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Abstract

In this thesis, research for inland water extent and flash floods remote sensing using

Global Navigation Satellite System Reflectometry (GNSS-R) data of the Cyclone

Global Navigation Satellite System (CYGNSS) is presented.

Firstly, a high-resolution Machine Learning (ML) method for detecting inland wa-

ter extent using the CYGNSS data is implemented via the Random Under-Sampling

Boosted (RUSBoost) algorithm. The CYGNSS data of the year 2018 over the Congo

and Amazon basins are gridded into 0.01
◦ × 0.01

◦

cells. The RUSBoost-based classi-

fier is trained and tested with the CYGNSS data over the Congo basin. The Amazon

basin data that is unknown to the classifier is then used for further evaluation. Using

only three observables extracted from the CYGNSS Delay-Doppler Maps (DDMs),

the proposed technique is able to detect 95.4% and 93.3% of the water bodies over the

Congo and Amazon basins, respectively. The performance of the RUSBoost-based

classifier is also compared with an image processing based inland water detection

method. For the Congo and Amazon basins, the RUSBoost-based classifier has a

3.9% and 14.2% higher water detection accuracies, respectively.

Secondly, a flash flood detection method using the CYGNSS data is investigated.

Considering Hurricane Harvey and Hurricane Irma as two case studies, six differ-

ent Data Preparation Approaches (DPAs) for flood detection based on the CYGNSS

data and the RUSBoost classification algorithm are investigated in this thesis. Taking

flood and land as two classes, flash flood detection is tackled as a binary classifica-

tion problem. Eleven observables are extracted from the DDMs for feature selection.

These observables, alongside two features from ancillary data, are considered in fea-
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ture selection. All the combinations of these observables with and without ancillary

data are fed into the classifier with 5-fold cross-validation one-by-one. Based on the

test results, five observables with the ancillary data are selected as a suitable feature

vector for flood detection here. Using the selected feature vector, six different DPAs

are investigated and compared to find the best one for flash flood detection. Then,

the performance of the proposed method is compared with that of a Support Vec-

tor Machine (SVM) based classifier. For Hurricane Harvey and Hurricane Irma, the

selected method is able to detect 89.00% and 85.00% of flooded points, respectively,

with a resolution of 500m × 500m, and the detection accuracy for non-flooded land

points is 97.20% and 71.00%, respectively.
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Āτ,f : Effective surface scattering area at each delay-

Doppler bin (p. 13).

R̄tx
τ,f : The range loss between transmitter and each delay-

Doppler bin (p. 13).

R̄rx
τ,f : The range loss between receiver and each delay-

Doppler bin (p. 13).

〈σ0
τ,f〉 : The normalized bistatic radar cross section at each

delay-Doppler bin (p. 13).

〈στ,f〉 : The bistatic radar cross section at each delay-

Doppler bin (p. 13).

Rrx
SP : Distance between GNSS-R receiver and SP (p. 14).

Rtx
SP : Distance between transmitter and SP (p. 14).

Grx
SP : The GNSS-R receiver antenna gain at SP (p. 14).

P coh
τ,f : Coherent power component of reflected signal (p.

14).

P inc
τ,f : Incoherent power component of reflected signal (p.

14).

xvii



Γτ,f : Surface reflectivity at each delay-Doppler bin (p.

15).

aFFZ : Semi-major axis of the FFZ (p. 15).

bFFZ : Semi-minor axis of the FFZ (p. 15).

θ : Incidence angle (p. 15).

k : Wave number of GNSS signal (p. 18).

S : Imbalanced data set (p. 20).

xi : The feature vector of the data point i in imbalanced

data set (p. 20).

yi : yi ∈ {0, 1} is the label of the data point i in imbal-

anced data set (p. 20).

S ′ : Balanced data set (p. 20).

x′
p : Feature vector of the data point p in balanced data

set (p. 20).

y′
p : Label of the data point p in balanced data set (p.

20).

Dt(i) : Weight of data point i at iteration t in imbalanced

data set (p. 20).

D′
t(p) : Weight of data point p at iteration t in balanced

data set (p. 20).

cjt : Decision threshold of the feature j at iteration t (p.

22).

Ωr,l
t : The probability of right or left split of the decision

stump t (p. 22).

xviii



Θr,l
t : The Gini impurity factor of right or left split of the

decision stump t (p. 23).

ht : The weak hypothesis at iteration t (p. 23).

πr,l : The label proportion of right or left split (p. 23).

Nr,l(y) : The number of y ∈ {0, 1} labelled points within

right or left split (p. 24).

Nr,l : The total number of points within within right or

left split (p. 24).

ǫt : The pseudo loss of the weak hypothesis at iteration

t (p. 24).

αt : The weight updating factor at iteration t (p. 24).

H : The output hypothesis (p. 24).

〈σm〉 : Maximum of BRCS DDM (p. 44).

Prxm : Maximum of power DDM (p. 44).

xix



Chapter 1

Introduction

This chapter, first, demonstrates the importance of inland permanent water and flash

floods remote sensing and the significance of Global Navigation Satellite System Re-

flectometry (GNSS-R) signals for inland water and flash flood detection. Then, the

literature about common water bodies remote sensing methods and GNSS-R applica-

tions in remote sensing, particularly inland permanent water and flash floods surveil-

lance and monitoring, is summarized. Last, the scope of this thesis is presented.

1.1 Research Rationale

Inland permanent water bodies are key elements in their surrounding environments

and various living creatures’ survival depends on them [1]. Moreover, they are essen-

tial for most industrial and agricultural operations [2]. The surface water is dynamic

and its extent changes due to human activities and climate variations. Thus, knowl-

edge of high temporal water extent data is important for various disciplines.

Flash flood is a surge of water that starts and develops in a short period. The
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primary cause of flash floods is heavy rain. Additionally, dam breakage, ice and

snow meltdown, and events in which a large amount of water is released to dry areas

can also cause flash floods. Even though a flash flood dissipates quickly after its

occurrence, it has consequential damages such as death and severe injuries, water

contamination, financial harm, infrastructure damages, and agricultural losses [3, 4].

Hurricanes, which are a significant cause of flash floods, are tropical cyclones with high

wind speed (higher than 33ms−1 [5]) and capable of pouring massive rain over coastal

regions during landfall [6]. Considering the population growth in coastal areas that

are exposed to hurricanes, flood detection and monitoring can reduce these damages

and increase the speed of post-disaster response [7].

Being able to continuously monitor the surface of the Earth, remote sensing tech-

nologies are more efficient compared to traditional in situ measurements. Even though

remote sensing techniques require significant infrastructure and their equipment man-

ufacturing is more complicated, they are more financially feasible in the long term

since they monitor larger areas with less required labour and energy [8]. Furthermore,

their operation is less impacted by the condition of the Earth’s surface, which makes

them a perfect solution for difficult-to-access regions [9]. The optical and microwave

sensors are the two main spaceborne remote sensing instruments that are widely used

for detecting surface water bodies with high-resolution.

Since the optical sensors can provide high temporal and high spatial resolutions

data on a global scale, they are used as the main instrument for monitoring water

bodies. Different electromagnetic wavelengths within the visible spectrum interact

differently with water bodies. For instance, blue bands penetrate the water, while red

bands are partially absorbed and near-infrared bands are fully absorbed. Therefore,
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by defining certain thresholds, the water bodies, can be detected using optical sensors

[10, 11]. The water bodies detected during flash floods based on optical images are

compared with water reference data sets, to estimate flood extent maps [12]. Optical

remote sensing sensors are not able to detect surface water bodies when the region

contains high density biomass or is covered by clouds. Furthermore, in an optical

image, the cloud shadow is classified as water. Therefore, the presence of cloud and

its shadow are critical challenges for water extent estimation using optical sensors [10].

The water bodies detection algorithms developed for the data of optical satellites are

able to detect the surface water including floods with an accuracy higher than 97%

[10, 13].

In addition to optical sensors, other sensors have been employed to detect or ob-

serve the formation of floods, including river level and rain gauge measurements [14],

weather radar [15], and microwave satellite systems [16–19]. The river level and rain

gauge sensors are used in designated locations such as river basins, resulting in lim-

ited coverage over a particular area. For large scale flood monitoring, a complicated

network of such sensors is required, which may not be feasible due to geographic and

economic reasons [20]. Weather radars are able to predict the amount and type of

precipitation. In a flash flood scenario, in addition to the amount of precipitation,

other factors such as topography, soil moisture, drainage of the rivers, etc. are influ-

ential [21]. Hence, in warning systems, the possibility of flooding is forecasted using

weather radar data together with data sets from other sensors [22, 23].

Active microwave satellites such as Synthetic Aperture Radar (SAR) systems work

in day or night providing high spatial resolution data. They are able to see through

obstacles such as clouds and certain biomass. Similar to any other classification prob-
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lem, creating flood extent maps from SAR data can be solved by using supervised

and unsupervised methods [24]. In a supervised method, since the classifier is trained

with labelled pixels from a region, the algorithm has local dependence. Segmentation

[25], threshold determination [26], and change detection [27] are three main methods

for unsupervised classification. Even though these methods are able to detect floods

effectively, they have drawbacks. The segmentation method requires heavy computa-

tion compared with the other two methods. Moreover, since it ignores small flooded

clusters surrounded by large non flooded ones and vice versa, it is less precise [24].

In the threshold determination method, instead of a single threshold value, multiple

threshold values are considered for detecting floods on a large scale [26]. Therefore,

the method’s accuracy is highly dependant on the accuracy of the preset threshold

values. In the change detection method, prior- and post-flood SAR images are re-

quired, which is a big challenge due to the long revisit time of SAR systems [27].

Therefore, in recent works, combinations of these techniques are used [28, 29]. De-

pending on the region, the SAR based flood detection algorithms are able to detect

floods with an accuracy ranging between 80% to 95% [30–32]. The SAR data require

geometric correction and speckle reduction. Hence, compared to passive microwave

and optical sensors, the retrieval algorithms based on SAR data are more complicated

[24]. Moreover, since in active SAR systems such as RADARSAT-1/2, TerraSAR-X,

and Sentinel-1 the transmitter and receiver are placed on the same platform, obtain-

ing a large constellation is costly and their constellations are usually small [33]. Thus,

due to the low temporal resolution (several days), satellite sensors might not even be

able to collect data over a flooding area in time.

The optical images are used as the main resource for creating permanent water

4



data sets. The Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Land

Water Mask (MOD44W Version 6) data [34] and the Global Surface Water (GSW)

[10, 35], are the two main representative permanent water extent data sets created

by optical sensors.

Moreover, some of the aforementioned remote sensing data and algorithms have

been used by observatories to create Near Real-time (NRT) flash floods information.

For example, the Global Flood Monitoring System (GFMS) uses real-time precipita-

tion data and a hydrologic model for NRT global flood detection based on the locally

defined flood thresholds [36]. In this method, the actual extent of a flash flood is

not derived. The Dartmouth Flood Observatory (DFO) and NASA’s Goddard Hy-

drology Laboratory employ the data collected by two MODIS sensors (aboard the

satellites Terra and Aqua) for flood monitoring [12]. By computing the MODIS re-

flectance ratio of Band 1 (red) and Band 2 (near-infrared) as well as a threshold on

Band 7 (shortwave infrared) to estimate water extent and comparing with reference

data, they determine the flash flooded areas [37]. Also, they employ microwave sen-

sors data to mitigate the cloud effect to increase flood detection accuracy [12]. The

Global Flood Detection System (GFDS) uses AMSR-E passive microwave remote

sensing data to detect riverine flooding globally. In this system, the value of cali-

brated surface brightness is compared with a threshold to detect riverine inundations

[19].

The GNSS-R is a well-established technique for remote sensing. Since it takes

advantage of existing signals of opportunity, receivers are cost-efficient, which makes

it possible to achieve a large constellation and, consequently, high temporal resolution

(hours) [38]. The Cyclone Global Navigation Satellite System (CYGNSS) is a GNSS-
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R constellation that operates between 38◦ S and 38◦ N latitudes [39]. This area is

impacted by various flash floods and contains massive permanent water bodies. Con-

sidering the benefits of the GNSS-R method and availability of the CYGNSS data,

in this work, we focus on the application of the CYGNSS GNSS-R data in detecting

permanent water bodies and flash floods. In this thesis, instead of aforementioned

methods, the Machine Learning (ML) algorithms are used.

1.2 Literature Review

Global Navigation Satellite System (GNSS) is a term describing spaceborne systems

that provide geospatial positioning information. Based on the distances between the

target and four GNSS transmitting satellites, positioning, navigation and timing are

provided for users. The United States’ Global Positioning System (GPS) and Russia’s

Global Navigation Satellite System (GLONASS), with China’s BeiDou Navigation

Satellite System (BDS) and the European Union’s Galileo are four operational GNSSs

[40].

In the late 1980s, it was proposed that the multipath signals could be used as a

source for remote sensing in a bistatic (multistatic) radar technique called GNSS-R

since the multipath signals carry information about the surfaces from which they were

reflected [41]. In the GNSS-R technique, the reflected signal is correlated with a direct

signal for different values of delays and Doppler frequencies, and the result is plotted

in a Delay-Doppler Map (DDM) as the output of the system. The geospatial scheme

of this method is illustrated in Figure 1.1. The GNSS-R receiver collects the GNSS

signals that are reflected off the surface of the Earth and transfers them into DDMs.
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Figure 1.1: A schematic of the GNSS-R technique, with two GNSS transmitters in

MEO and a GNSS-R receiver in LEO.

Each DDM represents an area around the Specular Point (SP) called the Glistening

Zone (GZ). The GNSS constellations positioned in the Medium Earth Orbit (MEO)

are used as transmitters. Hence, only passive receiving satellites located in the Low

Earth Orbit (LEO) are demanded, which makes the GNSS-R technique less expensive

[38].

The first spaceborne observation of a GNSS reflected signal was found by the SIR-

C radar aboard the Shuttle [42]. As a part of the Disaster Monitoring Constellation,

the UK-DMC 1 was the first operational GNSS-R satellite, which was launched to an

altitude of 686 km in September 2003. Following this mission, the UK TechDemoSat-

1 (TDS-1) was launched in 2014 and is still operating with global coverage [43, 44].

The TDS-1 daily data are provided via an internet link [45] and the first sea ice

7



product based on TDS-1 data has been officially published since 2019. In 2016,

a 6-U CubeSat called 3Cat2 that was designed by the Universidad Politécnica de

Cataluña (UPC) was launched into LEO [46]. In the same year, NASA launched the

CYGNSS constellation to 510 km for tracking cyclones and estimating winds speed

over the ocean. The CYGNSS consists of eight satellites equipped with GNSS-R

payloads. Each satellite is able to scan up to four reflection swaths simultaneously

[39]. Therefore, it has a higher temporal resolution compared to other GNSS-R based

instruments. The CYGNSS daily data are posted two days after their collection and

are available to the public through [47]. By having the CYGNSS operating over land

with a high temporal resolution, the course of GNSS-R land remote sensing has been

improved since its launch.

The GNSS-R technique has shown a great capacity for various ocean remote sens-

ing applications such as altimetry [48], sea surface wind [49–53], target detection [54],

tsunami [55, 56], and sea ice [57–62]. Moreover, it also has been used for land remote

sensing applications, especially for the Soil Moisture (SM) [63–65].

There have been some attempts at modelling the received GNSS signal reflected

from the regions containing water bodies [66, 67]. The primary results show that

these models are able to estimate the value of Surface Reflectivity (SR) by knowing

the characteristics of the scattering surface. However, further studies are required in

order to extract the characteristics of the scattering surface from the SR value.

The CYGNSS GNSS-R SR changes when the water bodies are changed due to

a flash flood. The difference between SR values of areas with and without water

is ∼ 12 dB [68]. Even though considering a threshold can illustrate the presence of

water, it is not the optimum approach to obtain precise extent maps for water bodies.
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Moreover, there is a high correlation between the CYGNSS SR and Global Precip-

itation Measurement (GPM) data. Comparing the precipitation, brightness tempera-

ture, and the CYGNSS SR over the surfaces impacted by typhoons (tropical cyclones

located in the Northwest Pacific Ocean) shows that the CYGNSS data is as reliable

as validated reference data sets [69]. Therefore, it is possible to monitor dynamic

phenomena using the CYGNSS GNSS-R data.

It has been shown in [70] using the CYGNSS data alongside two other ancillary

data sets, that seasonal inundation over the Pacaya-Samiria Natural Reserve, a trop-

ical wetland complex located in the Peruvian Amazon, can be classified into three

categories, which are Open Water (OW), Flooded Vegetation (FV), and Non-flooded

Vegetation (NF). For classification, an ML method called Multiple Decision Tree Ran-

domized Structure (MDTR) based on the random forest algorithm was implemented.

In such a study, various GNSS-R observables were extracted from the CYGNSS data.

The results show that the classification accuracies for OW, FV, and NF labels were

65.4%, 60.26%, and 94.75, respectively. Unlike seasonal floods and permanent water

which are developed in specific periods and last over more extended times [71], flash

floods are difficult to monitor. Therefore, it is vital to develop a method that can

detect and monitor flash floods. Hence, one objective of this work is to quantitatively

investigate the ability of the GNSS-R technique to detect flash floods.

Furthermore, for inland water detection, an image processing based technique,

which in this thesis is referred to as the watermask detection method, is able to

produce water extent maps with a resolution of 0.01
◦ × 0.01

◦

[72]. The watermask

detection method is a multi-step procedure that processes the map of the corrected

Signal to Noise Ratio (SNRC). The first step is to remove small clusters with out-
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of-range SNRC values. Then, each removed value is replaced with an estimated

value computed based on the nearest-neighbour interpolation. After that, a Standard

Deviation (STD) map is created by comparing the value of each grid cell with the

cells around it within a window. At the last step, random walker segmentation is

applied to the STD map to create a water extent map. The parameters of this

technique are optimized by comparing the detected water extent map with a hand-

drawn watermask map. The full description of this method can be found in [72].

Since the CYGNSS data collection is random for having a suitable SNRC map as the

input for this method, at least three months’ worth of the CYGNSS collected data is

demanded. Moreover, the whole procedure must be applied step by step for creating

each water extent map, making the process heavily computational. Hence, as another

objective, a method for inland water detection using the CYGNSS data is developed.

1.3 The Scope of the Thesis

This thesis contains an investigation of methods for detecting surface water extents

using CYGNSS data and ML algorithms with a focus on permanent water and flash

floods.

The thesis is organized as follows: Chapter 2 provides the GNSS-R theoretical

background and a description of the classification algorithms employed. In Chapter 3,

a method for detecting permanent water using CYGNSS data and the RUSBoost ML

algorithm is investigated. The CYGNSS data over the Congo and Amazon basins

are employed as two case studies for permanent water detection. The results of

the proposed method are compared to the watermask detection method proposed in
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[72]. In Chapter 4, after feature selection, six different Data Preparation Approaches

(DPAs) for flash flood detection based on the CYGNSS data are investigated using

the RUSBoost ML algorithm. The DPA with the best performance is recommended

for flash flood detection. Using selected DPA, the performance of the RUSBoost-

based classifier is compared with the SVM-based classifier. The method with better

performance is selected as the proposed flash flood detection method. For flash flood

detection, the areas impacted by Hurricane Harvey and Hurricane Irma are considered

as two case studies. Chapter 5 presents a summary of the main conclusions from the

previous four chapters. A few suggestions for future work are also provided.

The research presented in this thesis has been accepted for publication in two

refereed journals as listed below:

1. P. Ghasemigoudarzi, W. Huang, O. De Silva, Q. Yan and D. Power, “A Machine

Learning Method for Inland Water Detection Using CYGNSS Data,” in IEEE

Geosci. Remote Sens. Lett., (in press, DOI: 10.1109/LGRS.2020.3020223).

This paper presents the RUSBoost-based method for permanent surface water

detection based on the CYGNSS GNSS-R data (Chapter 3).

2. P. Ghasemigoudarzi, W. Huang, O. DeSilva, Q. Yan, and D. Power, “Flash

Flood Detection from CYGNSS Data Using the RUSBoost Algorithm,” in IEEE

Access, vol. 8, pp. 171864–171881, 2020.

This paper presents the RUSBoost-based method for flash flood detection from

the CYGNSS GNSS-R data (Chapter 4).
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Chapter 2

GNSS-R Theoretical Background

and Classification Algorithms

In this chapter, first, a brief GNSS-R theoretical background is presented in Sec-

tion 2.1. Then, a description of two machine learning algorithms that are used to

develop the methods for permanent water and flash flood detection in this study are

introduced in Section 2.2.

2.1 GNSS-R Theoretical Background

The CYGNSS creates power DDMs using the reflected and direct GPS L1-band

Coarse/Acquisition (C/A) Pseudo Random Noise (PRN) codes. Each CYGNSS DDM

consists of 17 delay bins and 11 Doppler bins with each delay bin equalling 249.4 ns

(0.25 of a chip) and each Doppler bin equalling 500 Hz. In a bistatic configuration,
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the processed power DDM is described as [73, 74]

P rx
τ,f =

λ2P tx

(4π)3

∫∫

As

Gtx
x,yG

rx
x,yσ

0
x,y

(Rrx
x,y)

2(Rtx
x,y)

2
|χτ,f ;x,y|2 dxdy (2.1)

where τ is the relative delay, f is the relative Doppler frequency, P tx is the transmitted

power, Grx
x,y and Gtx

x,y are the transmitter and receiver gains, λ is the GPS wavelength,

which is 19.05 cm, Rtx
x,y, and Rrx

x,y are the distances between a point on the surface and

the transmitter and receiver, respectively, As is the GZ, and σ0
x,y is the Normalized

Bistatic Radar Cross Section (NBRCS) of the scattering surface, and χτ,f ;x,y is the

Woodward Ambiguity Function (WAF) , which is obtained by [75, 76]

|χτ,f ;x,y|2 = (Λτ ;x,y)
2|Sf ;x,y|2 (2.2)

where Λτ ;x,y is the GPS signal spreading function in delay determining equi-delay

zones and Sf ;x,y is the frequency response of the GPS signal determining equi-Doppler-

frequency zones. Using χτ,f ;x,y, the surface around an SP is gridded with delay-

Doppler bins.

By considering the effective values of variables under the integral of (2.1) (except

σ0), the processed power of each delay-Doppler bin is simplified to [74]

P rx
τ,f =

P txλ2Gtx
τ,fḠ

rx
τ,f〈σ0

τ,f〉Āτ,f

(4π)3(R̄tx
τ,f )

2(R̄rx
τ,f )

2
(2.3)

where Ḡrx
τ,f is the receiver antenna gain at each delay-Doppler bin, R̄tx

τ,f and R̄rx
τ,f are

the range losses at each delay-Doppler bin, and Āτ,f is the effective surface scattering

area at each delay-Doppler bin. For each delay-Doppler bin we have

〈στ,f〉 = 〈σ0
τ,f〉Āτ,f (2.4)
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where 〈στ,f〉 is the Bistatic Radar Cross Section (BRCS) of each delay-Doppler bin.

By substituting (2.4) into (2.3) and solving for 〈στ,f〉, we have

〈στ,f〉 =
P rx
τ,f (4π)

3(Rtx
SP )

2(Rrx
SP )

2

P txGtxGrx
SPλ

2
. (2.5)

where Rtx
SP and Rrx

SP are the distances between the SP and the transmitter and re-

ceiver, and Grx
SP is the receiver antenna gain at the SP. An example of BRCS DDM is

shown in Figure 2.1(a). Unlike normalized BRCS that is only valid for ocean surfaces,

〈σ〉 is valid for both land and ocean since it is computed based on geometrical and

instrumental corrections [70].

Depending on the surface roughness, the GNSS signal can be reflected coherently

or incoherently. Therefore, the computed power for each delay-Doppler bin described

by (2.3) is a summation of coherent and incoherent power components. [75, 77]

P rx
τ,f = P coh

τ,f + P inc
τ,f . (2.6)

When the surface is smooth, the reflection is mostly coherent. As the surface rough-

ness increases, the reflected signal becomes more incoherent. Under stable and calm

weather conditions, inland surface water bodies have low roughness and the reflected

signals from them are predominantly coherent. Thus, the reflection from the water

bodies surrounded by dense biomass can be considered coherent, which is the case

for our permanent water case studies (the Amazon and Congo basins). On the other

hand, during severe conditions such as a hurricane, the high-speed winds can increase

the roughness of inland surface water bodies. However, the presence of high-speed

winds of a hurricane over land is shorter than the flood caused by its landfall. In

addition, as a hurricane reaches land, the winds speed decreases gradually due to the
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increased surface roughness [78, 79]. Moreover, the coherent components of received

power during severe typhoons are consistent with the changes caused by floods, as

investigated in [69]. Therefore, following similar assumptions made in the literature

[65, 69, 70], in this work, it is assumed that the reflected signals for both permanent

water and flash floods are coherent. Based on the Friis radar equation, the coherent

power component is given as [77]

P coh
τ,f =

P txGtxGrx
SPλ

2

(4π)2((Rtx
SP ) + (Rrx

SP ))
2
Γτ,f , (2.7)

where Γτ,f is the SR DDM.

Considering P rx
τ,f = P coh

τ,f and substituting (2.7) into (2.5), Γτ,f can be found as

Γτ,f =
(Rtx

SP +Rrx
SP )

2

4π(Rtx
SP )

2(Rrx
SP )

2
〈στ,f〉. (2.8)

Similar to [65, 70, 80], the BRCS DDM is used for computing the SR DDM de-

scribed by (2.8). The corresponding SR DDM calculated from BRCS DDM shown in

Figure 2.1(a) is depicted in Figure 2.1(b).

In terms of spatial resolution, the maximum area that a CYGNSS DDM can

cover is 25 km × 25 km around the SP [39]. This area consists of both coherent and

incoherent reflections. However, the majority of coherent reflections happen within

the First Fresnel Zone (FFZ). The semi-major and semi-minor axes of the FFZ around

each SP are defined as [81, 82]

aFFZ =
1

cos(θ)

(

Rtx
SPR

rx
SPλ

Rtx
SP +Rrx

SP

)0.5

, (2.9)

bFFZ =

(

Rtx
SPR

rx
SPλ

Rtx
SP +Rrx

SP

)0.5

. (2.10)

where θ is the incidence angle at SP. Using the CYGNSS data, the semi-major and

semi-minor axes for SPs with incidence angles between 0◦ and 70◦ are shown in
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(a)

(b)

Figure 2.1: (a): an example of BRCS DDM, and (b): its SR DDM calculated from

(2.8).
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Figure 2.2: The dimensions of semi-major and semi-minor axes of the FFZ with

respect to incidence angle using the CYGNSS data.

Figure 2.2. Both axes start at around 700m near θ = 0◦. As θ increases, the semi-

major and semi-minor axes increase till at θ = 70◦ they reach 3190m and 1090m,

respectively. Considering the case where the semi-major axis aligns with the satellite’s

along-track direction, the along-track footprint varies between 6.6 km and 8.8 km [70].

Hence, the final size of the FFZ ellipse varies from 700m× 6.6 km to 1090m× 8.8 km

for incidence angles less than 70◦.

Even though the first Fresnel zone is the area where the majority of reflections are

coherent, it cannot determine the spatial resolution of a DDM. Since the reflection

is highly dependent on surface roughness and geometry, the resolution is dynamic.

In this work, a predetermined area in the range of FFZ around each SP or for each
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grid cell is considered as corresponding region for coherent reflections and spatial

resolution.

Before proceeding to the next section, it is worth mentioning that in addition to

(2.7), another approximation for coherent reflected power is suggested in [67] that

describes the reflected signal from heterogeneous smooth surfaces with the surface

diffraction integral given as

P coh
τ,f = Γτ,f

P txλ2GtxGrx
SP

(4π)

∣

∣

∣

∣

∫∫

S

jk cos(θ)

2π(Rtx
x,yR

rx
x,y)

2
ejk(R

tx
x,y+Rrx

x,y)dxdy

∣

∣

∣

∣

2

, (2.11)

where S is an area around SP and k is the signal wave number. The surface diffraction

integral is calculated over an area larger than the FFZ. In contrast, we assume that

the received signal is reflected from an area within the range of FFZ. Moreover, our

case studies consist of both rough and smooth surfaces. Therefore, here, (2.7) is

considered for deriving Γτ,f .

More information about the GNSS-R theory can be found in [38, 39, 74, 83].

2.2 Classification Algorithms

The water detection problem is a binary classification problem with two classes (wa-

ter/flood and land). Various ML algorithms can be implemented for solving a binary

supervised classification problem, such as the Neural Networks (NN), SVMs, and De-

cision Trees, which are among the most commonly used classifiers in remote sensing

[84]. By combining decision trees as basic classifiers, a classifier that outperforms

the constituent classifiers is created, which is called an ensemble classifier. Stacking,

blending, bagging, and boosting are four main approaches for creating an ensemble

classifier [85].
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Since approximately 5.8% of the land is covered by surface water bodies [86] and

flash floods are localized, when a large area is considered, the number of points col-

lected over water bodies is much smaller than those obtained from land. This creates

an imbalanced data set. In an imbalanced data set, information provided by the

minor class is considered less important due to the unequal ratio between major and

minor classes. However, the minor class results could be more vital at higher costs,

despite its smaller size. Various strategies for tackling imbalanced data sets have

been developed [87]. At the data level, the leading solutions for handling imbalanced

data include cost-sensitive learning and data sampling. In cost-sensitive learning,

each class is assigned with a misclassification cost and the goal is to minimize the

overall misclassification cost instead of maximizing the accuracy of the model [87].

In data sampling, by creating new instances in the minor class (oversampling meth-

ods) or eliminating instances from the major class (under-sampling methods), the

imbalanced data becomes balanced [87]. The Synthetic Minority Oversampling Tech-

nique (SMOTE) and the Adaptive Synthetic Sampling Method (ADASYN) are two

renowned oversampling methods, in which synthetic instances are generated from ex-

isting instances in the minor class [88, 89]. As a powerful tool, the Generative Adver-

sarial Network (GAN) is another method for creating artificial instances in the minor

class [90]. In such a method, two neural networks compete to optimize their objective

functions that are contradictory to each other [91]. The Random Under-Sampling

(RUS) is an under-sampling method that balances the data via random elimination

of instances from the major class [87]. The balancing techniques are applied to dif-

ferent classifiers, such as ensembles methods, leading to various developed algorithms

for classifying imbalanced data [87]. Among different methods, in this thesis, the

19



RUSBoost algorithm is selected for classification due to its efficient computational

time, accuracy, and widely available resources [92–94]. Moreover, in Chapter 4, the

performance of the proposed method for flash flood detection is compared with that

of an SVM-based classifier for better perception.

2.2.1 RUSBoost

The class of each SP is determined by using the trained RUSBoost based classifier and

its GNSS-R extracted observables and ancillary features. After selecting the features,

all the observations in the data set, which is allocated for training and testing the

classifier, are shuffled together. Then by a random selection, two separate equal sets

for training and testing are generated. This unit that contains random shuffling and

random selection is added to the RUSBoost classifier. For better perception, the

pseudo-code of the RUSBoost classifier recreated from [95] is depicted in Figure 2.3.

The training data set, is the imbalanced set S = {(xi, yi) | i = 1, ...,m}, in which

xi = [xi,1, ..., xi,J ] is a vector in the J dimensional feature space and yi ∈ {0, 1} is its

respective class label. In our case, xi is a vector containing selected features and yi

can be either land (0) or water/flood (1). At the first step, each point in S is assigned

with an initial weight of D1(i) = 1/m prior to the first iteration (step 1).

Using the RUSBoost method, at iteration t, balanced temporary subset S ′
t =

{(x′
p, y

′
p)| p = 1, ..., 2n} ⊂ S is created containing all the n points of minor class and

n randomly selected points from major class. Knowing the indices of the selected

data points from S that are members of S ′
t, another temporary subset containing

their corresponding weights D′
t ⊂ Dt is obtained. These two temporary sets are then
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Figure 2.3: The Pseudo-code of the RUSBoost algorithm recreated from [95].
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employed for training weak learners based on the idea of reducing the classification

error iteratively (step 2a) [95].

When the data points in S ′
t are passed to the tth decision stump, it divides them

into two splits, which in this work are referred to as right and left. Having a decision

threshold for the feature j, (j = 1, ..., J), the observation p in S ′
t is positioned into the

right or left split based on whether x′
p,j is higher or lower than the value of decision

threshold, respectively. Hence, the performance of decision stump depends on the

feature and its decision threshold. Considering the features with continuous values,

the decision threshold can take an infinite number of values. However, these thresh-

olds do not necessarily result in different results. When 2n points of S ′ are sorted

regarding their values of the same feature, between every two adjacent points, infinite

thresholds can be considered. However, since they all have a similar result, only one

of them should be considered. Therefore, instead of trying infinite numbers of thresh-

olds, 2n − 1 values between sorted points plus 0 and 1 are enough to be considered

as the values of the decision threshold. Hence, (2n+ 1)J combinations of thresholds

and features can be used for examining all the possible outputs. Considering the

combination of jth feature and its qth decision threshold cjt(q), (q = 1, ..., 2n+1), the

weighted Gini Impurity Factor (GIt) of the decision stump t is obtained as:

GIt(q) = Ωr
t (q)Θ

r
t (q) + Ωl

t(q)Θ
l
t(q) (2.12)

where Ωr,l
t (q) is the probability of right or left split and Θr,l

t (q) is the Gini impurity

factor of right or left split. For the right split, Ωr
t (q) and Θr

t (q) are defined as:

Ωr
t (q) =

2n
∑

p=1

D′
t(p)[[x

′
p,j > cjt(q)]] (2.13)
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Θr
t (q) = 1−

∑

y

θrt (y), (2.14)

where

θrt (y) =











2n
∑

p=1

D′
t(p)[[y

′
p = y]][[x′

p,j > cjt(q)]]

2n
∑

p=1

D′
t(p)[[x

′
p,j > cjt(q)]]











2

(2.15)

and [[·]] is a Boolean-valued function, with [[true]] = 1 and [[false]] = 0. Similarly, for

the left split, Ωl
t(q) and Θl

t(q) are computed by changing the condition [[x′
p,j > cjt(q)]]

in (2.14) and (2.13) to [[x′
p,j ≤ cjt(q)]] [96]. It is worth mentioning that θrt (y) is a

weighted probability that determines how likely a y labelled point is located in the

right split.

Moreover, in boosting methods, the performance of a weak learner needs to be

slightly better than the random guess (Gini impurity factor of 0.5) [97]. Hence, by

randomly selecting a limited number of pairs of thresholds and features, the one that

minimizes the Gini impurity factor is selected for creating the weak hypothesis. It

should be mentioned that since S ′
t is balanced, minimizing the Gini impurity factor

translates to maximizing the Gini gain. We assume that among all features, xi,k ∈ xi,

with decision threshold ckt (qk), meets the requirements (step 2bi). From the feature,

its decision threshold, and the number of points in each split regarding S ′ (step 2bii),

the weak hypothesis is constructed as (step 2 d)

ht(xi, y) =



















πr(y) if xi,k > ckt (qk),

πl(y) otherwise

(2.16)

where πr,l = Nr,l(y)/Nr,l is the label proportion, which is the ratio between the number

of y ∈ {0, 1} labelled points within a split Nr,l(y), and its total number of points Nr,l
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(step 2c). The pseudo loss of the weak hypothesis for all the points in S is calculated

as (step 2e)

ǫt =
m
∑

i=1

Dt(i)(1− ht(xi, yi) + ht(xi, 1− yi)), (2.17)

where 1− yi is the incorrect label of observation i. A weights updating factor, αt, is

calculated as (step 2f)

αt =
ǫt

1− ǫt
. (2.18)

Then, a new set of weights are computed and normalized as (step 2g-2h)

Dt+1(i) = Dt(i)α
1

2
(1+ht(xi,yi)−ht(xi,1−yi))

t , (2.19)

Dt+1(i) =
Dt+1(i)

m
∑

i=1

Dt+1(i)
. (2.20)

When the hypothesis of the weak learner is correct for the training data set, which

means that the weak learner is able to classify all of the training data points correctly,

ǫt will be equal to zero, and the new weights will be equal to the previous ones.

Otherwise, the weights of the misclassified points will be higher than the ones of

correctly classified points. Therefore, in the next iteration, the weak learner will be

biased to classify the misclassifications of the previous decision tree, which translates

to increasing the variance step by step.

The procedure of random undersampling, creating a weak hypothesis, and updat-

ing observations weights is repeated for T iterations. At the last iteration, when the

training of all of T weak learners is finished, the output hypothesis is created as a

weighted vote of weak hypotheses (step 3):

H(x) = argmax
y∈{0,1}

T
∑

t=1

ht(x, y) log
1

αt

, (2.21)
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where x is a feature vector of the test data. The criteria for the trained RUSBoost

classifier are to find the label that maximizes the summation of the hypothesis of weak

learners with respect to αt [95, 98]. Since the number of weak learners affects the

structure of the trained classifier and its performance, the number of weak learners

(T ) is the hyperparameter of our model. Also, the learning rate, which determines

the step size at each iteration, is another important parameter of our model.

2.2.2 SVM

In Chapter 4, the SVM classifier is considered for comparison with the proposed

method. As a well-known supervised ML algorithm, SVM has been used in various

remote sensing applications [57, 99–101]. SVMs classify data by determining the op-

timal hyperplane for maximizing the margin between classes [102, 103]. For nonlinear

data, computing the hyperplane is achieved by using the kernel trick, which maps the

data in a higher dimensional space. More details on the SVM ML algorithm can be

found in [102, 103].
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Chapter 3

Permanent Water Detection

In this chapter, a permanent water detection method is presented based on the RUS-

Boost algorithm described in Section 2.2.1 and the CYGNSS data. The results of the

proposed method are compared with those of the watermask detection method con-

sidering two different regions as two case studies. This chapter is outlined as follows:

Section 3.1 introduces employed data sets. In Section 3.2, four different CYGNSS

observables and the RUSBoost-based algorithm are described. Section 3.3 provides

the results of the classification and the comparison between RUSBoost-based clas-

sifier and watermask detection methods. General chapter summary is provided in

Section 3.4.
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3.1 Data Sets

3.1.1 CYGNSS

The CYGNSS daily data are posted two days after their collection and are available

for the public through [47]. In this chapter, the level 1 V2.1 data of the year 2018

over the Congo and Amazon basins are employed. These two regions are located

in geographic coordinates of [2◦ S, 3◦ N][17◦ E, 27◦ E] and [10◦ S, 0◦ N][50◦ W, 75◦ W],

respectively.

3.1.2 Global Surface Water

In the current chapter, the GSW seasonality data of the year 2018, which has a high-

resolution (30m×30m) and has been employed in various studies as reliable sources,

is used as the reference for labelling and evaluation. The GSW seasonality data

describes the inter-annual behaviour of surface water and such a data set was created

based on the optical images taken by Landsat during 2018 [10]. The permanent water

Geographic Information System (GIS) data maps are publicly available through [35].

We used the QGIS and MATLAB to convert the GIS data to TIFF maps and assign

each 30m × 30m grid cell with a value of 0 or 1 where 0 means land without water

content and 1 is water. Since the CYGNSS resolution is worse than that of GSW

seasonality data, values of 30m×30m grid cells located within a 0.01
◦ × 0.01

◦

cell are

averaged and compared with a threshold. If the average value of a cell is higher/lower

than the threshold, such a cell is labeled as water/land. Empirically, 0.6 was found

to be the optimal threshold.
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3.2 Water Detection Methodology

3.2.1 CYGNSS Observables

In this chapter, four different observables, including SNRC, kurtosis, maximum, and

variance are computed for each SP. All the observables except SNRC are computed

using the SR DDM described by equation (2.8).

• The SNRPeak, which is the ratio of the maximum value in a DDM to average

noise per bin (10log(Smax/Navg)), is provided in the CYGNSS data set. This

value is then corrected to SNRC via [68]

SNRC = 10log

(

(Rtx +Rrx)
2λ2

PtxGtxGrx(4π)2
10SNRPeak/10

)

. (3.1)

As in [68, 72], in order to make the values of SNRC intuitively meaningful, the mean

of the lowest 5% of SNRC values, which is equal to 139.7 dB, was subtracted from

them.

• The maximum is the maximum value of the SR DDM.

The surface roughness changes the pattern of scattered signals. Eventually, it will

change the statistical characteristics and histogram of a DDM. The statistical mo-

ments including mean, variance, kurtosis, and skewness, are general parameters that

can describe the shape of a histogram of Random Variables (RV). By considering the

magnitude of the SR DDM as an RV, the statistical moments can indicate a com-

prehensive explanation about the impact of water on its histogram [104]. The maps

of the four statistical moments were created and by comparing them to the water
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reference map, we found that among them, the variance and kurtosis are more cor-

related with the watersheds and permanent water bodies. The variance and kurtosis

are defined as follows

• Variance, which is a measure of the deviation of an RV from its mean and shows

how the distribution of an RV is centralized around the mean, is given by

variance = E[(X − E[X])2] =
1

187

17
∑

i=1

11
∑

j=1

(Γτi,fj −mean)2, (3.2)

where

mean = E[X] =
1

187

17
∑

i=1

11
∑

j=1

Γτi,fj . (3.3)

• Kurtosis is a measure of the tailedness of the distribution of an RV. In other

words, kurtosis assesses the data points that are outside of the standardized

data region (outliers) and is defined as

kurtosis = E

[

(

X −mean√
variance

)4
]

=

17
∑

i=1

11
∑

j=1

(Γτi,fj −mean)4/187

(variance)2
. (3.4)

Since the ranges of features are different, as a part of the data cleaning step, the

values of maximum, variance, and kurtosis are normalized. The minimum to maxi-

mum normalization ranges of maximum, variance, and kurtosis are obtained based on

self-observations and are equal to [−35 , −5], [−70 , −25], and [0 , 35], respectively.

The SNRC is not normalized since it is not used with other features and is only

utilized in watermask detection method.

In order to conduct a fair comparison between the proposed method and that in

[72], the extracted CYGNSS observables are gridded into a 0.01
◦ × 0.01

◦

cell as done
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in [72]. For each observable, values of SPs that are located in the same grid cell are

averaged.

The surface water reference and calculated observables maps of the Congo basin

are depicted in Figure 3.1. Comparing the water reference map with the maps of the

extracted observables indicates that the SNRC map is noisier, meaning that there are

land grid cells whose SNRC value is in the same range as those of water grid cells.

On the other hand, the kurtosis values of most land grid cells are less than 5. Also,

the grid cells with high kurtosis values correspond to the network of land areas with

low altitudes that might contain and channel the surface water bodies or in other

words the watersheds. However, there is a similar pattern in the SNRC, maximum,

variance maps that correspond to the permanent water whose extent map is depicted

in Figure 3.1(a). The watermask detection method attempts to detect this pattern

that grid cells with high value SNRC create. On the other hand, the RUSBoost-based

classifier determines the label of each grid cell only by its corresponding observable

values.

3.2.2 Classifier

Classification of each grid cell as water or land is determined by applying the RUSBoost-

based classifier to GNSS-R data. While selecting the training and testing data sets,

a random shuffling and a random selection are applied to the data from the consid-

ered region. Therefore, the training data set consists of the data points from all over

the considered region. Thus, the trained classifier is not over-fitted to any specific

areas within the considered region. Using RUSBoost method, at the first step each
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(a) (b) (c)

(d) (e)

Figure 3.1: The Congo basin (a): permanent water reference map obtained from the

GSW seasonality data, (b): SNRC map, (C): kurtisos map, (d): maximum map, and

(e): variance map.
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data point in the training data set is assigned to a weight initialized with an equal

value. Each iteration is allocated with a separate weak learner. At each iteration, an

imbalanced training data set is randomly undersampled creating a balanced data set

[95]. The balanced data set is then passed through the weak learner of that itera-

tion, which creates a weak hypothesis [98]. When the hypothesis of the weak learner

is correct for the training data set, which means that the weak learner was able to

classify all the training data points correctly, the weights of observations remain un-

changed. Otherwise, the weights of the misclassified points will be higher than those

of correctly classified points. Therefore, in the next iteration, the weak learner will be

biased to classify the misclassifications of the previous weak learner, which translates

to increasing the variance step by step. This process that consists of random under-

sampling, creating a weak hypothesis, and updating observations weights is repeated

for each iteration. At the last iteration, when all the weak learners are trained, the

output hypothesis is created as a weighted vote of weak hypotheses.

In this chapter, RUSBoost-based classification is conducted using MATLAB R2018

software. The decision stump is chosen as the weak learner, and 150 of decision stumps

are trained with a learning rate of 0.1 in 150 iterations. The output hypothesis is then

used for testing and validation with other separate data sets. The block diagram of

the RUSBoost-based classifier for permanent water detection is shown in Figure 3.2.

3.3 Results and Discussion

The CYGNSS data include high altitude measurements and noisy DDMs that must

be discarded in the data cleaning stage. In this thesis, we refer to all discarded
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Figure 3.2: Block diagram of the RUSBoost classification. After training the classifier

with 50% of the Congo data, it is applied to the remaining 50% and the Amazon data.

DDMs as noisy DDMs. In order to eliminate noisy DDMs, the CYGNSS quality

flags, mentioned in Table 3.1, are applied to the data in the preprocessing step [80].

Moreover, it has been shown in [105] that when the incidence angle of an SP is between

15◦ and 60◦, the received signal is more sensitive to the surface water content. Hence,

SPs with incidence angles out of this range are removed.

Among the four observables extracted from the CYGNSS data, SNRC is used

for implementing the comparison watermask detection method described in [72]. The

kurtosis, maximum, and variance are used as inputs of the RUSBoost-based classifier.

Each grid cell is labeled using the GSW data. As a supervised classification, the

RUSBoost-based classifier is trained with 50% of the CYGNSS data (144791 data

points) from the Congo basin. The remaining 50% is used for testing. Since the

parameters of the watermask detection method are optimized for the Congo basin,

in order to compare the two methods, we also used the data from the same area for

training and testing the classifier [72]. To further investigate the capability of these

two methods, they are applied to the data from the Amazon basin that it is not

included in the training data and is unknown to the two methods.
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Table 3.1: CYGNSS data quality flags (suggested in [80]) considered in this thesis.

Quality Flag Flagged in Analysis
Poor Overall Quality No
S Band Powered Up Yes

Small Spacecraft Attitude Error No
Large Spacecraft Attitude Error Yes

Blackbody DDM Yes
DDMI Reconfigured Yes

Spacewire CRC Invalid Yes
DDM is Test Patten Yes

Channel Idle Yes
Low Confidence DDM Noise Floor No

SP Over Land No
SP Very Near Land No

SP Near Land No
Large Step Noise Floor No
Direct Signal in DDM Yes

Low Confidence GPS EIRP Estimate Yes
Radio-frequency Interference Detected Yes

BRCS DDM SP Bin Delay Error No
BRCS DDM SP Bin Doppler Error No

Negative BRCS Value Used for NRBCS No
GPS Position, Velocity and Time SP3 Error No

SP Non Existent Error Yes
BRCS Look-up Table Range Error No

Antenna Data Look-up Table Range Error No
Blackbody Framing Error Yes
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(a) (b) (c)

(d) (e)

Figure 3.3: The Congo basin (a): the permanent water reference map using the GSW

data, (b): the RUSBoost classification map, (C): the result map of the watermask

detection method, (d): the RUSBoost error map classification, and (e): the error

map of the watermask detection method. The areas within the two dashed rectangles

include small land regions that are surrounded by water bodies.
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(a) (b) (c)

(d) (e)

Figure 3.4: The Amazon basin (a): the permanent water reference map using the

GSW data, (b): the RUSBoost classification map, (C): the result map of the wa-

termask detection method, (d): the RUSBoost error map classification, and (e): the

error map of the watermask detection method.
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Table 3.2: Accuracies of Inland Water Detection Methods.

# Case Method Class Accuracy

1 Congo Basin RUSBoost Classification
Land 94.63 %
Water 95.4 %

2 Congo Basin Watermask Detection
Land 94.8 %
Water 91.5 %

3 Amazon Basin RUSBoost Classification
Land 91.9 %
Water 93.3 %

4 Amazon Basin Watermask Detection
Land 92.2 %
Water 79.1 %

The GSW seasonality reference map, labeling and classification results, and error

maps of the two methods over the Congo and Amazon basins are depicted in Fig-

ures 3.3 and 3.4, respectively. The accuracies of the watermask detection method

and the RUSBoost-based classifier are shown in Table 3.2. The comparison between

the RUSBoost-based method and the watermask detection method indicates that the

former has a better performance regarding water detection. When both methods

are applied to the Amazon basin, the difference is more significant and the proposed

method outperforms by 14.2% in water detection accuracy. In terms of land detec-

tion, the watermask detection method has a slightly higher accuracy. The differences

of land detection accuracy for the Congo and Amazon basins is 0.17% and 0.3%,

respectively.

The two dashed rectangles in Figures 3.3(d) and 3.3(e) indicate small land areas

that are surrounded by water. By comparing these two maps, when a small land

area is localized within water bodies, the watermask detection method mislabels it

as water, while the RUSBoost-based method classifies it correctly. Therefore, even

though the presence of water is overestimated, the resulting map of the RUSBoost-
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based classifier is more precise.

Since the proposed method provides more precise water maps and its water de-

tection accuracy is higher, it has a better overall performance than the watermask

detection method described in [72].

3.4 General Chapter Summary

In this chapter, a high-resolution water detection technique based on CYGNSS data

and the RUSBoost algorithm is presented. By considering three observables, the

classifier was trained with half of the CYGNSS data from the Congo basin. Then

the classifier was tested with the remaining half of the data. To further evaluate the

performance of the classifier, it was applied to the data of the Amazon basin that is

unknown to the machine. Moreover, the results of the two cases are compared with

the watermask detection method proposed in [72].
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Chapter 4

Flash Flood Detection

In this chapter, six different DPAs for detecting flash floods using CYGNSS data and

RUSBoost ML algorithm are investigated. Eleven different observables are extracted

for each SP. By considering five features, the optimum flood threshold is determined.

Based on the optimum flood threshold, all different features combinations are investi-

gated to find a suitable one for flash flood detection. Using the selected features, the

performance of the classifier for each approach is computed and by comparing the re-

sults, the best one is proposed as the recommended approach for flash flood detection.

Then, the performance of the RUSBoost classifier is compared with an SVM classifier

using the recommended approach. This chapter is outlined as follows: first, employed

data and reference assignment are discussed in Section 4.1; then, the methodology

for flash flood detection is described in Section 4.2. Section 4.3 presents the feature

selection, flood detection results, and a comparison between two classifiers. Lastly, a

general summary of the chapter is provided in Section 4.4.
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4.1 Data Sets

4.1.1 CYGNSS

Similar to Chapter 3, in this chapter, we employed level 1 V2.1 of the CYGNSS data

[106] that are available for the public through [47].

In the CYGNSS constellation, each satellite is an along-track scanner which col-

lects the GNSS reflected signal in the direction of the satellite passing over a region

with an onboard GNSS-R payload as mentioned in Section 1.1. Hence, when a disas-

ter occurs in a few days (5 to 10 days), the CYGNSS receivers are only able to cover

a portion of the flooded area and for some areas, there is no data. Considering this

limitation, among all the floods that have happened since 2016 (the year CYGNSS

was launched) to 2019, we considered two significant events, Hurricane Harvey and

Hurricane Irma. These two hurricane events are among the harshest and costliest

ones that have affected the United States significantly [107].

Hurricane Harvey reached the coast of the USA on Aug. 25th, 2017, and according

to media, the inundation lasted until Sept. 8th, 2017. Hurricane Irma landed on the

coast of the USA on Sep. 10th, 2017 and caused a 6-day flood. The affected areas of

Hurricane Harvey and Hurricane Irma are located within geographic coordinates of

[26.7◦ N, 32.29◦ N][91◦ W, 100◦ W] and [24.5◦ N, 29.2◦ N][79.2◦ W, 93◦ W], respectively.

Since Hurricane Harvey affected a larger area compared to Hurricane Irma, it has more

data points. In other words, the data of Irma might not be enough to fully train a

classifier, which may lead to an underfitted model. Therefore, in Section 4.3.1, for

feature selection, both data sets are combined and used for classification by a 5-fold

cross-validation evaluation. Furthermore, in Section 4.3.2, 50% of the Harvey data
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is used for training and then validate the trained classifier with the remaining 50%.

This trained classifier is then tested with the data of Irma, which is unknown to the

machine.

4.1.2 Ancillary Data

In this chapter, the flood maps created by the DFO are used as reference data for

training and validation. The DFO is a remote sensing research lab of Institute of

Arctic and Alpine Research (INSTAAR), at the University of Colorado Boulder. As

a part of the Global Disaster Alert and Coordination System (GDACS) project, they

create and provide flood maps using data from multiple sources, including NASA

MODIS, ESA Sentinel 1, ASI Cosmo SkyMed, Copernicus Sentinel 1, and Radarsat 2

[12]. In this chapter, the regions impacted by Hurricane Harvey and Hurricane Irma

are considered as two case studies, one flood map for each event is obtained from the

DFO GIS data. The GIS data of Hurricane Harvey and Hurricane Irma and more

details on them are available through [108], and [109], respectively.

Since the water tends to move to places at low altitudes, the elevation data can

impact the accuracy of classification. Therefore, altitude data of the Shuttle Radar

Topography Mission Digital Elevation Model (SRTM90m DEM) is employed as an-

cillary data [110]. This data set alongside the extracted GNSS-R observables are used

as the input for training and testing of the classifier.

The flood reference map is created based on the changes of the surface during the

flood. However, areas with water bodies such as permanent waters and some regions

of wetlands might have similar characteristics to flood, which leads to overestimation.
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Table 4.1: Summary of employed data sets.

Data Set Resolution Spatial Coverage Temporal Coverage Accuracy

CYGNSS
[106] incoherent: 25 km

38◦ S to 38◦ N
Daily

NA
coherent: dynamic from March 13, 2017

DFO
[12, 109]

< 250m 50◦ S to 70◦ N
Flood Events

Geolocation accuracy: ±50m
2000 - Present

SRTM
[110]

90m 56◦ S to 60◦ N 11-22 February 2000 Vertical accuracy 6m

CIFOR
[111]

236m 60◦ S to 40◦ N 2009-2017 NA

GSW
[10, 35]

30m 50◦ S to 80◦ N 1984-2019 98%

One solution is to exclude the points that are located over such areas. Therefore, for

excluding such data points, the Global Wetland V3 data provided by the Center for

International Forestry Research (CIFOR) [111] and GSW Occurrence data [10, 35],

are used. The CIFOR Global Wetland data set indicates the distribution of wetland,

peatland and peat depth that covers the tropics and subtropics. This data set is

created using products from the MODIS sensors, the Phased Array Type L-band

Synthetic Aperture Radar (PALSAR) data, and other ancillary data sets [112]. Even

though this data set is not validated due to the unavailability of ground truth, it agrees

well with other commonly used data sets [112]. The GSW data set is generated based

on optical images collected by Landsat [10]. The GSW Occurrence data shows the

extent of permanent water from 1984 to 2019. Hereafter, we refer to the Global

Wetland CIFOR and GSW Occurrence data sets as CIFOR and GSW, respectively.

The key parameters of the employed datasets are listed in Table 4.1. Although their

accuracies were not available, the CIFOR and CYGNSS data sets are benchmark

data sets that have been widely adopted for analysis in literature.

In this chapter, various georeferenced data sets with different spatial resolutions

are considered. Therefore, a comprehensive approach for matching the flood reference
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and ancillary data to each GNSS-R data point must be taken. Similar to other GNSS-

R systems, the coherent footprint of CYGNSS is dynamic. In [70], it has been shown

that DDMs can be gridded into cells of size 500m× 500m. Following the literature,

in this study, we assume that the DDM of each SP represents a 500m× 500m region

around it. Therefore, for assigning a flood/land label to an SP, the number of flood

pixels of the reference flood map within an area of 500m × 500m around the SP

is counted. When the percentage of flood pixels around the SP is higher than a

threshold, it is labeled as flood; otherwise, it is labeled as land. For SRTM90m DEM,

the assigned value to each SP is the average of the reference data within the area of

500m× 500m around each SP. Moreover, whether an SP is located within wetlands

or permanent water bodies is determined by the value of a grid cell in CIFOR or

GSW data sets that is closed to the SP.

4.2 Flash Flood Detection Methodology

4.2.1 CYGNSS Observables

In this chapter, instead of working with the whole DDM, eleven different observ-

ables including SNRC, Trailing-edge Slope (TES), Leading-edge Slope (LES), Delay-

Doppler Map Average (DDMA), the Width of the Waveform (Wave-width) defined

in the fourth bullet point in the following, the first Generalized Linear Observable

(GLO1), kurtosis, maximum, mean, skewness, and variance are extracted for each SP.

All the observables except SNRC are computed using the SR DDM, which is calcu-

lated as described in [70]. The first seven observables (SNRC, LES, TES, DDMA,
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Wave-width, GLO1, and maximum) are obtained as follows [70, 113]:

• In this chapter, another equivalent correcting expression is used to calculate

SNRC, as suggested in [70]

SNRC =
(Rtx +Rrx)

2λ2〈σm〉
PrxmR2

txR
2
rx(4π)

3
SNRPeack (4.1)

where 〈σm〉 is the maximum value of BRCS DDM, and Prxm is the maximum

value in power DDM [70]. The maximum of BRCS and maximum of DDM are

computed using the BRCS DDM and power DDM of each SP and vary with

different DDMs.

• As depicted in Figure 4.1(b), LES and TES are computed as the slopes be-

tween the maximum point and the points at two delay bins before and after the

maximum point in the SR Integrated Delay Wavefrom (IDW) [70].

• The DDMA is the arithmetic mean of SR DDM within a window around the

maximum value. In this thesis the size of the window is chosen as 3 delay bins×

5Doppler bins as shown in Figure 4.1(a). The DDMA is described as [114]

DDMA =
1

15

imax+1
∑

i=imax−1

jmax+2
∑

j=jmax−2

Γτi,fj , (4.2)

where imax and jmax are the delay and Doppler bins of the maximum SR value

in the SR DDM, respectively.

• The width of the waveform is the number of Doppler bins whose intensity is

higher than 1/e of the maximum of the SR Doppler waveform (SR DDM inte-

grated over the delay axis) [70].
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(a)

(b)

Figure 4.1: (a): An example of SR DDM described by (2.8), and (b): its SR IDW. A

3 × 5 window is considered for calculating DDMA.
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• The Nth Generalized Linear Observable (GLO) is defined as [115]:

GLON =
imax+3
∑

i=imax−3

aNi Γ
del
τi
, (4.3)

where Γdel is SR IDW, aNi is the Nth weight of SR in the delay bin i and it is

computed by applying Principal Component Analysis (PCA) to the SR IDW.

The summation is calculated considering ±3 delay bins around the delay bin

of the maximum of SR IDW (imax). We only consider the first GLO (GLO1),

since it has been proven that it is more correspondent to the inundations over

land [70].

• The Maximum that is the maximum value of the SR IDW is also considered

another feature.

As mentioned in Chapter 3, the impact of flood on a DDM can be studied by

considering the SR IDW (or SR DDM) as an RV and analyzing its statistical mo-

ments. In this chapter, all statistical moments including mean, variance, kurtosis,

and skewness are considered as observables, which are obtained as

• Mean shows the position of the central mass of an RV;

mean = E[X] =
1

17

17
∑

i=1

Γdel
τi
, (4.4)

• Variance is the squared differences of an RV from its mean;

variance = E[(X − E[X])2] =
1

17

17
∑

i=1

(Γdel
τi

−mean)2, (4.5)

• Skewness is an indicator of the asymmetry of the probability distribution of an

RV. When the distribution is symmetrical, skewness equals zero. In asymmet-

rical distributions, when the skewness is negative, the tail of the distribution

46



is on the left side of the mean, but when the skewness of the distribution is

positive, the tail is on the right side of the mean;

skewness = E

[

(

X −mean√
variance

)3
]

=

17
∑

i=1

(Γdel
τi

−mean)3/17

(variance)3/2
(4.6)

• Kurtosis that estimates the tailedness of the shape of a histogram;

kurtosis = E

[

(

X −mean√
variance

)4
]

=

17
∑

i=1

(Γdel
τi

−mean)4/17

(variance)2
. (4.7)

It is worth mentioning that the number of observables is not confined. Other

observables can be defined and computed based on different aspects of the GNSS-R

data.

Since the ranges of observables are different, as a part of the data cleaning step,

they are normalized based on the normalization ranges mentioned in Table 4.2. The

value of each parameter is projected to the interval of [0, 1] using its Min to Max.

These values are obtained based on self-observations.

Table 4.2: Ranges of observables in normalization step.

Parameter Min Max Parameter Min Max

DDMA 3 12 LES 0 0.35

TES 0 0.4 Wave-width 1 9

SNRC (dB) 105 130 GLO1 -35 -5

Kurtosis 1.5 4.5 Skewness -1 1.8

Mean 0 0.1 Maximum 0 0.5

Variance(dB) -70 -10

47



Depending on the labels of the SPs, their observables show different characteristics

as depicted by the box plots in Figure 4.2, for which the SPs located over perma-

nent water bodies and wetlands are excluded using the GSW and CIFOR data sets.

Comparing Figure 4.2(a) with Figure 4.2(b) indicates that the values of SNR, LES,

TES, mean, maximum, variance, skewness, and kurtosis of the flood labeled SPs are

higher than those labeled as land. On the other hand, the flood labeled SPs have

lower values in DDMA, Wave-width, and GLO1.

The DDMs whose maxima are not between delay bins 4 and 14 are discarded as

noise. The discarded DDMs include high altitude measurement and noisy DDMs.

This range is determined by observing DDMs and comparing the delay bins of their

maximum values. Moreover, when the incidence angle is between 15◦ and 60◦, the

reflected signal is more correlated with the water extent around an SP since within

this range the coherent scattering is dominant over incoherent one, as shown in [105].

Since the intention here is to detect a flash flood, which is a type of surface water

body, the SPs with incidence angles out of this range are removed. In addition

to these conditions, quality flags, mentioned in Table 3.1, are also considered in

the preprocessing step [80]. It is worth mentioning that the speckle noise impact is

negligible since each DDM is obtained from 1 s incoherent integration of 1000 DDMs

[116].

4.2.2 Classifiers

In this chapter, the RUSBoost-based classification is implemented in MATLAB R2018

using the Statistics and Machine Learning Toolbox. A total number of 150 weak
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(a)

(b)

Figure 4.2: The box plots of the eleven observables (a): SPs labeled as land, and (b):

SPs labeled as flood.
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learners are trained with a learning rate of 0.1. Different combinations of the number

of weak learners and learning rate values were investigated in terms of classification

error and the selected combination gives the minimum error. Each weak learner is

a decision stump. At each iteration, among 150 random combinations of different

features and decision thresholds, one of them is chosen. The trained classifier is used

for testing and evaluation.

Moreover, an SVM based classifier is implemented using the Statistics and Ma-

chine Learning Toolbox of MATLAB R2018. Similar to RUSBoost classifier, selecting

training data points from Harvey consists of random shuffling and random selection.

For balancing the imbalanced data sets, RUS is applied to the training data set since

it requires a much lower computational load compared to oversampling methods (e.g.,

SMOTE) [92, 93]. The Radial Basis Function (RBF) kernel is selected as the kernel

function. The values of hyperparameters are optimized using the Sequential Minimal

Optimization (SMO) algorithm proposed in [117].

Since the selected training data from Harvey is random, to provide a better per-

ception of the performance, the classification was repeated 20 times for both SVM

and RUSBoost classifiers. At each repetition, half of the data points in Harvey are

randomly selected for training the classifiers.

The block diagrams of the classifiers implemented in Section 4.3.1 and Section 4.3.2

are depicted in Figure 4.3 and Figure 4.4, respectively.
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Figure 4.3: Block diagram of 5-fold cross-validation classifier used for feature selection.

Figure 4.4: Block diagram of the classification.
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4.2.3 Data Preparation Approaches

In this section, six different DPAs for flash flood detection are described. As men-

tioned in Section 4.1.2, water bodies that are not caused by flash floods, e.g., per-

manent water bodies and some regions of wetlands, can be mislabeled as flood. Two

main DPAs could be taken for solving this issue. One solution is to use reference

data sets and exclude SPs that are located over water bodies. Another one is to

use the variation between the CYGNSS data during flood and the CYGNSS data

collected during a period that flood did not happen. Therefore, six different DPAs

are investigated in this study that are described as

• In Approach 1, all inland SPs collected during floods are used. Even though

some SPs are located over wetlands or permanent waters, in order to investigate

the errors caused by water bodies other than flood, the non-flooded SPs are

labeled as land.

• In Approach 2, based on the GSW and CIFOR data sets, SPs located over

wetlands and water bodies are excluded. This method was previously used in

Section 4.3.1 for feature selection.

• In Approach 3 GSW data set is used for excluding the SPs located over perma-

nent waters.

• Approach 4 consists of three steps: detecting water bodies, excluding the SPs

associated with water detection results, and flood detection. Using the 2018

CYGNSS data and inland water detection method described in Chapter 3, water

bodies over Harvey and Irma are detected. The detected water extent is then
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used as a reference for correspondingly excluding SPs.

• In Approach 5, the impact of flood is investigated by considering the changes

caused by flood with respect to the CYGNSS data collected one month prior to

flood.

• Similar to Approach 5, in Approach 6, the variations caused by flood are con-

sidered. In this DPA, the CYGNSS data of three months dry season of the year

2018 are considered as background data.

In Approach 5 and Approach 6, for calculating the changes of selected observables,

each SP in the CYGNSS flood data set is matched with the closest data point from

the background data set. The distance between SP in the flood data set and its match

from the background data set is to be less than 1.5 km. When the distance between

two points is higher than 1.5 km, the SP is excluded. We investigated different val-

ues for determining this distance and 1.5 km was the optimum value with respect to

data exclusion amount and classification error. Since in Approach 1 all data points

collected during floods are used for classification, its result includes possible misclas-

sifications. Comparing the classification results of other DPAs with Approach 1 can

indicate their advantages and disadvantages. The coverage of the CYGNSS is low

and in some DPAs, a portion of data is not even considered due to the data exclusion.

Hence, the percentage of excluded data points alongside the accuracy of the classifier

are two factors that are used in Section 4.3.2 to evaluate the overall performance of

each DPA. Since the amount of excluded data for each DPA is different, it is not

possible to evaluate them using exactly same validation data.
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4.3 Results and Discussion

As mentioned in Section 4.2.1, eleven different observables are extracted from the

CYGNSS data.

First, the optimum flood threshold is determined by considering five observables

and two ancillary features. Based on the the optimum flood threshold, all different

combinations of eleven observables and two features from SRTM90m DEM are used

as inputs of a RUSBoost classifier with 5-fold cross-validation to select a suitable

combination of features in Section 4.3.1. With the selected features, six different ap-

proaches for detecting flood are studied in Section 4.3.2. By comparing their results,

the best approach for flood detection is selected. The performance of the recom-

mended RUSBoost classifier is then compared with that of an SVM based classifier

in Section 4.3.3.

4.3.1 Features Selection

In this section, we want to select the features that are proper for flood detection.

Therefore, by using GSW and CIFOR GW data sets, SPs located over wetlands and

permanent water are excluded. This ensures that the remaining SPs used in feature

selection are either flood or bare land.

The eleven observables described in Section 4.2.1 and the surface elevation and

terrain from the SRTM90 DEM data set are considered as thirteen features. Even

though the extracted features are different at the first look, some of them may carry

the same information and employing them all may lead to more computations without

any improvement. One way for clarifying the relation between variables is to cross-
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correlate them. When two variables are highly correlated (cross-correlation between

0.9 and 1), they provide similar information, but they are not identical. As shown

in Figures 4.5(a) and 4.5(b), there are high correlations (more than 0.9) between

the maximum and TES, LES, and mean, between variance and GLO1 and SNRC

and between kurtosis and skewness. Therefore, in this section all combinations are

considered for determining a suitable features combination.

Before proceeding to the feature selection, the optimum value of flood threshold

is determined by considering all the possible values. The combination of Kurtosis,

Maximum, Variance, DDMA, Wave-width, and two ancillary features (surface eleva-

tion and terrain from the SRTM90 DEM) are used as input for 5-fold classifier whose

classification errors are shown in Figure 4.6. The average flood classification error

starts at ∼ 20% and gradually declines to ∼ 11%. The average land classification

error starts at ∼ 14%, and it reaches its minimum, ∼ 5%, when the flood threshold is

25%. After this point, as the flood threshold increases, the error increases. The flood

error at a flood threshold of 25% is relatively lower than other values within 20% to

30% interval. Therefore, 25% is selected as the optimum value of the flood threshold

by considering both land and flood classifications errors.

By knowing the optimum flood threshold, both Harvey and Irma data sets are

combined and the idea of recursive feature elimination is implemented to determine

a suitable feature combination out of all the 8191 different combinations. For each

combination, the accuracy of the classifier with 150 weak learners is evaluated by 5-

fold cross-validation, in which the same subsets of data are used for all combinations.

The accuracies of the best five combinations with and without the two features from

SRTM90 DEM are shown in Table 4.3. From Table 4.3 it is clear that using the
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(b)

Figure 4.5: Correlations between features, (a): Harvey, and (b): Irma.
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Figure 4.6: Error values of 5-fold cross validated classifier for different flood thresholds

by using Kurtosis, Maximum, Variance, DDMA, Wave-width, and SRTM90m DEM

as the input feature vector.

elevation and terrain from SRTM90 DEM (combinations 1 to 5 in Table 4.3) has

improved the accuracy (around 10% for flood and 2.5% for land). Due to gravity,

water accumulates in lower altitudes. Hence, it is unlikely that flood would occur in

an area located on the slope. Overall, knowing the elevation and terrain of an area

gives a better insight into the regions with a higher possibility of flooding.

In terms of land detection, features combination 4 in Table 4.3 has the best ac-

curacy. However, it has a lower flood detection accuracy compared to features com-

bination 5, which has the best performance for flood detection. Therefore, features

combination 5 in Table 4.3 has a better performance overall.

Here, the hyperparameter (i.e., the number of weak learners (T )) of the RUSBoost

classifier is set to 150 after evaluating the classification error for various values of T by

considering all the features as the input feature vector. Next, the top five combina-
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Table 4.3: Accuracies for five best combinations with and
without ancillary data obtained from 5-fold cross-validated
classification with 150 weak learners.

#* Inputs Class Accuracy

1
All features

Land 95.69 %
Flood 79.20 %

2 SNRC, TES, Wave-width, DDMA Land 94.14 %
GLO1, Kurtosis, SRTM90m DEM Flood 81.19 %

3 SNRC, LES, Wave-width, Land 93.99 %
GLO1, SRTM90m DEM Flood 80.85 %

4 Kurtosis, Maximum, Variance Land 96.08 %
Mean, Skewness, SRTM90m DEM Flood 79.41 %

5 Kurtosis, Maximum, Variance Land 95.73 %
DDMA, Wave-width, SRTM90m DEM Flood 83.32 %

6 All observables Land 92.91 %
(All features except SRTM90m DEM) Flood 69.54 %

7 SNRC, TES, Wave-width, Land 92.63 %
DDMA,GLO1, Kurtosis Flood 71.04 %

8 SNRC, LES, Wave-width, Land 92.71 %
GLO1 Flood 70.07 %

9 kurtosis, Maximum, Variance, Land 93.63 %
Mean, Skewness Flood 69.48 %

10 Kurtosis, Maximum, Variance Land 93.57 %
DDMA, Wave-width Flood 72.16 %

* Combinations from 1 to 5 are with ancillary data (SRTM90m DEM), and com-
binations from 6 to 10 are without it.

tions in terms of classification error are found based on the selected hyperparameter.

Since the value of T can impact the classification results, we further investigated the

variation of the overall classification error with T for the other four feature combi-

nations listed in Table 4.3. As shown in Figure 4.7, as the number of weak learners

increases, the classification errors decrease since the classifier becomes more adapted

to the data. After a certain value of T (140 here), the accuracy will not change sig-

nificantly. The optimal values of T are 150 for Combinations 1, 3, and 5 and 149 for
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Figure 4.7: The classification error of the classifier with 5-fold cross-validation with

respect to the number of weak learners (i.e. the value of the hyperparameter, T ).

Combinations 2 and 4. Although there is a small difference between the optimal and

selected values for Combinations 2 and 4, the results obtained from T = 150 are still

appropriate since the difference between the accuracies with the selected and optimal

hyperparameters is less than 0.1%.

4.3.2 Flood Detection

By knowing the best feature vector from Section 4.3.1, in this section the intention is

to find the best DPA for flood detection using the CYGNSS data through evaluating

the six DPAs mentioned in Section 4.2.

Unlike Section 4.3.1 where a classifier with 5-fold cross-validation was used, here,

the RUSBoost based classifier depicted in Figure 4.4 is trained and tested by using

the features combination 5 in Table 4.3 for each DPA.

The results shown in Table 4.4 are the accuracies and the percentage of excluded
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data for both Harvey and Irma. For choosing the best method, first, the percentage

of the discarded data of each DPA is compared with other DPAs. Then, a suitable

method for flood detection is selected based on the accuracy. Among all the DPAs,

Approach 1 and Approach 6 have no data exclusion. The excluded data points in

Approach 3 are located over permanent water. This is reasonable since permanent

water area does not need to be determined to be flooded or not, i.e., there is no

overlap between permanent water and the reference flooding regions. Due to the

overestimation of detected water extent, Approach 4 has the highest data exclusion.

Even though Approach 2, Approach 4, and Approach 5 have an acceptable accuracy

in some instances, they do not seem to be proper options for flash flood detection

due to their high percentage of data exclusion. It should be pointed out that unlike

Section 4.3.1, where the intention is to find a suitable feature vector for detecting

flood, here, we are investigating different DPAs for flash flood detection. Moreover,

as shown in Table 4.4, the accuracies of Approach 2 and Approach 3 are comparable,

but Approach 2 is not suggested since more data points are excluded. Approach 5 has

the lowest flood detection accuracy for Irma. Among Approach 1, Approach 3, and

Approach 6, Approach 3 has the highest land detection accuracy and Approach 1 has

the highest flood detection accuracy for both Harvey and Irma. The flood and land

detection accuracies of Approach 6 are less than those of Approach 1 and Approach

3. Therefore, Approach 1 and Approach 3 are the final candidates. In terms of flood

detection, Approach 1 outperforms Approach 3 by 1.9% in Harvey and 2.3% in Irma.

However, Approach 3 is able to detect land with a higher accuracy (3.2% in Harvey

and 8% in Irma). The intention in this study is to detect flash flood. However, since

the land points outnumber the flood points, the overestimation of flood is also crucial.
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Hence, Approach 3 seems like the proper method for flash flood detection.

The maps of employed reference data sets, classification result and error maps of

Harvey and Irma are depicted in Figures 4.8 to 4.11, respectively. The GSW and

CIFOR-GW references shown in Figures 4.8(a) and 4.10(a) are used for data exclu-

sion in Approach 2. For Approach 3, discarded SPs are selected by using the GSW

reference data that is depicted in Figures 4.8(a) and 4.10(a) in blue colour. Based on

the high-resolution DFO flood reference maps depicted in Figures 4.8(b) and 4.10(b),

in each DPA, considered SPs are labelled as flood/land. Due to data exclusion, the

flood reference map of each DPA could be different from others. As shown in Fig-

ures 4.8(b) and 4.10(b) the area flooded by Hurricane Harvey is concentrated over

the coastline, and most of the inland areas were not impacted, while in Hurricane

Irma, the affected areas are scattered over the land.

Furthermore, in order to make the flash flood detection method independent of

other data sets such as the GSW and CIFOR-GW, in Approach 4, we attempt to

detect the water extent over Harvey and Irma and use the results as a water extent

reference for excluding data. Considering the CYGNSS data of the year 2018, three

observables, including kurtosis, maximum, and variance, are extracted [118]. Using

these observables, the RUSBoost classifier from Chapter 3, which is trained with

data from the Congo basin, is applied for detecting water bodies of Harvey and

Irma. The water detection method overestimates the presence of water bodies, which

leads to excluding a large portion of data. The two investigated regions consist of

various dynamic water bodies, to which the CYGNSS is sensitive, including wetlands,

permanent waters, and farmlands. Therefore, water overestimation is inevitable. The

employed data sets for water detection are collected throughout a year in different
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Table 4.4: Accuracies of Approach 1 to Approach 6.

# Event Class Accuracy
Excluded

Event Class Accuracy
Excluded

Data Data

Approach 1 Harvey
Land 94.00 % 0.0 %

Irma
Land 63.00 % 0.0 %

Flood 90.90 % 0.0 % Flood 87.30 % 0.0 %

Approach 2 Harvey
Land 97.68 % 22.0 %

Irma
Land 79.20 % 48.0 %

Flood 81.60 % 38.0 % Flood 87.50 % 55.0 %

Approach 3 Harvey
Land 97.20 % 5.0 %

Irma
Land 71.00 % 14.0 %

Flood 89.00 % 0.0 % Flood 85.00 % 0.0 %

Approach 4 Harvey
Land 98.30 % 29.50 %

Irma
Land 79.50 % 57.1 %

Flood 76.00 % 80.1 % Flood 83.00 % 70.5 %

Approach 5 Harvey
Land 95.50 % 48.0 %

Irma
Land 86.00 % 44.0 %

Flood 86.80 % 45.0 % Flood 45.00 % 47.0 %

Approach 6 Harvey
Land 91.50 % 0.0 %

Irma
Land 61.00 % 0.0 %

Flood 86.90 % 0.0 % Flood 78.20 % 0.0 %

weather conditions. As shown in Figures 4.8(e), 4.8(g), 4.10(e) and 4.10(g), when a

large portion of SPs is discarded, detected flood does not correspond well to the actual

event shown in Figures 4.8(b) and 4.10(b). The error maps depicted in Figures 4.9(a)

to 4.9(f) and 4.11(a) to 4.11(f) indicate that most error points are located close to

the flooded regions shown in Figures 4.8(b) and 4.10(b). Comparing the classification

results of Approach 3 and flood reference maps depicted in Figures 4.8(f) and 4.10(f)

and Figures 4.8(b) and 4.10(b), respectively, shows that even with small coverage,

Approach 3 is capable of identifying the flash flood extent.

4.3.3 Comparison to SVM Classifier

For comparison, an SVM-based classifier is trained using the selected features in

Section 4.3.1 and same data that is produced by Approach 3 and employed for building

the RUSBoost classifier. The classification results and error maps of two classifiers
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.8: Maps of Harvey (a): GSW water and CIFOR-GW, (b): DFO flood

reference map, (c): detected water bodies, classification result map of (d): Approach

1, (e): Approach 2, (f): Approach 3, (g): Approach 4, (h): Approach 5, (i): Approach

6
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Harvey classification error map (a): Approach 1, (b): Approach 2, (c):

Approach 3, (d): Approach 4, (e): Approach 5, and (f): Approach 6.

are depicted in Figures 4.12 and 4.13. As mentioned in Section 2.2.2, the parameters

of the SVM-based classifier are optimized using the SMO algorithm.

As shown in Table 4.5, compared to the RUSBoost classifier with Approach 3, the

SVM classifier can detect flash floods with an accuracy of 6.1% and 11.3% higher for

Harvey and Irma, respectively. However, in terms of land detection, the RUSBoost-

based classifier is 8.98% and 32.2% more accurate for Harvey and Irma, respectively.

The SVM classifier overestimates flash floods as depicted in Figures 4.12(a) to 4.12(d)

and 4.13(a) to 4.13(d). For the SVM based classifier, due to the disproportion of

imbalanced data sets, the number of misclassified land points is much higher than

correctly detected flood points. Therefore, the RUSBoost classifier with Approach 3

is better than the SVM classifier.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.10: Maps of Irma (a): GSW water and CIFOR-GW, (b): DFO flood refer-

ence map, (c): detected water bodies, classification result map of (d): Approach 1,

(e): Approach 2, (f): Approach 3, (g): Approach 4, (h): Approach 5, (i): Approach

6
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: Irma classification error map (a): Approach 1, (b): Approach 2, (c):

Approach 3, (d): Approach 4, (e): Approach 5, and (f): Approach 6.
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Table 4.5: Results of SVM and RUSBoost
classifiers.

Event Classifier Class Accuracy

Harvey RUSBoost-based
Land 97.20 %
Flood 89.00 %

Harvey SVM-based
Land 88.22 %
Flood 95.10%

Irma RUSBoost-based
Land 71.00 %
Flood 85.00 %

Irma SVM-based
Land 38.80 %
Flood 96.30 %

It is worth mentioning that the overall run-time of the RUSBoost and the SVM

classifiers are 12.10 s and 0.48 s, respectively.

4.4 General Chapter Summary

In this chapter, a flood detection method based on CYGNSS data has been con-

ducted using the RUSBoost based classification. Eleven different features have been

extracted from CYGNSS data. Considering all the possible flood thresholds, the op-

timum value regarding the classification error is determined. For feature selection, by

excluding wetland and permanent water, the CYGNSS flood data set only includes

SPs that are either flood or land. Using this data, after investigating the accuracies

of all the combinations of thirteen features via a classifier with 5-fold cross-validation,

a suitable features combination was selected. By using the selected features combi-

nation, six different DPAs for detecting flash flood were investigated. Subsequently,

the performance of the RUSBosst-based classifier was compared with an SVM-based

classifier using data exclusion in the selected DPA.
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(a) (b)

(c) (d)

Figure 4.12: Comparison between RUSBoost and SVM classifiers for Harvey (a):

classification result map RUSBoost classifier, (b): classification result map SVM clas-

sifier, (c): error map RUSBoost classifier, and (d): classification error map SVM

classifier.
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(a) (b)

(c) (d)

Figure 4.13: Comparison between RUSBoost and SVM classifiers for Irma (a): classi-

fication result map RUSBoost classifier, (b): classification result map SVM classifier,

(c): error map RUSBoost classifier, and (d): error map SVM classifier.
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Chapter 5

Conclusion

5.1 General Synopsis and Significant Results

In this thesis, research for permanent water and flash floods remote sensing using

GNSS-R data of the CYGNSS is presented. First, a permanent water detection

method was investigated using three CYGNSS observables and RUSBoost-based clas-

sifier [118]. Its results over two case studies involving data from the Congo and

Amazon basins are compared with the watermask detection method proposed in [72].

Comparison results show that the RUSBoost-based classifier can detect the water

bodies more accurately with more details. Though the watermask detection method

is slightly more accurate in terms of land detection, it mislabels the small land areas

that are surrounded by water. Furthermore, the evaluation results from the Amazon

basin indicate that the proposed technique is more general compared to the water-

mask detection technique.

Due to the satellite movement during incoherent integration, the along-track co-
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herent resolution of the CYGNSS receivers is approximately 7 km [70]. Therefore, at a

resolution of 0.01
◦ × 0.01

◦

both techniques overestimate the presence of water. More-

over, the GSW data is created based on the data collected by optical sensors. Hence,

the water reference data does not include the data of cloudy days or over regions with

dense biomass. In other words, the water content in the GSW data is underestimated.

Thus, CYGNSS, which is not sensitive to clouds and certain biomass, detects water

content that is not included in reference data, leading to water overestimation.

The proposed method is able to classify a grid cell by using its features vector and

without any dependency on neighbouring grid cells. The classifier is not designed for

any specific region or time period and once it is trained, it can classify the data with

a low computational load. Hence, it does not require a large CYGNSS data set. In

addition, the preprocessing of the CYGNSS data and the extraction of observables

do not require any heavy calculations. Moreover, it could detect small water bodies

with a size comparable to the minor axis of the FFZ (∼ 600m).

As the second objective, a method based on the CYGNSS data and RUSBoost-

based classifier was proposed for flash flood detection [119, 120]. Eleven different

observables were extracted from the CYGNSS data. A suitable combination of fea-

tures and the optimum flood threshold were determined. Considering the selected

features and optimum flood threshold, six approaches for detecting flash floods were

investigated. By comparing their classification results and the percentage of excluded

data, the best approach was selected for flash flood detection. The results of the

proposed method are also compared with those of an SVM-based classifier as a rep-

resentative ML method.

The GSW and SRTM90m DEM data sets are the only ancillary data sets employed
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in the recommended DPA, i.e., Approach 3. Both of them are available for the

public with global coverage. In addition, unlike GLO1, the selected observables do

not require any heavy preprocessing, and for each SP, they are computed based on

parameters provided in the CYGNSS data for that SP without any dependency on

a region or time period. The selected feature combination might not be the best

one, but the classification results indicate that it is a suitable option for flash flood

detection.

The CYGNSS data set involves non-geophysical uncertainties. The Effective

Isotropic Radiated Power (EIRP) of GPS transmitters that is used in the CYGNSS

data process fluctuates [121]. Due to the different designs of space vehicles and the

transmitting antenna panel, the EIRP of GPS transmitters fluctuates and that leads

to inaccuracy of CYGNSS measurements and impacts the results of this study. Since

August 2018, by monitoring the transmitted power of GPS satellites, the fluctuations

are compensated [122, 123]. However, due to the limitation of available CYGNSS

data that is associated with significant flash flood, the two representative events that

happened in 2017 were selected.

The main drawback of the proposed method is flood overestimation with respect

to the DFO reference data. This problem was also reported in [124], where data from

Soil Moisture Active Passive (SMAP) was employed for flood detection. This may be

because both CYGNSS and SMAP use L-band signals which are sensitive to SM. Flash

flood is a complicated matter, and it depends on various conditions. In addition to the

massive surge of water, various factors such as soil moisture, soil type, vegetation,

subsurface flows, elevation, etc. can impact the flood development [71, 125, 126].

Moreover, the scattering from the surface at L-band primarily depends on two factors:
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roughness and soil moisture, as investigated in [127]. Due to heavy precipitation

during a flash flood, the SM increases until the soil becomes saturated. This increase

in SM can be an explanation for this problem since the reflected signal from an SP

with high SM can be as coherent as the reflection from a flooded SP, which causes flood

overestimation. The low accuracy of flood over Irma in Approach 5 shows the impact

of SM on flood detection. Both Hurricane Harvey and Hurricane Irma occurred during

the high season (July to November) [128, 129] and during the month prior to flood,

several precipitations happened in those areas especially for Irma [130]. Since having

high SM does not necessarily indicate that an SP is flooded [131], SM is not the only

source of error. Another parameter that also has a major role in the reflected signal is

the roughness [132]. The coherent reflection from a smooth surface can lead to flood

overestimation. Therefore, floods in regions that are relatively flat with high SM, such

as those impacted by Irma, are overestimated by the proposed method. Moreover,

as mentioned before, the high-speed wind of a hurricane would increase the surface

roughness of water in flooded regions. As the surface becomes rougher, its root-mean-

square-height increases. Consequently, surface reflectivity decreases exponentially

[133]. In other words, the incoherent components become more dominant. Therefore,

in the early stages of our case studies where a high-speed wind is present, there are

flood points whose scattered power is predominantly incoherent, which leads to flood

underestimations. Furthermore, some flooded areas are heterogeneous, meaning that

there is a diversity of land and flood in them. The heterogeneity can impact the

scattering pattern and can result in an overestimation or underestimation of flood.

Despite the overestimation and underestimation, based on the obtained results, the

proposed method is able to detect a flash flood with high accuracy. It is worth
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mentioning that similar to other microwave systems [134, 135], the turbidity of the

water does not significantly impact the scattering of the GNSS signals from the water

bodies since the signals cannot penetrate into the water. Thus, the turbidity of water

may not be a major source of error in our work.

The proposed method has two main limitations. Firstly, it cannot detect urban

flash floods since the impacted regions include various human-made obstacles caus-

ing incoherent reflection. Moreover, due to the gap between CYGNSS constellation

tracks, it is unlikely to have enough collected data for flash flood monitoring when a

small flash flood happens. Hence, the proposed method is more suitable for observing

extensive flash floods. However, this limitation can be solved by having more GNSS-R

receivers.

Compared to optical satellites, similar to other spaceborne microwave systems,

CYGNSS is not affected by clouds, which makes it a reliable source for monitoring

flash floods. Compared to other remote sensing satellites such as SAR and optical,

the GNSS-R technique has a lower quality in terms of spatial resolution and accuracy

[136]. On the other hand, the revisit time of the CYGNSS satellites is shorter than

SAR systems. Hence, it is able to detect permanent water and flash floods. Moreover,

due to the relatively low cost of GNSS-R receivers, larger constellations can be formed,

leading to better and more economical coverage.

5.2 Suggestions for Future Work

The proposed methods are able to detect permanent water and flash floods as long

as the reflecting signal is predominantly coherent over the water bodies. Wind could
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increase the roughness of surface water bodies. The high-speed winds during hurri-

canes or winds over large inland water bodies (e.g. large lakes) are two examples of

this issue. When the roughness of a surface increases, its reflection becomes more

incoherent. Distinguishing between water and land under such a situation is more

challenging and requires further study.

Furthermore, the proposed methods were only applied to some case studies and

might not be general. In order to achieve more comprehensive methods, further

studies should be conducted.

Moreover, the feature selection in Chapter 4 was based on the optimal hyperpa-

rameter found for one combination rather than the corresponding optimal value of

each combination. In the future, more advanced feature selection methods such as

the recursive feature elimination and the minimum redundancy maximum relevance

could be investigated.

In this thesis, only the RUSBoost classifier among other methods that are devel-

oped for tackling imbalanced data was used. In the future, other oversampling (e.g.

GAN, Variational Autoencoder (VAE), and SMOTE) and undersampling methods

developed for tackling imbalanced data along with other ML algorithms such as the

random forest, Extreme Gradient Boosting (XGBoost) may be investigated for flash

flood detection from the CYGNSS GNSS-R data.

When various types of water bodies such as permanent water and wetlands are

present in the same region, it is challenging to differentiate between them using the

GNSS-R technique. Moreover, the impact of various factors, such as SM, soil type,

vegetation, and subsurface flow, were not included in this work. Further work is

required to increase the performance of this technique for water extent monitoring,
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especially for highly dynamic regions.

Moreover, the relationship between the extracted features and the surface scat-

tering mechanism, which was not investigated in this thesis, should be investigated

in the future.
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