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Abstract

The heritability of complex diseases is usually ascribed to interacting genetic al-

terations. Many diseases have been found that are influenced by genetic factors.

Colorectal cancer (CRC) is a type of cancer starting from the colon or rectum that

seriously threatens human health, and it has the chance to spread to other parts of

the human body. The cause of CRC is multifactorial, including age, sex, intake of

fat, etc. In addition, it has been suggested that genetic factors also play an essential

role. Several genetic variations have been identified as associated with CRC. However,

they only explain a small portion of the heritability. More advanced computational

techniques are required to identify combinations of genetic factors. Recently, artificial

intelligence algorithms have became a powerful tool for biomedical data analyses. In

this thesis, I design an evolutionary algorithm for the identification of combinations

of genetic factors, i.e., single nucleotide polymorphisms (SNPs), that can best explain

the susceptibility to CRC.
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Chapter 1

Introduction

Many human diseases have been proven to pass from generation to generation [2, 3].

Abnormal genes in a specific position can lead to a high risk to contract a disease

during a lifetime or directly cause a disease phenotype [4, 5, 6]. Recent study has

proved that some diseases can be caused by a single mutation at a single gene [7].

Therefore, having a good understanding of genes can help make better predictions,

diagnose, treat, and prevent a variety of diseases [8, 9, 10].

Understanding complex diseases’ genetic etiology is challenging [11]. Many dis-

eases have a complex genetic architecture. A disease phenotype could be influenced

by a large number of genes collectively [12]. Finding genetic variants that affect a

disease not only requires investigation of independent genes but also detection of

their interactions. Hence, more powerful methods to study the genes associated with

diseases are needed.

Genome-wide association studies (GWAS) are observational studies that investi-

gate genetic variants across the genomes by analyzing population-based data of cases
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Figure 1.1: Genome-wide association studies.

GWAS analyze common variants in cases and controls to find variants associated

with a disease. Then statistical analysis is usually used to test how likely a genetic

variant is to be associated with a disease [13].

2



and controls to identify genotype-phenotype associations [14]. The primary purpose

of GWAS is to identify the associations between single-nucleotide polymorphisms

(SNPs) and traits like major human diseases by scanning the entire set of genetic

variants in different individuals. Fig.1.1 shows the procedures of GWAS. GWAS have

revolutionized the field of complex disease genetics over the past decade, providing

numerous compelling associations for complex human traits and diseases [1].

GWAS aim to find SNPs with the strongest association with a disease. Research

have proven that colorectal cancer is affected by multiple SNPs instead of one single

SNP [15]. The interactions between SNPs are important to analyze and have signifi-

cant genetic meaning. Therefore, finding disease-associated genes can be considered

as a data selection problem. Data selection aims to find the optimum samples or

features for the learning method to achieve the best performance [16, 17].

Machine learning, as a branch of artificial intelligence, provides efficient ways to

analyze a large amount of data. Machine learning algorithms build a mathematical

model of sample data, known as “training data”, in order to make predictions or de-

cisions without being explicitly programmed to perform the task [18]. With the rapid

development of numerical methods in recent years, increasingly efficient approaches

have helped researchers to solve complex problems in many areas. Machine learning

methods for analyzing big data can help reduce costs and save time in the mining

process [19]. An increasing number of machine learning methods that help generate

multiple associated results in the human system have been devised [20, 21].

Evolutionary computing is a sub-field of artificial intelligence; it is a technique

based on the Darwinian principles of natural selection and evolution [22, 23]. The

fundamental metaphor of evolutionary computing relates this powerful natural evo-
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lution to a particular style of problem-solving [24]. Evolutionary computing can be

used in a wide range of problems, and it can produce highly optimized solutions. A

great number of applications of evolutionary computing have been developed. Evo-

lutionary computing is widely used in genetics study today and it has been proven

that evolutionary algorithms can exhibit a good performance in genome-wide asso-

ciation studies [25, 26]. Evolutionary computing has many advantages compared to

other computational methods. Besides its conceptual simplicity, the broad applica-

bility is very impressive [27]. Moreover, the great potential of using knowledge and

hybridization with other methods gives evolutionary computing more flexibility.

Genetic algorithm (GA) has become an extraordinary method to solve optimiza-

tion problems. GA is a large class of evolutionary algorithms that are commonly

used to generate high-quality solutions for optimization and search problems [28].

GA can evolve potential solutions of a problem in the population and eventually find

an answer capable of solving the problem. Many researchers have applied GA to solve

various complex problems [29, 30].

The inheritable disease that we study is colorectal cancer (CRC). It is the de-

velopment of cancer from the colon or rectum [31]. It is the fourth most worldwide

common cause of cancer death, after lung, stomach, and liver cancer [32]. It is the

second leading cause of cancer death in women and the third for men [33]. However,

our understanding of this disease is still limited. The lack of understanding of dis-

eases significantly limits patients’ treatment. Some studies have proved that there

are several subtypes of colorectal cancer [34]. The existence of subtypes increases the

complexity of studying colorectal cancer. Generally, colorectal cancer can be divided

into categories of microsatellite instability (MSI), and microsatellite stability (MSS),
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based on its genetic instability [35]. Each subtype displays different pathological and

genetic signatures. This makes the treatment of colorectal cancer more difficult and

less efficient.

In this thesis, we propose a GA method to analyze a GWAS dataset for colorectal

cancer. This thesis’s primary contribution is to identify potential SNPs associated

with colorectal cancer aross the human genome. Our method is not only to consider

feature selection, but also to concurrently involve sample selection. Our research

starts by processing the dataset of colorectal cancer to ensure the quality of the

dataset. Then we construct the GA method with the optimised parameters. From

the results of the GA method, our GA method shows an excellent performance. We

also find some close relationships between cases in the dataset, which is helpful to

gain insight into the subtypes of colorectal cancer.
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Chapter 2

Background and related work

2.1 Colorectal cancer

In the modern world, more than 1 million people contract colorectal cancer every

year. The disease-specific mortality rate is nearly 33% in the developed world. [36]. In

2010, colorectal cancer caused 715,000 deaths, and this number significantly increased

compared to 490,000 deaths in 1990 [37]. It can be predicted that this number will

continue to keep growing in the future.

Colorectal cancer (CRC) is the third most commonly diagnosed cancer among

humans, and it is the second-highest cause of cancer occurrence and death for men

and women [38]. Based on the statistics from 2007 to 2009, the rate that people in

the US diagnosed with colorectal cancer in their life is 4.96% [39]. In 2017, there were

135,430 individuals projected to be newly diagnosed with CRC and 50,260 deaths

from the disease. The mortality of colorectal cancer is still very high in Europe, and

it is keep growing in some countries [40]. Fig.2.1 shows that 12% of all estimated
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(a) Cases (b) Deaths

Figure 2.1: Colorectal cancer statistics.

The statistics shows that colorectal cancer is one of the most serious cancer

nowadays.

new cancer cases are colorectal cancer cases in 2020. Colorectal cancer also accounts

for 12% of all cancer deaths. In Japan, the incidence and mortality of colorectal

cancer have experienced substantial growth recently. The number of deaths caused

by colorectal cancer per unit of population has increased around tenfold during the

last 50 years. Mortality due to colorectal cancer is on the rise, surpassing 49,000 in

2015 in Japan [41]. From those statistics, it is easy to understand that colorectal

cancer has become a serious problem in the world.

From the recent study of colorectal cancer epidemiology, there are many factors

that can be seen as risk factors for colorectal cancer, including older age, male sex,

high intake of fat, sugar, alcohol, and lack of exercise [42]. The risk of colorectal cancer

diagnosis increases after the age of 40, and rises sharply after age 50 [43]. High fat

intake, especially animal fat, is a major dietary risk factor of for colorectal cancer

[44]. People who lack physical activity have a higher risk of colorectal cancer than

people who are regularly physically active [45]. High consumption of cigarettes or
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alcohol also plays an important role in the epidemiology of colorectal cancer [46, 47].

Moreover, a plethora of research has shown that genetic mutation is one of the

main factors which can cause CRC [36, 48, 49, 50, 51]. Heredity is one factor of this

disease [52], which means it could be passed on from generation to generation. Up to

20% of patients who develop colorectal cancer have other family relatives who have

been affected by this disease [53]. Around 5 to 10% of colorectal cancer cases are a

consequence of acknowledged hereditary conditions [54]. Five to six percent of the

world wide population have a lifetime risk of colorectal cancer in general because of

heredity [55]. Hence, to help people, gaining more information about the heredity of

this disease is important.

It has been clearly proven that colorectal cancer evolves through multiple pathways

to many subtypes [34, 56]. Based on its genetic instability, this disease can be defined

as having microsatellite instability (MSI) or microsatellite stability (MSS) [35]. MSI

is the condition of genetic hypermutability that results from impaired DNA mismatch

repair. MSS cancers are characterized by changes in chromosomal copy number and

show worse prognosis. The existence of subtypes increases the complexity of colorectal

cancer, and makes treatment more difficult and less efficient.

2.2 Genome-wide association study

With the completion of the human genome project [57] that helped to map the nu-

cleotides contained in a human genome, relevant research gained a great boost in

recent decades [58, 59]. The goal of the human genome project is finding the genome

pairs that construct human DNA, and identifying and mapping all of the genes of
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the human genome from both a physical and a functional standpoint. Genetic mark-

ers spanning the whole human genome have empowered widespread mapping efforts

based on linkage analysis, using families with several affected individuals, resulting

in the discoveries of multiple genes for diseases.

Genome-wide association study (GWAS or GWA study) is one of the most popular

observational studies of the genome-wide set of genetic variants in different individ-

uals using single-nucleotide polymorphisms (SNPs), in order to see if there is any

association between variants and traits [60, 61, 62]. GWAS is an approach that stud-

ies genetic variants by scanning the genome samples of diseased cases and healthy

controls [63]. It uses linkage analysis to map genome loci that have an effect on dis-

ease or other traits. The primary goal of GWAS is to understand more about biology

which will advance better treatment or prevention.

In the past decade, many new observations results made by GWAS have given us

more understanding of disease [64]. Fig.2.2 shows the development of GWAS in the

past ten years, with increasing discoveries. About 10,000 strong associations between

genetic variants and complex traits have been found [1]. GWAS has proved that it

is a powerful tool to find the relationship between diseases and human genes [65].

A plethora of research on GWAS has shown that there is a relationship between

some traits and the human genome [60, 66]. The Wellcome Trust Case Control

Consortium has proven that many SNPs have associations with some common diseases

[67]. Their analysis of 16,179 cases and controls was used to study seven common

diseases, including diabetes, rheumatoid arthritis, and hypertension.

The most common method of GWAS is the case-control setup, which compares

two large groups of individuals, one healthy control group and one case group affected

9



Figure 2.2: GWAS SNP-trait discovery timeline [1].

In the last ten years, the development of GWAS was rapid. Increasing discoveries

help to gain more insights from human genes.
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by a disease. In each group, every individual is genotyped for the majority of common

known SNPs. Then each SNP is investigated to check if allele frequency is significantly

altered between the case and the control group.

Although GWAS successfully provides a way to study interactions between genes

and diseases, there are still some obstacles. With the impressive development in

genomics, the size of genetic data has experienced a rapid increase. With the de-

velopment of gene study, more dimensions and more samples are being added to

biological data. Because of the massive size of the gene data, the study could be very

challenging. Overfitting is one of the biggest problems of high dimensional data [68].

The required multiple tests to account for the large number of associations are also a

difficulty [69]. Thus, in order to gain more insights from genes, cooperative endeavors

are needed with various other research areas, such as computer science and statistics.

2.3 Machine learning

Machine learning, as a branch of artificial intelligence, provides multiple methods to

deal with complex problems, such as classification, regression, clusters, etc. Machine

learning is the study of computational algorithms that can find the solution to prob-

lems by using example data (training data) or experience in order to make predictions

or decisions [70]. Based on the existence of labels in the dataset during the learning,

machine learning could be divided into three broad categories, supervised learning,

unsupervised learning, and reinforcement learning. In supervised learning, the ma-

chine is trained with the dataset and each sample’s desired outputs to learn the rule

that maps inputs to outputs. Unsupervised learning looks for undetected patterns in
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a dataset without labels. Reinforcement learning aims to find out what action should

be taken in an environment in order to maximize the rewards. The variety of machine

learning is very helpful to solve complex problems.

The development of machine learning in the last several decades has been very

rapid. Many research areas have applied machine learning methods for their studies.

With the development of machine learning in recent decades, the bioinformatic area

experienced extensive growth [71, 72]. Moreover, the outcomes of the combination

of genome-wide association studies and machine learning have been proven positive

[73, 74].

Currently, machine learning methods are widely used for genome-wide association

studies. Yang et al [75] provided a positive-unlabeled learning algorithm by grouping

the dataset in four groups and using a weighted support vector machine to build a

classifier to identify general disease genes. The results showed that the performance of

their method outperformed three other advanced techniques. They also demonstrated

20 novel disease genes and 8 specific disease classes in total, such as cardiovascular

diseases and endocrine diseases. The research of Chun et al [76] used a maximum

entropy model to filter the dictionary they built to create a system that can auto-

matically extract helpful information, especially the relationship between diseases and

genes, from biomedical data sources. It substantially improved precision by 26.7% and

slightly decreased the recall of dictionary matching. Maciukiewicz et al [77] applied

classification-regression trees and a support vector machine method to build predic-

tive models of duloxetine outcomes in a major depressive disorder dataset. They

compared the performance of two methods and listed some robust variants across

five folds of the nested cross-validation. Han et al [78] proposed a method using the
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Markov Blanket to detect epistatic interactions in case-control GWAS. This method

can be used to detect SNPs that have a strong association with diseases. It also can

calculate the association between variables to implement a heuristic search.

Machine learning approaches have provided a great potential for genetics study.

However, because the original data usually contains low quality content, using their

raw form to deal with large real data is still limited [79]. The conventional machine

learning method has also been challenged by the dramatic growth of the dimension

size of biological data. The dimensionality of datasets creates considerable difficulty

in designing machine learning methods. Algorithms designers have put a great deal of

effort into building efficient methods to extract the most suitable content for learning

from raw data.

Data selection is one of the main problems in machine learning [80]. It aims to

select a subset of data that is highly discriminatory. With data selection, the classifi-

cation method can achieve a better accuracy [81]. Feature selection helps to simplify

models, shorten training time, avoid the curse of dimensionality, and reduce overfit-

ting [82]. Sample selection is also essential for data mining [83]. Compared to feature

selection, sample selection receives less attention. The advantages of sample selection

are its low cost, closer relationship, and fewer outlying samples. Simultaneous sam-

pling and feature selection has been shown to be an excellent method to deal with

classification problems [84].

Using data mining and machine learning methods to explore complex genotype-

phenotype relationships is a challenge for GWAS, because associations between ge-

netic variants and traits are usually not very informative [85]. In order to find diseases

associated SNPs, GWAS usually needs to deal with a huge number of individuals,
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containing many cases and controls. Overfitting and multiple testing are the biggest

challenges of GWAS. To deal with a dataset with a great deal of information would be

extremely time-consuming and energy-consuming without the help of efficient meth-

ods.

2.4 Evolutionary computing

2.4.1 Overview

Evolutionary computing [24, 86] is a subset of machine learning. It is a technique

that simulates evolution to find solutions to complex problems [87]. It is a computing

method with a special flavour that draws inspiration from the natural evolutionary

process. Given a population that contains a number of individuals within some spe-

cial environment that has limited resources, competition for those resources leads to

selection. Those individuals strive for survival and reproduction. Individuals’ fitness

is the key point that determines if they can survive. The fitter they are, the higher is

the chance they can survive and generate the offspring. Computer scientists gained

inspiration from this process. Based on this theory, they developed evolutionary com-

puting [88]. In the problem-solving process, as it showed in Fig.2.3, a collection of

potential solutions represents the population. Their fitness is the quality of solving

the problem. Those solutions with better fitness have a good chance to survive and

become parents to pass on their traits. With crossover, individuals with good fitness

could generate new offspring that carry their genome, and the new individuals could

have higher fitness.

14



Figure 2.3: Evolutionary computing

Generally, evolution computing contains these steps.
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In the last several decades, evolutionary algorithms have been widely used in many

areas [89, 90]. In industrial design, Keane et al [91] applied the evolutionary algorithm

to the design of the case of a satellite dish holder boom that connects the satellite’s

body with the dish needed for communication. The structure that the evolutionary

algorithm generated was almost twenty times better than the traditional structure.

In the finance area, Schulenburg et al [92] used a learning classifier system based

on evolutionary computing to evolve sets of rules to model the behaviour of stock

market traders. They used ten years of trading history as the input to evolve trading

agents. The results show the evolved trading agents greatly outperformed popular

strategies. Compared to other methods such as neural networks, the evolved traders

are easier to examine. In the biology area, Eshelman et al [93] used an evolutionary

algorithm to deal with incest prevention by simulating a known natural phenomenon.

The results show that computer-simulated evolution benefits from incest prevention,

which strongly confirms that incest brings negative effects to evolutionary processes.

2.4.2 Design of evolutionary algorithm

The effectiveness of an evolutionary algorithm depends on many aspects, such as

representation, mutation rate, etc. The parameters are varied, and this plays an

important role in evolutionary algorithms. Setting different parameters could lead to

different results and performance. Many studies have proven that the performance of

an evolutionary algorithm depends very much on the parameters setting [24]. Good

parameter setting has a significant influence on the final performance of EA.

The parameters of an evolutionary algorithm can be divided into two types, sym-
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bolic parameters and numeric parameters, based on their domains [94]. Symbolic

parameters include parameters with a finite domain and no sensible distance metric

or ordering, which defines the essence of an evolutionary algorithm, e.g., crossover

operator. Numeric parameters are those parameters that are a subset of the real

numbers, e.g., population size. This difference has a great influence on searchability.

To find the best setting for numerical parameters, heuristic search and optimization

methods can be used. For symbolic parameters, there are not many options except

sampling.

Evolutionary algorithm design includes all the detailed decisions that are required

to be specific. The main challenge of the design process is that every single value

of parameters may greatly influence the performance of the evolutionary algorithm.

Therefore, the design of an evolutionary algorithm generally is an optimization prob-

lem.

Parameter tuning is one of the most common methods to specify values for the

evolutionary algorithm parameters, where the parameters are defined before the im-

plementation, and all parameters should remain fixed during the run. Solving the

tuning problem is one of the biggest challenges of an evolutionary algorithm. Param-

eters have the effect of interaction, which means optimizing parameters one by one is

not a wise option. Fore a satisfactory performance, specific problems may require an

evolutionary algorithm with a specific setup [22].

The most common way to measure the performance of an evolutionary algorithm

is through solution quality and algorithm speed. Solution quality can be represented

by the fitness function. As for algorithm speed, the search effort needs to be measured,

such as the number of fitness evaluations. Hence, the evaluation process can be done
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by defining the performance as the best fitness at termination, given a maximum

number of generations.

The first step of an evolutionary definition is the representation, which sets up a

bridge between the original problem context and the problem-solving space. Repre-

sentation of an evolutionary algorithm expresses the phenotype of possible solutions

to genotypes. To solve an optimization problem, the most popular way is to use an

integer string as chromosomes of individuals to be the representation to illustrate

candidate solutions.

The fitness function plays a role that expresses the requirements the population

should eventually adapt to meet and provides the basis for selection. It is a function

that assigns fitness values to all potential solutions and determines how good they

are.

The population of an evolutionary algorithm holds potential solutions. Mostly, the

size of the population is supposed to be constant and does not change during evolution,

in order to create a more competitive environment to generate new individuals with

high fitness.

Parent selection allows individuals with better fitness have a higher chance to

become parents of the next generation. Individuals with lower fitness are usually

assigned a small chance. The role of parent selection is to improve the quality of the

population.

Commonly, variation operators include mutation and crossover. Their job is to

generate new individuals from old ones, which involves producing new potential so-

lutions. Mutation is a stochastic method that is applied to offspring and slightly

changes their genotype. Because mutation is a random and unbiased change, it could
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help the learning process to avoid a local optimal solution [95]. Crossover method

has to merge two parent individuals’ genotypes into one or two offspring. Mostly, the

decision of what parts of parents should be combined is random, which also makes

crossover a stochastic method.

Because the population size is constant, some individuals should be removed from

the population when new offspring are generated. The role of survivor selection is

to distinguish among individuals based on their quality and keep the average quality

level of the population. Unlike parent selection, which is stochastic, survivor selection

usually is deterministic. Thus, survivor selection commonly removes individuals with

the lowest fitness.

2.5 Genetic algorithms

Genetic algorithms are the most widely known method that belongs to the class of

evolutionary algorithms. Genetic algorithms were first introduced by John Holland

in 1960 and were extended by his student in 1989 [96]. After experiencing decades of

development, it has been applied to many areas [97, 98, 99].

Genetic algorithms are mainly used to solve optimization and search problems [28].

An abundance of research has shown the power of genetic algorithms to solve complex

optimization problems. Gong and Yang [100] applied a genetic algorithm for an image

processing study. A genetic algorithm was used to optimize the compatibility between

corresponding points and the continuity of the disparity map by applying it using the

quadtree structure in their study. The results show the algorithm generates better

disparity maps than iterative-based cooperative algorithms and the SEA algorithm.
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Srivastava et al [101] used a genetic algorithm to optimize software testing efficiency.

They applied a genetic algorithm to cluster, in order to find the most critical path in

a program. The results show the algorithm is better than the exhaustive search and

local search techniques.

Genetic algorithms have also proved to be a good method to perform variable

selection [102]. Tan et al [103] used a genetic algorithm for attribute selection in data

mining. They proposed a GA-SVM hybrid method that implements GA to search

for the best attribute set to produce a good classification performance. The results

showed a big improvement after applying the GA-SVM hybrid method. Sikora et al

[104] used a genetic algorithm to do sample and feature selection in their study. The

results show a huge improvement by using a genetic algorithm to solve data mining

problems.

In this thesis, a genetic algorithm is applied to a genome-wide association study

to find the association between the human genome and colorectal cancer. The main

method that is used in this thesis is an extension of standard genetic algorithms. We

use double chromosomes instead of a single chromosome. A profusion of research has

proved that multiple chromosome genetic algorithms can produce accurate results

[105, 106, 107]. Cavill et al [108] introduced a genetic algorithm that could perform

simultaneous variable and sample selection. In their genetic algorithm method, they

used two fixed lengths binary strings as the chromosome to represent sample selection

and feature selection. They implemented this method in a metabonomics study to

predict the toxicity of the liver and kidney. The average accuracy of this method

was 64.52%. Additionally, they found some metabolites that are associated with

hepatotoxicity or nephrotoxicity. However, this method has a good potential for
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improvement. The behaviour methods are very simple. All the behaviours methods

this study used are the most fundamental methods. The parameters of this genetic

algorithm method were not selected by a benchmark. This means the performance

still had a big climbing space. We upgraded this method by using different behaviour

methods, including but not limited to selection function, mutation function, and

crossover function. A better performance for the old mechanism can be expected by

upgrading the behaviour functions.

2.6 Summary

In this chapter, we first discussed colorectal cancer and its risk. We then introduced

the concept, the background, and the challenge of genome-wide association studies.

We showed the background of machine learning and listed some GWAS that used

machine learning methods. Then we described the evolutionary computing technique.

We showed the related works of evolutionary computing, and the usual design of an

evolutionary algorithm. Finally, we introduced genetic algorithms and demonstrated

some of its related works. It enhanced many research areas to gain new insights.

Genetic algorithms have shown a great ability to solve complex problems. However,

only a small part of GWAS studies have applied genetic algorithms. The performance

of genetic algorithms on GWAS is still unclear and needs to be tested. The connection

of GWAS and genetic algorithms is worth pursing for its good potential.
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Chapter 3

Data and Methods

3.1 Data Processing

The data we used in this research are genetic variants in diseased cases and healthy

controls. The colorectal cancer GWAS case-control dataset was collected from New-

foundland and Labrador, Canada. Two datasets were obtained from the Newfound-

land Familial Colorectal Cancer Registries (NFCCR). These two dataset include

265,195 SNPs in total. The participants contain 656 cases and 496 controls. The

cases in this data set were diagnosed from 1999 to 2003. All the participants were 20

to 74 years old. The details of the original data are shown in Table 3.1.

To make sure the dataset is suitable for the machine learning analysis, data prepro-

cessing needs to be done. Plink [109] is a whole-genome association analysis toolset

that is designed flexibly to perform a wide range of basic, large-scale genetic anal-

yses. It is a free, open-source tool to perform genetic data processing. It is widely

used in GWAS for data management, basic statistics, and linkage disequilibrium (LD)
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Dataset1 Dataset2

SNPs 1236084 1134514

Individuals 696 656

Males 418 393

Females 278 263

Total 696 656

Cases 200 656

Controls 496 0

Table 3.1: Data description.

calculation, etc.

Firstly, we used Plink to merge two datasets based on the SNPs that they both

have. The SNPs of these two datasets are not completely the same. We want as many

samples as possible to have a better performance. Hence, we need to merge these two

datasets before the computational investigation.

3.1.1 Quality control

We used Plink to apply quality control [110]. As well as applying individual quality

control, we also conduct marker quality control to maximize the number of markers

that remain in the merged dataset [110].

3.1.1.1 Individuals’ quality control

The goal of this step is to remove individuals with low quality data from the dataset.

Firstly, individuals with discordant sex information need to be deleted. We calculated
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the mean homozygosity across X chromosome markers for each individual to remove

individuals with discordant sex data.

The sex chromosome is not useful for data selection because it is an aneuploidies

and genotyping artifact [111]. Sex chromosomes may lead to ambiguous results, we

remove the sex chromosome from the dataset to optimize the performance.

Some samples in this dataset are not fully filled. Individuals with a high missing

data rate are identified. Also, heterozygosity plays a key role in the quality of the

dataset. High heterozygosity denotes many genetic variabilities. Low heterozygosity

means little genetic variability. Too high or too low heterozygosity is not normal.

Individuals with unusual heterozygosity should be removed. We calculate the het-

erozygosity value for every individual and remove the individuals beyond ±SD. The

formula that calculates heterozygosity is:

PM =
N(NM) −O(HOM))

N(NM)
(3.1)

where N(NM) is the number of non-missing genotypes, and O(HOM) is the number

of homozygous genotypes.

3.1.1.2 Makers’ quality control

The goal of the makers’ quality control is to remove substandard SNPs. Some SNPs

have a high missing rate. These SNPs could cause difficulty for later work. Hence,

we removed those SNPs with a missing rate higher than 0.05.

Checking Hardy-Weinberg Equilibrium (HWE) is an important step in the quality

control analysis of markers in GWAS data [112]. In the Hardy-Weinberg theory, allele

and genotype frequencies are predictable from generation to generation. The bias
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of Hardy-Weinberg equilibrium could mean potential genotyping errors, population

stratification, or even actual association to the trait under study [113]. Those SNPs

that are greatly associated with the disease and also show highly significant departures

from HWE, especially in controls, should be analyzed. We checked the deviation from

HWE in the controls and generated a p-value for HWE’s deviation for every SNP.

Then SNPs with an HWE greater than 1 × 10−4 were removed.

Minor allele frequency (MAF) is also an important metric to filter SNPs for qual-

ity control. The statistical power of rare SNPs is deficient. SNPs with extremely

low minor allele frequency should be removed from the dataset to obtain a better

performance. We calculate the MAF for every SNP and only keep SNPs with an

MAF greater than 0.05.

3.1.1.3 Linkage disequilibrium pruning

We did Linkage Disequilibrium (LD) pruning to delete those variables that are du-

plicated or related to others. Because of the genetic diversity of the samples and the

density of SNPs, considerable redundancy could exist in loci, meaning that plenty

of SNP pairs may have an extremely high linkage disequilibrium [114]. It is recom-

mended to remove SNPs based on high levels of pairwise LD [115]. We calculate the

Pearson Correlation Coefficient for every pair of SNPs:

r2ij =
(pij − pi × pj)

2

(pi − p2i ) × (pj − p2j)
(3.2)

where pi,pj are minor allele frequencies of ith and jth SNP, pij represent the frequency

two-marker haplotypes. We remove one SNP from the correlated pair with r greater

than 0.6, keeping the one with the largest minor allele frequency.
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We also calculate the Identity by Descent (IBD) of all pairs of samples based on

the reduced marker set. The value of IBD demonstrates the potential relationship

between the two samples. The higher the IBD value, the closer relationship they

have. We remove one sample from each pair with an IBD value greater than 0.25.

3.1.1.4 Imputation

After previous steps, some missing values can still be found in the dataset. To com-

plete the dataset, regarding the rest of the missing SNPs, we filled it with the most

frequent value of the corresponding SNPs [74].

3.1.2 Filter

After the preliminary processing, we had a dataset that contains 18,5180 SNPs and

1,098 individuals. To deal with a dataset that contains a huge amount of features

would be extremely time-consuming. After the benchmark, we estimated it would

take more than 20 days to finish our algorithm on this dataset. Hence, the dataset

needed more processing. We decided to implement a data filter to reduce the number

of SNPs to 1000.

3.1.2.1 ReliefF

Relief [116] is a well-known filter method. It calculates the weight for each feature

based on feature value differences between nearest-neighbour instance pairs. It uses

Euclidean distance to calculate the distance. Features with top-weight are selected

to remain. An observed feature difference between the feature and a neighbouring

instance that has the same class leads to a weight decrease, called a hit. However, an
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observed feature difference between the feature and a neighbouring instance that has

a different class leads to weight growth, called a miss.

Kononenko developed a new feature selection method, ReliefF, inspired by Relief

[117]. Instead of using Euclidean distance, ReliefF uses a taxicab metric to calculate

the distance. The distance calculation is :

dist(Si, Sj) =
∑
a∈A

diff(a, Si, Sj) (3.3)

where A means all SNPs. The difference(diff) calculation is:

diff(a, Si, Sj) =


0 genetype(a, Si) == genotype(a, Sj)

1 genetype(a, Si)! = genotype(a, Sj)

(3.4)

Hence, an individual’s nearest neighbour is the individual that has the most amount

of SNPs that are the same genotype.

3.1.2.2 SURF and TURF

Spatially uniform ReliefF (SURF) is an extension to ReliefF developed by Greene et al

[118]. They select neighbours within a constant distance as the nearest neighbours of

the instance instead of choosing a fixed number of nearest neighbours.

The tuned ReliefF (TURF) algorithm [119] provides a way to improve the perfor-

mance of ReliefF by running it multiple times. It is widely used to address noise in

large datasets by doing recursive elimination of features and the iterative application

of Relief. It is recommended to use an iterative Relief approach to deal with datasets

with large size [120].

We decided to use a method that combined tuned reliefF (TURF) [119] and spa-

tially uniform reliefF (SURF) [118] to filter the dataset. It has been proved that

27



Figure 3.1: The SURF + TURF algorithm

using the combination of TURF and SURF can produce an accurate performance

[121]. The pseudocode of this combination is shown in Fig.3.1, where F and S denote

the features (SNPs) and samples, MD is the mean distance of all samples, and ph is

the phenotype.

After finshing the data process, 997 SNPs remain in the dataset. This includes

1,098 individuals, as the samples contain 626 cases and 472 controls. The dataset’s

details are shown in Table 3.2.
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Variables Amount

SNPs 997

Samples 1098

Case 626

Control 472

Table 3.2: Dataset after preprocessing and filtering

3.2 Methods

In this thesis, we use a genetic algorithm [88], a branch of the evolutionary algo-

rithm, to achieve research objectives. The mechanisms of the evolutionary algorithm

were inspired by biological evolution. This process includes reproduction, mutation,

recombination, and selection. Each individual in an evolutionary algorithm is a po-

tential solution to the problem. Furthermore, every individual’s quality is determined

by a fitness function. Then the evolution of the real biosphere is simulated. New gen-

erations are produced and those individuals with high quality are selected, until the

best solution is found or the max number of generation is reached.

The genetic algorithm method we use in this thesis is an extended version of the

traditional genetic algorithm method. Unlike the most common genetic algorithms

method, which has only one chromosome, this method uses two chromosomes, which

are two binary strings that represent sample and feature selection.
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3.2.1 Classifier

To evaluate individuals’ fitness, we need a suitable classifier for the fitness function.

We tested 4 different classifiers, K-Nearest Neighbours algorithm (KNN) [122], Sup-

port Vector Machine (SVM) [123], random forests (RF) [124], and Gradient Boosting.

K-Nearest Neighbours is one of the most popular statistical methods. KNN classi-

fies the target by a plurality vote of its neighbours. Support Vector Machine is a

supervised machine learning algorithm that is widely used to deal with classification

problems and regression analysis. SVM solves problems by constructing a hyper-

plane that is defined by the largest distance to the nearest training-data point of any

class. Random forests is a widely used ensemble learning method for classification,

regression, and other tasks. It finishes tasks by building multiple decision trees and

outputting the class that is the most common value of the classification. Gradient

boosting is a technique that generates prediction models in the form of an ensemble of

weak prediction models, like decision trees, for regression and classification problems.

We used the receiver operating characteristic (ROC) curve to compare the per-

formance of different classifiers. The ROC curve shows the trade-off between the

true positive rate and the false positive rate. Classifiers with curves that closer to

the top-left corner indicate better performance. We recorded the accuracy and the

ROC-AUC score of the four classifiers. The ROC-AUC score presents the area under

the roc curve. Comparing their performance on the dataset, shown in Table 3.3,

Fig.3.2, Fig.3.3, Fig.3.4, and Fig.3.5, the performance of SVM is better than that of

other classifiers. Therefore, we decided to use SVM for computing the fitness function

prediction accuracy.
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Classifier Accuracy

KNN 0.48521312805716477

SVM(C=1) 0.6932332499304976

RF(N=10 ) 0.5908632569183028

Gradient Boosting 0.6102618548490109

Table 3.3: Mean accuracy of classifiers

Figure 3.2: KNN ROC Curve.

This demonstrates of the performance of K-Nearest Neighbours on the original

dataset.
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Figure 3.3: SVM ROC Curve.

This demonstrates of the performance of Support Vector Machine on the original

dataset.
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Figure 3.4: RF ROC Curve.

This demonstrates of the performance of random forests on the original dataset.
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Figure 3.5: GB ROC Curve.

This demonstrates of the performance of gradient boosting on the original dataset.
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3.2.2 Parameters tuning

To have excellent GA performance, finding a set of the most suitable parameters

is essential. We performed parameter tuning of our GA. The parameters of GA

normally include crossover probability and mutation probability. Population size is an

essential factor that could affect the performance of GA. Because we use tournament

selection as the parents selection in this GA method, the size of the tournament is

also important. Hence, all those four parameters need to be optimized in parameter

tuning.

We extracted a small subset that contains 100 features and 100 samples from the

dataset for parameters tuning. All features were randomly selected. The numbers

of cases and controls in the subset were equal. We tested 18 different combinations

of mutation rate, crossover rate, and tournament size. Each combination was run 10

times on the small subset. Then we collected each combination’s average accuracy.

By comparing their performance, the best parameter combination is 0.3 for mutation

rate, 0.7 for crossover rate, and 15 for tournament size. The results of parameter

tuning are shown in Table 3.4.

For population size, we tested two different values, 100 and 1000, on the small

data subset. The other parameter values were 0.3 for mutation rate, 0.7 for crossover

rate, and 15 for tournament size. The results show that the GA with 100 individuals

in the population have better performance, 0.68, compared to the accuracy of GA

with 1000 population size, 0.65. We decided to set the population size to 100.
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Mutation rate Crossover rate Tournament size Accuracy

0.3 0.3 5 0.598718258

0.3 0.3 10 0.60094505

0.3 0.3 15 0.615822117

0.3 0.5 5 0.634188042

0.3 0.5 10 0.637262879

0.3 0.5 15 0.618997698

0.3 0.7 5 0.707411643

0.3 0.7 10 0.718067985

0.3 0.7 15 0.720809128

0.5 0.3 5 0.625417945

0.5 0.3 10 0.623152186

0.5 0.3 15 0.621603929

0.5 0.5 5 0.716424847

0.5 0.5 10 0.704259803

0.5 0.5 15 0.697076913

0.7 0.3 5 0.705606232

0.7 0.3 10 0.685080314

0.7 0.3 15 0.697148618

Table 3.4: Parameter tuning
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Parameters Setting

Representation Double binary Strings

Mutation Bit flip

Mutation rate 0.3

Crossover method Two-point crossover

Crossover rate 0.7

Parent selection Tournament selection

Tournament size 15

Survivor selection Fitness-based replacement

Fitness function SVM accuracy

Table 3.5: Parameters setting.

3.2.3 Proposed GA

After the parameter tuning, the final setting of our GA is shown in Table 3.5. The

process is shown in Fig.3.6.

3.2.3.1 Representation

In this study, we apply a double chromosome representation of the genetic algorithm.

The two chromosomes represent the result of sample selection and feature selection

as the phenotype. Every bit of a binary string demonstrates if the corresponding

feature or sample is selected, where 1 is positive and 0 is negative. Each individual

represents a candidate selection of samples and features.
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3.2.3.2 Population initialization

First of all, generate the population which contains 100 individuals that hold possible

solutions. The chromosomes of individuals are randomly generated. Every bit of

chromosome has a half chance to be 1 or 0. After the whole population is generated,

evaluate all individuals’ fitness to prepare for the evolution process.

3.2.3.3 Fitness function

Because the number of the cases is much bigger than the controls in the dataset,

using regular accuracy as the fitness of individuals would let case samples dominate

the sample selection result. To avoid that, we used balanced accuracy in this method.

Unlike the regular accuracy calculation that only considers true positive predictions,

balanced accuracy considers not only true positive predictions but also involves true

negative predictions. The calculation of balanced accuracy is shown below:

Balanced accuracy = (
TP

TP + FP
+

TN

TN + FP
)/2 (3.5)

where TP, FP, TN, and FN denote true positive, false positive, true negative, and

false negative.

Additionally, we adopted ten-fold nested cross-validation to define the fitness of

every individual in the population. Each time an individual is being evaluated, ran-

domly separate the samples, which are selected by the corresponding individual’s

sample selection phenotype, into ten partitions, and keep the features that are chosen

by the individual’s feature selection phenotype. Then, apply SVM ten times to de-

termine the balanced accuracy. In each of the ten determinations, the SVM classifier

using nine partitions and the classifier is evaluated on the remaining testing partition.
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The mean balanced accuracy that is generated by SVM is the fitness of the individual.

3.2.3.4 Parent selection

Next, the evolution process begins. To allow better individuals to become parents of

the next generation, high-quality individuals should be given more opportunities to

become parents. Nevertheless, low-quality individuals in the population should have

a small, but positive chance to be parents. We use tournament selection to select

individuals as the parents to generate new individuals. 15 individuals are randomly

selected from the population to become a group. Then the individuals with the best

fitness in the group are chosen to be the parents, in order to produce new potential

solutions for the optimization problem.

3.2.3.5 Crossover and mutation

To create new individuals from old ones, the population needs variation to generate

a new potential solution. Crossover and mutation are the main variation operators

in evolutionary algorithms.

In order to merge information from two parents with high fitness genotypes, off-

spring that combines both of those desirable features should be produced. Two-point

crossover is one of the most popular crossover methods used in genetic algorithms. It

randomly picks two points on the genotype of parents individuals and switches the

middle part between these two points to generate offspring.

If an evolutionary algorithm only performs crossover during the evolution process,

it could be easily trapped in a locally optimal solution. To avoid this, the population

needs some random, unbiased changes. In this study, the mutation method is bit
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Figure 3.6: The evolution process

flipping. When a mutation occurs, every bit of the individual has a 50% chance to

changed from 1 to 0 or 0 to 1.

3.2.3.6 Survivor selection

Unlike parent selection, which is stochastic, survivor selection is deterministic. Since

the population size is fixed to 100 and we want to favour the individuals with higher

fitness, the next step is eliminating those individuals with the worst fitness to keep

the quality of the population as advantageous as possible. The same number of

individuals as the amount of newly created offspring are deleted.

The end of the survivor selection is the end of one generation. After generating the

high fitness parent’s new offspring and removing low fitness individuals, the quality

of the population will be improved. Then this evolution process is repeated until the

genetic algorithm reaches the max number of generations.

40



3.3 Results visualization

In order to obtain more details from the working of the genetic algorithm, we use

different visualizations in order to have a better view of the results. Data visualization

is an important part of the research field. Using tables, charts, or images to summarize

and present the results is very popular as if is very helpful to gain insight.

We illustrate the performance of GA. To demonstrate the quality of our method,

we show some metrics of the individuals in the population throughout the run of the

genetic algorithm and compare these with other methods. Fitness metrics is widely

used to evaluate the performance of genetic algorithm methods, and especially the

best individual’s fitness in the population. The line graph that contains the mean val-

ues of best fitness, mean fitness and worst fitness of 100 runs shows the improvement

of every individual during the evolution. It signifies whether the potential solutions

evolve or not during the time of the process. Moreover, we compare the classifiers’

performance in the dataset before the genetic algorithm method and the dataset after

using the GA method to show the data selection’s work.

To gain more insight from the results of sample and feature selection, we do

importance analysis. We use figures to show samples and features that have a high

frequency. Over-selected variables mean they have shown that they play key roles in

the dataset, compared to others. Also, we calculate the p-value for every feature in

order to identify important SNPs. The p-value calculation is:

P (x) =
n∑

i=x

Ci
n(
m

i
)i(1 − m

v
)n−i (3.6)

where x means being selected x times. n is the number of runs, v is the number of

total variables, and m is the variable’s mean number that is selected.
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A Q–Q (quantile-quantile) plot is a probability plot, which is a visualization

method for comparing two probability distributions by plotting their quantiles against

each other [90]. The Q-Q plot shows the difference between the distribution of the

results and the standard normal distribution.

The sample selection results’ visualization aims to show which samples have been

over-selected. Additionally, we illustrate relationships between samples to identify

which pair of cases are potentially the same sub-type of colorectal cancer.
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Chapter 4

Results

After all of the parameters were set, we implemented our GA using DEAP [125]. We

ran our GA method 100 times and collected every run’s outcomes.

4.1 GA performance

To show our GA method’s performance, we record the best, the worst, the mean

fitness, and the standard deviation of the population for every 100 generations in

each run. Fig.4.1 shows the fitness changes during evolution. From the consistent

growth of all three fitness metrics and the large drop of standard deviation, it can be

seen that the mean accuracy of the population keeps growing during this process.

4.2 Comparison

Comparing the genetic algorithm method with only sample selection or feature se-

lection, the double chromosomes method that applies both selections at the same
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Figure 4.1: Mean accuracy and standard deviation during evolution over 100 runs

time has better performance than the others. In order to get a good comparison,

we computed several metrics. Recall, also known as sensitivity, is the fraction of the

total amount of relevant instances that have actually been retrieved. The calculation

of recall is:

Recall =
True positive

True positive + False negative
(4.1)

We also used the ROC-AUC score. All the metrics were calculated by Scikit-learn

[126].

Fig.4.2 shows the metrics of different genetic algorithms. We compared our si-

multaneous GA method to standard GA methods using only the variables or samples

selection. The simultaneous method shows better performance than other two method

in all three metrics.

The best data selection results also provide an improvement to classifiers. After

sample selection and feature selection by this approach, the balanced accuracy of
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Figure 4.2: Performance for the different GA methods.

Comparison between the GA method with only sample selection, only feature

selection, and both selections.

SVM has a significant increase, from 69% to 85%. The average balanced accuracy of

the 100 runs is 79%. The distribution of all results is shown in Fig.4.3. All the results

demonstrate good performance for prediction. Moreover, as it showed in Fig.4.4,

other classifiers’ performance also improves. Along with the SVM classifier, other

classification methods, KNN, RF, and GB also have an increase of accuracy.
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Figure 4.3: The distribution of results over 100 runs.

Every best result from the 100 runs shows good performance. The most frequent

accuracy over the 100 runs is around 78%. The worst accuracy is 72.5%, and the

best is 85%.

4.3 Importance analysis

4.3.1 Features analysis

We recorded the frequency of every feature occurring in the best evolved predictive

models of the 100 GA runs. Based on the results that we collected, we did data

visualization to enable a better view.

Fig.4.5 illustrates the result of SNPs’ importance assessment. As the figure shows,

some SNPs played dominant roles in the results of 100 runs. Some of them occurred

90 times. This result denotes that these over-selected SNPs have a high possibility to
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Figure 4.4: The performance of other classifiers before and after the data selection

Comparison of the accuracy of three different classifiers using the original data and

the data after the selection of the GA method.

have associations with colorectal cancer. The distribution of occurrence of all SNPs

is shown in Fig.4.7. Moreover, we calculated the p-values of all SNPs in the dataset.

The p-values of the top over-selected SNPs are shown in Table 4.1. Based on the p-

values, we made a Q–Q (quantile-quantile) plot, which is Fig.4.6 . The distribution of

the occurrence and the Q-Q plot of all SNPs provide extra proof that those SNPs are

important for colorectal cancer. Table 4.2 shows the information of top 22 frequent

SNPs. The distribution and p-values give more confidence that these top SNPs are

relevant to the diseases.

The top over-selected genes show relevance with colorectal cancer. rs8015314 has a
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Figure 4.5: Feature importance results.

The Top 10 features that were over-selected over 100 runs.

Figure 4.6: Q-Q plot.

P values for each SNP are sorted from largest to smallest. P values that move

towards the y-axis means they are more significant than expected under the null

hypothesis.
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Figure 4.7: The distribution of occurrence of SNPs over 100 runs.

The distribution shows that the number of occurrence of most SNPs is around 50.
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high gene expression correlation with a colon-sigmoid tissue-specific gene, LINC02279.

NEU3 may have an effect in modulating the ganglioside content of the lipid bilayer.

It has been widely proven that is associated with colorectal cancer [127, 128, 129].

Many research has found that RMST plays a role in cancer diseases [130, 131]. Both

rs2041396 and rs7799059 have high gene expression correlations with colon-transverse

tissue-specific genes. Long Non-coding RNAs (LnRNA) have been proven by many

research that it plays an important role in cancer [132]. Tab2 is involved in heart

development and has been identified that is relevant to breast cancer [133].

4.3.2 Samples analysis

We did the same work for the sample selection results. Fig.4.8 illustrates samples

with the most occurrences. The bars with red colour denote the cases, and the blue

bars are the controls. Because we used balanced accuracy instead of regular accuracy,

the selection results were not dominated by the samples from any class. Also, some

samples were selected multiple times through 100 runs. This means the genotype of

these individuals has high associations with colorectal cancer.

We selected the top 100 over-selected case samples and checked their relationships

with each other. We recorded the number of simultaneous occurrences of each pair of

samples. Fig.4.9 is the heat-map that shows the relationships between case samples

based on the number of occurrences. It clearly shows that some cases have high

associations with others, which denotes that they are very likely to belong to the

same subtype of colorectal cancer.
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Figure 4.8: Samples importance results.

The top 20 over-selected samples over 100 runs
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Figure 4.9: The association between samples.

Each point in this figure represent a association of two samples. The more

simultaneous occurrences they have, the redder their point is.
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4.4 Summary

In this section, we first showed the performance of our genetic algorithm method

by demonstrating the evolution progress in Section 4.1. Then we showed the im-

provement of classical classifiers by using our method in Section 4.2 and compared

our method to other GA methods. Finally, we performed an importance analysis

in Section 4.3 to show the associated SNPs and individuals we found and showed

their relation. The results showed that our GA method was able to achieve great

performance and can find associated SNPs in GWAS datasets.
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Name Count P-value

rs6534607 G 86 1.96E-95

rs4961510 C 86 1.96E-95

rs576022 T 82 1.62E-87

rs10507274 C 78 4.60E-80

rs244777 A 76 1.72E-76

rs203145 A 76 1.72E-76

rs8015314 G 75 9.73E-75

rs9488355 G 74 5.21E-73

rs17133608 T 74 5.21E-73

rs13377868 C 73 2.65E-71

rs17042892 T 72 1.28E-69

rs10254969 A 72 1.28E-69

rs4795690 A 72 1.28E-69

rs17799628 C 71 5.92E-68

rs2041396 C 71 5.92E-68

rs7799059 T 70 2.60E-66

rs9634692 C 70 2.60E-66

rs2206451 C 70 2.60E-66

rs9827966 A 69 1.09E-64

Table 4.1: The p-values of over-selected features
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SNP Position Gene

rs8015314 G chr14:94972891 None

rs17133608 T chr11:75012631 NEU3

rs13377868 C chr12:83329519 None

rs9320356 C chr6:111073218 None

rs1579244 C chr12:97452764 RMST

rs244777 A chr5:35366153 None

rs17799628 C chr9:103680714 None

rs2041396 C chr17:65423898 None

rs7799059 T chr7:155998692 None

rs9634692 C chr13:54353623 None

rs2206451 C chr20:52775930 None

rs6534607 G chr4:75106366 None

rs4961510 C chr9:16962420 LncRNA

rs576022 T chr6:149315830 TAB2

rs10507274 C chr12:116723171 C12orf49

rs203145 A chr6:138294011 ARFGEF3

rs9488355 G chr6:114258132 HS3ST5/HDAC2-AS2

rs17042892 T chr2:21699337 LINC01822

rs10254969 A chr7:30067179 PLEKHA8

rs4795690 A chr17:32298186 RHBDL3

rs9827966 A chr3:8854430 LOC107984112

rs7190644 G chr16:19582848 VPS35L

Table 4.2: Information of top SNPs.
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name Count P-value

nf 1362 65 2.14E-58

nf 1501 65 2.14E-58

nf 2142 65 2.14E-58

nf 2821 65 2.14E-58

nf 3006 65 2.14E-58

nf 4548 65 2.14E-58

nf 675 64 7.18E-57

nf 1932 64 7.18E-57

nf 2372 64 7.18E-57

nf 3155 64 7.18E-57

nf 62 63 2.31E-55

nf 152 63 2.31E-55

nf 228 63 2.31E-55

nf 282 63 2.31E-55

nf 380 63 2.31E-55

nf 778 63 2.31E-55

nf 1190 63 2.31E-55

nf 1647 63 2.31E-55

nf 1651 63 2.31E-55

Table 4.3: P-values of over-selected samples.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we proposed a new genetic algorithm method. We used this method

to prioritize SNPs in the human genome in order to gain new insights into colorectal

cancer. In this method, we first conducted data processing to generate a more effi-

cient dataset for genetic algorithms. Then we performed grid search to find the best

parameter setting to obtain the best results. Thirdly we applied this new genetic

algorithm to the dataset. After we acquired the results, we did a results analysis for

a better demonstration of the results.

The best result had an accuracy of 85% using SVM. The accuracy improved from

69% to 85%. Also, it is easy to observe that some SNPs play essential roles in

colorectal cancer. We listed the SNPs and samples that dominated the results, which

were generated by 100 runs. Moreover, we proved that the genetic algorithm can

be a powerful tool to help researchers perform genome-wide association studies. By
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analyzing the sample selection results, we can glimpse colorectal cancer’s subtype and

know which cases belong to the same subtype.

We contribute to the understanding of colorectal cancer, GWAS, and evolutionary

computing. We developed a genetic algorithm method with double chromosomes that

is able to achieve good performance in GWAS. A grid search was performed to find the

best parameters to optimize the performance of GA. The results showed a significant

improvement in classification accuracy compared to other methods. Our method

found SNPs that were identified to have had important roles in colorectal cancer.

The promising outcomes proved that evolutionary computing is a useful tool to help

researchers perform GWAS.

5.2 Future work

This research still has much potential that can be explored. Our goal is not only

to find associations between the human genome and colorectal cancer but also to

identify subtypes of colorectal cancer. Many studies have proved that subtypes exist

in colorectal caner [34, 56]. We want to correctly group cases to the correct subtype

and find the most relevant SNPs for each subtype of colorectal cancer. We believe

that with some upgrading to our method and better analysis, this can be achieved.

Because of the quality of the original dataset, there are a few false variables added

during the data process, because some variables are filled with the most frequent value

in the corresponding feature, which could slightly influence the performance of the

method. In the future, we will apply this method to other datasets.
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