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I 

Abstract 

This master’s thesis presents a comprehensive study on the optimal design and synthesis 

of nitrogen-doped carbon quantum dots (N-CQDs) from small molecule carbon and 

nitrogen precursors and their application as fluorescence sensor for the detection of heavy 

metal ions. By employing the Box-Behnken design (BBD), the optimal synthetic 

condition for hydrothermal method was obtained, which led to the achievement of the 

high quantum yield of 51.7% for N-CQDs. The as-prepared N-CQDs are with 

brownish-yellow color and showed a bright blue light irradiation. To stabilize the N-

CQDs, immobilization of N-CQDs onto a glutaraldehyde cross-linked chitosan was 

then performed to prepare the N-CQDs@GACTS hydrogel film for the selective 

sensing of Hg2+ ion. FTIR and XPS analyses revealed that N-CQDs were embedded 

into the GACTS matrix mainly through weak hydrogen bond or electrostatic attraction. 

Among the three tested heavy metal ions (Cd2+, Hg2+ and Pb2+), the N-CQDs@GACTS 

hydrogel film exhibited remarkable sensing sensitivity and selectivity of Hg2+. The 

excellent selectivity could be attributed to a stronger interaction between the hydrogel 

film and Hg2+ ion. Due to the strong oxidizing ability and chelating power, Hg2+ can be 

more readily combined with polar groups on the surface of N-CQDs@GACTS hydrogel 

to form new complexes by either chelation or electrostatic attraction, which provokes 

an effective electron transfer for the fluorescence quenching of the N-CQDs@GACTS 

hydrogel. The prepared N-CQDs@GACTS hydrogel demonstrates enhanced 

practicality in terms of fast response, sensitivity, selectivity, and economical pricing. It 

has great potential for practical applications in selectively detecting Hg2+ from either 

drinking water or wastewater.  
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Chapter 1 Introduction 

1.1 Background 

Quantum dots (QDs) are a kind of quasi-spherical nanoparticles typically ranging from 

1 to 10 nm, composed of elements from the periodic groups II–VI (Ciftja, 2012). QDs 

have unique optical properties, such as good fluorescence stability, wide excitation and 

emission spectra, which enable them to be exploited in applications of sensing, imaging, 

solar, and optoelectronic devices. However, conventional QDs are usually made from 

semiconducting materials, especially cadmium and selenium, in organic-phase or in 

water-phase system, which has raised concerns over toxicity and high cost (Molaei, 

2019). In the last two decades, fluorescent carbon quantum dots (CQDs), primarily 

composed of carbon with some hydrogen, oxygen and nitrogen moieties, have gained 

increasing research attention due to their excellent biocompatibility, outstanding optical 

property, low toxicity and resistance to photobleaching (Gao et al., 2016).  

Fluorescence is the process of light emission by a material that absorbs light at a lower 

wavelength (higher energy) and emits light of longer wavelength (lower energy). 

Fluorescence stops within a few hundred nanoseconds once the light source is removed. 

The ratio between the numbers of emitted and absorbed photos is the fluorescence 

quantum yield (QY), and the average time that a fluorophore remains in its excited state 

before the emission of photons is its fluorescence lifetime (Li et al., 2019). As thus, 

development of eco-friendly fluorescent CQDs with high quantum yield and long 

fluorescence lifetime is highly desirable for many practical applications. 

Although various synthetic methods are available to prepare CQDs from different 

precursors, hydrothermal/solvothermal carbonization has been considered an 
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inexpensive and environment-friendly method to produce highly fluorescent CQDs in 

large quantities. However, the ready availability of large quantities of CQDs is often 

counterbalanced by their poor homogeneity and definability (Kozák et al., 2016). The 

structure, chemical composition, and surface chemistry of the resulting CQDs can vary 

substantially. These properties are often not even precisely determined because the 

difficulty in controlling the reaction rates during their synthesis and CQDs tend to be 

rather heterogeneous. The heterogeneity of CQDs (e.g., the presence of functionalized 

surface defects) contributes to their multicolor (excitation wavelength–dependent) 

emissions that result in low QY of CQDs (Molaei, 2019). New approaches are needed 

to optimize the reaction conditions and hence to control the degree of crystallinity and 

functionalization of CQDs for enhanced QY. 

Functionalization of CQDs is extremely useful for effectively tuning their intrinsic 

structure and surface state. Heteroatom doping and surface modification are two 

functionalization strategies to tune the fluorescent properties of CQDs (Chen et al., 

2019). Doping non-metallic elements (such as N, S, B and P) in CQDs does not 

originate the photoluminescence (PL) directly but it effects the PL behavior to produce 

tunable optical properties with high QY (Li et al., 2012). Zhang et al. (2012) have tuned 

the emission of CQDs from blue to yellow through N-doping. They found that new 

emission centers were formed with the increasing N content, which induced the red 

shifting of fluorescence spectra. A QY as high as 73% was achieved for N and S co-

doped CQDs due to a synergistic effect between the doped nitrogen and sulfur atoms 

(Dong et al., 2013). Other than heteroatom doping, surface modification can also be 

applied for altering active sites and the functional groups on the CQDs surface, which 

can endow fluorescent CQDs with the unique properties resulting from the introduced 
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functional ligands. Despite the extensive research efforts made on functionalization of 

CQDs over the past several years, there still lacks the effective methods to precisely 

identify the chemical structure and composition of CQDs product and hence to elucidate 

the mechanisms of PL. More theoretical and experimental works or combination of both 

should be carried out to fully understand the PL mechanism of CQDs.     

CQDs have been the subject of intense research related to a multitude of applications 

such as biomonitoring, drug and gene delivery, sensors, and photocatalysis (Jing et al., 

2019). In recent years, the use of CQDs as fluorescence sensors for heavy metal 

detection has been investigated intensively. Detection of heavy metal ions has been of 

great interest in light of their huge impacts on the environment and human health. 

Compared with conventional detection methods (e.g., atomic absorption technique 

(AAS), inductively coupled plasma-optical emission spectrometry (ICP-OES) and 

inductively coupled plasma-mass spectrometry (ICP-MS)), CQDs as novel 

fluorescence sensors exhibit the advantages of intrinsic simplicity, high sensitivity, low 

cost and simple equipment requirement (Pan et al., 2015). So far, a series of CQDs-

based fluorescent sensors for Fe3+, Hg2+, Ag+, Pb2+, Cu2+, and Cr6+ has been reported 

(Guo et al., 2017; Lim etal., 2015; Karami et al., 2020; Yang et al., 2016; Yuan et al., 

2016). Nonetheless, two big issues were observed from these studies when using CQDs 

solution directly as fluorescence sensors. The first problem is that bare CQDs tend to 

aggregate in the solution, which leads to unstable (time-dependent) fluorescence 

intensity. The second issue is that CQDs are highly hydrophilic and are difficult to 

remove from metal solutions (analytes), it was thus unable to reuse of the fluorescent 

CQDs (Liu et al., 2019). As such, preparation of solid-phase CQDs-based 

nanocomposites may solve the above-mentioned problems.  
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Immobilization of CQDs onto an appropriate solid matrix is an effective pathway to 

stabilize CQDs as well as to improve their PL performances (Wang et al., 2016). The 

solid matrices help control the assembly shape, interparticle distance, size and porosity, 

and provide versatile advantages of improved mechanical strength, chemical and optical 

stability for CQDs. Through electrostatic interactions, covalent bonds, non-covalent 

bonds or hydrogen bonds, CQDs have been incorporated into different solid matrices 

to prevent aggregation-induced fluorescence quenching and produce fluorescent 

materials for bioimaging and sensing applications (Kang & Lee, 2019; Wolfbeis 2015). 

But there are insufficient research studies on the preparation of CQDs-incorporated 

nanocomposite materials for heavy metal sensing. More research efforts need to be 

made to develop fast response, sensitive and selective CQDs-based nanocomposites as 

fluorescence sensors for heavy metal detection.  

1.2 Research Objectives  

In order to partially solve the aforementioned research gaps, the current study was 

focused on the development of a novel CQDs-incorporated composite material as 

fluorescence sensor for the selective sensing of mercury ions.  

This study entailed the following tasks: i) preparation of nitrogen-doped CQDs (N-CQDs) 

from citric acid and ethylenediamine using hydrothermal method; ii) applying design of 

experiments (DOE) to optimizing the hydrothermal reaction conditions for the maximum 

QY of N-CQDs; iii) fabrication of N-CQDs-incorporated glutaraldehyde cross-linked 

chitosan (N-CQDs@GACTS) hydrogel film for heavy metal sensing; and iv) clarification 

of the selective sensing mechanism of the as-prepared N-CQDs@GACTS hydrogel film to 

Hg2+ ion using different characterization methods. 
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1.3 Structure of the Thesis  

This thesis includes five chapters. Following this brief introduction, development and 

the most important applications of CQDs and CQDs-based composite materials are 

reviewed in Chapter 2. Chapter 3 focuses on the DOE optimization of the synthetic 

conditions and the characterization of N-CQDs by TEM, FTIR, XPS, UV-vis and FL 

spectroscopy. Chapter 4 presents the synthesis of the N-CQDs@GACTS hydrogel film, 

its application on the detection of Cd2+, Hg2+ and Pb2+, as well as the sensitivity, 

selectivity and response time measurements of N-CQDs@GACTS hydrogel for Hg2+. 

Moreover, discussions on the selective sensing mechanism of N-CQDs@GACTS 

hydrogel film towards Hg2+ are also included with the aid of XPS analysis of the 

hydrogel film. Finally, the major conclusions drawn from this study and 

recommendations for future works are summarized in Chapter 5. 
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Chapter 2 Literature Review 

Carbon quantum dots (CQDs), a new family of fluorescence carbon nanomaterials, have 

attracted increasing attention in recent years by virtue of their outstanding 

photoluminescence properties, photo-stability, low toxicity, and low cost. CQDs are the 

most intensively studied carbon nanomaterials since their discovery in 2004 for 

applications in photocatalysis, electrocatalysis, sensors, bioimaging, and drug delivery 

(Jing et al., 2019). This chapter is dedicated to an overall review on the preparation of 

CQDs, fabrication of CQD-based composites as well as the applications of CQD-based 

functional materials.  

 
2.1 Preparation Methods for CQDs 

The fabrication of CQDs can be generally classified into “top-down” and “bottom-up” 

approaches. The former involves cleaving or breaking down of carbonaceous materials 

via chemical, electrochemical, or physical approaches. The latter is implemented by 

pyrolysis or carbonization of small organic molecules or by step-wise chemical fusion 

of small aromatic molecules (Tajik et al., 2020).   

2.1.1 Top-down methods 

The top-down methods, mainly including arc discharge, laser ablation, electrochemical 

method, and ultrasonic treatment, involve the chemical or mechanical disruption of non-

fluorescent macroscopic carbon materials into the nano-size photoluminescent CQDs. 

In arc discharge method, a direct-current arc voltage is applied across two graphite 

electrodes immersed in an inert gas, CQDs are generated from crude carbon nanotube 

soot. In 2004, CQDS were first discovered by Xu and co-workers (Xu el al., 2004) 

during the purification of the single-walled carbon nanotubes (SWCNTs) through an 
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oxidation procedure between nitric acid and the arc-discharged soot. Arora and Sharma 

(2014) synthesized CQDs in a sealed reactor under extremely high temperature using 

electric current with the aim of production of high energy plasma. However, CQDs 

produced by the arc discharge method have low yield, and are difficult to purify (Singh 

et al., 2018).  

Laser ablation is a synthesis method of CQDs by laser irradiation of a carbon target. 

Sun et al. (2006) prepared CQDs with an average size of 5 nm via laser ablation of a 

carbon target prepared by the thermal-treatment of a mixture of graphite powder and 

cement in a flow of argon gas carrying water vapor at 900 °C and 75 kPa, followed by 

the dispersion in nitric acid solution and passivation with polyethylene glycol (PEG). 

The obtained CQDs demonstrated strong photoluminescence at excitation wavelength 

of 400 nm. Hu et al. (2011) used pulsed laser to irradiate graphite flakes dispersed in 

PEG solution for 4 h with ultrasound sonication, which led to the formation of a 

homogeneous black suspension. CQDs were obtained from the colorful supernatant 

after centrifugation. Though simple in operation, the laser ablation method needs more 

carbon materials for the preparation of CQDs and the size distribution of the obtained 

CQDs is very broad, resulting in low QY.    

CQDs can also be synthesized through electrochemical approach. Yao and co-workers 

(Yao et al., 2014) reported the synthesis of blue fluorescent CQDs with size of 2~3 nm 

in pure water using the electrochemical method. The resultant CQDs showed excellent 

fluorescent property and thermodynamic stability in aqueous solution. In another study, 

Liu et al. (2016) synthesized CQDs with an average diameter of 4.0±0.2 nm and higher 

crystallinity through electrochemical oxidation of a graphite electrode in the alkaline 

alcohols. The big advantage of electrochemical method for synthesizing CQDS is its 
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ability to regulate particle size, purity, affordability, yield, and PL property of the 

synthesized CQDs (Tajik et al., 2020).  

Moreover, energy of ultrasonic waves can be used to cut macroscopic carbon materials 

into nanoscale CQDs. Ma et al. (2012) have introduced a simple ultrasonic approach 

for synthesizing nitrogen-doped CQDs (N-CQDs) with the use of the aqua ammonia 

and glucose as the precursor. The obtained N-CQDs shows high aqueous dispersibility, 

high stability, and good PL performance under visible light excitation. Recently, Dang 

and co-workers (Dang et al., 2016) firstly introduced a facile method for large scale 

fabrication of CQDs through a one-phase ultrasonic procedure using polyamide resin. 

CQDs with QY of 28.3% were obtained after passivation with a silane coupling agent 

KH570. 

2.1.2 Bottom-top methods 

In the bottom-up synthesis, the precursors act as seeds and grow into CQDs under 

various reaction conditions, commonly by heating or microwave. The main bottom-up 

approaches for CQDs-preparation are hydrothermal/solvothermal synthesis, 

microwave-assisted method, and template method. In hydrothermal/solvothermal 

synthesis, small organic molecules undergo condensation, polymerization, 

carbonization and passivation processes to form CQDs in water or organic solvent under 

high temperature and high pressure. The optical properties of CQDs can be easily 

controlled by adjusting and selecting reaction temperature, time, solvents and raw 

materials. In addition, this method helps to get a relatively higher QY compared to other 

methods. Currently, hydrothermal method is the most widely used method for the 

synthesis of CQDs due to its non-toxicity, low cost, and simple operation (Namdari et 

al., 2017; Zhuo et al., 2015).  
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Microwave irradiation of organic compounds is a fast and cheap technique for 

synthesizing CQDs (Jaiswal et al., 2012; Zhai et al., 2012; Prasad et al., 2013). CQDs 

can be readily obtained within a few minutes and in improved yield. Wang et al. (2014) 

presented a facile one-step microwave assisted synthesis of water-soluble phosphorus 

containing CQDs. A suspension was obtained by heating the phytic acid and 

ethylenediamine water solution for 8 min in a 750 W microwave oven. The CQDs with 

two-peak emissions were synthesized. Recently, Pan el al. (2015) successfully prepared 

the excitation-dependent CQDs from citric acid molecules using microwave assisted 

method. By adjusting the reaction time and temperature, excitation-dependent (also 

called full-color) CQDs, which exhibit unusually comparable emission intensity across 

the entire visible spectrum as shifting the excitation wavelength, were obtained. 

Although microwave-assisted synthesis may help to get CQDs with more uniform 

chemical and optical properties, this method is usually restricted to small volumes, 

limiting their application in large scale reactions (Medeiros et al., 2019). Besides, the 

pressure of the system is also limited, reducing the usability of solvents with lower 

boiling points. 

Template method for the synthesis of CQDs mainly involves two steps: i) calcination 

synthesis in the suitable mesoporous template or silicon spheres; and ii) etching to 

remove supports and generate the nanosized CQDs. Liu et al., (2009) presented a soft–

hard template approach toward photoluminescent CQDs with uniform morphologies 

using the copolymer Pluronic P123 as a soft template and ordered mesoporous silica 

(OMS) SBA-15 as a hard template. In their study, organic molecules with different 

aromatic frame- works such as 1,3,5-trimethylbenzene (TMB), diamine benzene (DAB), 

pyrene (PY) and phenanthroline (PHA), were used as carbon precursor for CQDs with 
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tunable sizes, compositions and crystallinity. Lai et al. (2012) also reported the growth 

of CQDs inside the mesoporous silica nanoparticles which acted as a nanoreactor to 

regulate the size distribution of CQDs. The mixture of mesoporous SiO2, glycerol and 

PEG-NH2 were heated at 230 °C for 30 min, followed by centrifugation to obtain the 

CQDs. The resulting CQDs showed enhancement in QY, good colloidal stability and 

biocompatibility. However, it has to be addressed that template method is costly and 

time-consuming compared with other methods (Zuo et al., 2016).  

Nowadays, many successful examples for bottom-up and top-down synthesis of CQDs 

can be found in the open literature (Guan et al., 2014; Qu et al., 2014; Hu et al., 2019; 

Du et al., 2019; Yue et al., 2019; Liu et al., 2019). Compared with top-down strategy, 

the bottom-up strategy has obvious advantages in selecting various organic precursors 

and precisely controlling morphology and size distribution, it is therefore more 

intensively employed for the preparation of CQDs. The main advantages and 

disadvantages of both synthetic strategies were summarized in Table 2.1. 

 
Table 2.1 The comparison of top-down and bottom-up synthetic methods of CQDs  

Methods Advantages Disadvantages 

Top-down 
methods 

Arc discharge High density 

Stable optical property  
Complicated method 

Low quantum yield 

Costly starting materials 

 

Laser ablation 

Electrochemical 

Ultrosonication 

Bottom-up 
methods 

Hydro-/solvothermal Simple method 

High quantum yield 

Cheap raw materials 

Single emission 

wavelength Microwave 

Template  
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2.1.3 Heteroatom doping  

Among the excellent features, fluorescent property of CQDs is one of the most exciting 

for researchers in materials and biological science. As a potential fluorescent probe for 

long- or real-time bioimaging, it is essential to make further efforts to improve the 

fluorescent properties of CQDs. Heteroatom doping is one of the most convenient and 

effective way to enhance the fluorescent properties of CQDs. By doping CQDs with 

heteroatoms, not only the PL intensity, but also the QY of CQDs can be improved.  

Various heteroatoms, particularly the non-metals such as nitrogen (N), phosphorus (P), 

sulfur (S) and baron (B) have been used to dope CQDs. Nitrogen is a typical dopant 

because it has a comparable atomic size and five valence electrons for bonding with 

carbon atoms. Li et al., (2012) first use electrochemical method to synthesize N-doped 

CQDs. It is showed an excellent optoelectronic feature by using nitrogen-containing 

tetrabutylammonium perchlorate in acetonitrile as the electrolyte to add nitrogen atoms 

in the CQDs. Liu et al., (2013) reported a one-step solvothermal synthesis of N-doped 

CQDs as efficient two-photon fluorescent probes using graphene oxide as carbon 

precursor and dimethylamine as a source of nitrogen. The two-photon-induced 

fluorescence of CQDs was systematically investigated using near-infrared laser as 

excitation and applied for efficient two-photon cellular and deep-tissue imaging. 

Typically, the N-CQDs demonstrate clear blue or green fluorescence. 

Compared to N-CQDs, sulfur-doped CQDs (S-CQDs) are relatively difficult to 

synthesize because C–S bonds are difficult to form. Chandra et al., (2013) firstly 

developed a facile synthetic route for S-CQDs, which exhibited a wide band gap of 4.43 

eV with a high open circuit voltage of 617 mV. The obtained S-CQDs demonstrated 

good water dispersibility, high photostability, negligible toxicity and bright blue 
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fluorescence, rendering the great potential as an excellent bioimaging agent and/or drug 

delivery carrier. Xu et al., (2014) prepared the S-doped CQDs via the hydrothermal 

method and get a highest QY of 67% by using sodium citrate and sodium thiosulfate as 

precursors. Ge et al., (2015) prepared the first red-emissive S-doped CQDs by 

hydrothermal treatment of polythiophene phenylpropionic acid. The resulting S-CQDs 

showed broad light absorption, high photothermal conversion efficiency, and visible 

light excitation.  

Co-doping of multiple heteroatoms becomes an available method to further enhance the 

PL intensity of CQDs. Co-doping allows the formation of well-distributed surface states 

and a reduction in non-radiative recombination, resulting in an increase of QY of the 

synthesized CQDs. Kim et al., (2018) demonstrated that B and N co-doped CQDs (BN-

CQDs) with an 80 % QY compared to N-CQDs with a 40 % QY. With thorough 

structural analyses, BN-CQDs were found to consist of graphitic N and well-distributed 

surface states including hydroxyl and carbonyl groups. The unique structure of BN-

CQDs influenced the dynamics of charge recombination, thus leading to high QY in 

both the solution state (80 %) and the solid state (67.7 %). Dong and co-workers (Dong 

et al., 2013) reported N and S co-doped CQDs by using l-cysteine and citric acid as N, 

S and C sources. The synthesized CQDs showed a high QY of 73% and excitation-

independent emission stemmed from the enhancement of the N defect states by means 

of S co-doping.  

Table 2.2 summarizes the preparation methods and properties of heteroatom-doped 

CQDs reported in the open literature.  
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Table 2.2 Summary of the preparation methods and properties of heteroatom-doped CQDs  

Heteroatoms Precursors Synthetic methods Particle size, nm Ex/Em, nm QY, % Ref.  

N Carbon tetrachloride 
and Sodium amide 

Solvothermal 
synthesis 2.5 365/432 22 Zhang et al., 

2012 

N Citric acid, formamide Solvothermal 
synthesis 6.8 540/637 26.2 Pan et al., 

2015 

N citric acid and 
ethylenediamine Soft-template 2.0 360/438 25-87 Do et al., 2014 

N 
1,2‐ethylenediamine, 
1,3‐propanediamine, 
and 1,4‐butanediamine 

Solvothermal 3.0 317/390 20.4-36.3 Qian et al., 
2014 

N Carbon nanoparticles 
and DMF 

Acid exfoliation and 
hydrothermal 3-8 324/428 39 Yang et al., 

2014 

S Poly(sodium4-styrene 
sulfonate) Hydrothermal 5 370/430 9 Travlou et al., 

2017 

S Sodium citrate and 
sodium thiosulfate 

Hydrothermal 4.6 350/440 67 Xu et al., 2015 

S 
graphite rod and 
sodium p-
toluenesulfonate 

Electrolysis 3 380/480 10.6 Li et al., 2014 

S Thiomalic acid Sulfuric acid 
treatment 2 340/446 11.8 Chandra et al., 

2013 

P 
Phosphorous 
tribromide and 
hydroquinone 

Solvothermal 3-5 372/440 25 Zhou et al., 
2014 

P hosphorus-rich phytic 
acid Microwave 9 400/525 21.65 Wang et al., 

2014 



 14 

B Hydroquinone and 
Boron tribromide  Hydrothermal 16 368/500 14.8 Shan et al., 

2014 

N & B 
N-(4-
hydroxyphenyl)glycine 
and boric acid 

Hydrothermal 3-200 400/500 11.44 Jahan et al., 
2013 

N & S Citric acid and L-
cysteine Hydrothermal 0.5-3.5 345/415 73 Dong et al., 

2013 
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2.1.4 Surface passivation 

Surfaces of CQDs possess high sensitivity to contaminants in their environment, such 

that their properties are easily affected by tiny levels of contaminants. Surface 

passivation is an effective method to increase the durability and photostability CQDs 

by the formation of a thin insulating layer, usually by the attachment of passivation 

agents on an acid-treated CQD surface. The common passivation agents are non-

emissive polymers such as PEG, polyethyleneimine (PEI), poly (ethylenimide)-co-poly 

(ethylene glycol)-co-poly (ethyl-enimide) (PPEI) and 4,7,10-trioxa-1,13-

tridecanediamine (TTDDA). It was shown that effective surface passivation is an 

essential step to produce CQDs with high fluorescence intensities (Lim et al., 2015). 

Sun et al., (2006) used diamine-terminated oligomeric polyethylene glycol (average 

n~35, PEG1500N) as surface passivation agent to synthesize the passivated CQDs, which 

are strongly photoluminescent both in solution suspension and in solid state, and the 

emissions cover the visible wavelength range and extend into the near-infrared. 

Mechanistically, the PL of CQDs was attributed to the surface energy traps, which were 

caused by plenty of functional groups such as –NH2 on the surface of CQDs that emitted 

light upon stabilization because of the surface passivation. 

Wang et al., (2010) synthesized CQDs with PEG1500N as passivation agent. After 

separation, QY of almost 60% was obtained. The optical properties of the CQDs is 

comparable to some commercial products like CdSe/ZnS QDs in solution. Furthermore, 

Li et al., (2014) prepared a Mg/N co-doping CQDs. The results show that the quantum 

yield of this co-doped CQDs can reach to 83 %. The PL improvement of the co-doped 

CQDs is contributed to Mg and preserving the carboxyl group.  
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2.2 CQD-Based Composite Materials 

CQDs demonstrate great potential to replace semi-conductive QDs in applications of 

energy conversion, sensors, bio-imaging and bio-diagnosis due to their good 

biocompatibility and excellent optical properties. To stabilize CQDs as well as to 

improve their optical performances, it is necessary to combine them in an appropriate 

solid matrix or prepare in solid-state nanocomposites through electrostatic interactions, 

covalent bonds, non-covalent bonds or hydrogen bonds. A brief review on the CQD-

based composite materials will be presented in this section. 

2.2.1 CQD-incorporated polymeric hydrogels 

Design and synthesis of polymeric nanocarriers with imaging and therapeutic 

modalities has been of primary significance for the application of cancer 

nanotheranostics, circumventing the drawbacks associated with conventional cancer 

diagnosis and treatment. Compared to other nanocarriers, hydrogels possess unique 

physical properties such as robustness, porosity, tunable cross-linking density, swelling 

behavior and stability in biological milieu. Therefore, embedding CQDs into polymeric 

hydrogels is a wonderful technique to prepare fluorescent hydrogels for sensing, 

bioimaging and cancer nanotheranostics. 

Sachdev et al. (2016) designed CQD-incorporated chitosan (CQDs@CTS) hydrogels 

loaded with an anticancer drug named 5-fluorouracil for drug delivery and bio-imaging 

modalities. The obtained hydrogels showed excellent functional features such as high 

surface area, good mechanical strength, swelling behavior together with pH dependent 

drug release. CQD-incorporated nanogels (CQDs@PEG-CTS) were prepared by 

complexing CQDs with PEG and chitosan (CTS) via precipitation method (Wang et al., 

2015). CQDs@PEG-CTS were used as both carrier for drug doxorubicin and 
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fluorescent pH probe due to the excellent fluorescence performance and cellular 

imaging capability provided by CQDs as well as the high loading capacity of drug 

bestowed by PEG-CTS.  

Agarose/CQDs (Agr/CQDs) hydrogels were prepared by microwave-assisted method 

(Gogoi et al., 2015). Agr/CQDs hydrogels, in which CDs and agarose are linked by 

electrostatic interaction between amino group and hydroxyl groups, were used as a 

sensor to detect five transition metals by forming colored chelates with transition metals. 

Recently, a pH-sensitive CQDs/CTS nanocomposite was fabricated by the solvent 

casting method for wound dressing application (Omidi et al., 2017). The results 

indicated that the CQDs/CTS hydrogels were biocompatible and nontoxic with 

effective antibacterial properties. Moreover, the CQDs/CTS hydrogels also 

demonstrated outstanding pH-sensitive properties, making them an ideal smart material 

for antibacterial wound healing bandage.  

2.2.2 CQD- loaded polymeric films 

As functional materials, luminescent films have a wide range of applications in terms 

of displays, light-emitting devices, safety signs and sensors. Due to the high quantum 

efficiency, CQDs were increasingly conjugated in polymer composite films for 

different uses (Zhou et al., 2017). 

Chen et al., (2015) reported a white-light-emitting polymer composite film synthesized 

by conjugating CQDs and lanthanide complexes into a poly (methyl methacrylate) 

(PMMA) matrix. The synthesized CQDs emitted blue PL while the lanthanide 

complexes exhibited red and green PL. The obtained high-transparent composite film 

emitted pure white PL by adjusting the molar ratio of CQDs and lanthanide complexes 

in the PMMA matrix. Bhunia and her co-workers (2016) fabricated tunable light-
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emitting CQDs/PDMS films through one-pot synthesis of polydimethylsiloxane (PDMS) 

matrices with embedded CQDs assembled in situ. The fabricated films exhibited 

different luminescent colors by incorporating CQDs with distinct fluorescence emission 

profiles produced by different carbon precursors.    

Zeng & Yan (2015) prepared a luminescent nanocomposite film by mixing cellulose 

and CQDs in aqueous solution. The resultant cellulose/CQDs composite film 

demonstrated extremely high elongation and strong tensile strength with the elastic 

modulus and tensile strength being 344 and 58.5 MPa, respectively. The good 

mechanical and transparent properties of the composite film make it a biocompatible 

material with potential applications in biomedicine, environmentally benign packaging 

and optical devices. Moreover, Konwar et al., (2015) employed a facile method to 

prepare CTS/CQDs nanocomposite hydrogel films, in which chitosan and CQD were 

linked by the electrostatic interaction of positive charge on chitosan and negative charge 

on CQDs. The composite hydrogel films have fantastic properties on UV–visible 

blocking, thermal stability and mechanical strength, indicating great potential in the 

biomedical applications. 

Apart from high PL efficiency, the good electrical conductivity of CQDs can also be 

utilized to fabricate conducting composite films. Pal et al., (2016) firstly prepared a 

conducting nanocomposite consisting of CQDs and polypyrrole (PPy). The 

conductivity of the CQDs was explained by the presence of sp2 C˗C bonds which 

allowed conjugation of the adjacent π-bonds to form the π- and π*-bands (Eda et al., 

2010). And the further incorporation of CQDs into PPy matrices revealed the higher 

conductivity of the composite film as compared to PPy. The composite film also showed 

high sensitivity to the presence of picric acid, a widely used organic compound and a 
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contaminant in groundwater and soil, making it suitable for versatile sensing 

applications especially in flexible nanoelectronics. 

2.2.3 CQD-loaded metallic semiconductors 

Metallic semiconductors have been extensively utilized in photocatalysis, which plays 

an important role in the sustainable energy development and environmental pollution 

control. However, narrow band gap of metallic semiconductors (e.g. TiO2 and ZnO) 

makes them only active in UV light, a minor fraction of the total solar radiation reaching 

the Earth’s surface. Doping nanoclusters on semiconductors has been proved to extend 

the light absorption of these semiconductors to visible-light and infrared irradiations. 

On the other hand, although CQDs can act as both electron donors and electron 

acceptors, which makes them a potential catalyst, there are limited studies on using 

CQDs directly as photocatalysts.  

Alternatively, high-efficient photocatalysts have been developed by incorporating 

CQDs into metallic semiconductors (Rani et al., 2020). Loading CQDs on 

semiconductors can effectively improve their photo-catalytic performance under visible 

light.    

The CQDs/semiconductor photocatalysts can be fabricated via either one-pot or multi-

step synthetic approach (Chu et al., 2019). With the one-pot approach, all starting 

materials for the composite are mixed together for further treatment. For example, 

Wang et al (2015) fabricated the hybrid CQDs/TiO2 photocatalyst with one-pot 

synthetic method by hydrothermally treating a mixed solution of sodium citrate and 

hydrogen fluoride containing Ti foil. CQDs (size ~ 10 nm) were found to uniformly 

deposit on surfaces of the anatase TiO2 crystal particles. The obtained CQDs/TiO2 

hybrid significantly enhances the photocatalytic degradation of Rhodamine B under 
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visible light irradiation. More commonly, the CQDs/semiconductor photocatalyst can 

be synthesized via multi-step process, by incubating CQDs and separately prepared 

photocatalyst particles (Ke et al., 2017; Li et al., 2010; Park et al., 2015) or by treating 

the photocatalyst precursor solution which contains the pre-made CQDs (Li, et al., 2018; 

Liu et al., 2014; Yu et al., 2012, Zhu et al., 2017; Wang et al., 2018). Compared with 

one-pot synthesis, multi-step synthetic route provides more flexibility in tuning CQD 

properties, leading to the enhanced photocatalytic performance. 

The up-conversion photoluminescence (UCPL) emission of some CQDs known to be 

an optical phenomenon wherein materials emit shorter wavelength light than the 

excitation source, is the main course of extending the sunlight absorption of wide 

bandgap semiconductors into the visible region and even the near infrared region (Wang 

et al., 2017). In addition, CQDs are both excellent electron donors and acceptors, which 

leads to efficient separation of electrons and holes. As such, CQDs can simultaneously 

serve as electron mediator, photosensitizer, spectral converter, and sole catalyst in 

photocatalyst design.  

2.3 Characterization of CQDs and CQD-Based Composite Materials 

Multiple analytical methods can be exploited to characterize CQDs and CQD-based 

composite materials for the useful information on their size, morphology, structure and 

optical properties. Among various methods, Fourier transform infrared spectroscopy 

(FTIR), transmission electron microscopy (TEM), UV/Vis and fluorescence 

spectroscopies are the most widely used. 

2.3.1 FTIR 

Infrared (IR) spectroscopy is one of the most powerful analytical methods available in 

materials science. It can be applied to both liquid and solid samples and can be used to 
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analyze both bulk samples and surfaces. When the frequency of infrared light focused 

through or on a sample identically matches the frequency of stretching or bending 

vibrations of any pairs of atoms in a molecule, the sample can absorb some of this light. 

The resulting infrared spectrum can thus provide a great deal of information on the 

chemical structure of the molecule (Weldon 2012). Many compounds can be identified 

by the characteristic IR bands of common functional groups. 

Fourier transform infrared (FTIR) spectroscopy has been intensively employed to 

characterize CQDs or CQD-based nanocomposites due to its high speed and sensitivity. 

As most of the CQDs were prepared by partial oxidation of carbon precursors, the 

surface of CQDs is rich in hydroxyl, epoxy/ether, carboxyl or carboxylic acid groups. 

Peng et al. (2012) reported the infrared spectrum of CQDs prepared by chemical 

oxidation of the micron-sized carbon fibers. Characteristic IR bands of CQDs at 3307 

cm−1 and 1724 cm−1 correspond to O–H and C=O stretching vibrations, suggesting the 

presence of hydroxyl and carboxyl groups. Adsorption peak at 1579 cm−1 is attributed 

to C=C stretching vibration, whereas band peak at 1097 cm−1 implies the existence of 

ether (C-O) linkage.  

IR spectra for heteroatom-doped CQDs were also studied by many researchers. 

Absorption peaks at 3000 cm−1, 1580 cm−1 and 1400 cm−1were observed from the FTIR 

spectrum of N-doped CQDs, which are attributed to the N–H stretching, in-plane N–H 

bending and amide C–N stretching vibrations respectively (Yang et al., 2017). FTIR 

spectrum of one-step synthesized S-doped CQDs displayed the absorption bands of O–

H at 3435 cm−1, C–O at 1715 cm−1, C–C at 1630 cm−1, S–O/C–O at 1171 cm−1, and C–

S/C–O at 1043 cm−1 (Hu et al., 2014). Characteristic IR bands were also clearly 

observed from FTIR spectrum of N, S co-doped CQDs (NS-CQDs), including 
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coalesced O–H and N–H stretching vibrations at 3378 cm−1, C=O and C–N stretching 

vibrations at 1639 and 1402 cm−1, C=S and weak C–S stretching vibrations at 1048 and 

651 cm−1 (Zou et al., 2017).         

2.3.2 TEM 

TEM is a microscopy technique in which a high energy beam of electrons is shone 

through a very thin specimen, and the interactions between the electrons and the atoms 

can be used to observe features such as structure and morphology of the specimen. With 

a significant role in material sciences, physics, chemistry, and biology, TEM is one of 

the most widely applied structural analysis tool to date. 

High-resolution TEM (HRTEM) is capable of visualizing a sample to the angstrom 

scale and can thus be used to observe the morphology and size distributions of CQDs 

(typically with the particle size of 1-10 nm). Shinde and Pillai (2012) prepared CQDs 

via electrochemical method from multi-walled carbon nanotubes, both interlayers 

spacing and in-plane lattice spacing of CQDs were observed in the HRTEM image. 

Microstructures of the CQDs synthesized from biomass were investigated by HRTEM, 

from which a uniform size distribution (ranging from 1.5 to 4.0 nm) of CQDs and lattice 

fringes with inter-planar spacing of 0.20 nm were clearly shown (Jing et al., 2019). 

TEM images of N-doped CQDs exhibited monodisperse nanoparticles (particle size of 

2.8-6.3 nm) with near spherical shape and an interlayer spacing of about 0.21 nm (Yang 

et al., 2017).     

2.3.3 UV/Vis spectroscopy 

The chemical and electronic structures lay the foundation for the optical properties of 

CQDs, mainly including optical absorption, PL, and photo-induced electron transfer 

properties. The optical absorption of CQDs is usually characterized by UV/Vis 
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spectroscopy. Basically, spectroscopy is related to the interaction of light with a matter. 

When light is absorbed by a matter, this results in the excitation of the electrons from the 

ground state towards a higher energy state. The absorption of ultraviolet or visible 

light by a chemical compound will produce a distinct spectrum. UV/Vis spectroscopy 

can thus be used to detect the absence or the presence of chromophore in a complex 

compound. 

CQDs usually show strong ultraviolet (UV) absorption, but the positions of UV 

absorption peaks are quite different for CQDs prepared by different methods. Li and 

co-workers (Li et al., 2011) prepared water-soluble CQDs by ultrasonic-assisted 

oxidation of activated carbon. The obtained CQDs demonstrated a UV/Vis absorption 

at 250~300 nm region, representing the typical absorption of an aromatic π system. 

Wang et al. (2011) synthesized CQDs by the solvothermal method from citric acid at 

240 °C. Highly luminescent (quantum yield=47 %) amorphous CQDs that exhibited a 

strong absorption peak at 360 nm in the UV/Vis absorption spectrum were obtained. 

Hu et al., (2014) synthesized NS-CQDs using a microwave-assisted hydrothermal 

method from rice powder and N-acetyl-L-cysteine. Unlike the undoped CQDs, which 

showed a sharp UV adsorption peak at 275 nm corresponding to the n → π* transition 

of C=O bond, the NS-CQDs demonstrated a prominent absorption peak at 335 nm 

probably due to the formation of excited defect surfaces induced by the N and S 

heteroatoms. Recently, Lan and co-workers (Lan et al., 2017) prepared S, Se-codoped 

CQDs via hydrothermal method and the resultant CQDs had broad absorption from 350 

to 750 nm with a maximum peak at ~526 nm, rendering the near-infrared (NIR) 

emissions of the prepared CQDs. 
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2.3.4 Fluorescence spectroscopy 

The photoluminescence (PL) of CQDs can be characterized by fluorescence 

spectroscopy (FS). FS uses a beam of light that excites the electrons in molecules of 

certain compounds and causes them to emit light. With most spectrofluorometers, it is 

possible to record both excitation and emission spectra. An emission spectrum is the 

wavelength distribution of an emission measured at a single constant excitation 

wavelength. Conversely, an excitation spectrum is the dependence of emission intensity, 

measured at a single emission wavelength, upon scanning the excitation wavelength 

(Lakowicz, 2006). 

One unique PL property of CQDs is their clear excitation-dependent emission 

wavelength and intensity. For example, passivated CQDs fabricated by hydrothermal 

method exhibited strong blue luminescence under 365 nm excitation. The emission 

spectra of the CQDs were broad, ranging from 430 to 580 nm. The excitation-dependent 

PL emission of the prepared CQDs can be attributed to the presence of surface 

energy traps stabilized by surface passivation (Liu et al., 2009). Highly luminescent 

CQDs (QY = 47%) prepared by solvothermal method demonstrated emission peaks at 

460, 540 and 620 nm when excited at 380, 460 and 540 nm separately, indicating the 

dependence of the maximum emission on the excitation wavelength (Sun et al., 2015). 

Recently, excitation-independent fluorescent CQDs were fabricated by self-controlled 

methods. In the fluorescence spectra, CQDs showed an excitation-independent 

emission peak at 407 nm with bandwidth of ~61 nm (Zuo et al., 2014). The authors 

ascribed the phenomenon to the occurrence of fluorescence resonance energy transfer, 

a non-radiative energy transfer between an excited donor and an acceptor through 

dipole-dipole interactions. Excitation-independent emission was also observed from N-
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doped CQDs derived from different amino acids (Wei et al., 2014). The Trp-CQDs and 

Asp-CQDs emitted blue light around 450 nm and yellow light around 560 nm, 

respectively, indicating that their emissions were excitation independent. The authors 

speculated that the excitation-independence of Trp-CQDs and Asp-CQDs were due to 

the narrow size distributions and their uniform chemical surfaces.  

2.3.5 XPS 

X-ray photoelectron spectroscopy (XPS) is an important surface analyzing technique of 

the material. The empirical formula, elemental composition, electronic state, and 

chemical state of the elements can be measured by XPS within a material. XPS spectra 

are acquired by irradiating a solid surface with a beam of X-rays while at the same time 

gauging the kinetic energy (K.E.) of electrons discharged from the highest 1-10 nm of 

the substance being analyzed. A photoelectron spectrum is recorded by counting ejected 

electrons over a range of electron as kinetic energies. Peaks show up in the spectrum 

from atoms that emit a specific characteristic energy's electrons. The intensities and 

energies of the photoelectron peaks allow quantification and identification of all surface 

elements except for hydrogen and helium (Van der Heide, P., & ProQuest. (2012).  

Li et al., (2013) synthesized CQDs using the thermal pyrolysis method from soya bean 

grounds. They observed that only 1.33% nitrogen atomic content with binding energy 

at 400 eV. Furthermore, the high-resolution C1s spectra exhibited strong signals at 

286.0 eV that attributed to carbon atoms (C-O, C-N and C=C) consisting of FTIR 

measurement outcomes. As expected for biomedical application, there were varying 

organic functional bands on C-dots surface, endowing them with not only hydrophilicity 

but also photostability 
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2.4 Applications of CQD-Based Functional Materials  

2.4.1 Bioimaging 

Bioimaging is one of the major areas where CQDs and CQD-incorporated polymeric 

hydrogels are widely used. Bioimaging is a noninvasive process of visualizing 

biological activity in a specific period. It helps to gain information on the 3-D 

structure of the observed specimen from the outside without physical interference. 

Bioimaging spans the observation of subcellular structures and entire cells over 

tissues up to entire multicellular organisms. Because of their tunable multicolor 

emission and low toxicity, CQDS and CQD-based materials have played an essential 

role as a platform for cancer nanotheranostics, an integrated diagnostic and therapeutic 

approach for cancer treatment. 

For fluorescence (FA) imaging probes, red or near-infrared (NIR) emissive (>600 nm) 

CQDs are favorable due to their deep tissue penetration, minimal tissue absorption, 

minimal photodamage, and low autofluorescence interference to biological samples (Jia 

et al., 2020). Ko et al., (2013) prepared NIR fluorescence emitting CQDs from tire soot 

through nitric acid oxidation and used them as imaging agents for living cells. Ruan et 

al., (2014) investigated the potential of CQDs for imaging of glioma tumors. The 

fabricated CQDs exhibited highest emission peak at 500 nm and have shown high 

ability to selectively localize glioma cells in the brain rather than normal tissues, 

suggesting the fabricated CQDs can be applied as potential candidates for the brain 

glioma tumor treatments without any toxic effects to normal cells. Most recently, Hao 

and coworkers reported a new type of CQDs with NIR-II (1100–1600 nm) emission by 

using environment-friendly watermelon as a precursor via a one-step hydrothermal 

reaction (Li et al., 2019). The obtained CQDs displayed an emission peak of 900–1200 
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nm under 808 nm laser irradiation. Results from in vivo bioimaging test indicated that 

strong NIR-II FL signals were observed in the kidney within 1 min post-intravenous 

CQD injection. 

CQDs have also been widely constructed as reagents for two-photon fluorescence 

imaging (TPFI), which has received great attention in basic biological research and 

clinical diagnostics because of its large penetration depth, autofluorescence background, 

and reduced photodamage in tissues. In 2007, Sun and co-workers first used surface-

passivated CQDs with a high two-photon absorption for multiphoton imaging (Gao et 

al., 2007). Subsequently, N-doped CQDs synthesized by using dimethylformamide as 

nitrogen source and solvent were used as effective TPFI probes for cellular and deep-

tissue imaging (Liu et al., 2013). A large penetration depth of 1800 mm can be achieved 

by N-CQDs in a tissue phantom, significantly extending the fundamental TPFI depth 

limit. In 2018, three-photon-induced red emission was observed from CQDs prepared 

by the surface engineering of molecules or polymers rich in sulfoxide/carbonyl groups 

(Li et al., 2018).  

CQDs can be combined with other materials for bimodal or multimodal imaging as well. 

For example, Jia et al. (2016) designed a multifunctional nanoplatform of gold 

nanorod@silica-CQDs (GNR@SiO2-CQDs), in which GNRs act as photoacoustic (PA) 

imaging and photothermal therapy (PTT) agents with 808 nm laser, and CQDs serve as 

fluorescence imaging and photodynamic therapy (PDT) agents with 635 nm laser. 

Highly- sensitive and high-resolution bimodal FL/PA images of tumor demonstrate that 

GNR@SiO2-CDs can gradually accumulate in tumors after intravenous administration. 

However, problems on requiring two light sources for synergistic PTT/PDT and high 

laser power for PTT remain unsolved. Later on, the same research group prepared a 
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type of NIR CQDs from polythiophene benzoic acid. The obtained CQDs not only 

exhibit red-light emission (640-680 nm), but also show dual PDT and PTT effects. This 

study first reported the utilization of CQDs for in vivo imaging-guided synergistic 

PDT/PTT by using a single laser (Ge et al., 2016). 

2.4.2 Sensing 

Functional CQDs have been employed as chemosensors for the detection of various 

analytes including chemical pollutants and biologically active small molecules. The 

interaction of CQDs with analytes results in subsequent changes of fluorescence turn-

on (enhancement) or turn-off (quenching) observed in the CQDs (Molaei, 2020). 

Detection mechanisms such as photoinduced electron transfer (PET), fluorescence 

resonance electron transfer (FRET), aggregation-induced red-shift emission (AIRSE), 

and inner filter effect (IFE) have been employed to explain the basic principles of CQD 

sensors.    

CQDs have emerged to be precise sensors for metal ions with the limit of detection 

(LOD) in the micromolar, nanomolar, or even picomolar scales (Dhenadhayalan et al., 

2020). Detection of metal ions is the most important worldwide task to monitor and 

control the environmental pollution. The most commonly used methods for metal 

detection such as AAS, ICP-OES and ICP-MS, are all need for large-scale, costly 

instruments, and complicated synthesis process of sensing materials. However, CQDs 

as novel fluorescence sensors possess the advantages of intrinsic simplicity, high 

sensitivity and selectively, low cost and simple instruments requirement (Lu et al., 

2018). 

Surface functional groups (e.g. carboxyl, hydroxyl and amino) of CQDs effectively 

interact with metal ions through surface bonding, resulting in the tuning of CQD 
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properties. Table 2.3 summarizes the recent research studies on the applications of 

chemical-derived CQDs in heavy metal sensing.  

Table 2.3 Metal ion sensing by chemical-derived CQDs 

CQD materials Analytes Mechanisms LOD Ref. 
CQDs Au3+ Off - IFE 3.35 µM Gao et al., 2019 

CQDs Pb2+ ET 0.59 nM Kumar et al., 2017 

CQDs Se (IV) IFE; ET 0.78 µM Devi et al., 2017 

N-CQDs Hg2+ PET 0.201 µM He et al., 2016 

N-CQDs Hg2+ ET 2.8 nM Wang et al., 2019 

N-CQDs Cu2+ FRET 23 nM Zhang et al.,2019 

CQDs@quercetin Zn2+ FRET 2 µM Yang et a., 2015 

CQDs@Eu-DPA 
MOFs 

Cu2+ OFF 26.3 nM Hao et al., 2017 

CQDs@AuNCs Cd2+ IFE 32.5 nM Niu et al., 2016 

N-CQDs@cytopore Cd2+ Solid phase 
extraction 

201 nM Li et al., 2018 

NS-CQDs Hg2+ IFE 0.18 µM Wang et al., 2015 

NS-CQDs Fe3+ ET 0.27 µM Yang et al., 2019 

Notes: LOD: limit of detection; IFE: inner filter effect; ET: electron transfer  
FRET: fluorescence resonance energy transfer 
 

Apart from metal ion sensing, growing applications of CQDs to the detection of 

biomolecules have been reported (Hu et al., 2014; Wei et al., 2014). Lu et al., (2018) 

investigated the detection of L-cysteine using N-doped CQDs along with Fe3+. 

Experimental results showed that the strong fluorescence of N-CQDs was quenched 

upon the addition of Fe3+ ions and then the fluorescence was recovered followed by the 

addition of L-cysteine. Due to the strong interaction between L-cysteine and Fe3+, this 

N-CQDs/Fe3+ system demonstrated excellent selectivity and sensitivity with LOD of 

0.27 µM. Zhou et al., (2018) reported the detection of hemoglobin using a fluorescent 

nano-biosensor which is based on the molecularly imprinted polymers and CQDs by 
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means of the fluorescence quenching. The fabricated biosensor exhibited an extremely 

low LOD (0.77 nM) of hemoglobin with excellent sensitivity and high selectivity.  

Moreover, CQDs along with metal nanoparticles were functioned as a sensing platform 

in the detection of pesticides and other organic pollutants. Detailed review on this 

application has been conducted by Dhenadhayalan and co-workers (Dhenadhayalan et 

al., 2020). 

2.4.3 Photocatalysis 

The CQD-incorporated semiconductor photocatalysts have been applied to various 

photocatalytic reactions, such as photo-degradation of organic pollutants, water 

splitting and CO2 conversion.   

CQD-based photocatalysts for degradation of dyes and organic pollutants have been 

intensively studied. Li et al., (2010) firstly reported the utilization of CQDs/TiO2 and 

CQDs/SiO2 in degradation of methylene blue (MB) with 300W halogen lamp. The 

minimum degradation of MB in the absence of CQDs confirmed their participation in 

dye degradation and their interaction with TiO2 or SiO2. Tian et al., (2015) fabricated a 

CQD/hydrogenated TiO2 (CQD/H-TiO2) nanobelt heterostructure to remove organic 

contaminants under UV, visible, and near-infrared irradiation. More than 86% removal 

rate of organic pollutant was achieved within 25 min of reaction by using CD/H-TiO2 

heterostructure as catalyst, which is found to be superior to those by pure TiO2 nanobelt 

(63%) or H-TiO2 nanobelt (82%).  

Development of CQD-incorporated semiconductors for solar water splitting has gained 

immense attention in recent years (Mehta et al., 2019). Hydrogen obtained from 

photocatalytic water splitting using sunlight can be highly clean and is a sustainable 
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energy source compared to conventional fossil fuels. Yu et al., (2014) prepared a 

CQDs/TiO2 composite with efficient photocatalytic H2 evolution activity via a facile 

one-step hydrothermal strategy. Under UV-Vis light irradiation, the photocatalytic H2 

evolution rate of CQDs/TiO2 is 9.1 µmol h-1, about 4 times higher than that of pure TiO2. 

Pan et al. (2018) synthesized CQD-modified g-C3N4/TiO2 nano-heterojunctions via a 

facile hydrothermal method. The nano-heterojunctions exhibited nearly two orders of 

magnitude enhancement in H2 production compared with those of unmodified catalysts 

(C3N4/TiO2, CQDs/TiO2). Superior properties of CQDs, including their large storage 

capacity of electrons and their unique UCPL contribute to the enhancement in 

photocatalytic hydrogen production. 
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Chapter 3 One-Pot Synthesis of N-Doped CQDs 

3.1 Introduction 

Nowadays, the hydrothermal method has been widely employed to fabricate carbon 

quantum dots (CQDs), a class of environmentally-friendly photoluminescence (PL) 

nanomaterials with potential applications in the fields of biomedical imaging, 

optoelectronics, chemical sensing and photocatalysis. Through pyrolysis or 

carbonization of carbon precursors under high temperature conditions, hydrothermal 

method is capable of producing CQDs from a variety of carbon precursors such as small 

organic molecules (e.g. glucose, amino acids, citric acid) and natural biomass materials 

(e.g. watermelon peel, pomelo peels, carbohydrates). However, CQDs obtained from 

one-pot hydrothermal method are typically with heterogeneous structures and indefinite 

composition, resulting in low quantum yield (QY) and emission peak shift with 

increasing excitation wavelength (Mishra et al., 2019).    

Bottom-up hydrothermal synthesis of CQDs from small molecules or polymers is an 

efficient pathway to produce CQDs in large scale. Citric acid (CA) is the most common 

reagent to synthesize CQDs through bottom-up method (Zhu et al., 2016). Compared 

with CQDs synthesized from biomass materials, fluorescent CQDs prepared from CA 

possess a number of advantages such as biocompatibility, stable photoluminescent 

property and high quantum yield (Kasprzyk et al., 2018). It has been experimentally 

proved that the PL of CA-based CQDs can be enhanced through doping and/or surface 

passivation using amine-based agents, such as ethylenediamine (EDA), cysteine, 

polyethyleneimine and glutathione (Song et al., 2015). Heteroatom doping and/or 

surface passivation can not only enhance the fluorescent properties of CQDs (e.g., 
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increased QY, tunable emission wavelength, etc.)  but also, significantly increase the 

durability and photostability of CQDs (Kim et al., 2018; Lim et al., 2015).  

Although considerable research has been devoted to the synthesis of CQDs from CA 

using hydrothermal method, few of them have been focused on the optimization of the 

hydrothermal reactions. Generally, optimization of hydrothermal reactions can be 

beneficial on several different fronts, and the most important ones are the highest 

attainable QY and the lowest energy consumption. Design of experiments (DOE) is a 

systematic method to determine the relationship between factors affecting a process and 

the output of that process (Niedz et al., 2016). It allows for multiple input factors to be 

maneuvered, determining their effects on a desired output (response). By manipulating 

multiple inputs at the same time, DOE can identify important interactions that are 

omitted in the one-factor-at-a-time method. Among different DOE methodologies, Box-

Behnken design (BBD) is a class of rotatable or nearly rotatable second-order designs 

based on three-level incomplete factorial designs (Garg et al., 2016). The treatment 

combinations in this design are the midpoints of edges of the process space and at the 

center. Compare to the Central Composite design (CCD), the key feature of the BBD is 

that the number of experimental runs is lower as it does not contain the extreme factor 

combinations. Moreover, CCD usually have axial points outside the ‘cube’. These 

points may not be in the region of interest or may be impossible to conduct because they 

are beyond safe operation limits. Thus, it can be sure that all design points of BBD fall 

within the safe operating zone (Kabuk et al., 2014).  

Understanding the origin and mechanism of the fluorescence behavior of CQDs has 

been a hot topic in recent years. It is widely accepted that CQDs are composed of 

carbon-core and surface domains (Dhenadhayalan et al., 2016; Xia et al., 2019). The 
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carbon-core domain is characterized by a sp2 carbon structure similar to the graphene, 

whereas the surface domain contains abundant functional groups. Due to the 

heterogeneous structural nature of the CQDs, it is difficult to explain the specific 

chemical structure of CQDs and the components contributing to the fluorescence. As 

such, different fluorescence mechanisms of CQDs in terms of the recombination of 

electron−hole pairs, quantum effect, surface functional groups, molecular state, and 

fluorophores with different degrees of π-conjugation have been proposed (Baker and 

baker, 2010; Bourlinos et al., 2011; Hsu and Chang, 2012; Mao et al., 2020; Zhu et al., 

2013). So far, both the recombination of electron−hole pairs (Sahu et al., 2012) and the 

molecular state (Song, et al., 2015; Zhu et al., 2013) have been broadly accepted as the 

mechanisms of fluorescence for CQDs. Nonetheless, effective characterization and 

structural analyses are still needed to elucidate the fluorescence properties of CQDs 

prepared under different hydrothermal conditions. 

In this work, we first optimized the synthetic conditions of N-doped CQDs (N-CQDs) 

using the BBD, and then characterized the chemical structures and surface states of the 

as-prepared N-CQDs using TEM, XPS, and FRIR. Finally, the unique optical properties 

of the N-CQDs were investigated by UV-Vis and fluorescence spectroscopy.  

 
3.2 Materials and Methods 

3.2.1 Materials  

ACS grade citric acid (CA) anhydrous, 99% ethylenediamine (EDA) and 99% quinine 

sulfate dehydrate were purchased from Fisher (Canada). These chemicals were used as 

received without further purification. Deionized (DI) water used for all experiments was 

generated from Milli-Q water purification system (Millipore Corporation) in the lab. 
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3.2.2 The Preparation of N-CQDs 

For the synthesis of N-CQDs, certain amounts of CA and EDA (based on the required 

molar ratio of EDA to CA) were added in 40.0 mL of DI water in a 100.0 mL 

polypropylene-lined stainless-steel autoclave. Hydrothermal reactions were carried out 

in a programmable oven from Thermo Fisher for 4.0 h. After the autoclave was cooled 

to the room temperature, the obtained solution was filtered through 0.22 μm membrane 

filters to remove the large particles, followed by centrifuging at 4000 rpm for 0.5 h. The 

supernatant was then kept in a dialysis bag in ultrapure water for 4.0 h and finally the 

solid N-CQDs were collected after freeze-drying. 

3.2.3 Design of experiments (DOE) for the preparation of N-CQDs 

An experimental design for three factors at three levels was employed to prepare N-

CQDs, with the detailed reactions conditions as: the concentration of CA with three 

levels of 0.4, 0.5, 0.6 mol/L; the temperature with three levels of 180, 200 and 220 °C, 

and the molar ratio of EDA to CA with three levels of 1:2, 1:1 and 2:1, respectively. 

The response is QY. Reaction time and volume are fixed at 4.0 h and 40.0 ml.  

The Box-Behnken design for three factors requires 12 experiments plus central point 

replications. The detailed reaction conditions for different experimental runs are listed 

in Table 3.1. 
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Table 3.1 Box-Behnken design 

Run Conc. of CA 
(mol/L) 

Molar Ratio of  
EDA:CA Temperature (°C) 

1 0.4 1:1 180 
2 0.5 1:2 180 
3 0.5 2:1 180 
4 0.6 1:1 180 
5a 0.5 1:1 200 
6 0.4 1:2 200 
7 0.4 2:1 200 
8a 0.5 1:1 200 
9 0.6 1:2 200 

10a 0.5 1:1 200 
11 0.6 2:1 200 
12a 0.5 1:1 200 
13a 0.5 1:1 200 
14 0.4 1:1 220 
15 0.5 1:2 220 
16 0.5 2:1 220 
17 0.6 1:1 220 

a Runs 5, 8, 10, 12 and 13 are the central point replications of the Box-Behnken design 
 

3.2.4 Analytical methods  

X-ray photoelectron spectroscopy (XPS) measurements of the as-prepared N-CQDs 

were performed using a XPS - PHI 5000 VPIII (ULPAC-PHI Inc., Japan). Transmission 

electron microscopy (TEM) images were recorded with a Tecnai Spirit microscope. The 

Fourier transform infrared (FTIR) spectra of N-CQDs were measured by a Bruker 

Tensor ІІ FTIR spectrometer (Bruker, Germany) over a range from 400 to 4000 cm-1. 

A Varian Cary 100 Bio UV-Vis spectrophotometer was used to obtain UV-Vis 

absorption spectra of N-CQDs dispersed in DI water. Fluorescence spectra of N-CQDs 

were measured in 1 cm standard quartz cuvette using a PTI-QuantaMaster 
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spectrofluorometer (Photon Technology International Inc., USA). The pH values were 

measured using an Accumet pH meter, AB 15+ (Fisher Scientific, Canada). 

3.2.5 Determination of quantum yield (QY) 

The QY of the C-dots in aqueous solution was measured using quinine sulfate as the 

reference (54%) and calculated using following Eq:     

2

2
C CR

C R
R C R

S AQY QY
S A

η
η

= × × ×            (3-1) 

where, QY represents the quantum yield value, S is the fluorescent intensity, A refers to 

the absorbance measured at exited wavelength, and η represents the refractive index of 

the solvent used. The subscripts “C” and “R” refer to N-CQDs and reference sample of 

known quantum yield, respectively. 

If we can ensure that the absorbance of the reference sample and N-CQDs are consistent, 

and the sample concentrations are extremely low (absorbance value less than 0.05), then 

Eq. (3-1) can be simplified to: 

C
C R

R

SQY QY
S

= ×                                  (3-2) 

3.3 Results and Discussion 

3.3.1 DOE optimization of synthetic conditions 

Quantum yields of N-CQDs, at 350 nm excitation (λex = 350 nm), obtained from 17 

experimental runs vary from 19.3% to 52.1%, which is acceptably good compared with 

those reported from open literature (Wu et al., 2013; Huang et al., 2018; Ding et al., 

2014; Zhou et al., 2019). The ANOVA analysis of the experimental results was carried 

out by using the Design-Expert 11. Results of a first-order model are summarized in 

Table 3.3, from which the most influential factors (p <0.05) on QY of N-CQDs are 
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found to be the molar ratio of EDA to CA and reaction temperature. Moreover, the 

interaction of these two factors also shows influence on QY of N-CQDs. The results 

from ANOVA analysis describe that initial concentration of citric acid has no 

significant effect (p=0.265) on the attained QY values. All these results clearly indicate 

that the optimum QY is attainable by tuning reaction temperature and the molar ratio of 

EDA to CA. 

Table 3.2 Reaction conditions for hydrothermal preparation of N-CQDs  

Run 
Reaction conditions QY 

% 
Visible 
light 

UV-
light Conc. of CA 

mol/L 
Molar Ratio of 

EDA:CA 
Temperature 

℃ 

1 0.4 1:1 180.0 51.9 

  

2 0.5 1:2 180.0 26.9 

  

3 0.5 2:1 180.0 52.1 

  

4 0.6 1:1 180.0 47.0 
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5a 0.5 1:1 200 41.7 

  

6 0.4 1:2 200.0 24.5 

  

7 0.4 2:1 200.0 40.4 

  

8a 0.5 1:1 200.0 43.0 

  

9 0.6 1:2 200.0 19.3 

  

10a 0.5 1:1 200.0 43.0 

  

11 0.6 2:1 200.0 38.2 
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12a 0.5 1:1 200.0 43.0 

  

13a 0.5 1:1 200.0 41.0 

  

14 0.4 1:1 220.0 26.6 

  

15 0.5 1:2 220.0 23.0 

  

16 0.5 2:1 220.0 47.3 

  

17 0.6 1:1 220.0 30.5 

  
a These runs represent the central points replications. 
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Table 3.3 The ANOVA results for the model 

Source Sum of Squares df Mean Square F-value p-value  

Model 1728.14 11 157.10 28.69 0.0008 significant 

Conc. of CA 8.61 1 8.61 1.57 0.2653  

Temperature 318.78 1 318.78 58.21 0.0006  

EDA:CA 1095.48 2 547.74 100.03 < 0.0001  

AB 19.36 1 19.36 3.54 0.1188  

AC 7.36 2 3.68 0.6724 0.5513  

BC 137.15 2 68.58 12.52 0.0113  

A² 121.64 1 121.64 22.21 0.0053  

B² 7.96 1 7.96 1.45 0.2819  

Residual 27.38 5 5.48    

Lack of Fit 27.38 1 27.38    

Pure Error 0.0000 4 0.0000    

3.3.1.1 Effect of temperature 

Hydrothermal temperature is an important operating parameter for the synthesis of N-

CQDs. As the reaction progresses from low temperature to high temperature, the 

polymer-like CQDs are changed into carbogenic CQDs (Song et al., 2015). This is 

understandable, high reaction temperature leads to the carbonization of the organic 

molecules, which has been confirmed from the color of N-CQDs products as shown in 

Table 3.2. The color of N-CQDs solutions produced at T= 220 °C are much darker than 

those produced at T = 180°C. In most of the cases, N-CQDs with lower QY were 

obtained when reaction temperature is higher than 200 °C. No significant variations 

were found from the UV-Vis absorbance peaks and fluorescence emission wavelengths 

of the N-CQDs synthesized under different hydrothermal temperatures. Therefore, to 
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produce N-CQDs with high QY, reaction temperature should not exceed 200°C. Results 

from Table 3.2 indicate that T = 180°C is the optimum. 

3.3.1.2 Effect of the molar ratio of EDA to CA 

The molar ratio of EDA to CA has remarkable influence on the QY values of N-CQDs, 

which can be observed from the results illustrated in Fig. 3.1. In general, the QY of N-

CQDs greatly increased with the N content. QY of N-CQDs increased from less than 

20.0% to more than 50.0% when the EDA to CA ratio increased from 0.5 to 2.0. 

However, the degree of influence of EDA to CA ratio on QY varies when combining 

with different reaction temperatures and/or initial concentrations of CA. With the lower 

(EDA: CA=0.5) and higher (EDA:CA=2.0) limits, the magnitudes of variation in QY 

with the reaction temperature are 7.6% (from 19.3% to 26.9%) and 13.9% (from 38.2% 

to 52.1%), respectively. However, when the intermediate level of EDA to CA (1.0) ratio 

is used, QY decreases remarkably with the increasing reaction temperature. QY value 

varies from of 51.9 % at T= 180 °C to 26.6% at T = 220°C, decreasing more than 25.0%.  

Based on the reported study carried out by Bai and co-workers (Yang et al., 2017), 

nitrogen was doped into the carbon framework during the hydrothermal treatment to 

form the N-CQDs core with graphene-like carbon ring structures. With the prolongation 

of the reaction, the carbon core was covered by the passivated shell mainly consisting 

the amino group and the oxygen-containing groups. Typically, carbon core and surface 

state both significantly contribute to the fluorescence property of the resultant N-CQDs. 

As such, hydrothermal reaction temperature, reaction time, as well as the EDA to CA 

ratio must be properly selected so that an optimal balance among the degrees of N-

doping, carbonization, and surface passivation can be achieved. 
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Based on the BBD experimental results, reaction temperature of 180° and EDA to CA 

ratio of 1.0 are the optimal reaction conditions for the preparation of N-CQDs.  

Therefore, an extra experiment was done at the optimal reaction conditions and the QY 

of it is 51.7%. 

 

(a) EDA:CA=1:2 

 

(b) EDA:CA=1:1 

 

(C) EDA:CA=2:1 

 

Figure 3.1 The 3D surface under different ratio of EDA:CA 
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3.3.2 Characterization of the as prepared N-CQDs 

The morphology and particle size of the N-CQDs characterized by TEM are illustrated 

in Fig. 3.2, from which well dispersed spherical particles of N-CQDs are observed 

without significant agglomeration. The average size of the N-CQDs is roughly 20 nm. 

 

Figure 3.2 TEM image of N-CQDs 

 
Figure 3.3 XPS survey spectrum of N-CQDs 
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Figure 3.4 High resolution C 1s (a); N 1s (b); and O 1s (c) XPS spectra of N-CQDs 
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The surface composition and elemental analysis of the N-CQDs were characterized by 

XPS. The peaks at 284.7, 399.8 and 531.4 eV in a XPS survey spectrum (Fig. 3.3) can 

be attributed to C 1s, N 1s, and O 1s, respectively. 

In the high-resolution spectrum of C1s as shown in Fig. 3.4a, three deconvoluted BE 

peaks at 284.6, 286.2 and 287.8 eV which are attributed to the sp2 C (C=C) in graphite, 

the sp3 C (C–O and C–N), and the oxidized C (C=O), respectively (Gao et al., 2016; Qu 

et al., 2014). Three deconvolated BE peaks at 399.3, 400.2, and 401.0 eV corresponding 

to the pyridinic N (C–N–C), and the pyrrolic N (C–N, and N–H) were observed for N 

1s from Fig. 3.4b. XPS spectrum of N 1s for N-CQDs from this study are consistent 

with those reported from open literature (Ding and Xiong, 2015; Gao et al., 2016; Wu 

et al., 2014). The two peaks of the O1s spectrum (Fig. 3.4c) at 531.1 and 532.4 eV are 

assigned to the C=O, and C–OH/C–O–C groups respectively (Ding and Xiong, 2015; 

Qu et al., 2014). 

Chemical and structural information of N-CQDs was also characterized by FTIR. The 

IR spectra of citric acid and N-CQDs are compared in Fig. 3.5. Significant band shifts 

take place within the regions of 3200-3700 cm-1 and 1200-1700 cm-1. For citric acid, 

the characteristics IR bands include: alcohol and acid O–H stretching at 3491 and 3285 

cm-1; carboxylic C=O stretching at 1745 and 1694 cm-1; and acyl and alkoxy C–O 

stretching at 1170 and 1137 cm-1(Pimpang et al., 2018). Instead, a broad peak at 3245 

cm-1 is observed from the IR spectrum of N-CQDs, which is due to the coalescing effect 

of the stretching vibrations of O–H, N–H and C=C–H. Characteristic peaks at 1696, 

1647 and 1532 cm-1 are attributed to the stretching vibrations of carboxylic C=O, C=N 

and C=C in aromatic rings, respectively (Holá et al., 2017). In addition, IR band of N-

CQDs at 1211 cm-1 can be ascribed d to the stretching vibration of C–N. These results 
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indicate that N-CQDs consist of graphite structures in the cores and amorphous carbon 

on the surface, similar with those previously reported CQDs (Holá et al., 2017; Song et 

al., 2015). 

It is very difficult to investigate the formation mechanism of the N-CQDs because 

various reactions are involved during the hydrothermal reaction process. In a similar 

system employing CA and amines, Sun and co-workers (Qu et al., 2014) reported that 

the formation of the N-CQDs involved two steps. Firstly, with the help of amines, the 

CA molecules self-assembled into a sheet structure and dehydrolyzed to form a 

graphene framework. Meanwhile, amidation took place between the CA and the amine 

molecules. Secondly, amides reacted with the neighboring carboxylic groups to form a 

pyrrolic N species through intramolecular dehydrolysis (Dong et al., 2012). The XPS 

and FTIR results of the N-CQDs from the current study confirm the occurrence of the 

above-mentioned reactions. 

 

 
 

  Figure 3.5 FTIR spectra of CA and N-CQDs 
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3.3.3 Optical properties of N-CQDs 

UV-Vis absorbance spectrum of N-CQDs is illustrated in Fig 3.6, from which two 

obvious absorption peaks at 345 nm can be observed. The absorption peak at 345 nm is 

due to the n−π* transitions of C=O or C–OH bonds present in the N-CQDs. The 

fluorescence spectrum of N-CQDs can also be seen from Fig. 3.6, which indicates that 

the optimal emission wavelength of N-CQDs is 460 nm. It should be noted that neither 

citric acid nor ethylenediamine solution emits luminescence in the visible region at an 

excitation wavelength (λex) of 350 nm, revealing that the bright blue fluorescence 

originates from N-CQDs.    

 

 
Figure 3.6 The UV-Vis absorption and fluorescence spectra of N-CQDs (λex = 350 

nm) 
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Figure 3.7 Emission spectra of N-CQDs under different excitation wavelengths  

 

To further explore the optical properties of the as-prepared N-CQDs, we carried out a 

detailed PL study with different excitation wavelengths ranging from 280 to 520 nm 

(Fig. 3.7). When the λex is larger than 440 nm, the as-prepared N-CQDs exhibit an 

excitation-dependent PL behavior. More specifically, the emission peak shifted from 

440 to 480/520 nm by changing the λex from 440 to 480/520 nm. In contrast, the 

fluorescence emission peak remained almost unchanged (at 440 nm) for the λex over 

280–440 nm and the highest fluorescence intensity appears at λex of 360 nm. According 

to Song et al (2015), N-CQDs derived from the hydrothermal reaction of CA and EDA 

are mixtures containing imidazo[1,2-a]pyridine-7-carboxylic acid (IPCA), oligomers 

and carbon cores. IPCA, a bright blue fluorophore, was proven to contribute to the 

molecular state fluorescence. Carbon cores in N-CQDs include polymer clusters and 

nanosized (< 10 nm) carbon particles. Carbon core shows excitation-dependent 

fluorescence behaviors, which is called carbon core state, opposite to the molecular 
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state. The multi-fluorescence response of the N-CQDs is mainly due to the complex 

components and multiple fluorescence centers in N-CQDs product. Product 

fractionation is necessary to produce excitation-independent CQDs. 

The influence of pH on the fluorescence of N-CQDs was studied at λex of 350 nm to 

understand the impact of surface functional groups on the fluorescence of N-CQDS. 

Fig.3.8 demonstrates the effect of solution pH on the fluorescence emission of N-CQDs. 

There are no significant variations in both the emission wavelength and emission 

intensity when the pH of N-CQDs solution changes from pH 4.0 to pH 10.0. However, 

red shift and fluorescence quenching were observed for N-CQDs under pH 2.0. pH-

dependent photoluminescence properties of N-CQDs may be caused by the surface 

states of the carboxylic (–COOH / –COO-) group attached to N-CQDs. At acidic pH, 

the amount of −COOH group on the N-CQDs surface is dominant because of the less 

probability to form deprotonated carboxylate (−COO-) group. When the −COOH 

functional group is excited at 350 nm, a nonbonding electron of O in C=O is promoted 

to the antibonding orbital of C=O. The (n, π*)CO band of the −COOH group can easily 

couple with the adjacent (n, σ*) band of OH according to the Norrish reaction, and cause 

the single bond to rupture if the (n, σ*) bond is in a repulsive configuration. Thus, the 

fluorescence intensity of N-CQDs/−COOH will be suppressed by the adjacent bond 

coupling under pH 2.0 (Dhenadhayalan et al., 2015). In contrast, the (n, π*)CO band in 

the carboxylate (−COO-)  group lacks the diabatic coupling with its adjacent single 

bond such that no significant suppression of N-CQDs fluorescence is observed under 

pH 4.0 – 10.0. 
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Figure 3.8 The effect of pH on fluorescence spectra of N-CQDs (λex = 350 nm) 

3.4 Conclusion 

Design of experiments was employed in this study to optimize the hydrothermal 

synthesis of the N-CQDs from CA and EDA by varying the initial concentration of CA, 

the molar ratio of EDA to CA, and the reaction temperature. The results from ANOVA 

analysis reveal that the molar ratio of EDA to CA, and the reaction temperature are the 

key factors influencing the reaction rate and the reaction products, thus significantly 

affect the QY of the N-CQDs. The optimum hydrothermal conditions of N-CQDs 

(QY=51.7%) are initial CA concentration of 0.5 mol/L, EDA to CA molar ratio of 1, 

and reaction temperature of 180℃. Characterization of N-CQDs by XPS and FTIR 

confirmed the existence of carbon-core and surface domains of N-CQDs (i.e., the 

existence of multiple fluorescence centers), which explained the multifluorescence 

response of N-CQDs under different excitation wavelengths. 
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Chapter 4 CQDs-Incorporated Chitosan Hydrogel Film for Selective 

Sensing of Hg2+ Ion 

4.1 Introduction 

Environmental contamination by heavy metals has been a serious threat to the 

ecological system and human health due to their increasing use in domestic, industrial, 

agricultural and medical applications (Zhao et al., 2015). The non-biodegradable heavy 

metal ions have been extensively detected in various environmental matrices (water, 

wastewater, sediments, and biota). Rapid detection of toxic heavy metal ions in water 

plays an important role in the proper control of water quality and safety. To date, several 

detection methods, such as atomic absorption spectrometry (AAS), inductively coupled 

plasma optical emission spectrometry (ICP-OSE), and inductively coupled plasma mass 

spectrometry (ICP-MS) have been widely used for quantitative detection of heavy metal 

ions with high sensitivity (Kataoka et al., 2015). However, these techniques normally 

require complicated instrumental settings and pretreatment of water samples, which 

made them not feasible for on-site detection. There is a huge demand for developing 

rapid, economical, and highly selective on-site detection of toxic heavy metals. 

Advances in fluorescent nanomaterials have paved the way of exploring new tools for 

optical sensing (Liu et al., 2009; Pan et al., 2015). Recently, carbon quantum dots 

(CQDs) with superior fluorescence property, particularly obtained from low-cost and 

abundant biomasses have received great attention as fluorescent probes for the detection 

of heavy metal ions (Guo et al., 2017). However, “naked” CQDs tend to aggregate in 

neutral condition, leading to a dramatic decrease in fluorescence intensity (Liu et al., 

2019). To stabilize CQDs and improve their performance, immobilization of CQDs 
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within supramolecular frameworks has been pursued intensively in recent years 

(Cayuela et al., 2015; Miao et al., 2018; Rizzo et al., 2018; Zhou et al., 2017). CQDs 

have been incorporated into different polymeric matrices (e.g., poly (methyl acrylate), 

polyurethane, and polyvinyl alcohol, etc.) to prevent aggregation-induced fluorescence 

quenching and produce fluorescent materials for practical sensing applications. 

Compared to other nanocarriers, hydrogels possess unique physical properties such as 

hydrophilicity, porosity, tunable cross-linking density, and stability in biological milieu. 

Therefore, embedding CQDs into polymeric hydrogels is a valuable technique to 

fabricate fluorescent composite materials with distinct characteristics and unique 

properties, which endow them with great potential applications as sensors (Gogoi et al., 

2015; Ikeda et al., 2011) optical and electrical devices (Jang et al., 2012; Thete et al., 

2009), or imaging agents (Li et al., 2019). So far, different assembly methods have been 

exploited to integrate CQDs into hydrogel networks. Sophisticated variations in 

structural architectures of composite hydrogel materials are made possible by host–

guest interaction (Lu et al., 2018) incorporation of fluorophores into polymer matrices 

by infusion (Chen & Feng, 2015), self-assembly (Beneduci et al., 2015), and co-

assembly of gel hybrids via bioconjugation (Elmalem et al., 2014).  

A common fabrication strategy for fluorescent hydrogels is incorporating fluorophore 

entities (e.g., CQDs) into the hydrogel matrix by weak, non-covalent interactions (Li et 

al., 2019). Novel chitosan–CQDs nanocomposite hydrogel films were recently prepared 

based on the electrostatic interaction of the positive charge on chitosan and the negative 

charge on CQDs (Konwar et al., 2015). The electrostatic interaction rendered the as-

prepared chitosan–CQDs films excellent thermal stability, high tensile strength and 

superior UV-Vis blocking property. Similar method was employed to synthesize CQDs 
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rooted agarose hydrogel film which can be used as both colorimetric-optical sensor and 

membrane filter for quintet heavy metal ions (Gogoi et al., 2015). Although simple and 

easy to scale-up, such non-covalent bonding of CQDs with the gel network may later 

result in leaching of the fluorescent entities and/or aggregation of CQDs, resulting in 

loss of luminescence. Further research is needed to investigate the chemical and 

fluorescence stability of the CQDs-incorporated hydrogels.  

Selection of appropriate polymer matrix is not a trivial task for the design of a cost-

effective CQDs-based composite hydrogel. Based on the origin of the polymers, the 

hydrogels thereof are broadly classified into natural and synthetic (Ahmed 2015). 

Biopolymers in general offers good properties (e.g., nontoxicity, biodegradability and 

biocompatibility) and are available in abundance (Konwar et al., 2015). Chitosan, a 

biological cationic polymer composed of randomly distributed β-(1→4)-linked D-

glucosamine and N-acetyl-D-glucosamine, has attracted great interest as a carrier for 

biomedical applications due to abundant sources and low prices. Besides, chitosan can 

be easily modified or blended with specific molecules to introduce distinct 

functionalities and/or properties (luminescence, conductivity, mechanical performance, 

etc) (Barata et al., 2016). Although various chitosan hydrogels or chitosan hydrogel 

composites have been fabricated as adsorbents, food packing materials, wood dressing 

materials, drug delivery carriers, few studies refer to the natural biopolymer-based 

fluorescence sensors for the detection of heavy metal ions. Therefore, incorporating 

fluorescence CQDs into chitosan hydrogel for constructing an effective fluorescence 

sensor deserves more research and development efforts.  

In this study, a CQDs-based chitosan hydrogel film was fabricated as a fluorescence 

sensor for a rapid and selective detection of Hg2+, one of the most toxic metal ions, 
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which may cause severe damage to the central nervous system and kidney failure even 

at a low exposure (Wang et al., 2012). Systematic characterization and optimization of 

the composite hydrogel film were performed to identify its structural and functional 

attributes. Quantitative fluorescence measurement of the composite hydrogel in various 

metal solutions was carried out to evaluate its sensing performance for Hg2+ ion. Finally, 

the potential sensing mechanism of Hg2+ by the composite hydrogel was elucidated with 

the aid of XPS analysis of the composite hydrogel.   

 
4.2 Materials and Methods 

4.2.1 Materials  

ACS grade citric acid anhydrous, 99% ethylenediamine, chitosan (85% degree of 

deacetylation), ACS grade glacial acetic acid, glutaraldehyde (25% aqueous solution), 

as well as ACS grade nitrate salts (Cd (NO3)2, Hg (NO3)2, and Pb (NO3)2) were 

purchased from Fisher Scientific (Canada). These chemicals were used as received 

without further purification. All solutions were prepared with deionized water from a 

Milli-Q water purification system (Millipore Corporation). 

4.2.2 Synthesis of fluorescent N-CQDs 

N-CQDs were synthesized using the hydrothermal method as described in Chapter 3 of 

this thesis. To prepare N-CQDs, 3.842 g (0.02 mole) of citric acid was mixed with 

1.202g (0.02 mole) of ethylenediamine in a 100 ml Teflon-lined autoclave chamber 

containing 40.0 ml DI water and heated in an oven at 180 °C for 4 h. After the 

hydrothermal reaction, membrane filtration and centrifugation of the resultant brown 

solution were conducted to obtain the N-CQDs suspension. Solid N-CQDs were 

collected from freeze-drying after a dialysis purification of the N-CQDs product. Solid 
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N-CQDS were re-dispersed in ethanol-water (1:1 v/v) solution and stored at 4 °C for 

further use.  

4.2.3 Preparation of N-CQDs@GACTS hydrogel film 

In a typical procedure, chitosan (CTS) solution of 1.5% (w/v) was prepared by 

dissolving 0.15 g of chitosan in 10.0 mL of glacial acetic acid (1% v/v) solution and 

magnetically stirred at room temperature for 30 min. Crosslinking of chitosan hydrogel 

was carried out by dropwise addition of 0.25 M glutaraldehyde (GA) to chitosan 

solution under constant shaking at 50°C for 2 h. After that, 40.0 mg of N-CQDs (from 

20.0 g/L ethanol/water solution) were added dropwise to the GA cross-linked chitosan 

(GACTS) hydrogel to obtain the N-CQDs incorporated chitosan (N-CQDs@GACTS) 

hydrogel. After vigorous stirring for 15 min and ultrasonication for another 15 min, the 

as-prepared N-CQDs@GACTS hydrogel was cast on a PVC plate to form thin films, 

which were then dried overnight at room temperature. 

4.2.4 Selective sensing of Hg2+ ion  

Sensing selectivity of the N-CQDs@GACTS hydrogel was studied by mixing the 

hydrogel with each metal ion (Cd2+, Hg2+, and Pb2+). Fluorescence emission intensities 

(λem = 450 nm) of N-CQDs@GACTS hydrogel were measured in the presence (I) and 

in the absence of (I0) interference at the excitation wavelength of 350 nm (λex = 350 nm). 

Solutions with the same concentration of each metal ion (100 nM) were prepared for 

the selectivity measurement. 

The detection of Hg2+ by the N-CQDs@GACTS hydrogel was performed in water 

solution. 2.5 mL metal solution with different concentrations of Hg2+ ion (1.0 nM–100.0 

μM) was added to 0.5 mL N-CQDs@GACTS hydrogel to evaluate the linear 
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concentration range and the limit of detection. The fluorescence spectra at λem = 450 

nm were recorded and all experiments were performed at room temperature. 

The fluorescence spectra of the N-CQDs@GACTS hydrogels from different synthetic 

batches were measured, the optical properties of the hydrogels are of no noticeable 

difference. This means that the repeatability of the fluorescence spectra is very well. 

There are no significant variations from different measurements of the same samples 

for Hg2+ sensing as well. 

4.2.5 Characterization 

The N-CQDs@GACTS hydrogel film was characterized by various techniques. The 

Fourier transform infrared (FTIR) spectra of N-CQDs@GACTS film were measured 

by a Bruker Tensor ІІ FTIR spectrometer (Bruker, Germany) over a range from 400 to 

4000 cm-1. X-ray photoelectron spectroscopy (XPS) measurements of the as-prepared 

hydrogel film were performed using an XPS - PHI 5000 VPIII (ULPAC-PHI Inc., 

Japan). A PTI-QuantaMaster spectrofluorometer (Photon Technology International Inc., 

USA) was used to record the excitation and emission spectra of N-CQDs@GACTS 

hydrogel before and after metal detection.  

4.3 Results and Discussion 

4.3.1 Degree of crosslinking for GACTS hydrogel films 

As we all know that the degree of crosslinking will have a significant influence on the 

physical and chemical properties of hydrogel films. In order to get a GACTS hydrogel 

film with sufficient mechanical strength, different levels of crosslinking were explored 

by adding different amounts of GA to CTS solutions. Figure 4.1 shows the as-prepared 

GACTS hydrogel films with three different levels of crosslinking. The CTS film 
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without crosslinking is very fragile and with very poor mechanical strength. With the 

increase in the degree of crosslinking, the color of the hydrogel films becomes darker 

and the hardness of the films increases accordingly. However, when a high degree (10%) 

of crosslinking was applied, the elongation or mobility of the hydrogel was lost, and it 

was very difficult for the thin film to form. Therefore, 5% degree of cross-linking was 

utilized in the subsequent experiments to fabricate both GACTS and N-

CQDs@GACTS hydrogel films. 

(a) 

 

(b) 

 

(c) 

 

Figure 4.1 GACTS hydrogel films with different degrees of crosslinking: 0%(a); 
5%(b); 10%(c) 

4.3.2 Characterization of N-CQDs@CTS hydrogel film 

FTIR spectra of pure chitosan, GACTS and N-CQDs@GACTS hydrogel films were 

examined to validate the crosslinking of CTS and potential interactions between N-

CQDs and GACTS hydrogel film (Fig. 4.2). As previously reported (Ngah et al., 2008; 

Zhang et al., 2015), pure chitosan presents the –OH along with –NH broad stretching 

vibration peaks in a range between 3200-3600 cm-1, the –NH bending vibration peaks 

at 1638.7 and 1544.3 cm-1, as well as the C–N and C–O stretching vibration peaks at 

1150.4 and 1066.1 cm-1, respectively. The effective crosslinking of CTS with GA, 

which occurred at the amino groups of CTS could be confirmed from the significant 

peak shifts of the –NH bending vibration from 1638.7 to 1641.3 cm-1 and 1544.3 to 

1552.5cm-1. After incorporating N-CQDs into the GACTS hydrogel, the band peak of 
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the C–N stretching vibration in the spectrum of N-CQDS@GACTS hydrogel film is 

shifted to 1151.7 cm-1 from 1150.8 cm-1 duo to the coalescence of C–N stretching 

vibrations of both GACTS and N-CQDs. The IR results of GACTS and N-

CQDS@GACTS do not support the formation of any new bonds between N-CQDs and 

GACTS, which indicates that N-CQDs were embedded into the GACTS matrix mainly 

through weak hydrogen bond or electrostatic attraction.   

 

  

Figure 4.2 FTIR spectra of chitosan, GACTS and N-CQDs@GACTS films 

 

The surface composition and elemental analysis of the N-CQDs@GACTS hydrogel 

film was characterized by XPS. Figure 4.3 illustrates the XPS survey spectra of N-

CQDs@GACTS hydrogel film before and after metal sensing. It should be addressed 

that binding energies in all the XPS spectra have been recalibrated by shifting C 1s peak 

to 284.8 eV. The peaks at 284.6, 399.0 and 532.2 eV in the XPS survey spectrum of N-
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CQDs@GACTS hydrogel film before Hg2+ sensing are attributed to C 1s, N 1s, and O 

1s, respectively. The peaks at 284.7, 346. 5, 399.1, and 532.4 eV in the survey spectrum 

of hydrogel film after Hg2+ sensing can be attributed to C 1s, Hg 4d, N 1s, and O 1s, 

respectively. 

 

Figure 4.3 XPS survey spectra of N-CQDs@GACTS film before and after Hg2+ 
sensing 

 

4.3.3 Optical properties of N-CQDs@GACTS film 

From Figure 4.4, both GACTS hydrogel and N-CQDs exhibit blue fluorescence 

emissions (Geng et al., 2015). In order to reveal their contributions to the fluorescence 

property of the composite hydrogel film, the fluorescence excitation and emission 

spectra of the GACTS and the N-CQDs@GACTS hydrogel films are compared in Fig. 

4.4. As seen from Fig.4.4a, the GACTS film can be excited by wavelengths between 

240 and 250 nm. With the excitation wavelength being set at 250 nm, strong 

fluorescence emission peaks centered at 345 and 450 nm can be clearly observed. From 
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the spectra of the N-CQDs@GACTS hydrogel film illustrated in Fig 4.4b, the strongest 

excitation wavelength at 345 nm is observed, whereas its strongest emission wavelength 

is found to be 450 nm (λem = 450 nm). Compared with the GACTS film, the fluorescence 

emission intensity of N-CQDs@GACTS hydrogel film is about 25 times stronger, 

which indicates that the fluorescence property of the composite hydrogel film mainly 

stems from the N-CQDs. 

 

 

Figure 4.4 The excitation and emission spectra of (a) GACTS film and (b) N-
CQDs@GACTS films 

  

4.3.4 Sensing selectivity of N-CQDs@GACTS hydrogel 

The sensing selectivity of the as-prepared N-CQDs@GACTS hydrogel towards certain 

metal ion(s) was studied by mixing N-CQDs@GACTS hydrogel with different ions 

solutions (Cd2+, Hg2+, and Pb2+), each at a concentration of 100.0 nM. As can be 

witnessed from Fig. 4.5a, the fluorescent N-CQDs@GACTS hydrogel shows 

remarkable quenching effect on Hg2+ than the other two ions. The fluorescence 

emission intensity of N-CQDs@GACTS hydrogel was reduced more than 60% after 

being immersed in the Hg2+ solution. Nonetheless, no significant change in the 
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fluorescence intensity was observed after the composite hydrogel was immersed in Cd2+ 

or Pb2+ solution.  

The images in Fig 4.5b intuitively show that N-CQDs@GACTS hydrogel underwent 

fluorescence quenching in Hg2+ solution under 395 nm UV light. Whereas the 

quenching effect is almost unnoticeable after adding Cd2+ and Pb2+ ions into N-

CQDs@GACTS hydrogel, which further confirmed the good sensing selectivity of the 

N-CQDs@GACTS hydrogel.  

The excellent selectivity could be attributed to a stronger interaction between the N-

CQDs@GACTS hydrogel and Hg2+ than other metal ions. Among the three divalent 

metal ions, Hg2+ has the strongest oxidizing ability and the smallest hydraulic radius 

and it is therefore more easily combined with polar groups on the surface of N-

CQDs@GACTS hydrogel by either chelation or electrostatic attraction (Gao et al., 

2019), making Hg2+ better than Cd2+ and Pb2+ for the quenching effect of the fluorescent 

composite hydrogel. 

 

 

Figure 4.5 The I/I0 ratio of N-CQDs@GACTS hydrogel in the presence of 100nM 
different metal ions (a); and images of N-CQDs@GACTS hydrogel in the presence of 

metal ions under 395nm UV light (b). 
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4.3.5 Sensing of Hg2+ ions 

For a sensitivity study, the fluorescence response of the N-CQDs@GACTS hydrogel to 

different concentrations of Hg2+ was investigated and the results were demonstrated in 

Fig. 4.6a. It can be seen that the fluorescence intensity of the N-CQDs@GACTS 

hydrogel keeps on decreasing with the increase of Hg2+ concentration, i.e., the degree 

of fluorescence quenching increases synchronously with the concentration of Hg2+. 

Moreover, relatively faster decrease in fluorescence intensity at λem = 450 nm is 

observed with the concentration of the Hg2+ up to 10.0 µM. Whereas, more gradual 

decrease in fluorescence intensity (λem = 450 nm) is perceived when the concentration 

of Hg2+ exceeds 25.0 µM. When the quenching effect ((I0-I)/I0) data were plotted as a 

function of Hg2+ concentration, a very good linear correlation (R2 = 0.997) was obtained 

within the concentration range of 1.0 ~ 100.0 nM (Fig. 4.6b). Most importantly, a 

remarkable quenching effect ((I0-I)/I0 = 59%) was still attainable when the 

concentration of Hg2+ was reduced to 1.0 nM, which is below the maximum permitted 

level of Hg2+ (5.0 nM) in drinking water. All these results clearly indicate that the N-

CQDs@GACTS hydrogel is very sensitive in detecting trace amount of Hg2+ from 

water solution. Table 4.1 compares the sensing performance of N-CQDs@GACTS 

hydrogel with those of other CQDs-based optical sensors. 

 Table 4.1 Comparison of detection performances of CQDs-based composites for Hg2+ 

Fluorescent materials Lowest detection conc. References 

CQDs@Tb(TFA)3 0.55 µM Zou et al., 2020 

Eu3+/CQDs@MOF-253 6.5 nM Xu & Yan, 2016 

GA cross-linked CTS hydrogel 5.0 nM Geng et al., 2015 

CQDs-PEGDA 4.0 nM Guo et al., 2017 

CQDs-orgaosilane 1.7 nM Wang et al., 2015 

N-CQDS@GACTS hydrogel 1.0 nM This work 
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Figure 4.6 The fluorescence intensity spectra of N-CQDs@GACTS hydrogel in the 
presence of Hg2+ ion (0~100µM) (a); the fluorescence quenching rates of N-

CQDs@GACTS hydrogel under different concentrations of Hg2+ (b); time-dependent 
fluorescence intensity of N-CQDs@GACTS hydrogel(c) 

 

The response time for fluorescence quenching is another important parameter to 

evaluate the fluorescence detection performance of fluorescent probes. Fig. 4.6c shows 

the time dependent fluorescence intensity (λem = 450 nm) of the N-CQDs@GACTS 

(a) (b) 

(c) 
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hydrogel quenched with 1 nM Hg2+ excited at 350 nm. It can be seen that the 

fluorescence intensity of the N-CQDs@GACTS hydrogel remained almost unchanged 

after being immersed in the Hg2+ solution for 30 min, which indicates that the quenching 

effect of the prepared composite hydrogel film to Hg2+ is extremely fast and stable. It 

is believed that the fast mass transfer of Hg2+ ion in the porous N-CQDs@GACTS 

hydrogel enables the full utilization of the high binding capacity of chitosan hydrogel 

for Hg2+ ions, resulting in the rapid response of fluorescence quenching. 

The achieved high sensitivity, rapid response time and linear detection ranges of Hg2+ 

by N-CQDs@GACTS hydrogel reveal that the as-prepared composite hydrogel has 

great potential for practical applications in selectively detecting Hg2+ from drinking 

water or wastewater.  

4.3.6 Sensing mechanism  

Most of the sensing mechanisms are rooted in non-covalent interactions between the 

hydrogel network and external stimuli (Ji et al. 2013). Complexation of Hg2+ with N-

CQDS@GACTS hydrogel is the main cause for the fluorescence quenching in our 

system. The formation of the complex between Hg2+ with the composite hydrogel 

through coordination bonds accelerates the extinction of electron/hole non-radiation 

recombination by effective electron transfer (Liu et al., 2016), resulting in fluorescence 

quenching of N-CQDs on the surface of N-CQDS@GACTS hydrogel film. 
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Figure 4.7 High resolution and deconvoluted N 1s (a), O 1s (c) and Hg 4f (e)XPS 
spectra of N-CQDs@GACTS film before Hg2+sensing; N 1s (b), O 1s (d) and Hg 4f 

(f)XPS spectra of N-CQDs@GACTS film after Hg2+ sensing. 
 

The interaction between Hg2+ and CQDS@GACTS hydrogel film was characterized by 

XPS study. Fig. 4.7 exhibits the high resolution and the deconvoluted XPS spectra of N 
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1s and O 1s for the N-CQDs@GACTS film before and after Hg2+ sensing. The three 

distinct peaks at 398.9, 399.6 and 401.5 eV are visible for N 1s spectrum before metal 

sensing, which are related to C=N–C (chain group by crosslinking), C–N (pyridinic 

group in N-CQDs), and N–H (amino group) bonds, respectively. All the three peaks are 

shifted to higher BE to 339.2, 400.2 and 401.6 eV after Hg2+ sensing. This result 

indicates that N in all the three functional groups acts as an electron-donor, helping bind 

Hg2+ through electrostatic attraction or chelating. Moreover, Hg2+ ions are also 

complexed with O-containing groups (e.g., –OH and –COOH) on N-CQDs@GACTS 

surface through coordination bonds. This is proved by the peak shifts of O 1s from 

531.1(C=O bond) to 531.6 eV and 532.4 (C-O bond) to 532.6 eV. The high-resolution 

peaks of Hg 4f at BE of 100.1 and 104.0 eV in Fig. 6f confirm the formation of 

complexes between Hg2+ and N-CQDs@GACTS hydrogel, which provokes an 

effective electron transfer for the fluorescence quenching of the N-CQDs@GACTS 

hydrogel. 

4.4 Conclusion 

A novel N-CQDs@GACTS hydrogel film was prepared in this study and was used as 

an optical sensor to detect traces amount of heavy metal ions from water solution. FTIR 

and XPS analyses of the N-CQDs@GACTS hydrogel film indicate that N-CQDS were 

embedded into the cross-linked hydrogel matrix by weak hydrogen bond and/or 

electrostatic attraction. The resultant composite hydrogel exhibited extremely high 

sensitivity, superior selectively, rapid response and linear detection range of Hg2+ in 

aqueous media. The porous structure of the N-CQDs@GACTS hydrogel is believed to 

render a fast mass transfer of Hg2+ onto the hydrogel surface. The high oxidizing ability 

and strong chelating power of Hg2+ make it readily bind to polar functional groups on 
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N-CQDs@GACTS hydrogel, resulting the formation of new complexes through 

coordination bonds. The high resolution XPS results of N 1s and O 1s support the 

formation of complexes between Hg2+ ions and the N-CQDs@GACTS hydrogel film, 

which provokes an effective electron transfer for the fluorescence quenching of the N-

CQDs@GACTS hydrogel. 

The N-CQDs@GACTS hydrogel as an optical sensor demonstrates enhanced 

practicality in terms of response, sensitivity, selectivity, and economical pricing. It has 

great potential for practical applications in selectively detecting Hg2+ from either 

drinking water or wastewater.  
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Chapter 5 Conclusion and Recommendation 

5.1 Summary  

In this study, the N-CQDs was synthesized from citric acid and ethylenediamine 

through the hydrothermal method. The prepared N-CQDs possess bright blue light 

under UV light. By applying the design of experiment (DOE) method and statistical 

analysis, optimal preparation conditions were determined for N-CQDs. The ANOVA 

results indicated that the molar ratio of EDA to CA, the reaction temperature, and the 

interaction between these two factors are the important factors affecting the QY of N-

CQDs. The optimal reaction conditions are initial CA concentration of 0.5 mol/L, EDA 

to CA molar ratio of 1, and the reaction temperature of 180℃ based on the 3D surface 

figure. The excitation-dependent fluorescence response of the N-CQDs is due to the 

heterogeneity of the resultant N-CQDs product.  

To stabilize the N-CQDs and improve their performance on the sensing of heavy metals, 

the N-CQDs-based glutaraldehyde-crosslinked chitosan hydrogel film was synthesized 

as a fluorescence sensor. The experimental results showed that N-CQDs@GACTS 

hydrogel film is highly selective and sensitive to Hg2+ ion compared to Cd2+ and Pb2+ 

ions. The potential sensing mechanism was further studied using the XPS analysis of 

the hydrogel film, which confirmed the complexation of Hg2+ with the hydrogel. 

Complexation of Hg2+ with N-CQDs@GACTS hydrogel is believed to be the main 

cause for the fluorescence quenching of the N-CQDs@GACTS hydrogel film. 

In summary, one of the achievements of this study is the synthesis of nitrogen-doped 

carbon dots and the optimization of the reaction conditions such as the amount of the 

carbon, nitrogen precursor, and the reaction temperature. The other significant 
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achievement is the sensing of Hg2+ by the N-CQDs@GACTS hydrogel and the possible 

mechanisms of the selective sensing process based on the XPS results. 

5.2 Recommendations for future work 

In this study, a further step of purification is not applied in the synthesis process of N-

CQDs, which results in the excitation-dependent fluorescence behaviors of N-CQDs. 

Besides, the effect of reaction time is not considered when we applied the DOE method 

to the optimization as it was fixed at four hours in this study. The interaction of time 

and temperature may also have a more significant impact on the fluorescence yield of 

N-CQDs. A high fluorescence yield may be achieved by adjusting the reaction time and 

reaction temperature. 

From the sensing experiments of the N-CQDs@GACTS hydrogel film perspective, 

there are also have some limitations of the heavy metal sensing process. The currently 

metal detection experiment only focuses on three metal ions (Hg2+, Cd2+and Pb2+). In 

actual sensing applications, the industrial wastewater or pollutants may contain several 

or more different metal ions. Therefore, whether the presence of multiple ions has an 

effect on the detection of Hg2+ ion needs further examination. 

Based on the above discussion, some recommendations for future work are described 

as following: 

(1) In future research, a more stringent purification step can be used to synthesize 

excitation-independent N-CQDs product. Therefore, the aimed CQDs with average 

size can be achieved. 

(2) The extra factor like reaction time can be added to the DOE design to investigate its 

effect on the QY of N-CQDs. 
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(3) In subsequent research, other heavy metal ions such as nickel ions, cobalt ions, etc., 

can be studied in future work. 

(4) Multi-metal mixing sensing experiments can be arranged to study whether it has a 

synergistic or antagonistic effect on detecting Hg2+ ions. 
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