conditions continuously vary.  
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2.1.5 Limitations of model-based FDD 

The model based FDD approaches  use parameter estimation  wherein  unmeasurable 

process parameters and/or state variables are estimated to diagnose the fault (Isermann, 

1984). The parameters of the physical system under normal operating conditions are 

initially modelled  and compared to those  obtained from the on-line process 

measurements, with the assumption that any significant change from the former denotes a 

fault  (Isermann, 1997). The parameter estimation approach has been applied to detect 

faults in various situations (e.g., Che Mid and Dua, 2017) and has been combined with 

the parity relation-based approach for optimal fault detection (Höfling and Pfeufer 1994). 

However, this approach requires precise dynamic models that are difficult to obtain in 

large scale industrial processes and its diagnostic performance is complex and often 

misleading (Venkatasubramanian et al., 2003c). 

A list of review articles on the model based FDD methods can be found in the literature 

(Frank, 1996; Gao et al., 2015; Gertler, 1991; Isermann, 2006; Isermann and Balle, 1997; 

Katipamula and Brambley, 2005; Venkatasubramanian et al., 2003c). The elimination of 

costly hardware redundancy is the most important benefit of the model based FDD 

approaches. However, it is often difficult to obtain an explicit mathematical model of the 

system that is required to generate the residual for diagnosis purpose. Most approaches 

impractically assume the process to be linear, and typically some modelling error is 

present. These limitations drastically reduce the effectiveness of the model-based 
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approach and make it unsuitable for monitoring of large scale processes 

(Venkatasubramanian et al., 2003c). 

2.2. Qualitative Knowledge-Based FDD 

2.2.1 The general procedure 

In knowledge-based FDD, fundamental understanding of process dynamics is used to 

develop knowledge-based models and prior process knowledge is required to build the 

model. They are often computer-aided programs consisting of various logics and 

conditional reasoning (If-else) (Venkatasubramanian et al., 2003a). A number of related 

studies have applied knowledge based FDD approaches for fault diagnosis. Expert system, 

fault tree analysis (FTA), case-based reasoning (CBR), signed digraph (SDG), possible cause 

and effect graph (PCEG) and Bayesian network (BN) are the most common knowledge based 

FDD techniques. 

2.2.2 The expert systems 

Diagnosis of the fault and suggestion on how the human operator can handle the faulty 

state and bring the system to normal condition is the main purpose of the expert system 

(Chen and Modarres, 1992). For example, the CATDEX is a well-known approach that 

uses simple AND-OR decomposition strategy to diagnose the root cause of a fault in the 

fluid catalytic cracking unit (FCCU) (Venkatasubramanian and Chan, 1989). Although the 

expert system is used as a diagnostic technique with important benefits such as the 

simplicity of development and explanation of the provided solutions, they are not 

adaptable to new fault conditions. 
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2.2.3 Fault tree analysis 

Fault tree analysis (FTA) is a popular method for analyzing system reliability and risk 

analysis (Lee et al., 1985). It is a top-down deductive failure analysis that combines 

Boolean logic and lower-level events to analyze a fault in the system (Sklet, 2004). Basic 

events propagation up to top-events are described using logical "AND" and "OR" and the 

qualitative structure of a fault is analyzed using cut set analysis. The fewest events that 

lead to a top event (i.e., the minimal cut set) is used to diagnose the root cause of a fault 

(Woodward and Pitbaldo, 2010). Although FTA is easily implemented, it is generic in 

nature, cannot assess interdependency among the variables, and a perfect FT model is 

difficult to build due to complicated interdependency among the variables for large scale 

processes. Thus, this method it is hardly applied to diagnose a process fault. 

2.2.4 Signed diagraphs 

Signed digraphs (SDG) can also be used to represent the cause-effect relationship 

between the process variables or models (Iri et al., 1979). In SDG, each cause and effect 

node represent the steady state of a process variable and the directed arcs between them 

may be positive or negative. SDG is beneficial, as it is relatively easy to implement, and 

the causal information can readily be converted into rules. SDG can be obtained from the 

mathematical model of the process, the operational data, or the differential equation of 

the process model (Umeda et al., 1980). Conditional arcs have been used in SDG to 

improve the ability of diagnosis (Shiozaki et al., 1985) and a SDG modelling technique 

based on cross-correlation analysis of the process data and transfer entropy validated 
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using prior knowledge has been proposed (Yang et al., 2012). To overcome some of the 

limitations of SDG, the possible cause effect graph (PCEG) was developed, which is 

unrestricted and provides more explicit information about the states of a variable to 

achieve root cause diagnosis (Leung and Romagnoli, 2000; Wilcox and Himmelblau, 

1994a, 1994b). Although the previous methods are easily implemented, they do not 

measure uncertainty in the diagnostic information. Since process measurements are 

extremely noisy and diagnosis involves compiling this noisy uncertain evidence to reach 

a conclusion, the diagnostic tool needs to be robust. 

2.2.5 Bayesian network 

Bayesian belief networks (BBNs) can overcome some of these limitations and their use 

as a fault diagnosis tools has been comprehensively reviewed elsewhere (Guo and Hsu, 

2002; Weber et al., 2012).  

A Bayesian belief network (BBN) is a graphical model that represents the probabilistic 

relationships between variables. Specifically, the conditional dependence between 

random variables is calculated using a conditional probability table. These relationships 

are depicted in directed acyclic graphs (DAGs), the nodes of which represent random 

variables and the edges represent dependencies/independencies, which are calculated 

using a conditional probability table (Neapolitan and Jiang, 2010; Neapolitan, 2004). 

In FDD, BBNs are used to diagnose the root cause of abnormal conditions and have been 

employed in a number of studies (Azhdari and Mehranbod, 2010; Dey and Stori, 2005; 

Mehranbod et al. 2003, 2005; Zerrouki and Smadi, 2017; Wilson and Huzurbazar, 2007). 

BBN are developed from the process knowledge of the system and although they can 
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successfully diagnose known faults, they assume that faults do not occur simultaneously. 

Regardless, BBNs have been used to combine various fault detection and diagnosis 

methods (e.g., Huang, 2008). 

2.3. History-Based FDD Approaches 

2.3.1 The general procedure 

With the expanding complexity of modern process, data-based methods are being 

increasingly popular. These are also known as process history-based methods because 

they train the monitoring scheme to extract features using a large amount of historical 

process data. According to the extraction process, history based FDD approaches are 

divided into quantitative and qualitative methods. Methods that depend on qualitative 

information include expert systems and qualitative trend analysis (QTA) whereas 

quantitative methods include neural networks and statistically derived models, such as 

those based on principal component analysis (PCA) and partial least squares (PLS) 

(Venkatasubramanian et al., 2003b). History-based methods also contain both univariate 

and multivariate methods. Univariate techniques include the x̅ chart, Exponentially 

Weighted Moving Average (EWMA) control chart, and Cumulative Sum (CUSUM) 

control chart. 

2.3.2 Univariate control charts 

Originally proposed by Shewhart (1930), the x̅ chart is the most widely used univariate 

control chart. Samples that exceed the upper control limit (UCL) or lower control limit 
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(LCL) – which are typically calculated as three standard deviations from the mean 

(μ±3σ), are identified as faults.  

Cumulative sum (CUSUM) is another statistical procedure for monitoring stable 

univariate processes (Woodward & Goldsmith, 1964), wherein the variables are 

compared to a predetermined reference value, and the cumulative sum of their deviations 

from this value is calculated. A change in the mean level of the variables is evidenced if 

the cumulation reaches or exceeds a predetermined decision interval. The exponentially 

weighted moving average (EWMA) chart is another univariate monitoring technique that 

can quickly detect small and moderate shifts in a process over time (Roberts ,1959). 

Univariate monitoring approaches such as CUSUM and EWMA are very simple to 

implement compared to multivariate techniques; however, they are more expensive and 

highly based on the tuning parameter (Montgomery &Runger, 2010). Also, a separate 

control chart is required to monitor each variable, making the system more complicated 

and it is therefore impractical to monitor all the process variables in a system. Although 

univariate statistical techniques are simple to implement, they cannot distinguish between 

normal and abnormal changes which significantly increases the number of false alarms. 

Furthermore, the necessity of separately monitoring each variable can easily overwhelm 

an operator and, hence, it is only possible to monitor a few quality variables using 

univariate techniques (Kourti and MacGregor, 1995).  
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2.3.3 Multivariate control charts 

Compared to the univariate analysis, multivariate statistical process monitoring (MSPM) 

techniques eliminate some of these limitations. Two statistical indices are typically used, 

Hotelling’sT2 and squared prediction error (SPE), which represent the process data in a 

lower dimensional space and reduce the monitoring cost. Another important feature of 

MSPMs is that they capture the correlations among process variables, thus reducing false 

alarms when operating condition changes.  

2.3.4 Techniques for dimension reduction 

Dimensionality reduction techniques, such as principal component analysis (PCA), 

partial least squares (PLS), independent component analysis (ICA), and Fisher’s 

discriminant analysis (FDA), can improve the efficiency of FDD. PCA, in particular, has 

been commonly applied for monitoring multivariate processes because it transforms 

higher dimensional data onto lower dimensional representation with the most variance of 

the original data (Luo et al.,2014). In the following section we provide brief discussions 

on PCA and its variants. 

2.4 Principal component analysis 

2.4.1 The approach, general procedure, and limitations 

In general, PCA aims to project the variables onto the principal component space and 

derives a new set of variables known as the principal components (PCs) (Dunia et al., 

1996). The PCs are ordered based on the amount of variance; the most variance is the 
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first PC, the second most variance is the second PC, and so forth. In PCA-based process 

monitoring, Hotelling’sT2 and squared prediction error (SPE) are commonly used to 

detect process abnormalities. The distance between the sample space and center of the 

feature space can be estimated by Hotelling’sT2 while SPE is used as indicator of the lack 

of goodness of fit of sample data from the residual space. On-line samples that violate the 

threshold of Hotelling’sT2 or SPE are detected as faults. To diagnose the fault, the 

multivariate contribution plots of every variable to T2 and SPE statistics are used to 

identify the root-cause variable, which indicates that the variable has the maximum 

contribution is the responsible causing fault. However, it is not always the variable with 

the highest contribution is the correct the root cause of the fault. Thus, the diagnosis task 

will be incomplete and complex (Joe Qin, 2003; Xie et al.,2013). Furthermore, it is 

important to select the appropriate number of PCs to represent the system, because an 

insufficient amount will generate a poor model that incompletely represents the process 

and an excessive amount will result in an over-parameterized model and include noise 

(Valle et al.,1999). PCA is able to provide the best solution if process data follow a 

Gaussian distribution (Rhoads and Montgomery, 1996) and this technique assumes that a 

monitored process behaves linearly. A number of variants of the PCA method have been 

developed to achieve different needs for process monitoring as shown in Table 2.1. 

Table 2.1: Summary of the relevant literature review of using PCA. 

Reference Methodology Critical Analysis 

& Classification 

Application and Result 

(Dunia and -Principal 

component 

-Assesses the 

adequacy of SPE as 

-The proposed approach was tested using 

data from a simulated process plant where 
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Qin. 1998) analysis (PCA) an indicator for fault 

detection 

two separation columns are used to obtain 

three different products. 

 

(Kassidas et 

al.,1998) 

-Principal 

component 

analysis (PCA) 

-PCA was 

incorporated into the 

feature extraction 

stage  

-The method was tested on data simulated 

using the TEP and was implemented off-

line under the assumption that the control 

system will react to a fault and drive the 

plant to a new steady-state condition. 

-This may not be true for faults which will 

cause a plant shutdown 

(Chiang et 

al.,2000)  

-Principal 

component 

analysis (PCA) 

- Discriminant 

partial least 

squares 

(DPLS). 

- Fisher’s 
discriminant 

analysis (FDA) 

-Develops an 

information criterion 

to automatically 

determine the order 

of the dimensionality 

reduction for FDA, 

DPLS and PCA 

 

-These techniques were applied to simulated 

data collected from the Tennessee Eastman 

process (TEP) 

- FDA and PLS are better dimensionality 

reduction techniques than PCA analysis for 

fault diagnosis 

(Wang et al., 

2002) 

-Principal 

component 

analysis 

(PCA) 

- Critical fault 

magnitude (CFM) 

was introduced as a 

new performance 

index for PCA, 

providing insight 

into the root causes 

of faults 

-A simulated double-effective 

evaporator process was monitored to 

illustrate and verify the results 

(Lu et al., 

2003) 
-Principal 

Component and 

Wavelet 

Analysis 

for Multivariate 

Process 

-PCA-based methods 

were improved by 

extending the time-

domain process 

features into time-

frequency 

information, and their 

- The efficiency of the proposed process to 

monitor and diagnose faults was 

demonstrated using a three-tank system and 

data simulated using the TEP 

-The proposed method not only detected 

abnormal conditions, but also differentiated 
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Monitoring and 

Fault Diagnosis 
ability to process 

features for on-line 

process monitoring 

and fault diagnosis 

were compared using 

a similarity measure  

faults with similar time-domain 

characteristics 

(Joe Qin., 

2003) 

- Principal 

component 

analysis 

-PLS models were 

used for process 

monitoring in a 

similar manner to 

PCA models 

-The PLS models were tested in a polyester 

film process monitoring example with many 

variables 

-The difficulty of interpreting contribution 

plots when monitoring many variables is 

effectively overcome using multi-block 

analysis and hierarchical contribution plots.  

(Xiao and 

Wang., 2003) 

-Principal 

component 

analysis (PCA) 

-The Q-statistic and 

Square Prediction 

Error (SPE) as 

indexes of fault 

detection 

-The PCA method was modified to 

accommodate the characteristics of the air-

handling units (AHUs) and is a useful tool 

for process monitoring, fault detection and 

isolation in these systems 

(Srinivasan 

et al., 2004):  

-Principal 

component 

analysis 

(PCA) 

-Presents a two-step 

clustering method 

based on PCA that 

first classifies 

process states into 

modes 

corresponding to 

quasi steady states 

and transitions; 

then historical data 

is segmented into 

modes and 

transitions using a 

novel multivariate 

algorithm 

-The proficiency of the proposed 

method is demonstrated through 

extensive testing on a fluidized catalytic 

cracking unit and data simulated using 

the TEP 

(Wang and 

Xiao., 2006) 
Principal 

component 

- Two PCA models 

are developed 

corresponding to the 

heat balance and 

-A robust FDD detection strategy for typical 

air-handling units (AHUs) was proposed. 

-The results show that the PCA method 
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analysis (PCA) pressure-flow balance 

of the air-handling 

process, respectively. 

effectively and reliably diagnoses sensor 

faults while the outputs of the PCA model 

are more meaningful and understandable 

(Tamura and 

Tsujita et al., 

2007) 

principal 

components 

analysis (PCA) 

-Because the 

number of PCs 

differ depending on 

the number of 

faults, the Fault 

signal-to-noise ratio 

(Fault SNR) was 

proposed to 

determine the 

number of PCs that 

provide the 

maximum 

sensitivity in order 

to identify a sensor 

fault 

-Fault SNR was tested using data simulated 

using TEP, and easily determined the 

optimum number of PCs needed to identify 

a sensor fault 

(Kettunen et 

al., 2008) 

-Principal 

component 

analysis (PCA), 

partial least 

squares (PLS) 

and subspace 

model 

identification 

(SMI) 

-The closed-loop 

trained PCA, PLS 

and SMI monitoring 

methods were 

embedded in a MPC-

based control system. 

-The methods were tested using a heavy oil 

fractionator 

- The fault detection and fault compensation 

rates of the different fault tolerant control 

(FTC) system performed well with both the 

MPC and the set of PI controllers. 

-FTC systems are effective, fast and can 

identify different types of fault regardless of 

the control system used 

(Garcıa-

Alvarez.,2009

) 

- Principal 

component 

analysis (PCA) 

- A PCA model for 

detecting faults and 

the thresholds of the 

T2 and Q statistics 

were developed using 

data collected from 

the plant under 

normal conditions  

- The proposed approach was tested in a 

simulated water waste treatment plant 

(WWTP) based on the COST benchmark 

and performed well 

(Zanoli et - A new -Based on Clustering -FCC was tested on experimental data from 
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al.,2010)  approach to 

fault detection 

and isolation 

that combines 

Principal 

Component 

Analysis 

(PCA), 

Clustering and 

Pattern 

Recognition 

and Pattern 

Recognition Analysis 

(CPRA), the Fuzzy 

Faults Classifier 

(FFC) was proposed 

an IGCC (Integrated Gasification & 

Combined Cycle) section of an oil refinery 

plant and was effective at detecting and 

isolating faults while monitoring a 

compressor 

(Lubin et 

al.,2011) 

Principal 

component 

analysis (PCA) 

- Based on structural 

residuals, a novel 

multi-level approach 

is proposed to isolate 

complex faults 

-The proposed approach was applied to 18 

fault scenarios of the TEC process and the 

multi-level approach is advantageous for 

identifying complex faults compared to the 

traditional approach. 

(Yin et al. 

2012) 

-Principal 

component 

analysis (PCA), 

partial least 

squares (PLS), 

independent 

component 

analysis (ICA), 

fisher 

discriminant 

analysis 

(FDA), and 

subspace aided 

approach 

(SAP) 

-Multiple techniques 

were used to further 

study process 

monitoring and 

fault diagnosis 

(PM–FD) on large-

scale nonlinear 

dynamic industrial 

processes 

 

-The methods were tested using data 

generated by the TEP. 

(Wang et al., 

2015) 

-Principal 

component 

analysis (PCA) 

and partial least 

squares (PLS) 

-PCA was combined 

with PLS regression 

to reduce the 

dimensionality of the 

data and detect and 

-The proposed method was applied to data 

simulated using the TEP and successfully 

detected faults pertaining to individual 

process variables and units 
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regression  isolate faults. 

 

(Gajjar and  

Palazoglu., 

2016) 

- principal 

component 

analysis (PCA) 

-To allow the 

operator to constrict 

the root causes of a 

fault, a method was 

developed that 

applies a control limit 

to each PC 

-The proposed method was tested using data 

simulated using TEP, and had considerable 

higher fault detection rates relative to 

classic approaches 

(Ahmed et 

al.,2017) 

principal 

component 

analysis (PCA) 

PCA based 

methodology was 

developed to not only 

identify the fault 

variable but also 

estimate the path of 

fault propagation in 

the system 

-The proposed PCA model was applied to 

NGL fractionation process and quickly 

detected the fault variable without using 

fault detection indices that assume the 

variable with the highest variation is likely 

the fault variable 

 

 

 2.4.2 PCA variants for nonlinear processes 

For nonlinear processes, several approaches have been developed, including Kernel PCA 

(KPCA), which improves the dimensionality reduction performance (Choi et al., 2005; 

Choi and Lee, 2004; Lee et al., 2004). KPCA technique can efficiently select the number 

of PCs in high dimensional spaces that are correlated to the input space during minimal 

nonlinear mapping. However, since PCA still plays a key part in this technique, KPCA is 

unable to extract non-Gaussian features from the noisy process data. Unlike PCA, ICA 

retains the non-Gaussian features of the process (Yu et al.,2015), and Kernel ICA (KICA) 

has been proposed to relax the limitation of linear projection, which first use KPCA to 

perform Kernel whitening and centering on the mapped process data. Recently, the kernel 
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method has found increasing numbers of applications in the chemical industry (Schölkopf 

et al., 1998; Cho et al., 2005; Mika et al.,1999; Romdhanietal.,1999; Alcala and Qin. 

2010; Zhang and Qin., 2008; Lee et al.,2004; Wang and Yao., 2015).  

A Nonlinear Gaussian Belief Network (NLGBN) fault diagnosis technique has also been 

proposed for industrial processes that outperforms conventional nonlinear techniques 

such as KPCA, KICA, SPA, and Moving Window KPCA (Yu et al.,2015). The 

traditional PCA may lead to higher false alarm rate or miss detection rate due to highly 

time dependence in process data (Bakdi & Kouadri.2017). Therefore, the dynamic PCA 

(DPCA) method is used to detect the presence of disturbances as well as to isolate their 

sources (Ku et al., 1995). More details of DPCA can be found in (Russell et al.,2000; 

Rato & Reis.,2013; Huang and Yan. 2015). 

2.4.3 PCA variants for high dimensional data 

 Multi-block PCA (MBPCA) have also been developed to block the appropriate process 

variables and limit the root cause of the faults in different systems, thus providing better 

diagnostic information than single PCA (Hong et al., 2014; Qin, 2001; Westerhuis et al., 

1998). Furthermore, because the interpretation of the normal changes in the process as 

faults when the process data often experience gradual deviation that may cause 

significant false alarms, the recursive PCA (RPCA) algorithm (Li et al., 2000; Elshenawy 

et al.,2010) and Moving Window PCA (MWPCA) method (Jeng, 2010) were developed 

to continuously update the monitoring model with time.  
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In order to make the PCA algorithm invariant to scaling, Iterative PCA (IPCA) was 

developed which uses standard deviation of the measurement error to scale the data set. 

Covariance of error matrix is calculated from the data by minimizing a log likelihood 

function. The method involves iteration to more accurately estimate the error covariance 

as well as the loading matrix, which gives it the name Iterative PCA (IPCA) (Imtiaz et 

al., 2004; Narasimhan & Shah, 2008). 

Some other variants are multi-way PCA (Nomikos and MacGregor, 1994; Abd Majid et 

al., 2011) and multi-scale PCA (Bakshi, 1998; Misra et al., 2002; Zhang et al., 1999; Lau 

et al.,2013; Sheriff et al., 2017) which were developed to monitor the multi dimensional 

data in batch processes.  

2.4.4 PCA variants for enhanced fault diagnosis 

The results of PCA are difficult to interpret the physical meaning of principal 

components being extracted because each PC is a linear combination of all original 

variables, instead of just among a few of them and loading vector elements typically are 

rated as nonzero. Another issue is that PCA essentially gives little to no support in 

instances of fault isolation (Xie et al.,2013). A number of solutions have been proposed 

to improve PCA interpretation issues (Qi et al.,2013; Ning et al., 2015; Adachi & 

Trendafilov ,2016; d’Aspremont et al.,2008; Witten  et al., 2008). 

For example, the PC rotation technique has been used to more specifically associate PCs 

with the original variables, although there is some question as to how many components 

should be rotated (Jolliffe, 1989). A thresholding method that resets PC loadings to zero 
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in cases where the absolute values are less than a predestinated limit has also been 

explored (Cadima and Jolliffe, 1995). Several normalization approaches used to rotate 

PCs to better interpret their components have been reviewed (Jolliffe,1995). The simplest 

involves overlooking (i.e., reducing to zero) the absolute value of the component loadings 

that fall below a certain threshold. All of these led to the approach known as the sparse 

PCA. 

2.4.5 Sparse PCA 

The essential sparseness of the PCs dictates the simplification of the instructor to improve 

interpretability (Trendafilov,2014). Another method, called the simplified component 

technique (SCoT), imposes a penalty function to encourage sparsity in PC loadings, and 

although it performed better than the rotated PCA, it is difficult to apply (Jolliffe & 

Uddin,2000). Finally, the SCoTLASSO method applies a least absolute shrinkage and 

selection operator (LASSO) constraint to the simplified component technique (SCoT) to 

reduce a portion of the components’ loadings until they reach zero, thus rendering them 

more attractive in variable selection (Jolliffe et al.,2003).  

Over the years, other methods were proposed for simplifying PCA interpretation to 

produce modified PCs with sparse loadings (Luo et al.,2017; Liu et al.,2017; Gajjar et 

al.,2016; Banerjee et al., 2008). DSPCA is one such algorithm that uses semi-definite 

programming (SDP) to obtain sparse PCA (D’Aspremont et al.,2005). The greedy sparse 

PCA (GSPCA) algorithm (Moghaddam et al.,2006), regression-type sparse PCA(SPCA) 

(Zou et al.,2006) method, and a normalized singular value decomposition (SVD) method 

(Shen and Huang,2008) have also been proposed to obtain sparse PCs. 
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The connection between SCoTLASSO and SPCA has also been introduced (Witten et 

al.,2009). A generalized power (GPower) algorithm that considers specific constraints 

(cardinality or LASSO) is currently the computationally fastest (Journée et al.,2010). In 

another approach, the difference of convex (DC) function was applied to PCA in what is 

known as the DC-PCA algorithm (Sriperumbudur et al.,2011). (Qi et al.2013) also 

proposed a novel SPCA method that replaces the norm position of the conventional 

eigenvalue problem with a ‘mixed-norm’, whereas (Xie et al.,2013) introduced a 

shrinking principal component analysis (ShPCA) method without information loss in 

PCs. Finally, (Yu et al., 2016) developed a robust, nonlinear, and sparse PCA (RNSPCA) 

technique and (Liu et al.,2015) demonstrated how their adaptive sparse PCA approach 

functioned much better than the classical PCA technique. 

The choice of the number of non-zero loadings (NNZL) for the principal component is 

another important consideration in terms of sparseness. In one approach, a genetic 

algorithm (GA) is utilized to determine the NNZL for the SPCs that would optimize the 

Index of Sparseness (IS) (Gajjar et al.,2017). In another method, if the degree of variance 

in SPC is maintained as the corresponding PC in ordinary PCA, the structure is chosen 

(Gajjar et al.,2018).  

In (Liu et al., 2018), the authors use a structured joint sparse principal component 

analysis (SJSPCA) method to develop a new type of fault detection and isolation 

technique as a means to enhance fault isolation. The proposed technique resulted in 

enhanced fault-isolation performance for both a gas flow fault from an industrial blast 
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furnace and a simulation example. (Zhai et al., 2020) presented the novel approach of 

Laplace sparse principal component analysis (LSPCA), which they achieve through the 

addition of the Laplace penalty term in SPCA. The proposed method was illustrated by a 

simulation example and a case study of a distillation process.  

2.5 Concluding remarks 

Many algorithms have been presented in the literature, and most studies have focused on 

the degree of sparseness and level of variance explained by PCs. While these are good 

indicators of performance, for FDD it is important to evaluate how well these algorithms 

perform when detecting and, especially, diagnosing a fault in a system. 

2.6 Bootstrapping technique  

One of the main drawbacks that should be mentioned here about the PCA algorithm is its 

descriptive nature. Because of this characteristic, no verifiable method exists that can be 

used to estimate the scores or PCs’ sampling variability, or the variance proportion 

explained by each PC. According to (Girshick, 1939; Tipping & Bishop,1999), PC-based 

asymptotic confidence intervals (CIs) that are analytically derived usually assume 

normally distributed data. 

Bootstrapping represents a method of resampling that was introduced by (Efron, 1979). 

In bootstrapping approach, the original dataset undergoes numerous realizations via 

resampling and replacement. Note that each resampled dataset retains the same 

dimensions (sizing) as the original one, but due to replacement, one data point could 

undergo several samplings whereas another one could be entirely left out of the dataset. 
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In this way, every new realization is different, even though they are all derived from the 

same original dataset.  

As an analytical asymptotic CI alternative (Diaconis & Efron, 1983) introduced 

bootstrap-based CIs intended for use in PCA results. A decade later, (Mehlman et al., 

1995) applied a small dataset in a novel bootstrap resampling method with the aim of 

providing CIs for eigenvector loading estimates. The new method demonstrated that this 

could happen via a reflection from eigenvectors for bootstrap samples, as a means to 

enhance the probability around accurately interpreting significant axes numbers. More 

recently, (Hall & Hosseini-Nasab, 2006) provided theoretical justification for applying 

bootstrap confidence regions in estimating functional PCA output sampling variability. 

At the same time, (Salibián-Barrera et al., 2006) employed bootstrap for a robust PCA 

process, where the authors used eigenvalue decomposition to estimate a population shape 

matrix, i.e., a population covariance matrix as a scaled version.  (Goldsmith et al., 2013) 

used bootstrap in functional PCA as a way to estimate confidence bands of underlying 

functions. In so doing, they took into account additional uncertainty within the PC 

decomposition.  

(Babamoradi et al., 2013) published a case study showing the steps for developing 

bootstrap confidence limits (CLs) for values of score and loading; they also applied their 

method to examine global score clusters using PCA, intending to boost the application of 

bootstrap in uncertainty estimations. A few years later, (Karoui & Purdom, 2016) tested 

bootstrap performance with simulations in PCA, examining the bootstrap properties 

through high dimensional covariance matrices’ spectral analysis. It is worth mentioning 
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that for high-dimension matrices, the data-generating process is not mimicked by 

bootstrapping. From this, it can be assumed that conventional bootstraps only function in 

low-dimensional problems. 

2.7 Supervised vs. Unsupervised learning methods  

Diagnosis of the root cause of a fault is essentially a classification problem. For 

classification, the type may be either supervised or unsupervised. For supervised 

classifications, well labeled historical data containing both normal and faulty data is 

utilized for training a model. The trained model is used to classify new measured data for 

fault diagnosis. The learning methods currently most popular are BN and ANN. 

Conversely, for the unsupervised learning approach, no previous knowledge of fault 

information, or labeled data is required. Examples of unsupervised learning strategies 

include PCA, PLS, control chart, k-means algorithm (Tidriri et al., 2016). 

Most data-driven strategies employ historical data to derive the mapping relationships of 

fault features and fault modes. However, in the majority of fault detection/diagnosis 

methods, the quality of the training data determines the performance (Yin et al., 2012). 

The main data driven techniques are principal component analysis (PCA), partial least 

squares (PLS), Independent Component Analysis (ICA), and Fisher Discriminant 

Analysis (FDA). These approaches are standard in process industries (Chiang et al., 

2000; Huang & Yan, 2015). More recently, machine learning techniques are gaining in 

popularity, such as support vector machine and artificial neural network. A major issue of 

the mentioned supervised approaches is that they need large training datasets that should 

include normal and abnormal data at different fault conditions. Process data tend to be 
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large and unlabeled, sourcing training datasets suitable for supervised learning methods 

often limits the supervised methods’ utility.  

A data partitioning technique often used for data mining is cluster analysis (CA). During 

the process of CA, sample datasets are divided, so that samples from one cluster group 

share more similarities with others in their own group than they do with samples from 

other groups (Li & Hu, 2018). CA enables the main operating variables which impact a 

system to be grouped (i.e., clustered). At its core, CA utilizes the distance between data 

points, and best applied in analyzing big complex data which feature a broad range of 

variables that are interrelated. In the classification and grouping process, CA designates 

as a cluster variable groups which have features that are alike. This form of clustering 

enhances the accuracy of the dataset behavior. Data clustering has been used to improve 

the fault detection and diagnosis performance of multivariate analysis. (Sebzalli & Wang, 

2001) utilized PCA to achieve dimension reduction and find operational zones in Fluid 

Catalytic Cracking (FCC) processes. This work was followed by another study, which 

employed a fuzzy c-means algorithm for validating PCA-obtained clusters and also to 

find the centers of the clusters (Srinivasan et al., 2004). The authors used clustering and 

PCA as a means for classifying dynamic system data into various related states and 

operational modes. To achieve this, the authors first reduced the data dimension using 

PCA and then applied the clustering algorithm to the resultant scores in order to find the 

modes and states. The system’s operational, i.e., transition state vs steady state, is found 

via the heuristic rule known as “dwelling time”. In this approach, when the system 

remains in a specific state longer than the so-called dwelling time, it is deemed to be in a 
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steady state. Then, when the state is determined, the data are segmented as various 

operational modes. The technique is validated by an FCC unit along with simulations 

performed using the Tennessee Eastman process. 

(Imtiaz et al., 2006) utilized a clustering algorithm as a means to find different 

operational zones in a data set from a pulp and paper mill. Such mills are typically 

characterized as having multiple product grades and frequent change-overs from product 

to product. The authors found that the clustering algorithm validated how basis weight (a 

core operating parameter) provided a useful indicator for classification of data as separate 

operational zones (i.e., clusters). Based on this finding, several PCA models were built 

for the clusters and then applied to sheet-break fault detection and diagnosis at the mill. 

A few years later, (Lam et al., 2008; 2009) utilized clustering and PCA for classifying 

days-of-the-year as clusters according to weather characteristics. The authors developed 

regression models from these climate data for predicting probable consumption of chiller 

system power. Similarly, (Li & Hu, 2018) proposed a novel technique for fault 

detection/diagnosis and estimation (FDD&E). The strategy combined PCA and density-

based clustering. More specifically, Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) is able to categorize data as clusters automatically, while also 

recognizing related operational conditions. The authors employed sub-PCA models in 

their work instead of just one PCA model so they could better characterize standard 

operating conditions. Their innovation improved the sensitivity as well as the reliability 

of fault detection/diagnosis efforts; it also enhanced the accuracy of the sensor fault 

estimation. The authors validated their method through field operation data gleaned from 
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a screw chiller plant. The data were applied across various sensor faults at different 

magnitudes, with the results indicating better sensor FDD&E in comparison with 

traditional PCA-based sensor FDD&E using single PCA models (Li & Hu, 2018). 

 (Du et al., 2017) tested a refrigeration compressor system firstly by classifying the data 

for the test as clusters and secondly by building PCA models of the individual clusters in 

order to detect sensor faults. The outcomes of the tests indicated substantial increases in 

detection levels of the sensor faults for sub-PCA models. (Zanoli et al., 2010) also 

presented a fault detection technique, which incorporated an isolation strategy using 

clustering and PCA. It also used pattern recognition analysis. The authors applied their 

novel approach to data acquired from an oil refinery (the Integrated Gasification & 

Combined Cycle section) to monitor the compression process. 

More recently, k-nearest neighbor (kNN) has been applied in fault detection efforts, with 

some success. In a study by (He et al., 2010), the authors employed a PC-kNN approach 

that hosts original data within a PC subspace. Then, to build the fault detection model, the 

kNN rule is included in the score matrix. This technique brings a substantial reduction in 

both storage space and time (He et al., 2010).  A few years later, (Guo et al., 2014) 

proposed a novel approach to process-monitoring known as FS-kNN. In this method, data 

samples are projected onto feature space, from which the indicators squared prediction 

error (SPE) and principal components may be extracted. The indicators have the 

capability of capturing pertinent information about raw data, making the detection 

accuracy of FS-kNN better than that of PC-kNN. 
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From the above literature review, we can see that clustering algorithms and PCA can be 

used in combination in data mining and to delineate operational modes. We can also see 

from the review that PCA has carried out online fault detection and diagnosis, whereas 

clustering is mostly used for improving PCA model performance and to segment data as 

various operational modes. That being said, we are convinced that the clustering 

algorithm technique can do more, and that it can in fact be used for online fault detection 

and diagnosis by itself, without the assistance of another tool. Therefore, in the present 

work, we combine PCA with the k-means clustering algorithm, using PCA in the training 

of the clustering algorithm based on unlabeled data. After the training is finished, the k-

means clustering algorithm successfully performs online fault detection and diagnosis. 
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Chapter 3 

A new criterion for selection of non-zero loadings for sparse principal component 

analysis (SPCA) 

 

Abstract: Sparse Principal Component Analysis (SPCA) has recently emerged as an 

approach aimed at producing compact principal component loadings by suppressing 

spurious values and thus overcoming some limitations of the traditional Principal 

Component Analysis. This paper proposes a fault detection and diagnosis (FDD) method 

based on SPCA; in this approach, the number of non-zero loadings (NNZL) of SPCAs is 

selected based on both the false alarm rate (FAR) and the fault detection rate (FDR). The 

criterion is to have lower FAR and higher FDR. This new feature makes SPCA better 

suited for FDD, which is demonstrated by comparing its performance with that of three 

other methods for finding loadings. The overall FDD performances of both PCA and 

SPCA-based techniques are illustrated using the benchmark continuous stirred tank 

heater (CSTH) process. The results show that the PCs derived based on the proposed 

NNZL criterion has a better fault diagnosis ability. 

KEYWORDS 

false alarm rate, fault detection rate, principal component analysis, sparse principal 
component analysis 

3.1. Introduction  

Process monitoring has emerged as a necessary tool for ensuring process safety. Process 

monitoring consists of two main stages: fault detection and fault diagnosis. In 
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combination fault detection and diagnosis (FDD) work to ensure process safety, which 

results in a decrease in financial losses, fewer accidents, and fewer problems with 

equipment. Multivariate statistical process monitoring (MSPM) approaches are fast 

becoming popular in industry. MSPM is beneficial in that it requires marginal process 

knowledge and relies more on process data. As it is primarily data driven, MSPM is 

simple to implement and use. It is also ideal for highly advanced and complex industrial 

processes where either the knowledge base or mechanistic models are difficult to build. 

MSPM approaches such as principal component analysis (PCA) have proven highly 

successful across a number of applications. PCA presents a linear combination of the 

original variables of a super‐sized dataset and is mainly applied for process data 

dimension reduction and fault detection in different applications. However, interpretation 

of the outcomes of PCA‐dependent monitoring approaches can be incredibly difficult, 

particularly in fault diagnosis (Qin.,2012; Ge et al.,2013; Chen & Jiang., 2020; 

Venkatasubramanian.et al.,2003 b; Chen et al., 2018).  The difficulty arises mainly 

because the projection matrix (or loading) is usually dense. Each principal component 

(PC) is a combination of all variables. Therefore, the values of the loading vector do not 

give a definitive indication of the root cause of a fault (Chiang et al.,2000; Xie et 

al.,2013). 

Several studies have applied various techniques to deal with the interpretation of PCA 

issues (Ning et al., 2015; Qi et al., 2013; Liu et al., 2017; Adachi & Trendafilov.,2016; 

d’Aspremont et al.,2008; Witten et al.,2009). (Jolliffe., 1989) used the PC rotation 

technique to interpret the components with some drawbacks related to whether to rotate 
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some or all the components. In another review, (Jolliffe., 1995) discussed several 

normalization approaches that could be used to rotate PCs in order to better interpret the 

components.  

The simplest approach involves overlooking (ie, reducing to zero) the absolute value of 

the component loadings less than a certain threshold. In this way, the simplicity of the 

PCs’ and the ease of their interpretation are related to their essential sparseness (Cadima 

& Jolliffe.,1995; Trendafilov.,2014). The literature suggests additional approaches for 

enhancing PC interpretability by imposing more constraints. In these instances, PC 

loading sparsity can be achieved, but the variance is usually sacrificed. One such 

approach is the simplified component technique (SCoT), in which a penalty function 

encourages sparsity in PC loadings. Every component gained through SCoT is 

constrained as either orthogonal or uncorrelated to other components in order to achieve 

the required sparsity. (Jolliffe and Uddin.,2000) found SCoT showed much better results 

compared to rotated PCA with regard to the varimax factor (Kaiser., 1958). However, 

SCoT also suffers from some difficulty in application. The penalty function applied to the 

solution is problem-specific (ie, different penalty values are required for different cases; 

there is no one solution for all (Jolliffe & Uddin.,2000; Jolliffe et al.,2002). (Jolliffe et 

al.,2003) introduced an approach called the simplified component technique – LASSO 

(SCoTLASS) that includes a least absolute shrinkage and selection operator (LASSO) 

constraint on the SCoT. The constraint reduces a portion of the components’ loadings 

until they reach zero, thus rendering them more attractive in variable selection. 
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Over the years, various other techniques have been presented in the literature regarding 

ways to achieve the desired sparse loadings (Luo et al.,2017; Journée et al.,2010; Gajjar 

et al., 2016; Banerjee et al.,2008). (D’Aspremont et al.,2005) for example, discussed an 

algorithm called DSPCA, which uses semi-definite programming (SDP) to obtain sparse 

PCA. (Moghaddam et al.,2006) introduced a bi-directional greedy search method and 

named it the greedy sparse PCA (GSPCA) algorithm. (Shen and Huang.,2008) suggested 

that the sparse structure of PCs could be attained through a normalized SVD method. 

Accordingly, they implemented normalization penalties in order to encourage sparsity for 

PC loadings. In addition, these researchers pointed to the usefulness of cross-validation as 

well as imposing a more systematic tuning strategy in choosing sparsity levels. (Journée 

et al.,2010) introduced a generalized power (GPower) approach in order to handle sparse 

PCA through specific constraints (cardinality or LASSO) to obtain the desired sparse 

loading vectors. Regarding computational speed, GPower appears to be faster than all 

other currently used algorithms. (Sriperumbudur et al.,2011) debuted what they referred 

to a DC-PCA algorithm. This approach resolves sparse PCA by applying DC (difference 

of convex functions) programming. (Xie et al.,2013) introduced a shrinking principal 

component analysis (ShPCA) method. They showed how classical PCA can be modified 

such that all loadings would achieve simplified interpretation and nearly zero information 

loss in PCs. (Yu et al.,2016) developed a “robust, nonlinear, and sparse PCA”(RNSPCA) 

technique that extracts sparse PCA. The results showed that the detection performance of 

the SPCA method was better compared to traditional PCA. (Liu et al.,2015) showed how 

their adaptive sparse PCA approach functioned much better than the PCA technique. 
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Overall, the choice of the number of non-zero loadings (NNZL) for the principal 

component is important. (Gajjar et al.,2017) utilized a genetic algorithm (GA) to 

determine the NNZL for the SPCs that would optimize the Index of Sparseness (IS). 

(Gajjar et al.,18) highlighted another approach for choosing the number of non-zero 

loadings in SPCA, while keeping approximately the same degree of variance in the 

corresponding PC as in ordinary PCA. They found that the ideal amount of NNZL in PCs 

decreases if more constraints are introduced into SPCs to maintain at least 90% of the 

variance gains in corresponding PCs while keeping CPV above a particular cut-off point. 

Thus, the NNZL for one PC would vary, but the remainder of the PCs would remain the 

same. Overall, because SPCA is easier to interpret compared to PCA, its application 

potential is very high for FDD (Luo et al.,2017). Though many algorithms have appeared 

in literature, these mainly focus on the degree of sparseness and level of variance 

explained the by PCs. While these are good indicators of performance in the context of 

FDD, it is important to evaluate how well the algorithm performs in detecting a fault, and 

especially diagnosing the fault. False alarm rate (FAR) and fault detection rate (FDR) are 

two important performance indicators for FDD algorithms.  

The main contribution of this study is to develop an SPCA algorithm that delivers better 

FDD performance. Here, FDR and FAR criteria were combined with the LASSO 

technique for choosing the right NNZL in SPCs that provides high FDRs and low FARs. 

In addition, a comparison between PCA and four SPCA-based strategies is also provided 

with regard to FDD on the benchmark continuous stirred tank heater (CSTH) 

process. The remainder of the article is organized as follows: The preliminaries section 
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introduces PCA and SPCA concepts. FDD using PCA and SPCA, and LASSO SPCA 

with (FDR) and (FAR)are presented in Section 3.2. The benchmark process simulation 

case study (CSTH) is introduced next in Section 3.4. The complete results and discussion 

of the proposed sparse PCA and three SPCA methods compared to classical PCA are then 

presented in detail in the results and discussion section 3.5. Finally, the conclusions of 

this study are summarized in Section 3.6. 

3.2. Preliminaries 

3.2.1. Principal component analysis (PCA) 

 
PCA is a dimensionality reduction technique that converts a large set of correlated 

variables to a concise set of uncorrelated variables, called principal components that 

capture most of the variability of the original data. PCA is widely used in process 

industries for detecting process abnormalities. 

Consider an auto scaled data set 𝑋 ∈ 𝑅𝑛×𝑚 where n is the number of observations and m 

is the number of variables. In order to transform the data to PCA, singular value 

decomposition (SVD) is performed on the data set, which gives amxm set of projection 

vectors called loadingsPm×m = [P1P2… . . Pm]. The principal components 𝑇𝑛×𝑚 =[t1 t2… . . tm]are obtained as follows: 

                 𝑇 = 𝑋𝑃                                                                                                                            (3.1) 

The transformed variables T have the same dimension as the original set of variables. 

Interestingly, the first few variables of T capture most of the covariance information of 



68 

 

the data. Therefore, only the first PCs Tn×l = [t1 t2… . . tl], (l < m) are required to 

capture the information necessary for a concise representation of the data. More details 

about PCA and its implementations steps can be found elsewhere (Chiang et al.,2000; 

Yin et al.,2014; Bakshi.,1998; Mallick & Imtiaz.,2013). 

3.2.2. LASSO Sparse principal component analysis (SPCA) 

(Zou et al.,2006) used LASSO (elastic net) constraints on loadings in the PCA to obtain a 

sparse description of PCA. In this, the estimation of loading vectors A is formulated as a 

constrained regression problem. Suppose Am×l = [α1α2… . . αl] is the indicator variable 

for the non zero values of the loading matrix Plm×l = [P1  P2… . . Pl]. For any λ > 0, 

simultaneous estimates of the indicator matrix and loading matrix are calculated as 

follows (Gajjar et al.,2017).: 

    

      (𝐴̂, 𝑃̂) = 𝑎𝑟𝑔𝑚𝑖𝑛𝐴, 𝑃 ∑ ||𝑛𝑖=1 𝑥𝑖 − 𝐴𝑃𝑇𝑥𝑖||2 + 𝜆∑ ||𝑃𝑗||2𝑙𝑗=1                                          (3.2) 
Subject to ATA = Il×l 
For known n, indicator matrix is calculated as follows: 

(𝑃̂) = 𝑎𝑟𝑔𝑚𝑖𝑛𝐴, 𝑃 ∑‖𝑥𝑖 − 𝐴𝑃𝑇𝑥𝑖||2𝑛
𝑖=1 + 𝜆∑||𝑃𝑗||2𝑙

𝑗=1 + 𝜆1,𝑗∑||𝑃𝑗||1𝑙
𝑗=1                               (3.3) 

3.2.3. Index of sparseness (IS) 

The IS method defines a new indicator to select optimum NNZL structure. IS indicator is 

defined as follows (Trendafilov.,2014): 
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𝐼𝑆 = 𝑉𝑎𝑉𝑠𝑉𝑜2 ×≠𝑜𝑚𝑙                                                                                                                             (3.4) 
where 𝑉𝑎 is the adjusted variance, 𝑉𝑠 is the unadjusted variance, 𝑉𝑜 is the ordinary total 

variance, and ≠𝑜 indicates all the zero loadings for a specific SPCA loadings matrix. 

First, the LASSO algorithm creates ml combinations of the sparse loading matrices with 

different specifications of the NNZL by placing 'zeros' in the loading vectors. In the next 

step, the (IS) is calculated for each sparse loading matrix, the sparse loading set that gives 

the maximum (IS) can be selected as the optimal NNZL. 

3.2.4. Adjusted Variance (AV) 

Adjusted variance (AV) is another criterion to select the optimal structure from a set of 

sparse structures by substituting zeros in the loadings obtained from the LASSO 

algorithm. This will generate ml sets of sparse loading matrices that have different NNZL. 

Next, the AV is calculated for each sparse loading matrix and then compared to the 

corresponding PC for ordinary PCA. If the AV captured by SPC retains 90% of the 

variance explained by the corresponding PC in the regular PCA, then the structure is 

selected (Gajjar et al.,2018).  

3.2.5. Fault detection and diagnosis using PCA and SPCA 

 
In order to detect the fault, two statistics, including the squared prediction error (SPE) or 

Q statistic, and the T-squared statistic (T2), are calculated using the loading matrix, Pm×l = [P1P2… . . Pl].The SPE represents the Euclidean distance of the residuals in the 

residual space. SPE is calculated as follows: 𝑒𝑖 = (𝐼 − 𝑃𝑃𝑇)𝑥𝑖                                                                                                                          (3.5) 
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𝑄𝑖   𝑜𝑟  𝑆𝑃𝐸 = 𝑒𝑖𝑇𝑒𝑖                                                                                                                    (3.6) 
where ei is the residual vector and Pl = [P1 P2… . . Pl]contains first l loading vectors. The 

threshold for the SPE is given by: 

𝐽𝑡ℎ,𝑆𝑃𝐸 = 𝜃1 [𝐶𝛼√2𝜃2ℎ°2𝜃1 + 1 + 𝜃2ℎ°(ℎ°−1)𝜃12 ]1 ℎ°⁄                                                                          (3.7) 
where Cα indicates a normal deviate associated with 1-α percentile and 

𝜃𝑖 = ∑ (𝜆𝑖)2𝑚𝑗=𝑖+1      𝑖 = 1,2,3,   ℎ° = 1 − 2𝜃1𝜃33𝜃22  

While SPE detects the breakdown of correlation in the data, theT2 statistic is sensitive to 

any shift in the operating conditions. TheT2statisticis calculated as follows: 

𝑇2 = 𝑡𝑖Ʌ−1𝑡𝑖𝑇 = 𝑥𝑖𝑃𝑙Ʌ−1𝑃𝑙𝑇𝑥𝑖𝑇                                                                                                  (3.8) 
where Ʌ is a diagonal matrix that contains the largest eigenvaluesλi. 
Hotelling’sT2 follows a F- distribution and the threshold for the T2statistic at significance 

level is formulated as: 

𝐽𝑡ℎ,𝑇2 = 𝑙(𝑁2 − 1)𝑁(𝑁 − 𝑙) 𝐹𝛼(𝑙, 𝑁 − 𝑙)                                                                                               (3.9) 
For typical PCAs, PCs remain unassociated and have orthogonal loadings. However, 

sparse PCs (SPCs) are not necessarily uncorrelated in SPCAs, and sample covariance's 

can be altered to consider the correlation in the Hotelling’sT2measure for SPCA T2 as 

follows: 
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𝑇𝑆𝑃𝐶𝐴2 = 𝑡𝑖𝛾−1𝑡𝑖𝑇                                                                                                                         (3.10) 
where γ denotes a covariance matrix for SPC scores. 

Fault diagnosis is crucial in process monitoring, as determining the root cause of a fault is 

highly desirable. Contribution plots are commonly used for fault diagnosis along with 

PCA models, in which contributions of all process variables to the SPE or T2 statistics are 

calculated and plotted. The contribution of the ith variable to the SPE is as follows: 

𝑆𝑃𝐸𝑖𝑜𝑟  𝑄𝑖 = (𝑥𝑖 − 𝑥̂𝑖  )(𝑥𝑖 − 𝑥̂𝑖)𝑇       𝑜𝑟  𝑒𝑖2                                                                      (3.11) 
In chart form, the contribution of each variable is shown as a fraction of the total SPE 

given by SPEi SPE⁄ , while the contribution of a variable to Hotelling’sT2can be calculated 

using the following equation: 

𝑇𝑖2 = 𝑥𝑖𝑃𝑙Ʃ∗−1/2𝑃𝑙𝑇                                                                                                                   (3.12) 
wherexidenotes an ith observation vector, Pl indicates PC/SPC loadings, and Ʃ*represents 

a covariance matrix in PC/SPC scores. Again, the contribution of T2 to each variable is 

shown as a fraction in the plot (Gajjar et al.,2018; Kourti & MacGregor.,1995; Tong et 

al.,2013; Joe.,2003; Jiang et al.,2013). 

3.3. LASSO SPCA with FDR and FAR 

In the context of fault detection, two important criteria are the fault detection rate (FDR) 

and false alarm rate (FAR). Also, SPCA is a preferred option in fault diagnosis because 

of its concise description of PCs allows for the precise diagnosis of the root cause of a 

fault. In the proposed SPCA algorithm, FDR and FAR criteria have been combined with 
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the LASSO SPCA algorithm to determine the sparse loading matrix. Given a scaled 

normal (i.e., fault free) data set X ∈ Rn×m, SVD is first applied to the data matrix to 

obtain the loading. Based on any of the selection criteria (e.g., SCREE plot, eignvalues), 

the significant number of PCs (l) and the associated loading vectors  P ∈ Rm×lare selected 

(Yin et al.,2012; Valle et al.,1999; Garcia et al.,2009; Imtiaz et al.,2007). Following the 

selection of the loading vectors, a corresponding indicator matrix  A ∈ Rm×lis created 

wherein any non-zero values of the loadings are designated by '1'and small values of the 

loadings are denoted by '0'. From the initial indicator matrix, many replicates of A matrix 

are created by randomly substituting '0s' in the indicator matrix. In each loading vector, 

there must be at least one non-zero value; therefore, the maximum number of '0s' in each 

column of the indicator vector will be (m-l). Using these permutation rules, there can be ml sparse representations of the loading matrices and the corresponding indicator 

matrices. In the next stage, the loading vectors are adjusted for the assigned '0's. For each 

indicator matrix Am×l = [α1α2… . . αl], the corresponding loading vector is calculated 

using Equation (3.3), also restated below: 

(𝑃𝑗̂) = 𝑎𝑟𝑔𝑚𝑖𝑛𝐴, 𝑃 ∑ ‖𝑥𝑖 − 𝐴𝑃𝑇𝑥𝑖||2𝑛𝑖=1 + 𝜆∑ ||𝑃𝑗||2𝑙𝑗=1 + 𝜆1,𝑗∑ ||𝑃𝑗||1𝑙𝑗=1              (3.3) 
For comparative purposes, the average FDR and FAR are calculated for each sparse 

loading set. The step-by-step implementation of the algorithm is shown in Figure 3.1.  

This will result in mlsets of sparse loading matrices. From these large sets of loadings, 

the 'best' sparse set is selected using FDR and FAR criteria. If the calculated fault statistic 

is 𝐽 and the fault threshold isJth,then  f = 0 denotes a no-fault condition andf ≠ 0 denotes 
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a fault condition. Therefore, the fault detection rate (FDR) and false alarm rate (FAR) can 

be respectfully defined as (Kourti & MacGregor.,1995; Valle et al.,1999; Garcia et 

al.,2009; Lee et al.,2006; Zhou et al.,2010): 

𝐹𝐷𝑅 = (𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝐽 > 𝐽𝑡ℎ |𝑓 ≠ 0)𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑓 ≠ 0) × 100                                                           (3.13) 
and 

𝐹𝐴𝑅 = (𝑁𝑜. 𝑜𝑓𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝐽 > 𝐽𝑡ℎ |𝑓 = 0)𝑇𝑜𝑡𝑎𝑙𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑓 = 0) × 100                                                            (3.14) 
Ideally, the sparse loading set that gives the maximum FDR and minimum FAR should 

be selected for the monitoring system. In order to implement the strategy, data with 

different fault signatures are collected from the system. Using each set of sparse loadings, 

the FDR and FAR for each fault is calculated for the T2 and SPE statistics. 
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Figure 3. 1: Flow chart of the proposed process monitoring approach. 
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3.4. Case study: The continuous stirred tank heater (CSTH) 

The CSTH system is a commonly used benchmark process for investigation the 

performance of monitoring techniques. As seen in Figure 3.2, the CSTH system has both 

a cold and hot water feed which are mixed in the tank. The water in the tank is also 

heated using a steam heater. A temperature controller maintains the tank temperature by 

manipulating the steam valve and the tank level is controlled by a level controller 

Cascaded to a flow controller manipulating the cold water valve. 

 

Figure 3. 2 : The continuous stirred tank heater (CSTH) 

(Thornhill et al.,2008) developed a detailed Simulink model for the system. We used this 

benchmark CSTH model to evaluate the methodology proposed in the current study. The 

system was liberalized for the operating points as given in Table 3.1.   
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Table 3. 1: Operation conditions for the CSTH system 

Variable Number Name of the Variable Nominal Operating 
Conditions 

Unit 

1 Cold water flow rate 3.823 x 10-5 m3/sec 
2 Hot water flow rate 5.215x10-5 m3/sec 
3 Steam flow rate 6.053 mA 

4 Level 20.48 cm 
5 Temperature 42.52 oC 

 

Through the simulations, the system started without fault to generate a normal data set 

containing 2500 samples. Then, five faults were introduced into the simulation to collect 

the faulty data sets to be evaluated using the proposed and other standard methods. 

3.5. Results and discussion 

3.5.1. Benchmark methods 

From the classical version of PCA, three loading vectors were selected which 

cumulatively explained 85% of the total variance. As expected, the loading vectors are 

full; however, many small values that approached zero were present in the PCs. In order 

to develop the SPC, we used FDR and FAR-based criteria, which we call the FDR-FAR 

method. The proposed FDR-FAR is compared with three other existing algorithms, 

including the Index of Sparseness (IS), Adjusted Variance (AV), and Normalization (NL) 

methods. The first method creates all combinations of loading vectors by putting 'zeros' 

in the loading vectors and subsequently selecting the set of loading vectors that give the 

maximum IS using a genetic algorithm (Gajjar et al.,2017). The Adjusted Variance 

method focuses on the explained variances of the sparse loading. First, it creates multiple 

combinations of sparse loading vectors, then the explained variance of the sparse PCs is 

compared with the original non-zero PCs. The sparsest structure that also retains 90% of 
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the variance of the original PC is selected (Gajjar et al.,2018). The normalization NL 

method can be used for creating absolute values on component loadings under a specific 

threshold. In order to interpret loadings, they first need to be normalized, after which a 

threshold is selected as a means to eliminate non-contributing values (Cadima & 

Jolliffe.,1995; Trendafilov.,2014). Finally, we used the proposed FDR-FAR method for 

selecting the sparse structure. As the name suggests, the focus of the algorithm is on fault 

detection and false alarm. Application details of the method for the CSTH system are 

described in Section 3.5.2. 

3.5.2. SPCA model building using FDR and FAR 

In order to develop the Sparse Principal Component Analysis (SPCA) using the FDR and 

FAR criteria, we first apply PCA to obtain the loading for the system. The CSTH system 

has five variables and 85% of the variance was explained by the first three PCs, which 

were selected for the PCA model. Next, different loading values in the original vector 

were set to '0'to obtain a sparse structure. For CSTH system, there are 5 variables and 3 

loading vectors there will be 125 combinations (m=5,l=3,ml=125) of sparse loading sets 

assuming that any of these loading values could be a “0” value. The fault detection 

performance of each set was evaluated using FDR and FAR criteria. The faults of the 

CSTH system are described in Table 3.2.  

Table 3. 2: Process faults for the CSTH system 
Fault Number Fault Description Fault Type 

Fault 1 Step change in the hot water flow rate Disturbance Fault 
Fault 2 Cold water valve -fully open Actuator Fault 
Fault 3 Steam valve -fully open  Actuator Fault 
Fault 4 Level sensor Sensor Fault 
Fault 5 Temperature sensor Sensor Fault 
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For each fault, we calculated the FDR and FAR using theT2 and SPE statistics. In order to 

compare different sparse set average, FDR and FAR were calculated for each sparse 

loading set. Table 3.3 reports the top four performing sets.  

Table 3. 3:  Fault Detection Rates and False Alarm Rates (%) of faults for model building 

NNZL                  SPE                      T2 
Fault no. Spc1 Spc2 Spc3 FDR FAR FDR FAR 

1 1 2 1 91.9 5.9 50.5 2.5 
2 1 2 1 69.9 6.2 91.6 2.7 
3 1 2 1 96.1 7.2 No detection 
4 1 2 1 96.5 7.1 96.5 2.5 
5 1 2 1 95.6 7.5 53.4 2.4 
Average    90.0 6.7 58.4 2.0 

        
Fault no.    Spc1 Spc2 Spc3 FDR                 FAR         FDR   FAR          

1 1 3 1 91.9 2.6 30.7 2.5 
2 1 3 1 94.5 8.4 91.6 2.7 
3 1 3 1 96.1       4.9 No detection 
4 1 3 1 96.5      3.3 96.4 2.5 
5 1 3 1 95.6 3.0 56.8 2.5 
Average    94.9 4.4 55.1 2.0 

        

Fault no.    Spc1 Spc2 Spc3 FDR                 FAR         FDR   FAR          

1 1 3 2 91.6 4.4 97.2 10.3 
2 1 3 2 No detection 91.5 11.8 
3 1 3 2 96.1 6.3 No detection 
4 1 3 2 96.1       6.1 76.5 9.9 
5 1 3 2 95.7 6.5 34.3 7.6 
Average    76 4.7 60 7.9 

Fault no.    Spc1 Spc2 Spc3 FDR                  FAR         FDR   FAR          

1 1 2 2 92.5 4.6 97.1 10.1 
2 1 2 2 6.6 5 91.5 11.5 
3 1 2 2 96.1 6.5 No detection 
4 1 2 2 96.2         6.3 77 9.8 
5 1 2 2 95.6 6.6 34.7 7.4 
Average    77.4 5.8 60.1 7.8 

Note: The numbers in the SPC columns indicate the number of non-zeros in each SPC. 

 

It appears that the SPE results are more consistent throughout this analysis (see Table 

3.3). For the selection of the best loading set, we therefore focused on the SPE criteria. 
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Since FDR and FAR are interrelated, it is not always possible to obtain a set with high 

FDR and low FAR. As seen in Table 3, [1 3 1] has the highest FDR with marginally more 

FAR than the others. Therefore, we selected [1 3 1] as the optimal sparse structure for the 

monitoring model. The final structure of the SPCs are summarized in Table 3.4. 

Table 3. 4: Summary of SPCA methods (number of NNZL in each PC) 

Method 

 

NNZL 

SPC1 SPC2 SPC3 

Index of Sparseness (IS) 

Adjusted variance (AV) 

Normalization (NL) 

FDR-FAR 

3 

3 

3 

1 

2 

2 

2 

3 

1 

3 

1 

1 

 

3.5.3. Monitoring faults using SPCA algorithms 

Process abnormalities include sensor, actuator, and disturbance faults (MacGregor & 

Cinar.,2012). These different faults were introduced into the CSTH system and tested by 

PCA and the four different types of SPCA techniques mentioned above. The five faulty 

datasets are described in Table 3.2. The Classical PCA-based monitoring method was 

used for benchmarking purpose. In employing PCA and/or SPCA, Hotelling’sT2 and SPE 

charts were applied during process monitoring. Table 3.5 summarizes the outcomes for 

the selected fault detection performance for all SPCA and PCA methods for the five 

faults. 

As shown in Table 3.5, the FDR and FAR are computed for both the T2 and SPE statistics 

for the conventional PCA and SPCA methods. The mean of FDR of the SPE statistic of 

the conventional PCA is less than that of the other SPCA methods. Although the mean 
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FDR of the T2 statistic of the NL method is the highest at about 77.1%, the mean FAR of 

the SPE statistics is the highest (17.1%) with the lowest FDR performance. Both the IS 

and FDR-FAR SPCA approaches give the highest FDRs for the SPE statistic (93.4% and 

93.8%, respectively), but the FAR of the IS method is quite high (10.2%) compared to 

that of the FDR-FAR method (4.4%). These results clearly show that on average the 

proposed FDR-FAR SPCA method has superior performance compared to other SPCA 

methods. Next, we investigate the result more closely for a specific fault. 
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Table 3. 5: Fault detection results of PCA and SPCA methods for faults 

 Training Validation 

 SPE T
2
 SPE T

2
 

PCA FDR FAR FDR FAR FDR FAR FDR FAR          
Fault 1 47.8 4.0 97.8 7.0 42 6.1 99.0 11.8 

Fault 2 90.4 4.2 33.1 12.6 91.7 9.4 32.6 17.2 
Fault 3 96.1 5.8 No detection 95.5 10.6 18.9 16.4 
Fault 4 No detection No detection No detection 21.5 16.3 
Fault 5 95.7 5.8 No detection 94.8 11.2 33.7 16.5 

Mean 66 4.0 26.2 3.9 64.8 7.5 41.1 15.6 

IS method 
Fault 1 90.1 3.4 97.2 3.3 87.7 3.4 96.6 6.1 
Fault 2 94.0 16.1 No detection 94.8 17.9 No detection 
Fault 3 96.1 9.2 7.9 26.1 95.5 18.5 21.3 23.7 
Fault 4 96.5 13.4 16.3 35.5 94.2 19.5 22.3 23.5 
Fault 5 95.6 10.7 10.2 30 94.8 19.1 21.3 23.5 
Mean 94.5 10.6 26.3 20.4 93.4 15.7 34.0 17.5 

AV method 
Fault 1 90.8 5.1 97.2 1.0 91.1 8.7 96.6 3.8 
Fault 2 89.8 5.4 74.4 37.4 89.7 12.3 45.0 24.6 
Fault 3 94.6 5.6 No detection 94.8 13.1 31.2 23.0 
Fault 4 78.8 5.6 29.1 29.4 73.7 15.2 38.1 23.6 
Fault 5 95.6 5.5 No detection 94.8 13.0 29.6 22.9 
Mean 89.9 5.4 44.0 22.6 88.8 12.5 48.1 19.6 

NL method 
Fault 1 37.5 6.4 94.4 2.0 46.6 8.1 92.6 2.4 
Fault 2 91.5 10.8 90.1 2.0 89.9 9.8 91.5 3.2 
Fault 3 41.7 27.8 31.5 0.9 33.7 28.1 95.9 38.6 
Fault 4 96.5 9.2 96.4 1.1 94.2 .011  94.1 1.3 
Fault 5 95.6 29.7 No detection 95.4 28.9 11.6 40.3 
Mean 72.6 16.8 62.5 1.4 72.0 17.2 77.1 17.1 

FDR-FAR method 

Fault 1 91.9 2.6 30.8 2.5 91.6 3.5 35.1 2.3 
Fault 2 94.5 8.4 91.6 2.6 93.0 10.2 91.9 3.4 
Fault 3 96.1 4.9 No detection 95.6 5.3 No detection 
Fault 4 96.5 3.3 96.5 2.5 94.1 5.5 94.1 2.3 
Fault 5 95.6 3.0 56.8 2.5 94.8 2.9 56.3 2.6 
Mean 94.9 4.4 55.3 2.5 93.8 5.5 55.5 2.6 
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3.5.3.1. Case 1: Actuator fault (CW) 

An actuator fault was introduced to the cold water (CW) valve. Both T2 and SPE for the 

SPCA and PCA methods are shown in Figure 3.3. As can be seen in the figure, the SPE 

statistics for the standard PCA, IS, and AV approaches give nearly the same monitoring 

performance when compared for fault detection. The T2 plot for the PCA, the IS, and AV 

SPCA approaches are insensitive to faults. On the other hand, for NL and FDR-FAR 

methods, the faults were detected both in in the SPE plot as well as in the T2 plot. As 

illustrated in Figure 3.3, the NL and FDR-FAR SPCA methods show better FDR 

performance with approximately the same FARs.  

 

  

  

(B) 

(A) 
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Figure 3. 3 : Monitoring the squared prediction error (SPE) (left) and T2 (right) results of: 
A, principal component analysis (PCA); B, Index of Sparseness (IS); C, adjusted variance 
(AV); D, normalization (NL); and E, fault detection rate‐false alarm rate (FDR‐FAR) 
methods for detecting Fault 2. 

3.5.2. Fault diagnosis 

Fault diagnosis is mainly carried out by assessing the contribution of different variables 

to the SPE or to the relevant principal component (Jiang et al.,2013; MacGregor & 

Cinar.,2012). The diagnosis of faulty samples for the cold-water actuator fault simulated 

in the CSTH system using the FDR-FAR SPCA and four other methods (i.e., PCA, IS, 

AV, and NL) using each of these techniques is described below. 

(C) 

(D) 

(E) 
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3.5.2.1. Fault diagnosis using contribution plots. 

Contribution plots have been widely applied in the quest for fault diagnosis. Contribution 

plots can be developed from each process variable’s contribution to T2 and SPE statistics 

as soon as a fault is detected (Qin.,2012; Ge et al.,2013; MacGregor & Cinar.,2012). In 

Figure 3.4, variables ‘contributions to T2 and SPE with respect to faulty samples for the 

cold water actuator fault simulated in the CSTH system are presented. As can be seen in 

the SPE contributions plot for the PCA, IS, and NL methods, Variable 1 (CW flowrate) 

has the highest contribution and is diagnosed as the most likely reason for Fault 2. 

However, few other variables have contributions close to that of Variable 1 for these 

methods. The SPE statistics Variable 1 (CW flowrate) and Variable 4 (Level) in the AV 

method have almost equal contributions. Thus, the diagnosis is not very precise.  

In comparison to these methods, fault diagnosis by FDR-FAR is more precise. The FDR-

FAR method shows that Variable 1 is the only real faulty variable associated with Fault 

2. Diagnosis of the FDR-FAR method based on the T2 contribution plot (Figure 3.4) is 

also precise compared to other methods. Based on the T2contribution of the FDR-FAR 

and the traditional PCA approaches, Variable 4 is directly associated with the root cause 

of the fault. However, the IS and AV methods provide that Variable 2 has the largest 

contribution, which is not exactly the actual fault variable. The NL method shows that 

Variables 1 (CW flowrate) and Variable 4 (Level) have approximately the same 

contributions, Variables 1 is identified to be the root cause of fault 2 while Variable 4 is 

directly related to Variable 1. From these outcomes, although the FDR-FAR SPCA and 

conventional PCA approaches deliver comparable detection based on the T2 statistics, the 
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FDR-FAR method clearly offers superior fault diagnosis performance compared to other 

SPCA methods based on   SPE statistics.  

 

 
 

Figure 3. 4 : T2 (top) and squared prediction error (SPE) (bottom) contribution plots for 
sparse principal component analysis (SPCA) and principal component analysis (PCA) for 
Fault 2 
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3.5.2.2. Fault diagnosis using PCs 

In addition to contribution plots, faults can also be diagnosed by examining the 

contributions of individual variables to T2 and SPE, or to the PCs (MacGregor & 

Cinar.,2012). SPCA has the advantage of diagnosing the faulty variable precisely due to 

the sparse structure of the loadings, especially when a principal component is used for 

detecting the fault. In this section, we investigate the diagnosis performance of the 

proposed SPCA algorithm in relation to other SPCA and PCA methods. We consider a 

step-type disturbance fault in the hot water flow line of the CSTH system. 

Figure 5 depicts the PCs of the sparse and conventional PCA methods in relation to the 

fault. When scores breach the predetermined statistical limits (i. e., standard deviation), 

PCs can be applied to identify the reason for the abnormal operation. Figure 3.5A shows 

the third score PC exceeds the normal operational limits for PCA and the contribution 

plots for each variable reveal that Variable 2 (HW flowrate) has the maximum 

contribution to PC3. From this, it can be concluded that PCA accurately diagnoses the 

cause of the actuator fault. Figure 3.5B and 5C indicate that the third scores of both the 

AV and IS methods exceeded the normal operational limits. However, in the IS method, 

the detection of the fault is not very accurate, as can be seen from Figure 5B where the 

third score remains outside the threshold limits during normal operation. 
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Figure 3. 5 : Principal component (PC) models (score) (left) and contribution plots (right) 
of Fault 1 assessed using: A, PC analysis (PCA); B, Index of Sparseness (IS); C, adjusted 
variance (AV); D, normalization (NL), and E, fault detection rate‐false alarm rate 
(FDR‐FAR) methods. Note hot water (HW) flow is denoted by Variable 2 

 In the NL method (Figure3.5D) both PC2 and PC3 detect the fault. The contribution of 

PC2 comes from Variable 3 (steam flowrate) and Variable 5 (temperature), whereas the 

contribution of PC3 comes solely from Variable 2. Thus, the diagnosis results are not 

very precise. Finally, Figure 3.5E shows an obvious deviation for the second score using 

FDR-FAR approach. Thus, the second score correctly detects the fault. Furthermore, 

Variable 2 has the highest contribution to the second score. Therefore, the diagnosis is 

also correct. However, in the second score, the contribution of Variable 1 is very close to 

that of Variable 2, which confounds the diagnosis to some extent. 

3.6. Conclusion 

Identifying the NNZL for SPCA is a challenging task. We propose a new criterion to 

choose NNZL for SPCA based on FDR and FAR performance indicators. The proposed 

criterion makes SPCA better suited for fault detection and diagnosis (FDD). A 

comparative study was performed to assess the proposed technique against three 

established SPCA methods. The FDD abilities of these different SPCA methods along 

with conventional PCA were compared. The benchmark continuous stirred tank heater 

(E) 
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(CSTH) system was used as a case study to compare the methods. Overall, the results 

show that the proposed FDR-FAR SPCA method had a higher FDR and lower FAR 

relative to PCA and other SPCA approaches, and more accurately diagnosed faults 

compared to the other methods. However, the improved performance comes at the cost of 

more computation and requires faulty data set for calibration.  
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Chapter 4 

Sparse principal component analysis using bootstrap method 

 

Abstract: Sparse principal component analysis (SPCA) gives a sparse description of the 

loading matrix. In order to determine the “0” values in the loading matrix, often artificial 

thresholds are set on the loading values. To resolve these issues, two methods are 

proposed to calculate the confidence intervals of the loading values. The first method is 

based on a resampling technique, while the second method estimates the error variance of 

data to calculate confidence intervals of the loadings. The position and number of non-

zero loadings (NNZL) for the PCs are chosen based on a hypothesis test for “0”. Both 

methods lead to sparse structures of PCs. The fault detection and diagnosis performance 

of the proposed SPCA techniques are compared with the traditional PCA and Adjusted 

Variance (AV-SPCA) methods for the benchmark continuous stirred tank heater (CSTH) 

process. The outcomes indicate that the proposed approaches perform better than the 

traditional PCA, Adjusted Variance (AV-SPCA), Index of Sparseness (IS), and 

Normalization (NL) and benchmark SPCA (i.e., AV) method in fault detection and 

diagnosis. 

Keywords: principal component analysis (PCA), sparse principal component analysis 

(SPCA), confidence interval of loadings, iterative principal component analysis (IPCA) 

4.1. Introduction 

There are ever-increasing demands and regulations for process safety and production 

quality. In response, process monitoring, especially statistical process control has 

advanced in leaps and bounds in the last three decades. Several multivariate statistical 
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process monitoring (MSPM) approaches are attracting interest due to their ease of 

implementation in complex industrial processes. Principal component analysis (PCA) is 

one of the most commonly used multivariate techniques for data dimension reduction and 

process fault detection, and it is achieving impressive success rates in real-life 

applications (Qin, 2012; Ge et al., 2013; Luo et al., 2014; Venkatasubramanian et al., 

2003; Chiang et al., 2000). Although PCA is very successful for fault detection, diagnosis 

of a fault using PCA can be challenging. The difficulty arises because the loading vector 

elements being typically rated as nonzero, every principal component (PC) becomes a 

linear combination of most observed variables. These combinations indicate a relation 

among all variables, instead of just selected few. This wide-ranging relationship makes it 

challenging to interpret the physical meaning of any PC. PCA essentially gives little to no 

support in instances of fault isolation (Luo et al., 2016; Xie et al., 2013). As a remedy this 

issue, researchers have proposed some modifications to PCA (Ning et al., 2015; Tony et 

al., 2013; Liu et al., 2017; Adachi et al. 2016; d’Aspremont et al., 2008; Trendafilov, 

2014; Sriperumbudur and David, 2011). Jolliffe (1995) described some normalization 

techniques for the rotation of PCs that are more useful for interpreting the components 

than regular PCs. In related research, Cadima and Jolliffe, (1995) introduced a 

thresholding method that resets PC loadings to zero in cases where the absolute values 

are smaller than a predesignated limit. Jolliffe and Uddin, (2000) presented the simplified 

component technique (SCoT) as a means to determine linear combinations. These 

combinations were intended to maximize criteria for balancing variances and other 

measures .  The SCoT approach has resulted in better outcomes than rotated PCA when 
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considering the varimax factor (Kaiser , 1958), but it still has difficulties for certain 

applications. For instance, the penalty function is applied in solutions that are problem-

specific, i.e., solution from one application cannot be applied to another application 

(Jolliffe and Uddin, 2000; Jolliffe et al., 2002). Jolliffe et al. (2003) extended their work 

by introducing the least absolute shrinkage and selection operator (LASSO) and proposed 

SCoTLASSO. This method employs a LASSO penalty for PCA optimization problem 

loadings, which acts as a constraint on the SCoT. This constraint decreases a portion of 

components’ loadings down to be zero. A few other strategies for gaining the necessary 

sparse loadings are proposed in the literature (Banerjee et al., 2008; Gajjar et al., 2016; 

Shen et al.; 2013). D’Aspremont et al., (2005) introduced a direct technique for sparse 

PCA called DSCPA, which is an algorithm that employs semi-definite programming 

(SDP) in order to achieve sparse PCA. In other studies, Zou et al., (2006) developed a 

sparse PCA algorithm by first framing PCA in a regression optimization format and then 

applying the lasso limitation to regression coefficients. Moghaddam et al., (2006) detailed 

a bi-directional greedy search algorithm called “greedy sparse PCA” (GSPCA). The 

result was a range of sparse loading vectors. Shen and Huang, (2008) showed how sparse 

structure in PCs can be achieved by using a normalized SVD approach. The researchers 

used normalization penalties as a means to aid sparsity in PC loadings and also 

highlighted cross-validation’s relative usefulness as a systematic tuning method for 

sparsity levels. Witten et al., (2009) introduced a new technique that links ScoTLASS 

with SPCA to get the first PCs of ScoTLASS. Journée et al., (2010) investigated the 

GPower (generalized power) option for dealing with sparse PCA when specific 
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constraints such as LASSO or cardinality are a factor in attaining optimal sparse loading 

vectors. Qi et al., (2013) proposed a new SPCA approach to replace the norm position of 

the conventional eigenvalue problem with a ‘mixed-norm’. The iterative algorithm is 

used to obtain uncorrelated PCs (orthogonal loadings). Xie et al., (2013) presented 

shrinking principal component analysis (ShPCA) as a way to modify classical PCA to 

make all loadings attain near zero loss of information in PCs and for very simplified 

interpretation, both of which are achievable with this approach. In a similar work, Liu et 

al., (2015) developed an adaptive SPCA method that out-performed the traditional PCA 

strategy. Gajjar et al., (2017) applied genetic algorithms (GAs) to determine the correct 

non-zero loadings (NNZL) numbers for principal components. Specifically, the GAs 

formulated the NNZLs for every SPC, which maximized the Index of Sparseness (IS). 

Gajjar et al., (2018) introduced a technique that involved choosing several non-zero 

loadings for SPCA, with variances of more or less the same degree in corresponding PCs 

compared to traditional PCA. Moreover, as research has shown that SPCA has proven to 

be very easy to interpret when comparing with PCA, the application possibilities for 

SPCA are quite impressive, especially with regard to fault detection/diagnosis schemes. 

Although numerous algorithms are investigated and tested in the literature, they usually 

only look at degree of sparseness or level of variance in relation to PCs. While these 

factors can serve as excellent performance indicators for getting a sparse description, in 

an FDD context an algorithm’s performance regarding fault detection and diagnosis also 

needs to be considered. Also, researchers have ignored the distribution of the loading 

elements and threshold on the loading elements were applied using ad hoc methods.  
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In this paper, we focus on finding the distribution of the loading elements and apply the 

threshold to the loading elements based on statistical significance tests. We propose two 

new SPCA algorithms that are based on bootstrap methods to calculate confidence 

intervals of the loadings. Bootstrap methods have been used to find the distribution of 

PCA parameters (Babamoradi et al., 2013). However, in the context of SPCA 

bootstrapping was not applied. In this study we combine bootstrapping with SPCA to find 

the distribution of the loading elements. Subsequently statistical tests were carried out on 

each element to determine if the value is effectively zero. This study also compares the 

two proposed SPCA methods with classical PCA and several SPCA methods (i.e., AV-

SPCA, IS, and NL) in relation to fault detection/diagnosis for the continuous stirred tank 

heater (CSTH) benchmark process. The rest of the article is organized as follows: the 

preliminary section introduces PCA and SPCA concepts are introduced in section 4.2. 

The two proposed SPCA methods are presented in section 4.3. The benchmark process, 

the CSTH simulation case study, is introduced next in section 4.4. The complete results 

and discussions are presented in section 4.5. Finally, the conclusions of this study are 

summarized in section 4.6. 

4.2. Methods Description: 

4.2.1. Principal component analysis (PCA) 

Principal component analysis (PCA( describes a dimensionality reduction strategy used 

for converting correlated variables set into uncorrelated variables set. The converted 

variables (i.e., PCs) feature nearly all the original data’s variability. The main application 

of PCA in process industries is for detecting abnormalities in the processing. Consider n 



102 

 

observations in m measurement variables for the training data matrix 𝑋 ∈ 𝑅𝑛×𝑚; the 

loading vectors 𝑃𝑚×𝑚 = [𝑃1𝑃2… . . 𝑃𝑚] are obtained by applying singular value 

decomposition (SVD)    . In this case, the PCs(𝑇𝑛×𝑚) = [𝑡1 𝑡2… . . 𝑡𝑚]can be obtained as 

follows: 

𝑇 = 𝑋𝑃                                                                                                                                            (4.1) 

The first few PCs capture the most variance of the data. The first l 

PCs 𝑇𝑛×𝑙=[𝑡1 𝑡2… . . 𝑡𝑙], (𝑙 < 𝑚) that represents the major variance information of the 

original data is retained and used for projecting the data set. The loading matrix, P is 

usually a full matrix. Each of these transformed variables (i.e., PCs) is a linear 

combination of all the original variables, which makes it difficult to interpret the PCs. 

From a fault detection and diagnosis perspective, if a PC exceeds the threshold this gives 

an indication a fault has occurred. However, because the loading matrix is full, a PC 

cannot clearly indicate which is the root cause for fault. The whole motivation of SPCA 

is to have a sparse description of the loading matrix; this will help in interpreting the PCs 

as well as the diagnosis of the fault (Choi et al., 2004; Gajjar and Ahmet,2016; Bakshi, 

1998; Mallick et al.,2013; Imtiaz et al.,2007; Kourti and John,1995). 

4.2.2. Sparse Principal Component Analysis (SPCA) 

The SPCA algorithm proposed by Zou et al., (2006) is one of the most popular SPCA 

methods. The method utilizes LASSO (elastic net) constraints on the loadings 

(coefficients) of the PCA model to alter the PC loadings to sparse loadings. Assume that A𝑚×𝑙 = [α1α2… . . α𝑙] is the indicator variable for the non-zero values of the loading 

matrix P𝑙𝑚×𝑙 = [P1  P2… . . Pl].PCA is expressed as a regression problem as follows:  
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(𝐴̂, 𝑃̂) = 𝑎𝑟𝑔𝑚𝑖𝑛𝐴, 𝑃 ∑ ||𝑛𝑖=1 𝑥𝑖 − 𝐴𝑃𝑇𝑥𝑖|𝑃𝑗|2 + 𝜆∑ ||𝑃𝑗|𝑃𝑗|2𝑙𝑗=1                                     (4.2) 
subject to ATA = I𝑙×𝑙 
Now, in order to derive sparse regression coefficients (i.e., loadings), the LASSO penalty 

is combined to Eq. (2) as: 

(𝑃̂) = 𝑎𝑟𝑔𝑚𝑖𝑛𝐴, 𝑃 ∑ ‖𝑥𝑖 − 𝐴𝑃𝑇𝑥𝑖||2𝑛𝑖=1 + 𝜆∑ ||𝑃𝑗||2𝑙𝑗=1 + 𝜆1,𝑗∑ ||𝑃𝑗||1𝑙𝑗=1                   (4.3) 
The same λ can refer to every l component (λ > 0) and λ1,j indicate LASSO penalties for 

managing loadings (variables) sparsity across differing PCs. Eq. (4.3) can also be referred 

to as a sparsity criterion. In the equation, the strategy can be reduced to PCA, if there are 

no penalties (Gajjar et.,2017). 

4.3. Proposed SPCA methods 

The main hypothesis that we propose in this work is that the spurious loading elements in 

a loading vector arise due to the uncertainty in data or the measurement noise in the data. 

Assume that the noisy data matrix X is comprised of noise-free underlying variables, and 

measurement noise 𝜀 is given as follows: 

𝑋 = 𝑋̃ + 𝜀                                                                                                                       (4.4)                                                                       

𝑤ℎ𝑒𝑟𝑒 𝜀~𝑁(0, 𝜎2𝐼). 
If we have access to  𝑋 ̃ and the loading vectors are obtained from these noise-free 

variables, the spurious values in the loading matrix will be exactly “0”, resulting in a very 
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sparse description of the PCs. Thus, if we calculate the loading matrix from many 

realizations of the data set, the distribution loading elements should encompass the “0”, 

and clearly indicate the location of the “0” elements.  In the present study, we propose 

two methods to evaluate the sparse PCs. Both of these methods create several different 

sets of data to find the distribution of the loading elements, and thus loosely belong to the 

bootstrap method. The first method uses bootstrap resampling to create several 

realizations of the data set and we call it “Bootstrap-SPCA”. The second method adds 

different realizations of the noise to the noise-free data to create realizations of data. We 

used an algorithm called iterative principal component analysis (IPCA) to estimate the 

error covariance. Thus, we call the second method “Sparse-IPCA”. These two methods 

are described in the following sections. 

4.3.1. Bootstrap-SPCA 

Bootstrapping is a resampling method proposed by Efron et al., (1979). In bootstrapping 

several realizations of the data set are created from the original data set by resampling 

with replacement. The resampled data set will have the same size as the original data set. 

However, because of the replacement in one data set a data point may be sampled several 

times while another data point may be completely omitted from the data set. Thus, each 

of the newly created realizations will be different. Parameters are estimated from each 

realization (Efron et al., 1979; Wehrens et al.,2000). The distribution of the parameters 

can be estimated from the realizations of the parameters. Consider the scaled dataset 𝑋 ∈𝑅𝑛×𝑚, where n indicates the total number of observations and m denotes the total number 

of variables. From the data set, we create 100 realizations of the data set, [𝑋(1), 𝑋(2),
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𝑋(3), , ………… . , 𝑋(100)]. Each realization will have the same dimension 𝑛 × 𝑚 as the 

original data set. SVD is applied to each realization; this gives 100 sets of loading 

matrices,  [𝑃(1), 𝑃(2) ,   ………… . , 𝑃(100)] where superscript denotes the realization of 

the loading matrix. Each loading matrix has a dimension 𝑃(𝑘) ∈ 𝑅𝑚×𝑙, where l is the 

significant number of PCs selected using any suitable method (e.g., SCREE plot) (Valle 

et al.,1999; Jiang et al.,2013). These realizations of the loadings give the distribution 

information of the loading matrix. For example, consider an element of the loading 

matrix 𝑝𝑖𝑗(𝑘): there would be 100 realizations of the loading element 

[𝑝𝑖𝑗(1),  𝑝𝑖𝑗(2),  𝑝𝑖𝑗(3), ……… ,  𝑝𝑖𝑗(100)]. Assuming that the loading elements follow a Gaussian 

distribution, 𝑝𝑖𝑗 ~𝑁(𝑝̅𝑖𝑗 , 𝜎𝑝2)  a hypothesis test is performed on each element to 

determine if the loading element is significant or not. 

𝐻0:     𝑝𝑖𝑗 = 0;   𝑖𝑓   𝑝̅𝑖𝑗 − 𝑡𝑁−1,𝛼2   𝑠 ≤ 0 ≤ 𝑝̅𝑖𝑗 + 𝑡𝑁−1,𝛼2   𝑠 
𝐻1:     𝑝𝑖𝑗 ≠ 0;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

where N is the total number of samples, s is the calculated standard deviation and α is the 

significance level. If the hypothesis is accepted, the corresponding indicator, aij of the 

indicator matrix A is set to “0”; otherwise it will be “1”. This process is repeated for all 

elements of the loading matrix giving the sparsity indicator matrix 𝐴𝑚×𝑙 for the loading 

matrix. 

Keeping the indicator matrix A fixed, the corresponding sparse loading matrix can be 

calculated using Eq. (4.3) as below: 
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(𝑃̂) = 𝑎𝑟𝑔𝑚𝑖𝑛𝐴, 𝑃 ∑ ‖𝑥𝑖 − 𝐴𝑃𝑇𝑥𝑖||2𝑛𝑖=1 + 𝜆∑ ||𝑃𝑗||2𝑙𝑗=1 + 𝜆1,𝑗∑ ||𝑃𝑗||1𝑙𝑗=1             (4.3) 
Following the estimation, the sparse loading set is used to detect and diagnose the faults 

of the CSTH system. The complete monitoring steps are shown in Figure 4.1. 
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Figure 4. 1: Schematic Diagram Showing Bootstrap-SPCA method 
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4.3.2. Sparse - IPCA 

The proposed method is based on the IPCA algorithm proposed by Narasimhan and Shah, 

(2008). IPCA is a special algorithm that uses error covariance to scale the data matrix. 

Consider a case where the noise-free data matrix 𝑋̃ 𝑋 = 𝑋̃ + 𝜀         
where 𝜀~𝑁 (0, Ʃ𝜀) 
The IPCA algorithm iteratively estimates the error covariance matrix by maximizing the 

likelihood function as in Equation (4.5) 

𝑚𝑖𝑛⏟Σ𝜀  𝑁 𝑙𝑜𝑔|𝑃̂𝑟Σ𝜀𝑃̂𝑟𝑇| + ∑ 𝑟𝑖(𝑃̂𝑟Σ𝜀𝑃̂𝑟𝑇)−1𝑟𝑖𝑁𝑖=1                                                                       (4.5)                                          
where 𝑃̂𝑟comes from the loading matrix 𝑃 = [𝑝1 𝑝2…… 𝑝𝑙⏞        𝑃̂𝑙 |  𝑝𝑙+1  …… 𝑝𝑚⏞        𝑃̂𝑟 ]; and 𝑟𝑖 =
𝑃̂𝑟𝑥𝑖. Following the estimation of the error covariance matrix Σ𝜀, the data is scaled using 

the standard deviation of the error, L, where 𝐿𝐿𝑇 = Ʃ𝜀.  
Since the initial estimate of 𝑃̂𝑟  is not accurate as an arbitrary scaling or if/when no scaling 

has been applied, a new set of 𝑃̂𝑟 is calculated from the scaled data matrix. These steps 

are repeated for better estimation of error covariance and the loading matrix. Since the 

estimation method requires iterations, the method is called Iterative PCA or IPCA 

(Narasimhan and Shah, 2008; Imtiaz et al.,2004). 
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IPCA provides the loading matrix, as well as the noise covariance matrix that can be used 

to reconstruct the noise-free data 𝑋̂̃𝑠 = 𝑃𝑙 𝑃𝑙𝑇𝑋𝑠 , and 𝑋̂̃ = 𝐿𝑋̂̃𝑠. Using the estimated noise-

free variables and noise covariance information, several realizations of the data can be 

created as follows: 

   𝑋(𝑖) = 𝑋̂̃ + 𝐿𝜈𝑖                                                                                                (4.6) 

where 𝜈𝑖~𝑁(0, Σ𝜀). 
By changing 𝜈𝑖 we can create many realizations (i.e., 100 realizations) of the data matrix [𝑋(1), 𝑋(2), 𝑋(3), , ………… . , 𝑋(100)]. The rest of the steps are similar to the Bootstrap-

SPCA method. Briefly, it involves SVD of each of the realizations, hypothesis testing on 

each of the elements of the loading matrix to determine if the value is significant or not. 

This includes the estimation of the sparseness indicator matrix, A, and finally, evaluation 

of the sparse loading matrix by minimizing the LASSO objective function given in Eq. 

(4.3). The overall methodology is shown in Figure 4.2. 
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Figure 4. 2 : Schematic diagram showing Sparse- IPCA method 
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4.4. Case study: Continuous stirred tank heater (CSTH) 

We tested the proposed method extensively on a simulated CSTH system described in 

Thornhill et al., (2008). This is a simulated system, built based on an experimental set up 

at the University of Alberta. The model is very realistic; it uses the system parameters 

and operating conditions, including the noise characteristic obtained from the sensors. 

The CSTH system is a heating tank that continuously mixes cold water with hot water. 

The steam heater is used to heat up the water in the tank. The tank temperature is 

controlled by manipulating the steam valve. Also, a level controller cascaded to a flow 

controller maintains the tank level by manipulating the cold water valve. Figure 4.3 

illustrates the CSTH system. 

 

Figure 4. 3 : A schematic diagram of the continuous stirred tank heater (CSTH) 
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This benchmark CSTH system is used for the present study. The operating conditions for 

the system are given in Table 4.1. 

 

Table 4. 1: Operation conditions for the CSTH system 

Variable 
No. 

Process Variable Nominal Operating 
Conditions 

Unit 

1 Cold water flow rate 3.823 x 10-5 m3/sec 
2 Hot water flow rate 5.215x10-5 m3/sec 
3 Steam flow rate 6.053 mA 

4 Level 20.48 cm 
5 Temperature 42.52 oC 

 

4.5. Results and Discussion 

4.5.1. Confidence intervals of loading elements:  

As described in Section 4.3, we used two different methods: (i) Bootstrap-SPCA and (ii) 

Sparse - IPCA, to create the realizations of the data set. Subsequently, confidence 

intervals of the loading elements were calculated from the data sets.  

4.5.1.1. Confidence Interval using bootstrap-SPCA method 

Through sampling with replacement, 100 data sets were created. From these data sets the 

distributions of the loading elements were calculated following the procedure described 

in Section 4.3.1. The distributions of the loading elements are shown in Figure 4.4. The 

distributions clearly show that for the first two elements of PC1 “0” falls within ±3𝜎. As 

such, the value was set to “0”. Similarly, in PC2, the third element, and in PC3, the first 

element is insignificant. This gives the sparseness indicator matrix, 𝐴 =[0 0 11 1; 1 1 0 1 1; 0 1 1 1 1]𝑇. Keeping the A matrix fixed we calculated the loading 

matrix by minimizing the LASSO objective function (Eq. 4.3). Subsequently, keeping the 
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loading matrix A fixed, we recalculated the loading matrix by minimizing the LASSO 

objective function. The loading matrix was used for fault detection and diagnosis. 

 

 

Figure 4. 4 : Distribution of loading elements using bootstrap-SPCA method 

4.5.1.2. Confidence Interval using Sparse-IPCA method 

The IPCA algorithm was used to calculate the error covariance of the measurement noise 

of data, and to estimate the noise-free variables. Next, measurement noise was added to 

the estimated noise-free variables. By randomly selecting the measurement noise, 100 

realizations of the data set were created. From these 100 realizations, 100 sets of loadings 

were calculated. The distributions of the loading elements are shown in Figure 4.5. 
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Clearly, in PC1, the 1st and the 3rd elements are insignificant, in PC2 the 1st element, and 

in PC3 the 3rd, 4th, and 5th elements are insignificant. These elements were set to “0”, 

which gave the sparseness matrix,  𝐴 = [0 1 0 1 1; 0 1 1 1 1; 1 1 0 0 0]𝑇. Subsequently, the loading matrix was calculated 

and used for fault detection and diagnosis. 

 

Figure 4. 5 : Distribution of the loading elements using the Sparse-IPCA method. 
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4.5.2. Monitoring results for PCA and SPCA algorithms 

The fault detection performance is tested on five fault scenarios generated by the CSTH 

system. Two performance indices, FDR and FAR, are used to evaluate the fault detection 

performance of the proposed methods (Yin et al.,212; Luo et al.,2013). The results are 

compared with benchmark methods: traditional PCA, AV-SPCA, IS, and NL methods. 

The fault descriptions of the CSTH system are given in Table 4.2, and the comparison 

results are provided in Table 4.3. 

Table 4. 2: Fault scenarios for the CSTH system 

Fault No. Fault Description Type of Fault 

Fault 1 Step change in the hot water flow rate Disturbance Fault 
Fault 2 Cold water fully open valve Actuator Fault 
Fault 3 Steam fully open valve Actuator Fault 
Fault 4 Level sensor Sensor Fault 
Fault 5 Temperature sensor Sensor Fault 

The FDR and FAR from T2 and SPE statistics were calculated for each fault for the 

conventional PCA and SPCA methods using Equations 4.7 and 4.8 as shown below.  

𝐹𝐷𝑅 = (𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝐽 > 𝐽𝑡ℎ |𝑓 ≠ 0)𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑓 ≠ 0) × 100                                                           (4.7) 
And 

𝐹𝐴𝑅 = (𝑁𝑜. 𝑜𝑓𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝐽 > 𝐽𝑡ℎ |𝑓 = 0)𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑓 = 0) × 100                                                            (4.8) 
Where 𝐽 is the calculated fault statistic and f ≠ 0 denotes a fault condition, while Jth is 

the fault threshold and  f = 0 denotes a no-fault condition.                                                                       
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The SPE of the bootstrap-SPCA and Sparse-IPCA methods successfully detected the 

faults with over 90% FDR and the maximum FAR of 22%. Though the FAR was a little 

high for Fault 3 and Fault 4 for the proposed method, the FDR was also very high. 

Moreover, both the conventional PCA and AV- SPCA methods failed to detect Fault 4, 

whereas the proposed, IS, and NL methods detected the fault with over 90% FDR. The 

fault detection performance of the methods is further investigated in the T2 and SPE plots 

in Figures 4.6 to 4.8.   
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Table 4. 3: Fault Detection Rates and False Alarm Rates (%) results for 5 faults of PCA 
and SPCA methods 

 Training Validation 
       SPE   T2 SPE T2 

PCA FDR FAR FDR FAR FDR FAR FDR FAR 

Fault 1 47.8 4 97.8 7 42 6.1 99 11.8 
Fault 2 90.4 4.2 33.1 12.6 91.7 9.4 32.6 17.2 
Fault 3 96.1 5.8 No Detection 95.5 10.6 18.9 16.4 
Fault 4 No Detection  No Detection No Detection No Detection 
Fault 5 95.7 5.8 No Detection 94.8 11.2 33.7 16.5 

(Bootstrap-SPCA) method 
Fault 1 97.9 6.8 No Detection 99.3 14.3 No Detection 
Fault 2 94.3 8.2 91.5 2.1 94.9 22.5 91.9 2.1 
Fault 3 96.1 5.9 57 12.3 96.4 22.2 56.9 19.1 
Fault 4 96.5 3.6 96.5 2.3 94.1 6.8 93.7 3.7 
Fault 5 95.7 3.7 57.9 2.2 94.8 6.2 57 3.4 

         

(Sparse- IPCA) method 
Fault 1 96.9 3.06 74.1 14.3 95.76 5.8 77.9 19.1 
Fault 2 91.62 3.53 82.9 18.7 92.43 7.13 77.7 18.5 
Fault 3 93.54 13.26 No Detection 86.9 21.4 No Detection 
Fault 4 96.5 5.66 58.63 19.73 94.15 6.4 44.3 22 
Fault 5 95.7 4.2 90.72 16.13 94.85 7.1 88.2 24.4 

         

(AV-SPCA) method 
Fault 1 90.8 5.1 97.2 1 91.1 8.7 96.6 3.8 
Fault 2 89.8 5.4 74.4 37.4 89.7 12.3 45 24.6 
Fault 3 94.6 5.6 No detection 94.8 13.1 31.2 23 
Fault 4 78.8 5.6 No detection 73.7 15.2 38.1 23.6 
Fault 5 95.6 5.5 No detection 94.8 13 29.6 22.9 

IS method 
Fault 1 90.1 3.4 97.2 3.3 87.7 3.4 96.6 6.1 
Fault 2 94.0 16.1 No detection 94.8 17.9  No detection 
Fault 3 96.1 9.2 7.9 26.1 95.5 18.5      21.3 23.7 
Fault 4 96.5 13.4 16.3 35.5 94.2 19.5 22.3 23.5 
Fault 5 95.6 10.7 10.2 30.0 94.8 19.1 21.3 23.5 

NL method 
Fault 1 37.5 6.4 94.4 46.6 8.1 92.6 2.4 
Fault 2 91.5 10.8 90.1 89.9 9.8 91.5 3.2 
Fault 3 41.7 27.8 31.5 33.7 28.1 95.9 38.6 
Fault 4 96.5 9.2 96.4 94.2 11.0 94.1 1.3 
Fault 5 95.6 29.7 No detection 95.4 28.9 11.6 40.3 
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Fault 1: Disturbance Fault (hot water flow rate) 

In Fault 1, a step type disturbance was introduced to the hot water flow rate. Figure 4.6 

shows Hotelling’s T2 as well as SPE statistics charts. Figure 4.6 indicates T2 statistic for 

PCA, AV-SPCA, IS, and NL techniques detected the fault immediately with a high FDR. 

However, the SPE chart of the bootstrap-SPCA method detected the fault. The Sparse-

IPCA method detected the fault; however, the FAR was very high. Clearly, bootstrap-

SPCA and Sparse-IPCA has detection performance at par with PCA and AV-SPCA 

methods.  
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Figure 4. 6 : Monitoring the SPE (left) and T2(right) results of PCA, Bootstrap-SPCA, 
Sparse-IPCA, AV-SPCA, IS, and NL methods for detecting Fault 1. 
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Fault 2: Actuator fault (cold water valve) 

 A cold water valve fault presents the second scenario for faulty behavior in CSTH 

process. Due to the cold water fault in the CSTH process, both T2 and SPE for SPCA and 

PCA are shown in Figure 4.7. As seen in the figure, SPE statistics in the PCA, AV-

SPCA, IS, and NL approaches detected the faults with a low false alarm. Both T2 and 

SPE plots of the bootstrap-SPCA method detected the fault. The SPE plot of the Sparse-

IPCA method detected the fault. Only the SPE plot of the Sparse-IPCA method detected 

the fault.  Overall, the bootstrap-SPCA method showed the best performance in detecting 

the fault, and the T2 plot showed especially clear detection of the fault. 



121 

 

 

 

Figure 4. 7 : Monitoring the SPE (left) and T2(right) results of PCA, Bootstrap-SPCA, 
Sparse-IPCA, AV-SPCA, IS, and NL methods for detecting Fault 2. 
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Fault 4: Sensor fault (level) 

For the CSTH process, Fault 4 represents the level sensor fault. Figure 4.8 compares the 

T2and SPE in the SPCA and PCA. As can be seen from the figure, Fault 4 has been easily 

detected by the SPCA methods.  However, neither T2 nor SPE statistics of the 

conventional PCA were able to detect the fault. Among the SPCA methods, the 

bootstrap-SPCA and NL methods are able to detect the fault using both T2 and SPE with 

high FDR and low FAR. The results obtained by the SPE statistics show that bootstrap-

SPCA, Sparse- IPCA, IS, and NL methods have over 94% FDR, compared to 79% with 

the AV-SPCA method.  
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 Figure 4. 8 : Monitoring the SPE (left) and T2(right) results of PCA, Bootstrap-SPCA, 
Sparse-IPCA, AV-SPCA, IS, and NL methods for detecting Fault 4. 
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4.5.3. Fault diagnosis 

Although a broad range of diagnostic techniques can be applied to improve fault 

diagnosis performance, fault diagnosis using the limit violation of the PCs is the most 

relevant with respect to the SPCA method (Jiang et al.,2013). Below we discuss the fault 

diagnosis performance of the proposed methods using PCs and the SPE and 

T2contribution plots. 

4.5.3.1. Fault diagnosis with PCs 

The diagnosis performances of fault 1 (hot water disturbance) for the different methods 

are compared in Figure 4.9. Hot water flow rate (variable 2) is the root cause of the fault; 

however, because of its close relation with temperature, we also expect to see deviation in 

Outlet temperature (variable 5). 

 

(a) 
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(b) 

(c) 
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(e) 
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 Figure 4. 9 : PC models (score) (left) and contribution plots (right) of Fault 1 assessed 
using (a) PCA, (b) Bootstrap-SPCA, (c) Sparse-IPCA, (d) AV-SPCA, (e) IS, and (f) NL 
methods. Note hot water flow rate is denoted by Variable 2.  

 

Figure 4.9 (a) shows that the third PC score breaches the normal operational limits, 

variable 2 (hot water flow rate) has the maximum contribution in PC3. From this, PCA 

rightly diagnoses variable 2 (hot water flow rate) as the root cause for Fault 1. 

Additionally, Figure 4.9 (c) indicates that the first and second scores for the Sparse-IPCA 

method exceed the threshold, and variable 2 (hot water flow rate) makes the largest 

contribution in relation to the correct faulty variable. In the case of the AV-SPCA, the 

third score exceeds the normal limit and variable 2 shows the highest contribution. 

Additionally, Figure 4.9 (e) and 4.9 (f) depict that the third score of both the IS and NL 

methods breaching normal operational limits and variable 2 (hot water) shows the highest 

contribution. However, the IS method can clearly detect the fault, the PC3 styes outside 

the threshold limits during normal operation. Figure 4.9F shows that both PC2 and PC3 
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for the NL method detect the fault. To diagnosis the fault, Variable 3 (steam flow rate) 

and Variable 5 (temperature) have the maximum contribution related to PC2, whereas 

variable 2 (hot water) shows the maximum contribution in PC3. Therefore, the diagnosis 

outcomes are not very accurate. The figure also clearly shows the scores of the bootstrap-

SPCA method have small deviations for all PCs. However, they do not exceed the 

threshold.  

4.5.3.2 Fault diagnosis using contribution plots 

In addition to the PCs, T2 or SPE contribution charts are also widely used for fault 

diagnosis. Following the breach of the T2 or SPE control limits, variable contributions are 

examined to isolate the variable (or variables) responsible for the deviation. In fact, these 

variables can offer important information to diagnose the potential root cause of the 

abnormal behavior. For fault diagnosis, the contribution plots are popular techniques. The 

contributions of each variable to T2 and SPE statistics are plotted on a bar chart to 

diagnose the root cause of the fault (Joe,2003; MacGregor and Cinar ,2012; Raich and 

Cinar,1994).  

Fault 3: Steam actuator fault 

Figure 4.10 provides a comparative overview of the variables’ contributions to T2 and 

SPE in the PCA and various SPCA methods for faulty samples obtained from the steam 

actuator fault. The SPE contribution plots for the PCA and AV-SPCA methods point to 

variable 5 (outlet temperature) as the root cause for the fault, as the variable makes the 

greatest contribution. As can be seen in the figure, variable 2 (hot water flow rate) shows 
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maximum contributions for T2 in the PCA and AV-SPCA, NL, and IS approaches. Given 

the close association of variable 3 (steam flow rate) with outlet temperature and hot water 

flow, it can be inferred that the steam valve is the root cause. Thus, the PCA and AV-

SPCA methods only give an indication of the cause for the fault but do not give a direct 

diagnosis. For the bootstrap SPCA method, variable 5 (outlet temperature) and variable 3 

(steam flow rate) have the most contribution to the SPE and T2. Also, according to Fig 

10, variable 5 (outlet temperature) and variable 3 (steam flow rate) make greatest 

contributions in T2 for the NL method. Since between these two variables, steam valve is 

the cause and outlet temperature is the effect, it gives a more direct indication that 

variable 3 (steam flow rate) is the root cause.  The Sparse-IPCA technique provides the 

most definitive diagnosis, and variable 3 (steam flow rate) has the most contribution on 

both T2 and SPE, which clearly indicates that the steam flow rate is the root cause for 

Fault 3. 
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Figure 4. 10 : SPE (upper) and T2 (lower) contribution plots for PCA, Bootstrap-SPCA, 
Sparse-IPCA, AV-SPCA, IS, and NL methods for Fault 3. 

Fault 4: Level sensor fault  

As shown in Figure 4.11, hot water flow rate (Variable 2) appears to make the greatest 

contribution to T2 for the conventional PCA, AV-SPCA, and IS methods. The bootstrap-

SPCA, Sparse-IPCA, and NL approaches point towards cold water flow rate (variable 1) 

as the most contributing variable. Combining this information with the SPE contribution 

plots of the bootstrap-SPCA and Spars-IPCA approaches clearly point towards variable 4 

(level) as the root cause of the fault. These analyses indicate that the bootstrap-SPCA, 

Spars-IPCA, and NL strategies are more accurate in determining the underlying cause for 

Fault 4 than the traditional PCA and AV-SPCA approaches.  
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Figure 4. 11 : SPE (upper) and T2 (lower) contribution plots for PCA, Bootstrap-SPCA, 
Sparse-IPCA, AV-SPCA, IS, and NL methods for Fault 4. 
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4.6. Conclusion 

Two methods, namely, bootstrap-SPCA and Sparse-IPCA, have been proposed to 

produce PCs with sparse loadings. The proposed methods were implemented on a 

benchmark CSTH system. Performances of the proposed methods were compared with 

the traditional PCA, AV-SPCA, IS, and NL methods. The main contributions of the work 

are as follows: 

• Using resampling and the measurement error covariance matrix, the distributions 

of the loading elements were obtained. The distributions of the loading elements 

give more complete information about the loadings, and clearly show the 

elements which should be set to “0”. 

• The proposed methods showed better fault detection performance compared to the 

conventional PCA and AV-SPCA method. Both quantitative and qualitative 

results showed the proposed methods delivered better fault detection with a lower 

false alarm. 

• The diagnostic performances of the proposed methods were similar or better when 

the T2 and SPE contribution plots were used. The diagnosis performance of the 

Sparse-IPCA method was especially precise and pointed towards the root cause 

variable. 

• The computational costs of the proposed methods were higher, especially for the 

Sparse-IPCA method, compared to PCA or other SPCA methods. However, these 

computations are done in an off-line manner; therefore, they do not limit the 

application of the proposed methods. 
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• In case of Sparse-IPCA, an inherent assumption is that the noise has a Gaussian 

distribution. On the other hand, the bootstrap method is a purely simulation based 

method, it does not require any such assumption. The Sparse-IPCA method uses 

the maximum likelihood estimation (MLE) to estimate the error covariance 

matrix. The log-likelihood function may become ill-conditioned especially for 

large data sets. There is possibility that the method may not converge if the size of 

the error covariance matrix (i.e., number of variables) is large.  
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Chapter 5 

Detection and diagnosis of process fault using unsupervised learning methods and 

unlabeled data 

 

Abstract: Multivariate statistical analysis approaches are commonly applied for process 

fault detection and diagnosis. More recently, supervised learning methods are being used 

for process monitoring. Supervised learning methods require a labelled historical dataset 

for both normal and abnormal operations, which demands significant effort in data 

mining. To overcome this difficulty, we propose a methodology combining principal 

component analysis (PCA) with the k-means clustering algorithm. The k-means 

algorithm is used for fault detection and diagnosis by exploiting PCA for data mining. 

Based on the Euclidean distance between each dataset and cluster centroid of the training 

data, the k-means clustering algorithm is able to decide if the process is in a normal state 

or belongs to a particular faulty state. To illustrate the effectiveness of the methodology, 

the proposed method is applied to two industrial processes: (i) a separator unit from an 

offshore gas processing platform, and (ii) a distillation column of a crude refining unit. 

The results show that the proposed method is able to avoid the data labelling exercise and 

is effective in detecting and diagnosing large-scale industrial processes. 

 

Key words: Principal Component Analysis (PCA), fault detection and diagnosis (FDD), 

k-means clustering algorithm. 
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5.1. Introduction 

Chemical processes are increasing in scale and complexity, leading to a surge in data-

driven applications for detection and diagnosis of process faults. In recent years, 

significant improvements have been made on the algorithm side that have vastly 

improved monitoring performance simply through exploring information contained 

within existing measurements. Advanced methods that use early detection features could 

signal issues as they emerge, thus preventing damage to the system (Bakdi & Kouadri, 

2017). A key aspect in data-driven approaches is their ease of implementation across 

different applications, as the majority of these methods use historical data for deriving 

mapping relationships between fault modes and fault features. Nonetheless, in fault 

detection and diagnosis techniques, performance is mostly determined by the quality of 

the training data (Yin et al., 2012). 

Among the data-driven methods, Fisher discriminant analysis (FDA), partial least squares 

(PLS), principal component analysis (PCA), and independent component analysis (ICA) 

are widely used in process industries (Huang & Yan, 2015; Chiang et al., 2000). 

(Pearson, 1901) proposed the PCA method, which (Hotelling, 1993) later developed as a 

linear optimal dimensionality reduction strategy. In industrial process monitoring, PCA is 

the most commonly applied FDD method (Kourti & McGregor, 1996). More recently 

artificial neural network (ANN), support vector machine (SVM), and other machine 

learning algorithms are being used for fault detection and diagnosis. 

One of the primary limitations of these supervised methods, however, is that they require 

large training datasets containing both normal and abnormal data from various faulty 
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conditions. Process data are large in size and usually unlabelled in the data historian, 

making it difficult to find suitable training datasets for supervised learning methods and 

thus ultimately limiting the utility of these methods. The main goal of the current study is 

to explore how unsupervised methods, especially clustering algorithms, can be used to 

overcome the data labelling problem and be applied to fault detection and diagnosis. 

Cluster analysis (CA) is a data partitioning strategy that is commonly utilized in data 

mining. In CA, a data sample set is divided such that the samples in one group (cluster) 

share more similarities with each other in comparison with other groups (clusters) (Li & 

Hu, 2018). By using CA, the primary operating variables that directly impact a system 

may be grouped or classified. As mentioned previously, CA is a statistics-driven strategy 

for analyzing big complex data that include a wide range of interrelated variables. CA 

assigns variable sets or groups that share similar features as a cluster, thus enabling more 

accurate dataset behavior representation. After a data cluster featuring similar 

characteristics has been identified, multivariate analysis may be used to exploit the 

correlation between the variables for fault detection and diagnosis. (Sebzalli & Wang, 

2001) used PCA for dimension reduction, discovering the operational zones of a fluid 

catalytic cracking (FCC) operation. Subsequently, they employed a fuzzy c-means 

algorithm to validate the clusters obtained from PCA and locate the cluster centers. In 

another study, PCA and clustering were used to classify dynamic system data into 

different states and modes of operations. The data dimension was first reduced using 

PCA, after which a clustering algorithm was applied to the scores to determine the states 

and modes. The operational state of the system (i.e., steady state vs transition state) was 
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determined using a heuristic rule called dwelling time. According to this rule, if the 

system stays in a state longer than the dwelling time, the system is considered to be at 

steady state. After discerning between steady state and transition state, the system data 

were further segmented into different modes of operation. The method was validated 

using an FCC unit as well as Tennessee Eastman process simulations (Srinivasan et al., 

2004). 

(Imtiaz et al., 2006) used a clustering algorithm to discover the operational zones of 

datasets from a pulp and paper mill, which is characterized by multiple grades of 

products and frequent change- over between products. The clustering algorithm validated 

that a key operating parameter (i.e., basis weight) was a good indicator to classify the 

data into different operational zones. Subsequently, PCA models were developed for each 

cluster and the sub-PCAs were used for detection and diagnosis of sheet-break faults in 

the mill. A few years later, (Lam et al., 2008; 2009) used PCA and clustering to classify 

calendar days based on similarities in weather parameters. Regression models were then 

developed to predict chiller system power consumption from the climate data. In related 

work, (Li & Hu, 2018) presented a fault detection, diagnosis, and estimation (FDD&E) 

strategy that paired PCA with density-based clustering. Density-Based Spatial Clustering 

of Applications with Noise (DBSCAN) can automatically classify operation data into 

clusters and recognize the corresponding operation conditions. In the study, using sub-

PCA models rather than a single PCA model to describe normal operational conditions 

enhanced both the reliability and sensitivity of the fault detection and diagnosis efforts. It 

also improved the accuracy of the sensor fault estimation. The researchers validated the 
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novel approach by utilizing field operation data from a screw chiller plant applied to 

different sensor faults of various magnitudes. The outcome showed improved sensor 

FDD&E compared to conventional PCA-based sensor FDD&E with a single PCA model. 

(Du et al., 2017) conducted a test on a refrigeration compressor system by categorizing 

the test data as clusters and then developing PCA models for each cluster to enable sensor 

fault detection. Their test results showed significant increases in sensor fault detection in 

sub-PCA models. (Zanoli et al., 2010) proposed a fault detection and isolation strategy by 

using PCA and clustering methods along with pattern recognition analysis. The 

developed methodology was applied to data from an oil refinery’s Integrated Gasification 

& Combined Cycle section to track the compression process. 

More recently, the k-nearest neighbor (kNN) approach was successfully applied for fault 

detection. (He et al., 2010) proposed a PC-kNN method that charts the original data on a 

PC subspace, after which the kNN rule was added into the score matrix in building a fault 

detection model. This strategy resulted in a significant reduction in time and storage 

space.  

(Guo et al., 2014) introduced a method for process-monitoring called the FS-kNN 

technique. FS-kNN works by projecting data samples into a feature space, after which 

principal components and squared prediction error (SPE) can be extracted as indicators 

from the space. These feature indicators are able to better capture information pertaining 

to raw data, making FS-kNN’s detection accuracy greater than PC-kNN’s performance. 

The above literature review indicates that PCA and clustering algorithms have been 

combined mainly for data mining purposes in order to delineate the mode of operations. 
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More specifically, the actual online detection and diagnosis of faults was done by PCA, 

while clustering was used primarily for segmenting the data into different operational 

modes and improving the performance of the PCA model. However, we believe that a 

clustering algorithm has much more to offer and can in fact be used by itself as an online 

fault detection and diagnosis tool. Based on this assumption, we combine the k-means 

clustering algorithm with PCA in this study, using PCA to train the k-means clustering 

algorithm from unlabelled data. In this way, the k-means clustering algorithm can be 

effectively used for online fault detection and diagnosis. 

5.2. Methodology 

In the proposed method, we combine two unsupervised methods (PCA and k-means 

clustering) to build a robust method that is capable of precise diagnosis of faults. The 

combination of PCA with k-means overcomes the need for labelled data. In the following 

sections, the PCA and k-means methods are first reviewed, followed by a presentation of 

the proposed fault detection and diagnosis method.  

5.2.1. Principal component analysis (PCA) 

PCA is among the most popular methods for extracting information from raw measured 

data. It can handle high-dimensional data by projecting them onto a lower dimensional 

subspace that contains most of the variance of the original data. For this task, PCA 

searches for an optimal linear transformation of the original data matrix 𝑋 ∈ 𝑅𝑛×𝑚, 

where n is the number of observations and m refers to a set of uncorrelated variables 

called principal components (PCs). The principal components are: (Tn×m) =[t1 t2… . . tm] 
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where 𝑇 = 𝑋𝑃                                                                                                                        (5.1)                 
The loading vectors 𝑃𝑚×𝑚 = [𝑃1𝑃2… . . 𝑃𝑚] are then obtained by applying singular value 

decomposition (SVD) (Yin et al., 2012; Bakshi, 1998).  

5.2.2. Clustering (K-means technique) 

The main purpose for developing the data clustering algorithm is grouping datasets into 

clusters according to similarities (i.e., datasets in each cluster share a high degree of 

similarity). Here, a k-means clustering algorithm is used, with the centroid of the cluster 

being the mean value of each cluster’s dataset. In this regard, the k-means algorithm 

reflects an iterative process, whereby datasets are designated as belonging to clusters that 

have the most similar centroid, as shown in Figure 1. This is determined by measuring 

the Euclidean distance between the datasets and their corresponding cluster centroids (Li 

& Ju, 2017; Sebzalli & Wang, 2001; Zhang et al., 2019).  

The steps of the k-means algorithm are briefly summarized as: 

• Identify the number of clusters (k). 

• Choose random observations from the dataset as initial cluster centroids (CC). 

• Designate each observation to their closest centroid based on the Euclidean 

distance measure, as shown in the following equation: 

𝑑(𝑋, 𝐶𝐶) = (𝑋 − 𝐶𝐶)(𝑋 − 𝐶𝐶)𝑇                                                               (5.2) 
Where CC is the cluster centroid 
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• Compute the new mean values of all the data points in the cluster to update the 

cluster centroid (CC) for each of the k clusters.  

• Repeat steps 3 and 4 iteratively until the clusters created in the present iteration 

are similar to the past iteration. 

• Obtain the column vector called (idx)nx1 that has the same rows of 𝑋 ∈ 𝑅𝑛×𝑚. 

Note that each element in (idx)nx1 shows the cluster number. 

• Keep the cluster centroid (CC) and the Euclidean distance ranges to calculate the 

distance between the testing dataset and the predefined cluster centroid (CC). 

• Obtain the (idx_ test) vector that contains the cluster indices of each observation 

in new X for comparison purposes. 

 

 Figure 5. 1: Dataset classification for different clusters. 
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5.2.3. Fault detection based on clustering and PCA algorithm 

The current study presents a novel fault detection and diagnosis method that uses PCA in 

combination with a k-means clustering algorithm. Although PCA is widely used for 

process monitoring, it often does not perform well in online scenarios diagnosing faults.  

In this algorithm, we combine the k-means clustering algorithm to improve the diagnostic 

ability of PCA. Figure 5.2 illustrates the proposed framework. As can be seen in the 

figure, the matrix X (n ×m) indicates the training data matrix, showing n samples of m 

variables. The data matrix is obtained from a process data historian without any labelling. 

This data matrix will contain both normal data as well as faulty data arising from 

different types of faults. However, in any given process, a single fault may occur multiple 

times at different intervals in the system. Once the training dataset has been normalized, 

the k-means clustering algorithm can be used to categorize data samples as clusters (e.g., 

Cluster 1, Cluster 5). After clustering, the datasets belonging to the same cluster are 

concatenated to create a rich data repository. The calculation also provides the Euclidean 

distance of the datasets and their cluster centroids. The (idx)nx1 implements k-means 

clustering to divide the observations of the matrix X (n ×m) into k clusters. The idx(nx1) is 

a vector that includes cluster indices of each observation. 

Parallel to the clustering exercise, the normalized data are used to train the PCA model. 

Singular value decomposition is applied to the dataset to determine the system’s loading. 

Two fault detection metrics, e.g., squared prediction error (SPE) or Hotelling’s T2, are 

applied as aids to interpret operational conditions (i.e., normal or abnormal). In every 

SPE and T2 group sample, datasets with larger values in relation to the corresponding 
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control limit are deemed faulty, while those below the control limit are deemed fault-free. 

The normal datasets may then be used to build a PCA model. 

In the following step, in each abnormal case that contains faulty data for both T2 and 

SPE, one or more cluster is related to the faulty data. To identify which cluster has the 

highest percentage in this specific faulty period, the faulty data sampling times of T2 and 

SPE need to be compared to the (idx)nx1 vector. The datasets marked as faulty are further 

investigated using contribution plots to determine the cause of the fault and label it 

accordingly.  

The centroids of clusters and the Euclidean distance ranges calculated from the training 

data are supplied to the online monitoring scheme for detecting and diagnosing the online 

faults. For the online monitoring process, the collected data are normalized in accordance 

with the initial step mentioned earlier. The test dataset is categorized by applying the 

distances between the CC point obtained from the training datasets and those in the 

monitoring dataset. These distances are used to determine the clusters to which the new 

data samples belong. Once the cluster identity has been determined, the offline mapping 

information (i.e., from the clusters to the faults and then to the root cause) is used to map 

and assign the root cause for the fault.  
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   Figure 5. 2 : Flow chart of the proposed process-monitoring approach. 

 

 

Apply PCA and 
obtain loading 

Compute the confidence limits 

of T2 and SPE statistics 

Compute T2 and 

SPE statistics 

Final loading vector 

Scale the data vector Xt 

using training mean and 

standard deviation training. 

Normalizing the 
training datasets 

Normal case Abnormal cases 

Apply PCA to obtain 

loading 
Fault 1 Fault 2 Fault 3 

identify the similarities 

between each abnormal case 

and each cluster  

Determining the root cause of the abnormality 

 Cluster 4 
Fault 2 

 

Cluster 3 
Fault 3 

 

Apply clustering 

algorithm 

Fault 1 Fault 2 Fault 3 

Normal training dataset  𝑋(𝑛 × 𝑚) 
 

Collect data vector at time t Xt 

during online data system 
collection  

Cluster 1 to Cluster 5 

Record Cluster Centers (CC points) 

and the Euclidean distance ranges 

as comparison purpose  

 Calculate distances between data 

set samples and predefined cluster 

center (CC) from equation 5.2 

Which cluster is 

related to the existing 

clusters? 

Cluster 1to Cluster 5 

Cluster 5 
Fault 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



152 

 

5.3. Case Studies 

The proposed method was implemented on two case studies. The first one is a simulated 

separation unit of an offshore gas processing plant, and the second is an industrial case 

study. The methodology was tested on a dataset collected from a distillation unit of a 

petroleum refining operation.  

5.3.1. Separator Unit of an Offshore Gas Processing Platform 

A dynamic HYSYS model of a gas processing plant is available from Khaled et al. 

(2020). The model is based on the gas processing plant in the North Sea described in 

Voldsund et al.’s (2013) work.  As shown in Figure 5.3, the process can be divided into 

the following eight main components: well section, separator unit, production manifold, 

export pump unit, fuel gas treatment, recompression unit, reinjection unit, and drainage 

system. The separation unit (Figure 5.4) features an electrostatic coalescer (V-102), along 

with a two-phase separator (V-114) and two three-phase separators (V-100, V-101). 

Gravitational separation is used to separate the water, oil and gas, with the pressure 

decreased at each separation stage in order to optimize production output. Specifically, 

the separated (oily) water that results from the first and second stages proceeds to the 

water treatment processing unit, but a portion of this fluid is recycled back to the second 

stage (three-phase separator). In this study, the simulation data generated by Khaled et al. 

(2020) is used for the FDD performance evaluation of the proposed method. The 

simulated model has 39 variables. Table 5.1 provides more details of the different types 

of faults (i.e., two disturbance faults and one actuator fault) that were investigated in the 

present study. 
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Figure 5. 3: Process flow diagram of Norwegian Sea oil and gas platform with 

modifications. 
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Figure 5. 4 : Separator unit of Norwegian Sea oil and gas platform 

Table 5. 1: Summary of three different types of faults 

Fault 

Number 

Fault Type and Location Fault Description 

Fault 1 Disturbance Fault 
(High feed flow rate V-100.PV) 

 

Feed flow emerging from five neighboring wells 

increases approximately 20% over the initial rated 

condition (2.45 × 105 Sm3/h). 

Fault 2 Disturbance Fault 

(High feed temperature T-

100.PV) 

Feed temperature rises approximately 3.6% over the 

initial rated temperature of 83 ˚C.  

Fault 3 Actuator Fault 
(Fail hold VLV-102) 

There is no reaction by a valve to either signal or power 

loss and the valve stays at the same position. The result 

is usually a fail hold condition.  

 

5.3.2. Distillation column process 

Removing lighter material from the reaction products is one of the main operations in the 

crude unit of a petroleum refinery. In this case study, eight months of operational data 

were collected from the distillation unit. Five months are selected as the training dataset, 

while the remaining three months are adopted as testing dataset. 
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In this study, 32 process variables are considered for the process-monitoring exercise. 

Due to confidentiality, we cannot provide the process flow diagram of the actual unit. 

The main components of the unit are the column, condenser, and reboiler. Additionally, a 

range of heat exchangers is used to recover heat from the feed and produce stream. A list 

of variables collected from the unit is provided in Table 5.2. 

Table 5.2: Operating variables of distillation column Process 

Variable 

No. 

Variable Name Description 

1 XMEAS1 Overhead Liquid Flowrate 

2 XMEAS2 Overhead Liquid to Light Ends 

3 XMEAS3 Low Pressure Separator Level 

4 XMEAS4 Distillation Overhead Temperature  

5 XMEAS5 Low Pressure Separator Outlet Flow 1 

6 XMEAS6 Low Pressure Separator Outlet Flow 2 

7 XMEAS7 Distillation Overhead Receiver Level 

8 XMEAS8 Distillation Waterboot level 

9 XMEAS9 Fractionation Recycle Liquid Flow 

10 XMEAS10 Circulation Kerosene Flow  

11 XMEAS11 Circulation Diesel Flow  

12 XMEAS12 Distillation Reflux Flow 

13 XMEAS13 Distillation Tower Pressure 

14 XMEAS14 Distillation Bottom Level 

15 XMEAS15 Distillation Reboiler Cell 1 flow 

16 XMEAS16 Reboiler Cell 1 flow Pass 1 

17 XMEAS17 Reboiler Cell 1 flow Pass 2 

18 XMEAS18 Reboiler Cell 1 flow Pass 3 

19 XMEAS19 Reboiler Cell 1 flow Pass 4 

20 XMEAS20 Fuel Oil Pressure to Reboiler Cell 1  

21 XMEAS21 Reboiler Cell 1 Steam Pressure 

22 XMEAS22 Reboiler Cell 1 Temperature 

23 XMEAS23 Reboiler Average Temperature  

24 XMEAS24 Fuel Gas Pressure to Reboiler Cell 1 

25 XMEAS25 Fuel Gas Pressure to Reboiler Cell 2 
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26 XMEAS26 Reboiler Cell 2 Temperature  

27 XMEAS27 Reboiler Cell 2 Steam Pressure 

28 XMEAS28 Distillation Reboiler cell 2 flow 

29 XMEAS29 Reboiler Cell 2 flow Pass 2 

30 XMEAS30 Reboiler Cell 2 flow Pass 3 

31 XMEAS31 Reboiler Cell 2 flow Pass 4 

32 XMEAS32 Reboiler Cell 2 Fuel Oil Pressure 
 

5.4. Results and Discussion 

In this section we describe the performance of the developed FDD method on the two 

case studies described earlier. To evaluate the performance we mainly focus on the fault 

diagnosis ability of the proposed method. First we describe the results of the separator 

unit of the offshore gas process plant, next we demonstrate the efficacy of the method on 

a distillation column of a petroleum refining crude unit. 

5.4.1. Separation Unit of Offshore Gas Processing Plant 

5.4.1.1 Off-line Training of Model for Separation Unit 

The gas processing plant has 39 variables measured throughout the separator unit. The 

simulation data includes normal condition and four different faulty conditions. A PCA 

model was built where the first six PCs cumulatively explained 85% of the total variance. 

Hotelling’s T2 and SPE charts were applied for fault detection. 

Figure 5.5 depicts Hotelling’s T2 and SPE statistics. Assuming no prior knowledge of a 

fault, the T2 statistics chart in Figure 5.5 is used to select different segments of faulty 

datasets. We mark these as Fault - a, Fault - b, and Fault - c.  
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Figure 5. 5: Fault detection monitoring results of separator unit of offshore gas processing 
platform to PCA SPE (upper) and T2(lower). 
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The same dataset is also run through the clustering algorithm. From the clustering 

analysis, five clusters were obtained, as illustrated in Figure 5.6.  

 

Figure 5. 6: Five clustering results of separator unit of offshore gas processing platform. 

Cluster 3 has the maximum percentage of samples (46%), while 40% belongs to Cluster 

1, 7% to Cluster 2, 4% to Cluster 4, and 3% to Cluster 5. 
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Mapping of separator data clusters to fault 

 

In order to map the clusters to the fault conditions, the similarities between the faults and 

the clusters need to be calculated. In finding the similarity between each faulty dataset 

and the cluster, the (idx)nx1 that contains cluster indices for each observation is used for 

each fault. Based on the SPE statistics in Figure 5.5, comparing the observation of each 

fault with the (idx)nx1 is the main criteria. For example, Figure 5.7 shows the percentages 

of the clusters (i.e., Cluster 1 to Cluster 5) that matches with different faults (Fault - a, 

Fault - b, and Fault - c). As illustrated in Figure 5.7 (a), for Fault - a, Cluster 2 has the 

maximum similarity (80%), while 17% belongs to Cluster 4 and about 3% to Cluster 5. 

Thus, Cluster 2 is related to Fault - a.  

Similarly, for Fault - b, Figure 5.7 (b) shows that Cluster 1 matches with 91 % of the 

samples, and that 9% of the samples belong to Cluster 3. In addition, Figure 5.7 (c) shows 

that most faulty samples are related to Cluster 3 (93%). It can therefore be concluded that 

Cluster 2, Cluster 1, and Cluster 3 represent three main faulty operation conditions as 

Fault - a, Fault - b, and Fault - c, respectively.  

   

(a) (b) (c) 

Figure 5. 7: Percentages of faulty samples for Fault - a, Fault - b, and fault - c for Cluster 
1, Cluster 2, Cluster 3, Cluster 4, and Cluster 5. 
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Mapping of separator faults to root cause 

After the clusters are mapped to the fault, the root cause of the faults is identified in the 

next stage. This will complete the mapping of the clusters to the root cause. Figure 5.8 

shows the contributions of the variables to the SPE for Fault - a. The SPE contribution 

plots point to variables 3 and 39 (temperature) as being the variables that make the 

greatest contribution, thus identifying those variables as the root causes of Fault - a.  In 

this case, the feed (TRF-1.PV) temperature (variable 3) is increased from 82 ˚C to 86 ˚C 

and the produced oil flow rate (variable 37) decreased. However, the temperature of the 

produced oil (V-102.OP) (variable 39) only slightly increased. The pressures (variables 2 

and 38) for the above two sections are not affected by increasing the feed temperature. 

 

 

Figure 5. 8: Contribution plots of SPE for PCA for Fault - a. 

Next, we investigate the root cause of Fault - b (Cluster 1). Figure 5.9 shows the variable 

contributions to SPE statistics. As can be seen in the figure, variables 18, 37, and 39 
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make the greatest contributions. The SPE contributions of the PCA model successfully 

points to the actuator fault.  

 

Figure 5. 9: Contribution plots of SPE for PCA for Fault - b. 

In Figure 5.10, the SPE contributions for different variables calculated from the PCA 

model are presented for Fault - c (Cluster 3). As can be seen in the figure, variable 2 

(pressure) has the highest contribution, while variable 39 (temperature) shows the second 

highest. Variable 2 (pressure) is directly related to the disturbance fault in variable 1 
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(feed flowrate). 

 

Figure 5. 10: Contribution plots of SPE for PCA for Fault - c. 

5.4.1.2. On-line monitoring of separation unit 

For the online monitoring process procedure, the new data are collected and then 

normalized based on the training mean and standard deviation. Next, the distance 

between the testing dataset and the five predefined CC points is calculated to identify the 

clusters to which the new data samples belong.  

For classification and diagnosis purposes, the predefined fault cluster is the nearest to the 

new dataset. As well, the distance values between the new testing dataset and the CC 

point of any fault are associated with the Euclidean distance ranges. Therefore, the new 

fault cluster can be diagnosed based on the type of fault identified by the predefined fault 

clusters from offline monitoring. Figure 5.11 illustrates that both T2 and SPE statistics 

charts can detect faults as well as cluster classifications.  
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Figure 5.11: Online monitoring of T2 (upper) and SPE (middle) results for PCA and 
classification of clusters (lower) in a separator unit of an offshore gas processing 
platform. 

 

The final outcomes of the root cause of the faults are summarized in Table 5.3. 

Table 5.3: Mapping of clusters to the root cause for the separator unit of offshore gas 
processing platform. 

Cluster Fault Root cause description 

Cluster 4,5 Normal  
Cluster 2 Fault - a Feed temperature (Disturbance fault) 
Cluster 1 Fault - b Fail hold VLV-102 (Actuator fault)  
Cluster 3 Fault - c Feed flow rate (Disturbance fault) 
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5.4.2. Distillation column 

5.4.2.1 Off-line training of distillation model 

The distillation unit has 32 variables. Nearly 85% of the variance is explained by the first 

15 PCs selected for the PCA model. The monitoring results obtained for SPE and T2 are 

presented in Figure 5.12. As can be seen, the SPE and T2-statistic used for fault detection 

show different behaviors. However, the T2 is mostly within the limits (with some 

spurious points outside the limits), so the T2 plot is not very useful in this case for fault 

detection. However, the SPE plot shows a clear violation of the limits for detecting faults 

on several occasions. It appears that the SPE results are more consistent throughout this 

analysis. For the selection of the faulty dataset from the distillation column, we therefore 

focus on the SPE criteria. Three faults are detected in the training data set by the SPE, as 

shown in Figure 5.12. Each fault is similar to one or more clusters.  
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Figure 5.12: Monitoring results for PCA SPE (upper) and T2 (lower) of the fault detection 
of the distillation column. 

The training dataset of the distillation column process can be divided to five clusters, as 

shown in Figure 5.13.  
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Figure 5. 13: Five clustering results of the distillation column process. 

The frequencies of the five clusters obtained from the clustering are as follows: 32% of 

the training data set belongs to Cluster 3, 25% belongs to Cluster 4, 17% belongs to 

Cluster 2, 14% belongs to Cluster 5, and 12 % belongs to Cluster 1. 

Mapping distillation Data Clusters to the Faults 

Following the clustering, the clusters were mapped to the different faulty datasets 

identified earlier from the SPE plots. The similarity between the clusters and the faults 

were evaluated using the similarity indexing function “(idx)nx1” described above.  Figure 

5.14 shows the similarity results for Clusters 1 to 5 for Fault - a, Fault - b, and Fault - c. 

As illustrated in Figure 5.14 (a), Cluster 4 has the maximum similarity (~87 %) with the 

samples from Fault - a, but only a 13% similarity with Cluster 1. Clearly, the faulty 
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dataset for Fault - a is related to Cluster 4. For Fault - b, Figure 5.14 (b) shows that 

Cluster 5 includes 78% of the fault samples and Cluster 1 includes 22%. In addition, 

Figure 5.14 (c) shows that Cluster 1 has less than 1%, Cluster 2 has about 6%, and 

Cluster 4 has 4%. Furthermore, the figure illustrates that the most faulty samples from 

Fault - c are related to Cluster 3 (90%). It can be concluded that Clusters 4, 5, and 3 

represent three main faulty operation conditions as Faults - a, - b, and - c, respectively.  

(a) (b) (c) 

Figure 5. 14:  Similarity in clusters of distillation data with (a) Fault - a, (b) Fault - b, and 
(c) Fault - c. 
 
Mapping of distillation faults to the Root Cause  

In this section, we use SPE contributions to diagnose the root cause of the faults. This 

will complete the cycle and connect the clusters to the root cause. Figure 5.15 shows the 

SPE contributions plot from the PCA method. As can be seen, variable 21 (XMEAS 21) 

has the highest contribution to SPE and is directly associated with the root cause of Fault 

- a.  
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Figure 5. 15: Contribution plots SPE for PCA for Fault -a. 

The diagnosis results for Fault - b from the PCA method are shown in Figure 5.16.  The 

contributions of the variables to the SPE according to the PCA approach are also shown. 

As can be seen, variable 7 (XMEAS7) has the highest contribution and is therefore the 

root cause.  

 

Figure 5. 16: Contribution plots of SPE for PCA for Fault – b. 



169 

 

In Figure 5.17, the SPE contributions of variables from PCA for Fault - c are presented.  

As can be seen in the figure, variable 17 (XMEAS17) contributes the most to the SPE.  

 

Figure 5. 17: Contribution plots of SPE for PCA for Fault - c. 

5.4.2.2 On-line- monitoring of distillation column 

For the distillation column process, both the T2 and SPE for the PCA method are shown 

in Figure 5.18. As can be seen, the SPE statistics are sensitive to faults.  
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Figure 5.18: Online monitoring of T2 (upper) and SPE (middle) results of PCA and the 
classification of the clusters (lower) of the distillation column. 
 
Table 5.4 provides the root cause of the predefined fault clusters from offline monitoring 

to evaluate each type of fault (i.e., actuator, disturbance, or sensor).  

Table 5. 4: Mapping of clusters to the root cause in distillation column 

Cluster Fault Root cause description 

Clusters 1 and 2 Normal  
Cluster 3 Fault - c Reboiler (H1303) Cell 1 flow Pass 2 

(XMEAS17); actuator fault 
Cluster 4 Fault - a (Reboiler Cell 1 Steam Pressure (XMEAS 

21) faulty variable; Disturbance fault 
Cluster 5 Fault - b Low Pressure Separator Level (XMEAS7); 

Sensor fault 
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5.5. Conclusion 

A new process-monitoring technique with root cause analysis using clustering algorithm 

(k-means) has been developed. The proposed method utilizes PCA as a data mining 

technique, with a clustering algorithm employed for online monitoring. The proposed 

method was implemented on two industrial processes: the distillation column of a crude 

unit, and the separator unit from an offshore gas processing platform. The proposed 

method shows that it can detect process faults earlier than PCA and eliminate some of the 

ambiguity of SPE contribution plots in fault diagnosis. Furthermore, the method can be 

applied to unlabelled historical process data without the need for labelling. Although the 

proposed method uses a k-means algorithm, the methodology is quite general and can be 

used in other unsupervised approaches. 
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Chapter 6 

Conclusion and Recommendations 

 

 

6.1 Conclusion 

As demonstrated earlier in this work, it can be very difficult to identify NNZL for SPCA. 

To overcome this barrier, this study proposed new criteria for choosing NNZL according 

to performance indicators of FAR and FDR. The mentioned criteria ultimately make 

SPCA more useful overall in fault detection and diagnosis (FDD). Following on the 

development of the proposed technique, three SPCA benchmark approaches were then 

compared using the novel strategy. Specifically, the FDD capabilities of the three SPCA 

approaches were compared by applying traditional PCA, and a case study with the 

continuous stirred tank heater (CSTH) system was highlighted for comparison purposes. 

The results of all these tests indicated that FDR-FAR SPCA showed lower FAR and 

higher FDR when compared with PCA or other SPCA methods; the proposed FDR-FAR 

SPCA was also able to diagnose faults more accurately.  

This work also proposed the Sparse-IPCA and the bootstrap-SPCA methods to develop 

PCs that feature sparse loadings. The Sparse-IPCA and the bootstrap-SPCA techniques 

were then implemented on a CSTH system and their performance compared with that of 

the conventional PCA and AV-SPCA strategies. 

Overall, the present work made the following contributions to the research area: 

• Loading element distributions were obtained through the use of the measurement 

error covariance matrix and resampling. As demonstrated in the work, the loading 
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element distributions provided better information on loadings and also clearly 

indicated which elements needed to be set at “0”. 

• The novel approaches proposed in this study provided fault detection performance 

that was superior to traditional PCA and AV-SPCA. Results from both the 

qualitative and quantitative tests indicated improved fault detection along with 

fewer false alarms. The Sparse-IPCA and the bootstrap-SPCA methods have over 

94% FDRs for the SPE statistics compared to 73.7% and ~ 0% with the AV-

SPCA and PCA respectively for Sensor fault (level). 

• When applying the T2 and SPE contribution plots, the proposed methods’ 

diagnostic performances were either similar or superior. The Sparse-IPCA 

diagnostic performance was particularly noteworthy for its precision and ability to 

indicate the root cause variable. 

• Despite the above-cited advantages of the proposed methods, they did come at the 

cost of higher computation. The cost was particularly high for Sparse-IPCA in 

comparison with PCA and other SPCA strategies. However, because the 

computations can be performed off-line, the application of the proposed methods 

are not in any way limited by the enhanced computational requirements. 

This work also addressed improvement to FDD using a novel approach based on PCA 

and k-means clustering. Applicability of the methods was demonstrated using industrial 

processes, namely, a distillation column and a separator unit in an offshore gas 

processing platform. This approach includes two parts: (1) the application of k-means 

clustering for categorizing the training sample set into various clusters; and (2) the 
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application of the sum of squared prediction error (SPE) and the Hotelling T² statistic as a 

strategy for recognizing different faults. Every fault belongs to a cluster and can be used 

to find the reason(s) for the fault. The proposed method (PCA and k-means clustering) 

introduces greater sensitivity into the fault diagnosing process and can also monitor 

complicated processes at a much larger scale than the previous approaches. 

4.2 Recommendations 

The outcomes from this research may have an important role in developing regulations 

and requirements for product quality and process safety. The proposed SPCA methods 

are more sensitive for diagnosing process faults as well as powerful for monitoring large 

scale complex processes. The proposed methods can be further enhanced by considering 

the following: 

• When process data adhere to multivariate Gaussian distribution, PCA may be the best 

strategy to use. For this purpose, KPCA can be applied as first-stage detection tool to 

obtain optimal detection in instances where the process data is non-linear and/or non-

Gaussian. 

• For second-stage detection, and to enhance fault diagnosis abilities, specific criteria 

may be applied when choosing NNZL for SPCA. 

• A range of dimension-reducing strategies (e.g., FDA, PLS, etc.) could be applied for 

performance validation purposes.        

• Different types of clustering algorithms can be combined with PCA or with a range of 

dimension-reducing strategies (e.g., FDA, PLS, etc.) to upgrade the FDD 

performance. 


