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Abstract

Using advantages of nonstandard computational techniques based on the light-cone vari-

ables, we explicitly find the algebra of generalized symmetries of the (1+1)-dimensional

Klein–Gordon equation. This allows us to describe this algebra in terms of the universal

enveloping algebra of the essential Lie invariance algebra of the Klein–Gordon equation.

Then we single out variational symmetries of the corresponding Lagrangian and compute

the space of local conservation laws of this equation, which turns out to be generated, up

to the action of generalized symmetries, by a single first-order conservation law.

We study the hydrodynamic-type system of differential equations modeling isothermal

no-slip drift flux. Using the facts that the system is partially coupled and its essential

subsystem reduces to the (1+1)-dimensional Klein–Gordon equation, we exhaustively

describe generalized symmetries, cosymmetries and local conservation laws of this system.

A generating set of local conservation laws under the action of generalized symmetries

is proved to consist of two zeroth-order conservation laws. The subspace of translation-

invariant conservation laws is singled out from the entire space of local conservation

laws. The essential subsystem possesses three first-order hydrodynamic-type Hamiltonian

operators, two of which are prolonged nonlocally to the entire system.

The (1+2)-dimensional hydrodynamic-type system governing the shallow water model

is studied from the symmetry-analysis point of view. Its complete point symmetry group

is found with the help of the automorphism-based algebraic method. Lie reductions of

both codimensions one and two are classified. We exhaustively describe the algebra of

differential invariants of the point symmetry group of the system using the method of

moving frames.

We construct for the first time classes of differential equations with nontrivial general-

ized equivalence groups, i.e. whose equivalence-transformation components corresponding

to independent and dependent variables locally depend on nonconstant arbitrary elements

of the class. We rigourously construct extended generalized equivalence groups of several

classes of differential equations as well. The new notion of effective generalized equivalence

group is introduced.
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General summary

Physical phenomena are governed by systems of differential equations, which are seldom

completely integrable. In view of this it is necessary either to find their particular solutions

or to simplify models via physically reasonable assumptions. One of the most common

ways to find particular solutions of differential equations is employing their symmetries

to carry out Lie reductions. The idea of Lie symmetries is naturally generalized to the

notion of higher symmetries. They are important because, for example, the existence of

an infinite hierarchy thereof may testify to a complete integrability of the system.

Using the machinery of symmetry analysis we study the Klein–Gordon equation, which

is a fundamental equation of quantum mechanics. Our interest in this equation lies in

the fact that an isothermal no-slip drift flux model, which is a submodel of the two-

phase flow model, reduces to the Klein–Gordon equation. Thus, any result on the Klein–

Gordon equation can be prolonged to a result for the drift flux model. An interesting

mathematical twist here is that not every local result on the Klein–Gordon equation has

a local counterpart. For example, some local generalized symmetries of the Klein–Gordon

equation have nonlocal counterparts. Nonlocal symmetry analysis is a recent field, which

draws more and more attention in both the mathematical and physical communities.

Averaging nonlinear differential equations used in numerical simulations may result

in a loss of some of their internal properties. This is why it may be necessary to use a

parameterization scheme, i.e. to replace processes that are too small-scale or complex to

be mathematically represented in the model by simplified processes. We study the shallow

water model with the aim to find invariant and conservative parameterizations schemes

preserving symmetries and conservation laws of the model by describing its conservation

laws and the algebra of differential invariants of its symmetry group.

When a system of differential equations governing a physical phenomenon involves

some parameters, the problem of group classification arises. To distinguish equivalent

systems, some notion of equivalence is necessary. In the thesis we give the first nontrivial

examples of generalized equivalence groups, which induce the above equivalence, and we

develop the theory behind for these groups.
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Glossary

L a system or a class of systems of differential equations

κ arbitrary-elements tuple

Lθ a system of differential equations in the class L

G∼ equivalence groupoid of a class

G∼ usual equivalence group of a class

Ḡ∼ generalized equivalence group of a class

Ĝ∼ extended generalized equivalence group of a class

Ğ∼ effective generalized equivalence group

Jr = Jr(x|u) jet space of order r

in independent variables x and dependent variables u

v, X vector field

pr(r)v, X(r) rth prolongation of a vector field

〈. . . 〉 a span

Σ the algebra of generalized vector fields

Σtriv the algebra of trivial generalized vector fields

Σq the quotient space Σ/Σtriv

Σ̂q the algebra of generalized symmetries reduced in view of the equation

Σ̂n the algebra of generalized symmetries in reduced form of order up to n

Σ̃n the algebra of generalized symmetries of order up to n

Σ̂[n] the algebra of generalized symmetries in reduced form of order n

Dx the total derivative operator with respect to x

Dx the total derivative operator with respect to x reduced in view of L
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Introduction

In the 1870s Sophus Lie started developing a theory for integrating ordinary differential

equations to equal and even surpass his compatriot Abel’s theory of solvability of algebraic

equations. At the heart of his theory lies the notion of symmetries of a differential

equation, that is, continuous transformations of independent and dependent variables

under which the equation is invariant. Since to find such symmetries one needs to solve

a system of nonlinear differential equations, it is more convenient to work with their

infinitesimal counterparts which are solutions of a linear system of equations. Lie’s ideas

are fundamental for several fields of mathematics, including Lie groups, Lie algebras and

what is commonly known today as symmetry analysis of differential equations.

Initiated in my Master thesis was a study of an isothermal no-slip drift flux model

within the framework of symmetry analysis. In particular, we computed generalized

symmetries and conservation laws of order not greater than one and first-order local

Hamiltonian structures of hydrodynamic type. More importantly, it was noted that the

system S governing the model is partially decoupled, while its essential subsystem S0

reduces to the (1+1)-dimensional Klein–Gordon equation via the rank-two hodograph

transformation. This equation is linear and therefore is easier to study than the quasi-

linear system S. Furthermore, the Klein–Gordon equation is a basic equation in quantum

mechanics and is of interest per se. Thus, Chapter 2 of this thesis is devoted to the

Klein–Gordon equation.

The system S is degenerate in two ways. Besides being partially decoupled, it is not

a genuinely nonlinear hydrodynamic-type system. This double degeneracy allows us to

partition every problem concerning the system S into two stages. The first stage is to
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solve the counterpart-problem for the Klein–Gordon equation and transfer the result to

the system S. This step is not always straightforward. Thus, any local conservation law

of the Klein–Gordon equation has a local counterpart for the system S. At the same

time, not all generalized symmetries have them. This way the prolongation problem

arises. Similarly to generalized symmetries, not all local Hamiltonian structures for the

system S0 have local counterparts for the system S. Thereby, we enter the territory of

nonlocal symmetry analysis of differential equations. The second stage is to deal with the

equation complementary to the system S0 in S. This step is much easier and, in fact, it

was somewhat considered in my Master thesis. The system S is studied in Chapter 3.

In Chapter 4 we go to a multidimensional case and consider a shallow water model

which is governed by a (1+2)-dimensional hydrodynamic-type system. This model is

used in weather prediction, which despite all the progress is still insufficiently accurate.

One way to improve it is to use better parameterization schemes for the model. It is

known that in numerical simulations one often uses averaging of differential equations,

which may lead to a loss of crucial data. It is possible to circumvent the problem by

choosing a closure scheme and by parameterizing unresolved terms. Physicists usually

do not pay special attention to parameterizations preserving geometric properties of an

initial model, such as e.g. symmetries, conservation laws or Hamiltonian structures. Our

aim is to change the priority: one should choose a parameterization scheme from the set

of “geometry-preserving” parameterization schemes. For this end, we study the question

of conservation laws, symmetries and invariants for the shallow water model.

Chapter 5 concerns equivalence groups of classes of differential equations. Such groups

arise in group classification problems, i.e. problems of classifying Lie symmetries of pa-

rameterized equations, and give rise to the equivalence therein. For years researchers

used usual equivalence groups in this regard, often assuming that there are no nontrivial

examples of also known generalized equivalence groups. Such examples are found in this

thesis. We also consider rigorous construction of extended generalized equivalence groups

and we delve into their theory.
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Chapter 1

Symmetry-like objects for

differential equations

In this introductory chapter we get a reader acquainted with the geometric interpretation

of differential equations and give definitions for basic objects of symmetry analysis, which

are quite loosely called “symmetry-like objects” in the thesis. For more details see one of

the classic textbooks on symmetry analysis of differential equations [22, 23, 24, 26, 78,

103, 104, 116] or classic reference papers [2, 3, 4, 130, 161, 166]. We primarily use the

textbook [103] as a reference source, while indicating other sources when needed.

To begin with, we need to introduce a space on which (systems of) differential equa-

tions live. It should accommodate not only values of a function — a solution of a differ-

ential equation — but also the values of all its derivatives. Given a smooth real-valued

function f(x) = f(x1, . . . , xn) of n independent variables, there are nk =
(
n+k−1

k

)
different

kth order partial derivatives of f . Hereafter J = (j1, . . . , jk) denotes an unordered k-tuple

of integers and ∂J =
∂k

∂xj1 · · · ∂xjk
is the corresponding derivative of order #J = k. For a

given smooth function f : X → U with X ≡ Rn, U ≡ Rm, there exist mnk different kth

order partial derivatives uαJ = ∂Jf
α(x) of components of f at a given point x. The total

number of partial derivatives of all orders from 0 to r is then m(r) :== m
(
r+n
r

)
. Thus,

one can define U (r) to be a Euclidean space of dimension m(r), with its coordinates being

all possible partial derivatives of u of order from 0 up to r.

13



Definition 1.1. The r-jet space Jr(x|u) = X × U (r) of the underlying space X × U is

a Euclidean space of dimension n + m(r), whose coordinates represent the independent

variables, the dependent variables and the derivatives of the dependent variables up to

order r. We call the inverse limit J∞(x|u) of Jr(x|u) the space of infinite jets.

Remark 1.2. Though some differential equations are defined only on some open subsets

of the underlying space X × U , we will avoid this technical remark when possible.

Now we adapt the notion of a solution of the system to jet spaces. This is done via

the prolongation of the function to the space U (r). Given a smooth function u = f(x),

such that f : X → U , we define its rth prolongation u(r) = pr(r)f(x) : X → U (r) as

uαJ = ∂Jf
α(x). Thus pr(r)f(x) is a vector-function whose coordinates represent the values

of f and all its derivatives up to order r at the given point x.

To formulate this geometrically, given a function u = f(x) whose graph lies in X × U ,

its rth prolongation pr(r)f(x) is a function whose graph lies in a jet space Jr(x|u). Al-

ternatively [104], the rth prolongation of a function f can be determined as a section

F (x) of Jr(x|u) such that the pullbacks of ωaJ by the function F vanish, F ∗ωaJ = 0

for any a = 1, . . . ,m and any multiindex J , 0 6 #j < n. Here the differential forms

ωaJ = duaJ −
n∑
i=1

uJ,idx
i are called the contact forms. A space spanned by these forms is

called the contact structure of the jet space J∞(x|u).

Finally, we can determine a geometric interpretation of differential equations. Let here

and in what follows the system L of differential equations consist of l equations of the form

Lµ(x, u(r)) = 0, µ = 1, . . . , l,

where the symbol u(r) denotes all derivatives of the functions u with respect to x of order

not greater than r, including u’s as derivatives of order zero. An alternative geometric

definition of a system L is the subvariety

{(
x, u(r)

)
| Lµ(x, u(r)) = 0 for all µ

}
⊂ Jr(x|u), (1.1)

of a jet space Jr(x|u), that is, the subset of the r-jet space, where the maps Lµ vanish.
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When considering higher-order symmetry structures we need to consider a system with

all its differential consequences. This new system is considered to be a subvariety L(∞)

of the jet space J∞(x|u). Abusing notation, we denote the above subvariety again by L.

Similarly, a function u = f(x) is called a solution of the system L if the graph of its

prolongation pr(r)f(x) lies within the subvariety L.

A smooth function f depending on x and a finite number of derivatives of u (i.e., a

smooth function on an open set of J∞(x|u) with finite number of arguments and with

values in the underlying field) is called a differential function of u, and it is denoted by

f = f [u]. The order ord f of a differential function f is the highest order of derivatives

involved in f , and, if f does not depend on derivatives of u, ord f := −∞.

1.1 Lie symmetries

Now we want to apply a notion of symmetry to systems of differential equations. Similarly

to algebraic equations as known in Galois theory, a symmetry of a system of differential

equations is a certain transformation mapping its solutions into solutions of the same

system. Let us now define rigorously these transformations.

Given a local group1 of transformations G acting on the space X × U of independent

and dependent variables, that is, a group of local diffeomorphisms of the space, one can

define the rth prolongation of G denoted by pr(r)G, which is in fact the induced local

action of G on the r-jet space U (r) transforming the derivatives of functions u = f(x) into

the corresponding derivatives of the transformed function ũ = f̃(x̃). The action of this

group is defined via

pr(r)g · (x0, u
(r)
0 ) =

(
x̃0, pr(r)(g · f)(x̃0)

)
,

whenever (x̃0, ũ0) = g ·(x0, u0), u
(r)
0 = pr(r)f(x0) and g ∈ G. Taking into account the local

action of the group of transformations, we can restrict ourselves to groups acting on local

1In case when a “symmetry” group is infinite-dimensional, e.g., it is parameterized by an arbitrary
smooth function of its arguments or by a solution of a system of PDEs, it is more appropriate to say a
“pseudogroup” or a “Lie pseudogroup”, but we prefer to keep language simple.

15



subsets of the space X × U . So we can determine the symmetry group of the system of

differential equations as follows.

Proposition 1.3. Let M be an open subset of X×U and L an rth order system of differ-

ential equations defined over M , with the corresponding subvariety defined by (1.1). Let a

local group of transformations G act on M so that its prolongation leaves the subvariety

invariant. Then G is a symmetry group of the system L of differential equations.

In practice, it is much easier to work with infinitesimal generators of symmetry trans-

formations. It is possible to determine infinitesimal generators of the prolonged group

action via the corresponding infinitesimal generators of the underlying group.

Definition 1.4. Let M be an open subset of the space X×U of independent and depen-

dent variables and v a vector field on M with corresponding one-parameter group exp(εv).

The rth prolongation pr(r)v of a vector field v is a vector field on the jet space Jr(x|u),

defined as the infinitesimal generator of the corresponding prolonged one-parameter group

pr(r)[exp(εv)],

pr(r)v|(x,u(r)) =
d

dε

∣∣∣∣
ε=0

pr(r)[exp(εv)](x, u(r)) for any (x, u(r)) ∈ Jr(x|u).

Having at our disposal all these tools, we can derive the infinitesimal condition for a

group G to be a symmetry group of a given system of differential equations. Nonetheless,

there are technical conditions on systems of differential equations that make all the con-

structions work. Systems satisfying these conditions are called totally nondegenerate [103]

or normal [26]. We notice only that systems of evolution equations, systems of Cauchy–

Kovalevskaya form,2 and systems of extended Kovalevskaya form3 are normal. Without

further ado, we give the invariance criterion to determine the symmetry group of a normal

system.

2A system is called of Kovalevskaya form it can be rewritten as ∂ruµ

∂tr = Lµ(t, x, u(r)), µ = 1, . . . , l,
where the functions Lµ’s are analytic functions of their arguments and the derivatives ∂ruµ/∂tr do not
arise on the right hand side.

3A system of partial differential equation is called of extended Kovalevskaya form if its equations can

be written as ∂r
a
ua

∂(xn)ra = Ha(x, ũ(r)), a = 1, . . . ,m, where 0 6 ra 6 r and ũ(r) denotes all deratives of the

functions u with respect to x up to order r, where each ub is differentiated with respect to xn at most
rb − 1 times, b = 1, . . . ,m.
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Theorem 1.5. Let L be a normal system of differential equations over M ⊂ X×U . If G

is a local group of transformations acting on M , and pr(r)v[Lµ] = 0 for an appropriate

point in the subvariety L and every infinitesimal generator v of elements G, then G is the

symmetry group of the system.

In view of this theorem the only task remaining for us is to find an explicit formula

for the prolongation of a vector field. In spite of the complexity of the prolonged group

action, the calculation of prolonged vector fields is straightforward. The cornerstone of

most of the computations is the notion of total derivative operators.

Definition 1.6. Let P [x] be a differential function. Its total derivative with respect to xi

is the differential function DiP [x] such that

DiP (x, pr(r+1)f(x)) = ∂i

(
P (x, pr(r)f(x))

)
for any smooth function f.

Using the straightforward chain rule argument one defines the general formula to

determine the action of the total derivative Di,

DiP = ∂iP +
m∑
α=1

∑
J

uαJ,i
∂P

∂uαJ
, where J, i is the multi-index (j1, . . . , jk, i).

Theorem 1.7. Let v =
n∑
i=1

ξi(x, u) ∂
∂xi

+
m∑
α=1

ηα(x, u) ∂
∂uα

be a vector field defined on an

open subset M ⊂ X × U . Its rth prolongation pr(r)v is the vector field

pr(r)v = v +
m∑
α=1

∑
J

ηJα(x, u(r))
∂

∂uαJ

defined in the jet space Jr(x|u), the multi-indices J = (ji, . . . , jk) run through all possible

indices with 1 6 jk 6 n and 1 6 k 6 r. The components ηJα of pr(r)v are determined as

ηJα(x, u(r)) = DJ

(
ηα −

n∑
i=1

ξiuαi

)
+

n∑
i=1

ξiuαJ,i. (1.2)

Similarly to infinitesimal generators of the symmetry group of a system of differential

equations, their prolongations also form a Lie algebra.
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1.2 Generalized symmetries

A vector field v =
n∑
i=1

ξi(x, u) ∂
∂xi

+
m∑
α=1

φα(x, u) ∂
∂uα

defined on some open subset M of the

space of independent and dependent variables X×U has a geometric sense, generating

a one-parameter transformation acting pointwise on X×U . Letting vector-field compo-

nents depend on derivatives of dependent variables, this sense is evidently being lost.

Nonetheless, this idea has another important interpretation. It provides a connection

with conservation laws, which are of significant importance in both physics and mathe-

matics. We call such vector fields generalized and discuss them in the remainder of this

section.

Definition 1.8. A generalized vector field is a formal expression of the form

v =
n∑
i=1

ξi[u]
∂

∂xi
+

m∑
α=1

ηα[u]
∂

∂uα
(1.3)

where ξi’s and φα’s are smooth differential functions.

Just as for ordinary geometric vector fields, we can define the prolongation of a gen-

eralized vector field pr(r)v = v +
m∑
α=1

∑
J

ηJα[u] ∂
∂uαJ

whose coefficients are determined by the

prolongation formula (1.2). Similarly to Lie symmetries, there is the invariance criterion

generalized symmetries.

Definition 1.9. A generalized vector field v is a generalized infinitesimal symmetry of a

system L of differential equations if and only if
(
pr(r) v

)
Lµ = 0 for any µ = 1, . . . , l and

any solution u = f(x) of the system L.

Another name for generalized symmetries is higher symmetries [26]. Among all the

generalized vector fields defined by (1.3), those for which the coefficients ξi[u] vanish play

a distinguished role.

Definition 1.10. An m-tuple Q[u] = (χ1[u], . . . , χm[u]) is called the characteristic of the

evolutionary generalized vector field v =
m∑
α=1

χα[u] ∂
∂uα

.

The characteristic of a generalized vector filed is also known as its generating func-

tion [26].
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Note that the rth prolongation of an evolutionary vector field is an evolutionary vector

field of the form

pr(r) vχ =
∑
α,J

DJχα[u]
∂

∂uαJ
.

Any vector field v, geometric or generalized, has the associated evolutionary representa-

tive vχ with the characteristic χ defined by

χα = ηα −
n∑
i=1

ξiuαi , α = 1, . . . ,m. (1.4)

Thus, every geometric vector field has the evolutionary representative with characteristic

depending on at most first-order derivatives. At the same time, not every first-order

evolutionary vector field has a geometric counterpart. This is the case only when its

characteristic is of the specific form (1.4), with ξi and ηα not depending on derivatives of u.

Theorem 1.11. A generalized vector field v is a symmetry of a system of differential

equations if and only if its evolutionary representative vχ is.

This property makes evolutionary vector fields distinguished. The generalized vector

field is called trivial if its characteristic vanishes on solutions of the system L. Two

generalized symmetries are called equivalent if they differ by a trivial one. This gives

rise to an equivalence relation on the space of generalized symmetries of the system. In

particular, the geometric symmetry and its evolutionary counterpart are equivalent.

Similarly to Lie symmetries, there are determining equations for generalized symme-

tries of a system of differential equations. To state it, we need to introduce an additional

object. Let A be the algebra of differential functions on the jet space J∞(x|u), and Al be

the algebra of their l-tuples.

Definition 1.12. The Fréchet derivative of a differential function P [u] ∈ Al is called the

differential operator DP : Am → Al defined for any Q ∈ Am so that

DP (Q) =
d

dε

∣∣∣∣
ε=0

P
[
u+ εQ[u]

]
.
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The Fréchet derivative of an l-tuple P = (P1, . . . , Pl) is represented by the m × l-

matrix differential operator with entries (DP )µν =
∑
J

∂Pµ
∂uνJ

DJ , where µ = 1, . . . , l , ν =

1, . . . ,m and the sum is running over all possible unordered multi-indices J . There is an

alternative name for the Fréchet derivative of a differential function P in the literature –

the linearization operator `P of the differential function P , cf. [26].

It turns out that the infinitesimal invariance criterion of systems of differential equa-

tions can be reformulated in terms of the Fréchet derivative, which is based on the fol-

lowing proposition.

Proposition 1.13. If L ∈ Al and χ ∈ Am, then DL(χ) = pr vχ(L).

Corollary 1.14. A generalized vector field v with characteristic χ is a generalized in-

finitesimal symmetry of a system L of differential equations if and only if DL(χ) = 0,

where L = (L1, . . . , L
l) on solutions of the system L.

There is a way to obtain new generalized symmetries of a system of differential equa-

tions from known ones. This operation is realized by so-called recursion operators and

will be used in the thesis.

Definition 1.15. A recursion operator for a system L of differential equations is a linear

differential operator R : Am → Am such that the image of any generalized symmetry vχ

of the system L is the generalized symmetry vχ̃ of the same system, where χ̃ = Rχ, and χ

and χ̃ are characteristics of the corresponding evolutionary vector fields.

1.3 Conservation laws

Definition 1.16. A conserved current of the system L is an n-tuple of differential func-

tions F = (F 1[u], . . . , F n[u]) the total divergence of which vanishes on the solutions of L,

(DivF )
∣∣
L = 0. (1.5)

Hereafter, the total divergence operator is defined by DivF = DiF
i, and Di = Dxi

denotes the operator of total differentiation with respect to the variable xi.
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The validity of (1.5) on the solution set of L is significant for relating the conserved

current F to L. A conserved current F is trivial if it is represented as F = F̂+F̌ , where F̂

and F̌ are n-tuples of differential functions such that the components of F̂ vanish on the

solutions of L and F̌ is a null divergence. By null divergence it is meant that Div F̌ = 0

holds unrestricted of the system L.

Two conserved currents F and F ′ are called equivalent if their difference F − F ′ is a

trivial conserved current. It is obvious that for any system L its set of conserved currents,

denoted by CC(L), is a linear space. Likewise, the subset of trivial conserved currents,

denoted by CC0(L), is a linear subspace of CC(L). The set of equivalence classes of CC(L)

with respect to the above equivalence relation on conserved currents is the quotient space

CC(L)/CC0(L), which is denoted by CL(L).

Definition 1.17. The linear space CL(L) is called the space of (local) conservation laws

of the system L. Its elements are called (local) conservation laws of the system L.

If the system L is totally nondegenerate, then it is possible to use the Hadamard

lemma and ‘integration by parts’ to represent the definition of conserved current (1.5) in

the form

DivF = λ1L1 + · · ·+ λlLl. (1.6)

Definition 1.18. The l-tuple of differential functions λ = (λ1, . . . , λl) and the equa-

tion (1.6) are called the characteristic and the characteristic form of the conservation law

corresponding to the conserved current F , respectively.

The Euler operator E = (E1, . . . ,Em) is the m-tuple of differential operators defined by

Ea = (−D)α∂uaα , a = 1, . . . ,m, where (−D)α = (−D1)α1 · · · (−Dn)αn .

A differential function f is a total divergence, meaning that f = DivF for some n-tuple

of differential functions F , if and only if it is annihilated by the Euler operator, Eaf = 0.

Using this property of the Euler operator and applying it to the characteristic form of
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conservation laws (1.6), one obtains Ea(λ1L1 + · · · + λlLl) = 0, which is a necessary and

sufficient condition for the tuple λ to be a conservation-law characteristic of the system L.

The notion of triviality extends to conservation-law characteristics as well. A char-

acteristic λ is called trivial if it vanishes for all solutions of L. The existence of trivial

characteristics makes it necessary to introduce equivalent characteristics. If the difference

λ− λ̃ of characteristics λ and λ̃ is a trivial characteristic, then the characteristics λ and λ̃

are called equivalent. Similarly to conserved currents, the set of characteristics of L, de-

noted by Ch(L), is a linear space with the subset Ch0(L) of trivial characteristics being

a linear subspace thereof.

In the literature, characteristics of conservation laws are also called their multipli-

ers [22, 23] and generating functions [26].

Finally, it is necessary to state the fundamental Noether theorem relating symmetries

of a system of differential equations with its conservation laws. Let a system L be Euler–

Lagrange equations with the Lagrangian L, that is, E(L) = 0. A generalized vector field X

is called a variational symmetry for L if X(L) = 0 on solutions of L.

Theorem 1.19. Suppose that L = {E(L) = 0} is an Euler–Lagrange system for the

Lagrangian L. Then an evolutionary vector field χ∂u is a variational symmetry for the

Lagrangian L if and only if χ is the characteristic of a conservation law of the system L.

1.4 Cosymmetries

In the study of conservation laws of systems of differential equations one needs to consider

formally adjoint operators to the Fréchet derivatives of differential functions.

Definition 1.20. Given a differential operator D =
∑
J

PJ [u]DJ , its formal adjoint is the

differential operator D∗ such that

∫
Ω

P · DQ dx =

∫
Ω

Q · D∗P dx

for every pair of differential functions P and Q in A which vanish when u = 0, every

domain Ω ∈ Rn and every function u = f(x) of compact support in Ω.
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Given a differential operator D as in the above definition, its formal adjoint is deter-

mined by the action on a differential function Q ∈ A as follows D∗Q =
∑
J

(−D)J(PJQ).

Similarly, a matrix differential operator D : Ap → Aq with entries Dµν has as the formal

adjoint the operator D∗ : Aq → Ap with entries D∗µν = (Dνµ)∗.

Definition 1.21. An operator D is formally self-adjoint if D∗ = D, it is formally skew-

adjoint if D∗ = −D.

Finally, the formally adjoint operator D∗P : Ar → Am of the Fréchet derivative of the

differential function P ∈ Ar has entries (D∗P )νµ =
∑
J

(−D)J · ∂Pµ∂uνJ
, where µ = 1, . . . , r and

ν = 1, . . . ,m.

Definition 1.22. A tuple of differential functions χ = (χ1, . . . , χl) is called a cosymmetry

of the system L, if it satisfies the condition D∗Lµ(χ) = 0 on solutions of the system L.

For example, characteristics of conserved currents of L are cosymmetries thereof. Sim-

ilarly to higher symmetries and conservation laws, one can define trivial cosymmetries

of L and an equivalence relation among them. Cosymmetries are also called adjoint-

symmetries in the literature [3, 4]. Recently, it was shown [9] that cosymmetries of L can

be geometrically viewed as certain vertical 1-forms on L(∞).

1.5 Hamiltonian systems of evolution equations

Consider the algebra A of differential functions over M = X × U . Each differential

function P ∈ A determines the functional
∫
P dx. We define the space F of functionals

as the set of equivalence classes on the algebra A under the equivalence relation P̃ ∼

P if and only if P̃ = P + Div Q for some Q ∈ An.

Definition 1.23. A Poisson bracket of functionals on a smooth manifold M is an op-

eration that assigns a functional {P ,Q} on M to each pair P ,Q ∈ F , with the basic

properties (a) Bilinearity: {aP +Q,R} = a{P ,R}+ {Q,R}, {P , aQ+R} = a{P ,Q}+

{P ,R}; (b) Skew-symmetry: {P ,Q} = −{Q,P}; (c) Jacobi identity: {{P ,Q},R} +

{{Q,R},P}+ {{R,P},Q} = 0 for any a ∈ R and P ,Q,R ∈ F .
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Consider a linear differential operator D : Am → Am on the space of m-tuples of

differential functions and associate to it the bracket {P ,Q} :=
∫
δP · DδQdx, where ·

stands for the inner product in Rm.

Definition 1.24. A linear differential operator D is called Hamiltonian if its associated

bracket is Poisson.

The equilibrium solutions of the equations of nondissipative continuum mechanics

are usually found by minimizing an appropriate variational integral. Therefore, smooth

solutions satisfy the Euler–Lagrange equations for the relevant functional and thus one

works in the Lagrangian framework discussed above. Nevertheless, for the full dynamical

problem described by a system of evolution equations Lagrangian formalism may not be

applicable and then the Hamiltonian formulation thereof comes into the scene.

Having the definition of the Poisson bracket of functionals we can introduce the Hamil-

tonian formalism of systems of evolution equations of the form ut = K[u], where K is

a differential function depending on u and its spatial derivatives. We call the system

Hamiltonian if it can be written as ut = DδH for some H ∈ F called the Hamiltonian

of the system. Thus to verify that a differential operator is Hamiltonian, one must check

that operator is formally skew-adjoint and it satisfies the Jacobi identity.

From the symmetry analysis point of view, Hamiltonian operators are important since

they relate cosymmetries of a system of differential equations with its generalized sym-

metries.
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Chapter 2

Generalized symmetries

and conservation laws

of (1+1)-dimensional

Klein–Gordon equation

2.1 Introduction

Noether’s idea of generalizing the notion of Lie symmetries of systems of differential

equations was to allow components of vector fields to depend on derivatives of unknown

functions, which led to the notion of generalized (or higher) symmetries [26, 103]. This

way, symmetries lose their geometric charm but become a powerful tool, e.g., for finding,

with Noether’s theorem, conservation laws of systems that are systems of Euler–Lagrange

equations for some Lagrangians. Although the general procedure of finding generalized

symmetries is similar to its counterpart for Lie symmetries, computational difficulty in-

creases rapidly as the order of symmetries to be found increases. Even low-order gener-

alized symmetries may be hard to compute, in spite of the possibility of using specialized

computer algebra packages [13, 36] in such computations. The situation with (local) con-

servation laws is alike, see for instance remarks in [37] on computational complexity of
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the problem on conservation laws of the Euler and the Navier–Stokes equations of order

less than or equal to two. Besides, given a system of differential equations, a computer

cannot handle the construction of all generalized symmetries or conservation laws of this

system unless there exist upper bounds on their orders, and these bounds are quite low

and are found independently. In view of this, the complete descriptions of generalized

symmetries and/or of conservation laws are known for not so many systems of differential

equations important for real-world applications as may be expected, taking into account

the intensive research activity in the related field.

The above approach with computing the upper bound of orders of generalized symme-

tries, cosymmetries or conservation laws was applied for a number of systems of differential

equations for which such bounds exist. This includes conservation laws of the BBM equa-

tions [44, 100], of the k-ε turbulence model [75], of (1+1)-dimensional even-order linear

evolution equations [132, Corollary 6] and of the equation ut = uxxx + xu [132, Exam-

ple 6], the classification of conservation laws of second-order evolution equations [131]

up to contact equivalence, generalized symmetries of the Bakirov system [136] as well

as generalized symmetries and conservation laws of the Navier–Stokes equations [67],

of the (1+3)-dimensional, (1+2)-dimensional and axisymmetric Khokhlov–Zabolotskaya

equations [141], of non-integrable compacton K(m,m)-equations [163] and of generalized

Kawahara equations [160]. There exist no more or less general results on such upper

bounds, except the well-known upper bound for orders of conservation laws of even-order

(1+1)-dimensional evolution equations and the extension of this bound in [72] to a wider

class of systems of differential equations.

For (integrable) systems admitting (co)symmetries of arbitrary high order, it may be

possible to find recursion operators [78, 102, 103, 138] for symmetries and/or for cosymme-

tries with subsequent determining which cosymmetries are associated with conservation

laws. At the same time, recursion operators are not guaranteed to yield all (co)symmetries

and so there remains a problem of proving nonexistence of other (co)symmetries. Another

point is that recursion operators do not always generate local objects, with generalized

symmetries of the Korteweg–de Vries equation and the Lenard recursion operator [63]
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as an example here, so it is necessary to pick the local ones post factum or prove that

the generated hierarchy is local [137]. Amongst known examples of complete descriptions

of infinite hierarchies of generalized symmetries and conservation laws are those for the

Korteweg–de Vries equation [71, 79, 84, 152], for its linear counterpart ut = uxxx [132, Ex-

ample 5], of the vacuum Einstein equations in the four-dimensional spacetime [11], for free

Maxwell’s equations in (3+1)-dimensional Minkowski space [5, 7], for massless free fields

of spin s > 1/2 [6, 122] and for an isothermal no-slip drift flux model [113]. All the gen-

eralized symmetries of the Yang–Mills equations on Minkowski space with a semi-simple

structure group were computed in [121]. Symmetry operators of the one-dimensional

Schrödinger equation were studied in [62, 95]. See also [43, 150] for a general theory of

hydrodynamic systems, where infinite hierarchies of conservation laws and symmetries,

though often nonlocal, are common, and [92, 138, 139, 162] for some related examples.

In the present chapter, we exhaustively describe generalized symmetries and local

conservation laws of the (1+1)-dimensional (real) Klein–Gordon equation, which takes, in

natural units, the form �u+m2u = 0, where u is the real-valued unknown function of the

real independent variables x0 and x1, � is the d’Alembert operator in (1+1) dimensions,

� = ∂2/∂x2
0 − ∂2/∂x2

1, and m denotes the nonzero mass parameter.1 Without loss of

generality, the mass parameter can be set to be equal one by simultaneous scaling of the

independent variables. We work with this equation in the characteristic, or light-cone,

variables x = (x0 + x1)/2 and y = (−x0 + x1)/2,

K : uxy = u.

In what follows we use the same notation K for the solution set of the equation K as

well as for the set defined by K and its differential consequences in the corresponding

infinite-order jet space.

Our specific interest to the equation K originated from the study of the hydrodynamic-

type system S of differential equations modeling an isothermal no-slip drift flux, see Chap-

1The zero value of m, which corresponds to the wave equation, is singular in all properties related
to symmetry analysis of differential equations, including Lie, contact and generalized symmetries and
conservation laws; cf. [70, Section 18.4] and [127].
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ter 3. It turned out that the (nonlinear) system S is reduced to the (linear) equation K by

the composition of a simple point transformation and a rank-two hodograph transforma-

tion. The family of regular solutions of S is parameterized by an arbitrary solution of K

and by an arbitrary function of a single argument. Moreover, finding generalized symme-

tries and local conservation laws of the system S reduces to the analogous problems for

the equation K. At the same time, we did not find exhaustive and trusted solutions of the

latter problems in the literature, which motivated our study of the Klein–Gordon equation.

The Lie invariance algebra g of the equation K was computed by Sophus Lie himself in

the course of the group classification of second-order linear equations with two indepen-

dent variables [82, Section 9]. The equation K appeared there as the simplest particular

member of a parameterized family of inequivalent equations that admit three-dimensional

Lie-symmetry extensions in comparison with the general case.2 The algebra g is spanned

by the vector fields

∂x, ∂y, x∂x − y∂y, u∂u, f(x, y)∂u,

where the function f = f(x, y) runs through the solution set of K. This algebra is repre-

sented as the semidirect sum, g = gess ∈ g∞, of the so-called (finite-dimensional) essential

Lie invariance subalgebra gess := 〈∂x, ∂y, x∂x − y∂y, u∂u〉 and the (infinite-dimensional)

Abelian ideal g∞ := 〈f(x, y)∂u, f ∈ K〉 related to the linear superposition of solutions

of K. Note that Sophus Lie carried out the group classification over the complex field

under supposing all objects, like equation coefficients and components of vector fields, to

be analytic. This is why his results are directly extended to hyperbolic equations over the

real field.

Since the equation K is the Euler–Lagrange equation of the Lagrangian

K = −1

2
(uxuy + u2),

2The same classification case was represented in [116, Section 9.6] by another family, which is similar to
the family singled out by Lie with respect to a point transformation but is more cumbersome. Under this
representation, the relation of the Klein–Gordon equation to Lie-symmetry extensions within the class of
second-order linear equations with two independent variables is not so obvious as in Lie’s paper [82].
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its local conservation laws can be constructed using Noether’s theorem. Conservation

laws associated with essential variational Lie symmetries of the Lagrangian K are well

known and admit an obvious physical interpretation. These are the conservations of

energy-momentum and of relativistic angular momentum, which are respectively related,

via Noether’s theorem, to spacetime translations and to Lorentz transformations; see [148]

for a good pedagogical presentation.

In the course of a general discussion of quadratic conserved quantities in free-field the-

ories in [76], it was shown that the (1+3)-dimensional Klein–Gordon equation possesses

an infinite-dimensional space of conservation laws with conserved currents whose com-

ponents are quadratic expressions in derivatives of the dependent variable with constant

coefficients; in fact, the specific dimension (1+3) is not essential in this result. Tsu-

jishita [151] proved that for the (1 + n)-dimensional Klein–Gordon equation with n > 2,

this space coincides with the space of conservation laws containing the conserved currents

whose components are differential polynomials with constant coefficients; see also [152]

and references therein. At the same time, the Klein–Gordon equation obviously possesses

other conservation laws. There are such conservation laws even among conservation laws

associated with Lie variational symmetries of the corresponding Lagrangian, e.g., the

conservations of relativistic angular momentum.

Having generalized the notion of Killing vector, in [94] Nikitin introduced the notions

of generalized Killing tensors and generalized conformal Killing tensors of arbitrary rank

and arbitrary order in the (p+q)-dimensional pseudo-Euclidean space Rp,q of signature

(p, q) with arbitrary p, q ∈ N0 := N ∪ {0}, p + q > 1. The explicit form of these tensors

was found therein and then used for the study of linear symmetry operators of the Klein–

Gordon–Fock equation in Rp,q. See also [96] for a more detailed exposition of the above

results and [62], where a number of results on linear symmetry operators of linear systems

of differential equations arising as models in quantum mechanics are collected.

Shapovalov and Shirokov stated in [140] that for any r ∈ N0, an arbitrary linear

second-order partial differential equation with nondegenerate symbol and more than two

independent variables possesses only a finite number of linearly independent linear sym-
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metry operators up to order r and admits no nonlinear generalized symmetries, that is,

symmetries equivalence classes of which do not have elements with characteristics not

affine in derivatives of a dependent variable. Therein, they also described the algebra of

generalized symmetries of the Laplace–Beltrami equation in the space Rp,q in terms of

the universal enveloping algebra of the essential Lie invariance algebra of this equation;

see [45] for a further deeper study of the algebra of generalized symmetries of the Laplace

equation.

Note that the algebra of generalized symmetries and the spaces of local conserva-

tion laws and variational symmetries of the associated Lagrangian of the allied (1+1)-

dimensional wave equation uxy = 0 are known, see [70, Section 18.4] and [127], and they

essentially differ from the corresponding objects for the equation K. Nonlinear wave

equations of the form uxy = f(u) admitting generalized symmetries whose characteristics

do not depend on the independent variables were singled out in [169]; see also [70, Sec-

tion 21.2]. The complete classification of local conservation laws of equations in this class

was initiated and partially carried out in [60].

The results of the present chapter are published in [115] and its structure is as follows.

In Section 2.2 we explicitly describe the quotient algebra Σq of generalized symmetries of

the (1+1)-dimensional Klein–Gordon equation K with respect to the standard equivalence

of generalized symmetries by presenting a naturally isomorphic space of representatives

for equivalence classes of generalized symmetries. This leads to the description of the

algebra Σq in terms of the universal enveloping algebra of the essential Lie invariance al-

gebra of K. The related computations are essentially simplified by using advantages of the

characteristic independent variables for the equation K, which are specific for the (1+1)-

dimensional case. As another optimization, we avoid the direct integration of the system

of determining equations for generalized symmetries of K. Instead of this integration,

which is realizable but quite cumbersome, we estimate the number of independent lin-

ear symmetries of an arbitrary fixed order, apply the Shapovalov–Shirokov theorem [140]

and explicitly present the same number of appropriate linear symmetries. In Section 2.3

we recall the variational interpretation of the equation K and accurately single out the
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space of variational symmetries of the Lagrangian K from the entire space of generalized

symmetries of K. Finally, in Section 2.4 we find the space of local conservation laws of K

using Noether’s theorem for constructing a space of conserved currents that is naturally

isomorphic to the space of local conservation laws. In the course of this construction, we

select conserved currents of minimal order among the equivalent ones, which immediately

specifies the spaces of conservation laws of each fixed order. We also show that, up to the

action of generalized symmetries, the entire space of conservation laws of the equation

under study is generated by a single conservation law. In Section 2.5 we underscore all

the techniques and ideas, especially specific to the present chapter, which we use in the

course of the study.

2.2 Generalized symmetries

Here we revisit the construction of the algebra Σ of generalized symmetries of the (1+1)-

dimensional Klein–Gordon equation with some enhancements. Computing generalized

symmetries, without loss of generality we can consider only evolutionary generalized vector

fields and evolutionary representatives of generalized symmetries [103, p. 291] and thus

assume that the algebra Σ is constituted by such representatives for the above equation,

Σ =
{
X = η[u]∂u | DxDyη[u] = η[u] on K

}
,

where η[u] denotes a differential function of u, and Dx and Dy are the operators of total

derivatives in x and y, respectively; see [103, Definition 2.34]. We denote by Σtriv the

algebra of trivial generalized symmetries of the equation K, which is an ideal of Σ. It

consists of all generalized vector fields in the evolutionary form (with the independent

variables (x, y) and the dependent variable u) whose characteristics vanish on solutions

of K. The quotient algebra Σq = Σ/Σtriv is naturally isomorphic3 to the algebra of

3There are two similar kinds of natural (or canonical) isomorphisms in this chapter—those related
to quotient linear spaces and those related to quotient Lie algebras. Given a linear space V and its
subspaces U and W such that V = U uW , where “u” denotes the direct sum of subspaces, the natural
isomorphism between V/U and W is established in the way that each coset of U corresponds to the
unique element of W belonging to this coset. In a similar way, natural isomorphisms are established
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canonical representatives in the reduced evolutionary form,

Σ̂q =
{
X = η[u]∂u ∈ Σ | η[u] = η(x, y, u−n, . . . , un) for some n ∈ N0

}
.

Here x, y, u0 := u, uk := ∂kxu and u−k := ∂kyu, k ∈ N, constitute the standard coordi-

nates on the manifold defined by the equation K and its differential consequences in the

infinite-order jet space J∞(x, y|u) with the independent variables (x, y) and the dependent

variable u. Negative indices were used in view of the equality uxy = u on K. The Lie

bracket on Σ̂q is defined as the reduced Lie bracket of generalized vector fields, where all

arising mixed derivatives of u are substituted in view of the equation K and its differential

consequences,

[η1∂u, η
2∂u] =

∞∑
k=0

(η2
uk
Dk
xη

1 − η1
uk
Dk
xη

2)∂u +
∞∑
k=1

(η2
u−k

Dk
yη

1 − η1
u−k

Dk
yη

2)∂u,

where Dx and Dy are the reduced operators of total derivatives with respect to x and y,

Dx := ∂x +
+∞∑

k=−∞

uk+1∂uk , Dy := ∂y +
+∞∑

k=−∞

uk−1∂uk .

The subspace Σn =
{

[X] ∈ Σq | ∃ η[u]∂u ∈ [X] : ord η[u] 6 n
}

, n ∈ N0 ∪ {−∞}, of Σq

is the space of generalized symmetries of order less than or equal to n.4 It is naturally

isomorphic to the subspace of canonical representatives in the reduced evolutionary form

with characteristics of order less than or equal to n,

Σ̂n =
{
η[u]∂u ∈ Σ̂q | ord η[u] 6 n

}
, n ∈ N0 ∪ {−∞}.

Note that the subspace Σ̂−∞ can be identified with the subalgebra of Lie symmetries of K

associated with the linear superposition of solutions of K, Σ̂−∞ = {f(x, y)∂u | f ∈ K}, i.e.,

with f running through the solution set of K. The subspace family {Σn | n ∈ N0∪{−∞}}

between a/i and b, where a is a Lie algebra, and b and i are its subalgebra and its ideal, respectively,
such that a = b ∈ i.

4The order ordF [u] of the differential function F [u] is the highest order of derivatives of u involved
in F [u] if there are such derivatives, and ordF [u] = −∞ otherwise. If X = η[u]∂u, then ordX := ord η[u].
For [X] ∈ Σq, ord[X] = min

{
ord η[u] | η[u]∂u ∈ [X]

}
.
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filters the algebra Σq. Consider the quotient spaces Σ[n] = Σn/Σn−1 for n ∈ N and

Σ[0] = Σ0/Σ−∞ and denote Σ[−∞] := Σ−∞. The space Σ[n] can be assumed as the space

of nth order generalized symmetries of K, n ∈ N0 ∪ {−∞}.

An algebra of linear generalized symmetries of the equation K is

Λ =

{
η[u]∂u ∈ Σ

∣∣∣ η = Du for some D =
∑
|α|6n

ζα(x, y)Dα1
x Dα2

y , n ∈ N0

}
.

Recall that α = (α1, α2) ∈ N 2
0 is a multiindex, and |α| = α1 + α2. The subalgebra Λtriv

of trivial linear generalized symmetries coincides with Λ ∩ Σtriv. The quotient algebra

Λq = Λ/Λtriv can be embedded into Σq as the subalgebra of cosets of Σtriv that contain

linear generalized symmetries. The subspace Λn = Λq ∩ Σn with n ∈ N0 is naturally

isomorphic to the space Λ̂n of evolutionary generalized symmetries whose characteristics

are of the reduced form, where the mixed derivatives of u are excluded in view of K,

η[u] =
n∑

k=−n

ηk(x, y)uk. (2.1)

Elements of Λ̂n are canonical representatives of cosets of Σtriv constituting the space Λn.

The quotient spaces Λ[n] = Λn/Λn−1, n ∈ N, and the subspace Λ[0] = Λ0 are naturally

embedded into the respective spaces Σ[n]’s, n ∈ N0. We interpret the space Λ[n] as the

space of nth order linear generalized symmetries of K, n ∈ N0. This space is isomorphic

to the space of the pairs (ηn, η−n) such that the differential function η[u] defined by (2.1)

with some values of the other coefficients η’s is the characteristic of an element of Λ̂n.

Lemma 2.1. dim Λ[n] = 2n+ 1, n ∈ N0.

Proof. For generalized symmetries with characteristics of the form (2.1), the invariance

criterion for K, DxDyη = η, implies the following system of determining equations:

∆k : ηkxy + ηk−1
y + ηk+1

x = 0, k = −n− 1,−n, . . . , n, n+ 1,

where we assume η−n−2, η−n−1, ηn+1 and ηn+2 to vanish. These symmetries are of (essen-

tial) order n if and only if at least one of the coefficients η−n and ηn does not vanish.
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Suppose the coefficient η−n does not vanish. We integrate the equation ∆−n−1: η−nx =0,

which gives η−n = θ(y) for some smooth function θ of y. After substituting the obtained

value of η−n into ∆−n and ∆−n+1, we consider the set ∆[−n,n−1] of the equations ∆k with

k = −n,−n+ 1, . . . , n−1 as a system of inhomogeneous linear differential equations with

respect to the other η’s. The equation ∆−n takes the form η−n+1
x = 0, and it is convenient

to represent the equations ∆k with k = −n+1,−n+2, . . . , n−1 as ηk+1
x = −ηkxy−ηk−1

y . To

find a particular solution of the system ∆[−n,n−1], we successively integrate its equations

with respect to x, taking the antiderivatives 0 and xn+1/(n+1) for 0 and xn, respectively.

We can neglect the solutions of the homogeneous counterpart of ∆[−n,n−1] since they

correspond to the zero value of η−n. After the integration, we derive an expression for ηn,

ηn =
(−1)n

n!

dnθ

dyn
xn +R,

where R is a polynomial in x with degxR < n, whose coefficients depend linearly and

homogeneously on derivatives of θ of order greater than n. Substituting this expression

into the equation ∆n: ηny = 0 and splitting with respect to x, we obtain the equation

dn+1θ/dyn+1 = 0. Since the derivative ηn−1
y is of the same structure as R, the equa-

tion ∆n−1: ηn−1
y = 0 is identically satisfied in view of the equation for θ. As a result,

we have n + 1 linearly independent values of the coefficient η−n, say, 1, y, . . . , yn, and,

therefore, n + 1 linearly independent generalized symmetries with characteristics of the

form (2.1) with nonvanishing coefficient η−n. Moreover, only one of these symmetries,

with η−n = yn, has a nonvanishing value of the coefficient ηn.

Since the problem is symmetric with respect to x and y, after supposing that the

coefficient ηn does not vanish, we turn the above procedure around by permuting x and y

and by changing the direction of the successive integration. This leads to n + 1 linearly

independent generalized symmetries with characteristics of the form (2.1) with nonvan-

ishing coefficient ηn, where similarly to the above case, only one of these symmetries has

a nonvanishing value of the coefficient η−n.

Therefore, in total there exist precisely 2n + 1 linearly independent nth order gener-

alized symmetries with characteristics of the form (2.1).
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Corollary 2.2. dim Λn =
n∑
k=0

dim Λ[k] = (n+ 1)2 < +∞, n ∈ N0.

Lemma 2.3. The space Σ[n] with n ∈ N0 is naturally isomorphic to the subspace

Σ̃[n] =
〈
(Jnu)∂u, (JkDn−k

x u)∂u, (JkDn−k
y u)∂u, k = 0, . . . , n− 1

〉
of Λ, where J := xDx − yDy. Here each element X of Σ̃[n] corresponds to the element

of Σ[n] that, as a coset of Σn−1 in Σn, contains an element of Σn that, as a coset of Σtriv

in Σ, contains X.

Proof. In view of the Shapovalov–Shirokov theorem [140, Theorem 4.1], Lemma 2.1 im-

plies that Σ[n] = Λ[n] for n ∈ N0.

The differential functions Dxu = ux, Dyu = uy and Ju = xux − yuy are the charac-

teristics of the Lie symmetries −∂x, −∂y and y∂y − x∂x of K, respectively, and hence the

operators Dx, Dy and J are its recursion operators. Therefore, any operator D in the uni-

versal enveloping algebra generated by these operators is a symmetry operator of K, that

is, a generalized vector field (Du)∂u is a generalized symmetry of K. Thus, Σ̃[n] ⊂ Λ ⊂ Σ.

The space Σ̃[n] contains no nonzero trivial generalized symmetries of K. Indeed, sup-

pose that an element X ∈ Σ̃[n] with characteristic

X[u] = aJnu+
n−1∑
k=0

(
bkJ

kDn−k
x u+ ckJ

kDn−k
y u

)
is a trivial symmetry, that is, X[u] vanishes on solutions of K. Here a, b’s and c’s are

constants. Consider the solution uλ = eλx+λ−1y of the equation K, which is parameterized

by λ ∈ R/{0}. The expression e−λx−λ
−1yX[uλ] is a polynomial in λx−λ−1y, λx+λ−1y, λ

and λ−1, whose collection of terms of maximal total degree, which equals n, coincides with

a
(
λx − λ−1y

)n
+
∑n−1

k=0

(
λx − λ−1y

)k(
bkλ

n−k + ckλ
k−n). Then the condition X[uλ] = 0

implies that a = 0 and bk = ck = 0, k = 0, . . . , n− 1.

In other words, different elements of Σ̃[n] belong to different cosets of Σtriv in Σ, which

are elements of Σq. Moreover, the order of each of these cosets is n, and dim Σ̃[n] = 2n+1.

In view of Lemma 2.1, the space Σ̃[n] is canonically isomorphic to the space Λ[n] = Σ[n].
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It follows from Lemma 2.3 that Σq = Λq ∈ Σ−∞ ' Σ̃q = Λ̃q ∈ Σ̃−∞, where

Λq ' Λ̃q :=
〈
(Jku)∂u, (JkDl

xu)∂u, (JkDl
yu)∂u, k ∈ N0, l ∈ N

〉
,

Σ−∞ ' Σ̃−∞ := Σ̂−∞ =
{
f(x, y)∂u | f ∈ K

}
,

and all the above isomorphisms are natural as related to quotient spaces. They become

natural isomorphisms related to quotient Lie algebras if we define the Lie bracket on the

space Σ̃q as the Lie bracket of generalized vector fields, where mixed derivatives arising

due to the action of the operators Dx and Dy not involved in J should be substituted in

view of the equation K and its differential consequences.

The essential Lie invariance algebra gess of the equation K is spanned by the vector

fields ∂x, ∂y, x∂x − y∂y and u∂u, cf. [62]. It can be identified with the quotient g/Σ̃−∞

of the Lie invariance algebra g of with respect to the abelian ideal Σ̃−∞ corresponding

to the linear superposition of solutions of K. Thus, the algebra gess is isomorphic to the

direct sum of the pseudo-Euclidean algebra e(1, 1) (the Poincaré algebra p(1, 1) in another

terminology or the algebra g−1
3.4 in Mubarakzyanov’s classification of low-dimensional Lie

algebras [93]) and the one-dimensional (abelian) algebra a1, gess ' e(1, 1)⊕ a1. Note also

that gess ' Λ1 ' Σ1/Σ−∞. Let

φ : gess → e(1, 1)⊕ a1

be the isomorphism with φ(u∂u) = e0, φ(∂x) = e1, φ(∂y) = e2 and φ(x∂x−y∂y) = e3, where

〈e0〉 = a1 and the basis (e1, e2, e3) of e(1, 1) is related to the standard basis (ẽ1, ẽ2, ẽ3) by

ẽ1 = e1 + e2, ẽ2 = e1 − e2, ẽ3 = e3. The canonical commutation relations of e(1, 1) are

[ẽ1, ẽ2] = 0, [ẽ1, ẽ3] = ẽ2 and [ẽ2, ẽ3] = ẽ1, which in the basis (e1, e2, e3) take the form

[e1, e2] = 0, [e1, e3] = e1 and [e2, e3] = −e2. Thus, the universal enveloping algebra U(gess)

of the algebra gess is isomorphic to the quotient of the tensor algebra T(e(1, 1)⊕a1) by the

two-sided ideal I generated by e1⊗e2−e2⊗e1, e1⊗e3−e3⊗e1−e1, e2⊗e3−e3⊗e2 +e2,

e0 ⊗ ei − ei ⊗ e0, i = 1, 2, 3.
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Theorem 2.4. The quotient algebra Σq of generalized symmetries of the Klein–Gordon

equation K is naturally isomorphic to the algebra Σ̃q, which is the semidirect sum of the

algebra

Λ̃q =
〈
(Jku)∂u, (JkDl

xu)∂u, (JkDl
yu)∂u, k ∈ N0, l ∈ N

〉
' U

(
e(1, 1)⊕ a1

)
/I

with the abelian algebra Σ̃−∞ = {f(x, y)∂u | f ∈ K}. Here I is the two-sided ideal of the

universal enveloping algebra U(e(1, 1)⊕ a1) that is generated by the cosets e1⊗ e2− e0 + I

and e0 ⊗ ej − ej + I, j = 0, 1, 2, 3.

Moreover, for each X ∈ Λ̃q we denote by X the linear operator in total derivatives

with coefficients depending on x and y that is associated with X, X[u] = Xu. In this

terminology the operators 1, Dx, Dy and J are associated with the evolutionary forms

of the Lie symmetries u∂u, −∂x, −∂y and y∂y − x∂x of the Klein–Gordon equation K,

respectively. Note that LX = XL for any X ∈ Λ̃q.

Corollary 2.5. Σ̂q = Λ̂q ∈ Σ̂−∞, where

Λ̂q :=
〈
(Jku)∂u, (JkDl

xu)∂u, (JkDl
yu)∂u, k ∈ N0, l ∈ N

〉
' Λ̃q,

Σ̂−∞ = Σ̃−∞ :=
{
f(x, y)∂u | f ∈ K

}
and J := xDx − yDy.

2.3 Variational symmetries

The (1+1)-dimensional Klein–Gordon equation K is the Euler–Lagrange equation for the

Lagrangian K = −(uxuy + u2)/2. Therefore, the spaces Σ, Σtriv and Σq respectively

coincide with their counterparts for cosymmetries. Moreover, in view of Noether’s theo-

rem [103, Theorem 5.58] a differential function is a conservation-law characteristic of K if

and only if it is the characteristic of a (generalized) variational symmetry of K.

Since a generalized vector field is a variational symmetry of a Lagrangian if and only if

its evolutionary representative is [103, Proposition 5.32], we work only with evolutionary

representatives of variational symmetries. Denote by Υ, Υtriv and Υq the algebra (of evo-

lutionary representatives) of variational symmetries of the Lagrangian K, its subalgebra
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of trivial variational symmetries and the quotient algebra of variational symmetries of this

Lagrangian, i.e., Υ ⊂ Σ, Υtriv := Υ∩Σtriv and Υq := Υ/Υtriv. In contrast to Σtriv, the al-

gebra Υtriv does not consist of all generalized vector fields in the evolutionary form whose

characteristics vanish on solutions of K. This is why one should carefully use reductions

of generalized symmetries by excluding derivatives in view of K when working with varia-

tional symmetries, the space of which may not be closed with respect to such a reduction.

We also define the subspace of variational symmetries of order less than or equal to n,

Υn =
{

[X] ∈ Υq | ∃ η[u]∂u ∈ [X] : ord η[u] 6 n
}
, n ∈ N0 ∪ {−∞},

and denote Υ[n] = Υn/Υn−1 for n ∈ N, Υ[0] = Υ0/Υ−∞ and Υ[−∞] := Υ−∞. The space Υ[n]

can be interpreted as the space of nth order variational symmetries of K, n ∈ N0∪{−∞}.

Lemma 2.6. If a linear generalized symmetry X ∈ Λ of the Klein–Gordon equation is a

variational symmetry of the Lagrangian K, then ordX ∈ 2N0 + 1.

Proof. In order for a generalized vector field X in Λ to be a variational symmetry of K,

its characteristic Xu has to satisfy the criterion [103, Proposition 5.49]

D†Xu(Ku) + D†Ku(Xu) = (X†K + K†X)u = 0

on the entire infinite-order jet space J∞(x, y|u). Here the operator in total derivatives

X corresponds to X, K is the operator in total derivatives that is associated with the

equation K, K = DxDy − 1, a constant summand in a differential operator denotes the

multiplication operator by this constant, DF denotes the Fréchet derivative of a differential

function F , and B† denotes the formal adjoint to a differential operator B. Hence we have

the operator equality X†K+K†X = 0. Since the equation K is the Euler–Lagrange equation

of a Lagrangian, the operator K is formally self-adjoint, K† = K. If ordX were even, then

the principal symbol of the left-hand side of the operator equality X†K + K†X = 0 would

be equal to the product of the principal symbols of X and K multiplied by two, and hence

this left-hand side could not be equal to zero. Therefore, ordX is odd.
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Corollary 2.7. A linear generalized symmetry X ∈ Λ̃q of the Klein–Gordon equation K

is a variational symmetry of the Lagrangian K if and only if the corresponding operator X

is formally skew-adjoint, X† = −X.

Proof. For X ∈ Λ̃q, the operators K and X commute, LX = XL. This implies

0 = X†K + K†X = X†K + KX = X†K + XK = (X† + X)K,

and, therefore, X† + X = 0. Turning all implications around completes the proof.

Remark. A thorough inspection of the proof of Lemma 2.6 shows that the same assertion

holds for linear variational symmetries of any Lagrangian of one dependent variable whose

Euler–Lagrange equation is linear. The assertion analogous to Corollary 2.7 additionally

needs commuting differential operators associated with these symmetries and with the

Euler–Lagrange equation.

We change the basis of the algebra Λ̃q to
(
(Xklu)∂u, k, l ∈ N0, (X̄klu)∂u, k ∈ N0, l ∈ N

)
,

where basis’ elements are respectively associated with the operators

Xkl =

(
J +

l

2

)k
Dl
x, k, l ∈ N0, X̄kl =

(
J− l

2

)k
Dl
y, k ∈ N0, l ∈ N. (2.2)

The algebra Λ̃q is decomposed into the direct sum of two subspaces, Λ̃q = Λ̃q
− u Λ̃q

+,

where Λ̃q
− (resp. Λ̃q

+) is the subspace of elements in Λ̃q associated with formally skew-

adjoint (resp. self-adjoint) operators. Since

D†x = −Dx, D†y = −Dy, J† = −J, DxJ = (J + 1)Dx, DyJ = (J− 1)Dy,

we have X†kl = (−Dx)
l
(
−J + l

2

)k
= (−1)k+lDl

x

(
J− l

2

)k
= (−1)k+lXkl and similarly

X̄†kl = (−1)k+lX̄kl. Therefore, the generalized vector fields corresponding to the opera-

tors (2.2) with odd (resp. even) values of k+l constitute a basis of the space Λ̃q
− (resp. Λ̃q

+),

Λ̃q
− = 〈 (Xk′0u)∂u, k

′ ∈ 2N0+1, (Xklu)∂u, (X̄klu)∂u, k ∈ N0, l ∈ N, k + l ∈ 2N0+1〉,

Λ̃q
+ = 〈 (Xk′0u)∂u, k

′ ∈ 2N0, (Xklu)∂u, (X̄klu)∂u, k ∈ N0, l ∈ N, k + l ∈ 2N0〉.
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Theorem 2.8. The quotient algebra Υq of variational symmetries of the Lagrangian K

is naturally isomorphic to the algebra Υ̃q = Λ̃q
− ∈ Σ̃−∞.

Proof. We revert to the coordinates (x0, x1, u) and solve the equation K with respect to

the derivative ∂2u/∂x2
0, ∂2u/∂x2

0 = ∂2u/∂x2
1 − u. This gives a representation of K in the

(extended) Kovalevskaya form. Lemma 3 in [86] (which was given in [103] as Lemma 4.28)

reformulated for Euler–Lagrange equations in terms of variational symmetries of corre-

sponding Lagrangians implies that for an arbitrary generalized vector field X in Υ, the

corresponding element [X]var of Υq contains, as the coset X + Υtriv in Υ, a generalized

vector field X̆ in the reduced form that is obtained by excluding all derivatives of u with

more than one differentiation with respect to x0 in view of K. Moreover, X̆ is the only

generalized vector field in the above reduced form that belongs to the coset X + Υtriv

in Υ. It is also the only generalized vector field in the above reduced form that belongs

to the coset X + Σtriv in Σ. The coset X + Σtriv necessarily contains exactly one element

of Σ̃q = Λ̃q ∈ Σ̃−∞, which we denote by X̃. Note that the used coordinate change pre-

serves the linearity of elements of Λ. Therefore, X̆ is the reduced form of X̃, and hence

X̆ ∈ Λ ∈ Σ̃−∞. Now we can revert to the coordinates (x, y, u).

For any linear system of differential equations, characteristics of its Lie symmetries

associated with the linear superposition of solutions are conservation-law characteristics

of this system. Therefore, Σ̃−∞ ⊂ Υ. Since different elements in Σ̃−∞ belong to different

elements in the quotient space Υq as cosets of Υtriv in Υ, and ord[X] = −∞ for each

X ∈ Σ̃−∞, the algebra Σ̃−∞ is naturally isomorphic to Υ[−∞].

By Λ̃
[n]
− we denote the subspace of Λ̃q

− that is spanned by basis elements of Λ̃q
− of

order n. We have Λ̃
[n]
− = {0} for even n, and if n is odd, then

Λ̃
[n]
− =

〈
(Xn0u)∂u, (Xk,n−ku)∂u, (X̄k,n−ku)∂u, k = 0, . . . , n− 1

〉
.

Lemma 2.6 implies that if X ∈ Λ ∩ Υ, then ordX is odd. Therefore, dim Υ[n] = 0 =

dim Λ̃
[n]
− for even n. For odd n, dim Υ[n] 6 dim Σ[n] = dim Σ̃[n] = dim Λ̃

[n]
− < +∞. On

the other hand, Λ̃
[n]
− ⊂ Υ, and ord[X] = n for each nonzero X ∈ Λ̃

[n]
− . Hence different
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elements in Λ̃
[n]
− belong to cosets of Υtriv in Υ that are elements of Υn and belong to

different cosets of Υn−1 in Υn. Recall that the latter cosets are considered as elements of

the twice quotient space Υ[n]. This implies that dim Λ̃
[n]
− 6 dim Υ[n]. In total, for odd n

this gives that dim Λ̃
[n]
− = dim Υ[n], and the subspace Λ̃

[n]
− of Υ is naturally isomorphic to

the space Υ[n] via taking quotients twice. Therefore, the subspace Υn of Υq is naturally

isomorphic to the subspace Σ̃−∞u Λ̃
[0]
− u · · ·u Λ̃

[n]
− of Υ. Then the algebra Υq is naturally

isomorphic to the algebra Υ̃q = Λ̃q
−∈ Σ̃−∞. Here the Lie bracket on Υ̃q is defined similarly

to the Lie bracket on Σ̃q, i.e., as the Lie bracket of generalized vector fields, where mixed

derivatives arising due to the action of Dx and Dy not involved in J should be substituted

in view of the equation K and its differential consequences.

Remark 2.9. Cosets of Υtriv in Υ do not necessarily intersect the algebra Σ̂q, i.e., they

do not have canonical representatives in the evolutionary form reduced on solutions of the

equation K. For example, the reduced counterpart (J3u)∂u of the variational symmetry

(X30u)∂u = (J3u)∂u of K is not a variational symmetry of K since the difference

(J3u)∂u − (J3u)∂u = 3xyJ(uxy − u)∂u

is not. Recall that J := xDx − yDy. In other words, the reduced evolutionary form of

generalized symmetries of the Klein–Gordon equation K is not appropriate in the course

of the study of variational symmetries of K.

2.4 Conservation laws

For each element in a set spanning the space Υ̃q, we construct a conserved current of the

corresponding conservation law. Moreover, these conserved currents are of the simplest

form and of minimal order among equivalent conserved currents, that is, their orders coin-

cide with the orders of conservation laws containing them. In the course of this construc-

tion, we multiply the differential function Ku by the characteristic of a variational symme-

try of K and rewrite, “integrating by parts”, this expression in the form of a total diver-

gence of a tuple of differential functions, which is nothing else but a conserved current of K.
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Thus, for any element f(x, y)∂u of Σ̃−∞, the function f = f(x, y) is a solution of K, and

we have fKu = Dx(fuy) + Dy(−fxu) = Dx(−fyu) + Dy(fux), which yields the equivalent

first-order conserved currents

C0
f = (fuy,−fxu) and C̄0

f = (−fyu, fux).

Using a similar trick we derive a conserved current of K for any X = (Xu)∂u ∈ Λ̃q,

Dx(−uDyXu) + Dy(uxXu) = uxyXu− uDxDyXu = (Xu)Ku− uKXu

= (Xu)Ku− uXKu = (Xu− X†u)Ku+ (X†u)Ku− uXKu.

Here we take into account that KX = XK for X ∈ Λ̃q. The Lagrange identity (also

called generalized Green’s formula [168, Section 12]) implies that the differential function

(X†u)Ku − uXKu is the total divergence of a pair of differential functions bilinearly de-

pending on the tuples of total derivatives of u and Ku; cf. [168, Proposition A.4], i.e.,

it is the total divergence of a trivial conserved current of the equation K. Therefore,

(X−X†)u is a characteristic of the conservation law of K that contains the conserved cur-

rent C̃X = (−uDyXu, uxXu). For any X ∈ Λ̃q
+, we have X† = X, i.e., the corresponding

conservation law is zero. For any X ∈ Λ̃q
−, we have X† = −X and thus obtain the charac-

teristic 2Xu of a nonzero conservation law of . Running X through the basis of Λ̃q
− gives

conservation laws that are linearly independent since their characteristics are. In view

of Theorem 2.8, these conservation laws jointly with those containing conserved currents

C0
f , f ∈ K, span the entire space of conservation laws of K.

Proposition 2.10. The space of conservation laws of the (1 + 1)-dimensional Klein–

Gordon equation K is naturally isomorphic to the space spanned by the conserved currents

C0
f and C̃X, where the parameter function f = f(x, y) runs through the solution set of K,

and the operator X runs through the basis of Λ̃q
−,

(Xk′0, k
′ ∈ 2N0 + 1, Xkl, X̄kl, k ∈ N0, l ∈ N, k + l ∈ 2N0 + 1 ).
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Corollary 2.11. Under the action of generalized symmetries of the (1 + 1)-dimensional

Klein–Gordon equation K on the space of conservation laws of this equation, a generating

set of conservation laws of K is constituted by the single conservation law containing the

conserved current (−u2, u2
x).

Proof. The actions of the generalized symmetries 1
2
fy∂u and 1

2
(DyXu)∂u on the conserved

current (−u2, u2
x) of the equation K give the conserved currents

C̄0
f = (−fyu, fux) and (−uDyXu, uxDxDyXu),

which are equivalent to C0
f and C̃X, respectively.

The order of the conserved current C̃X is greater than the order of the corresponding

conservation law. This is why we compute a conserved current of minimal order with

characteristic Xu, where the generalized vector field (Xu)∂u runs through the chosen

basis elements (Xklu)∂u of Λ̃q
−, for each of which k + l is odd. We consider two cases,

when k is odd and when k is even.

In the first case, we denote k′ = (k− 1)/2 and l′ = l/2. Note that J = Dx ◦ x−Dy ◦ y.

Hence Xkl = Dl′
xJkDl′

x and

(Xklu)Ku = Dx

l′−1∑
l′′=0

(−1)l
′′
(

Dl′−l′′−1
x JkDl′

xu
)

Dl′′

x Ku

+ J
k′−1∑
k′′=0

(−1)l
′+k′′

(
J2k′−k′′Dl′

xu
)

Jk
′′
Dl′

xKu

+
(−1)l

′+k′

2

(
xDy(DxJ

k′Dl′

xu)2 − yDx(DyJ
k′Dl′

xu)2 − J(Jk
′
Dl′

xu)2
)
,

which gives, up to the equivalence of conserved currents of K and their rescaling, the

conserved current

C1
k′l′ =

(
−y(DyJ

k′Dl′

xu)2 − x(Jk
′
Dl′

xu)2, x(DxJ
k′Dl′

xu)2 + y(Jk
′
Dl′

xu)2
)

of order k′+ l′+ 1 = (k+ l+ 1)/2, which is minimal for the conserved currents related to

the characteristic Xklu.
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If k is even, then l is odd and we denote k′ = k/2 and l′ = (l − 1)/2. Hence

Xkl = Dl′

x(J + 1/2)k
′
Dx(J− 1/2)k

′
Dl′

x = Dl′+1
x (J− 1/2)kDl′

x = Dl′

x(J + 1/2)kDl′+1
x ,

(Xklu)Ku = Dx

l′−1∑
l′′=0

(−1)l
′′

(
Dl′−l′′
x

(
J− 1

2

)k
Dl′

xu

)
Dl′′

x Ku

+ J
k′−1∑
k′′=0

(−1)l
′+k′′

((
J +

1

2

)k−k′′−1

Dl′+1
x u

)(
J− 1

2

)k′′
Dl′

xKu

+
(−1)l

′+k′

2

(
Dy

(
Dx

(
J− 1

2

)k′
Dl′

xu

)2

−Dx

((
J− 1

2

)k′
Dl′

xu

)2
)
.

Up to the equivalence of conserved currents of K and multiplying them by constants, this

leads to the conserved current

C2
k′l′ =

(
−
((

J− 1

2

)k′
Dl′

xu

)2

,

(
Dx

(
J− 1

2

)k′
Dl′

xu

)2
)

of order k′+l′+1 = (k+l+1)/2, which is again minimal for the conserved currents related

to the characteristic Xklu. Since the permutation of x and y is a discrete point symmetry

transformation of K, a conserved current associated with the vector field (X̄klu)∂u, for

which k + l is odd, can be constructed by this permutation either from the conserved

current C1
k′l′ if k is odd or from the conserved current C2

k′l′ if k is even, where again k′

and l′ denote the integer parts of k/2 and l/2, respectively. We obtain

C̄1
k′l′ =

(
y(DyJ

k′Dl′

yu)2 + x(Jk
′
Dl′

yu)2, −x(DxJ
k′Dl′

yu)2 − y(Jk
′
Dl′

yu)2
)
,

C̄2
k′l′ =

((
Dy

(
J +

1

2

)k′
Dl′

yu

)2

, −
((

J +
1

2

)k′
Dl′

yu

)2
)
.

Theorem 2.12. The space of conservation laws of the (1+1)-dimensional Klein–Gordon

equation K is naturally isomorphic to the space spanned by the conserved currents

C1
k′l′ , k

′ ∈ N0, l
′ ∈ N, C̄1

k′l′ , C2
k′l′ , C̄2

k′l′ , k
′, l′ ∈ N0, C0

f ,

where the parameter function f = f(x, y) runs through the solution set of K. The order

of conserved currents Ck′l′’s is equal to k′ + l′ + 1, and ord C0
f = 1.
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In other words, the conserved currents C1
k′l′ , k

′ ∈ N0, l′ ∈ N, C̄1
k′l′ , C2

k′l′ , C̄2
k′l′ , k

′, l′ ∈ N0,

with k′ + l′ = n − 1 represent a complete (up to adding lower-order conservation laws)

set of linearly independent nth order conservation laws of K if n > 2. The space of

first-order conservation laws is spanned by those with conserved currents C̄1
00, C2

00, C̄2
00

and C0
f , where the parameter function f = f(x, y) runs through the solution set of K.

Corollary 2.13. Up to adding low-order conservation laws, the Klein–Gordon equation K

possesses 4n−1 linearly independent conservation laws of order n if n > 2, and an infinite

number of linearly independent first-order conservation laws.

Remark. Replacing the operators Dx, Dy and J by Dx, Dy and J, respectively, in con-

structed conserved currents, we obtain equivalent conserved currents that are reduced in

view of the solution set of K.

2.5 Conclusion

The consideration in the present chapter has several interesting aspects, which are worth

recalling. Its main specific feature is that it is essentially based on the representation K:

uxy = u of the (1+1)-dimensional Klein–Gordon equation in the light-cone variables,

which cannot be adapted, in contrast to the representation in the standard spacetime

variables, as an (extended) Kovalevskaya form of this equation.5

There are only a few papers in the literature, where the entire spaces of generalized

symmetries and, especially, conservation laws were computed for (systems of) differen-

tial equations that are inconvenient for representing in the extended Kovalevskaya form

[44, 141] or lack such a representation at all [5, 6, 7, 11, 121, 122]. Moreover, in [44, 141]

the least upper bounds for orders of reduced cosymmetries were low, 2 and −∞, respec-

tively, each equivalence class of cosymmetries contained a conservation-law characteristic,

and the sufficient number of linearly independent conservation laws had been known [44]

5See [125] for the definition of the extended Kovalevskaya form of systems of differential equations
and a discussion of significance of this form in the theory of conservation laws. Systems of a bit more
restrictive form are called normal systems [86] or Cauchy–Kowalevsky systems in a weak sense (resp.,
pseudo CK systems in short) [152].
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or could be easily derived directly [141]. This is why employing the equation represen-

tations different from the extended Kovalevskaya form created no obstacles for selecting

conservation-law characteristics among cosymmetries in these papers although, in general,

such a selection may be a nontrivial problem. Thus, the present chapter provides one of

a few examples of studying conservation laws of a system of differential equations that

is not in the extended Kovalevskaya form and possesses conservation laws of arbitrarily

high order as well as cosymmetries of arbitrarily high order that are not equivalent to

conservation-law characteristics, cf. [5, 6, 7, 8].

To get around the complication in the course of selecting variational symmetries among

generalized ones for the representation of the Klein–Gordon equation K in the light-cone

variables x and y, we have temporarily switched to the standard form of the Klein–Gordon

equation for applying the Mart́ınez Alonso lemma [86, Lemma 3]. That the transitions

between the standard spacetime and the light-cone variables preserve the linearity of

characteristics of generalized symmetries allowed us to prove that each nonnegative-order

coset of variational symmetries contains a linear symmetry. All the other computations

were carried out in the light-cone variables.

Despite the above complication, the representation of the Klein–Gordon equation K

in the light-cone variables x and y is preferable to the standard one. The choice of it is

paid off by virtue of the facts that it is more compact and the differentiations with respect

to x and y are inverse to each other, DxDy = 1, on solutions of K. The latter enables us

to choose the jet coordinates (t, x, uk, k ∈ Z) on K(∞), which are numerated by a single

integer. This simplifies the entire consideration, including the reduced operators of total

derivatives Dx and Dy, the determining equations for generalized symmetries of K and

the process of solving thereof.

In contrast to the standard spacetime coordinates, the use of light-cone variables in

the course of confining to the solution set of the Klein–Gordon equation also allows us to

preserve the equality of independent variables, which is intrinsic to this equation. As a

result, both the constructed spaces of canonical representatives for equivalence classes of

generalized symmetries of K admit bases that are symmetrical with respect to x and y.
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The procedure of finding generalized symmetries of K includes the standard techniques

of computing the dimension of the space of reduced generalized symmetries of each finite

order and of generating the necessary amount of linearly independent symmetries by re-

cursion operators. In fact, for the latter it suffices to use only the recursion operators,

corresponding to the Lie symmetries ∂x, ∂y and x∂x − y∂y of K. To show that the gen-

eration produces no trivial symmetries, we have evaluated the constructed generalized

symmetries on a family of solutions of K parameterized by a nonzero real constant, see

the proof of Lemma 2.3. From this perspective, the entire algebra Σ̃q (resp. Σ̂q) of canon-

ical representatives for equivalence classes of generalized symmetries of K is spanned by

the generalized vector fields that are related to the linear superposition of solutions of K

or generated from the single Lie symmetry u∂u of K by means of the recursion opera-

tors Dx, Dy and J (resp. Dx, Dy and J). The algebra Σ̂q is the collection of generalized

symmetries of K reduced on the solution set of K, thus being a standard object. Moreover,

the elements of Σ̂q are represented in a compact form, in particular, due to the obtained

compact representation of the reduced operators of total derivatives Dx and Dy. Never-

theless, the algebra Σ̂q is inappropriate for use in the description of variational symmetries

of the equation K, see Remark 2.9. This is why we have paid a more attention to another

collection of canonical representatives for equivalence classes of generalized symmetries

of K, the algebra Σ̃q, which does not have the above disadvantage of the algebra Σ̂q. In

order to efficiently single out variational symmetries among elements of the algebra Σ̃q, we

have made a basis change in this algebra, so that the subspace of skew-adjoint operators,

which are naturally associated with variational symmetries, is evident in the new basis.

The space of conservation laws of K is expectedly computed using Noether’s theorem.

It is convenient to represent this space as the direct sum of two infinite-dimensional sub-

spaces. The first subspace is of the kind that is common for linear systems of differential

equations. It consists of the (first-order) linear conservation laws of K. Such conserva-

tion laws are necessarily of order one, and their (reduced) characteristics are of order −∞.

For K as the Euler–Lagrange equation of the Lagrangian K, these characteristics are char-

acteristics of generalized symmetries of order −∞ of K, which constitute the algebra Σ̃−∞
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and are associated with the linear superposition of solutions of K. The second subspace

is specific and is exhausted by the quadratic conservation laws of K. They admit linear

characteristics being characteristics of linear variational symmetries from the algebra Λ̃q
−.

We have derived canonical representatives of two kinds for conserved currents contained in

quadratic conservation laws. The first kind of representatives is uniform for all quadratic

conservation laws and is convenient in the course of the study how generalized symmetries

of the equation K act on its conservation laws. It was an unexpected result for us that

the so huge space of conservation laws of diverse structures is generated, under the action

of generalized symmetries, by a single first-order quadratic conservation law. We have

also computed a conserved current of minimal order for each basis quadratic conservation

law. For computational and presentation reasons, in the course of this computation we

partition the chosen basis of variational symmetries of nonnegative order into four fam-

ilies, which leads to the associated partition for quadratic conservation laws. We have

constructed conserved currents of minimal order for two of these four families of conser-

vation laws and then used the permutation of x and y, which is a discrete point symmetry

transformation of K, to obtain conserved currents of minimal order for the other two

families from the constructed ones.

An additional advantage of using the operators Dx and Dy over their rivals Dx and Dy

is a more clear insight into generalizing results of the present chapter to the multi-

dimensional Klein–Gordon equation. In view of the greater number of independent vari-

ables, it possesses more translations and Lorentz transformations (usual and hyperbolic

rotations) than the equation K does but the principal structure of the algebra of gener-

alized symmetries should be similar to that for K, cf. [45, 94, 96, 140]. The techniques

applied in the present chapter for singling out variational symmetries and computing

associated conserved currents of minimal order may still be employed for constructing

the entire space of conservation laws of the multi-dimensional Klein–Gordon equation,

including the translation-noninvariant ones, which were not considered in [76, 151].
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Chapter 3

Extended symmetry analysis of

an isothermal no-slip drift flux model

3.1 Introduction

The drift flux model introduced in [170] is a simplified model of a well-known two-phase

flow phenomenon [73, 167]. The former system takes the form

∂t(a1ρ
1) + ∂x(a1u1ρ

1) = 0,

∂t(a2ρ
2) + ∂x(a2u2ρ

2) = 0,

∂t(a1u1ρ
1 + a2u2ρ

2) + ∂x(a1u
2
1ρ

1 + a2u
2
2ρ

2 + p) = Q,

where ai(t, x) are the volume fractions, ui(t, x) are the velocities and ρi(t, x) are the

densities of phases, Q(t, x) is a source term, with a1 + a2 = 1. It was thoroughly studied

in [46, 47, 48, 49], where several submodels easier to tackle but still real-world applicable

were suggested. In particular, the simplifying slip condition was considered, u1 − u2 =

Φ(u1, u2, p). In [12] a further simplification was made, assuming the equality of the volume

fractions, a1 = a2 = a, a vanishing slip function Φ = 0, an absence of the source term

Q = 0 and an isothermal equation of state p = a(ρ1 +ρ2). The resulting isothermal no-slip
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drift flux model is governed by the system

ρ1
t + uρ1

x + uxρ
1 = 0,

ρ2
t + uρ2

x + uxρ
2 = 0,

(ρ1 + ρ2)(ut + uux) + a2(ρ1
x + ρ2

x) = 0,

which we denote by S. This model describes the mixing motion of liquids (or gases)

rather than their individual phases. Here u = u(t, x) is the common velocity, ρ1 = ρ1(t, x)

and ρ2 = ρ2(t, x) are the densities of the liquids, and the constant parameter a can be set

to 1 by scaling (x, u) with a. Any constraint meaning that ρ1 and ρ2 are proportional,

e.g., ρ2 = ρ1 or ρ2 = 0, reduces S to the system S̃0 describing one-dimensional isentropic

gas flows with constant sound speed, cf. the system (3)–(4) with ν = 0 in [133, Sec-

tion 2.2.7]. The system S is a diagonalizable hydrodynamic-type system since it admits

an equivalent form

r1
t + (r1 + r2 + 1)r1

x = 0, (3.1a)

r2
t + (r1 + r2 − 1)r2

x = 0, (3.1b)

r3
t + (r1 + r2)r3

x = 0 (3.1c)

by changing the dependent variables (u, ρ1, ρ2) to the Riemann invariants1 (r1, r2, r3) via

r1 = u+ln(ρ1+ρ2)
2

, r2 = u−ln(ρ1+ρ2)
2

, r3 = ρ2

ρ1 .

The corresponding characteristic velocities

V 1 = r1 + r2 + 1, V 2 = r1 + r2 − 1, V 3 = r1 + r2 (3.2)

are distinct, meaning that the system S is strictly hyperbolic. Besides, the characteristic

velocities satisfy the system

∂ri
V k
rj

V j − V k
= ∂rj

V k
ri

V i − V k
for all i, j, k ∈ {1, 2, 3} with i, j 6= k.

1Riemann invariants are dependent variables, in which a hydrodynamic-type systems takes a diago-
nalized form.
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Thus, the system S is semi-Hamiltonian and, since V 3
r3 = 0, it is not genuinely nonlinear

with respect to r3; see [150] for related definitions. The system S is also partially coupled.

The essential subsystem S0 consisting of the equations (3.1a)–(3.1b) coincides with the

diagonalized form of the system S̃0 [133, Section 2.2.7, Eq. (16)].

Hydrodynamic-type systems are extensively studied in the literature in view of their

various physical applications in fluid mechanics, acoustics and gas and shock dyna-

mics [133, 164] and rich differential geometry [41, 43, 149, 150]. See [21, 30, 51, 54,

64, 66, 119, 138, 139] and references therein for an assortment of examples.

In view of the above properties, the system S can be integrated in an implicit form. In

my MSc thesis, results of which were published in [112], for this system we expressed the

general solution in terms of the general solution of the (1+1)-dimensional Klein–Gordon

equation using the generalized hodograph transformation [149] and described the entire

set of local solutions via the linearization of the subsystem S0 to the same equation.

Since the practical use of the derived representations for solutions of S is limited because

of their implicit form and complicated structure, in [112] we also began the extended

classical symmetry analysis of the system S. In particular, for this system we constructed

the maximal Lie invariance algebra g, the algebra of generalized symmetries of order

not greater than one, the complete point symmetry group and group-invariant solutions.

Thus, the algebra g is spanned by the vector fields

D̂ = t∂t + x∂x, Ĝ1 = t∂x + ∂r1 , Ĝ2 = ∂r1 − ∂r2 ,

P̂ t = ∂t, P̂x = ∂x, Ŵ(Ω) = Ω(r3)∂r3 ,

where Ω runs through the set of smooth functions of r3. The maximal Lie invariance

algebra g0 of the essential subsystem S0 is wider than the projection of the algebra g to

the space with the coordinates (t, x, r1, r2) and is spanned by the vector fields

D̆ = t∂t + x∂x, Ğ1 = t∂x + ∂r1 , Ğ2 = ∂r1 − ∂r2 , P̆(τ 0, ξ0) = τ(r1, r2)∂t + ξ(r1, r2)∂x,

J̆ =

(
1

2
x− t(r1 + r2)

)
∂t + t

(
r1 − r2 − 1

2
(r1 + r2)2 +

1

2

)
∂x + r1∂r1 − r2∂r2 ,
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where (τ, ξ) is a tuple of smooth functions of (r1, r2), running through the solution set of

the system ξr1 = V 2τr1 , ξr2 = V 1τr2 . In [112], for the system S we also found the zeroth-

order local conservation laws using the direct method and, following [40], constructed the

entire space of first-order conservation laws with (t, x)-translation-invariant densities of

and a subspace of (t, x)-translation-invariant conservation laws of arbitrarily high order.

Building on the description of the algebra of generalized symmetries of order not greater

than one, we obtained an infinite-dimensional subspace of generalized symmetries of ar-

bitrarily high order for S. (In the present section we show that this subspace is an ideal

in the entire algebra of generalized symmetries of the system S.)

At the same time, the system S possesses two properties that allow us to exhaustively

describe the entire spaces of generalized symmetries, cosymmetries and local conservation

laws (see [78] for definitions). Firstly, the system is partially coupled with the essential

subsystem S0 being linearizable through the rank-two hodograph transformation to the

(1+1)-dimensional Klein–Gordon equation, which was thoroughly studied in Chapter 2,

published as [115], from the point of view of generalized and variational symmetries and

local conservation laws. Secondly, in addition to being not genuinely nonlinear with re-

spect to r3, the system S is decoupled with respect to r3, and the third equation of S is

linear in r3. Thus, speaking of the degeneracy of the system S, we mean both its linear

degeneracy and decoupling with respect to r3. Due to the dual nature of this degeneracy,

the system S admits not only an infinite number of linearly independent conservation

laws of arbitrarily high order, that are related to the degeneracy, cf. [40, 142], but also

similar generalized symmetries.

Substantially generalizing results of [112], in the present section we comprehensively

study generalized symmetries, cosymmetries and local conservation laws of the system S.

This includes both a description of the corresponding spaces and their interrelations,

which are described in terms of recursion operators and Noether and Hamiltonian oper-

ators. Our modus operandi to study the system S is to select appropriate symmetry-like

objects of the Klein–Gordon equation (generalized symmetries, cosymmetries and con-

servation laws), to find their counterparts for the system S and to complement these
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counterparts with the objects of the same kind that are related to the degeneracy of the

system. Then we prove that the constructed objects span the entire spaces of objects of

the corresponding kinds for the system S. As a result, we obtain one more example, in

addition to a few ones existing in the literature, where generalized symmetries and local

conservation laws are exhaustively described for a model arising in real-world applications

and possessing symmetry-like objects of arbitrarily high order.

All results of this section except for original Sections 3.7 and 3.8 were published in [113].

The structure of this section is as follows. In Section 3.2 we reduce the system S to the

(1+1)-dimensional Klein–Gordon equation and show that any regular solution of the for-

mer is expressed in terms of solutions of the latter. In Section 3.3 we lay out notations

and auxiliary results to be used throughout the remainder of the section. It is proved

in Section 3.4 that the algebra of reduced generalized symmetries of the system S is a

(non-direct) sum of an ideal related to the degeneracy of S and consisting of generalized

vector fields with zero r1- and r2-components and of a subalgebra stemming from gener-

alized symmetries of the Klein–Gordon equation. At the same time, not all generalized

symmetries of the Klein–Gordon equation have counterparts among those of the system S,

and we solve the problem on selecting appropriate elements of the algebra of generalized

symmetries of the Klein–Gordon equation. This differs from cosymmetries and conser-

vation laws of S, for which there are injections from the corresponding spaces for the

Klein–Gordon equation to those for the system S, see Sections 3.5 and 3.6, respectively.

The space of conservation laws of S is proved to be generated, under the action of gener-

alized symmetries of S, by two zeroth-order conservation laws. We also find the space of

conservation-law characteristics of S. The knowledge of them helps us to single out the

conservation laws of orders zero and one as well as the (t, x)-translation-invariant ones.

Using the simplest conservation laws of the system S we construct a covering thereof and

study its symmetries in an attempt to prolong all the symmetries of the Klein–Gordon

equation to the system S in Section 3.7. In Section 3.8 we construct nonlocal Hamiltonian

operators for the system S as prolongation on r3 local hydrodynamic-type Hamiltonian

operators of the subsystem S0. For each of local Hamiltonian operators found in [112]
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we find the space of its distinguished (Casimir) functionals and the associated algebra

of Hamiltonian symmetries. Section 3.9 is left for the conclusions, where we underline

the nontrivial features encountered in the course of the study of the system S in the

present section and discuss further problems to be considered for this system within the

framework of symmetry analysis of differential equations.

3.2 Solution through linearization

of the essential subsystem

Using the facts that the system S is partially coupled and the subsystem S0 can be lin-

earized, we construct an implicit representation of the general solution for the diagonal-

ized form (3.1) of the system S in terms of the general solution of the (1+1)-dimensional

Klein–Gordon equation; cf. [112, Section 8]. At first, we reduce the system (3.1) by a point

transformation to a system containing the (1+1)-dimensional Klein–Gordon equation. It

is convenient to derive this transformation as a chain of simpler point transformations.

We begin with the rank-two hodograph transformation2, where

y = r1/2, z = −r2/2 are the new independent variables and

p = t, q̂ = x, s = r3 are the new dependent variables.

This transformation maps the system (3.1) to the system

q̂z − (2y − 2z + 1)pz = 0, (3.3a)

q̂y − (2y − 2z − 1)py = 0, (3.3b)

sypz + szpy = 0. (3.3c)

After representing the equation (3.3a) in the form
(
q̂ − (2y − 2z + 1)p

)
z
− 2p = 0, it

becomes natural to make the change q̌ = q̂−(2y−2z+1)p of q̂. Then the equations (3.3a)

2Recall that every (1+1)-dimensional hydrodynamic-type system with two dependent variables is
linearizable via the hodograph transformation.

54



and (3.3b) take the form p = q̌z/2 and q̌y + 2py + 2p = 0, respectively. Excluding p from

the second equation in view of the first one, we obtain the second-order linear partial

differential equation q̌yz + q̌y + q̌z = 0 in q̌, which reduces by the change q = ey+z q̌ of q̌

to the (1+1)-dimensional Klein–Gordon equation for q in light-cone variables, qyz = q.

Carrying out this chain of two transformations in the whole system (3.3), we obtain the

system K, which reads

qyz = q, (3.4a)

K1sy = K2sz, where K1 := qzz − 2qz + q, K2 := qy + qz − 2q. (3.4b)

We haveK1 = (Dz−1)2q and, on solutions of (3.4a), K2 = −(Dy−1)(Dz−1)q, DyK
1 = K2

and DzK
2 = K1. Here Dy and Dz are the total derivative operators with respect to y

and z, respectively. We exclude p from the system (3.4) in view of the equation

p =
1

2
e−y−z(qz − q) (3.5)

as well as we neglect this equation itself. The composition of the above three transforma-

tions is the transformation

T : y =
r1

2
, z = −r2

2
, p = t, q = e(r1−r2)/2

(
x− (r1 + r2 + 1)t

)
, s = r3. (3.6)

Therefore, to make the inverse transition from the system (3.4) to the system (3.1), we

should attach the equation (3.5) to the system (3.4), thus extending the tuple of dependent

variables (q, s) by p, and carry out the inverse to the transformation (3.6),

T̂ : t = p, x = e−y−zq + (2y − 2z + 1)p, r1 = 2y, r2 = −2z, r3 = s. (3.7)

It is convenient to collect the expressions for low-order derivatives of p and q and for

their combinations in terms of the old variables in view of the system (3.1), which will be

needed below:
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py = − 1

r1
x

, pz = − 1

r2
x

, K1 = − 2

r2
x

e(r1−r2)/2, K2 =
2

r1
x

e(r1−r2)/2,

sy
K2

= e(r1−r2)/2 r
3
x

2
, qy = e(r1−r2)/2

(
2

r1
x

+ x− V 1t− 2t

)
, qz = e(r1−r2)/2(x− V 2t),

qzz = e(r1−r2)/2

(
− 2

r2
x

+ x− V 2t+ 2t

)
.

Following the procedure analogous to that in [112], we find the complete set of local

solutions of the system (3.1) via the linearization of the subsystem (3.1a)–(3.1b).

We are allowed to make the point transformation (3.6) if and only if the nondegeneracy

condition r1
t r

2
x−r1

xr
2
t 6= 0 holds, which is equivalent, on solutions of (3.1), to the inequality

r1
xr

2
x 6= 0. Therefore, r1

t r
2
t 6= 0 as well, and thus both Riemann invariants r1 and r2 are not

constants. In this case, we introduce the “pseudopotential” Ψ defined by the potential

system Ψy = q−Ψ, Ψz = qz−Ψ for the equation (3.4a). In fact, this “pseudopotential” is a

modification, Ψ = e−y−zΨ̃, of the standard potential Ψ̃ for the equation (3.4a) associated

with the conserved current (ey+zqz,−ey+zq) of this equation via the potential system

Ψ̃y = ey+zq, Ψ̃z = ey+zqz. It is easily seen that the function Ψ satisfies the Klein–Gordon

equation Ψyz = Ψ. Moreover, solutions of the equations (3.4a), (3.4b) and (3.5) are locally

expressed in terms of Ψ,

q = Ψy + Ψ, p =
1

2
e−y−z(Ψz −Ψy), s = W

(
ey+z(Ψy + Ψz − 2Ψ)

)
.

Here and in what follows W is an arbitrary smooth function of its argument. Returning

to the old coordinates, we obtain the regular family of solutions of the system (3.1), which

is expressed in terms of the general solution of the Klein–Gordon equation. Note that the

nondegeneracy condition for this inverse transformation is K1K2 6= 0, where, in terms

of Ψ,

K1 = Ψzz −Ψz + Ψy −Ψ, K2 = Ψyy −Ψy + Ψz −Ψ.

In view of the Klein–Gordon equation Ψyz = Ψ, the inequalities K1 6= 0 and K2 6= 0 are

equivalent to each other as well as to the condition Ψ /∈ 〈e−y−z, ey+z, (y − z)ey+z〉.
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If the nondegeneracy condition r1
t r

2
x − r1

xr
2
t 6= 0 does not hold, then at least one of the

Riemann invariants r1 and r2 is a constant. If only one Riemann invariant is a constant,

we derive the singular family of solutions of (3.1). Let r1 be a constant, r1 = c. Then the

equation (3.1a) is trivially satisfied, and we make the rank-one hodograph transformation

t̄ = t, z̄ = r2, q̄ = x, s̄ = r3 in the two remaining equations (3.1b) and (3.1c), exchanging

the roles of x and r2, that is, t̄ and z̄ are the new independent variables, q̄ and s̄ are the

new dependent variables. This yields the system q̄t̄ = z̄+ c− 1, s̄z̄ + q̄z̄ s̄t̄ = 0. Integrating

the first equation to q̄ = (z̄ + c− 1)t̄+ ez̄Θ2
z̄, where Θ2 is an arbitrary function of z̄. It is

chosen with a help of a hindsight to represent the general solution of the second equation

in the form s̄ = W (e−z̄ t̄−Θ2
z̄−Θ2). The consideration when r2 being a constant is similar.

When the both r1 and r2 are constants, we obtain an ultra-singular family of solutions.

Theorem 3.1. Any solution of the system (3.1) (locally) belongs to one of the following

families; below W is an arbitrary function of its argument.

1. The regular family, where both the Riemann invariants r1 and r2 are not constants (the

general solution):

t = −e(r2−r1)/2(Ψr1 + Ψr2), x = e(r2−r1)/2
(
(2Ψr1 + Ψ)− (r1 + r2 + 1)(Ψr1 + Ψr2)

)
,

r3 = W
(
e(r1−r2)/2(Ψr1 −Ψr2 −Ψ)

)
.

Here the function Ψ = Ψ(r1, r2) runs through the set of solutions of the Klein–Gordon

equation Ψr1r2 = −Ψ/4 with Ψ /∈ 〈 e(r2−r1)/2, e(r1−r2)/2, (r1 + r2)e(r1−r2)/2 〉.

2. The two singular families, where exactly one of the Riemann invariants r1 and r2 is a

constant:

r1 = c, x = (r2 + c− 1)t+ er
2

Θ2
r2 , r3 = W (e−r

2

t−Θ2
r2 −Θ2);

r2 = c, x = (r1 + c+ 1)t+ e−r
1

Θ1
r1 , r3 = W (er

1

t+ Θ1
r1 −Θ1).

Here c is an arbitrary constant and Θ1 = Θ1(r1) and Θ2 = Θ2(r2) are arbitrary functions

of their arguments.

3. The ultra-singular family, with arbitrary constants r1 and r2 and r3 = W (x−(r1 +r2)t).
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The regular, singular and ultra-singular families of solutions of the system S are as-

sociated with solutions of the subsystem S0 of rank 2, 1 and 0, respectively; cf. [65].

Alternatively, to get the subfamily of regular solutions with nonconstant parameter

function W , one can employ the generalized hodograph transformation [149], see details

in [112, Section 9].

3.3 Preliminaries

Given a system L of differential equations, we denote by L(∞) the manifold defined by

the system L and its differential consequences in the associated jet space. A local object

associated with L within the framework of symmetry analysis of differential equations, like

a generalized symmetry, a conserved current of a local conservation law, a conservation-

law characteristic or a cosymmetry, is called trivial if it vanishes on solutions of L or,

equivalently, on L(∞). Two such local objects of the same kind are naturally assumed

equivalent if their difference is trivial, and thus such local objects of the same kind in

total are considered up to this equivalence relation.

The system S given by (3.1) is of the evolution form. The jet variables t, x and riκ =

∂κri/∂xκ, i = 1, 2, 3, κ ∈ N0, constitute the standard coordinates on the manifold S(∞).

Therefore, up to the above equivalence relation on solutions of S, for the coset of each

of local symmetry-like objects associated with S we can consider a representative whose

components do not depend on the derivatives of r involving differentiation with respect

to t.3 A symbol with [r], like f [r], denotes a differential function of r that depends at most

on t, x and a finite number of derivatives of r with respect to x, f = f(t, x, r0, . . . , rκ), κ ∈

N0. Below we consider only such differential functions and assume that the components

of any local symmetry-like objects associated with S are such differential functions. For

i ∈ {1, 2, 3}, the order ordri f [r] of a differential function f [r] with respect to ri is defined

to be equal max{κ ∈ N0 | friκ 6= 0} unless this set is empty and −∞ otherwise.

We restrict the total derivative operators Dx and Dt with respect to x and t to the

set of above differential functions of r, and additionally exclude the derivatives of r that

3Here, for conservation-law characteristics we need to use Lemma 3 in [86], see also [103, Lemma 4.28].
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involve differentiation with respect to t from Dt in view of the system S, respectively

obtaining the (commuting) operators

Dx := ∂x +
∞∑
κ=0

3∑
i=1

riκ+1∂riκ , Dt := ∂t −
∞∑
κ=0

3∑
i=1

Dκ
x(V

iri1)∂riκ .

We define the commuting operators A := er
2−r1Dx and B := Dt + (r1 + r2)Dx, AB = BA.

It is convenient to introduce the modified coordinates t, x, rjκ = rjκ and ωκ := Aκr3 for

κ ∈ N0 and j = 1, 2 on the manifold S(∞) instead of the standard ones.4 In this notation,

we have

Aωκ = ωκ+1, Bωκ = 0, κ ∈ N0, Br1 = −r1
1, Br2 = r2

1,

Dx = ∂x +
∞∑
κ=0

(
r1
κ+1∂r1

κ
+ r2

κ+1∂r2
κ

+ er
1−r2

ωκ+1∂ωκ
)
,

Dt = ∂t −
∞∑
κ=0

(
Dκ
x(V

1r1
1)∂r1

κ
+ Dκ

x(V
2r2

1)∂r2
κ

+ (r1 + r2)er
1−r2

ωκ+1∂ωκ
)
.

We define the orders ordrj f , j = 1, 2, and ordω f of a differential function f = f [r] with

respect to rj and “ω” to be equal max{κ | frjκ 6= 0} and max{κ | fωκ 6= 0}, respectively,

unless the corresponding set is empty and −∞ otherwise. Note that ordω f = ordr3 f .

The notation like f [r1, r2], or equivalently f [r1, r2], denotes a differential function f

of (r1, r2) = (r1, r2).

Lemma 3.2. A differential function f = f [r] satisfies the equation Bf = 0 if and only if

it is a smooth function of a finite number of ω’s, f = f(ω0, . . . , ωκ) with κ ∈ N0.

Proof. Provided f being a smooth function of a finite number of ω’s, it satisfies the

equation Bf = 0 because of Bωκ = 0 for all κ ∈ N0.

Conversely, using the modified coordinates on S(∞) we denote κj = ordrj f , j = 1, 2.

Suppose that κj > 0 for some j. Then collecting coefficients of rjκj+1 in the equation

Bf = 0 yields ∂f/∂rjκj = 0, which gives a contradiction. Hence the function f does not

depend on rjκ, κ ∈ N0. The equation Bf = 0 takes the form ft + (r1 + r2)fx = 0, splitting

with respect to (r1, r2) to ft = fx = 0.

4The operator A and the modified coordinates are related to the degeneration of V 3 meaning, that
V 3
r3 = 0; cf. [40, Theorem 5.2].
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As the standard coordinates on the manifold K(∞) associated with the system (3.4),

we can take the jet variables y, z, qι = ∂ιq/∂yι if ι > 0 and qι = ∂−ιq/∂z−ι if ι < 0,

ι ∈ Z, sκ = ∂κs/∂yκ, κ ∈ N0. In these coordinates, the restrictions of the total derivative

operators with respect to y and z respectively take the form

Dy = ∂y +
+∞∑
ι=−∞

qι+1∂qι +
+∞∑
κ=0

sκ+1∂sκ , Dz = ∂z +
+∞∑
ι=−∞

qι−1∂qι +
+∞∑
κ=0

Dκ
y

(
K1

K2
s1

)
∂sκ ,

where K1 := q−2 − 2q−1 + q0, K2 := q1 + q−1 − 2q0. The infinite prolongation of the

transformation (3.6) induces pushing forward of the operators Dt, Dx, A and B to the

operators

D̂t = −ey+z

K2
(2y − 2z + 1)Dy −

ey+z

K1
(2y − 2z − 1)Dz, D̂x =

ey+z

K2
Dy +

ey+z

K1
Dz,

Â =
e−y−z

K2
Dy +

e−y−z

K1
Dz, B̂ = −ey+z

K2
Dy +

ey+z

K1
Dz, ÂB̂ = B̂Â

A symbol with [q, s], like f [q, s], denotes a differential function of (q, s) that depends

at most on y, z and a finite, but unspecified number of qι, ι ∈ Z, and sκ, κ ∈ N0. The

order ords f of a differential function f = f [q, s] with respect to s is defined to be equal

max{κ ∈ N0 | fsκ 6= 0} unless this set is empty and −∞ otherwise. Analogously, a symbol

with [q], like f [q], denotes a differential function of q that depends at most on y, z and

a finite, but unspecified number of qι, ι ∈ Z. We also use the modified coordinates y, z,

q̂ι = qι, ι ∈ Z and ω̂κ = Âκs, κ ∈ N0, on the manifold K(∞).

Corollary 3.3. A differential function f = f [q, s] satisfies the equation B̂f = 0, i.e.,

K1Dyf = K2Dzf, if and only if it is a smooth function of a finite number of ω̂’s, f =

f(ω̂0, . . . , ω̂κ) with κ ∈ N0.

The infinite prolongation of the transformation (3.7) induces pushing forward of the

operators Dy and Dz to the (commuting) operators

D̃y := − 1

r1
x

(
Dt + (r1 + r2 − 1)Dx

)
, D̃z := − 1

r2
x

(
Dt + (r1 + r2 + 1)Dx

)
.
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3.4 Generalized symmetries

The following two facts allow us to exhaustively describe generalized symmetries of the

system (3.1). Firstly, the equation (3.1c) is partially coupled with the equations (3.1a)

and (3.1b). Secondly, the subsystem (3.1a)–(3.1b) is linearized by the hodograph transfor-

mation, and the associated linear system reduces to the (1+1)-dimensional Klein–Gordon

equation.

We denote by Σ the algebra of generalized symmetries of the system (3.1), and by Σtriv

the algebra of its trivial generalized symmetries, whose characteristics vanish on solutions

of (3.1). The quotient algebra Σq = Σ/Σtriv can be identified, e.g., with the subalgebra

of canonical representatives in the reduced evolutionary form, Σ̂q =
{∑3

i=1 η
i[r]∂ri ∈ Σ

}
.

The criterion of invariance of the system (3.1) with respect to the generalized vector

field
∑3

i=1 η
i[r]∂ri results in the system of three determining equations for the compo-

nents ηi,

Dtη
1 + (r1 + r2 + 1)Dxη

1 + r1
x(η

1 + η2) = 0, (3.8a)

Dtη
2 + (r1 + r2 − 1)Dxη

2 + r2
x(η

1 + η2) = 0, (3.8b)

Dtη
3 + (r1 + r2)Dxη

3 + r3
x(η

1 + η2) = 0. (3.8c)

Lemma 3.4. For any generalized vector field
∑3

i=1 η
i[r]∂ri from Σ̂q, its components η1

and η2 do not depend on derivatives of r3, i.e., η1 = η1[r1, r2] and η2 = η2[r1, r2].

Proof. Suppose that κj := ordr3 η
j > 0 for some j ∈ {1, 2}. Collecting the coefficients of

the jet variable r3
κj+1 in the jth equation of (3.8) yields the equation ∂ηj/∂r3

κj
= 0, which

contradicts the assumption. Hence κj = −∞ for any j = 1, 2.

Lemma 3.4 is the manifestation of partial coupling of the system (3.1). In view of

this lemma, the subalgebra Σ̂q
3 of Σ̂q constituted by elements with vanishing η1 and η2

is an ideal of Σ̂q, and the quotient algebra Σq
12 := Σ̂q/Σ̂q

3 is isomorphic to the subalge-

bra of reduced generalized symmetries of the subsystem (3.1a)–(3.1b) that admit local

prolongations to r3. The ideal Σ̂q
3 is described by the following corollary of Lemma 3.2.
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Corollary 3.5. A generalized vector field η3∂r3 belongs to Σ̂q if and only if the coeffi-

cient η3 is a smooth function of a finite number of ω’s.

Proof. The invariance of the system (3.1) with respect to the generalized vector field η3∂r3

leads to the single determining equation Bη3 = 0. Further we use Lemma 3.2.

Therefore, the infinite prolongation of an element f∂r3 of Σ̂q is equal to
∑∞

ι=0(Âιf)∂ωι ,

and thus the commutator of elements f 1∂r3 and f 2∂r3 of Σ̂q is

∞∑
ι=0

(
(Âιf 1)f 2

ωι − (Âιf 2)f 1
ωι

)
∂r3 , where Â =

∞∑
κ=0

ωκ+1∂ωκ .

We specify the form of canonical representatives of cosets of Σ̂q
3.

Lemma 3.6. Each coset of Σ̂q
3 contains a generalized vector field of the form

η1[r1, r2]∂r1 + η2[r1, r2]∂r2 + er
2−r1r3

xη̂
3[r1, r2]∂r3 , (3.9)

where the coefficients η1, η2 and η̂3 satisfy the system of equations (3.8a), (3.8b) and

Dtη̂
3 + (r1 + r2)Dxη̂

3 + er
1−r2(η1 + η2) = 0. (3.10)

Proof. In view of Lemma 3.4 and Corollary 3.5, it suffices to show that the third com-

ponents of canonical representatives for elements from the quotient algebra Σq
12 can be

chosen to be of the form η3 = er
2−r1r3

xη̂
3[r1, r2]. After substituting the representation

η3 = er
2−r1r3

xη̂
3[r] into the equation (3.8c), we derive the equation (3.10). We use the modi-

fied coordinates on the manifold S(∞). If the coefficient η̂3 depends on ωκ for some κ ∈ N0,

then a differential function of (r1, r2) obtained from η̂3 by fixing values of all involved ωκ’s

in the domain of η̂3 is also a solution of (3.10) for the same value of (η1, η2).

The elements of the form (3.9) from the algebra Σ̂q constitute a subalgebra of this

algebra, which we denote by Σ̄q
12. Unfortunately, the algebras Σq

12 and Σ̄q
12 are not iso-

morphic. Although Σ̂q = Σ̄q
12 + Σ̂q

3, this sum is not direct since Σ̄q
12 ∩ Σ̂q

3 = 〈er2−r1r3
x∂r3〉.

The algebra Σq
12 is naturally isomorphic to the quotient algebra Σ̄q

12/〈er
2−r1r3

x∂r3〉.
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Deriving the exhaustive description of the algebra Σq
12 is quite complicated. For this

purpose, we reduce the system (3.1) to a system (3.4) containing the (1+1)-dimensional

Klein–Gordon equation. Similarly to the system (3.1), we denote by S the algebra of

generalized symmetries of the system (3.4), and by Striv the algebra of its trivial general-

ized symmetries, whose characteristics vanish on solutions of (3.4). The quotient algebra

Sq = S/Striv can be identified, e.g., with the subalgebra of canonical representatives

in the evolutionary form, Ŝq = {χ[q, s]∂q + θ[q, s]∂s ∈ S}. The Lie bracket on Ŝq is

defined as the modified Lie bracket of generalized vector fields in the jet space with the

independent variables (y, z) and the dependent variables (q, s), where all arising mixed

derivatives of q and all arising derivatives of s that involve differentiation with respect

to y are substituted in view of the system (3.4) and its differential consequences. The

system of determining equations for components of elements of Ŝq is

DyDzχ = χ, (3.11a)

s1(Dz − 1)2χ+K1Dyθ =
K1

K2
s1(Dy + Dz − 2)χ+K2Dzθ. (3.11b)

The algebra Ŝq is isomorphic to the algebra Σ̂q. This isomorphism is induced by the

pushforward of Σ onto S that is generated by the point transformation (3.6), excluding

the derivatives of p (including p itself) in view of the equation (3.5) and its differential

consequences and the successive projection of the obtained generalized vector fields to

the jet space with the independent variables (y, z) and the dependent variables (q, s). To

map S into Σ, we need to prolong the elements of S to p according the equation (3.5)

and make the pushforward by the point transformation (3.7).

Lemma 3.7. The q-component of every element of Ŝq does not depend on s and its

derivatives.

Proof. Suppose that X = χ∂q + θ∂s ∈ Ŝq, and κ := ords χ > 0. Then invariance

criterion for the equation qyz = q and the generalized vector fieldX implies, after collecting

coefficients of sκ+2, the equation χsκ = 0, which contradicts the assumption. This is why

ords χ = −∞.
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Remark 3.8. The only essential feature for Lemma 3.7 is that K1 and K2 do not vanish

simultaneously, not the specific form thereof.

Lemma 3.7 is the counterpart of Lemma 3.4 for the system (3.4) and is the mani-

festation of partial coupling of this system. In view of Lemma 3.7, the subalgebra Ŝq
s

of Ŝq constituted by elements with vanishing q-components is an ideal of Ŝq. In view

of Corollary 3.3 (or Corollary 3.5), this ideal consists of generalized vector fields of the

form θ∂s, where θ is a smooth function of a finite, but unspecified number of ω̂’s. Since

the ideal Ŝq
s of Ŝq corresponds to and is isomorphic to the ideal Σ̂q

3 of Σ̂q, for our purpose

it suffices to describe the quotient algebra Sq
q := Ŝq/Ŝq

s .

Denote by K̂q the algebra of reduced generalized symmetries of the (1+1)-dimensional

Klein–Gordon equation (3.4a), K̂q = {χ[q]∂q | DyDzχ = χ}. The quotient algebra Sq
q is

naturally isomorphic to the subalgebra A of K̂q that consists of elements of K̂q admitting

local prolongations to s. It was proved in Section 2.2 that the algebra K̂q is the semi-direct

sum of its subalgebra Λ̂q and its ideal K̂−∞, K̂q = Λ̂q ∈ K̂−∞, where

Λ̂q := 〈 (Jκq)∂q, (Dι
yJ
κq)∂q, (Dι

zJ
κq)∂q, κ ∈ N0, ι ∈ N 〉,

K̂−∞ := {f(y, z)∂q | f ∈ KG},

J := yDy−zDz, and KG denotes the solution set of the (1+1)-dimensional Klein–Gordon

equation (3.4a), i.e., f ∈ KG means that fyz = f .

Lemma 3.9. A =
{
Xζ,c :=

(
(Dy + 1)ζ + cq

)
∂q | ζ = ζ[q] : DyDzζ = ζ, c ∈ R

}
, and an

appropriate prolongation of the generalized vector field Xζ,c to s is given by

θ =
s1

K2
(Dy + Dz − 2)ζ. (3.12)

Proof. Denote Ã =
{
Xζ,c :=

(
(Dy + 1)ζ + cq

)
∂q | ζ = ζ[q] : DyDzζ = ζ, c ∈ R

}
. Note

that here the form of ζ is defined up to summands proportional to e−y−z.

For any solution ζ of the equation DyDzζ = ζ, the differential functions χ = (Dy+1)ζ

and θ defined by (3.12) satisfy the system (3.11). The tuple (χ, θ) = (q, 0) is a solution

of (3.11) as well. Hence A ⊇ Ã.
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Suppose that a generalized vector field χ[q]∂q belongs to A. This means that there

exists θ = θ[q, s] such that χ∂q+θ∂s ∈ Ŝq. Then the tuple (χ, θ) satisfies the system (3.11).

By the substitution θ = s1(K2)−1θ̃, the equation (3.11b) is reduced to

K1(Dy + 1)θ̃ −K2(Dz + 1)θ̃ = K1(Dy + Dz − 2)χ−K2(Dz − 1)2χ. (3.13)

We use the modified coordinates on the manifold K(∞). If the function θ̃ depends on ωκ

for some κ ∈ N0, then a differential function of q obtained from θ̃ by fixing values of all

involved ω̂κ’s in the domain of θ̃ is also a solution of (3.13) for the same value of χ. There-

fore, without loss of generality we can assume that θ̃ = θ̃[q]. Then the equation (3.13)

rewritten in the form

K1
(
(Dy + 1)θ̃ − (Dy + Dz − 2)χ

)
= K2

(
(Dz + 1)θ̃ − (Dz − 1)2χ

)
implies that there exists a differential function µ = µ[q] such that

(Dy + 1)θ̃ − (Dy + Dz − 2)χ = µK2, (Dz + 1)θ̃ − (Dz − 1)2χ = µK1. (3.14)

We exclude θ̃ from these equations by acting the operators Dz + 1 and Dy + 1 on the

first and the second equations, respectively, and subtracting the first obtained equation

from the second one, which gives the equation on µ alone, K1Dyµ = K2Dzµ. In view of

Corollary 3.3, µ is a constant, and hence equations (3.14) can be rewritten as

(Dy + 1)θ̃ = (Dy + Dz − 2)(χ+ µq), (Dz + 1)θ̃ = (Dz − 1)2(χ+ µq). (3.15)

We subtract the second equation from the result of acting the operator Dz on the first

equation and thus derive the equation (DyDz − 1)θ̃ = 0. Then the differential function

ζ = ζ[q] that is defined by ζ := −1
4

(
θ̃ − (Dz + 1)(χ + µq)

)
satisfies the same equation,

(DyDz− 1)ζ = 0. We express θ̃ from the equality defining ζ, θ̃ = −4ζ + (Dz + 1)(χ+µq),

and substitute the obtained expression into (3.15), deriving the equations −4(Dy + 1)ζ =

−4(χ + µq) and −4(Dz + 1)ζ = −4Dz(χ + µq). The first of these equations gives the
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required representation for χ, χ = (Dy + 1)ζ − µq. The second equation is identically

satisfied in view of the above representation for χ and the equation DyDzζ = ζ. We also

get θ̃ = −4ζ + (Dz + 1)(Dy + 1)ζ = (Dy + Dz − 2)ζ. Therefore, A ⊆ Ã, i.e., A = Ã, and

the equality (3.12) defines an appropriate prolongation of Xζ,c ∈ A to s.

In other words, Lemma 3.9 implies that an element of Λ̂q can be mapped to a gener-

alized symmetry of the system (3.1) if and only if the associated operator belongs to the

subspace

〈 1, (Dy + 1)Dι
yJ
κ, (Dz + 1)Dι

zJ
κ, κ, ι ∈ N0 〉.

In particular, this subspace contains all polynomials of Dy and all polynomials of Dz. A

complement subspace to it in the entire space of operators associated with elements of Λ̂q

is 〈 Jκ, κ ∈ N 〉. Elements of Λ̂q associated with operators from the complement subspace

are mapped to nonlocal symmetries of the system (3.1). Such nonlocal symmetries are

generalized symmetries of certain potential systems for the system (3.1) that are related to

potential systems for the (1+1)-dimensional Klein–Gordon equation (3.4a), see Section 3.7

for more details.

Completing the above consideration, we prove the following theorem.

Theorem 3.10. The quotient algebra Σq of generalized symmetries of the system (3.1)

is naturally isomorphic to the algebra Σ̂q spanned by the generalized vector fields

W̌(Ω) = Ω∂r3 , P̌(Φ) = e(r2−r1)/2
(
(Φ + 2Φr1)r1

x∂r1 + (Φ− 2Φr2)r2
x∂r2 + 2Φr3

x∂r3
)
,

Ď =
(
x− (r1 + r2 + 1)t

)
r1
x∂r1 +

(
x− (r1 + r2 − 1)t

)
r2
x∂r2 +

(
x− (r1 + r2)t

)
r3
x∂r3 ,

Ř(Γ) = e(r2−r1)/2
(

(D̃yΓ + Γ)r1
x∂r1 + (D̃zΓ + Γ)r2

x∂r2 + 2Γr3
x∂r3

)
,

where Γ runs through the set {J̃κq̃, D̃ι
yJ̃
κq̃, D̃ι

zJ̃
κq̃, κ ∈ N0, ι ∈ N} with

D̃y := − 1

r1
x

(
Dt + (r1 + r2 − 1)Dx

)
, D̃z := − 1

r2
x

(
Dt + (r1 + r2 + 1)Dx

)
,

J̃ :=
r1

2
D̃y +

r2

2
D̃z, q̃ := e(r1−r2)/2

(
x− (r1 + r2 + 1)t

)
,
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the parameter function Φ = Φ(r1, r2) runs through the solution set of the Klein–Gordon

equation Φr1r2 = −Φ/4, and the parameter function Ω runs through the set of smooth

functions of a finite, but unspecified number of ωκ := (er
2−r1Dx)

κr3, κ ∈ N0.

Proof. For computing the counterpart of an element X = χ∂q + θ∂s ∈ Ŝq in Σ̂q, one

should make the following steps:

• prolong the generalized vector field X to p in view of (3.5),

• push forward the prolonged vector field by an appropriate prolongation of the trans-

formation (3.7),

• convert the obtained image to the evolutionary form and

• substitute for all derivatives of r with differentiation with respect to t in view of the

system (3.1) and its differential consequences.

This procedure gives the generalized vector field

X̃ = −e(r2−r1)/2χ̃r1
x∂r1 − e(r2−r1)/2(D̃zχ̃)r2

x∂r2 +
(
θ − 1

2
e(r2−r1)/2(D̃zχ̃+ χ̃)r3

x

)
∂r3 .

Here and in what follows tildes mark the counterparts of involved operators and differential

functions that are computed according to the procedure.

The ideal Ŝq
s of Ŝq corresponds to and is isomorphic to the ideal Σ̂q

3 of Σ̂q, and the form

of elements of Σ̂q
3, W̌(Ω), is already known. The generalized vector field q∂q is mapped to

−Ď. We also prolong each generalized vector field of the form Xζ,0 := (Dy+1)ζ∂q from A

to s according to (3.12) and then employ the above procedure, getting the generalized

vector field

X̃ζ,0 = −e(r2−r1)/2
(
r1
x(D̃y + 1)ζ̃∂r1 + r2

x(D̃z + 1)ζ̃∂r2 + 2r3
xζ̃∂r3

)
,

where ζ = ζ[q] runs through the characteristics of generalized vector fields in K̂q and

is defined up to summands proportional to e−y−z, and ζ̃ denotes the pullback of ζ by

the infinite prolongation of the transformation (3.6). According to the splitting K̂q =

Λ̂q ∈ K̂−∞, for ζ∂q ∈ Λ̂q and ζ∂q ∈ K̂−∞ we obtain generalized vector fields of the forms
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−Ř(Γ) and −P̌(Φ), respectively, where Γ∂q can be assumed to run through the chosen

basis of Λ̂q, and the parameter function Φ = Φ(r1, r2) runs through the solution set of

the Klein–Gordon equation Φr1r2 = −Φ/4 and is defined up to summands proportional

to e(r2−r1)/2.

Remark 3.11. The subspaces I1 and I2 that consist of all generalized vector fields of the

forms P̌(Φ) and W̌(Ω) from the algebra Σ̂q, respectively, are (infinite-dimensional) ideals

of Σ̂q. Moreover, the ideal I1 is commutative. Since P̌(er
2−r1) = W̌(ω1) = er

2−r1r3
x∂r3 ,

these ideals are not disjoint, I1 ∩ I2 = 〈er2−r1r3
x∂r3〉, which displays the above indetermi-

nacy of Φ.

Remark 3.12. The algebra of first-order reduced generalized symmetries of the sys-

tem (3.1) can be identified with the subspace of Σ̂q spanned by Ď, Ř(q̃), Ř(D̃z q̃), P̌(Φ),

W̌(Ω), where the parameter function Φ = Φ(r1, r2) runs through the solution set of the

Klein–Gordon equation Φr1r2 = −Φ/4, and the parameter function Ω runs through the set

of smooth functions of ω0 = r3 and ω1 = er
2−r1r3

x. As was noted in [112, Remark 19], this

subspace is a Lie algebra since it is closed with respect to the Lie bracket of generalized

vector fields. The indicated property is shared by all strictly hyperbolic diagonalizable

hydrodynamic-type systems. In the notation of [112, Theorem 18],

Ř(q̃) = 2(Ď − Ǧ1), Ř(D̃z q̃) = 2(Ď + Ǧ1 + Ǧ2),

where Ǧ1 = (tr1
x − 1)∂r1 + tr2

x∂r2 + tr3
x∂r3 and Ǧ2 = ∂r1 − ∂r2 . Moreover, the generalized

vector fields

Ď, Ǧ1, Ǧ2, P̌
(
(r1 + r2)e(r1−r2)/2

)
, P̌

(
e(r1−r2)/2

)
, W̌(Ω) (3.16)

with an arbitrary Ω depending on r3 only are the evolutionary forms of Lie-symmetry

vector fields −D̂, −Ĝ1, Ĝ2, 2P̂ t, −2P̂x and Ŵ(Ω) of the system (3.1), respectively, which

span the entire Lie invariance algebra of this system. Therefore, any element of Σ̂q

that does not belong to the span of (3.16) is a genuinely generalized symmetry of the

system (3.1).
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3.5 Cosymmetries

The space Υ of cosymmetries of the system (3.1) can be computed in a way that is

similar to the computation of generalized symmetries and involves the partial coupling

of this system and the linearizability of the subsystem (3.1a)–(3.1b) by the hodograph

transformation. Let Υtriv ⊂ Υ denote the space of trivial cosymmetries of the system (3.1),

which vanish on solutions thereof. The quotient space Υq = Υ/Υtriv can be identified,

e.g., with the subspace that consists of canonical representatives of cosymmetries, Υ̂q ={
(λi[r], i = 1, 2, 3) ∈ Υ

}
.

Theorem 3.13. The space Υ̂q of canonical representatives of cosymmetries is spanned

by cosymmetries from three families,

1. er
1−r2(Ω,−Ω, (ÂΩ)/ω1

)
with the operator Â =

∑∞
κ=0 ω

κ+1∂ωκ and with Ω run-

ning through the space of smooth functions of a finite, but unspecified number of

ωκ = (er
2−r1Dx)

κr3, κ ∈ N0.

2. e(r1−r2)/2(−2Φr1 , Φ, 0), where the parameter function Φ = Φ(r1, r2) runs through the

solution space of the Klein–Gordon equation Φr1r2 = −Φ/4.

3. e(r1−r2)/2
(
− D̃yX̃q̃, X̃q̃, 0

)
, where the operator X̃ runs through the set

{
J̃κ, J̃κD̃ι

y, J̃
κD̃ι

z, κ ∈ N0, ι ∈ N
}
,

and

D̃y := − 1

r1
x

(
Dt + (r1 + r2 − 1)Dx

)
, D̃z := − 1

r2
x

(
Dt + (r1 + r2 + 1)Dx

)
,

J̃ :=
r1

2
D̃y +

r2

2
D̃z, q̃ := e(r1−r2)/2

(
x− (r1 + r2 + 1)t

)
.

Proof. The space Υ̂q coincides with the solution space of the system

Dtλ
1 + (r1 + r2 + 1)Dxλ

1 = r2
x(λ

2 − λ1) + r3
xλ

3, (3.17a)

Dtλ
2 + (r1 + r2 − 1)Dxλ

2 = r1
x(λ

1 − λ2) + r3
xλ

3, (3.17b)

Dtλ
3 + (r1 + r2)Dxλ

3 + (r1
x + r2

x)λ
3 = 0, (3.17c)
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which is formal adjoint to the system (3.8) for generalized symmetries of (3.1). The

substitution (λ1, λ2, λ3) = er
1−r2(λ̃1, λ̃2, λ̃3) reduces the system (3.17) to

Dtλ̃
1 + (r1 + r2 + 1)Dxλ̃

1 = r2
x(λ̃

1 + λ̃2) + r3
xλ̃

3, (3.18a)

Dtλ̃
2 + (r1 + r2 − 1)Dxλ̃

2 = r1
x(λ̃

1 + λ̃2) + r3
xλ̃

3, (3.18b)

Dtλ̃
3 + (r1 + r2)Dxλ̃

3 = 0. (3.18c)

We again use the modified coordinates on S(∞). We will show below that the general

solution of the system (3.18) can be represented in the form

λ̃1 = λ̃1h + Ω, λ̃2 = λ̃2h − Ω, λ̃3 =
ÂΩ

ω1
, (3.19)

where Â =
∑∞

κ=0 ω
κ+1∂ωκ , Ω runs through the space of smooth functions of a finite, but

unspecified number of ω’s, and (λ̃1h, λ̃2h) with λ̃jh = λ̃jh[r1, r2], j = 1, 2, is the general

solution of the subsystem (3.18a)–(3.18b) with λ̃3 = 0,

Dtλ̃
1h + (r1 + r2 + 1)Dxλ̃

1h = r2
x(λ̃

1h + λ̃2h),

Dtλ̃
2h + (r1 + r2 − 1)Dxλ̃

2h = r1
x(λ̃

1h + λ̃2h).

The counterpart (λ1h, λ2h) = er
1−r2(λ̃1h, λ̃2h) of (λ̃1h, λ̃2h) satisfies the subsystem (3.17a)–

(3.17b) with λ3 = 0,

Dtλ
1h + (r1 + r2 + 1)Dxλ

1h = r2
x(λ

2h − λ1h), (3.20a)

Dtλ
2h + (r1 + r2 − 1)Dxλ

2h = r1
x(λ

1h − λ2h). (3.20b)

Therefore, the triple λ = (λ1, λ2, λ3) belongs to Υ̂q if and only if it can be represented, in

the above notation, in the form

λ = er
1−r2(Ω,−Ω, (ÂΩ)/ω1

)
+ (λ1h, λ2h, 0). (3.21)

The substitution (λ1h, λ2h) = e(r1−r2)/2(λ̂1, λ̂2) reduces the system (3.20) to the system
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Dtλ̂
1 + (r1 + r2 + 1)Dxλ̂

1 = r2
xλ̂

2,

Dtλ̂
2 + (r1 + r2 − 1)Dxλ̂

2 = r1
xλ̂

1,

which can be rewritten in terms of the operators D̃y and D̃z as D̃zλ̂
1 = −λ̂2, D̃yλ̂

2 = −λ̂1.

Therefore, both the components λ̂1 and λ̂2 satisfy the image of the equation (3.11a) under

the transformation (3.7) and thus are the reduced forms of the pullbacks of characteristics

of generalized vector fields from K̂q by this transformation. As a result, we obtain the

families of cosymmetries of the system (3.1) that are presented in the theorem. The first

and second summands in (3.21) correspond to the first family and the span of the second

and the third families, respectively.

Now we prove the representation (3.19) by induction on the order ordω(λ̃1 − λ̃2) ∈

{−∞} ∪ N0. In view of Lemma 3.2, any solution of the equation (3.18c), which can be

shortly rewritten as Bλ̃3 = 0, is a smooth function of a finite number of ω’s. We take the

sum and the difference of the equations (3.18a) and (3.18b), additionally writing them,

after multiplying by er
2−r1 , in terms of the operator A and B,

er
2−r1B(λ̃1 + λ̃2) + A(λ̃1 − λ̃2) = (λ̃1 + λ̃2)A(r1 + r2) + 2ω1λ̃3, (3.22a)

er
2−r1B(λ̃1 − λ̃2) + A(λ̃1 + λ̃2) = (λ̃1 + λ̃2)A(r2 − r1). (3.22b)

Base case. Let ordω(λ̃1−λ̃2) = −∞. The equation (3.22b) implies ordω(λ̃1+λ̃2) = −∞ as

well, i.e., both λ̃1 and λ̃2 do not depend on ω’s. Then we obtain from the equation (3.22a)

that the summand 2ω1λ̃3 does not depend on ω’s as well. Recalling that λ̃3 depends at

most on a finite number of ω’s, we educe that c := ω1λ̃3 is a constant, i.e., λ̃3 = c/ω1 =

cer
1−r2/r3

x. We substitute (λ1, λ2) = e(r1−r2)/2(λ̂1, λ̂2) into the equations (3.18a) and (3.18b)

and rewrite them in the notation of Section 3.2 as

D̃zλ̂
1 = −λ̂2 +

c

2
er

1−r2K1, D̃yλ̂
2 = −λ̂1 − c

2
er

1−r2K2.

We carry out the transformation (3.6) restricted to the spaces with the coordinates

(t, x, r1, r2) and (y, z, p, q) and then exclude derivatives of p in view of the equation (3.5)

and its differential consequences. As a result, we derive the system
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Dzλ̆
1 = −λ̆2 +

c

2
e2y+2zK1, Dyλ̆

2 = −λ̆1 − c

2
e2y+2zK2, (3.23)

where the differential function λ̆i = λ̆i[q] is the image of λ̂i under the above transformation,

i = 1, 2, see the notation in Section 3.3. We solve the first equation of (3.5) with respect

to λ̆2 and substitute the obtained expression λ̆2 = −Dzλ̆
1 + 1

2
ce2y+2zK1 into the second

equation, deriving

DyDzβ[q] = β[q] + ce2y+2z(qzz + qy − qz − q). (3.24)

with respect to β := λ̆1. Therefore, the system (3.18) with λ̃3 = c/ω1 has a solution if

and only if the equation (3.24) has. In this way, we reduce the proof in the base case to

studying the existence of solutions of the equation (3.24).

Given a differential function α = α[q] that is affine in totality of involved derivatives

of q, any solution β = β[q] of the equation DyDzβ = β + α has the same property.

Indeed, we fix an arbitrary solution β of (3.24) and substitute q = q0 + ε1q
1 + ε2q

2 into

it. Here ε1 and ε2 are constant parameters, and q0, q1 and q2 are arbitrary solutions

of the equation (3.4a), which is the (1+1)-dimensional Klein–Gordon equation for q in

light-cone variables, qiyz = qi, i = 0, 1, 2. We take the mixed derivative of the equation

for β with substituted q with respect to (ε1, ε2) at (ε1, ε2) = (0, 0) to derive the equation

ordβ∑
ι,ι′=− ordβ

(
DyDz(βqιqι′ [q

0]q1
ι q

2
ι′)− βqιqι′ [q

0]q1
ι q

2
ι′

)
= 0, (3.25)

which can be split with respect to {qι, qι′ , ι, ι′ = − ord β− 1, . . . , ord β+ 1}. Suppose that

βqιqι′ 6= 0 for some (ι, ι′). Let ι0 = max
{
ι | ∃ι′ : βqιqι′ 6= 0

}
and ι′0 = min

{
ι′ | βqι0qι′ 6= 0

}
.

Collecting the coefficients of q1
ι0+1q

2
ι′0−1 in the equation (3.25) gives βqι0qι′0

= 0 contradicting

the inequality βqι0qι′0
6= 0. Therefore, βqιqι′ = 0 for any (ι, ι′) ∈ Z2.

In view of the claim proved in the previous paragraph, we can represent each fixed

solution of the equation (3.24) in the form

β =
n∑

ι=−n

βι(y, z)qι + β00(y, z),
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where n := ord β, and the coefficients βι, ι = −n, . . . , n, and β00 are smooth functions

of (y, z). Without loss of generality, we can assume that n > 2 and β00 = 0. The

equation (3.24) splits into the following system for the coefficients of β:

∆−n−1 : β−ny = 0, ∆−n : β−n+1
y = 0,

∆κ−n : βκ−n−1
z + βκ−nyz + βκ−n+1

y = ακ−n, κ = 1, . . . , 2n− 1,

∆n : βn−1
z = 0, ∆n+1 : βnz = 0,

where α−2 = −α−1 = −α0 = α1 = ce2y+2z and the other αι are zero. The equation

∆ι is constituted by the coefficients of qι. For each κ ∈ {1, . . . , 2n − 1}, we solve the

equation ∆κ−n with respect to βκ−n+1
y , differentiate the result κ times with respect to y,

∂κ+1βκ−n+1

∂yκ+1
=
∂κακ−n

∂yκ
− ∂κ+1βκ−n−1

∂yκ∂z
− ∂κ+2βκ−n

∂yκ+1∂z

and substitute for the last two derivatives in view of differential consequences of the

previous equations. As a result, we obtain

∂κ+1βκ−n+1

∂yκ+1
= cκe

2y+2z,

where cκ = 0, κ = 1, . . . , n − 3, cn−2 = 2n−2c, cn−1 = −3 · 2n−1c, cn = 2n+2c, and

cn+1 = −2n+3c.

We can prove by induction on κ that cκ = (−1)κ−n2κ+2c, κ = n + 1, . . . , 2n− 1. The

base case κ = n is given by the above equality cn+1 = −2n+3c, and the induction step

follows from the equality cκ+1 = −4(cκ + cκ−1) for κ > n + 1. Therefore, the equation

∆n+1: βnz = 0 implies that c = 0, and we obtain the representation (3.19) with Ω = 0.

Induction step. Suppose that the representation (3.19) holds if ordω(λ̃1 − λ̃2) < κ ∈ N0

and prove this representation for ordω(λ̃1 − λ̃2) = κ. In view of the equation (3.22b),

under the last condition we have ordω(λ̃1 + λ̃2) < κ. Then the equation (3.22a) implies

that ordω(ω1λ̃3) = κ + 1. Differentiating the equation (3.22a) with respect to ωκ+1, we

derive (λ̃1 − λ̃2)ωκ = 2(ω1λ̃3)ωκ+1 , and thus both the left and the right hand sides of
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the last equality depends at most on ω0, . . . , ωκ, i.e., there exists a smooth function

Υ = Υ(ω0, . . . , ωκ) such that

(λ̃1 − λ̃2)ωκ = 2(ω1λ̃3)ωκ+1 = 2Υ.

Let Ῠ = Ῠ(ω0, . . . , ωκ) be a fixed antiderivative of Υ with respect to ωκ, Ῠωκ = Υ. Define

λ̆1 := λ̃1 − Ῠ, λ̆2 := λ̃2 + Ῠ, λ̆3 := λ̃3 − Â̆Υ

ω1
.

The tuple (λ̆1, λ̆2, λ̆3) satisfies the system (3.18), and

(λ̆1 − λ̆2)ωκ = (λ̃1 − λ̃2)ωκ − 2Υ = 0,

i.e., κ̆ := ordω(λ̆1 − λ̆2) < κ. By the induction hypothesis, this tuple can be represented

in the form (3.19) with some smooth function Ω̆ = Ω̆(ω0, . . . , ωκ̆). Setting Ω = Ω̆ + Ῠ, we

derive the representation (3.19) for (λ̃1, λ̃2, λ̃3) with the same λ1h and λ2h.

Remark 3.14. The first and the second families from Theorem 3.13, which are linear

spaces, are not disjoint in the sense of linear spaces. Their intersection is one-dimensional

and is spanned by the cosymmetry er
1−r2(1,−1, 0) corresponding to Ω = 1 and Φ =

−e(r1−r2)/2. The span of these two families has the zero intersection with the span of the

third family.

3.6 Conservation laws

Theorem 3.15. The space of conservation laws of the system (3.1) is naturally isomor-

phic to the space spanned by the following conserved currents of this system:

1.
(

er
1−r2Ω, (r1+r2)er

1−r2Ω
)
, where the parameter function Ω runs through the space of

smooth functions of a finite, but unspecified number of ωκ = (er
2−r1Dx)

κr3, κ ∈ N0,

and such two functions should be assumed equivalent if their difference belongs to

the image of the operator Â =
∑∞

κ=0 ω
κ+1∂ωκ.
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2.
(

e(r1−r2)/2(2Φr1 +Φ), e(r1−r2)/2(2(r1+r2+1)Φr1 +(r1+r2−1)Φ)
)
, where the parameter

function Φ = Φ(r1, r2) runs through the solution space of the Klein–Gordon equation

Φr1r2 = −Φ/4.

3.
(
r2
xρ̃ + r1

xσ̃, (r1 + r2 − 1)r2
xρ̃ + (r1 + r2 + 1)r1

xσ̃
)

with ρ̃ = −q̃D̃zX̃q̃, σ̃ = (D̃y q̃)X̃q̃,

where the operator X̃ runs through the set

{
J̃κ
′
, κ′ ∈ 2N0 + 1, (J̃ + ι/2)κD̃ι

y, (J̃− ι/2)κD̃ι
z, κ ∈ N0, ι ∈ N, κ+ ι ∈ 2N0 + 1

}
,

and

D̃y := − 1

r1
x

(
Dt + (r1 + r2 − 1)Dx

)
, D̃z := − 1

r2
x

(
Dt + (r1 + r2 + 1)Dx

)
,

J̃ :=
r1

2
D̃y +

r2

2
D̃z, q̃ := e(r1−r2)/2

(
x− (r1 + r2 + 1)t

)
.

Proof. We compute the space of local conservation laws of the system (3.1) combining the

direct method of finding conservation laws [128, 166], which is based on the definition of

conserved currents, with using the linearization of the essential subsystem (3.1a)–(3.1b)

to the (1+1)-dimensional Klein–Gordon equation. Up to the equivalence of conserved

currents, meaning that they coincide on the solution set of the corresponding system

of differential equations, it suffices to consider only reduced conserved currents of the

system (3.1), which are of the form (ρ, σ), where ρ = ρ[r] and σ = σ[r]. A tuple (ρ[r], σ[r])

is a conserved current of the system (3.1) if and only if Dtρ+Dxσ = 0. We should also take

into account the equivalence of conserved currents up to adding null divergences, which

means that conserved currents (ρ[r], σ[r]) and (ρ′[r], σ′[r]) belong to the same conservation

law if and only if there exists a differential function f = f [r] such that ρ′ = ρ+ Dxf and

σ′ = σ −Dtf .

We associate an arbitrary reduced conserved current (ρ[r], σ[r]) of the system (3.1)

with the modified density ρ̆ := er
2−r1ρ and the modified flux σ̆ = σ − (r1 + r2)ρ, i.e.,

(ρ, σ) =
(
er

1−r2 ρ̆, (r1 + r2)er
1−r2 ρ̆+ σ̆

)
,

and Dtρ+ Dxσ = er
1−r2(Bρ̆+ Aσ̆). Therefore, the equality Dtρ+ Dxσ = 0 for conserved
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currents is equivalent to the equality Bρ̆+Aσ̆ = 0 for modified conserved currents, and the

equivalence of conserved currents up to adding a null divergence is modified to ρ̆′ = ρ̆+Af

and σ̆′ = σ̆ −Bf .

Fixing a reduced conserved current (ρ[r], σ[r]) and using the modified coordinates

on S(∞), we define κ := max(ordω ρ̆, ordω σ̆) and prove by mathematical induction with

respect to κ ∈ {−∞}∪N0 that up to adding a modified null divergence we have the repre-

sentation ρ̆ = ρ̆1[r1, r2]+ ρ̆0(ω0, . . . , ωκ) for some differential functions ρ̆0 = ρ̆0(ω0, . . . , ωκ)

and ρ̆1 = ρ̆1[r1, r2], and σ̆ = σ̆[r1, r2].

The base case κ = −∞ is obvious.

For the inductive step, we fix κ ∈ N0, suppose that the above claim is true for all

κ′ < κ and prove it for κ. Collecting coefficients of ωκ+1 in the equality Bρ̆ + Aσ̆ = 0,

we derive σ̆ωκ = 0, i.e., in fact ordω σ̆ < κ. Then we differentiate the same equality

twice with respect to ωκ, which leads to Bρ̆ωκωκ = 0. In view of Lemma 3.2, this means

that the ρ̆ωκωκ can depend at most on (ω0, . . . , ωκ). Therefore, there exist differential

functions ρ̆10 = ρ̆10(ω0, . . . , ωκ), ρ̆11 = ρ̆11[r] and ρ̆12 = ρ̆12[r] such that ordω ρ̆
11 < κ,

ordω ρ̆
12 < κ and ρ̆ = ρ̆12[r]ωκ + ρ̆11[r] + ρ̆10(ω0, . . . , ωκ). Since Bρ̆10 = 0, the tuple (ρ̆10, 0)

is a modified conserved current of the system (3.1). Hence the tuple (ρ̆12ωκ + ρ̆11, σ̆) is a

modified conserved current of this system as well. Adding the modified null divergence

(−A
∫
ρ̆12 dωκ−1,B

∫
ρ̆12 dωκ−1) to the latter modified conserved current, we obtain an

equivalent modified conserved current (ρ̆′, σ̆′) with max(ordω ρ̆
′, ordω σ̆

′) < κ. The induc-

tion hypothesis implies that up to adding a modified null divergence, the component ρ̆′

admits the representation ρ̆′ = ρ̆21[r1, r2] + ρ̆20(ω0, . . . , ωκ) for some differential functions

ρ̆20 = ρ̆20(ω0, . . . , ωκ) and ρ̆21 = ρ̆21[r1, r2], and σ̆′ = σ̆′[r1, r2]. Setting ρ̆0 = ρ̆10 + ρ̆20,

ρ̆1 = ρ̆21 and σ̆ = σ̆′, we complete the inductive step.

In other words, we have proved that up to adding a null divergence, any conserved

current of the system (3.1) can be represented as the sum of a conserved current from

the first theorem’s family and of a conserved current of the form (ρ[r1, r2], σ[r1, r2]). The

subspace of conserved currents of the latter forms is the pullback of the space of reduced

conserved currents of the essential subsystem (3.1a)–(3.1b) by the projection (t, x, r) →
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(t, x, r1, r2); cf. [80, Proposition 3]. The latter space is naturally isomorphic to the space

of conservation laws of the essential subsystem (3.1a)–(3.1b), which is the pullback of

the space of conservation laws of the Klein–Gordon equation (3.4a) with respect to the

composition of the restriction of the transformation (3.6) to the space with coordinates

(t, x, r1, r2) (i.e., the s-component of this transformation should be neglected) with the

projection (y, z, q, p) → (y, z, q). We take the space of conservation laws of the (1+1)-

dimensional Klein–Gordon equation, which was constructed in Section 2.4, and perform

the above pullbacks,

ρ = −1

2
(r2
xρ̃KG + r1

xσ̃KG), σ = −1

2
(V 2r2

xρ̃KG + V 1r1
xσ̃KG),

where ρ̃KG and σ̃KG are, as differential functions, the pullbacks of the density ρKG and the

flux σKG of a conserved current of (3.4a), respectively; see [128, Section III] or [130, Propo-

sition 1]. As a result, we obtain, up to the equivalence on solutions of the system (3.1)

and up to rescaling of conserved currents, the other families of the conserved currents of

this system that are presented in the theorem.

More specifically, the equation (3.4a) is the Euler–Lagrange equation for the La-

grangian K = −(qyqz + q2)/2. Hence characteristics of generalized symmetries of this

equation are also its cosymmetries, and vice versa. The quotient algebra Kq = K/Ktriv

of generalized symmetries of (3.4a), where K and Ktriv are the algebra (of evolutionary

representatives) of generalized symmetries of the Lagrangian (3.4a) and its ideal of trivial

generalized symmetries, is naturally isomorphic to the algebra K̃q = Λ̃q ∈ K̃−∞, where

Λ̃q :=
〈

(Jκq)∂q, (JκDι
yq)∂q, (JκDι

zq)∂q, κ ∈ N0, ι ∈ N
〉

is a subalgebra and K̃−∞ := {f(y, z)∂q | f ∈ KG} is an abelian ideal, see Theorem 2.4.

Here Dy and Dz are the operators of total derivatives in y and z, respectively, and J :=

yDy − zDz. Denote by Υ, Υtriv and Υq the algebra (of evolutionary representatives) of

variational symmetries of the Lagrangian K, its ideal of trivial variational symmetries and

the quotient algebra of variational symmetries of this Lagrangian, i.e., Υ ⊂ K, Υtriv :=
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Υ ∩ Ktriv and Υq := Υ/Υtriv. The quotient algebra Υq is naturally isomorphic to the

algebra Υ̃q = Λ̃q
− ∈ Σ̃−∞, where

Λ̃q
− :=

〈
(Xκ′0q)∂q, κ

′ ∈ 2N0+1, (Xκιq)∂q, (X̄κιq)∂q, κ ∈ N0, ι ∈ N, κ+ι ∈ 2N0+1
〉

with

Xκι =
(

J +
ι

2

)κ
Dι
y, κ, ι ∈ N0, X̄κι =

(
J− ι

2

)κ
Dι
z, κ ∈ N0, ι ∈ N,

is the subspace of Λ̃q that is associated with the space of formally skew-adjoint differential

operators generated by Dy, Dz and J. Note that in the context of Noether’s theorem,

we need to consider the algebra K̃q instead of the algebra K̂q of reduced generalized

symmetries of (3.4a), which is mentioned in Section 3.4, since cosets of Υtriv in Υ do

not necessarily intersect the algebra K̂q, see Remark 2.9. The space of conservation laws

of (3.4a) is naturally isomorphic to the space spanned by the conserved currents

C̄0
f = (−fzq, fqy), CX = (−qDzXq, qyXq),

where the parameter function f = f(y, z) runs through the solution set of (3.4a), and the

operator X runs through the basis of Λ̃q
−, see Proposition 2.10. The conserved current C̄0

f

is equivalent to the conserved current C0
f = (fqz,−fyq).

We map conserved currents of the form CX, where Xq∂q runs through the basis of Λ̃q
−,

to conserved currents of the system (3.1), which leads to the third family of the theorem.

Possible modifications of the form of these conserved currents up to recombining them

and adding null divergences are discussed in Remark 3.23 below.

At the same time, it is convenient to modify conserved currents of the form C̄0
f before

their mapping in order to directly obtain hydrodynamic conservation laws.5 We repa-

rameterize these conserved currents, representing the parameter function f in the form

f = f̄y + f̄z + 2f̄ , where the function f̄ = f̄(y, z) also runs through the solution set of the

(1+1)-dimensional Klein–Gordon equation (3.4a). Then fz = f̄zz + 2f̄z + f̄ . Adding the

5Recall that a conservation law is called hydrodynamic if its density ρ is a function of dependent
variables only.
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null divergence (DzR,−DyR) with R := f̄ qz − f̄zq − 2f̄ q to −C̄0
f , we obtain the equiva-

lent conserved current (f̄K1,−f̄yK2), which is mapped to the conserved current from the

second family with Φ = f̄(r1/2,−r2/2).

Note that the first and second theorem’s families are in fact subspaces in the space of

conserved currents of the system (3.1). Analyzing the equivalence of modified conserved

currents, we see that conserved currents from the first theorem’s family are equivalent if

and only if the difference of corresponding Ω’s belongs to the image of the operator Â =∑∞
κ=0 ω

κ+1∂ωκ . The intersection of the first and the second families is one-dimensional and

spanned by the conserved current
(

er
1−r2 , (r1 + r2)er

1−r2 ). The sum of these two families

does not intersect the span of the third family. The equivalence of conserved currents

within the span of all the three families is generated by the equivalence of conserved

currents within the first family.

Remark 3.16. The kernel kerE of the operator E =
∑∞

κ=1

∑κ−1
κ′=0 ω

κ−κ′(−Â)κ
′
∂ωκ − 1 is

contained in the kernel kerE′ of the operator E′ =
∑∞

κ=0(−Â)κ∂ωκ , kerE ⊂ kerE′, since the

operator identity ÂE = −ω1E′ holds. In view of [103, Theorem 4.26], Theorem 3.18 below

implies that (locally) the image of the operator Â coincides with kerE ∩ kerE′ = kerE.

The kernel kerE′ of E′ is spanned by the constant function 1 and the image of Â. Hence

im Â = kerE  kerE′.

Remark 3.17. The conserved currents from Theorem 3.15 that are associated with

Ω =
r3

r3 + 1
, Ω =

1

r3 + 1
, Ω = 1,

Φ = e(r1−r2)/2(r1 + r2 − 1), Φ =
1

8
e(r1−r2)/2

(
(r1 + r2)2 − 4r2

)
correspond to the conservation of masses of the both individual phases and of mixture

mass as well as the conservation of mixture momentum and of energy in the drift flux

model, respectively, cf. [73, Chapter 13]. The related equations in conserved form are

ρ1
t + (ρ1u)x = 0, ρ2

t + (ρ2u)x = 0, (ρ1 + ρ2)t +
(
(ρ1 + ρ2)u

)
x

= 0,(
(ρ1 + ρ2)u

)
t
+
(
(ρ1 + ρ2)(u2 + 1)

)
x

= 0,
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(
(ρ1 + ρ2)

(
u2

2
+ ln(ρ1 + ρ2)

))
t

+

(
(ρ1 + ρ2)

(
u2

2
+ ln(ρ1 + ρ2) + 1

)
u

)
x

= 0.

In particular, the magnitude ln(ρ1+ρ2) can be interpreted as (proportional to) the internal

mixture energy. The first, second and fourth equations constitute the conserved form of

the system S in the original variables (ρ1, ρ2, u).

Theorem 3.18. In the notation of Theorem 3.15, the associated reduced conservation-law

characteristics of the system (3.1) are respectively

1. er
1−r2

(
Ω−

∞∑
κ=1

κ−1∑
κ′=0

ωκ−κ
′
(−Â)κ

′
Ωωκ ,

∞∑
κ=1

κ−1∑
κ′=0

ωκ−κ
′
(−Â)κ

′
Ωωκ−Ω,

∞∑
κ=0

(−Â)κΩωκ

)
.

2. e(r1−r2)/2
(

2Φr1r1 + 2Φr1 + 1
2
Φ, Φr2 − Φr1 − Φ, 0

)
.

3. e(r1−r2)/2
(
− D̃yX̃q̃, X̃q̃, 0

)
.6

The space spanned by these characteristics is naturally isomorphic to the quotient space

of conservation-law characteristics of the system (3.1).

Proof. Since the system (3.1) is a system of evolution equations, its conservation-law

characteristics can be found from reduced densities of the associated conservation laws by

acting the Euler operator,

E =

(
∞∑
κ=0

(−Dx)
κ∂riκ , i = 1, 2, 3

)
,

see e.g. [152, Proposition 7.41]. This perfectly works for characteristics related to the

second family of conserved currents presented in Theorem 3.15 but since characteristics

related to the first and third families are not in r’s coordinates, while the Euler operator

is, it is better to use different methods.

Characteristics related to the third family can be obtained from conservation-law char-

acteristics of the (1+1)-dimensional Klein–Gordon equation (3.4a). A characteristic of the

conservation law of (3.4a) containing the conserved current CX is λ = (X−X†)q = 2Xq for

(Xq)∂q ∈ Λ̃q
−. It is trivially prolonged to the conservation-law characteristic (λ, 0) of the

6Here we omitted the multiplier −2, which is needed for the direct correspondence between these
conservation-law characteristics and conserved currents from the third family of Theorem 3.15.
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system (3.4a), (3.5). Denote by R1, R2, L1 and L2 the differential functions associated

with the equations (3.1a), (3.1b), (3.4a) and (3.5), respectively,

R1 := r1
t + (r1 + r2 + 1)r1

x, R2 := r2
t + (r1 + r2 − 1)r2

x,

L1 := qyz − q, L2 := p− 1

2
e−y−z(qz − q).

These differential functions are related via the transformation T , namely T̂ ∗(R1, R2)T =

M(L1, L2)T with

M =

 0 − 4

∆
2

∆
e−y−z

4

∆
(Dy + 1)

 , and M† =

 0
2

∆
e−y−z

− 4

∆
−(Dy − 1) ◦ 4

∆

 ,

where ∆ = (DyT̂ t)(DzT̂ x)−(DzT̂ t)(DyT̂ x), T ∗∆ = −4(r1
t r

2
x−r1

xr
2
t ). The conservation-law

characteristic (λ1, λ2) of the system (3.1a), (3.1b) that is associated with the conservation-

law characteristic (λ, 0) of the system (3.4a), (3.5) is defined by M†(∆T̂ ∗λ1,∆T̂ ∗λ2)T =

(λ, 0)T. Therefore, the conservation-law characteristic λ of (3.4a) is mapped to the

conservation-law characteristic 1
2
ey+z(−Dyλ, λ, 0) of the system S, where all values should

be expressed in terms of the variables (t, x, r). This gives a conservation-law characteristic

from the third family of the theorem.

Characteristics related to the first family are found following the procedure of defining

them via the formal integration by parts, cf. [103, p. 266]. We denote by A and B the

counterparts of the operators A and B, respectively, in the complete total derivative

operators with respect to t and x, A := er
2−r1Dx, B := Dt + (r1 + r2)Dx. Then

Dt(e
r1−r2Ω)+Dx

(
(r1+r2)er

1−r2Ω
)

= er
1−r2ΩE1−er

1−r2ΩE2+
∞∑
κ=0

er
1−r2ΩωκBωκ. (3.26)

Here Ek denotes the left-hand side of the kth equation of the system (3.1), Ek = rkt +V krkx,

k = 1, 2, 3. Note that E3 = Br3. Since Ω depends on a finite number of ω’s, there is no

issue with convergence.

We derive using the mathematical induction with respect to ι that
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Bωκ = AκE3 +
κ−1∑
κ′=0

Aκ′
(
ωκ−κ

′
(E2 − E1)

)
. (3.27)

Indeed, for the base case κ = 0, we have Bω0 = Br3 = E3. The induction step follows

from the equality Bωκ+1 = BAωκ = ABωκ + ωκ+1(E2 − E1).

Using again the mathematical induction with respect to κ, we prove the counterpart

of the Lagrange identity in terms of the operator A,

er
1−r2FAκG = er

1−r2((−A)κF
)
G+ Dx

κ−1∑
κ′=0

(
(−A)κ

′
F
)
Aκ−κ′−1G, κ ∈ N0,

for any differential functions F and G of r. We apply this identity to each summand of

the expression er
1−r2ΩωκBωκ expanded in view of (3.6), which gives

er
1−r2ΩωκBωκ = er

1−r2((−A)κΩωκ
)
E3 + er

1−r2
κ−1∑
κ′=0

(
(−A)κ

′
Ωωκ

)
ωκ−κ

′
(E2−E1) + DxH,

where H is a differential function of r that vanishes on the manifold S(∞) and whose pre-

cise form is not essential. When acting on functions of ω’s, the operator A can be replaced

by the operator Â =
∑∞

κ=0 ω
κ+1∂ωκ . Substituting the derived expression for er

1−r2ΩωκBωκ

into (3.26) and collecting coefficients of E1, E2 and E3, we obtain a characteristic from the

first family of the theorem.

Remark 3.19. Since the common element er
1−r2(1,−1, 0) of cosymmetry families, which

is mentioned in Remark 3.14, is a conservation-law characteristic of the system S, it was

expected that the families of conserved currents and of conservation-law characteristics

from Theorems 3.15 and 3.18 have the same properties as the properties of cosymmetry

families indicated in Remark 3.14. Thus, the above conservation-law characteristic, which

spans the intersection of the first and the second families from Theorem 3.18, corresponds

to the conserved current er
1−r2(1, r1 + r2) spanning the intersection of the respective fam-

ilies from Theorem 3.15, cf. the end of the proof of this theorem.

Remark 3.20. The second family of cosymmetries from Theorem 3.13 coincides with the

second family of conservation-law characteristics from Theorem 3.18 up to reparameteriza-
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tion. In other words, each cosymmetry in this family is a conservation-law characteristic.

This is not the case for the first7 and third families of cosymmetries from Theorem 3.13,

which properly contain the first and third families of conservation-law characteristics from

Theorem 3.18, respectively.

Theorem 3.21. Under the action of generalized symmetries of the system (3.1) on its

space of conservation laws, a generating set of conservation laws of this system is con-

stituted by the two zeroth-order conservation laws respectively containing the conserved

currents

er
1−r2( r3, (r1 + r2)r3

)
, (3.28a)

er
1−r2(x− V 3t, V 3(x− V 3t)− t

)
with V 3 := r1 + r2. (3.28b)

Proof. The action of the generalized symmetry Ω∂r3 on the conserved current (3.28a)

gives the conserved current
(

er
1−r2Ω, (r1 + r2)er

1−r2Ω
)
. Varying the parameter func-

tion Ω through the space of smooth functions of a finite, but unspecified number of

ωκ = (er
2−r1Dx)

κr3, κ ∈ N0, we obtain the first family of conserved currents from Theo-

rem 3.15.

Conserved currents from the other two families are constructed by mapping conserved

currents of the (1+1)-dimensional Klein–Gordon equation (3.4a) in the way described in

the proof of Theorem 3.15. In view of Corollary 2.11, a generating set of conservation laws

of (3.4a) is constituted, under the action of generalized symmetries of (3.4a) on conserva-

tion laws thereof, by the single conservation law containing the conserved current (q2
z ,−q2).

The counterpart of this conserved current for the system (3.1) is the conserved current

7In the notation of Remark 3.16, upon formally interpreting ω0 as a single dependent variable of a
single independent variable, say ς, and ω1, ω2, . . . as the successive derivatives of ω0, the operators
∂ς + Â and E′ become the total derivative operator with respect to ς and the Euler operator with respect
to ω0, respectively. Suppose that a smooth function Ω of a finite number of ω’s belongs to imE. Then
(ÂΩ)/ω1 ∈ imE′ and thus the Fréchet derivative of (ÂΩ)/ω1 with respect to ω0 is a formally self-adjoint
operator. This is not the case for any Ω of even positive order. Therefore, any cosymmetry from the
first family of Theorem 3.13 with Ω of even positive order is not a conservation-law characteristic of the
system (3.1).
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er
1−r2
(
r2
x(x− V 2t)2 − r1

x(x− V 1t)2, V 2r2
x(x− V 2t)2 − V 1r1

x(x− V 1t)2
)
,

which is equivalent to the conserved current (3.28b) multiplied by 2. It follows from

Lemma 3.9 that not all generalized symmetries of (3.4a) can be naturally mapped to

those of the system (3.1). This is why we need to carefully analyze the result on gener-

ating conservation laws of (3.4a) before adopting it for the system (3.1).

The conserved current C0
f = (fqz,−fyq) of the equation (3.4a) can be obtained by

acting the generalized symmetry 1
2
fy∂q ∈ K̂−∞ of this equation on the chosen conserved

current (q2
z ,−q2). Here the parameter function f = f(y, z) runs through the solution set

of (3.4a). Each conserved current from the second family of Theorem 3.15 is the image of

a conserved current of the form C0
f , and each Lie symmetry vector field f∂q of (3.4a) is

mapped to an element of the ideal I1 of the algebra Σ̂q. Therefore, the second family of

conserved currents from Theorem 3.15 is generated by acting the elements of I1 on the

conserved current (3.28b).

The action of the generalized symmetry 1
2
(DyXq)∂q, where (Xq)∂q ∈ Λ̃q, on the con-

served current (q2
z ,−q2) gives the conserved current (qzDyDzXq,−qDyXq), which is equiv-

alent to the conserved currents (qzXq,−qDyXq) and, therefore, to CX = (−qDzXq, qyXq).

The conservation law containing the obtained conserved currents has the characteristic

(X− X†)q.

We denote by V the subalgebra of Λ̃q constituted by the elements of Λ̃q that have coun-

terparts among generalized symmetries of the system (3.1), and J := 〈(Jκq)∂q, κ ∈ N〉.

We also introduce the corresponding spaces V− and J− of linear generalized symmetries

associated with formally skew-adjoint counterparts 1
2
(X−X†) of operators X from V and J,

respectively. Note that V− ) V∩Λ̃q
− and J− = J∩Λ̃q

−. In view of Lemma 3.9, (Xq)∂q ∈ V

if and only if the operator X is represented in the form X = (Dy + 1)X1 + (Dz + 1)X2 + c

for some X1 ∈ 〈Dι
yJ
κ, κ, ι ∈ N0〉, some X2 ∈ 〈Dι

zJ
κ, κ, ι ∈ N0〉 and some c ∈ R. Hence

Λ̃q is the direct sum of V and J as vector spaces, Λ̃q = Vu J, and thus Λ̃q
− = V− + J−,

where the sum is not direct by now. We are going to show that V− ⊃ J−, which implies
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that Λ̃q
− = V−. Indeed, for any X := (Dy + 1)(J− 1/2)κ with κ ∈ 2N0 + 1 we have

X− X† = (Dy + 1)(J− 1/2)κ − (J + 1/2)κ(Dy − 1) = (J− 1/2)κ + (J + 1/2)κ,

i.e.,
(
(J− 1/2)κq + (J + 1/2)κq

)
∂q ∈ V− since (Xq)∂q ∈ V. Therefore,

J− =
〈
(Jκq)∂q, κ ∈ 2N0 + 1

〉
=
〈(

(J− 1/2)κq + (J + 1/2)κq
)
∂q, κ ∈ 2N0 + 1

〉
⊂ V−.

As a result, for any (Xq)∂q ∈ Λ̃q the conserved current CX is equivalent to a conserved

current of (3.4a) that is obtained by the action of a generalized symmetry from V on

the chosen conserved current (q2
z ,−q2). For the system (3.1), this means that the third

family of conserved currents from Theorem 3.15 is generated by acting the generalized

symmetries of the form Ř(Γ) on the conserved current (3.28b).

Remark 3.22. The conserved currents from the second family of Theorem 3.15 can

be represented in a more symmetrical form. Reparameterizing them in terms of the

potential Φ̄ defined via Φ by the system Φ̄r1 + 1
2
Φ̄ = 2Φr1 , −Φ̄r2 + 1

2
Φ̄ = Φ, cf. Section 3.2,

we obtain another representation for these conserved currents,

e(r1−r2)/2
(

Φ̄r1 − Φ̄r2 + Φ̄, (r1 + r2 + 1)Φ̄r1 − (r1 + r2 − 1)Φ̄r2 + (r1 + r2)Φ̄
)
,

where the parameter function Φ̄ = Φ̄(r1, r2) runs through the solution space of the

Klein–Gordon equation Φ̄r1r2 = −Φ̄/4 as well. The successive point transformation Φ̃ =

e(r1−r2)/2Φ̄ reduces the above representation to
(

Φ̃r1−Φ̃r2 , (r1+r2+1)Φ̃r1−(r1+r2−1)Φ̃r2
)
,

where the parameter function Φ̃ = Φ̃(r1, r2) runs through the solution space of the equation

2Φ̃r1r2 = Φ̃r2 − Φ̃r1 . It is the last representation that was employed in [112, Theorem 22].

In terms of Φ̃, the associated characteristics take the form (Φ̃r1r1 − Φ̃r1r2 , Φ̃r1r2 − Φ̃r2r2 , 0).

Remark 3.23. The advantage of using conserved currents of the form CX for mapping

to conserved currents of the system S is that we obtain a uniform representation for

elements of the third family of Theorem 3.15. At the same time, it is not obvious how to

find equivalent conserved currents of minimal order for elements of this family or how to
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single out conserved currents in this family that are equivalent to ones not depending on

(t, x) explicitly. The former problem can be solved by replacing conserved currents of the

form CX in the mapping by equivalent conserved currents C1
κι, κ ∈ N0, ι ∈ N, C̄1

κι, C2
κι,

C̄2
κι, κ, ι ∈ N0, presented in Section 2.4 although an additional “integration by parts” may

still be needed for lowest values of (κ, ι) after the mapping, cf. the proof of Theorem 3.21.

For solving the latter problem, we use an analog of the trick used to prove Theorem 3.15

for deriving the second family of conserved currents, which leads to Theorem 3.26 below.

Corollary 3.24. (i) The space of hydrodynamic conservation laws of the system (3.1)

is infinite-dimensional and is naturally isomorphic to the space spanned by the conserved

currents from the second family of Theorem 3.15 and from the first family with Ω running

through the space of smooth functions of ω0 := r3.

(ii) The space of zeroth-order conservation laws of the system (3.1) is naturally iso-

morphic to the space spanned by its hydrodynamic conserved currents and the conserved

current (3.28b).

Proof. This assertion was proved in [112, Theorem 22] by the direct computation. At

the same time, it is a simple corollary of Theorems 3.15 and 3.18. Indeed, when lin-

early combining conserved currents from different families of Theorem 3.15, the maxi-

mum of their orders is preserved. The selection of zeroth-order conserved currents from

the first and the second families is obvious. Theorem 3.18 implies that the space of

zeroth-order characteristics related to the third family is one-dimensional and spanned by

the characteristic e(r1−r2)/2
(
q̃, −D̃z q̃, 0

)
of the conservation law containing the conserved

current (3.28b).

Corollary 3.25. The space of zeroth- and first-order conservation laws of the system (3.1)

is naturally isomorphic to the space spanned by the conserved currents from the second

family of Theorem 3.15 and from the first family, where the parameter function Ω runs

through the space of smooth functions of (ω0, ω1) := (r3, er
2−r1r3

x) and such two func-

tions should be assumed equivalent if their difference is of the form f(ω0)ω1, as well as

the conserved currents from the third family, where the operator X̃ runs through the set{
D̃z, D̃y, J̃, D̃

3
z, (J̃− 1)D̃2

z

}
.
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Proof. In the same spirit as in the proof of Corollary 3.24, we select the zeroth- and first-

order conserved currents equivalent to those listed in Theorem 3.15 using Theorem 3.18

for estimating the orders of the associated conservation laws. Thus, the selection of

the conserved currents from the second family is again obvious since all of then are of

order zero. The order of a conservation law related to the first family coincides with the

minimal order of the associated Ω’s. In general, for zeroth- and first-order conservation

laws of the system (3.1), the order of corresponding reduced characteristics is not greater

than two. This is why a conservation law related to the span of the third family is of

order not greater than one if and only if it contains a conserved current corresponding to

X̃ ∈
〈
D̃z, D̃y, J̃, D̃

3
z, (J̃− 1)D̃2

z

〉
.

Theorem 3.26. The space of (t, x)-translation-invariant conservation laws of the sys-

tem (3.1) is naturally isomorphic to the space spanned by the conserved currents from the

first and second families of Theorem 3.15 as well as the conserved currents from the span

of the third family that have the form C̃X̃ of elements of this family,

(
r2
xρ̃+ r1

xσ̃, (r1 + r2 − 1)r2
xρ̃+ (r1 + r2 + 1)r1

xσ̃
)

with ρ̃ = −q̃D̃zX̃q̃, σ̃ = (D̃y q̃)X̃q̃,

(3.29)

where the operator X̃ runs through the set T constituted by the operators

Z̃κι := (D̃z + 1)2(J̃− ι/2)κD̃ι
z(D̃z−1)2, Ỹκ,ι+4 := (D̃y + 1)2(J̃ + ι/2)κD̃ι

y(D̃y−1)2,

κ, ι ∈ N0 with κ+ ι ∈ 2N0 + 1,

Ỹκ1 := (J̃ + 1/2)κ(D̃y + D̃z − 2) + (D̃z + 2)(J̃− 1/2)κ(D̃z − 1)2, κ ∈ 2N0,

Ỹκ2 := 2J̃κ(D̃y + D̃z − 2) + (J̃ + 1)κ(D̃y − 1)2 + (J̃− 1)κ(D̃z − 1)2, κ ∈ 2N0 + 1,

Ỹκ3 := (J̃− 1/2)κ(D̃y + D̃z − 2) + (D̃y + 2)(J̃ + 1/2)κ(D̃y − 1)2, κ ∈ 2N0.

Proof. Denote by T̄ a complementary subspace of the span of T in the span of the set

run by X̃ in the third family of Theorem 3.15. Since conserved currents from the first

and second families of Theorem 3.15 are (t, x)-translation-invariant, it suffices to prove
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that conserved currents of the form (3.29) with X̃ ∈ T (resp. with nonzero X̃ ∈ T̄) are

equivalent (resp. not equivalent) to (t, x)-translation-invariant ones.

For each X̃ ∈ T we explicitly construct a related (t, x)-translation-invariant conserved

current by considering the associated operator X in Λ̃q
−, choosing an appropriate conserved

current of the Klein–Gordon equation (3.4a) among those equivalent to CX and mapping

it to a conserved current of (3.1). Each operator X ∈ Λ̃q
− associated with some X̃ ∈ T is

equivalent to an operator of the form (Dz+1)2P(Dz − 1)2 with (Pq)∂q ∈ Λ̃q
−, where the

operator P coincides with (J − ι/2)κDι
z, (J + ι/2 + 2)κDι+4

z , (J + 1/2)κDz, (J + 1)κD2
z,

(J + 3/2)κD3
z for Z̃κι, Ỹκ,ι+4, Ỹκ1, Ỹκ2 and Ỹκ3, respectively. For such X we obtain

CX ∼ (−K1DzPK
1, K2PK1)

7→ 2e(r1−r2)/2

(
(D̃z + 1)P̃

e(r1−r2)/2

r2
x

, (V 2D̃z + V 1)P̃
e(r1−r2)/2

r2
x

)
,

which is obviously a (t, x)-translation-invariant conserved current of the system (3.1).

As a subspace complementary to the span of T, we can choose

T̄ =
〈

J2κ+1, (J + 1)2κ+1D2
z, (J + 1/2)2κDz, (J + 3/2)2κD3

z, κ ∈ N0

〉
.

We prove by contradiction that for any nonzero X̃ ∈ T̄, i.e.,

X̃ =
N∑
κ=0

(
c0κJ

2κ+1 + c2κ(J + 1)2κ+1D2
z + c1κ(J + 1/2)2κDz + c3κ(J + 3/2)2κD3

z

)

for some N ∈ N0 and some constants c’s with (c0N , c1N , c2N , c3N) 6= (0, 0, 0, 0), the cor-

responding conserved current of the form (3.29) is not equivalent to a (t, x)-translation-

invariant one. Suppose that this is not the case. If a conservation law of the system (3.1) is

(t, x)-translation-invariant, then its characteristic is also (t, x)-translation-invariant. The

conservation-law characteristic associated with X̃ (see Theorem 3.18) does not depend on x

and t if and only if (X̃q̃)x = X̃e(r1−r2)/2 = 0 and (X̃q̃)t = −X̃
(
(r1 + r2 + 1)e(r1−r2)/2

)
= 0.

In the coordinates (3.6), these conditions, after re-combining, take the form Xey+z = 0,

X
(
(y − z)ey+z

)
= XJey+z = 0, or, equivalently,
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R1 :=
N∑
κ=0

(
c0κJ

2κ+1 + c2κ(J + 1)2κ+1 + c1κ(J + 1/2)2κ + c3κ(J + 3/2)2κ
)

ey+z = 0,

R2 :=
N∑
κ=0

(
c0κJ

2κ+2 + c2κ(J + 1)2κ+1(J− 2) + c1κ(J + 1/2)2κ(J− 1)

+ c3κ(J + 3/2)2κ(J− 3)
)

ey+z = 0.

The left-hand sides of these equations, R1 and R2, are polynomials of y − z and y + z

multiplied by ey+z, and the highest degrees of y − z correspond to the highest degrees

of J. Recombining these equations to

R2 − JR1 = −
N∑
κ=0

(
2c2κ(J + 1)2κ+1 + c1κ(J + 1/2)2κ + 3c3κ(J + 3/2)2κ

)
ey+z = 0,

R2 − (J− 2)R1 =
N∑
κ=0

(
2c0κJ

2κ+1 + c1κ(J + 1/2)2κ − c3κ(J + 3/2)2κ
)

ey+z = 0,

we easily see that c0N = c2N = 0 and thus also c1N = c2N = 0, which contradicts the

supposition (c0N , c1N , c2N , c3N) 6= (0, 0, 0, 0).

In order to construct a lowest-order (t, x)-translation-invariant conserved current for

conservation laws associated with operators from T, for the respective operator P we

should take the respective (up to a constant multiplier) conserved current among C1
κι,

κ ∈ N0, ι ∈ N, C̄1
κι, C2

κι, C̄2
κι, κ, ι ∈ N0, presented in Section 2.4, formally replace (x, y, u)

by (y, z,K1) and map the obtained conserved current. In particular, linearly independent

(t, x)-translation-invariant inequivalent conserved currents up to order two from the span

of the third family of Theorem 3.15 are exhausted by the following:

X̃ = Ỹ01 = D̃3
z − 2D̃z + D̃y : P = Dy, CX ∼

(
− (K1)2, (K2)2

)
7→ 2er

1−r2
(

1

r2
x

− 1

r1
x

,
V 2

r2
x

− V 1

r1
x

)
,

X̃ = Ỹ03 = D̃3
y − 2D̃y + D̃z : P = D3

y, CX ∼
(
(K2)2, −(DyK

2)2
)

7→ 2

(r1
x)

5
er

1−r2
(

(2r1
xx + r1

xr
2
x)

2 − r2
x(r

1
x)

3, V 1(2r1
xx + r1

xr
2
x)

2 − V 2r2
x(r

1
x)

3
)
,

X̃ = Z̃01 = D̃5
z − 2D̃3

z + D̃z : P = Dz, CX ∼
(
(DzK

1)2, −(K1)2
)

7→ −2

(r2
x)

5
er

1−r2
(

(2r2
xx − r1

xr
2
x)

2 − r1
x(r

2
x)

3, V 2(2r2
xx − r1

xr
2
x)

2 − V 1r1
x(r

2
x)

3
)
,
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X̃ = Z̃10 := (D̃z + 1)2J̃(D̃z − 1)2 : P = J,

CX ∼
(
− y(K1)2−z(DzK

1)2, y(K2)2+z(K1)2
)
7→ −er

1−r2(z1+z2, V 1z1+V 2z2),

z1 :=
r1

r1
x

− r2r1
x

(r2
x)

2
, z2 :=

r2

(r2
x)

5
(2r2

xx − r1
xr

2
x)

2 − r1

r2
x

.

3.7 Simplest potential symmetries

To begin with, we introduce the homogeneous notation in this section, which differs from

that of the present chapter. Namely, for a system L we denote symL the algebra of

canonical representatives of its generalized symmetries in the reduced form. Being in

the reduced form means that the functions belonging to the characteristic-tuple of an

evolutionary vector field depend only on coordinates of the manifold L(∞) defined by the

system in a corresponding infinite-dimensional jet space. The chosen coordinates are to

be indicated explicitly for every system encountered below.

Using the conserved current
(

er
1−r2 , er

1−r2(r1 + r2)
)

of the system S, we introduce the

potential φ to obtain the potential system S̃ (or covering) for the system S,

φt = −er
1−r2(r1 + r2), φx = er

1−r2 ,

r1
t + (r1 + r2 + 1)r1

x = 0, r2
t + (r1 + r2 − 1)r2

x = 0, r3
t + (r1 + r2)r3

x = 0.

Recalling the operators A and B, we see that the potential φ satisfies the system Bφ = 0,

Aφ = 1. We can equivalently rewrite the system S̃ as follows

2φtφxφxx + 2φtφxφtx − φ2
tφxx − φ2

xφxx − φttφx = 0, φtr
3
x − φxr3

t = 0

r1 =
φx lnφx − φt

2φx
, r2 = −φx lnφx + φt

2φx
.

As for coordinates on the manifold defined by the system S̃, then it is convenient to

choose φ, Dι
xr

1, Dι
xr

2 and ωι, ι ∈ N0, in order to efficiently single out nonlocal symmetries

of S associated with the covering S̃. In a sense, the associated potential symmetries

of the system S are the simplest in their class as the potential φ corresponds to the
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conserved current belonging to the intersection of first two families of conserved currents

presented in Theorem 3.15. Upon transition from the system S to the system X of

the equations (3.4)–(3.5) by the point transformation (3.6), the above conserved current

is mapped to the conserved current (ey+zqz,−ey+zq) of X and the potential φ to the

corresponding potential ψ, satisfying the system

ψy = q − ψ, ψz = qz − ψ,

see the transformation T below. Recall that the potential ψ satisfies the Klein–Gordon

equation ψyz = ψ, while the coefficients K1 and K2 in the equation (3.4b) and the

dependent variable p can be represented as differential functions of ψ, see Section 3.2,

K1[ψ] = ψzz + ψy − ψz − ψ, K2[ψ] = ψyy − ψy + ψz − ψ, p = −1

2
e−y−z(ψy − ψz).

Thus, we have constructed the covering X̃ for the system X , which can be rewritten in

the equivalent form

ψyz = ψ, q = ψy + ψ, p = −1

2
e−y−z(ψy − ψz), K1[ψ]sy = K2[ψ]sz.

We also prolong the point transformation (3.6) to the potential φ obtaining the point

transformation T mapping the system S̃ to the system X̃ ,

T :
y = r1/2, z = −r2/2, p = t, q = e(r1−r2)/2(x− (r1 + r2 + 1)t), s = r3,

ψ = −1

2

(
e(r2−r1)/2φ+ e(r1−r2)/2(x− (r1 + r2)t)

)
.

Denote by T̂ the inverse to the transformation T .

We choose the following coordinates on the manifold X̃ (∞): y, z, ψκ = ∂κψ/∂yκ,

ψ−κ = ∂κψ/∂zκ and sκ = ∂κs/∂yκ, κ ∈ N0. The elements of the algebra sym X̃ are of

the form X = ζ∂ψ + χ∂q + ρ∂p + θ∂s, where ζ, ψ, ρ and θ are smooth functions of the

above coordinates. The point transformation T induces an isomorphism of the algebras

of generalized symmetries of the systems S̃ and X̃ , sym X̃ ' sym S̃.
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In view of partially coupling of the system X̃ , the components of any generalized vec-

tor field X ∈ sym X̃ do not depend on p, q and their derivatives. Therefore, there is a

well-defined projection from sym X̃ onto the algebra symP of the subsystem P thereof,

consisting of the equations ψyz = ψ, K1[ψ]sy = K2[ψ]sz. Vice versa, given a general-

ized symmetry X ∈ symP , we can locally and uniquely prolong it to the generalized

symmetry X̃ ∈ sym X̃ as variables p and q are defined as differential functions of ψ

on X̃ (∞). Thus, there is a natural one-to-one correspondence between the algebras symP

and sym X̃ . More specifically, sym X̃ ' symP . Hence, it is more convenient to study

generalized symmetries of the system P .

Remark 3.8 implies that for any generalized vector field X ∈ symP , its ψ-component

does not depend on s and its derivatives. Furthermore, the elements in the algebra symP

with the vanishing ψ-component form an ideal symsP of symP , symsP = {θ[s, ψ]∂s}.

Similarly to Section 3.4, in order to describe symsP we introduce the modified coordinates

on the manifold P(∞). With this aim we prolong differential operators Dy and Dz to ψ and

define the differential operator Â and the modified coordinates ω̂’s on the manifold P(∞).

Dy = ∂y +
+∞∑
ι=−∞

qι+1∂qι +
+∞∑
ι=0

sι+1∂sι +
+∞∑
ι=−∞

ψι+1∂ψι ,

Dz = ∂z +
+∞∑
ι=−∞

qι−1∂qι +
+∞∑
ι=0

Dι
y

(
K1

K2
s1

)
∂sι +

+∞∑
ι=−∞

ψι−1∂ψι ,

Â =
e−y−z

K2[ψ]
Dy +

e−y−z

K1[ψ]
Dz, ω̂ι = Âκs, κ ∈ N0.

As before ω̂’s belong to the kernel of the differential operator B̂, which in the new coor-

dinates is defined to be

B̂ = − ey+z

K2[ψ]
Dy +

ey+z

K1[ψ]
Dz.

Note that here the operators Dy and Dz do not coincide with those above, and are used

in this section only. For the future use we also redefine J = yDy − zDz. Following the

logic of Corollary 3.5, we prove the proposition.
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Lemma 3.27. The algebra symsP is spanned by generalized vector fields of the form Ω∂s,

where Ω runs through the set of smooth functions of β = ey+z(Dy +Dz−2)ψ and a finite,

but unspecified number of ω̂κ, κ ∈ N0.

The only difference with Corollary 3.5 is a presence of the differential function β in

the kernel of the operator B̂, which can be explained by the fact that the potential φ is

in the kernel of the operator B, which manifests itself after mapping to the system X̃ .

The quotient algebra symP/ symsP can be identified with the algebra symψ P of

generalized symmetries of the Klein–Gordon equation ψyz = ψ that are locally prolonged

to an element of symP . Elements of both the algebras symsP and symψ P are easy

to prolong to the full system sym X̃ . In particular, syms X̃ = i∗ symsP , where the

map i : P(∞) ↪→ X̃ (∞) is the inclusion, while a prolongation of an element of symψ P

requires a simple inspection of the invariance criterion only.

Proposition 3.28. The algebra symψ X̃ of generalized vector fields that are prolongations

of elements of symψ P to p, q and s is spanned by the generalized vector fields

ζ∂ψ −
1

2
e−y−z(Dy −Dz)ζ∂p + (Dy + 1)ζ∂q +

s1

K2[ψ]
(Dy + Dz − 2)ζ∂s,

where ζ runs through the set

{Jκψ, Dι
yJ
κψ, Dι

zJ
κψ, κ ∈ N0, ι ∈ N}

⋃
{f = f(y, z) : fyz = f}.

Proof. Let ζ∂ψ be a generalized symmetry of the Klein–Gordon equation ψyz = ψ. Then

by definition, the algebra symψ X̃ consists of generalized symmetries of the system X̃ ,

which are of the form ζ∂ψ + ρ∂p + χ∂q + θ∂s. The invariance criterion then reads

DyDzζ = ζ, χ = (Dy + 1)ζ, ρ = −1

2
e−y−z(Dy −Dz)ζ,

(Dz −Dy)(Dz − 1)ζs1 +K1[ψ]Dyθ = K2[ψ]Dzθ + (Dy −Dz)(Dy − 1)ζ
K1[ψ]

K2[ψ]
s1.

The latter equation is first-order inhomogeneous equation on θ with a particular solution

θ = s1(Dy + Dz − 2)ψ/K2[ψ].
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Remark 3.29. Note also that given ζ = ψ, the last determining equation degenerates

and becomes homogeneous, and hence we can also take θ = 0 as a prolongation of the

generalized symmetry ψ∂ψ of the Klein–Gordon equation. It is perfectly fine from the

point of view of closedness under the Lie bracket of vector fields, but it causes complica-

tions for the vector space structure of the set of generalized symmetries. Therefore, it is

better to choose prolongation of the generalized vector field ψ∂ψ as in the theorem.

Following the proof of Theorem 3.10, we can deduce the algebra of generalized sym-

metries of the system S̃.

Theorem 3.30. The algebra sym S̃ of generalized symmetries of the system S̃ is spanned

by the generalized vector fields of the form

e(r2−r1)/2
(
r1
x(D̃y + 1)Γ∂r1 + r2

x(D̃z + 1)Γ∂r2 + 2r3
xΓ∂r3

)
+ 2e(r1−r2)/2Γ∂φ,

e(r2−r1)/2
(
(Φ + 2Φr1)r1

x∂r1 + (Φ− 2Φr2)r2
x∂r2 + 2Φr3

x∂r3
)

+ 2e(r1−r2)/2Φ∂φ, Ω∂r3 ,

where Φ runs through the set of smooth solutions of the Klein–Gordon equation Φr1r2 =

−Φ/4, Ω runs through the set of smooth functions of a finite, but unspecified number of ωκ

ωκ = T ∗ω̂κ = (er
2−r1Dx)

κr3, κ ∈ N0

and Γ runs through the set

{J̃κψ̃, D̃ι
yJ̃
κψ̃, D̃ι

zJ̃
κψ̃, κ ∈ N0, ι ∈ N}, where

D̃y = T̂∗Dy = − 1

r1
x

(
Dt + (r1+r2−1)Dx

)
, D̃z = T̂∗Dz = − 1

r2
x

(
Dt + (r1+r2+1)Dx

)
,

J̃ =
r1

2
D̃y +

r2

2
D̃z, ψ̃ = T ∗ψ = −1

2

(
e(r2−r1)/2φ− e(r1−r2)/2(x− (r1 + r2)t)

)
.

Remark 3.31. It is easily seen that the list of potential symmetries in Theorem 3.30

contains all generalized symmetries listed in Theorem 3.10 but is not exhausted by them.

Thanks to the choice of coordinates on the manifold S̃(∞) we can single out nonlo-

cal symmetries quite easily. Indeed, a potential symmetry is nonlocal if and only if it

characteristic-tuple depends nontrivially on φ.
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Just like with generalized symmetries of the system S, a generalized symmetry of the

Klein–Gordon equation can be mapped to a generalized symmetry of the system S̃ if and

only if the associated operator belongs to the subspace

〈 1, (Dy + 1)Dι
yJ
κ, (Dz + 1)Dι

zJ
κ, κ, ι ∈ N0 〉.

Thus, to prolong generalized symmetries of the form Jκ, κ ∈ N, one needs to construct

another covering of the system S.

3.8 Hamiltonian structures of hydrodynamic type

Local Hamiltonian structures of the system S were found in my MSc thesis. Recall that

Hamiltonian operators of the form Hij
k = gijk Dx + bijklr

l
x are common for (1+1)-dimensional

hydrodynamic-type systems. The Hamiltonian properties impose strong conditions on

the coefficients of these operators. In particular, g should be a flat (pseudo)-Riemannian

metric, see e.g. [42].

Theorem 3.32. The system (3.1) admits an infinite family of compatible local Hamilto-

nian structures HΘ parameterized by a smooth function Θ of r3,

Ĥ1
Θ = er

2−r1 diag
(
− 1, 1,Θ(r3)er

2−r1)Dx −
1

2
er

2−r1


r2
x − r1

x r1
x − r2

x −2r3
x

r2
x − r1

x r1
x − r2

x −2r3
x

2r3
x 2r3

x −2f 33


with the corresponding family of Hamiltonians Ĥ1

Ξ,c2
=
∫
Ĥ1

Ξ,c2
dx defined by densities

Ĥ1
Ξ,c2

=

(
1

4
(r1 + r2)2 +

1

2

(
r1 − r2

)
+ Ξ(r3)

)
er

1−r2 + c2(r1 + r2).

Here f 33 := er
2−r1 ((r2

x − r1
x)Θ + 1

2
r3
xΘr3

)
, the function Ξ of r3 and an arbitrary constant c2

satisfy the differential equation Ξr3r3Θ + 1
2
Θr3Ξr3 = 2c2.

Two Hamiltonian operators are called compatible if any of their linear combination
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is a Hamiltonian operator as well. Two nondegenerate hydrodynamic-type Hamiltonian

operators for a hydrodynamic-type system is compatible if the Nijenhuis tensor N of the

tensor (sij) defined by sij = g̃ilglj vanishes,

N i
jk := slj∂uls

i
k − slk∂ulsij − sil(∂ujslk − ∂ukslj) = 0,

see [55, 89]. Here g and g̃ are the metrics corresponding to the Hamiltonian operators.

In terms of g and g̃, the condition of vanishing the Nijenhuis tensor N takes the form

∇i∇j g̃kl +∇k∇lg̃ij −∇i∇kg̃jl −∇j∇lg̃ik = 0. (3.30)

The covariant differentiation in (3.30) corresponds to the metric g. The conditions (3.30)

are preserved by the permutation of g and g̃, so that they are indeed the compatibility

conditions of the two metrics.

When the tensor g degenerates at some point, the associated hydrodynamic-type

system loses its geometric charm and one needs to proceed otherwise. To show that

the bracket of a skew-symmetric Noether operator N for E satisfies the Jacobi identity,

one may equivalently check that the variational Schouten bracket [[N,N]] vanishes. To

show the compatibility of two hydrodynamic-type Hamiltonian operators H1 and H2,

Hij
k = gijk Dx + bijklr

l
x, k = 1, 2, one may check that [[H1,H2]] = 0, cf. [78, Section 10.1].

Since E is a system of evolution equations, one may consider the cotangent covering T ∗E

of E (i.e., the joint system F = 0, `†F (λ) = 0) and substitute the latter condition by the

equivalent one

E
n∑
j=1

(
(EujFH1)(EλjFH2) + (EλjFH1)(EujFH2)

)
= 0,

where FHk =
∑

i,j

(
gijk (Dxλ

i)λj + bijklr
l
xλ

iλj
)
, k = 1, 2, and E = (Eu1 , . . . ,Eun ,Eλ1 , . . . ,Eλn)

is the Euler operator on T ∗E .

For the system (3.1) the tensor (sij) takes the simple form, (sij) = diag(1, 1, Θ̃/Θ),

where Θ and Θ̃ are functions of r3 parameterizing the metrics g and g̃. It is trivial to
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verify that its Nijenhuis tensor vanishes. Since eigenvalues of (sij) are not distinct, we

need also to verify the conditions (3.30), and they also hold.

If Θ is a somewhere vanishing function, then the geometric reasoning for Hamilto-

nian operators is no longer available, and we should proceed by establishing that the

corresponding variational Schouten brackets vanish, which is done symbolically.

Below we consider only canonical representatives of symmetry-type objects, where

derivatives involving differentiations with respect to t are replaced by their expressions in

view of the system S, which is necessary for relating different kinds of such objects via

Hamiltonian structures.

For any Hamiltonian operator HΘ from Theorem 3.32, we can endow the space Υ̂q of

canonical representatives for cosymmetries of S with a Lie-algebra structure, cf. [61] and

[20, Section 3.1], where the corresponding Lie bracket is defined by

[γ1, γ2]HΘ
= `γ2HΘγ

1 + `†HΘγ1γ
2 + (`γ1 − `†γ1)HΘγ

2

for any γ1, γ2 ∈ Υ̂q. Here `γ and `†γ are the universal linearization operator of γ ∈ Υ̂q

and its formal adjoint, respectively. Denote the Lie algebra with the underlying space Υ̂q

and the Lie bracket [·, ·]HΘ
by Υ̂q

Θ. The operator HΘ establishes a homomorphism from

the Lie algebra Υ̂q
Θ to the Lie algebra Σ̂q. The image HΘΥ̂q

Θ of this homomorphism is

a proper subalgebra of Σ̂q of canonical representatives for generalized symmetries of the

system S. More specifically, the image HΘΥ̂q
Θ is spanned by generalized symmetries from

three families that are the images of the respective families from Theorem 3.13 and whose

elements are, in the notation of Theorems 3.10 and 3.13, of the following form:

1. W̌(Ω̄Θ), where Ω̄Θ = Â
(
(ÂΩ)Θ/ω1

)
,

2. P̌(Φ̄), where Φ̄ = Φr1 − 1
2
Φ, and thus the parameter function Φ̄ = Φ̄(r1, r2) runs

through the solution space of the Klein–Gordon equation Φ̄r1r2 = −Φ̄/4 as well,

3. Ř(Γ̄), where Γ̄ = 1
2
(D̃y − 1)X̃q̃.

For the nonvanishing function Θ, the kernel of the above homomorphism is two-dimensio-

nal and spanned by the cosymmetries er
1−r2(1,−1, 0) and er

1−r2(Θ̄,−Θ̄, Θ̄r3) with an an-
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tiderivative Θ̄ of 1/Θ, Θ̄r3 = 1/Θ. The former cosymmetry is special due to being a single

(up to linear independence) common element of the first and the second families from The-

orem 3.13, see Remark 3.14. Both the cosymmetries are conservation-law characteristics

and are associated with the conserved currents er
1−r2(1, r1 + r2) and er

1−r2(Θ̄, (r1 + r2)Θ̄
)
,

which belong to the first family of Theorem 3.15. As a result, the space of distinguished

(Casimir) functionals of the Hamiltonian operator HΘ is spanned by two functionals,

C1 :=

∫
er

1−r2 dx, CΘ
2 :=

∫
er

1−r2Θ̄(r3) dx.

In the degenerate case with Θ ≡ 0, the kernel of the above homomorphism is infinite-

dimensional and coincides with the first family of Theorem 3.13. Elements of this fam-

ily are conservation-law characteristics if and only if they belong to the first family of

Theorem 3.18 and are thus associated with conserved currents from the first family of

Theorem 3.15. This means that the space of distinguished (Casimir) functionals of the

Hamiltonian operator H0 consists of the functionals

∫
er

1−r2Ω(ω0, ω1, . . . ) dx,

where the parameter function Ω runs through the space of smooth functions of a finite,

but unspecified number of ωκ = (er
2−r1Dx)

κr3, κ ∈ N0.

Consider the constraints that single out the space of canonical representatives conser-

vation-law characteristics of S, which is described in Theorem 3.18, from the space Υ̂q of

canonical representatives of cosymmetries of S. Imposing these constraints on Ω and X̃

that parameterize families spanning HΘΥ̂q, we single out the algebra of Hamiltonian

symmetries of S associated with the Hamiltonian operator HΘ.

Theorem 3.33. Given a smooth function Θ of ω0 := r3, the algebra of Hamiltonian sym-

metries of the system (3.1) for the Hamiltonian operator HΘ is spanned by the generalized

vector fields

W̌(Ω̄Θ) = Ω̄Θ∂r3 , P̌(Φ) = e(r2−r1)/2
(
(Φ + 2Φr1)r1

x∂r1 + (Φ− 2Φr2)r2
x∂r2 + 2Φr3

x∂r3
)
,
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Ř(Γ̄) = e(r2−r1)/2
(

(D̃yΓ̄ + Γ̄)r1
x∂r1 + (D̃zΓ̄ + Γ̄)r2

x∂r2 + 2Γ̄r3
x∂r3

)
,

where Ω̄Θ = Â
(
Θ
∑∞

κ=0(−Â)κΩωκ
)

with the operator Â =
∑∞

κ=0 ω
κ+1∂ωκ and with Ω

running through the space of smooth functions of a finite, but unspecified number of

ωκ = (er
2−r1Dx)

κr3, κ ∈ N0, the parameter function Φ = Φ(r1, r2) runs through the solu-

tion space of the Klein–Gordon equation Φr1r2 = −Φ/4, and Γ̄ = 1
2
(D̃y − 1)X̃q̃ with the

operator X̃ running through the set

{
J̃κ
′
, κ′ ∈ 2N0 + 1, (J̃ + ι/2)κD̃ι

y, (J̃− ι/2)κD̃ι
z, κ ∈ N0, ι ∈ N, κ+ ι ∈ 2N0 + 1

}
.

where D̃y := − 1

r1
x

(
Dt + (r1 + r2 − 1)Dx

)
, D̃z := − 1

r2
x

(
Dt + (r1 + r2 + 1)Dx

)
,

J̃ :=
r1

2
D̃y +

r2

2
D̃z, q̃ := e(r1−r2)/2

(
x− (r1 + r2 + 1)t

)
.

The system S0 describes one-dimensional isentropic gas flows with constant sound

speed and is known to possess three compatible Hamiltonian structures of Dubrovin–

Novikov type [97]. In Riemann invariants those are

H1 = er
2−r1


−1 0

0 1

Dx −
1

2

r2
x − r1

x r1
x − r2

x

r2
x − r1

x r1
x − r2

x


 ,

H2 = er
2−r1


1 0

0 1

Dx +
1

2

r2
x − r1

x −r1
x − r2

x

r1
x + r2

x r2
x − r1

x


 ,

H3 = er
2−r1


r1 0

0 r2

Dx +
1

2

(1− r1)r1
x + r1r2

x −r2r1
x − r1r2

x

r2r1
x + r1r2

x −r2r1
x + (1 + r2)r2

x


 ,

with the associated families of Hamiltonians

H1
c1,c2

=

(
1

4
(r1 + r2)2 +

1

2

(
r1 − r2

)
+ c1

)
er

1−r2 + c2(r1 + r2),

H2
c1,c2

= −(r1 + r2)er
1−r2 + e(r1−r2)/2

(
c1 sin

r1 + r2

2
+ c2 cos

r1 + r2

2

)
,

H3
c1,c2

= −2er
1−r2 + c1 erf

(√
r2 +
√
−r1

√
2

)
+ c2 erf

(√
r2 −

√
−r1

√
2

)
.
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The multipliers of parameterizing constants c1 and c2 are densities of the Casimir

functionals of the corresponding Hamiltonian operators, and therefore, by and large, there

is only one essential Hamiltonian for every family of the above Hamiltonian operators.

The first family of Hamiltonian structures are locally prolonged to that of the system S,

cf. Theorem 3.32. Let us investigate what happens with the Hamiltonian operators H2

and H3 upon a prolongation to the third equation. For this aim, we consider nonlocal

Noether operators of the hydrodynamic type

N ij = gijDx − gisΓjskr
k
x +

3∑
α=1

εαw
i
αkr

k
x D−1

x ◦ w
j
αlr

l
x,

where the metric components gij, the affinors components wiαk and the Christoffel sym-

bols Γjsk are smooth functions of (r1, r2, r3), and εα ∈ {−1, 1}, cf. [52, 54, 91]. Of course,

we want the restriction of the local part of this operator to coincide with the operator H2.

Plugging N into the determining equations η = Nλ, where η is the symmetry-tuple (a

row) and λ is the cosymmetry-tuple (a column) of the system S, we see that along the way

there arise two types of nonlocalities we need to deal with, D−1
x (Aiαλ

α) and D−1
x Dt(A

i
αλ

α),

where Aiα = wiαlr
l
x. To get rid of them, we must ensure that either coefficients sum up

to 0, or they are local magnitudes to begin with. The first type above is no doubt nonlocal

and equating their coefficients to 0 we find the following constraints on the affinors wα,

wα = er
2−r1diag (Ψα

r1 ,−Ψα
r2 ,Φ

α + Ψα) ,

where Φ’s are arbitrary smooth functions of r3 and Ψ = Ψ(r1, r2)’s are arbitrary solutions

of the Klein–Gordon equation Ψα
r2 − Ψα

r1 = 2Ψα
r1r2 . In fact, the very same conditions

ensure the nonlocalities of the second type be local and we may consider the determining

equations for N without further ado.

The consideration until this point was valid for both H2 and H3. Now we prolong

the operator H2, while the consideration for H3 is very similar. Solving the determining

equations above one finds the general form of the Noether operator,
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N2 = er
2−r1diag

(
1, 1, er

2−r1Θ
)

Dx +
3∑

α=1

εαw
i
αkr

k
x D−1

x ◦ w
j
αlr

l
x

+
1

2
er

2−r1


r2
x − r1

x −r1
x − r2

x −2r3
x

r1
x + r2

x r2
x − r1

x 2r3
x

2r3
x −2r3

x 2er
2−r1(r2

x − r1
x)Θ + Θ̄


for some smooth functions Θ of r3 and Θ̄ of (r3, er

2−r1r3
x). Only hydrodynamic-type

Noether operator of this form are formally skew-adjoint. Indeed, N2 is formally skew-

adjoint if and only if Θ̄ = er
2−r1r3

xΘr3 . Moreover, there are additional constraints on the

arbitrary functions Φ’s and Ψ’s,

3∑
α=1

εα(Φα + Ψα)Ψα
r1 = −er

1−r2 , (3.31a)

3∑
α=1

εα(Φα + Ψα)Ψα
r2 = er

1−r2 , (3.31b)

3∑
α=1

εαΨα
r1Ψα

r2 = 0. (3.31c)

Those are the very conditions to ensure that Rij
kl =

∑
α(wiαkw

j
αl − w

j
αkw

i
αl), which are

required by the Jacobi identity. The other such conditions [52], commutativity of the

affinors ωα, j − k symmetry of ∇kw
i
αj and i− j symmetry of gikw

k
αj are also satisfied.

The first two equations integrate to
∑3

α=1 εα
(
Φα + 1

2
Ψα
)

Ψα = Ω(r3)− er
1−r2 for some

function Ω of r3, while the third one ensures that
∑3

α=1 εα (Ψα)2 satisfies the Klein–Gordon

equation as well.

Theorem 3.34. The system S admits two families of nonlocal first-order Hamiltonian

operators of hydrodynamic type,

Ĥ2
Θ,α = er

2−r1

diag
(

1, 1, er
2−r1Θ

)
Dx +

1

2


r2
x − r1

x −r1
x − r2

x −2r3
x

r1
x + r2

x r2
x − r1

x 2r3
x

2r3
x −2r3

x 2f 33




+
3∑

α=1

εαw
i
αkr

k
x D−1

x ◦ w
j
αlr

l
x,
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Ĥ3
Θ,α = er

2−r1diag
(
r1, r2, er

2−r1Θ
)

Dx +
3∑

α=1

εαw
i
αkr

k
x D−1

x ◦ w
j
αlr

l
x

+
1

2
er

2−r1


r1
x + r1(r2

x − r1
x) −r2r1

x − r1r2
x −2r1r3

x

r2r1
x + r1r2

x r2
x + r2(r2

x − r1
x) 2r2r3

x

2r1r3
x −2r2r3

x 2f 33

 .

where f 33 = er
2−r1((r2

x − r1
x)Θ + 1

2
Θr3r

3
x), wα = er

2−r1diag
(
Ψα

r1 ,−Ψα
r2 ,Φ

α + Ψα
)
, Φα’s are

arbitrary smooth functions of r3 and Ψα’s run through the solution set of the Klein–Gordon

equation Ψα
r2−Ψα

r1 = 2Ψα
r1r2 and additionally satisfy the joint condition

∑3
α=1 εαΨα

r1Ψα
r2=0,

and two individual ones for each case,

Ĥ2
Θ,α :

3∑
α=1

εα

(
Φα +

1

2
Ψα

)
Ψα = Ω(r3)− er

1−r2 ,

Ĥ3
Θ,α :

3∑
α=1

εα

(
Φα +

1

2
Ψα

)
Ψα = Ω(r3)− 1

2
(r1 + r2)er

1−r2

for an arbitrary function Ω of its argument and εα ∈ {−1, 1}.

Let us study the above system on parameterizing functions (Φi,Ψi) in more detail.

Firstly, the system admits the discrete symmetry transformation (Φi,Ψi) 7→ (Φj,Ψj) and

the gauge transformation (Φi,Ψi) 7→ (Φi − c,Ψi + c).

Assume first that not all Φα’s are constants. Up to the above discrete symmetry, we

can assume without loss of generality that Φ3
r3 6= 0. Differentiating the equations (3.31a)–

(3.31b) twice with respect to r3, we can get the system

Ψ1
r1φ

1 + Ψ2
r1φ

2 = 0, Ψ1
r2φ

1 + Ψ2
r2φ

2 = 0,

where φα := εα(Φα
r3Φ3

r3r3 − Φ3
r3Φα

r3r3). Assume first that rk J = 0, where J := (Ψi
rj)

2
i,j=1.

Then all Φα’s are constants in view of (3.31c), which contradicts (3.31b).

When rk J = 1, then there exists a nonzero constant c1 such that Ψα = Ψα(ω), where

ω = r1 + c1r
2, α = 1, 2. One of these Ψα’s must be nonconstant, and without loss of

generality we assume Ψ1
ω 6= 0. Then φ1 = −Ψ2

ωφ
2/Ψ1

ω, which is possible only when there

exists a constant c2 such that Ψ2
ω = c2Ψ1

ω. Thus Ψ2 = c2Ψ1+c3 and Φ1 = −ε1ε2c2Φ2+c4Φ3
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up to the gauge symmetry for some constants ci, i = 3, 4, 5. Splitting (3.31a) with respect

to Φ3 one finds that Ψ3 = −ε1ε3c4Ψ1 + c5, which reduces (3.31c) to ε1 + ε2c
2
2 + ε3c

2
4 = 0.

The system (3.31a)— (3.31b) integrates to

3∑
α=1

εα

(
Φα +

1

2
Ψα

)
Ψα = Ω(r3)− er

1−r2

for an arbitrary function Ω of r3. Plugging all the above expression in this equation and

separating r3-part from it, one finds ε2c3Φ2 + ε3c5Φ3 = Ω− c6 for some constant c6 and

Φ1 = −ε1ε2c2Φ2 + c4Φ3, Ψ1(r1, r2) = c6 +
er

1−r2

ε2c2c3 − ε1c4c6

, Ψ2 = c2Ψ1 + c3,

Ψ3 = −ε1ε3c4Ψ1 + c5,

where ε1 + ε2c
2
2 + ε3c

2
4 = 0, Φ3 runs through the set of arbitrary functions of r3 and

expression in the denominator of the equality for Ψ1 is nonvanishing. In particular, ε’s

can not be of the same sign, and c1 = −1.

If J is nondegenerate, then immediately Φ1 = c1Φ3, Φ2 = c2Φ3 up to the gauge

transformation and the splitting of (3.31a) with respect to Φ3 gives Ψ3 = c3− ε1ε3c1Ψ1−

ε2ε3c2Ψ2. Integrating (3.31a)–(3.31b) gives a quadratic polynomial in Ψ1 and Ψ2, which

does not violate the nondegeneracy condition for J if and only if its a polynomial in

a single variable. Without loss of generality, let Ψ1 be this variable. Then ε2 = −ε3,

c2 = ±1, c1 = c3 = 0 and Ψ1(r1, r2) = ±
√
c4 − 2er1−r2 , which is not a solution to the

Klein–Gordon equation for any c4.

Examples of admissible tuples of functions {Φα,Ψα} for −ε1 = −ε2 = ε3 = 1 are

Ĥ2
Θ,Ω : Φ1 = −Ω

2
, Φ2 =

1

2
, Φ3 = 0, Ψ1 =

1

2
,

Ψ2(r1, r2) = 2er
1−r2 = −Ψ3(r1, r2);

Ĥ3
Θ,Ω : Φ1 = −Ω

2
, Φ2 = 1, Φ3 = 0, Ψ1 =

1

2
,

Ψ2(r1, r2) = (r1 + r2)er
1−r2 , Ψ3(r1, r2) = (r1 + r2)er

1−r2 +
1

2
.
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When all Ψα’s are constants, they can be assumed to be equal to zero up to the gauge

symmetry. Thus, the solutions Ψα’s of the Klein–Gordon equation enjoy the system

3∑
α=1

εα(Ψα)2 = C − 2er
1−r2 ,

3∑
α=1

εαΨα
r1Ψα

r2 = 0.

Provided in [54, p. 11] is a list of situations in which nonlocal Hamiltonian operators

naturally arise. An above prolongation procedure gives yet another such situation.

Alternatively, one can study nonlocal Hamiltonian operators of the system S as fol-

lows. It is known that any nonlocal Hamiltonian operator of a hydrodynamic-type system

can be reduced to a local one via a reciprocal transformation [53]. Thus, a reciprocal trans-

formation associated with a solution Ψ(r1, r2) = er
1−r2 of the Klein–Gordon equation8,

dx̃ = er
1−r2(dx− (r1 + r2)dt), dt̃ = dt

maps the system S to the hydrodynamic-type system S̃

r1
t̃ = −er

1−r2r1
x̃, r2

t̃ = er
1−r2r2

x̃, r3
t̃ = 0,

which possesses the three families of local Hamiltonian operators,

H̃1
Θ̃

= er
1−r2

diag(−1, 1, er
2−r1Θ̃)Dx̃ +

1

2


r1
x̃ − r2

x̃ r2
x̃ − r1

x̃ 0

r1
x̃ − r2

x̃ r2
x̃ − r1

x̃ 0

0 0 er
2−r1r3

x̃Θ̃r3


 ,

H̃2
Θ̃

= er
1−r2

diag(1, 1, er
2−r1Θ̃)Dx̃ +

1

2


r1
x̃ − r2

x̃ r1
x̃ + r2

x̃ 0

−r1
x̃ − r2

x̃ r1
x̃ − r2

x̃ 0

0 0 er
2−r1r3

x̃Θ̃r3


 ,

H̃3
Θ̃

= er
1−r2diag(r1, r2, er

2−r1Θ̃)Dx̃

8More precisely, it is associated with the conservation law er
1−r2(1, r1 + r2) of the system S. This

connection implies that the 1-form dx̃ is closed.
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+
1

2
er

1−r2


(1 + r1)r1

x̃ − r1r2
x̃ r2r1

x̃ + r1r2
x̃ 0

−r2r1
x̃ − r1r2

x̃ r2r1
x̃ + (1− r2)r2

x̃ 0

0 0 er
2−r1r3

x̃Θ̃r3


parameterized by an arbitrary function Θ̃ of r3, with associated families of Hamiltonians

H1
c1,c2,Ξ̃

(r1, r2, r3) =
1

4
(r1 + r2)2 − r1 + c1er

1−r2 + c2(r1 + r2) + Ξ̃(r3),

H2
c1,c2,Ξ̃

(r1, r2, r3) = e(r2−r1)/2

(
c1 sin

r1 + r2

2
+ c2 cos

r1 + r2

2

)
− (r1 + r2) + Ξ̃(r3),

H3
c1,c2,Ξ̃

(r̃1, r̃2, r3) =
2∑
i=1

∫ (
2
√
π erf(r̃i) + ci

)
e(̃ri)2

dr̃i + Ξ̃(r3)

parameterized by an arbitrary smooth function Ξ̃ of r3 which additionally satisfies

2Θ̃Ξ̃r3r3 + Θ̃r3Ξ̃r3 = 0.

Here r̃1 = (
√
r2 +
√
−r1)/

√
2 and r̃2 = (

√
r2 −

√
−r1)/

√
2.

3.9 Conclusion

To study the diagonalized form (3.1) of the system S, we heavily rely on its two primary

features. The first feature is the degeneracy of S in the sense that this system is not

genuinely nonlinear with respect to r3 and, moreover, it is partially decoupled since the

first two equations of S do not involve r3. To take into account the degeneracy efficiently,

we introduce the modified coordinates on S(∞), where derivatives of r3 are replaced by ω’s

constituting a functional basis of the kernel of the operator B. This operator is nothing else

but the differential operator in the total derivatives that is associated with the equation

on r3. From another perspective, the infinite tuple of ω’s, ω0 := r3, ωκ+1 := Aωκ, κ ∈ N0,

can be seen to be generated by the differential operator A := er
2−r1Dx, commuting with B,

[A,B] = 0, cf. [40]. The introduction of the modified coordinates essentially simplifies

computations of all kinds of symmetry-like objects for the system S. Due to the partial

decoupling of the system S, we recognize its essential subsystem S0 constituted by the
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equations (3.1a), (3.1b). The second primary feature of S is the linearization of S0 to the

(1+1)-dimensional Klein–Gordon equation, which was thoroughly studied from the point

of view of generalized symmetries and conservation laws in [112].

In turn, these features allow us to describe symmetry-like objects for the system S by

working within the following general approach. For a given kind of symmetry-like objects

for S, we show that the chosen space U of canonical representatives of equivalence classes

of such objects is the sum of three subspaces, U = U1 + U2 + U3. One of them, say, U1,

stems from the degeneracy of S, and thus its elements are parameterized by an arbitrary

function of a finite but unspecified number of ω’s. The other two subspaces, U2 and U3, are

related to the linearization of S0 to the (1+1)-dimensional Klein–Gordon equation (3.4a).

Singling out these two subspaces is induced by decomposing the objects of the same

kind for the Klein–Gordon equation as sums of those underlaid by linear superposition of

solutions of (3.4a) and those associated with linear generalized symmetries of (3.4a). This

is why the elements of the subspaces U2 and U3 are parameterized by an arbitrary solution

of the (1+1)-dimensional Klein–Gordon equation and by characteristics of reduced linear

generalized symmetries of this equation, respectively. Although (U1 +U2)∩U3 = {0}, the

sum U1 + U2 + U3 is not direct since the subspaces U1 and U2 are not disjoint, and their

intersection is one-dimensional.

The first kind of objects we exhaustively describe for the system S is given by gener-

alized symmetries. Not all generalized symmetries of the Klein–Gordon equation (3.4a)

have counterparts among generalized symmetries of the system S, which was also noted

in [112] for first-order generalized symmetries. The most difficult problem here, which

is solved in Lemma 3.9, is to single out the subalgebra A of canonical representatives

of generalized symmetries of the Klein–Gordon equation (3.4a) that have such counter-

parts. A complementary subalgebra to A is Ā = 〈 (Jκq)∂q, κ ∈ N 〉. We conjecture that

elements of Ā have counterparts among nonlocal, or specifically potential, symmetries

of the system S. In fact, we consider the simplest potential system for the system S in

Section 3.7, but to no avail. In future research, we plan to study certain Abelian coverings

and potential symmetries of the system S and of the Klein–Gordon equation (3.4a). We
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expect that the main role in this consideration will be played by the conservation laws of

the Klein–Gordon equation (3.4a) with characteristics of the form Jκey+z, κ ∈ N0, and by

their counterparts for the system S.

Considering cosymmetries and local conservation laws, we do not need to make the

selection among those for the Klein–Gordon equation (3.4a) since all of them have coun-

terparts for the system S. For conservation laws, this follows directly from the general

assertion proved in [80, Theorem 1]. Amongst cosymmetries, local conservation laws and

their characteristics, the complete description of the space of cosymmetries for the sys-

tem S is the most complicated since it requires utilizing a couple of nontrivial tricks within

the framework of our general approach.

To construct the space of local conservation laws of S, we have to make use of the

direct method [128, 166] whose essence is the direct construction of conserved currents

canonically representing conservation laws using the definitions of conserved currents and

of their equivalence. The standard approach [26] based on singling out conservation-law

characteristics among cosymmetries is not effective for the system S since its application

to S leads to too cumbersome computations. At the same time, we still need to know

conservation-law characteristics for the system S, in particular, to look for special-feature

conservation laws, like low-order and translation-invariant ones. The known formula [152,

Proposition 7.41] relating characteristics of conservation laws of systems in the extended

Kovalevskaya form [125, Definition 4] to densities of these conservation laws gives suitable

expressions only for characteristics of conservation laws from the second family of Theo-

rem 3.15, which are of order zero. The other two families should be tackled differently.

For the first family, we in fact derive an analogue of the above formula in terms of the op-

erator A using the formal integration by parts. Characteristics of conservation laws from

the third family are constructed from their counterparts being variational symmetries of

the Klein–Gordon equation (3.4a). We also prove that under the action of generalized

symmetries of the system S on its space of conservation laws, a generating set of conser-

vation laws of this system is constituted by two zeroth-order conservation laws. One of

them belongs to and generates the first subspace of conservation laws, which is related

107



to the degeneracy of S. The other is the counterpart of a single generating conservation

law of the Klein–Gordon equation (3.4a). It belongs to the third subspace of conservation

laws of S but generates the second subspace as well. The claim on generation of the entire

third subspace is unexpected since only a proper part of linear generalized symmetries of

the Klein–Gordon equation (3.4a) are naturally mapped to generalized symmetries of S

but the amount of the images still suffices for generating all required conservation laws.

Interrelating generalized symmetries and cosymmetries, constructed in my MSc the-

sis was a family of compatible Hamiltonian operators for the system S parameterized

by an arbitrary function of r3, and a Hamiltonian operator from this family is degener-

ate if the corresponding value of the parameter function vanishes at some point. This

fundamentally differs from the case of genuinely nonlinear hydrodynamic-type systems,

for which the number of local Hamiltonian operators of hydrodynamic type is known

not to exceed n + 1, where n is the number of dependent variables, see [57]. In this

thesis, we find even more Hamiltonian operators although they all are nonlocal, see Sec-

tion 3.8. Their existence stems from the observation that the subsystem S0 possesses

three hydrodynamic-type Hamiltonian structures. Each of them can be prolonged to the

entire system likewise the procedure for both the generalized symmetries and conserva-

tion laws. It turns out that only one prolongation is local and leads to the above family

of Hamiltonian structures, while another two are nonlocal. Thus, such a prolongation

gives another natural construction of nonlocal Hamiltonian operators, cf. [54, p. 11]. The

system S0 possesses a third-order Hamiltonian operator H3 but it is not of hydrodynamic-

type and neither its prolongation will be. While third-order nonlocal hydrodynamic-type

Hamiltonian operators are well-studied, cf. [32], the operator H3 may be specific to the

subsystem S0 and may not have even a nonlocal prolongation, cf. Section 4.3.2.

We should like to emphasize that the local description of the solution set of the sys-

tem S in Theorem 3.1 is implicit and involves the general solution of the (1+1)-dimensional

Klein–Gordon equation. This is why it is difficult to further use this description, and thus

it is still worthwhile to comprehensively study the system S within the framework of

symmetry analysis of differential equations.
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As the essential subsystem S0 coincides with the diagonalized form of the system

describing one-dimensional isentropic gas flows with constant sound speed [133, Sec-

tion 2.2.7, Eq. (16)], symmetry-like objects of S0 deserve a separate consideration but

in fact they are implicitly described in the present section. In contrast to the system S,

all the quotient spaces of symmetry-like objects of the subsystem S0 are isomorphic to

their counterparts for the system (3.4a), (3.5) and thus to their counterparts for the Klein–

Gordon equation (3.4a). Therefore, to construct an algebra of canonical representatives

of generalized symmetries for the subsystem S0, we take the respective algebra for the

equation (3.4a) and follow the procedure given in the first paragraph of the proof of The-

orem 3.10, just ignoring the r3-components in the point transformation (3.7) and in the

vector field X̃. As a result, we obtain that the quotient algebra of generalized symmetries

of the subsystem S0 is naturally isomorphic to the algebra spanned by the generalized

vector fields

(
x− (r1 + r2 + 1)t

)
r1
x∂r1 +

(
x− (r1 + r2 − 1)t

)
r2
x∂r2 , e(r2−r1)/2

(
Γr1

x∂r1 + D̃zΓr
2
x∂r2

)
,

e(r2−r1)/2
(
(Φ + 2Φr1)r1

x∂r1 + (Φ− 2Φr2)r2
x∂r2

)
,

where the parameter function Φ = Φ(r1, r2) runs through the solution set of the Klein–

Gordon equation Φr1r2 = −Φ/4, Γ runs through the set {J̃κq̃, D̃ι
yJ̃
κq̃, D̃ι

zJ̃
κq̃, κ ∈ N0, ι ∈ N}

with

D̃y := − 1

r1
x

(
Dt + (r1 + r2 − 1)Dx

)
, D̃z := − 1

r2
x

(
Dt + (r1 + r2 + 1)Dx

)
,

J̃ :=
r1

2
D̃y +

r2

2
D̃z, q̃ := e(r1−r2)/2

(
x− (r1 + r2 + 1)t

)
,

and one should use the restrictions to (r1, r2), Dx := ∂x +
∑∞

κ=0

∑2
i=1 r

i
κ+1∂riκ , Dt :=

∂t−
∑∞

κ=0

∑2
i=1 D

κ
x(V

iri1)∂riκ . of the complete operators Dt and Dx defined in Section 3.3.

The descriptions of cosymmetries and conservation laws of S0 are derived from those for

the system S by excluding the first families of cosymmetries and conservation laws, which

are related to the degeneracy of S, in Theorems 3.13 and 3.15.
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Chapter 4

Symmetry analysis of shallow water

equations

4.1 Introduction

The shallow water equations are a submodel of the Euler equations for an ideal fluid. The

principal simplifications are (i) density is constant, (ii) the hydro-static approximation is

valid and (iii) motions along the vertical are of scales much smaller than motions in the

horizontal directions. These assumptions allow us to derive the shallow water equations,

which in nondimensional form read [120]

ut + uux + vuy + hx = 0,

vt + uvx + vvy + hy = 0,

ht + uhx + vhy + h(ux + vy) = 0.

(4.1)

In this system, u, v are the velocity components in x- and y-directions, and h is the height

of the fluid column over a fixed reference level. As we assume for now that there is no

bottom topography, the reference level can be taken as the lower boundary of the fluid,

in which case h denotes the total fluid height.

The system (4.1) is a (1+2)-dimensional hydrodynamic-type system. Hydrodynamic-

type systems attracted enormous interest [56, 90, 113, 139, 150] in the integrability com-
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munity since the seminal paper [41] on their geometric interpretation. Among the points

of interest are1 Hamiltonian structures [33, 134, 135, 143], exact solutions [31, 81, 145]

and integrability in general, Lie symmetries [17, 19, 34, 35, 81], conservation laws [18, 33]

and the underlying geometry [33].

The primary applications of the system under study are tsunami propagation mod-

els [29, 146, 147] and a test case for numerical approaches for more advanced weather and

climate models, see [1, 28, 29, 38, 39, 59, 135] and references therein.

The problem of parameterization lies in the necessity of incorporating unresolved pro-

cesses in terms of resolved ones. To be more precise, after averaging nonlinear differential

equations they become unclosed and there is a need to design effective closure schemes.

This way unresolved terms appear and they must be parameterized by resolved averaged

quantities. Such parameterizations as it is noted in [144] should retain geometric char-

acteristics of the initial unaveraged equations. Oberlack [98, 99] was first to incorporate

Lie symmetries for the turbulence closure scheme for the Navier–Stokes equations, hav-

ing postulated the so-called invariant parameterization problem. Recently, there was a

string of works that not only follow this procedure and but also extend the theoretical

results, see [15, 16, 124]. Another possible direction is a conservative parameterization

problem [14, 125], where instead of Lie symmetries the conservation laws are retained in

a closure scheme. Both the methodologies may also be combined.

The principal aim of the this chapter is to make a preliminary mathematical step

towards the geometric parameterization of the shallow water system. In other words, to

describe in detail the algebra of differential invariants of the point symmetry group and

conservation laws of the system (4.1). Conservation laws up to order one are well-known

and it is hypothesized that they are the only conservation laws of the system (4.1), see

Section 4.5. We give a new geometric proof of the result [18] on a generating set of

conservation laws. For a description of the algebra of differential invariants, including a

generating set of differential invariants and a set of the lowest-order syzygies, that is, func-

tional relations among differential invariants, we utilize the method of moving frames [50].

1Cited are papers on the shallow-water system only.

111



The structure of the chapter is as follows. In Section 4.2 we recall the maximal algebra

of Lie invariance for the system (4.1) and compute its complete point symmetry group

using the automorphism-based algebraic method. The algebra of differential invariants

for the above group is described in Section 4.4. Section 4.5 collects the results on the

conservation laws and the Hamiltonian structure. Section 4.6 concerns the question of

parameterization problem and may be viewed as plans for future research. In Section 4.3

we classify one- and two-dimensional reductions of the system (4.1) and find some of

its group-invariant solutions. In particular, ∂y-reduction is considered in Section 4.3.2.

The reduced system is a (1+1)-dimensional non-genuinely nonlinear hydrodynamic-type

system and investigating it is very similar to the study of the hydrodynamic-type system S

in Chapter 3. We do not study the reduced system exhaustively, but we show that

although the system (4.1) has very few symmetries and conservation laws it possesses a

plethora of their hidden counterparts. Also we repeat the same trick with the Hamiltonian

operators as we did in Section 3.8, namely we locally and nonlocally prolong Hamiltonian

structures of the essential subsystem of the reduced system to the third equation.

4.2 Symmetries of the shallow water equations

The maximal Lie invariance algebra g of the shallow water equations (4.1) is generated

by the vector fields P t = ∂t, D1 = 2t∂t + x∂x + y∂y − u∂u − v∂v − 2h∂h, K = t2∂t +

tx∂x + ty∂y + (x − tu)∂u + (y − tv)∂v − 2th∂h, D2 = x∂x + y∂y + u∂u + v∂v + 2h∂h,

J = −y∂x + x∂y − v∂u + u∂v, Px = ∂x, Py = ∂y, Gx = t∂x + ∂u, Gy = t∂y + ∂v,

see e.g. [34, 118]. The corresponding Lie group G0 of continuous symmetries of (4.1) is

constituted by the point transformations of the form

t̃ =
αt+ β

γt+ δ
,

(
x̃

ỹ

)
=

σε

γt+ δ
O

(
x

y

)
+
αt+ β

γt+ δ

(
µ1

µ2

)
+

(
ν1

ν2

)
,ũ

ṽ

 =
ε(γt+ δ)

σ
O

u
v

− εγ

σ
O

x
y

+

µ1

µ2

 , h̃ =
ε2(γt+ δ)2

σ2
h,
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where α, β, γ and δ are arbitrary constants such that αδ − βγ > 0 and their tuple is

defined up to a positive multiplier, σ :=
√
αδ − βγ, O ∈ SO(2), ε > 0 and µ’s and ν’s are

arbitrary constants.

The algebra g has the structure g = f3 r, where r = 〈D2,J ,Px,Py,Gx,Gy〉 is the rad-

ical of g and f = 〈P t,D1,K〉 ' sl2(R) is its Levi factor. According to the Malcev–Harish-

Chandra theorem, a Levi factor of a Lie algebra is defined up to inner automorphisms

generated by elements of the nilradical of the algebra. This fact is of use in the sequel and

finding the nilradical of the algebra g is our first priority. It is straightforward to verify

that n = 〈Px,Py,Gx,Gy〉 is a nilpotent ideal of g. Both J and D2 are not ad-nilpotent,

so Engel’s theorem together with the fact that the nilradical of the algebra is contained

in the radical thereof yield that n is the nilradical of the algebra g.

Having at our disposal the structure of the algebra g we are ready to find the complete

point symmetry group of the system (4.1). Since the algebra g does not possess a sufficient

number of fully characteristic ideals [68, 126] (in fact, r, r′ and n are the only ones), it

is reasonable to apply the automorphism-based version of algebraic method [69, 77] to

compute that group. It is based on the fact that any symmetry transformation T of a

system of differential equations induces the automorphism on the maximal Lie invariance

algebra h thereof via the pushforward of vector fields, T∗h ∈ h.

Recall that discrete symmetries of a system of differential equations are elements of the

quotient group H/H0, where H and H0 are the complete point symmetry group and the

group of continuous symmetries thereof, and hence are cosets of H0 in H. In particular,

discrete symmetries are defined up to combining with continuous symmetries and the

coset Id H0 of the identity transformation Id ∈ H is also a discrete symmetry. Also,

composing representatives of two different cosets we obtain a discrete symmetry which is

not in a sense essential. What we need to compute is independent discrete symmetries,

which are different up to combining with discrete and continuous symmetries. Given a

group of canonical representatives of H/H0 (it always exists if H0 is a normal subgroup

of H, and it exists for the system (4.1)), the discrete symmetries are generators thereof.
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Proposition 4.1. The system (4.1) admits only two independent discrete symmetries,

(t, x, y, u, v, h) 7→ (−t,−x,−y, u, v, h) and (t, x, y, u, v, h) 7→ (t, x,−y, u,−v, h).

In particular, the discrete symmetry group of the system (4.1) is isomorphic to the Klein

Vierergruppe Z2
2.

Proof. As we are interested in discrete symmetries of the system (4.1) only, we factor

the inner automorphisms out from the automorphism group of the Lie algebra g as they

are generated by the transformations in G0. In particular, according to Malcev–Harish-

Chandra theorem, we can determine the Levi factor f of g up to outer automorphisms

of f by inner automorphisms generated by elements of n. As f ' sl2(R), its outer au-

tomorphism group is diag(ε, 1, ε), where ε = ±1, (a basis of f here is (P t,D1,K)),

cf. [58]. Hence one needs to find those automorphisms of the algebra g, which are of

the form A = diag(ε, 1, ε) ⊕ Ã, where Ã is a nondegenerate 6 × 6 matrix. This problem

is easily solved symbolically. Thus, in a basis (P t,D1,K,D2,J ,Px,Py,Gx,Gy) of g,

A = diag(ε, 1, ε, 1, ε′)⊕ ε

 ε′a b

−ε′b a

⊕
 ε′a b

−ε′b a

 ,

where ε, ε′ = ±1, a2 + b2 6= 0. Besides, b can be set to 0 by the inner automorphism

of g, generated by the element J (J /∈ n). Therefore, the final form of automorphisms to

be considered is A = diag(ε, 1, ε, 1, ε′, εε′a, εa, ε′a, a). Symmetry transformations T ∈ G,

(t, x, y, u, v, h) → (t̃, x̃, ỹ, ũ, ṽ, h̃), which define such automorphisms are found from the

system of the linear equations T∗g ⊂ g,

T∗P t = εP̃ t, T∗D1 = D̃1, T∗K = εK̃, T∗D2 = D̃2, T∗J = ε′J̃ ,

T∗Px = εε′aP̃x, T∗Py = εaP̃y, T∗Gx = ε′aG̃x, T∗Gy = aG̃y,

solving which for the transformation components yields t̃ = εt, x̃ = εε′ax, ỹ = εay,

ũ = ε′au, ṽ = av, h̃ = ch, where c 6= 0. Since not all automorphisms of g are realized as
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the pushforwards of Lie symmetry vector fields, see [112, Remark 12], we additionally need

to single out genuine point symmetry transformations of (4.1) from transformation of the

above form, which is realized by the direct method. This gives a constraint c = a2 and

using the symmetry transformation corresponding to D2 (not belonging to n as well) we

can set a to be equal to a := ε′′ = ±1. Finally, taking into account that the simultaneous

reflection in the planes (y, v) and (x, u), which corresponds to the transformation with

ε′ε′′ = −1, can be factored out because it belongs to G0, one shows that there exist only

two independent discrete symmetries which are written out above.

Corollary 4.2. The complete point symmetry group G of the system (4.1) is constituted

by the point transformations of the form

t̃ =
αt+ β

γt+ δ
,

(
x̃
ỹ

)
=
αδ − βγ
γt+ δ

O

(
x
y

)
+
αt+ β

γt+ δ

(
µ1

µ2

)
+

(
ν1

ν2

)
,(

ũ
ṽ

)
= (γt+ δ)O

(
u
v

)
− γO

(
x
y

)
+

(
µ1

µ2

)
, h̃ = (γt+ δ)2h,

(4.2)

where α, β, γ, δ, κ, µ’s and ν’s are arbitrary constants, with αδ − βγ 6= 0, and O ∈

O(2,R).

The above parameterization is not completely correct, because there is no one-to-one

correspondence between transformations and the values of parameters. Thus, both the

values of the parameter-tuples

α β

γ δ

 =

−1 0

0 −1

 , O =

−1 0

0 −1

 , µ1 = µ2 = ν1 = ν2 = 0, and

α β

γ δ

 =

1 0

0 1

 , O =

1 0

0 1

 , µ1 = µ2 = ν1 = ν2 = 0,

correspond to the identity transformation. Therefore, the transformation corresponding

to the former parameter-tuple should be factored out from the above group. Finally, a

Levi factor of the algebra g corresponds to a subgroup PSL±(2,R) of the group G.

115



4.3 Lie reductions

Lie reduction is one of the most reliable methods of finding particular solutions of a

differential equations. Particular solutions even if they are quite trivial are valuable since

they can be used to verify an accuracy of a numerical scheme. By providing the first

systematic study of Lie symmetries reductions of the system (4.1) we aim to expand a

list of its known particular solutions given for instance in [165].

To carry out Lie reductions of the system (4.1) we first need to classify Lie subalgebras

of g. Since the latter is not solvable and of dimensional nine it is difficult to use brute force,

and instead we build upon the well known list of subalgebras of f, which is isomorphic

to sl2(R), see e.g. [117], and incorporate the elements of the radical r of g.

Ansatzes associated with one-dimensional subalgebras of g reduce the system (4.1) to

systems of three partial differential equations in the dependent variables (w1, w2, w3) and

the independent variables (z1, z2), while those associated with two-dimensional subalge-

bras reduce the system (4.1) to a system of ODEs with the dependent variables (ϕ1, ϕ2, ϕ3)

and the independent variable ω. Below for each equivalence class of the one- and two-

dimensional subalgebras, we present an ansatz constructed for (u, v, h) and the corre-

sponding reduced system. For each codimension one reduction we present the maximal

Lie invariance algebra a of the reduced system in attempt to find hidden symmetries

of (4.1), i.e. symmetries of the reduced systems which are not induced by symmetries

of the initial system. In general, the criterion to determine their existence is to check

that dim a > dim Ng(g
j.i) − j, where gj.i is an j-dimensional Lie algebra an ansatz was

constructed with and Ng(g
j.i) is its normalizer in g. It turns out that only one reduced

system has hidden symmetries, namely the one associated with the subalgebra Py.

The last four codimension one reduced systems are of hydrodynamic-type, so it makes

sense to discuss reductions of the Hamiltonian structure of (4.1) and hidden Hamiltonian

structures thereof. Note that the hydrodynamic-type Hamiltonian structures for inho-

mogeneous hydrodynamic-type systems were introduced in [42]. When performing Lie

reductions with respect to a given vector field v, one makes a change of variables so that

the vector field is straightened, ṽ = ∂z, and then carries the reduction out by assuming
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that new dependent variables do not depend on the new independent variable z. This

is the philosophy we follow when carrying out reductions of the Hamiltonian structure.

Additionally, all new obtained coordinate charts turn out to be physically relevant.

4.3.1 Codimension one reductions

Denote the vector fields used to describe maximal Lie invariance algebras of reduced

system as

P̃1 := ∂z1 , P̃2 := ∂z2 , J̃ := −z2∂z1 + z1∂z2 − w2∂w1 + w1∂w2 , D̃1 := z1∂z1 ,

D̃2 = z2∂z2 , D̃3 := w1∂w1 + w2∂w2 + 2w3∂w3 , J̃ (f) = f∂z2 + fz1∂w1 − 2f∂w2 ,

K̃κ := z2
1∂z1 −

κ

κ2+1
z1∂z2−

(
2z1w

1− 1

κ2+1

)
∂1
w−
(

κ

κ2+1
+2z1w

2

)
∂2
w−4z1w

3∂3
w.

Since only Reduction 1.12 gives hidden symmetries for the system (4.1), first we write

down all the maximal Lie invariance algebras and the normalizers in g of the algebras 〈v〉,

where v is the vector field with respect to which Lie reduction is taken (below f is running

through the set of smooth function of w2),

a1.1
νκ = 〈D̃1 + D̃2 + D̃3, J̃ 〉 if (ν, κ) 6= (0, 0), a1.1

00 = 〈P̃1, P̃2, D̃1 + D̃2, D̃3, J̃ 〉,

a1.2 = 〈P̃1, P̃2, 2D̃1 + 2D̃2 + D̃3〉, a1.3
νκ = 〈D̃1 + D̃2 + D̃3, J̃ 〉, a1.4 = 〈P̃1, P̃2〉,

a1.5
νκ = 〈D̃1 + D̃2 + D̃3, J̃ 〉, a1.6 = 〈P̃1, P̃2〉, a1.7

κ = 〈P̃1, P̃2, D̃1 − D̃3, K̃κ〉,

a1.8 = 〈P̃1, P̃2, D̃1−D̃3, K̃0+z1∂z2〉, a1.9 = 〈P̃1, P̃2, D̃2+D̃3, J̃ (sin 2z1), J̃ (cos 2z1)〉,

a1.10 = 〈P̃1, P̃2, z1∂z2 + ∂w1 , D̃1 − D̃3, D̃2 + D̃3, f(w2)∂w2〉;

Ng(g
1.1
νκ ) = 〈D1,D2,J 〉 if (ν, κ) 6= (0, 0), Ng(g

1.1
00 ) = 〈P t,D1,D2,J ,Px,Py〉,

Ng(g
1.2) = 〈P t + Gy,D1 + 3D2,Px,Py〉, Ng(g

1.3
νκ ) = 〈D1,D2,J 〉,

Ng(g
1.4) = 〈D1 −D2,Px,Py〉, Ng(g

1.5
νκ ) = 〈P t +K,D2,J 〉,

Ng(g
1.6) = 〈P t +K + J ,Px + Gy,Py − Gx〉, Ng(g

1.7
κ ) = 〈P t,D1,K,D2,J 〉,

Ng(g
1.8) = 〈P t,D1,K,D2,J 〉, Ng(g

1.9) = 〈P t +K + J ,D2,Px,Py,Gx,Gy〉,

Ng(g
1.10) = 〈P t,D1,D2,Px,Py,Gx,Gy〉.
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Ansatzes constructed with these subalgebras and the corresponding reduced systems

have the following forms:

1.1. g1.1
νκ = 〈P t + νD2 + κJ 〉(ν=1,κ>0)∨(ν=0,κ∈{0,1}):

u = eνt(w1 cosκt−w2 sinκt)+νx−κy, v = eνt(w1 sinκt+w2 cosκt)+κx+νy, h = e2νtw3,

where z1 = e−νt(x cosκt+ y sinκt), z2 = e−νt(−x sinκt+ y cosκt);

w1w1
1 + w2w1

2 + w3
1 + 2νw1 − 2κw2 + (ν2 − κ2)z1 − 2νκz2 = 0,

w1w2
1 + w2w2

2 + w3
2 + 2νw2 + 2κw1 + (ν2 − κ2)z2 + 2νκz1 = 0,

w1w3
1 + w2w3

2 + w3w1
1 + w3w2

2 + 4νw3 = 0.

1.2. g1.2 = 〈P t + Gy〉: u = w1, v = w2 + t, h = w3 with z1 = x, z2 = y − t2

2
;

w1w1
1 + w2w1

2 + w3
1 = 0,

w1w2
1 + w2w2

2 + w3
2 + 1 = 0,

w1w3
1 + w2w3

2 + w3w1
1 + w3w2

2 = 0.

1.3. g1.3
νκ = 〈D1 + 2νD2 + 2κJ 〉κ>0:

u = tν−1/2(w1 cos τ − w2 sin τ) + (ν + 1
2
)t−1x− κt−1y,

v = tν−1/2(w1 sin τ + w2 cos τ) + κt−1x+ (ν + 1
2
)t−1y, h = t2ν−1w3,

where z1 = t−ν−1/2(x cos τ + y sin τ), z2 = t−ν−1/2(−x sin τ + y cos τ), τ := κ ln |t|;

w1w1
1 + w2w1

2 + w3
1 + 2νw1 − 2κw2 + (ν2 − κ2 − 1

4
)z1 − 2νκz2 = 0,

w1w2
1 + w2w2

2 + w3
2 + 2νw2 + 2κw1 + (ν2 − κ2 − 1

4
)z2 + 2νκz1 = 0,

w1w3
1 + w2w3

2 + w3w1
1 + w3w2

2 + 4νw3 = 0.
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1.4. g1.4 = 〈D1−D2 +2Py〉: u =
w1

t
, v =

w2 + 1

t
, h =

w3

t2
with z1 = x, z2 = y− ln |t|;

w1w1
1 + w2w1

2 + w3
1 − w1 = 0,

w1w2
1 + w2w2

2 + w3
2 − w2 − 1 = 0,

w1w3
1 + w2w3

2 + w3w1
1 + w3w2

2 − 2w3 = 0.

1.5. g1.5
ν,κ = 〈P t +K + νD2 + κJ 〉:

u =
eντ√
t2 + 1

(w1 cosκτ − w2 sinκτ) +
νx− κy + tx

t2 + 1
,

v =
eντ√
t2 + 1

(w1 sinκτ + w2 cosκτ) +
νy + κx+ ty

t2 + 1
, h =

e2ντw3

t2 + 1
,

where z1 =
e−ντ√
t2 + 1

(x cosκτ + y sinκτ), z2 =
e−ντ√
t2 + 1

(y cosκτ − x sinκτ), τ := arctan t;

w1w1
1 + w2w1

2 + w3
1 + 2νw1 − 2κw2 + (ν2 − κ2 + 1)z1 − 2νκz2 = 0,

w1w2
1 + w2w2

2 + w3
2 + 2νw2 + 2κw1 + (ν2 − κ2 + 1)z2 + 2νκz1 = 0,

w1w3
1 + w2w3

2 + w3w1
1 + w3w2

2 + 4νw3 = 0.

1.6. g1.6 = 〈P t +K + J + Gx − Py〉:

u =
tw1 + w2

t2 + 1
+
t(x+ 1)− y

t2 + 1
, v =

−w1 + tw2

t2 + 1
+
ty + x− 1

t2 + 1
, h =

w3

t2 + 1
,

where z1 =
tx− y
t2 + 1

− arctan t, z2 =
x+ ty

t2 + 1
;

w1w1
1 + w2w1

2 + w3
1 − 2w2 = 0,

w1w2
1 + w2w2

2 + w3
2 + 2w1 + 2 = 0,

w1w3
1 + w2w3

2 + w3w1
1 + w3w2

2 = 0.
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1.7. g1.7
κ = 〈D2 + κJ 〉κ>0:

u = (x−κy)w1−(κx+y)w2, v = (κx+y)w1+(x−κy)w2, h = (κ2+1)(x2+y2)w3,

where z1 = t, z2 =
1

κ2 + 1

(
arctan

y

x
− κ

2
ln(x2 + y2)

)
;

w1
1 + w2w1

2 + (w1)2 − (w2)2 − 2κw1w2 + 2w3 = 0,

w2
1 + w2w2

2 + w3
2 + κ(w1)2 − κ(w2)2 + 2w1w2 − 2κw3 = 0,

w3
1 + w2w3

2 + w3w2
2 + 4(w1 − κw2)w3 = 0.

The system (4.1) in (modified) “polar” coordinates (z1, z2, z3) reads

w1
1 + w3

3 + w1w1
3 + w2w1

2 + (w1)2 − (w2)2 − 2κw1w2 + 2w3 = 0,

w2
1 + w2w2

2 + w1w2
3 + w3

2 + κ(w1)2 − κ(w2)2 + 2w1w2 − 2κw3 = 0,

w3
1 + w1w3

3 + w2w3
2 + w3w1

3 + w3w2
2 + 4(w1 − κw2)w3 = 0

and is Hamiltonian with the Hamiltonian operator H,

H = e6κz2−6z3


0 q −Dz3 + 4

−q 0 −Dz2 − 4κ

−Dz3 + 2 −Dz2 − 2κ 0

 ,

where q = (w2
3−w1

2 +2κw1 +2w2)/w3. The reduced system under consideration is also the

reduced system for the system above with respect to ∂z3 , but since H explicitly depends

on z3 it is impossible to get the Hamiltonian operator for the reduced system by the simple

reduction. Here z3 =
1

κ2 + 1

(
κ arctan

y

x
+

1

2
ln(x2 + y2)

)
.

1.8. g1.8 = 〈J 〉:

u = xw1 − yw2, v = yw1 + xw2, h = (x2 + y2)w3
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with z1 = t, z2 =
1

2
ln(x2+y2);

w1
1 + w1w1

2 + w3
2 + (w1)2 − (w2)2 + 2w3 = 0,

w2
1 + w1w2

2 + 2w1w2 = 0,

w3
1 + w1w3

2 + w3w1
2 + 4w1w3 = 0.

The system (4.1) in (modified) polar coordinates z1, z2 and z3 = arctan
y

x
takes the

form

w1
1 + w1w1

2 + w2w1
3 + (w1)2 − (w2)2 + w3

2 + 2w3 = 0,

w2
1 + w1w2

2 + w2w2
3 + 2w1w2 + w3

3 = 0,

w3
1 + (w1w3)2 + (w2w3)3 + 4w1w3 = 0.

It is Hamiltonian with the Hamiltonian operator H, and the corresponding reduced system

is also the reduced system for the system above with respect to ∂z3 . A Hamiltonian

structure H̄ of the reduced system is therefore inherited from that of (4.1),

H = e−6z2


0

w2
2 − w1

3 + 2w2

w3
−Dz2 + 4

−w
2
2 − w1

3 + 2w2

w3
0 −Dz3

−Dz2 + 2 −Dz3 0

 ,

H̄ = e−6z2


0

w2
2 + 2w2

w3
−Dz2 + 4

−w
2
2 + 2w2

w3
0 0

−Dz2 + 2 0 0

 .

There are no other (hidden) Hamiltonian structures of the reduced system.

1.9. g1.9 = 〈Gx − Py〉:

u =
w1 − tw2 + tx− y

t2 + 1
, v =

tw1 + w2 + x+ ty

t2 + 1
, h =

w3

t2 + 1
,
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where z1 = arctan t, z2 =
x+ ty

t2 + 1
;

w1
1 + w1w1

2 + w3
2 − 2w2 = 0,

w2
1 + w1w2

2 + 2w1 = 0,

w3
1 + w1w3

2 + w3w1
2 = 0.

Recall [34] that the system (4.1) is equivalent to the system describing rotating shallow

water model with constant Coriolis force f ,

w1
1 + w1w1

2 + w2w1
3 − fw2 + w3

2 = 0,

w2
1 + w1w2

2 + w2w2
3 + fw1 + w3

3 = 0,

w3
1 + (w1w3)2 + (w2w3)3 = 0.

The latter system is also known to be Hamiltonian [143] with the Hamiltonian operator Hf ,

but the reduced system under question is a reduction of the rotating shallow water system

with f = 2 with respect to ∂z3 . The Hamiltonian operator H2 reduces to H̄2 accordingly,

Hf =


0

f+w2
2−w1

3

w3 −Dz2

−f+w2
2−w1

3

w3 0 −Dz3

−Dz2 −Dz3 0

 , H̄2 =


0

w2
2+2

w3 −Dz2

−w2
2+2

w3 0 0

−Dz2 0 0

 .

Direct computation shows that there are no (hidden) Hamiltonian structures of the re-

duced system.

1.10. g1.10 = 〈Py〉: u = w1, v = w2, h = w3 with z1 = t, z2 = x;

w1
1 + w1w1

2 + w3
2 = 0,

w2
1 + w1w2

2 = 0,

w3
1 + w1w3

2 + w3w1
2 = 0.

Hidden symmetries: f∂w2 , where f runs through the set of smooth functions of w2.
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4.3.2 Py-reduction

The obtained reduced hydrodynamic-type system

w1
1 + w1w1

2 + w3
2 = 0, w2

1 + w1w2
2 = 0, w3

1 + w1w3
2 + w3w1

2 = 0,

can be diagonalized via the change of variables w1 = 2(r1 + r2), w2 = r3, w3 = (r1− r2)2

to the system S,

r1
t + (3r1 + r2)r1

x = 0, r2
t + (r1 + 3r2)r2

x = 0, r3
t + 2(r1 + r2)r3

x = 0.

Thus, the r’s are the Riemann invariants for S, while V 1 = 3r1 + r2, V 2 = r1 + 3r2 and

V 3 = 2(r1 + r2) are its characteristic velocities. The system S is partially coupled and

is not genuinely nonlinear as V 3
3 = 0. Here and in what follows the index i denotes the

differentiation with respect to the Riemann invariant ri, i = 1, 2, 3. Moreover, S is semi-

Hamiltonian and thus can be solved via the generalized hodograph transformation [150],

that is, its solutions satisfying rix 6= 0 can be implicitly presented as x− V i(r)t = W i(r),

where r = (r1, r2, r3) and W ’s satisfy the system W i
j/(W

j−W i) = V i
j /(V

j−V i) for i 6= j,

2W 1
2

W 2 −W 1
=

1

r2 − r1
, W 2

1 = W 1
2 , W 1

3 = W 2
3 = 0,

W 3
1

W 1 −W 3
=

2

r1 − r2
,

W 3
2

W 2 −W 3
=

2

r2 − r1
.

Introducing the potential Λ(r1, r2) via W 1 = Λ1 and W 2 = Λ2, one can derive from the

first three equations that it satisfies the Euler–Poisson–Darboux equation 2(r2−r1)Λ12 =

Λ2 − Λ1. The general solution of the overdetermined system of the last two equations

on W 3 is W 3(r1, r2, r3) = F (r3)/(r1 − r2)2 + Φ(r1, r2), where F runs through the set

of smooth functions of r3 and Φ is a particular solution of the system (r1 − r2)Φ1 =

2(Λ1 − Φ), (r2 − r1)Φ2 = 2(Λ2 − Φ). It can be seen that Φ satisfies the Euler–Poisson–

Darboux equation 2(r2 − r1)Φ12 = 3(Φ2 − Φ1).

Let us now consider solutions which are not caught by the generalized hodograph

transformation, that is, when rix = 0 for some i(’s). First of all, the solutions with r3
x = 0
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are naturally embedded in the above family, cf. Theorem 3.1. Let r1
x = 0 but r2

x 6= 0.

Then r1 = c1 is a constant and we obtain a hydrodynamic-type system on (r2, r3) which

is linearized via the rank-1 hodograph transformation, t̃ = t, x̃ = r2, r̃2 = x and r̃3 = r3

with (t̃, x̃) being the new independent variables to get r̃2
t̃
− 3x̃− c2 = 0, r̃2

x̃r̃
3
t̃

= (x̃− c2)r̃3
x̃,

which is readily solved. An approach when r2 is a constant, while r1 is not, is very similar.

When both r1 and r2 are constants one has a transport equation on r3.

Theorem 4.3. Any solution of the system S (locally) belongs to one of the following

families; below W is an arbitrary function of its argument.

1. The regular family, where both the Riemann invariants r1 and r2 are not constants

(the general solution):

x− (3r1 + r2)t =
1

2
(r1 − r2)Φ1 + Φ,

x− (r1 + 3r2)t =
1

2
(r2 − r1)Φ2 + Φ,

x− 2(r1 + r2)t =
F

(r1 − r2)2
+ Φ,

where Φ is a smooth function of (r1, r2) which runs through the set of solutions of the

equation 2(r2 − r1)Φ12 = 3(Φ2 − Φ1) and the function F runs through the set of smooth

functions of r3.

2. The two singular families, where exactly one of the Riemann invariants r1 and r2 is a

constant:

r1 = c, x = (3r2 + c)t+ Θ2
r2/(c− r2), r3 = W

(
(c−r2)3t− 2Θ2 −Θ2

r2(c−r2)
)

;

r2 = c, x = (3r1 + c)t+ Θ1
r1/(c− r1), r3 = W

(
(c−r1)3t− 2Θ1 −Θ1

r1(c−r1)
)
.

Here c is an arbitrary constant and Θ1 = Θ1(r1) and Θ2 = Θ2(r2) are arbitrary functions

of their arguments.

3. The ultra-singular family, where the Riemann invariants r1 and r2 are arbitrary con-

stants and r3 = W (x− 2(r1 + r2)t).
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The regular, singular and ultra-singular families of solutions of the system S are associ-

ated with solutions of the subsystem S0 of rank 2, 1 and 0, respectively; cf. [65]. Perhaps,

the more instructive but less standard way to solve the system S is via linearizing its

subsystem S0 of the first two equations,

r1
t + (3r1 + r2)r1

x = 0, r2
t + (r1 + 3r2)r2

x = 0

using the rank-2 hodograph transformation y = r1, z = r2, p = t, q = x to the equation

3(py − pz) = 2(y − z)pyz. (4.3)

Due to the fact that the system S is not genuinely nonlinear one can introduce special

coordinates ωi = ((r1 − r2)−2Dx)
i
r3, i ∈ N0 to show existence of an infinite hierarchy

of conservation laws, cf. [40] and Section 3.6, and (by virtue of partial coupling of S) of

higher symmetries, cf. [112, 113] and Section 3.4.

Indeed, the generalized vector fields of the form Ω(ω0, ω1, . . . , ωn)∂r3 , where Ω runs

through the set of smooth functions of any finite number of ω’s, form an ideal Σ3 in the

algebra Σ of nontrivial higher symmetries of S. The subalgebra Σ/Σ3 is isomorphic to the

algebra that consists of the generalized symmetries of the essential subsystem S0 which

can be locally prolonged to the third equation. As an example, the subalgebra thereof,

that is constituted by higher symmetries of genuine order one (no Lie symmetries) is as

follows,

〈(
1

2
(r1 − r2)Φ1 + Φ

)
r1
x∂r1 +

(
1

2
(r2 − r1)Φ2 + Φ

)
r2
x∂r2 +

(
F

(r1 − r2)2
+ Φ

)
r3
x∂r3

〉
,

where Φ = Φ(r1, r2) runs through the set of solutions of the equation 2(r2 − r1)Φ12 =

3(Φ2 − Φ1) and the function F runs through the set of smooth functions of r3.

It was shown in [40] that not genuinely nonlinear hydrodynamic-type systems admit

nontrivial conservation laws of arbitrary high order, parameterized by a smooth function of

finitely many ω’s. Besides, the system S inherits conservation laws from the subsystem S0,
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or, equivalently, from the equation (4.3). Let us describe the zeroth-order conservation

laws first. Using the standard techniques the characteristics thereof are easily found,

(r1 − r2)

(
2Ω− γ(x− V 1t) +

Φ1

r1 − r2
,−2Ω + γ(x− V 2t) +

Φ2

r1 − r2
,Ω3(r1 − r2)

)
,

where γ is an arbitrary constant, Φ and Ω run through the set of smooth functions

of (r1, r2) and r3, respectively, with Φ satisfying the equation of the form (4.3). The

associated conserved currents are then recovered,

(r1 − r2)2
(
Ω, V 3Ω

)
,
(
Φ1 + Φ2, V

1Φ1 + V 2Φ2 − 4Φ
)
,

(r1 − r2)2
(
2(x+ V 3t),

(
(V 1)2 + (V 2)2 − (r1 − r2)2

)
t− 2V 3x

)
.

Furthermore, following [40, Theorem 5.1] we may construct all first-order conserved cur-

rents of S, whose densities are (t, x)-independent. The space thereof is spanned by

r1 − r2

r1
xr

2
x

(r2
x − r1

x, V
1r2
x − V 2r1

x), (r1 − r2)2 (Ω, V 3Ω), where Ω runs through the space of

smooth functions of (ω0, ω1) = (r3, r3
x/(r

1 − r2)2).

It was our conjecture that the system (4.1) admits only first-order conservation laws of

specific type and no nontrivial higher symmetries of the higher order at all. Nevertheless,

it turns out to possess a plethora of hidden higher symmetries and conservation laws of

arbitrary order.

Let us look how the system S (which we will write in (t, x, u, v, h)-coordinates in the

remainder of the subsection),

ut + uux + hx = 0, ht + uhx + hux = 0, vt + uvx = 0,

inherits the Hamiltonian structure of (1+1)-dimensional system S0 of equations of gas

dynamics with γ = 2, i.e., the decoupled subsystem on (u, h). Recall that the latter

system is known to be quadri-Hamiltonian, that is, it admits four different Hamiltonian

structures. Three corresponding Hamiltonian operators are of order one [97] and one of

order three [101],
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H1
S0

= −

0 1

1 0

Dx, H2
S0

=

2 u

u 2h

Dx +

0 ux

0 hx

 ,

H3
S0

=

 2u u2/2 + 2h

u2/2 + 2h 2uh

Dx +

ux uux + hx

hx uhx + hux

 ,

H4
S0

= Dx ◦ U ◦Dx ◦ U ◦ σ1 ◦Dx, where

σ1 =

0 1

1 0

 , U =
1

δ

 ux −hx/h

−hx ux

 , δ = u2
x −

h2
x

h
.

Moreover, it is easy to check that the system S0 also admits the zeroth-order Noether

operator

N4
S0

=

hx/h ux

ux hx

 .

Below we may use the alternative notation (u1, u2, u3) for the dependent variables

(u, h, v) in summation formulae. To construct a Hamiltonian structure of the system S,

we first find all Noether operators N thereof. These are matrix-operators mapping cosym-

metries of S into its symmetries. Recall that cosymmetries are solutions to the system

adjoint to that used for finding generalized symmetries of the same system. Since S is a

hydrodynamic-type system we consider only (local) hydrodynamic operators [41, 43, 150]

of the form N = gijDx + gisΓjsku
k. A direct computation shows that they are of the form

Nθ,ζ =


0 −1 0

−1 0 0

0 0
θ

h2

Dx +


0 0

vx
h

0 0 0

−vx
h

0 −θhx
h3

+
ζ

h

 ,

where θ and ζ run through the set of smooth functions of (v, vx/h). In order to qualify as

a Hamiltonian operator, Nθ,ζ must be skew-adjoint and satisfy the Jacobi identity. The

first requirements gives θ = θ(v) and ζ(v, vx/h) = vxθv/(2h), while the other is identically

satisfied in view of the fact that the metric (gij) = (gij)−1 is flat, cf. [41]. The net result
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is the family of Hamiltonian operators parameterized by a function of a single argument,

H1
S;θ =


0 −1 0

−1 0 0

0 0
θ

h2

Dx +


0 0

vx
h

0 0 0

−vx
h

0 −θhx
h3

+
vxθv
2h2

 ,

which is obviously a prolongation of the Hamiltonian operator H1
S0

to the entire system S.

At the same time, when θ = 0 it is a reduction of the Hamiltonian operator of (4.1).

For all other θ’s the associated Hamiltonian operators are hidden Hamiltonian operators

for (4.1). The associated Hamiltonians are parameterized by a smooth function of r3 and

two constants,

∫ (
h2

2
+ h

(
u2

2
+ Ψ(v)

)
+ c1u+ c2

)
dx,

where Ψ and c1 additionally satisfy the equation 2θΨvv + θvΨv − 2c1 = 0. Of course,

constants c1 and c2 are associated with the Casimir functionals of the Hamiltonian oper-

ator H1
S;θ.

But the underlying (1 + 1)-dimensional gas-dynamics system admits three hydrody-

namic-type Hamiltonian structures. Let us investigate what happens with the other two

upon a prolongation to the third equation. For this aim we consider nonlocal Noether

operators of the form

N ij = gijDx − gisΓjsku
k
x +

3∑
α=1

εαw
i
αku

k
xD
−1
x ◦ w

j
αlu

l
x,

where the functions gij, wiαk and Γjsk are smooth functions of (u, v, h), see [52, 54, 91] and

Section 3.8. The Einstein summation convention is utilized. The functions wiαk in the

geometric interpretations of hydrodynamic-type systems play the role of affinors, i.e. 1-

contravariant, 1-covariant tensors. Following the procedure in the aforementioned section

we find that wα = wΦα , where

128



wΦ =


Φuu Φuh 0

hΦuh Φuu 0

0 0 Φh

 .

The functions Φ1, Φ2 and Φ3 of (u, h, v) satisfy the differential constraints Φα
uuv = Φα

uhv = 0

and the differential equation Φi
uu = hΦi

hh + Φi
h, which is the form of the Euler–Poisson–

Darboux equation (4.3) in (u, h)-variables. The Φα’s can be presented explicitly as

Φα = aα(v) ln |h|+ bα(v)u+ cα(v) + dα(u, h), α = 1, 2, 3,

for smooth functions aα, bα, cα, dα of their arguments, with dα satisfying the equations

dαuu = hdαhh + dαh . Overall, the Noether operators take the form

NΦ,θ̄,ζ̄ =


2 u 0

u 2h 0

0 0
θ̄

h2

Dx +


0 ux −uvx

h

0 hx −2vx

uvx
h

2vx −
θ̄hx
h3

+
ζ̄

h

+
3∑

α=1

εαw
i
αku

k
xD
−1
x ◦ w

j
αlu

l
x

for some smooth functions θ̄ and ζ̄ of (v, vx/h). Moreover, there are three more constraints

on the functions Φ’s,

Ψu = 0, h2Ψh+2hΨ+2 = 0,
∑

εα(Φα
uu)

2 = h
∑

εα(Φα
uh)

2, where Ψ :=
∑

εα(Φα
h)2.

It is straightforward that Ψ = Ch−2 − 2h−1, where C is a constant.

Let us now single out the values of parameters which make NΦ,θ̄,ζ̄ Hamiltonian. The

skew-symmetry of NΦ,θ̄,ζ̄ is equivalent to gij being a metric tensor and Γjsk its Levi-Civita

connection, which is ensured by the conditions θ̄(v, vx/h) = θ(v), ζ̄(v, vx/h) = ζ(v)vx/h

and ζ = θv/2. The operator NΦ,θ satisfies the Jacobi identity if and only if the set of

affinors2 is commutative, [wα, wβ] = 0, the raised Riemann tensor is Rij
kl =

∑
α(wiαkw

j
αl−

wjαkw
i
αl), ∇kw

i
αj = ∇jw

i
αk, gikw

k
αj = gjkw

k
αi, see [52]. It turns out though that all these

conditions are automatically satisfied.

2An affinor is a
(
1
1

)
-tensor.
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The similar approach is taken to compute a nonlocal prolongation of the operator H3
S .

Theorem 4.4. The system S admits three families of first-order Hamiltonian operators

of hydrodynamic type,

H1
S;θ =


0 −1 0

−1 0 0

0 0
θ

h2

Dx +


0 0

vx
h

0 0 0

−vx
h

0 −θhx
h3

+
θvvx
2h2

 ,

H2
S;Φ,θ =


2 u 0

u 2h 0

0 0
θ

h2

Dx +


0 ux −uvx

h

0 hx −2vx
uvx
h

2vx −
θhx
h3

+
θvvx
2h2

+
3∑

α=1

wiαku
k
xD
−1
x ◦ w

j
αlu

l
x,

H3
S;Φ,θ =


2u

u2

2
+2h 0

u2

2
+2h 2uh 0

0 0
θ

h2

Dx +


ux uux + hx −(u2+4h)vx

2h

hx uhx + hux −2uvx
(u2+4h)vx

2h
2uvx −θhx

h3
+
θvvx
2h2


+

3∑
α=1

wiαku
k
xD
−1
x ◦ w

j
αlu

l
x,

which can be seen as prolongations of the corresponding Hamiltonian operators of S0.

Here (u1, u2, u3) = (u, h, v), θ runs through the set of smooth functions of v,

(wiαk) =


Φα
uu Φα

uh 0

hΦα
uh Φα

uu 0

0 0 Φα
h

 , Φα = aα(v) ln |h|+ bα(v)u+ cα(v) + dα(u, h),

for the smooth functions aα, bα, cα, dα of their arguments, with dα(u, h) satisfying the

equations dαuu = hdαhh + hdαh . The functions Φα additionally satisfy the system of PDEs

∑
εα(Φα

uu)
2 = h

∑
εα(Φα

uh)
2,

∑
εα(Φα

h)2 = Ψ,

where Ψ = Ch−2 − 2h−1 for H2
S;Φ,θ and Ψ = Ch−2 − 2uh−1 for H3

S;Φ,θ, C is an arbitrary

constant.

130



It worth noticing that one function Φα is not enough to construct a Hamiltonian

structure, as the associated system thereon would be inconsistent.

4.3.3 Codimension two reductions

A list of G-inequivalent two-dimensional subalgebras of the algebra g is as follows,

g2.1
νκ = 〈P t,D1 + νD2 + κJ 〉κ>0, g2.2

κ1κ2
= 〈P t + κ1J ,D2 + κ2J 〉κ1∈{0,1},κ2>0,

g2.3
ν = 〈P t + νD2,J 〉ν∈{0,1}, g2.4

κ1κ2
= 〈D1 + κ1J ,D2 + κ2J 〉κ1>0,

g2.5
ν = 〈D1 + νD2,J 〉ν>0, g2.6

κ1κ2
= 〈P t +K + κ1J ,D2 + κ2J 〉κ1,κ2>0,

g2.7
ν = 〈P t +K + νD2,J 〉ν>0, g2.8

ν = 〈P t +K + νD2 + J ,Gx − Py〉ν>0,

g2.9
µ = 〈P t +K + J + µ(Px + Gy),Gx − Py〉µ>0, g2.10 = 〈D2,J 〉,

g2.11 = 〈D2,Gx − Py〉, g2.12
µ = 〈Px + Gx,Py + µGx〉µ>0, g2.13 = 〈Py,P t +D2〉,

g2.14
µ = 〈Py,P t + µGx + νGy〉µ,ν>0, µ2+ν2∈{0,1} , g2.15

a = 〈Py,D1 + aD2〉a>0,

g2.16
µ = 〈Py,D1 +D2 + µGx + νGy〉µ,ν>0, µ2+ν2=1 , g

2.17
a = 〈Py,D1 −D2 + aPx〉a>0,

g2.18 = 〈Py,D2〉, g2.19 = 〈Py,Px + Gy〉, g2.20 = 〈Py,Px〉,

g2.21
µ = 〈Py,Gx + µGy〉µ>0, g2.22 = 〈Py,Gy〉.

We will not consider Lie reductions of codimension two constructed with the help of the

above algebras which have Py as their basis element, because the reduced system 1.10 was

completely integrated. One may find particular solutions to the Euler–Poisson–Darboux

equation and prolong them to the solution of the reduced system 1.10. All the reduced

systems are systems of first-order ODEs, and therefore have infinite-dimensional maximal

Lie invariance algebras, but they are not systematically constructable. We try to give as

many solutions to the reduced systems below as possible. Usually, a simple set of solutions

can be found by considering ϕ1 = 0. Below c’s are constants.

2.1. g2.1
νκ = 〈P t,D1 + νD2 + κJ 〉ν 6=−1, κ>0:

u = (x2 + y2)−
1
ν+1

(
((ν + 1)x− κy)ϕ1 − (κx+ (ν + 1)y)ϕ2

)
,
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v = (x2 + y2)−
1
ν+1

(
(κx+ (ν + 1)y)ϕ1 + ((ν + 1)x− κy)ϕ2

)
,

h =
(x2 + y2)

ν−1
ν+1ϕ3

κ2 + (ν + 1)2
,

where ω =
1

κ2 + (ν + 1)2

(κ
2

ln(x2 + y2)− (ν + 1) arctan
y

x

)
;

ϕ2ϕ1
ω +

κν

ν + 1

(
(ϕ1)2 − (ϕ2)2

)
+ 2(ν − 1)ϕ1ϕ2 − ν − 1

(κ2 + (ν + 1)2)2
ϕ3 = 0,

ϕ2ϕ2
ω −

2κ(ν − 1)ϕ3 + (ν + 1)ϕ3
ω

(ν + 1)(κ2 + (ν + 1)2)2
− (ν − 1)

(
(ϕ1)1 − (ϕ2)2

)
+

2κν

ν + 1
ϕ1ϕ2 = 0,

ϕ2ϕ3
ω + ϕ3ϕ2

ω − 2(2ν − 1)

(
ϕ1 − κ

ν + 1
ϕ2

)
ϕ3 = 0.

g2.1
−1,κ = 〈P t,D1 −D2 + κJ 〉κ>0:

u = e−2α/κxϕ
1 − yϕ2

x2 + y2
, v = e−2α/κyϕ

1 + xϕ2

x2 + y2
, h = e−4α/κ ϕ3

x2 + y2
,

where ω =
κ

2
ln(x2 + y2) and α = arctan

y

x
;

ϕ1ϕ1
ω + ϕ3

ω − κ
(
(ϕ1)2 + (ϕ2)2

)
− 2ϕ1ϕ2 − 2κϕ3 = 0,

ϕ1ϕ2
ω − 2(ϕ2)2 − 4ϕ3 = 0,

ϕ1ϕ3
ω + ϕ3ϕ1

ω − 2(κϕ1 + 3ϕ2)ϕ3 = 0.

One can express ϕ3 = (ϕ1ϕ2
ω−2(ϕ2)2)/4 from the second equation and eliminate ϕ1

ω from

the first and the third equations, which results in the cubic equation on ϕ1,

4
(
2κϕ2

ω + ϕ2
ωω

)
(ϕ1)3 −

(
ϕ2
ω

(
ϕ2
ωω − 4κϕ2

ω + 8
)

+ 8κ(ϕ2)2
)

(ϕ1)2

−
(
2(ϕ2)2(2κϕ2

ω−ϕ2
ωω)−2(ϕ2

ω)2(2ϕ2−1)+16(ϕ2)2(ϕ2−1)
)
ϕ1 − 4(ϕ2)2ϕ2

ω(ϕ2−1) = 0.

At the same time, the solution to this equation and the resulting ODE on ϕ2 are too

cumbersome to be presented here.

For the algebra g2.1
−1,0 the local transversality condition does not hold and therefore one

can not carry out a classical Lie reduction. Note that it is still possible to consider Lie

132



reductions for some algebras with this property [10] but not for g2.1
−1,0.

2.2. g2.2
κ1κ2

= 〈P t + κ1J ,D2 + κ2J 〉κ1∈{0,1},κ2>0:

u = (x− κ2y)ϕ1 − (κ2x+ y)ϕ2, v = (κ2x+ y)ϕ1 + (x− κ2y)ϕ2,

h = (κ2
2 + 1)(x2 + y2)ϕ3,

where ω =
1

κ2
2 + 1

(
κ1t− arctan

y

x
+
κ2

2
ln(x2 + y2)

)
;

(
κ1

κ2
2 + 1

− ϕ2

)
ϕ1
ω + (ϕ1)2 − (ϕ2)2 − 2κ2ϕ

1ϕ2 + 2ϕ3 = 0,(
κ1

κ2
2 + 1

− ϕ2

)
ϕ2
ω − ϕ3

ω + κ2(ϕ1)2 − κ2(ϕ2)2 + 2ϕ1ϕ2 − 2κ2ϕ
3 = 0,(

κ1

κ2
2 + 1

− ϕ2

)
ϕ3
ω − ϕ3ϕ2

ω + 4(ϕ1 − κ2ϕ
2)ϕ3 = 0.

2.3. g2.3
ν = 〈P t + νD2,J 〉ν∈{0,1}:

u = xϕ1 − yϕ2, v = yϕ1 + xϕ2, h = (x2 + y2)ϕ3,

where ω = νt− 1

2
ln(x2 + y2);

(ϕ1 − ν)ϕ1
ω + ϕ3

ω − (ϕ1)2 + (ϕ2)2 − 2ϕ3 = 0,

(ϕ1 − ν)ϕ2
ω − 2ϕ1ϕ2 = 0,

(ϕ1 − ν)ϕ3
ω + (ϕ1

ω − 4ϕ1)ϕ3 = 0.

When ν = 0, the system is completely integrable.

Thus, (ϕ1, ϕ2, ϕ3) = (0,±
√

2f − fω, f) is a solution for any smooth function f of ω,

for which 2f > fω. An alternative representation of this solution is (ϕ1, ϕ2, ϕ3) =

(0, f, c3e2ω+g), where c3 is an arbitrary constant, f is an arbitrary function of ω and

g is a particular solution of the equation gω − 2g + f 2 = 0.
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If ϕ1 6= 0, then ϕ2 = c2e2ω, ϕ3 = c3e4ω/ϕ1 and ϕ1 satisfies the ODE.

(
(ϕ1)3 − c3e4ω

)
ϕ1
ω = (ϕ1)4 − c2e4ω(ϕ1)2 − 2c3e4ωϕ1,

It has the first integral

(c2
2 + 2c3(ϕ1)−1)e2ω + e−2ω(ϕ1)2.

Denote a constant value of this first integral on a solution of the equation by −c1. In

other words, the function ϕ1 satisfies the cubic equation

(ϕ1)3 + (c2
2e4ω + c1e2ω)ϕ1 + 2c3e4ω = 0.

This equation may have one, two or three distinct real-valued solution depending on

the sign of ∆(ω) = 27c2
3e8ω + (c2

2e4ω + c1e2ω)3. As its sign may change as ω varies,

with parameters c’s fixed, on some intervals a real-valued solution may degenerate into a

complex-valued one, and a complex-valued solution may regularize into a real-valued one.

Three solutions of the cubic equation are

ϕ1
1(ω) = ϕ−, ϕ1

2(ω) =
1

2
(i
√

3ϕ+ − ϕ−); ϕ1
3(ω) = −1

2
(i
√

3ϕ+ + ϕ−);

where ϕ± =
ψ(ω)

3
± c2

2e4ω + 2c1e2ω

ψ(ω)
, ψ(ω) =

(
3
√

3∆(ω)− 27c3e4ω
) 1

3
.

Recall that real-valued solutions of a cubic equation not always can be written as a func-

tion of real arguments, and therefore ϕ1
2(ω) and ϕ1

3(ω) may still be real-valued. Analogous

solutions exist for several other reduced systems below.

If ν = 1, then introducing the function φ of ω such that ϕ1 = φ/φω + 1 one yields

ϕ2(ω) = c2e2ω(φ(ω))2 and ϕ3(ω) = c3e4ω(φ(ω))3φω(ω), and the first equation reduces to

φ

φω

(
φ

φω

)
ω

−
(
φ

φω
+ 1

)2

+ c3(e4ωφ3φω)ω − 2c3e4ωφ3φω + c2
2e4ωφ4 = 0.

Alternatively, introducing the function φ of ω satisfying ϕ1 = φω/(φω−2φ) one obtains
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ϕ2 = c2φ, ϕ3 = c3φ(φω − 2φ), and the first equation reduces to

2φ

φω − 2φ

(
φω

φω − 2φ

)
ω

+ c3 (φ(φω − 2φ))ω −
(

φω
φω − 2φ

)2

+ c2
2φ

2− 2c3φ(φω − 2φ) = 0.

One can reduce the order of this autonomous equation by choosing θ(φ) = φω to be a new

dependent variable,

−(c3θ
3 − 6c3φθ

2 + 12c3φ
2θ − 8c3φ

3 − 4φ)φθθφ = c3θ
5 − 12c3φθ

4

+
(
(c2

2+52c3)φ2 − 1
)
θ3 −

(
(6c2

2+104c3)φ2 − 6
)
φθ2 + 12(c2

2+8c3)φ4θ − 8(c2
2+4c3)φ5.

2.4. g2.4
κ1κ2

= 〈D1 + κ1J ,D2 + κ2J 〉κ1>0:

u =
(x− κ2y)ϕ1 − (κ2x+ y)ϕ2

t
, v =

(κ2x+ y)ϕ1 + (x− κ2y)ϕ2

t
,

h =
(κ2

2 + 1)(x2 + y2)ϕ3

t2
,

where ω =
1

(κ2
2 + 1)

(
κ1 − κ2

2
ln |t| − arctan

y

x
+
κ2

2
ln(x2 + y2)

)
;

(
κ1 − κ2

2(κ2
2 + 1)

− ϕ2

)
ϕ1
ω + (ϕ1)2 − (ϕ2)2 − 2κ2ϕ

1ϕ2 − ϕ1 + 2ϕ3 = 0,(
κ1 − κ2

2(κ2
2 + 1)

− ϕ2

)
ϕ2
ω − ϕ3

ω + κ2(ϕ1)2 − κ2(ϕ2)2 + 2ϕ1ϕ2 − ϕ2 − 2κ2ϕ
3 = 0,(

κ1 − κ2

2(κ2
2 + 1)

− ϕ2

)
ϕ3
ω − ϕ3ϕ2

ω + 4(ϕ1 − κ2ϕ
2)ϕ3 − 2ϕ3 = 0.

2.5. g2.5
ν = 〈D1 − (1 + 2ν)D2,J 〉ν6−1/2:

u =
xϕ1 − yϕ2

t
, v =

yϕ1 + xϕ2

t
, h =

(x2 + y2)ϕ3

t2
,

where ω = ln |t|+ 1

2ν
ln(x2 + y2);

(ϕ1 + ν)ϕ1
ω + ϕ3

ω + ν
(
(ϕ1)2 − (ϕ2)2 − ϕ1 + 2ϕ3

)
= 0,
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(ϕ1 + ν)ϕ2
ω + ν

(
2ϕ1 − 1

)
ϕ2 = 0,

(ϕ1 + ν)ϕ3
ω + (ϕ1

ω + 4νϕ1 − 2ν)ϕ3 = 0.

If ν = −1/2, then the system is completely integrable.

If ϕ1 = 1/2, then the system reduces to the equation 2ϕ3
ω−2ϕ3 + (ϕ2)2 + 1

4
= 0, which

can be easily solved with respect to either ϕ2 or ϕ3.

If ϕ1 6= 1/2, then the second and the third equations of the system give ϕ2(ω) = c2eω

and ϕ3(ω) = c3e2ω/(ϕ1(ω) − 1/2), respectively, and the first equation then becomes an

ODE with respect to ϕ1, which possesses the first integral

e−ω
(
ϕ1 − (ϕ1)2 − 4c3e2ω

2ϕ1 − 1

)
− c2

2eω.

In other words, ϕ1 satisfies the cubic equation

2(ϕ1)3 − 3(ϕ1)2 + (2c2
2e2ω + 2c1eω + 1)ϕ1 + (4c3 − c2

2)e2ω − c1eω = 0.

Three solutions of this cubic equation are

ϕ1
1(ω) = ϕ− +

1

2
, ϕ1

2(ω) =
1

2
(i
√

3ϕ+ − ϕ− + 1); ϕ1
3(ω) =

1

2
(−i
√

3ϕ+ − ϕ− + 1);

where ϕ± =
ψ(ω)

6
± 4c2

2e2ω + 2c1eω − 1

2ψ(ω)
,

ψ(ω) =

(
3
√

3(4c2
2e2ω + 8c1eω − 1)3 + 5184c2

3e4ω + 27c1eω − 216c3e2ω

)1/3

.

If ν 6= 1/2, we can introduce the function φ of ω such that ϕ1 = ν(φω−φ)/(2νφ+φω).

Then the functions ϕ2 and ϕ3 can be expressed as ϕ2 = c2φ and ϕ3 = c3(2νφ+φω)φ. The

first equation reduces to the autonomous ODE

(
c3φφ

3
ω + 6c3νφ

2φ 2
ω + 12c3ν

2φ3φω + 8c3ν
3φ4 − (2ν + 1)2ν2φ2

)
φωω

+c3ϕ
5
ω +12c3νφφ

4
ω +

(
(52c3ν−c2

2)νφ2+ν3
)
φ 3
ω +

(
(104c3ν−6c2

2)φ2+6ν2
)
ν2φφ

2

ω

+12(8c3ν − c2
2)ν3φ4φω + 2ν4

(
4(4c3ν − c2

2)φ2 − 1
)
φ3 = 0,
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which can be further reduced to a first-order ODE with the help of standard methods.

2.6. g2.6
κ1κ2

= 〈P t +K + κ1J ,D2 + κ2J 〉κ1,κ2>0:

u =
(x− κ2y)ϕ1 − (κ2x+ y)ϕ2√

κ2
2 + 1(t2 + 1)

+
tx

t2 + 1
, v =

(κ2x+ y)ϕ1 + (x− κ2y)ϕ2√
κ2

2 + 1(t2 + 1)
+

ty

t2 + 1
,

h =
(x2 + y2)ϕ3

(t2 + 1)2
,

where ω =
arctan

y

x
− κ2

2
ln(x2 + y2)− κ1 arctan t+

κ2

2
ln(t2 + 1)

κ2
2 + 1

;

(
ϕ2 − κ1/

√
κ2

2 + 1

)
ϕ1
ω + (ϕ1)2 − (ϕ2)2 − 2κ2ϕ

1ϕ2 + 2ϕ3 + 1 = 0,(
ϕ2 − κ1/

√
κ2

2 + 1

)
ϕ2
ω + ϕ3

ω + κ2

(
(ϕ1)2 − (ϕ2)2

)
+ 2ϕ1ϕ2 − κ2(2ϕ3 + 1) = 0,(

ϕ2 − κ1/
√
κ2

2 + 1

)
ϕ3
ω + ϕ3ϕ2

ω − 4
(
κ2ϕ

2 − ϕ1
)
ϕ3 = 0.

2.7. g2.7
ν = 〈P t +K + νD2,J 〉ν>0:

u =
x(ϕ1 + t)− yϕ2

t2 + 1
, v =

y(ϕ1 + t) + xϕ2

t2 + 1
, h =

(x2 + y2)ϕ3

(t2 + 1)2
,

where ω = ν arctan t− 1

2
ln
x2 + y2

t2 + 1
;

(ϕ1 − ν)ϕ1
ω + ϕ3

ω − (ϕ1)2 + (ϕ2)2 − 2ϕ3 − 1 = 0,

(ϕ1 − ν)ϕ2
ω − 2ϕ1ϕ2 = 0,

(ϕ1 − ν)ϕ3
ω + (ϕ1

ω − 4ϕ1)ϕ3 = 0.

The system is completely integrable for ν = 0.

If ϕ1 = 0, then the system reduces to the equation ϕ3
ω + (ϕ2)2 − 2ϕ3 − 1 = 0, which

can be easily solved with respect to either ϕ2 or ϕ3.

If ϕ1 6= 0, then one yields from the second and the third equations that ϕ2(ω) = c2e2ω

and ϕ3(ω) = c3e4ω(ϕ1(ω))−1, respectively, and the first equation becomes an ODE with
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the first integral

(c2
2 + 2c3(ϕ1)−1)e2ω + ((ϕ1)2 + 1)e−2ω.

In other words, ϕ1 satisfies the cubic equation

(ϕ1)3 + (c2
2e4ω + c1e2ω + 1)ϕ1 + 2c3e4ω = 0,

whose solutions are

ϕ1
1(ω) = ϕ−, ϕ1

2(ω) =
1

2
(i
√

3ϕ+ − ϕ−); ϕ1
3(ω) = −1

2
(i
√

3ϕ+ + ϕ−);

where ϕ± =
ψ(ω)

3
± c2

2e4ω + c1e2ω + 1

ψ(ω)
,

ψ(ω) =

(
3
√

3(c2
2e4ω + c1e2ω + 1)3 + 81c2

3e8ω − 27c3e4ω

)1/3

.

If ν 6= 0, the system can be reduced to a first-order ODE by introducing the function φ

of ω such that ϕ1 = νφω/(φω − 2φ). Then immediately ϕ2 = c2φ, ϕ3 = c3(φω − 2φ)φ and

(c3φφ
3
ω − 6c3φ

2φ 2
ω + 12c3φ

3φω − 8c3φ
4 − 4ν2φ2)φωω + c3φ

5
ω − 12c3φφ

4
ω

+
(
(c2

2 + 52c3)φ2 − ν2 − 1
)
φ 3
ω −

(
(6c2

2 + 104c3)φ2 − 6(ν2 + 1)
)
φφ 2

ω

+12
(
(c2

2 + 8c3)φ2 − 1
)
φ2φω − 8

(
(c2

2 + 4c3)φ2 − 1
)
φ3 = 0.

This equation can be further reduced with the help of the standard substitution θ(φ) = φω.

2.8. g2.8
ν = 〈P t +K + νD2 + J ,Gx − Py〉ν>0:

u =
(x+ ty)(ϕ1 − tϕ2) + (tx− y)(t2 + 1)

(t2 + 1)2
, v =

(x+ ty)(tϕ1 + ϕ2 + t2 + 1)

(t2 + 1)2
,

h =
(x+ ty)2ϕ3

(t2 + 1)3
,
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where ω = ln
|x+ ty|
t2 + 1

− ν arctan t;

(ϕ1 − ν)ϕ1
ω + ϕ3

ω + (ϕ1)2 − 2ϕ2 + 2ϕ3 = 0,

(ϕ1 − ν)ϕ2
ω + ϕ1ϕ2 + 2ϕ1 = 0,

(ϕ1 − ν)ϕ3
ω + (ϕ1

ω + 3ϕ1)ϕ3 = 0.

2.9. g2.9
µ = 〈P t +K + J + µ(Px + Gy),Gx − Py〉µ>0:

u =
ϕ1 − tϕ2 + tx− y + µ

t2 + 1
, v =

tϕ1 + ϕ2 + x+ ty + µt

t2 + 1
, h =

ϕ3

t2 + 1
,

where ω = µ arctan t− x+ ty

t2 + 1
;

ϕ1ϕ1
ω + ϕ3

ω + 2ϕ2 = 0,

ϕ1ϕ2
ω − 2ϕ1 − 2µ = 0,

ϕ1ϕ3
ω + ϕ3ϕ1

ω = 0.

First, if ϕ1 = 0, then µ = 0 and ϕ2 = −ϕ3
ω/2, that is, (0,−fω/2, f) is a solution of the

reduced system for any sufficiently smooth function f of ω.

Consider two cases when ϕ1 6= 0: µ = 0 and µ 6= 0. In the former case we have

immediately ϕ3 = c3/ϕ
1 and ϕ2 = 2ω + c2/2. The first equation gives

(ϕ1)3 + (ω2 + c2ω + c1)ϕ1 + c3 = 0.

This cubic equation has the solutions

ϕ1
1(ω) = ϕ−, ϕ1

2(ω) =
1

2
(i
√

3ϕ+ − ϕ−); ϕ1
3(ω) = −1

2
(i
√

3ϕ+ + ϕ−);

where ϕ± =
ψ(ω)

6
± 2(ω2 + c2ω + c1)

ψ(ω)
,

ψ(ω) =

(
12
√

12(ω2 + c2ω + c1)3 + 81c2
3 − 108c3

)1/3

.
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In the latter case, we have ϕ3 = c3/ϕ
1, ϕ2 = −(ϕ1ϕ1

ω + ϕ3
ω)/2 and the second equation

results in (φω/φ
3)ω−c3φωω = 4(1+µφ) for φ = 1/ϕ1. Taking θ(φ) = φω as a new unknown

function of φ, the equation integrates to

θ2(φ) =
−4φ4

(1− c3φ3)2

(
c3µφ

4 + 2c3φ
3 + c4φ

2 + 2µφ+ 1
)
.

Alternatively, one can express ϕ1 via ϕ2, ϕ1 = 2µ/(ϕ2
ω − 2), then immediately obtain

ϕ3 = c3(ϕ2
ω − 2) and plug in these expressions for ϕ1 and ϕ3 into the first equation,

(c3(ϕ2
ω)3−6c3(ϕ2

ω)2 + 12c3ϕ
2
ω−4µ2−8c3)ϕ2

ωω + (2(ϕ2
ω)3−12(ϕ2

ω)2 + 24ϕ2
ω−16)ϕ2 = 0.

This equation has a first integral, which allows us to reduce the above equation to

c3(ϕ2
ω)2 + 2c1 + 2(ϕ2)2 +

8µ2(ϕ2
ω − 1)

(ϕ2
ω − 2)2

= 0.

Unlike the equation given by the representation above for θ(φ), this equation can be easily

solved with respect to the independent variable,

(ϕ2)2 = −1

2
c3(ϕ2

ω)2 − c1 −
4µ2

ϕ2
ω − 2

− 4µ2

(ϕ2
ω − 2)2

,

and present a solution in an implicit form. Indeed, on the interval (t1, t2), where the

function g(z) = ±
√
−1

2
c3z2 − c1 − 4µ2

z−2
− 4µ2

(z−2)2 is strictly monotonous, the solution to

the above equation may be written as

ω = c2 +

∫ ϕ2
ω

η0

gz(z)

z
dz, ϕ2 = g(z).

2.10. g2.10 = 〈D2,J 〉: u = xϕ1 − yϕ2, v = yϕ1 + xϕ2, h = (x2 + y2)ϕ3 with ω = t;

ϕ1
ω + (ϕ1)2 − (ϕ2)2 + 2ϕ3 = 0,

ϕ2
ω + 2ϕ1ϕ2 = 0,

ϕ3
ω + 4ϕ1ϕ3 = 0.
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Making the Ricatti substitution ϕ1 = φω/φ we immediately find ϕ2 = c1φ
−2 and ϕ3 =

c2φ
−4 for arbitrary constants c’s, while the first equation results in φωω+(2c2−c2

1)φ−3 = 0,

which integrates directly first to φ 2
ω = (2c2 − c2

1)φ−2 + c3 and then a second time to

φ(ω) =


4
√

8c3 − 4c2
2

√
|ω| if c4 = 0,

4

√
c22−2c3
c4

√
|ω2 + c5| otherwise

Here c4 is an arbitrary constant; 2c3−c2
2 > 0 for the first solution, and sgn(c2

2−2c3) = sgn c4

for the second one.

2.11. g2.11 = 〈D2,Gx − Py〉:

u =
z2(ϕ1 − tϕ2) + tx− y

t2 + 1
, v =

z2(tϕ1 + ϕ2) + x+ ty

t2 + 1
, h =

z2
2ϕ

3

t2 + 1
,

where ω = arctan t, z2 =
x+ ty

t2 + 1
;

ϕ1
ω + (ϕ1)2 − 2ϕ2 + 2ϕ3 = 0,

ϕ2
ω + ϕ1ϕ2 + 2ϕ1 = 0,

ϕ3
ω + 3ϕ1ϕ3 = 0.

Making the Ricatti substitution ϕ1 = φω/φ we immediately find ϕ2 = c2φ
−1−2 and ϕ3 =

c3φ
−3 for arbitrary constants c’s, and the function φ satisfies φωω−2(c2−2φ)+2c3φ

−2 = 0,

which is integrated for φω to φ 2
ω = 4(c2φ− φ2 + c3φ

−1 + c1). It implies that

ω + c4 =

∫
dφ

2
√
c2φ− φ2 + c3φ−1 + c1

.

Making the substitution φ =
√
ψ/(a− bψ), where a and b are constants to be specified,

the integral transforms to

∫
2b3/2ψ2dψ

(aψ2 + 1)
√
Aψ6 +Bψ4 + Cψ2 + c3

,
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where A, B, C depend on some of the constants c1, c2, c3, a, b. Choosing appropriate a

and b and assuming c3 6= 0, which is a natural assumption as otherwise h = 0, one can

show that the above integral can be represented as a linear combination of incomplete

elliptic integrals of the first and the third kinds, although their arguments may be complex

and so are their values. We list below some of the real-valued cases.

Taking c1 = c2 = 0, one obtains φ(ω) = c
1/3
3 (sin(3ω + c4))2/3 and thus

ϕ1(ω) = 2 cot(3ω), ϕ2(ω) = −2, ϕ3(ω) = sin−2(3ω) (mod G).

Setting c1 = (c2
5− c2

2)/3 and c3 = (c3
2− 3c2c

2
5 + 2c3

5)/27 for a new constant c5 such that

c2 > c5 > 0, and denoting c̃2 = (c2 + 2c5)/6, c̃5 = (c2 − c5)/3, one obtains an implicit

expression for the corresponding value of the function φ,

ω+c4 = arcsin
c̃2−φ
c̃2

+

√
c̃5

2c̃2−c̃5

ln

∣∣∣∣∣(c̃5−c̃2)φ−
√
c̃5(2c̃2−c̃5)

√
φ(2c̃2−φ)− c̃2c̃5

c̃5 − φ

∣∣∣∣∣ .
The case c̃5 = 0 corresponds to the trivial values c1 = c3 = 0 and thus h = 0, and in this

case the function φ can be explicitly expressed, φ(ω) = c̃2 − sin(c̃2ω) (modG).

2.12. g2.12
µ = 〈Gx − Py,Gy + µPx〉µ>0:

u =
tϕ1 + µϕ2 + tx− µy

t2 + µ
, v =

ϕ1 + tϕ2 + x+ ty

t2 + µ
, h =

ϕ3

t2 + µ
, where ω = t;

ϕ1
ω = 0, ϕ2

ω = 0, ϕ3
ω = 0.

4.4 Differential invariants for

the shallow water equations

In order to set up a moving frame, we have to define a coordinate cross-section that

allows us to solve for the group parameters, see details on the moving frame method

in [50, 106]. As the shallow water equations admit the nine-dimensional maximal point

symmetry group G, nine normalization conditions are to be chosen. The group action
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must be smooth to define a bona fide moving frame, so we consider in what follows the

action of the identity component G0 of the maximal point symmetry group G, consisting

of the transformations

T = eε6−ε7
(

t

1− ε9t
+ ε1

)
,

(
X
Y

)
=

eε6

1− ε9t

(
O

(
x
y

)
+

(
ε4

ε5

)
t+

(
ε2

ε3

))
,

(
U
V

)
= eε7

(
(1− ε9t)O

(
u
v

)
+ ε9O

(
x
y

)
+

(
ε4 + ε2ε9

ε5 + ε3ε9

))
, H = e2ε7(1− ε9t)

2h,

where O :=

(
c −s
s c

)
, c := cos ε8, s := sin ε8 and ε’s are arbitrary constants with ε9 6= 1/t

for any value of t. In this section we use Cartan’s notational convention using capital

letters instead of tildes to denote the target coordinates. In general, the existence of a

moving frame is linked to the freeness property of a Lie group. It is clear thatG0 cannot act

freely on the jet space J0(t, x, y|u, v, h) for dimensional reasons. Therefore, it is necessary

to prolong the action at least to J1(t, x, y|u, v, h). To be more precise, we consider an action

of the group G0 on the open subset {h > 0, hxhy > 0, 2h+ t(ht+uhx+vhy) > 0} thereof.

Let Dt = ∂t +
∑

α,κw
κ
α+δ1

∂wκα , Dx = ∂x +
∑

α,κw
κ
α+δ2

∂wκα and Dy = ∂y +
∑

α,κw
κ
α+δ3

∂wκα

be the usual operators of total differentiation. Here and in what follows we denote by α

the tuple α = (α1, α2, α3) ∈ N3
0, |α| = α1 + α2 + α3 and set δ1 = (1, 0, 0), δ2 = (0, 1, 0)

and δ3 = (0, 0, 1), wκα = wκα1α2α3
are the jet coordinates with wκα := ∂|α|wκ/∂tα1∂xα2∂yα3 ,

wκ000 := wκ, w1 := u, w2 := v and w3 := h.

In order to show the above prolongation explicitly, it is necessary to determine the

dual total differentiation operators DT , DX and DY . They are defined via DW i =∑3
j=1(Jij)−1Dwj , where J is the total Jacobian matrix, which in case of projectable group

actions is the usual Jacobian matrix J = ∂(T,X,Y )
∂(t,x,y)

. The notation W i for the transformed

variables are in accordance with Cartan’s convention. Thus,

DX = (1− ε9t)e
−ε6(cDx − sDy), DY = (1− ε9t)e

−ε6(sDx + cDy),

DT = eε7
(

1− ε9t

eε6

[
(1−ε9t)Dt − ε9(xDx+yDy)

]
− (ε4+ε2ε9)DX − (ε5+ε3ε9)DY

)
.

These operators can be used to compute the transformed derivatives W κ
α . To determine
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a well-defined moving frame ρ : M → G0, we only need the explicit expressions of three

first-order derivatives, and we choose HT , HX and HY ,

HT = e3ε7−ε6(1− ε9t)
3
[
(1− ε9t)ht − 2ε9h−

(
ε9x+ c(ε4 + ε2ε9) + s(ε5 + ε3ε9)

)
hx

−
(
ε9y + c(ε5 + ε3ε9)− s(ε4 + ε2ε9)

)
hy

]
,

HX = e2ε7−ε6(1− ε9t)
3(chx − shy), HY = e2ε7−ε6(1− ε9t)

3(shx + chy),

and a coordinate cross-section,

(T,X, Y, U, V,H,HT , HX , HY ) = (0, 0, 0, 0, 0, 1, 0, 0, 1). (4.4)

Solving for the group parameters leads to

ε1 = − tS
2h
, ε2 =

(y − tv)hx − (x− tu)hy√
h2
x + h2

y

, ε3 =
(tu− x)hx + (tv − y)hy√

h2
x + h2

y

,

ε4 =
vhx − uhy√
h2
x + h2

y

, ε5 = −uhx + vhy√
h2
x + h2

y

, ε6 =
1

2
ln

4(h2
x + h2

y)

S2
,

ε7 =
1

2
ln

S2

4h3
, ε8 = arctan

hx
hy
, ε9 =

ht + uhx + vhy
S

,

(4.5)

where S = 2h + t(ht + uhx + vhy). With the aid of this moving frame, it is possible

to derive a functionally independent list of differential invariants upon normalizing those

coordinate functions of the jet space that have not been involved in setting up the moving

frame, Iw
κ

α := ι(wκα), where ι is the invariantization map. According to the theorem

on bases of the algebra of differential invariants [105, Theorem 7.1], a (not necessarily

minimal) generating set of all differential invariants is constituted by the following edge

differential invariants,

Iu100 =
hy(ut + uux + vuy)− hx(vt + uvx + vvy)

h2
x + h2

y

,

Iu010 =
(h2

x + h2
y)(ht + uhx + vhy) + 2h(uxh

2
y + vyh

2
x)− 2hhxhy(vx + uy)

2
√
h(h2

x + h2
y)

3/2
,

Iu001 =

√
h(hxhy(ux − vy) + uyh

2
y − vxh2

x)

(h2
x + h2

y)
3/2

,
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Iv100 =
hx(ut + uux + vuy) + hy(vt + uvx + vvy)

h2
x + h2

y

,

Iv010 =

√
h(hxhy(ux − vy)− uyh2

x + vxh
2
y)

(h2
x + h2

y)
3/2

,

Iv001 =
(h2

x + h2
y)(ht + uhx + vhy) + 2h(uxh

2
x + vyh

2
y) + 2hhxhy(vx + uy)

2
√
h(h2

x + h2
y)

3/2
,

Ih200 =
−3(uhx + vhy + ht)

2 + 2h(2uvhxy + v2hyy + u2hxx + 2vhty + 2uhtx + htt)

2h(h2
x + h2

y)

Ih110 =
(−hx(uhxy + vhyy + hty) + hy(vhxy + uhxx + htx))

√
h

(h2
x + h2

y)
3/2

Ih101 =
2h(hx(vhxy+uhxx+htx) + hy(uhxy+vhyy+hty))− 3(h2

x + h2
y)(ht+uhx+vhy)

2
√
h(h2

x + h2
y)

3/2
,

Ih020 =
h

(h2
x + h2

y)
2
(h2

xhyy + h2
yhxx − 2hxhyhxy),

Ih011 =
h

(h2
x + h2

y)
2
(hxy(h

2
y − h2

x) + hxhy(hxx − hyy)),

Ih002 =
h

(h2
x + h2

y)
2
(h2

xhxx + h2
yhyy + 2hxhyhxy).

All the other differential invariants can be derived upon functional recombination of the

basis elements and by acting on them with the operators of invariant differentiation. These

operators are the invariantization of the three operators of total differentiation using the

normalization (4.4) and are

Di
t =

√
h

h2
x + h2

y

(Dt + uDx + vDy), Di
x =

h

h2
x + h2

y

(hyDx − hxDy),

Di
y =

h

h2
x + h2

y

(hxDx + hyDy).

(4.6)

Remark 4.5. The normalized differential invariants can be used to derive the formulation

of the shallow water equations in terms of fundamental differential invariants. This is done

upon replacing each term in the system (4.1) by its invariantized counterpart, which is

called the Replacement Theorem [50]. In view of the normalization (4.4) this invariantized

representation reads ι(ut) = 0, ι(vt) + 1 = 0, ι(ux) + ι(vy) = 0. Explicitly, this gives
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1

h2
x + h2

y

(hy(ut + uux + vuy + hx)− hx(vt + uvx + vvy + hy)) = 0,

1

h2
x + h2

y

(hx(ut + uux + vuy + hx) + hy(vt + uvx + vvy + hy)) = 0,

1√
h(h2

x + h2
y)

(ht + uhx + vhy + h(ux + vy)) = 0.

(4.7)

As of now we have a generating set of the algebra of differential invariants for the

system (4.1), but differential invariants are not necessarily functionally independent. In

what follows, we aim to find all such dependencies. The systematic way of doing it is

finding all so-called syzygies. The first kind of syzygies is associated with the commutator

formula [Di
j,D

i
k] =

∑3
l=1 Y

l
jkD

i
l, where Y ’s are certain differential functions. To avoid

the direct cumbersome computation we use the fact that these Y arise also in dhω
l =

−
∑

j<k Y
l
jkω

j ∧ ωk, where ω1 = ι(dt), ω2 = ι(dx) and ω3 = ι(dy) are the invariantized

Maurer–Cartan forms. To find the left hand side of these identities we will need the

horizontal part of the universal recurrence formula,

dι(Ω) = ι[dΩ + Lv(n)(Ω)], (4.8)

for Ω running through the set of functions used in choosing the cross-section. Here v(n)

is the nth prolongation of the general infinitesimal generator v of the group G0 and

Lv(n) is the Lie derivative with respect to v(n), see [106, 107] for more details. For the

computations we need n = 2. The left hand side of (4.8) is identically zero since ι(Ω)

are all constants. The collection of all such so-called phantom recurrence relations forms

a linear system of algebraic equations that can be solved for the invariantized Maurer–

Cartan forms. Plugging them in the remaining recurrence relations then yields a complete

and closed description of the relations between all invariantly differentiated differential

invariants and the normalized differential invariants.

In order to evaluate the general recurrence formula (4.8) for differential functions Ω,

one also needs the prolongations of the infinitesimal generators v = τ∂t + ξx∂x + ξy∂y +

φu∂u+φv∂v +φh∂h that generate the maximal Lie invariance algebra of the shallow water
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equations. The coefficients of the second prolongation of the vector field v,

v(2) = v +
∑
κ

(
φκ,100∂wκ100

+ φκ,010∂wκ010
+ φκ,001∂wκ001

+

φκ,200∂wκ200
+ φκ,110∂wκ110

+ φκ,101∂wκ101
+ φκ,020∂wκ020

+ φκ,011∂wκ011
+ φκ,002∂wκ002

)
,

are given by the general prolongation formula [103]

φκ,α = Dα1
t Dα2

x Dα3
y (φκ − τwκδ1 − ξ

xwκδ2 − ξ
ywκδ3) + τwκα+δ1

+ ξxwκα+δ2
+ ξywκα+δ3

.

We already know from the basis theorem that the invariants Iu100, Iu010, Iu001, Iv100, Iv010,

Iu001, Ih020, Ih011 I
h
002, Ih200, Ih110 and Ih101 form a generating set (possibly not minimal) of

differential invariants for the symmetry group G0 of the shallow water equations. The

purpose of evaluating the recurrence relations for the low-order differential invariants is

primary to eventually find a minimal set of generating differential invariants. This is why

we only have to evaluate the recurrence relations for those differential invariants that

belong to the above basis. In order to do this, we only need the prolongations of vector

field coefficients φκ,100, φκ,010, φκ,001, φ3,200, φ3,110, φ3,101, φ3,020, φ3,011 and φ3,002. It turns

out the invariantizations φ̂κ,α := ι(φκ,α) are conveniently expressed via

τ̂ = ι(τ), ξ̂x = ι(ξx), ξ̂y = ι(ξy), τ̂t = ι(τt), τ̂tt = ι(τtt),

ξ̂xt = ι(ξxt ), ξ̂xx = ι(ξxx), ξ̂xy = ι(ξxy ), ξ̂yt = ι(ξyt ),

and are

φ̂1,100 = (ξ̂xx − 2τ̂t)I
u
100 + ξ̂xy I

v
100 − ξ̂xt Iu010 − ξ̂

y
t I

u
001,

φ̂1,010 =
1

2
τ̂tt − τ̂tIu010 + ξ̂xy (Iu001 + Iv010), φ̂1,001 = −τ̂tIu001 + ξ̂xy (Iv001 − Iu010),

φ̂2,100 = −ξ̂xy Iu100 + (ξ̂xx − 2τ̂t)I
v
100 − ξ̂xt Iv010 − ξ̂

y
t I

v
001,

φ̂2,010 = −ξ̂xy Iu010 − τ̂tIv010 + ξ̂xy I
v
001, φ̂2,001 =

1

2
τ̂tt − ξ̂xy (Iu001 + Iv010)− τ̂tIv001,

φ̂3,100 = −τ̂tt − ξ̂yt , φ̂3,010 = ξ̂xy , φ̂3,001 = ξ̂xx − 2τ̂t,

147



φ̂3,200 = 2(ξ̂xx − 2τ̂t)I
h
200 − 2ξ̂xt I

h
110 − 2ξ̂yt I

h
101,

φ̂3,110 = −(3τ̂t − ξ̂xx)Ih110 + ξ̂xy I
h
101 − ξ̂xt Ih020 − ξ̂

y
t I

h
011,

φ̂3,101 = −(3τ̂t − ξ̂xx)Ih101 − ξ̂xy Ih110 − ξ̂xt Ih011 − ξ̂
y
t I

h
002, φ̂3,020 = −2τ̂tI

h
020 + 2ξ̂xy I

h
011,

φ̂3,011 = −2τ̂tI
h
011 + ξ̂xy (Ih002 − Ih020), φ̂3,002 = −2τ̂tI

h
002 − 2ξ̂xy I

h
011.

We have now prepared all ingredients to evaluate the phantom recurrence relations,

0 = dhι(t) = ω1 + τ̂ , 0 = dhι(x) = ω2 + ξ̂x, 0 = dhι(y) = ω3 + ξ̂y,

0 = dhι(u) = Iu100ω
1 + Iu010ω

2 + Iu001ω
3 + ξ̂xt ,

0 = dhι(v) = Iv100ω
1 + Iv010ω

2 + Iv001ω
3 + ξ̂yt , 0 = dhι(h) = ω3 − 2(τ̂t − ξ̂xx),

0 = dhι(ht) = Ih200ω
1 + Ih110ω

2 + Ih101ω
3 − τ̂tt − ξ̂yt ,

0 = dhι(hx) = Ih110ω
1 + Ih020ω

2 + Ih011ω
3 + ξ̂xy ,

0 = dhι(hy) = Ih101ω
1 + Ih011ω

2 + Ih002ω
3 − 2τ̂t + ξ̂xx ,

(4.9)

where we used the fact that the group G0 acts projectably and thus the forms ω’s are

horizontal. These phantom recurrence relations allow us to solve for the invariantized

Maurer–Cartan forms, which are

τ̂ = −ω1, ξ̂x = −ω2, ξ̂y = −ω3, τ̂t = Ih101ω
1 + Ih011ω

2 +

(
Ih002 −

1

2

)
ω3,

ξ̂xt = −(Iu100ω
1 + Iu010ω

2 + Iu001ω
3), ξ̂xx = Ih101ω

1 + Ih011ω
2 + (Ih002 − 1)ω3,

ξ̂xy = −(Ih110ω
1 + Ih020ω

2 + Ih011ω
3), ξ̂yt = −(Iv100ω

1 + Iv010ω
2 + Iv001ω

3),

τ̂tt = (Iv100 + Ih200)ω1 + (Iv010 + Ih110)ω2 + (Iv001 + Ih101)ω3.

(4.10)

Before we present the lowest non-phantom recurrence relations, we determine the com-

mutation relations between the operators of invariant differentiation (4.6). This is done in

the following way. Specifying the universal recurrence relation (4.8) for the basis horizon-

tal forms Ω ∈ {dt, dx, dy} and only evaluating the horizontal components of this relation

(denoted by the ≡ sign), we derive
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dhω
1 ≡ dι(dt) = ι(dτ) = ι(τt) ∧ ω1 = −Ih011ω

1 ∧ ω2 −
(
Ih002 −

1

2

)
ω1 ∧ ω3,

dhω
2 ≡ ι(dξx) = (Iu010+Ih101)ω1 ∧ ω2 + (Iu001−Ih110)ω1 ∧ ω3 − (Ih020+Ih002−1)ω2 ∧ ω3,

dhω
3 ≡ ι(dξy) = (Iv010 + Ih110)ω1 ∧ ω2 + (Iv001 + Ih101)ω1 ∧ ω3,

where we have used the expressions for the invariantized Maurer–Cartan forms (4.10) that

we derived from the phantom recurrence relations (4.9).

From this result, it is possible to read off the commutator formulae for the operators

of invariant differentiation (4.6), which are

[Di
t,D

i
x] = Ih011Di

t − (Iu010 + Ih101)Di
x − (Iv010 + Ih110)Di

y, (4.11a)

[Di
t,D

i
y] =

(
Ih002 −

1

2

)
Di
t − (Iu001 − Ih110)Di

x − (Iv001 + Ih101)Di
y, (4.11b)

[Di
x,D

i
y] = (Ih020 + Ih002 − 1)Di

x. (4.11c)

The next step in the description of the algebra of differential invariants is the com-

putation of the syzygies, meaning the functional dependency of certain differentiated

differential invariants. They are

Di
tI
u
001 −Di

yI
u
100 =Ih110(Iu010 − Iv001)− Ih101I

u
001 + Ih011I

v
100 + Ih002I

u
100

− Iu001(Iv001 + Iu010),

(4.12a)

Di
tI
h
011 −Di

yI
h
110 = −Ih011I

h
101 + Ih110

(
Ih020 + Ih002 −

1

2

)
− Ih020I

u
001 − Ih011I

v
001, (4.12b)

Di
tI
v
001 −Di

yI
v
100 =

1

2
Ih200 − Ih101I

v
001 − (Iv001)2 +

(
Ih002 +

1

2

)
Iv100

+ Ih110(Iv010 + Iu001)− Iv010I
u
001 − Ih011I

u
100

(4.12c)

Di
tI
h
002 −Di

yI
h
101 = Ih110I

h
011 + Ih101 +

(
3

2
− Ih002

)
Iv001 − Ih011I

u
001 (4.12d)

Di
tI
h
101 −Di

yI
h
200 =(Ih110)2 +

(
2Ih002 −

3

2

)
Ih200 − 2Ih101I

v
001 − 2(Ih101)2

+

(
Ih002 −

3

2

)
Iv100 − 2Ih110I

u
001 + Ih011I

u
100

(4.12e)
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Di
tI
u
010 −Di

xI
u
100 =

1

2
Ih200 − Ih101I

u
010 − Ih110(Iv010 + Iu001) +

(
Ih020 +

1

2

)
Iv100

− (Iu010)2 + Ih011I
u
100 − Iu001I

v
010

(4.12f)

Di
tI
v
010 −Di

xI
v
100 =− Ih101I

v
010 − Ih110 (Iv001 − Iu010)− Ih020I

u
100 + Ih011I

v
100

− Iv010(Iu010 + Iv001)

(4.12g)

Di
tI
h
020 −Di

xI
h
110 = −Ih020

(
Ih101 + Iu010

)
− Ih011I

v
010 (4.12h)

Di
tI
h
011 −Di

xI
h
101 =

(
Ih110 + Iv010

)(3

2
− Ih002

)
− Iu010I

h
011 (4.12i)

Di
tI
h
110 −Di

xI
h
200 = Ih011(2Ih200+Iv100)− (3Ih101+2Iu010)Ih110 − 2Iv010I

h
101 + Iu100I

h
020 (4.12j)

Di
xI

u
001 −Di

yI
u
010 = Ih002I

u
010 + Ih020(Iu010−Iv001) + Ih011I

v
010−

1

2
(Iu010+Iv001)−1

2
Ih101 (4.12k)

Di
xI

v
001 −Di

yI
v
010 =

1

2
Ih110 − Ih011I

u
010 + Ih002I

v
010 + Ih020(Iu001 + Iv010) (4.12l)

Di
xI

h
101 −Di

yI
h
110 =Ih110(Ih020 + 2Ih002 − 2)−

(
Ih101 + Iv001 − Iu010

)
Ih011

+

(
Ih002 −

3

2

)
Iv010 − Ih020I

u
001

(4.12m)

Di
xI

h
011 −Di

yI
h
020 = Ih020(Ih020 + Ih002 − 1) (4.12n)

Di
xI

h
002 −Di

yI
h
011 = Ih011(Ih020 + Ih002 − 1) (4.12o)

The systems (4.12b), (4.12d) and (4.12h), (4.12i) are linear inhomogeneous systems on

pairs (Iu001, I
v
001) and (Iu010, I

v
010) of differential invariants, respectively, whose solutions are

combinations of differential invariants Ih110, Ih101, Ih020, Ih011, Ih002 and their certain invariant

derivatives. Via the same differential invariants one may also express Iu100, Iv100 and Ih200

from the equations (4.12m), (4.12a) and (4.12c), respectively. The differential invariants

may be excluded from the above generating set by expressing them from the system

obtained be applying the commutator relation (4.11c) to Ih110 and Ih101. After substituting

all the obtained values in the remaining syzygies, their orders raise by one and neither of

the differential invariants Ih110, Ih101 and Ih011 can be expressed therefrom. In this way, we

have proven the following statement.

Theorem 4.6. The algebra of differential invariants for the group G0 of the shallow water

equations (4.1) is generated by the three normalized differential invariants Ih110, Ih101 and

Ih011 along with the three operators of invariant differentiation (4.6).
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4.5 Conservation laws

Computed in the course of classifying conservation laws of the shallow water equations

with variable bottom topography in [18] was a complete space of zeroth order conservation

laws of (4.1). In the notation

Λ0 := (−yh, xh, xv − yu), Λ1(f) :=
(
− 2fuh+ ftxh,−2fvh+ ftyh,

−f(u2 + v2 + 2h) + ft(xu+ yv)− 1

2
ftt(x

2 + y2)
)
,

Λ2(f) := (fh, 0, fu− ftx), Λ3(f) := (0, fh, fv − fty), Λ4(f) := (0, 0, f),

the space of characteristics of (4.1) is spanned by

Λ0, Λ1(1), Λ1(t), Λ1(t2), Λ2(1), Λ2(t), Λ3(1), Λ3(t), Λ4(1). (4.13)

The associated conserved currents of (4.1) are then (up to sign when necessary)

CL1 =

(
h(vx− uy), hu(vx− uy)− 1

2
h2y, hv(vx− uy) +

1

2
h2x

)
,

CL2 =
(
h(h+ v2 + u2), hu(u2 + v2 + 2h), hv(u2 + v2 + 2h)

)
,

CL3 =
(
h2t+ hu(tu− x) + hv(tv − y),

h2

(
2ut− 1

2
x

)
+ hu2(tu− x) + huv(tv − y),

h2

(
2vt− 1

2
y

)
+ hv2(tv − y) + huv(tu− x)

)
,

CL4 =
(
ht2(h+ u2 + v2)− 2ht(ux+ vy) + h(x2 + y2),

hut2(u2 + v2 + 2h)− th(hx+ 2u2x+ 2vuy) + uh(x2 + y2),

hvt2(u2 + v2 + 2h)− th(hy + 2v2y + 2uvx) + vh(x2 + y2)
)
,

CL5 =

(
hu,

1

2
h2 + hu2, huv

)
, CL6 =

(
h(x−tu), h

(
ux−1

2
ht−tu2

)
, hv(x−tu)

)
,

CL7 =

(
hv, huv, hv2 +

h2

2

)
, CL8 =

(
h(y − tv), hu(y − tv), h(vy − tv2 − 1

2
ht)

)
,

CL9 = (h, hu, hv) .
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Conserved currents CL1, CL2, CL5, CL7 and CL9 are associated with the conservation

of angular momentum, energy, x-momentum, y-momentum and mass, respectively [153].

If one is to preserve the conservation laws of an equation upon parameterization, in

other words, to use conservative parameterization schemes [14], one may use the fact

that the conservation laws are preserved under the action of point symmetries of this

equation [26, 130]. Thus, using an invariant parameterization scheme [124] preserving a

conservation law one in fact may preserve other conservation laws for free. Therefore,

to proceed effectively one needs to determine a generating set of conservation laws of

the equation [74], which is a minimal set of conservation laws which generates under the

action of point symmetries the entire space of conservation laws.

{Λ0,Λ1(t)} is such a set for (4.1), see [18]. Here we reprove this result geometrically.

Theorem 4.7. A generating set of zero-order conservation laws of the system (4.1) con-

sists of the conserved currents CL1 and CL2.

Proof. Recall [26, 152] that the conserved current CL = (ρ, σx, σy) of (4.1) is associated

with the horizontal 2-form CL = −ρdx ∧ dy + σxdt ∧ dy − σydt ∧ dx on the jet space

J∞(t, x, y|u, v, h). The condition Div CL = 0 is equivalent to d(CL) = 0, where d is

the exterior derivative, which means that conserved currents are closed 2-forms and the

equivalence of conserved currents is analogous to the equivalence of closed forms. Thus,

conservation laws are elements of the so-called (n − 1)st horizontal cohomology group

on J∞(t, x, y|u, v, h). The action of the point symmetry group G on conservation laws

of (4.1) is induced by the pullback of differential forms by transformations in G. Let us

make short-hand notations for some point symmetry transformations of (4.1),

Gxε4 : t̃ = t, x̃ = x+ ε4t, ỹ = y + ε4, ũ = u, ṽ = v, h̃ = h,

Gyε5 : t̃ = t, x̃ = x+ ε5t, ỹ = y, ũ = u+ ε5, ṽ = v, h̃ = h,

Iε9 : t̃ =
t

1− ε9t
, x̃ =

x

1− ε9t
, ỹ =

y

1− ε9t
,

ũ = u(1− ε9t) + ε9x, ṽ = (1− ε9t)v + ε9y, h̃ = (1− ε9t)
2h,

Sxε2 : t̃ = t, x̃ = x+ ε2, ỹ = y, ũ = u, ṽ = v, h̃ = h,

Syε3 : t̃ = t, x̃ = x, ỹ = y + ε3, ũ = u, ṽ = v, h̃ = h,
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Then we can express some of the conservation laws as

CL3 = CL2 +
1

4
CL4 − I∗1/2C̃L2, CL4 = I∗1 C̃L2 + 2CL3 − CL2,

CL5 = CL1 − (Sy1 )∗C̃L1, CL8 = CL1 − (Gx1 )∗C̃L1, CL6 = (Gy1 )∗C̃L1 − CL1,

CL9 = CL1 − (Gx1 ◦ S
y
1 )∗C̃L1 − CL8 − CL5, CL7 = (Sx1 )∗C̃L1 − CL1.

We put the tilde over 2-forms to distinguish different systems of coordinates. Under no

point symmetry T ∈ G can a conserved current CL1 be related to CL2 which is readily seen

from the transformation of the above currents under a general point symmetry T ∈ G. But

in view of the resulting expression being overly cumbersome we will not present it here.

As for the conservation laws of (4.1) of higher order, then to begin with, the sys-

tem (4.1) is Hamiltonian [134], w = HδH, where δ stands for the variational derivative

with respect to the tuple of the dependent variables w := (u, v, h)>, and

H =

 0 q −Dx

−q 0 −Dy

−Dx −Dy 0

 , H :=
1

2

∫∫
h(u2 + v2 + h)dxdy

are the associated Hamiltonian operator and Hamiltonian functional, and q = (vx−uy)/h

is the shallow water potential vorticity. Note that H is a Hamiltonian operator of

hydrodynamic-type [41, 56, 90]. Elements of the kernel of H are called Casimir func-

tionals of H and they are associated with conservation laws of (4.1). It was shown

in [143] that Casimir functionals of (4.1) are functionals of the form
∫∫

hR(q)dxdy,

where R runs through the set of smooth function of q. The associated family CR of

conserved currents are hR(q)(1, u, v) and they are of order zero if R′ := dR/dq = 0

and of order one otherwise. Additionally, their characteristics are of the form ΛR :=

(DyR
′(q),−DxR

′(q), R(q) − qR′(q)). Among elements of the family CR are functionals

associated with the conservation of mass (R = 1), the trivial conservation of circulation

(R = q) and the conservation of potential enstrophy (R = q2/2), cf. [153].

Are there any other conservation laws? There is a strong belief in scientific circles

that the answer is negative. This claim is supported by direct computer computations
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of low-order conserved currents. Moreover, there is also a strong belief that there are no

nontrivial higher symmetries (of order greater than one) for the system (4.1), computation

of which is less costly.

Conjecture. The space of higher symmetries of (4.1) is exhausted by the Lie sym-

metries thereof.

Assuming the conjecture is true, the space of conservation laws of the system (4.1)

is spanned by its zero-order conservation laws and the first-order conservation laws from

the family CR.

The Hamiltonian operator H maps characteristics of cosymmetries of (4.1) to that of

symmetries thereof. If the above conjecture is assumed to hold, the image of H consists

of nonzero characteristics of order no greater than one and therefore the order of mapped

characteristics should be of order 0 or −∞. Moreover, the kernel of H is already known as

well as the corresponding cosymmetries’ characteristics ΛR. All of these cosymmetries are

known and they do not amount to anything beyond conservation laws in the statement.

4.6 Toward geometric parameterization

Representing the dependent variables in the system (4.1) as sums of the mean (resolved or

grid-scale) parts and the departure from the mean part (subgrid-scale parts), u = ū+ u′,

v = v̄+ v′, h = h̄+h′, and applying the Reynolds averaging rule ab = āb̄+a′b′, one yields

ūt + ūūx + v̄ūy + h̄x = w1,

v̄t + ūv̄x + v̄v̄y + h̄y = w2,

h̄t + ūh̄x + v̄h̄y + h̄(ūx + v̄y) = w3,

(4.14)

where w’s do not depend on resolved only expressions and whose explicit form is of no im-

portance here. Since there are no equations for the subgrid-scale parts of u, v and h, one

should parameterize w’s via the grid-scale parts ū, v̄ and h̄, i.e. introduce a parameteriza-

tion scheme. There are a lot of obstacles to finding a physically reasonable parameteriza-

tion scheme for the system (4.1) [85]. Therefore, we would like to move in a parallel course.
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More specifically, we want a parameterization scheme to be symmetry-preserving, i.e. it

should admit the same Lie symmetries the initial system (4.1) does. In order to achieve

this, we can apply the moving frame from Section 4.4 to the system (4.14) (now the barred

variables are “physical” variables). The obtained system will look like the system (4.5)

with nonzero right sides depending on differential invariants for the system (4.1),

1

h2
x + h2

y

(hy(ut + uux + vuy + hx)− hx(vt + uvx + vvy + hy)) = ι(w1),

1

h2
x + h2

y

(hx(ut + uux + vuy + hx) + hy(vt + uvx + vvy + hy)) = ι(w2),

1√
h(h2

x + h2
y)

(ht + uhx + vhy + h(ux + vy)) = ι(w3).

We can reduce it to the inhomogeneous form of the system (4.1),

ut + uux + vuy + hx = hyι(w1) + hxι(w2),

vt + uvx + vvy + hy = hyι(w2)− hxι(w1),

ht + uhx + vhy + h(ux + vy) =
√
h(h2

x + h2
y)ι(w3).

(4.15)

Let us specify the form of ι(w)’s. To begin with, it is physically reasonable that the

right hand sides should not depend on the time derivatives in order to keep the evolution-

ary form of equations. Thus, ι(w)’s are the functions of (Iu001, I
v
010, I

u
010−Iv001, I

h
020, I

h
011, I

h
002).

It might be reasonable to drop the dependence of ι(w3) on the first three arguments, while

the dependence of ι(w1) and ι(w2) should also be extended to the second-order ι(uxx),

ι(vyy) et cetera since many parameterization schemes are diffusive [15, 16], but they are

too cumbersome to be presented here.

One may further try to incorporate conservation laws in the parameterization scheme,

which results in a conservative-invariant parameterization scheme. To this aim, one

should parameterize functions ι(w)’s so that the system (4.15) admits some of charac-

teristics (4.13) of the system (4.1).

155



Chapter 5

A zoo of equivalence groups

5.1 Introduction

In many applications it is natural to consider not single (systems of) differential equa-

tions, but sets thereof, parameterized by arbitrary elements that can be constants or

functions which satisfy some auxiliary differential relations. These sets are called classes

of differential equations, and the procedure of finding Lie symmetries of equations in the

class depending on values of arbitrary elements – the group classification problem. The

idea to consider such problems is twofold. First, some physical processes are governed by

differential equations with parameters corresponding to independent factors like a bottom

topography or a diffusion coefficient. Second, the same differential equation may govern

different processes and therefore it is reasonable to study this mathematical model per se.

But where there is a classification problem, there is an equivalence. This way the notion of

the equivalence group of a class of differential equations appears. The most common repre-

sentative thereof is a so-called usual equivalence group, that is, a group with independent-

variables and dependent-variables parameters not depending on the arbitrary elements of

the class. Although a generalization of such notion via relaxing the above dependence —

a generalized equivalence group — was introduced [87, 88], for many years it was assumed

that only trivial examples are possible and there were doubts about the necessity of such

a notion at all. In this chapter we provide the first nontrivial examples of generalized and

extended generalized equivalence group as well as some insight into their theory.
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Let Lθ denote a system of differential equations of the form L(x, u(r), θ(x, u(r))) = 0.

Here, x = (x1, . . . , xn) are the n independent variables, u = (u1, . . . , um) are the m de-

pendent variables, and L is a tuple of differential functions in u. We use the standard

short-hand notation u(r) to denote the tuple of derivatives of u with respect to x up to

order r, which also includes the u’s as the derivatives of order zero. The system Lθ is pa-

rameterized by the tuple of functions θ = (θ1(x, u(r)), . . . , θk(x, u(r))), called the arbitrary

elements, which runs through the solution set S of an auxiliary system of differential equa-

tions and inequalities in θ, S(x, u(r), θ(q)(x, u(r))) = 0 and, e.g., Σ(x, u(r), θ(q)(x, u(r))) 6= 0.

Here, the notation θ(q) encompasses the partial derivatives of the arbitrary elements θ up

to order q with respect to both x and u(r). Thus, the class of (systems of) differential

equations L|S is the parameterized family of systems Lθ’s, such that θ lies in S.

For the specific class of general Burgers–KdV equations considered below,

ut + C(t, x)uux =
r∑

k=1

Ak(t, x)uk, uk = ∂ku/∂kx , (5.1)

we have n = 2, m = 1, and x1 = t and x2 = x. The tuple of arbitrary elements is

θ = (A0, . . . , Ar, B, C), which runs through the solution set of the auxiliary system

Akuα = 0, k = 0, . . . , r, Buα = 0, Cuα = 0, |α| 6 r, CAr 6= 0,

where α = (α1, α2) is a multi-index, α1, α2 ∈ N ∪ {0}, |α| = α1 + α2, and uα =

∂|α|u/∂tα1∂xα2 . Satisfying the auxiliary differential equations is equivalent to the fact

that the arbitrary elements do not depend on derivatives of u. The inequality ArC 6= 0

ensures that equations from the class (5.1) are both nonlinear and of order r.

Group classification of differential equations is based on studying how systems from a

given class are mapped to each other. This study is formalized in the notion of admissible

transformations, which constitute the equivalence groupoid of the class L|S .

Definition 5.1. An admissible transformation is a triple (θ, θ̃, ϕ), where θ, θ̃ ∈ S are

arbitrary-element tuples associated with systems Lθ and Lθ̃ from the class LS that are sim-

ilar to each other, and ϕ is a point transformation in the space of (x, u) that maps Lθ to Lθ̃.
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A related notion of relevance in the group classification of differential equations is that

of equivalence transformations.

Definition 5.2. Usual equivalence transformations are point transformations in the joint

space of independent variables, derivatives of u up to order r and arbitrary elements that

are projectable to the space of (x, u(r′)) for each r′ = 0, . . . , r, respect the contact structure

of the rth order jet space coordinatized by the r-jets (x, u(r)) and map every system from

the class L|S to a system from the same class.

The Lie (pseudo)group constituted by the equivalence transformations of L|S is called

the usual equivalence group of this class and denoted by G∼. If the arbitrary elements

depend at most on derivatives of u up to order r̂ < r, then one can assume that equivalence

transformations act in the space of (x, u(r̂), θ) instead of the space of (x, u(r), θ).

The usual equivalence group G∼ gives rise to a subgroupoid of the equivalence grou-

poid G∼ since each equivalence transformation T ∈ G∼ generates a family of admissible

transformations parameterized by θ,

G∼ 3 T →
{

(θ, T θ, π∗T ) | θ ∈ S
}
⊂ G∼.

Here π denotes the projection of the space of (x, u(r), θ) to the space of equation variables

only, π(x, u(r), θ) = (x, u). The pushforward π∗T of T by π is then just the restriction

of T to the space of (x, u).

In the case when the arbitrary elements θ’s are functions of (x, u) only, we can assume

that equivalence transformations of the class L|S are point transformations of (x, u, θ)

mapping every system from the class L|S to a system from the same class. The pro-

jectability property for equivalence transformations is neglected here. Then these equiva-

lence transformations constitute a Lie (pseudo)group Ḡ∼ called the generalized equivalence

group of the class L|S . See the first discussion of this notion in [87, 88] with no relevant

examples and the further development in [123, 129]. Often the generalized equivalence

group coincides with the usual one; this situation is considered as trivial. Each element

of Ḡ∼ generates a family of admissible transformations parameterized by θ,
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Ḡ∼ 3 T →
{

(θ′, T θ′, π∗(T |θ=θ′(x,u))) | θ′ ∈ S
}
⊂ G∼,

and thus the generalized equivalence group Ḡ∼ also generates a subgroupoid H̄ of the

equivalence groupoid G∼.

Definition 5.3. We call any minimal subgroup of Ḡ∼ that generates the same sub-

groupoid of G∼ as the entire group Ḡ∼ does an effective generalized equivalence group of

the class L|S .

The uniqueness of an effective generalized equivalence group is obvious if the entire

group Ḡ∼ is effective itself. At the same time, there exist classes of differential equations,

where effective generalized equivalence groups are proper subgroups of the corresponding

generalized equivalence groups that are not even normal. Hence each of these effective

generalized equivalence groups is not unique since it differs from some of subgroups non-

identically similar to it, and all of these subgroups are also effective generalized equivalence

groups of the same class. See the discussion of particular examples in Remark 5.14 below.

Suppose that the class L|S possesses parameterized non-identity usual equivalence

transformations and some of its arbitrary elements are constants. Then this class nec-

essarily admits purely generalized equivalence transformations. Indeed, we can set all

parameters of elements from the usual equivalence group G∼ depending on constant arbi-

trary elements, which gives generalized equivalence transformations. The set Ḡ∼0 of such

transformations is a subgroup of the generalized equivalence group Ḡ∼. If Ḡ∼0 = Ḡ∼, the

usual equivalence group G∼ is an effective generalized equivalence group of the class L|S .

The property for equivalence transformations to be point transformations with respect

to arbitrary elements can also be weakened. We formally extend the arbitrary-element

tuple θ of the class L|S with virtual arbitrary elements that are related to initial arbitrary

elements by differential equations and thus expressed via initial arbitrary elements in a

nonlocal way. Denote the reparameterized class by L̂|S . Suppose that the usual (resp.

generalized or effective generalized) equivalence group Ĝ∼ of L̂|S induces the maximal

subgroupoid of the equivalence groupoid G∼ among the classes obtained from L|S by

similar reparameterizations, and the extension of the arbitrary-element tuple θ for L̂|S is
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minimal among the reparameterized classes giving the same subgroupoid of G∼ as L̂|S .

Then we call the group Ĝ∼ an extended equivalence group (resp. an extended generalized

equivalence group) of the class L|S .

The class of differential equations L|S is normalized in the usual (resp. generalized,

extended, extended generalized) sense if the subgroupoid induced by its usual (resp. gener-

alized, extended, extended generalized) equivalence group coincides with the entire equiv-

alence groupoid G∼ of L|S . The normalization of L|S in the usual sense is equivalent to

the following conditions. The transformational part ϕ of each admissible transformation

(θ′, θ′′, ϕ) ∈ G∼ does not depend on the fixed initial value θ′ of the arbitrary-element

tuple θ and, therefore, is appropriate for any initial value of θ. Moreover, the prolon-

gation of ϕ to the space of (x, u(r)) and the further extension to the arbitrary elements

according to the relation between θ′ and θ′′ gives a point transformation in the joint space

of (x, u(r), θ).

If the class L|S is normalized in the generalized sense, the expression for transfor-

mational parts of admissible transformations may involve arbitrary elements but only in

a quite specific way. The equivalence groupoid is partitioned into families of admissible

transformations parameterized by the source arbitrary-element tuple, and the transforma-

tional parts of admissible transformations from each of these families jointly give, after the

extension to the arbitrary elements according to the relation between the corresponding

source and target arbitrary elements, a point transformation in the joint space of (x, u, θ).

To establish the normalization properties of the class L|S one should compute its equiv-

alence groupoid G∼, which is realized using the direct method. Here one fixes two arbitrary

systems from the class, Lθ : L(x, u(r), θ(x, u(r))) = 0 and Lθ̃ : L(x̃, ũ(r), θ̃(x̃, ũ(r))) = 0, and

aims to find the (nondegenerate) point transformations, ϕ: x̃i = X i(x, u), ũa = Ua(x, u),

i = 1, . . . , n, a = 1, . . . ,m, connecting them. For this, one changes the variables in the sys-

tem Lθ̃ by expressing the derivatives ũ(r) in terms of u(r) and derivatives of the functionsX i

and Ua as well as by substituting X i and Ua for x̃i and ũa, respectively. The requirement

that the resulting transformed system has to be satisfied identically for solutions of Lθ

leads to the system of determining equations for the components of the transformation ϕ.
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In the case of a single dependent variable (m = 1), all the above notions involving

point transformations can be directly extended to contact transformations.

See more details on theory of symmetry analysis of classes of differential equations

in [110, 129, 154].

5.2 Generalized equivalence groups

Our first example of generalized equivalence groups comes from discussing the group

classification problem of the class of general Burgers–Korteweg–de Vries equations (5.1).

It was shown that the best gauge for classification purposes is (C,A1) = (1, 0), which

preserves the normalization in the usual sense. On the other hand, here we are interested

in another gauge, (Ar, A1) = (1, 0), which provided the first example for a generalized

equivalence group containing transformations whose components for equation variables

depend on a nonconstant arbitrary element.

The Ar-component of equivalence transformations in the class (5.1) is Ãr = (Xx)r

Tt
Ar.

If Ar = 1 and Ãr = 1, then the parameters of the admissible transformations in the

subclass of (5.1) singled out by the constraint Ar = 1 satisfy the constraint (Xx)
r = Tt,

i.e., X = X1(t)x+X0(t), where (X1)r = Tt.

Proposition 5.4. The subclass of the class (5.1) singled out by the constraint Ar = 1 is

normalized in the usual sense. Its usual equivalence group is constituted by the transfor-

mations of the form

t̃ = T (t), x̃ = X1(t)x+X0(t), ũ = U1(t)u+ U0(t, x),

Ãl =
(X1)l

Tt
Al, Ã1 =

X1

Tt

(
A1 +

U0

U1
C − X1

t x+X0
t

X1

)
,

Ã0 =
1

Tt

(
A0 +

U1
t

U1
+
U0
x

U1
C

)
, C̃ =

X1

TtU1
C,

B̃ =
U1

Tt
B +

U0
t

Tt
+
U0
x

Tt

(
U0

U1
C − X1

t x+X0
t

X1

)
− U0

r

(X1)r
−

r−1∑
k=0

U0
k

(X1)k
Ãk,

where l = 2, . . . , r − 1, and T = T (t), X0 = X0(t), U1 = U1(t) and U0 = U0(t, x) are

arbitrary smooth functions of their arguments such that TtU
1 6= 0, as well as X1 = (Tt)

1/r

if r is odd and Tt > 0, X1 = ε(Tt)
1/r with ε = ±1 if r is even.
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The gauge A1 = 0 leads to the appearance of the arbitrary element C in the u-

component of admissible transformations since then we have

U0 =
X1
t x+X0

t

X1C
U1.

Denote by θ′ the arbitrary-element tuple of the subclass L1 obtained as a result of the

double gauge (Ar, A1) = (1, 0),

θ′ = (A0, A2, . . . , Ar−1, B, C).

Proposition 5.5. The equivalence groupoid of the subclass A1 of the class (5.1) singled

out by the constraints Ar = 1 and A1 = 0 consists of the triples (θ′, θ̃′, ϕ)’s, where the

point transformation ϕ is of the form

t̃ = T (t), x̃ = X1(t)x+X0(t), ũ = U1(t)u+ U0, U0 :=
X1
t x+X0

t

X1C
U1, (5.2a)

the arbitrary-element tuples θ′ and θ̃′ are related according to

Ãl =
(X1)l

Tt
Al, Ã0 =

1

Tt

(
A0 +

U1
t

U1
+
U0
x

U1
C

)
, C̃ =

X1

TtU1
C, (5.2b)

B̃ =
U1

Tt
B +

U0
t

Tt
+
U0
x

Tt

(
U0

U1
C − X1

t x+X0
t

X1

)
− U0

r

(X1)r
−

r−1∑
l=2

U0
l

(X1)l
Ãl − U0Ã0, (5.2c)

with l = 2, . . . , r − 1, and T = T (t), X0 = X0(t) and U1 = U1(t) being arbitrary smooth

functions of t such that TtU
1 6= 0, as well as X1 = (Tt)

1/r if r is odd and Tt > 0,

X1 = ε(Tt)
1/r with ε = ±1 if r is even.

The subclass A1 is not normalized in the usual sense since the parameter U0 appearing

in the transformation-component for u depends on the arbitrary element U0, and therefore

the equivalence group above is generalized. If U0 is C-independent, then we obtain the

usual equivalence group of the class A1, which is constituted by the point transformations

of the form (5.2) in the joint space of the variables (t, x, u) and the arbitrary elements θ′,

where parameters satisfy more constraints, Ttt = X0
t = 0, and thus X1

t = 0 and U0 = 0.
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All the components of (5.2) locally depend on C, and, moreover, the expressions for Ã0

and B̃ involve derivatives of C with respect to t and x. This is why, to interpret (5.2) as

generalized equivalence transformations, we need to formally extend the arbitrary-element

tuple θ′ with the derivatives of C as new arbitrary elements, Z0 := Ct and Zk := Ck,

k = 1, . . . , r, and prolong equivalence transformations to them,

Z̃0 =
X1

T 2
t U

1
Z0 +

(
X1

TtU1

)
t

C

Tt
, Z̃k =

(X1)1−k

T 2
t U

1
Zk, k = 1, . . . , r. (5.3)

The derivatives of U0 in the expressions for Ã0 and B̃ should be expanded and then

derivatives of C should be replaced by the corresponding Z’s.

We denote by Ā1 the class of equations of the form (5.1) with (Ar, A1) = (1, 0) and

the extended arbitrary-element tuple θ̄′ = (A0, A2, . . . , Ar−1, B, C, Z0, . . . , Zr), where the

relations defining Z0, . . . , Zr are assumed as additional auxiliary equations for arbitrary

elements.

Theorem 5.6. The class Ā1 is normalized in the generalized sense. Its generalized equiv-

alence group Ḡ∼Ā1
coincides with its effective generalized equivalence group and consists of

the point transformations in the joint space of the variables (t, x, u) and the arbitrary ele-

ments θ̄′ with components of the form (5.2), (5.3) and the same constraints for parameters

as in Proposition 5.5, where partial derivatives of U0 are replaced by the corresponding

restricted total derivatives with D̄t = ∂t+Z
0∂C and D̄x = ∂x+Z1∂C+Z2∂Z1 +· · ·+Zr∂Zr−1.

Proof. The point transformations of the above form constitute a group G, which generates

the entire equivalence groupoid of the class Ā1 and is minimal among point-transformation

groups in the joint space of (t, x, u, θ̄′) that have this generation property. Therefore, G is

an effective generalized equivalence group of the class Ā1. We are going to prove that the

group G coincides with Ḡ∼Ā1
. Indeed, substituting every particular value of θ̄′ to any ele-

ment of Ḡ∼Ā1
gives an admissible transformation of the class Ā1. This implies that elements

of Ḡ∼Ā1
are of the form (5.2), (5.3), where the parameter functions T , X0 and X1 may de-

pend on arbitrary elements, and the partial derivatives of these functions are replaced by

the corresponding total derivatives prolonged to the arbitrary elements of the class Ā1. At
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the same time, these parameters satisfy the condition DxT = DxX
0 = DxX

1 = 0 with the

prolonged total derivative operator Dx. This condition implies via splitting with respect

to unconstrained derivatives of arbitrary elements that the parameters T , X0 and X1 are

functions of t only. Hence Ḡ∼Ā1
= G.

Although A1 is the first known class that admits a nontrivial generalized equivalence

group, the situation with its effective generalized group is trivial: it coincides with the

entire generalized equivalence group.

Our second example is in a sense opposite to the first. Its generalized equivalence group

is finite-dimensional, i.e. the arbitrary elements of the class under question are constants,

but its effective generalized equivalence groups (plural) have absolutely exquisite proper-

ties. Also, although we emphasized that our first example was the first example of the class

with nonconstant arbitrary elements and with nontrivial generalized equivalence group,

we did not mean that the constant-arbitrary elements case was well-studied. Indeed, all

the known “finite-dimensional generalized equivalence groups” were effective generalized

equivalence groups and thus either were trivial or were just subgroups of the generalized

equivalence groups. And it was not evident from their construction, what was the case.

Below we provide an example of a class whose generalized equivalence group is much

wider than its effective generalized equivalence groups, with neither of them containing

the usual equivalence group of the class.

Consider the class F of nonlinear “filtration”1 equations

ut = f(ux)uxx + g, (5.4)

where f is a nonzero arbitrary function of ux and g is a constant. We encountered this

class while classifying a class of reaction–diffusion equations [114].

Proposition 5.7. The generalized equivalence group Ḡ∼F of the class F is constituted

by the point transformations in the space with the coordinates (t, x, u, ux, f, g), whose

components are of the form

1In filtration equations the arbitrary element g is equal to 0, but we can reduce the equation equations
under study to filtration equations by a simple point transformation.
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t̃ = T̄ 1t+ T̄ 0, x̃ = X̄1x+ X̄2u− gX̄2t+ X̄0,

ũ = Ū1x+ Ū2u+ (T̄ 1F̄ − gŪ2)t+ Ū0,

ũx̃ =
Ū1 + Ū2ux
X̄1 + X̄2ux

, f̃ =
(X̄1 + X̄2ux)

2

T̄ 1
f, g̃ = F̄ ,

where T̄ ’s, X̄’s, Ū ’s and F̄ are arbitrary functions of g with T̄ 1(X̄1Ū2−X̄2Ū1)F̄g 6= 0.

The usual equivalence group G∼F is a (finite-dimensional) subgroup of the generalized

equivalence group Ḡ∼F that is singled out from Ḡ∼F by the following system of constraints

for the group parameters:

T̄ 0
g = T̄ 1

g = 0, X̄0
g = X̄1

g = 0, X̄2 = 0, Ū0
g = Ū1

g = Ū2
g = 0, T̄ 1F̄g = Ū2.

Denote by G∼F the equivalence groupoid of the class F and by S∼F the subgroupoid of G∼F

generated by the generalized equivalence group Ḡ∼F . The subgroupoid of G∼F generated

by the usual equivalence group G∼F is a proper subgroupoid of S∼F . Hence the group Ḡ∼F

is an example of a nontrivial generalized equivalence group. The dependence of group

parameters on g is needless for generating admissible transformations in the class F and

is merely a manifestation of the fact that the arbitrary element g is constant within the

subclass F . This is why we need to consider an effective generalized equivalence group of

the class F , which is a minimal subgroup of Ḡ∼F generating the subgroupoid S∼F of G∼F .

The only dependence on g that is essential for generalized equivalence is the explicit

involvement of g in the t-coefficient of the x-component. At the same time, setting the

group parameters T̄ ’s, X̄’s, Ū ’s and T̄ 1F̄ − Ū2 to be constants singles out the subset of

elements from Ḡ∼F that is not a subgroup of Ḡ∼F although this subset is minimal among

subsets of Ḡ∼F generating S∼F . The construction of an effective generalized equivalence

group of the class F is in fact more tricky.

Proposition 5.8. An effective generalized equivalence group Ĝ∼F of the subclass F is

constituted by the point transformations

t̃ = T1t+ T0, x̃ = X1x+X2u−X2gt+X0,
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ũ = U1x+ U2u+ (1− U2)gt+ U3t+
T0

T1

g + U0, ũx̃ =
U1 + U2ux
X1 +X2ux

,

f̃ =
(X1 +X2ux)

2

T1

f, g̃ =
g + U3

T1

,

where T ’s, X’s and U ’s are arbitrary constants with T1(X1U2 −X2U1) 6= 0.

Proof. Consider the set H1 of the point transformations in the space with the coordinates

(t, x, u, ux, f, g), whose components are of the form

t̃ = T1t+ T0, x̃ = X1x+X2u+ (A11g + A10)t+B11g +B10,

ũ = U1x+ U2u+ (A21g + A20)t+B21g +B20,

ũx̃ =
U1 + U2ux
X1 +X2ux

, f̃ =
(X1 +X2ux)

2

T1

f, g̃ =
C1g + C0

T1

,

(5.5)

where T ’s, X’s, U ’s, A’s, B’s and C’s are arbitrary constants with T1(X1U2−X2U1)C1 6= 0.

It is obvious that this set is closed with respect to the composition of transformations and

taking the inverse, i.e., it is a (local) transformation group with dimH1 = 16. Then the

intersection H0 := H1∩Ḡ∼F of H1 with Ḡ∼F , which is singled out from H1 by the constraints

A10 = 0, A11 = −X2, A20 = C0 and A21 = C1−U2, is also a group, and dimH0 = 12. The

subgroup H0 of Ḡ∼F generates the entire subgroupoid S∼F of G∼F , which is generated by Ḡ∼F .

At the same time, for each fixed pair of the arbitrary elements (f, g), the subgroupoid S∼F

contains a precisely nine-parameter family of admissible transformations with the source

(f, g). This is why we should try to find three more constraints for group parameters of

the group H1 in order to construct a nine-dimensional subgroup of H0 that still generates

the entire S∼F .

We analyze the composition of two arbitrary elements from the group H0, T̂ =

T̃ T with T̃ , T ∈ H0. These generalized equivalence transformations have the general

form (5.5), where group parameters satisfy the above constraints for the subgroup H0.

We additionally reparameterize H0 with replacing the parameter B21 by B′21 + T0/T1 and

mark the group-parameter values corresponding to T̂ and T̃ by hats and tildes, respec-

tively. We obtain, in particular, the following expressions for group-parameter values of

the composition T̂ :
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Ĉ1 = C̃1C1, B̂11 = X̃1B11 + X̃2B
′
21 +

B̃11

T1

, B̂′21 = Ũ1B11 + Ũ2B
′
21 +

B̃′21

T1

,

which imply that the constraints C1 = 1, B11 = B′21 = 0 singling out Ĝ∼F from the

subgroup H0 are preserved by the composition of transformations and taking the inverse

in H0. Therefore, Ĝ∼F is really a group. It generates the entire subgroupoid S∼F of G∼F , and

any its proper subset does not possess this property, i.e., it is a minimal subgroup of Ḡ∼F

with this property.

The usual equivalence group G∼F of the subclass F is not contained in the effective gen-

eralized equivalence group Ĝ∼F constructed in Proposition 5.8. The intersection G∼F ∩ Ĝ∼F

is singled out from G∼F by the constraints T0 = 0 and U2 = 1.

To prove an assertion generalizing the above claim, we need to consider the infinites-

imal counterparts of related groups. For convenience, we introduce the following dual

notation for relevant vector fields on the space with the coordinates (t, x, u, ux, f, g):

X1 = P t = ∂t, X2 = Dt = t∂t − f∂f − g∂g, X3 = P x = ∂x,

X4 = Dx = x∂x − ux∂ux + 2f∂f , X5 = P u = ∂u, X
6 = Du = u∂u + ux∂ux + g∂g,

X7 = Zt = t∂u+∂g, X
8 = Zx = x∂u+∂ux , X

9 = R = (u−gt)∂x−u 2
x∂ux+2uxf∂f .

Up to the anticommutativity of the Lie bracket, the nonzero commutation relations be-

tween these vector fields are exhausted by

[P t, Dt] = P t, [P x, Dx] = P x, [P u, Du] = P u, [P t, Zt] = P u, [P x, Zx] = P u,

[Zt, Dt] = −Zt, [Zx, Dx] = −Zx, [Zt, Du] = Zt, [Zx, Du] = Zx,

[P t, R] = −gP x, [P u, R] = P x, [Dx, R] = −R, [Du, R] = R,

[Zx, R] = Dx −Du + gZt.

The Lie algebras g∼F , ḡ∼F and ĝ∼F of the groups G∼F , Ĝ∼F and Ḡ∼F are naturally called

the usual equivalence algebra, the generalized equivalence algebra and an effective gener-

alized equivalence algebra of the class F , respectively. Each of them is merely the set of
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infinitesimal generators of one-parameter subgroups of the corresponding groups. In order

to construct all such generators, we successively take one of the group parameters in the

respective general form of group elements to depend on a continuous subgroup parame-

ter δ and set the other parameter-functions to their values corresponding to the identity

transformations, which are T1 = X1 = U2 = 1 and T0 = X0 = X2 = U0 = U1 = U3 = 0

for the groups G∼F and Ĝ∼F (the parameter X2 is relevant only for Ĝ∼F) and similarly

T̄ 1 = X̄1 = Ū2 = 1, T̄ 0 = X̄0 = X̄2 = Ū0 = Ū1 = 0 and F̄ = g for the group Ḡ∼F . Then

we differentiate the transformation components with respect to δ and evaluate the result

at δ = 0. As a result, we derive that

g∼F = 〈X1, . . . , X8〉, ḡ∼F =

{
9∑
i=1

ϑi(g)X i

}
,

ĝ∼F = 〈P t + gP u, Dt, P x, Dx, P u, Du − gZt, Zt, Zx, R〉,

where the coefficients ϑ’s run through the set of smooth functions of g, i.e., the algebra ḡ∼F

is the module over the ring of smooth functions of g with basis (X1, . . . , X9) equipped

with the Lie bracket of vector fields.

Theorem 5.9. Any effective generalized equivalence group of the class F does not contain

the usual equivalence group G∼F of this class.

Proof. We prove the re-formulated assertion: Suppose that a subgroup of the generalized

equivalence group Ḡ∼F of the class F contains the usual equivalence group G∼F of this

class and generates the same subgroupoid of the equivalence groupoid G∼F as the entire

group Ḡ∼F does. Then this subgroup is not an effective generalized equivalence group of F .

A complete list of discrete usual equivalence transformations of the class F that

are independent up to combining with each other and with continuous usual equiva-

lence transformations of this class is exhausted by the involutions I t, Ix and Iu al-

ternating the signs of (t, f, g), (x, ux) and (u, ux, g), respectively. Among generalized

equivalence transformations, there is one more independent discrete transformation Ig:

(t̃, x̃, ũ, ũx̃, f̃ , g̃) = (t, x, u − 2gt, ux, f,−g). Discrete equivalence transformations play an

auxiliary role in the course of the proof.
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It suffices to prove the infinitesimal counterpart of the above assertion, which states

the following. Let a subalgebra h of ḡ∼F contain g∼F and a vector field X =
∑9

i=1 ζ
iX i,

where ζ i = ζ i(g) are smooth functions of g with ζ9 6= 0, be invariant with respect to

discrete transformations in G∼F , I t∗h, I
x
∗ h, I

u
∗ h ⊆ h, and be associated with a transforma-

tion (pseudo)group. Then this subalgebra properly contains another subalgebra s among

whose elements there are Kj =
∑9

i=1 χ
ijX i, where χij, i, j = 1, . . . , 9, are smooth func-

tions of g with det(χij) 6= 0, and which is also invariant with respect to I t∗, I
x
∗ and Iu∗

and is associated with a transformation (pseudo)group. Here the subscript “*” combined

with the notation of a point transformation denotes pushing forward vector fields on the

same manifold by this transformation.

If the algebra h contains the pure vector field R, then we commute R with elements

of g∼F and successively obtain that

[R,P t] = gP x ∈ h, [gP x, Zx] = gP u ∈ h, [Zx, R] = Dt −Du + gZt ∈ h.

Hence gZt ∈ h, i.e., h ⊇ g∼F + 〈gP x, gP u, gZt〉 ! ĝ∼F . We can choose s = ĝ∼F . Then we

also have I t∗s = Ix∗ s = Iu∗ s = Ig∗s = s. Otherwise, we compute the commutators

[X,Dx] = ζ9R− ζ8Zx + ζ3P x ∈ h,

[ζ9R− ζ8Zx + ζ3P x, Dx] = ζ9R + ζ8Zx + ζ3P x ∈ h,

[ζ9R− ζ8Zx + ζ3P x, Dt +Du] = −ζ9R− ζ8Zx ∈ h,

and thus derive that ζ9R ∈ h, and ζ9 6= const. In the same way, we can show that for any

element
∑9

i=1 ϑ
i(g)X i ∈ h, the element ϑ3P x and thus the element ϑ3P u = [ϑ3P x, Zx]

also belong to h. Taking two more commutators,

[Zx, ζ9R] = ζ9(Dx −Du + gZt) ∈ h, [Zx, ζ9(Dx −Du + gZt)] = −2ζ9Zx ∈ h,

we get ζ9Zx ∈ h. Consider the span
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s = 〈P t, Dt, Zt, Dx, Du, βP x, βP u, αR, α(Dx −Du + gZt), αZx | αR, βP x ∈ h〉.

It is a subalgebra of h. Since the entire algebra h is invariant with respect to I t∗, I
x
∗ and Iu∗

and is associated with a transformation (pseudo)group, the subalgebra s has the same

properties. In view of R /∈ h, the parameter function α does not take constant values.

Hence Zx /∈ s, i.e., s ( h. As the required elements Kj, j = 1, . . . , 9, we can choose P t,

Dt, Zt, Dx, Du, P x, P u, ζ9R and ζ9Zx.

Therefore, the algebra h is not an effective generalized equivalence algebra of F .

It is worth to note that since the first example of a nontrivial generalized equivalence

group, the cornucopia of new examples was found, with the paper [108] being El Dorado.

5.3 Extended generalized equivalence groups

To provide examples of extended generalized equivalence groups we return to the class

of general Burgers–Korteweg–de Vries equations and it subclasses. Consider first the

subclass of the class (5.1) with coefficients depending at most on t. To study its admissible

and equivalence transformations it is convenient to start with a wider class, which is the

subclass K0 of the class (5.1) singled out by the constraint Cx = 0 (resp. Arx = 0) implying

Xxx = 0 for admissible transformations.

Proposition 5.10. The class K0 is normalized in the usual sense. Its usual equivalence

group is constituted by the transformations of the form

t̃ = T (t), x̃ = X1(t)x+X0(t), ũ = U1(t)u+ U0(t, x),

Ãj =
(X1)j

Tt
Aj, Ã1 =

X1

Tt

(
A1 +

U0

U1
C − X1

t x+X0
t

X1

)
,

Ã0 =
1

Tt

(
A0 +

U1
t

U1
+
U0
x

U1
C

)
,

B̃ =
U1

Tt
B +

U0
t

Tt
+
U0
x

Tt

(
U0

U1
C − X1

t x+X0
t

X1

)
−

r∑
k=0

U0
k

(X1)k
Ãk, C̃ =

X1

TtU1
C,

where j = 2, . . . , r, and T = T (t), X1 = X1(t), X0 = X0(t), U1 = U1(t) and U0 =

U0(t, x) are arbitrary smooth functions of their arguments with TtX
1U1 6= 0.
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Consider the subclass K1 obtained by attaching the constraints A0
x = 0, A1

xx = 0,

Ajx = 0, j = 2, . . . , r, Cx = 0 and Bxx = 0 to the auxiliary system for arbitrary elements. It

is also normalized in the usual sense and its usual equivalence group is the subgroup of the

usual equivalence group G∼K0
of the class K0 that is associated with the constraint U0

xx = 0,

i.e., U0 = U01(t)x+U00(t). Note that we can reparameterize the class K1 by representing

B = B1(t)x + B0(t), A1 = A11(t)x + A10(t) and assuming the coefficients B1, B0, A11

and A10 as arbitrary elements instead of B and A1. The transformation component for B

simplifies to

B̃ =
U1

Tt
B +

U0
t

Tt
− U0

x

Tt
A1 − U0

Tt

(
A0 +

U1
t

U1
+
U0
x

U1
C

)
.

The next intermediate subclass K2 is singled out by strengthening the constraint for A1

to A1
x = 0. In fact, this can be realized by gauging A1 in the class K0 up to G∼K0

-

equivalence. Since the arbitrary element C is still not gauged to one, it parameterizes the

u-component of admissible transformations in K2, U01 = X1
t U

1/(X1C), and this fact can

again be interpreted in terms of generalized equivalence groups.

Theorem 5.11. The equivalence groupoid of the subclass K2 of the class (5.1) singled

out by the constraints Akx = 0, k = 0, . . . , r, Cx = 0 and Bxx = 0 consists of the triples

(θ, θ̃, ϕ)’s, where the point transformation ϕ is of the form

t̃ = T, x̃ = X1x+X0, ũ = U1u+
X1
t U

1

X1C
x+ U00, (5.6a)

the arbitrary-element tuples θ and θ̃ are related according to

Ãj =
(X1)j

Tt
Aj, Ã1 =

X1

Tt

(
A1+

U00

U1
C−X

0
t

X1

)
, Ã0 =

1

Tt

(
A0+

U1
t

U1
+
X1
t

X1

)
, (5.6b)

B̃ =
U1

Tt
B +

(
X1
t U

1

X1C

)
t

x

Tt
+
U00
t

Tt
− X1

t U
1

X1C

A1

Tt
−
(
X1
t U

1

X1C
x+ U00

)
Ã0, (5.6c)

C̃ =
X1

TtU1
C, (5.6d)

with j = 2, . . . , r, and T = T (t), X1 = X1(t), X0 = X0(t), U1 = U1(t) and U00 = U00(t)

are arbitrary smooth functions of t with TtX
1U1 6= 0.
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The usual equivalence group G∼K2
of the subclass K2 is constituted by the transforma-

tions (5.6a)–(5.6d) additionally satisfying the constraint X1
t = 0. Hence it is clear that

the subclass K2 is not normalized in the usual sense.

The equation (5.6c) hints that the proper treatment of the related generalized equiva-

lence group within the framework of point transformations needs considering the deriva-

tive Ct as an additional arbitrary element Z0 and prolonging the relation (5.6d) to Z0 as

a derivative of C,

Z̃0 =
X1

T 2
t U

1
Z0 +

(
X1

TtU1

)
t

C

Tt
. (5.6e)

We denote by K̄2 the class K2 in which the tuple of arbitrary elements θ is formally

extended to θ̄ = (A0, . . . , Ar, B, C, Z0) with Z0 := Ct.

Corollary 5.12. The class K̄2 is normalized in the generalized sense. The group Ğ∼K̄2

constituted by the transformations of the form (5.6) is an effective generalized equivalence

group of this class.

Proof. The set of the transformations of the form (5.6), which is temporarily denoted

by M , is closed with respect to the transformation composition and contains the identity

transformation. Each transformation from M is invertible by definition. So, M is a group.

The components of transformations from M are of the same form as the components

of admissible transformations and the formulas relating the initial and target arbitrary

elements. This is why the group M generates the equivalence groupoid K̄2 and, moreover,

it is minimal among subgroups with such property. Therefore, M is an effective generalized

equivalence group of the class K̄2.

The generalized equivalence group Ḡ∼K̄2
of K̄2 is much wider than its effective part Ğ∼K̄2

.

Corollary 5.13. The generalized equivalence group Ḡ∼K̄2
of the class K̄2 consists of the

transformations of the modified form (5.6), where T = T (t), X1 = X1(t), X0 = X0(t, C),

U1 = U1(t, C) and U00 = U00(t, C) are arbitrary smooth functions of their arguments

with TtX
1(CU1

C − U1) 6= 0, and the partial derivatives of X0, U1 and U00 in t should be

replaced by the corresponding restricted total derivatives in t with D̄t = ∂t + Z0∂C.
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Proof. Theorem 5.11 implies that elements of Ḡ∼K̄2
are of the modified form (5.6), where

the group parameters T , X1, X0, U1 and U00 may depend on t and the arbitrary ele-

ments θ̄. Hence partial derivatives of these parameter functions should be replaced by the

corresponding total derivatives in t with

Dt = ∂t +
∑
α

uα+δ1∂uα +
r∑

k=0

Akt ∂Ak +Bt∂B + Ct∂C + Z0
t ∂Z0 + · · · .

After substituting Z0 for the derivative Ct, the transformation components can be split

with respect to the other derivatives of arbitrary elements in t. The splitting implies

that in fact the group parameters do not depend on A’s, B and Z0, and, moreover, the

parameters T and X1 do not depend on C. The nondegeneracy condition for elements

of Ḡ∼K̄2
is modified in comparison with that for elements of the effective part Ğ∼K̄2

in

view of the parameter function U1 becoming dependent on C. This condition takes the

form TtX
1U1(C/U1)C 6= 0 and reduces to the condition given in the statement of the

theorem.

Remark 5.14. Given a class of differential equations with nontrivial effective generalized

equivalence group, this group is in general not defined in a unique way. Indeed, consider

the class K̄2. The effective generalized equivalence group Ğ∼K̄2
defined in Corollary 5.12

is not a normal subgroup of the entire generalized equivalence group Ḡ∼K̄2
of the class K̄2.

Each subgroup of Ḡ∼K̄2
that is conjugate to Ḡ∼K̄2

is an effective generalized equivalence

group of the class K̄2. In other words, the class K̄2 possesses a wide family of conjugate

effective generalized equivalence groups. The similar fact is even more obvious for the

class K̄3 studied below.

To have the required subclass K3 of equations from the class (5.1) whose coefficients

depend at most on t, we now only need to impose a more restrictive constraint on B,

replacing the additional auxiliary equation Bxx = 0 by Bx = 0, which can be implemented

by gauging B within the class K2 using its equivalence transformations. Unfortunately,

this deteriorates the normalization property since then the function X1 parameterizing

elements of the equivalence groupoid G∼K3
of the class K3 depends on the initial arbitrary
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elements C and A0 in a nonlocal way via the equation

(
X1
t

C(X1)2

)
t

= A0 X1
t

C(X1)2
. (5.7)

At the same time, the usual equivalence group G∼K3
of the subclass K3 coincides with the

group G∼K2
. The computation of the generalized equivalence group of the subclass K3

gives the same group, which is a trivial situation from the point of view of generalized

equivalence. As a result, the class K3 is definitely not normalized in both the usual and

the generalized senses. This is why we construct the extended generalized equivalence

group of the subclass K3 in a rigorous way. In fact, this is the first construction of such

kind in the literature.

We extend the arbitrary-element tuple θ to θ̄ = (A0, . . . , Ar, B, C, Y 1, Y 2) with two

more arbitrary elements, Y 1 and Y 2, which are functions of t only and satisfy the auxiliary

equations

Y 1
t = A0, Y 2

t = CeY
1

. (5.8)

Thus, we also implicitly impose the auxiliary equations Y i
uα = Y i

x = 0, |α| 6 r, i = 1, 2.

Each value of θ̄ satisfying all auxiliary equations of the class K3 as well as the above

equations for Y 1 and Y 2 is associated with an equation of the form (5.1) with the cor-

responding value of θ. We formally denote this equation by L̄θ̄ and the class of such

equations by K̄3. It is obvious that the equations L̄θ̄1 and L̄θ̄2 coincide if θ1 = θ2. This

defines a gauge equivalence relation on the value set of arbitrary-element tuple θ̄. We

show below that this gauge equivalence gives rise to a nontrivial gauge equivalence group

of the class K̄3. (See Sections 2.1 and 2.5 of [129] for notions related to gauge equivalence,

which is called trivial equivalence in [83].) Since the set of point transformations from L̄θ̄1

to L̄θ̄2 coincides with that from Lθ1 to Lθ2 , the equivalence groupoid of K3 is isomorphic

to the equivalence groupoid of K̄3 factorized with respect to the gauge equivalence. In

the class K̄3, the constraint (5.7) can be solved with respect to X1 in terms of Y 2,
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X1 =
1

ε1Y 2 + ε0

, (5.9)

where ε1 and ε0 are arbitrary constants with (ε1, ε0) 6= (0, 0). Using this solution and

the auxiliary equations (5.8), we prolong the relation (5.6b)–(5.6d) between initial and

transformed arbitrary elements to Y 1 and Y 2. Thus, the equality chain

Ỹ 1
t = Ỹ 1

t̃ Tt = Ã0Tt = A0 +
U1
t

U1
+
X1
t

X1
= Y 1

t +
U1
t

U1
+
X1
t

X1

implies Ỹ 1 = Y 1 + ln |U1X1|+ δ′ for some constant δ′. Considering the equality chain

Ỹ 2
t = Ỹ 2

t̃ Tt = C̃eỸ
1

Tt =
X1

TtU1
CeY

1

U1X1δTt =
δY 2

t

(ε1Y 2 + ε0)2
,

where δ = eδ
′
sgn(U1X1) 6= 0, we derive for some constants ε′1 and ε′0 with ε0ε

′
1− ε′0ε1 = δ

that

Ỹ 2 =
ε′1Y

2 + ε′0
ε1Y 2 + ε0

, and hence Ỹ 1 = Y 1 + ln(δU1X1). (5.10)

We use parentheses instead of vertical bars in the logarithm since δU1X1 > 0. This

completes the description of the equivalence groupoid G∼K̄3
. Note that here

U01 =
X1
t U

1

X1C
= −ε1U

1X1eY
1

, U01
t = U01

(
A0 +

U1
t

U1
− ε1CX

1eY
1

)
= TtU

01Ã0.

Theorem 5.15. Let K3 be the subclass of equations from the class (5.1) with coeffi-

cients depending at most on t, which is singled out from the class (5.1) by the constraints

Akx = Cx = Bx = 0, k = 0, . . . , r. The class K̄3 of the same equations, where the arbitrary-

element tuple is formally extended with the virtual arbitrary elements Y 1 and Y 2 defined

by (5.8), is normalized in the generalized sense. Its generalized equivalence group Ḡ∼K̄3

consists of the transformations of the form

t̃ = T̄ (t, Y 1, Y 2), x̃ = X̄1x+ X̄0(t, Y 1, Y 2), X̄1 :=
1

ε1Y 2 + ε0

,
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ũ = Ū1(t, Y 1, Y 2)
(
u− ε1X̄

1eY
1

x
)

+ Ū00(t, Y 1, Y 2),

Ãj =
(X̄1)j

D̄tT̄
Aj, Ã1 =

X̄1

D̄tT̄

(
A1 +

Ū00

Ū1
C − D̄tX̄

0

X̄1

)
,

Ã0 =
1

D̄tT̄

(
A0 +

D̄tŪ
1

Ū1
− ε1CX̄

1eY
1

)
,

B̃ =
Ū1

D̄tT̄
B +

D̄tŪ
00

D̄tT̄
+ ε1Ū

1X̄1eY
1 A1

D̄tT̄
− Ū00Ã0, C̃ =

X̄1

Ū1D̄tT̄
C,

Ỹ 1 = Y 1 + ln(δŪ1X̄1), Ỹ 2 =
ε′1Y

2 + ε′0
ε1Y 2 + ε0

,

where j = 2, . . . , r; T̄ , X̄0, Ū1 and Ū00 are arbitrary smooth functions of t, Y 1 and Y 2

with T̄tŪ
1 6= 0; ε0, ε1, ε′0 and ε′1 are arbitrary constants with δ := ε0ε

′
1 − ε′0ε1 6= 0 and,

moreover, δŪ1X̄1 > 0; D̄t = ∂t+A
0∂Y 1 +CeY

1
∂Y 2 is the restricted total derivative operator

with respect to t.

Proof. In view of the above description of the equivalence groupoid G∼K̄3
of the class K̄3,

elements of Ḡ∼K̄3
have the general form

t̃ = T̄ (t, θ̄), x̃ = X̄1(t, θ̄)x+ X̄0(t, θ̄),

ũ = Ū1(t, θ̄)u+ Ū01(t, θ̄)x+ Ū00(t, θ̄), ˜̄θ = Θ̄(t, x, u, θ̄).

The computation of Ḡ∼K̄3
by the direct method is quite similar to the computation of G∼K̄3

and, after splitting with respect to x and parametric derivatives of u, gives similar ex-

pressions for transformation components for the variables (t, x, u) and similar constraints

for parameter functions. The relations between the initial and target arbitrary elements

in the equivalence groupoid just convert to the transformation components for arbitrary

elements in the equivalence group. But there are several differences, which we are going

to discuss.

In particular, the total derivative operators should be prolonged to the arbitrary ele-

ments. Since the arbitrary elements of the class K̄3 depend at most on t, the prolongation

is essential only for Dt,

Dt = ∂t +
∑
α

uα+δ1∂uα +
r∑

k=0

Akt ∂Ak +Bt∂B + Ct∂C + Y 1
t ∂Y 1 + Y 2

t ∂Y 2 + · · · .
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The expression for Dx is formally preserved, Dx = ∂x +
∑

α uα+δ2∂uα . As a result, all

partial derivatives with respect to t in the expressions derived after splitting with respect

to x and parametric derivatives of u are converted to the total derivatives with respect to t.

The second difference is the possibility of splitting with respect to arbitrary elements

and their derivatives. After substituting for the constrained derivatives Y 1
t and Y 2

t in

view of (5.8) into the constraint for X̄1,

D 2
t

1

X̄1
=

(
Ct
C

+ A0

)
Dt

1

X̄1
,

we can split the resulting equation with respect to A0
tt, . . . , Artt, Btt, Ctt, A

0
t and Ct.

This leads to the system X̄1
A0 = · · · = X̄1

Ar = 0, X̄1
B = 0, X̄1

C = 0, X̄1
Y 1 = 0, X̄1

t = 0

and (1/X̄1)Y 2Y 2 = 0, whose general solution is of the form (5.3). The expressions for the

transformed arbitrary elements Ã0, . . . , Ãr, B̃ and C̃ can also be split with respect to

unconstrained derivatives of arbitrary elements in t, implying that the derivatives of T̄ ,

X̄0, Ū1 and Ū00 with respect to A0, . . . , Ar, B and C are zero. Hence the operator Dt can

be replaced by the restricted total derivative operator D̄t. In particular, the parameter

function Ū01 is defined by Ū01 = (Ū1D̄tX̄
1)/(X̄1C).

The additional auxiliary equations (5.8) are also treated in a different way. We substi-

tute the expressions for Y 1
t and Y 2

t given by these equations into their expanded version

for transformed arbitrary elements. Splitting the resulting equations with respect to the

other derivatives of arbitrary elements leads to the system of determining equations for

the (Y 1, Y 2)-components of equivalence transformations

Ỹ 2
t = Ỹ 2

Y 1 = Ỹ i
Ak = Ỹ i

B = Ỹ i
C = 0, i = 1, 2, k = 0, . . . , r,

Ỹ 1
t =

U1
t

U1
, Ỹ 1

Y 1 =
U1
Y 1

U1
+ 1, Ỹ 1

Y 2 =
U1
Y 2

U1
− ε1

ε1Y 2 + ε0

, Ỹ 2
Y 2 =

X̄1

U1
eỸ

1−Y 1

,

whose general solution is of the form presented in the statement of the theorem.

Remark 5.16. Each element of the generalized equivalence group Ḡ∼K̄3
generates a family

of admissible transformations of the class K̄3 with sources at those values of θ̄ where the
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evaluation of D̄tT̄ does not vanish,

Ḡ∼K̄3
3 T 7→

{
(θ̄1, θ̄2, ϕ) | θ̄1 ∈ S̄3, (D̄tT̄ )|θ̄=θ̄1 6= 0, θ̄2 = T θ̄1, ϕ = (T |θ̄=θ̄1)

∣∣
(t,x,u)

}
⊂ G∼K̄3

.

Here S̄3 is the value set of the arbitrary-element tuple θ̄ of the class K̄3.

The gauge equivalence group of the class K̄3 is the subgroup of Ḡ∼K̄3
that is singled out

by the constraints ε0 = 1, ε1 = 0, T̄ = t, X̄0 = 0, Ū1 = 1, Ū00 = 0. In other words, all the

components of gauge equivalence transformations are identities, except the components

for Y 1 and Y 2, for which we get Ỹ 1 = Y 1+ ln ε′1, Ỹ 2 = ε′1Y
2 + ε′0 with ε′1 > 0. The usual

equivalence group of the class K̄3 is singled out from Ḡ∼K̄3
by the constraints

ε1 = 0, T̄Y i = X̄0
Y i = Ū1

Y i = Ū00
Y i = 0, i = 1, 2,

and its quotient group with respect to the gauge equivalence group of the class K̄3 is

isomorphic to the usual equivalence group of the class K3.

It is obvious that the generalized equivalence group Ḡ∼K̄3
of the class K̄3 generates

the whole equivalence groupoid of this class. At the same time, functions parameterizing

the group depend on two more arguments, Y 1 and Y 2, than functions parameterizing

the groupoid. If we omit the arguments Y 1 and Y 2 in the parameter functions, the

corresponding set of transformations still generates the equivalence groupoid but it is not

a group with respect to the transformation composition. This shows that the class K̄3

may possess an effective generalized equivalence group being a proper subgroup of Ḡ∼K̄3
,

and its construction needs a more delicate consideration than, e.g., for the class K2.

Corollary 5.17. The class K3 is normalized in the extended generalized sense. Its ex-

tended generalized equivalence group Ĝ∼K3
can be identified with the effective generalized

equivalence group of the class K̄3 that consists of the transformations of the form

t̃ = T (t), x̃ = X1
(
x+X01(t)Y 2 +X00(t)

)
, X1 :=

1

ε1Y 2 + ε0

,

ũ = V (t)

(
u

X1
− eY

1

(ε1x− ε0X
01 + ε1X

00)

)
,
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Ãj =
(X1)j

Tt
Aj, Ã1 =

X1

Tt

(
A1 −X01

t Y
2 −X00

t

)
, Ã0 =

1

Tt

(
A0 +

Vt
V

)
,

B̃ =
V

Tt

(
B

X1
− eY

1

(ε1A
1 − ε0X

01
t + ε1X

00
t )

)
, C̃ =

(X1)2

TtV
C,

Ỹ 1 = Y 1 + ln(δV ), Ỹ 2 =
ε′1Y

2 + ε′0
ε1Y 2 + ε0

,

where j = 2, . . . , r; and T , X00, X01 and V are arbitrary smooth functions of t with

TtV 6= 0; ε0, ε1, ε′0 and ε′1 are arbitrary constants with δ := ε0ε
′
1 − ε′0ε1 6= 0 and,

moreover, δV > 0.

Proof. We temporarily denote by M the set of the transformations of the above form.

This set is a subset of the group G∼K̄3
. It is singled out from G∼K̄3

by setting the following

values for group parameters:

T̄ = T (t), X̄0 = X1
(
X01(t)Y 2 +X00(t)

)
, Ū1 =

V (t)

X1
,

Ū01 = −ε1V (t)eY
1

, Ū00 = V (t)eY
1(
ε0X

01(t)− ε1X
00(t)

)
.

The set M is closed with respect to the transformation composition, i.e., M is a sub-

group of the group G∼K̄3
. The subgroup M generates the entire equivalence groupoid G∼K̄3

of the class K̄3 and thus the entire equivalence groupoid of the class K3. Indeed, let us

fix any equation L̄θ̄ from the class K̄3. The set Tθ̄ of all admissible transformations with

source at θ̄ is parameterized by the arbitrary smooth functions T , X0, U1 and U00 of t

and the arbitrary constants ε0, ε1, ε′0 and ε′1 with TtU
1 6= 0, δ := ε0ε

′
1 − ε′0ε1 6= 0 and

δU1X1 > 0, where X1 is defined by (5.3) for the fixed value of the arbitrary element Y 2,

Y 2 = Y 2(t). Each admissible transformation from Tθ̄ is generated by the equivalence

transformation from M with the same values of T , ε0, ε1, ε′0 and ε′1, and the values

of X00, X01 and V defined by

X00 = ε0X
0(t)− Y 2(t)

U00(t)

U1(t)
e−Y

1(t), X01 = ε1X
0(t) +

U00(t)

U1(t)
e−Y

1(t),

V =
U1(t)

ε1Y 2(t) + ε0

.
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This establishes a one-to-one correspondence between M and Tθ̄, and thus the sub-

group M is minimal among the subgroups of G∼K̄3
that generate the groupoid G∼K̄3

.

Therefore, M is the effective generalized equivalence group of the class K̄3.

Our second example of an extended generalized equivalence group also comes from

studying a subclass of (5.1), but this time r = 2 and thus (generalized) Burgers equations

are under investigation. The class had arisen when we classified the class of variable-

coefficient Burgers equations [111].

The class L̂0 consists of Burgers equations of the form

ut + uux = A2(t, x)uxx + A11(t)x+ A10(t),

with the arbitrary elements being the sufficiently smooth functions of their arguments

and A2 6= 0.

Proposition 5.18. The equivalence groupoid Ĝ∼0 of the class L̂0 is constituted by the

triples (θ, ϕ, θ̃), where θ and θ̃ denote the tuples of arbitrary elements of the source and

the target equations in the class L̂0, and ϕ is a point transformation of the form

t̃ = T, x̃ = TtU
1x+X0, ũ = U1u− U1

t x+ U0, (5.11a)

where T , X0, U1 and U0 are smooth functions of t, satisfying TtU
1 6= 0 and

U1
tt = A11U1

t , U0
t = −A10U1

t . (5.11b)

In turn, the arbitrary elements of the source and target equations are related as follows

Ã2 = (U1)2TtA
2, Ã11 =

1

Tt

(
A11 − Ttt

Tt
− 2U1

t

U1

)
,

Ã10 = U1A10 − X0
t

Tt
+ U0 − X0

Tt

(
A11 − Ttt

Tt
− 2U1

t

U1

)
.

(5.11c)

To construct the usual equivalence group Ĝ∼0 of the class L̂0, we split the classify-

ing conditions (5.11b) for admissible transformations with respect to the arbitrary ele-
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ments A10 and A11 and find U1 and U0 to be constants. This means that the group Ĝ∼0

consists of the point transformations in the space with coordinates (t, x, u, A10, A11, A2)

whose components are of the form (5.11a), (5.11c), where T and X0 are smooth functions

of t and U1 and U0 are arbitrary constants with TtU
1 6= 0. Therefore, the group Ĝ∼0 also

coincides with Ĝ∼ but the class L̂0 is not normalized in the usual sense. On the other hand,

introducing the virtual nonlocal arbitrary elements Y 0, Y 1 and Y 2 defined by the equations

Y 0
t = A11, Y 1

t = eY
0

, Y 2
t = A10eY

0

, (5.12)

we construct a covering of the auxiliary system for the arbitrary elements of the class L̂0.

The form of these nonlocal arbitrary elements is implied by solutions of the determin-

ing equations on the parameter-functions U0 and U1. (This is an application of tech-

niques from the theory of nonlocal symmetries of differential equations [26, Section 5]

and [25] in the context of classes of differential equations.) By L̄0 we denote the class

obtained by reparameterizing the class L̂0 with the extended tuple of the arbitrary ele-

ments θ̄ = (A10, A11, A2, Y 0, Y 1, Y 2). The class L̄0 will be shown to be normalized in the

generalized sense.

Corollary 5.19. The equivalence groupoid of the class L̄0 consists of the triples (θ̄, ϕ, ˜̄θ),

where the arbitrary-element tuples θ̄ and ˜̄θ of the source and the target equations are

related by (5.11c) and

Ỹ 0 = Y 0 + ln
δ

Tt(c1Y 1 + c0)2
, Ỹ 1 =

c′1Y
1 + c′0

c1Y 1 + c0

,

Ỹ 2 =
δY 2

c1Y 1 + c0

− δX0eY
0

Tt(c1Y 1 + c0)2
− c2

c′1Y
1 + c′0

c1Y 1 + c0

+ c3,

(5.13)

and the components of the point transformation ϕ are the form (5.11a) with

U1 = c1Y
1 + c0, U0 = c2 − c1Y

2, (5.14)

δ = c′1c0 − c1c
′
0, T and X0 being arbitrary smooth functions of t and c’s being arbitrary

constants such that δTt > 0.
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Proof. On introducing the virtual arbitrary elements, we can solve the equations (5.11b)

for U1 and U0 in terms of Y ’s. The expression for the transformed nonlocal arbitrary

element Ỹ 0 follows from the chain of identities

∂tỸ
0 = Ỹ 0

t̃ Tt = Ã11Tt = A11 − Ttt
Tt
− 2c1Y

1
t

c1Y 1 + c0

=

(
Y 0 + ln

1

|Tt|(c1Y 1 + c0)2

)
t

.

For Y 1 and Y 2, the procedure is similar.

Remark 5.20. There is a nontrivial gauge equivalence amongst equations in the repa-

rameterized class L̄0 stemming from the indeterminacy in defining the virtual arbitrary

elements. More specifically, the arbitrary-element tuples θ̄ and ˜̄θ are associated with the

same equation in the class L̄0 if and only if

Ã10 = A10, Ã11 = A11, Ã2 = A2,

Ỹ 0 = Y 0 + ln c′1, Ỹ 1 = c′1Y
1 + c′0, Ỹ 2 = c′1Y

2 + c3,

(5.15)

where c’s are arbitrary constants with c′1 > 0. The equations (5.15) jointly with the

equations t̃ = t, x̃ = x and ũ = u represent the components of the gauge equivalence

transformations in L̄0, which constitute the gauge equivalence group Gg∼
L̄0

of L̄0. This

group is a normal subgroup of the usual equivalence group G∼L̄0
of L̄0, and the quotient

group G∼L̄0
/Gg∼
L̄0

is isomorphic to the usual equivalence group of the subclass L̂0 of L̂,

which coincides with the usual equivalence group of the entire class L̂.

Theorem 5.21. The class L̄0 is normalized in the generalized sense. Its generalized

equivalence group Ḡ∼0 consists of the point transformations of the form

t̃ = T̄ , x̃ = (D̄tT̄ )(c1Y
1+c0)x+ X̄0, ũ = (c1Y

1+c0)u− c1eY
0

x+c2 − c1Y
2, (5.16a)

Ã2 = (D̄tT̄ )(c1Y
1 + c0)2A2, Ã11 =

1

D̄tT̄

(
A11 − D̄2

t T̄

D̄tT̄
− 2c1eY

0

c1Y 1 + c0

)
, (5.16b)

Ã10 = (c1Y
1+c0)A10 − D̄tX̄

0

D̄tT̄
+c2−c1Y

2 − X̄0

D̄tT̄

(
A11 − D̄2

t T̄

D̄tT̄
− 2c1eY

0

c1Y 1+c0

)
, (5.16c)

Ỹ 0 = Y 0 + ln
δ

(D̄tT̄ )(c1Y 1 + c0)2
, Ỹ 1 =

c′1Y
1 + c′0

c1Y 1 + c0

, (5.16d)
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Ỹ 2 =
δY 2

c1Y 1 + c0

− δX̄0eY
0

(D̄tT̄ )(c1Y 1 + c0)2
− c2

c′1Y
1 + c′0

c1Y 1 + c0

+ c3. (5.16e)

Here D̄t = ∂t +A11
t ∂A11 +A10

t ∂A10 +A11∂Y 0 + eY
0
∂Y 1 +A10eY

0
∂Y 2 +A2

t∂A2 is the restricted

total derivative operator with respect to t, δ := c′1c0−c′0c1, T̄ and X̄0 are smooth functions

of (t, Y 1) and (t, Y 0, Y 1, Y 2), respectively, and c’s are arbitrary constants with δD̄tT̄ > 0.

Proof. Elements of the group Ḡ∼0 are point transformations in the space with the coor-

dinates (t, x, u, A10, A11, A2, Y 0, Y 1, Y 2). Each of these transformations, T , generates a

family of admissible transformations of the class L̄0 with the following properties:

◦ they are smoothly and pointwise parameterized by the source arbitrary-element

tuple θ̄,

◦ their transformational parts are of the general form (5.11a),

◦ their target and the source arbitrary-element tuples are related according to (5.11c)

and (5.13),

◦ and the parameters U1 and U0 in them are necessarily of the form (5.14).

Therefore, the components of T are of the form (5.16), where the parameters T̄ , X̄0 and

c’s are considered as smooth functions of the above coordinates that satisfy the equations

D̄xT̄ = D̄uT̄ = 0, D̄xX̄
0 = D̄uX̄

0 = 0,

D̄tci = D̄xci = D̄uci = 0, i = 0, . . . , 3, D̄tc
′
j = D̄xc

′
j = D̄uc

′
j = 0, j = 0, 1,

with D̄t defined in the theorem’s statement, D̄x := ∂x + A2
x∂A2 and D̄u := ∂u. Suc-

cessively splitting these equations with respect to A2
x, and then the equations for c’s

with respect to A10
t , A11

t , A10, A11 and Y 0 (the last three splittings are allowed in

view of equations derived in the course of the previous splittings), we get that T̄ and

X̄0 are smooth functions of (t, A10, A11, Y 0, Y 1, Y 2), and c’s are constants. After this,

we also split the equations (5.16b) and (5.16c) with respect to A10
t and A11

t , obtaining

T̄A10 = T̄A11 = T̄Y 0 = T̄Y 2 = 0 and X̄0
A10 = X̄0

A11 = 0, which completes the proof.

Note that should we merely omit the dependence of the group parameters T̄ and
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X̄0 in Ḡ∼0 on the nonlocal arbitrary elements Y ’s, we would obtain the set of equiva-

lence transformations that is not a group as it is not closed under the composition of

transformations although this set still generates the entire equivalence groupoid of L̄0.

In particular, the value X̄0,3 of the parameter function X̄0 for the composition T 3 of

transformations T 1, T 2 ∈ Ḡ∼0 would be of the form

X̄0,3 = Dt̃T̄
,2(c1,2Ỹ

1 + c0,2)X̄0,1 + X̄0,2, (5.17)

where an index after comma indicates the number of the transformation the parameters

are associated with. Thus, the dependence of X̄0 on Y 1 is necessary for closedness with

respect to the composition of the transformations. In a similar way, we can show that

the parameter X̄0 should depend on Y 0. At the same time, the dependence of T̄ on the

virtual arbitrary elements as well as the dependence of X̄0 on Y 2 are superfluous. Guided

by inspection and intuition, we look for transformations with the parameter X̄0 of the

form X̄0 = Tt exp(αY 0)(c1Y
1 + c0)βX̆0(t) for some constants α and β. The substitution

of the ansatz into (5.17) readily produces α = −1/2 and β = 1.

Corollary 5.22. An effective generalized equivalence group Ğ∼0 of the class L̄0 is consti-

tuted by the point transformations

t̃ = T, x̃ = Tt(c1Y
1 + c0)

(
x+ e−Y

0/2X̆0
)
,

ũ = (c1Y
1 + c0)u− c1eY

0

x+ c2 − c1Y
2,

Ã10 = (c1Y
1 + c0)

(
A10 − 1

2
e−Y

0/2X̆0A11 − e−Y
0/2X̆0

t

)
+ c1eY

0/2+c2−c1Y
1,

Ã11 =
1

Tt

(
A11 − Ttt

Tt
− 2c1eY

0

c1Y 1 + c0

)
, Ã2 = Tt(c1Y

1 + c0)2A2,

Ỹ 0 = Y 0 + ln
δ

Tt(c1Y 1 + c0)2
, Ỹ 1 =

c′1Y
1 + c′0

c1Y 1 + c0

,

Ỹ 2 =
δY 2

c1Y 1 + c0

− δX̆0eY
0/2

c1Y 1 + c0

− c2
c′1Y

1 + c′0
c1Y 1 + c0

+ c3,

where δ := c′1c0−c′0c1, T and X̆0 are smooth functions of t and c’s are arbitrary constants

with δTt > 0.
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Proof. To prove that the set of transformations from the corollary’s statement is an effec-

tive generalized equivalence group of the class L̄0, one should show that it is indeed a group

under the composition of transformations, it induces the entire equivalence groupoid of

the class L̄0, and it is a minimal group with this property. The first statement is proved

by mere inspection, while the second (two-part) statement is more involved. Given an

equation L̄θ̄0 in the class L̄0 with a fixed value of the tuple of arbitrary elements θ̄, the

set Tθ̄ of admissible transformations with the source θ̄ is parameterized by arbitrary

smooth functions T and X0 of t and arbitrary constants c0, . . . , c3, c′0 and c′1 such

that (c′1c0− c1c
′
0)Tt > 0. At the same time, each admissible transformation in Tθ̄ is gener-

ated by the element from Ğ∼0 with the same values of all the parameters except X̆0 whose

value is defined by X̆0 = X0eY
0/2/(Tt(c1Y

1 + c0)) with the fixed values of the arbitrary

elements Y 0 and Y 1. This establishes a one-to-one correspondence between the group Ḡ∼0

and Tθ̄, completing the proof.

Corollary 5.23. The class L̂0 is normalized in the extended generalized sense. Its equiv-

alence groupoid is generated by the group Ğ∼0 .

5.4 Conclusion

For a long time after the first discussion of the notion of generalized equivalence groups

in [87, 88], no examples of nontrivial generalized equivalence groups were known in the

literature, except classes for which some of arbitrary elements are constants and thus some

of components of equivalence transformations associated with system variables depend on

such arbitrary elements; see, e.g., [129, Section 6.4], [156, Section 2] and [158, Section 3].

Note that in all these papers, effective generalized equivalence groups were given instead

of the corresponding generalized equivalence groups. This is why certain doubts started

to circulate in the symmetry community whether this notion is valuable at all.

In the present chapter we provided some examples of nontrivial generalized equiva-

lence groups such that equivalence-transformation components corresponding to equation

variables locally depend on nonconstant arbitrary elements of the corresponding classes.
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All related classes are (reparameterized) subclasses of the class (5.1). The most significant

consequence of the construction of these examples is that they make evident the necessity

of introducing the notion of effective generalized equivalence group. Moreover, they also

answer, just by their existence, some theoretical questions, which leads to properly posing

further questions. In particular, the entire generalized equivalence group of a class may

be effective itself and thus it is a unique effective generalized equivalence group of this

class, cf. Theorem 5.6. Nevertheless, there are classes of differential equations admitting

multiple effective generalized equivalence groups. This claim is exemplified by classes K̄2,

K̄3 and L̄0, for which we have constructed effective generalized equivalence groups that are

proper but not normal subgroups of the corresponding generalized equivalence groups. All

known examples of generalized equivalence groups that are related to constant arbitrary

elements have the same property, see [108] for the El Dorado of such examples. Then

the natural question is whether there exists a class of differential equations with effec-

tive generalized equivalence group being a proper normal subgroup of the corresponding

generalized equivalence group. Furthermore, Corollary 5.17 shows that even merely sin-

gling out an effective generalized equivalence group from the already known generalized

equivalence group of a class may be a nontrivial problem.

The class K3 of general Burgers–KdV equations with coefficients depending at most

on the time variable is normalized in the extended generalized sense. This property had

been found for a number of classes of differential equations (see, e.g., [155, 157, 159]) but

one of the main achievements of the thesis is a discovery of a rigorous way to prove it.

A principal step is introducing virtual arbitrary elements that are nonlocally related to

the native arbitrary elements of a class under study. Similar results were earlier obtained

only for classes of linear ordinary differential equations in the preprint version of [27]. The

reparameterization technique developed gives hope to us that such construction will be

realized soon for many classes of differential equations.

The group Ĝ∼F gives the first nontrivial example of a finite-dimensional effective gen-

eralized equivalence group in the literature. Moreover, the class F has another unexpected

property formulated in Theorem 5.9: any effective generalized equivalence group of the
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class F does not contain the usual equivalence group of this class. This phenomenon had

not been observed before for any class of differential equations. Since Ĝ∼F is not a normal

subgroup of Ḡ∼F , it is obvious that Ĝ∼F is not a unique effective generalized equivalence

group of the subclass F . Whether this group is unique up to the subgroup similarity

within Ḡ∼F is still an open problem.

In a wider perspective, the most interesting question in the developed theory of gener-

alized equivalence groups is whether the normality of an effective (extended) generalized

equivalence group is equivalent to the uniqueness thereof.
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Summary of results and future

research

Here we emphasize the most important results of the thesis.

• Using the representation of the (1+1)-dimensional Klein–Gordon equation K in the

light-cone variables, we explicitly find its algebra of generalized symmetries and describe

it in terms of the universal enveloping algebra of the essential Lie invariance algebra of

the Klein–Gordon equation. By choosing a suitable basis of the algebra, we single out

variational symmetries of the corresponding Lagrangian, which allow us to compute the

space of local conservation laws of this equation via the Noether theorem.

• An isothermal no-slip drift flux model is governed by a hydrodynamic-type partially

coupled, non-genuinely nonlinear system S, and the essential subsystem S0 of S reduces

to (1+1)-dimensional Klein–Gordon equation. These properties allow us to exhaustively

describe all generalized symmetries, cosymmetries and conservation laws of S by finding

separately objects stemming from the equation K and from the double degeneracy of the

system S.

• Not all generalized symmetries of the Klein–Gordon equation can be locally prolonged

to the entire system S. In view of this we initiate studying of coverings of the system S

in order to find nonlocal prolongation of the above symmetries. Although the positive

result is not obtained yet, we hypothesize that a suitable Abelian covering is associated

with the conservation laws of the Klein–Gordon equation (3.4a) with characteristics of

the form Jκey+z, κ ∈ N0. We plan to study the question in more detail in future research.

Likewise, the system S0 possesses three first-order hydrodynamic Hamiltonian structures,
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while only one of them locally prolongs to the entire system S. We show that other two

operators prolong nonlocally.

• We make a preparatory mathematical step toward geometric parameterization of the

(1+2)-dimensional shallow water model by describing the algebra of differential invariants

of its point symmetry group using the method of moving frames. The physical step is

still necessary to complete the parameterization and we plan to return to this question in

future research.

• First nontrivial examples of generalized equivalence groups are given, i.e. equivalence

groups whose parameters depend on nonconstant arbitrary elements of a class. Also, for

the first time extended generalized equivalence groups are rigourously constructed. It is

done via introducing nonlocal virtual arbitrary elements of a class, which are connected

nonlocally to the arbitrary elements of the class.

• The notion of an effective (extended) generalized equivalence group is introduced.

Found are both finite- and infinite-dimensional examples, examples of classes with unique

and multiple effective generalized equivalence groups and a class, no effective generalized

equivalence group of which contains the usual equivalence group of the class.
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