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ABSTRACT 

The quantity and quality of dietary fats consumed during pregnancy have profound 

implication on both maternal and fetal health during and after pregnancy. Our laboratory has 

previously shown that omega (n)-3 polyunsaturated fatty acids (PUFA) regulate offspring 

lipid and lipoprotein metabolism, and neurotrophin signalling in offspring brain. However, 

the effects of n-3 PUFA on pregnancy/fetal outcomes are controversial; this is likely due to 

differences in the amount and/or the source of n-3 PUFA in these studies. My thesis 

examined the in-utero effects of breeding chow diets, differing in the quantity and quality of 

dietary fats, on maternal metabolic regulation and pregnancy outcome in C57BL/6 mice. 

Female mice (7 weeks old) were fed specific diets for 2 weeks before mating and throughout 

pregnancy; tissues and blood samples were collected before and during gestation at day 6.5, 

12.5 and 18.5. My findings revealed that a breeding chow diet containing n-3 PUFA from fish 

oil maintained maternal metabolic profile to meet fetal lipid requirement during gestation, 

prevented placental inflammation and sustained more fetuses till late gestation (Chapter 2 and 

3). A limitation to this study was that the diets varied in both the quantity (5% vs. 11% w/w), 

and the quality (providing n-3 PUFA from fish oil at 8% vs. soybean oil at 3% w/w) of fat. I 

designed my second study using semi-purified diets (containing purified protein, 

carbohydrate, vitamins and mineral premixes) where the amount of fat was kept consistent 

(20% w/w), while the amount of n-3 PUFA was varied to give a diet high (9%), low (3%) and 

very low (1%) in n-3 PUFA from fish oil, respectively. My findings revealed that a maternal 

diet high in n-3 PUFA prevented dyslipidemia prior to pregnancy and maintained maternal 

lipid profile required for successful pregnancy. High n-3 PUFA diet also maintained plasma 

progesterone level during gestation, reduced inflammatory cytokines and sustained higher 

number of fetuses (Chapter 4). My findings also show that maternal diet high in n-3 PUFA 

increased the accretion of longer chain n-3 PUFA into fetal brain and regulates neurotrophin 
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signalling as gestation progressed (Chapter 5). Overall, my thesis findings demonstrate the 

importance of high n-3 PUFA intake during pregnancy. 
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INTRODUCTION 

 

Maternal nutritional status during pregnancy is a major factor in healthy prenatal 

development, as well as programming for adult diseases (Barker et al., 1989; Laker et al., 2013; 

Lithell et al., 1996). The development of several chronic diseases has been clearly associated 

with early life insults in utero (Barker et al., 1993; Laker et al., 2013). Extreme nutritional 

deficiency, such as low protein and essential fatty acid intake, at critical periods of pregnancy 

increases the risk of cardio-metabolic diseases in the offspring, which manifest at childhood or 

later in life (Barker et al., 1989; Voortman et al., 2015). Conditions characterized by severe 

undernutrition during pregnancy, as typified by the Biafran famine (Barker et al., 1993; Laker et 

al., 2013) and Dutch Hunger Winter (Schulz, 2010), have the potential to impact fetal 

development and health outcomes negatively. A number of studies have shown that the quantity, 

as well as the quality of dietary fats, consumed during pregnancy have profound implications on 

maternal health during and after pregnancy, and fetal health outcome (Coletta et al., 2010; 

Schwab et al., 2014).  

The quantity and quality of essential fatty acids consumed during pregnancy is crucial in 

growth and development of the fetus, and to maintain maternal metabolism (Coletta et al., 2010; 

Greenberg et al., 2008). Linoleic acid (LA) and alpha-linolenic acid (ALA) are the essential 

omega (n)-6 and n-3 polyunsaturated fatty acids (PUFA), respectively. Once consumed, these 

fatty acids are converted to longer chain n-6 and n-3 fatty acids, such as arachidonic acid, an n-6 

PUFA, and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the n-3 PUFA 

(Abedi & Sahari, 2014). The longer chain n-3 and n-6 PUFA fatty acids, play critical roles 

during fetal growth and development (Birch et al., 2007; Singh, 2005; Uauy et al., 1992). Earlier 

study revealed that the mean n-3 PUFA intake of about 90% of Canadian women is only 82 mg 

per day (Denomme et al., 2005), which is far below the recommendation of the international 

organizations such as ISSFAL (200 mg/day DHA or 300 mg/day; EPA + DHA) (Table 1.1) 

(GOED, 2014).  
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Table 1.1: Global Recommendations for Omega-3 Polyunsaturated Fatty Acids Intake 

Organization Org. Type Target Population Recommendation 

World Health 

Organization 

(WHO) 

 

Authoritative 

Body 

General adult 

population 

n‐3 PUFAs: 1‐2% of 

energy/day 

Food and 

Agriculture 

Organization of 

the United 

Nations (FAO) 

Authoritative 

Body 

0‐6 months  DHA: 0.1‐0.18%Energy 

6‐24 months DHA: 0.1‐0.18%Energy 

2‐4 years DHA: 10‐12 mg/kg birth 

weight 

4‐6 years EPA + DHA: 100‐150 mg 

6‐10 years EPA + DHA: 150‐200 mg 

Pregnant/Lactating 

Women 

EPA + DHA: 0.3 g/d of 

which at least should be 0.2 

g/d DHA 

International 

Society for the 

Study of Fatty 

Acids and Lipids 

(ISSFAL) 

Expert 

Scientific 

Organization 

General adult 

population for 

cardiovascular health 

At least 500 mg/day of 

EPA+DHA 

Pregnant/Lactating 

Women 

DHA: 200 mg/day 

NATO 

Workshop on n‐

3 and n‐6 Fatty 

Acids 

Workshop General Adult 

Population 

300‐400 mg 

EPA+DHA/day 

World 

Association of 

Perinatal 

Medicine 

Working 

Group 

Pregnant and Lactating 

Women 

200 mg DHA/day 

Infants, when 

breastfeeding is not 

possible 

0.2‐0.5% weight total fat 

World 

Gastroenterology 

Organisation 

Expert 

Scientific 

Organization 

General Adult 

Population 

3‐5 servings/week of fish 

 

A summary of global n-3 PUFA intake recommendation; EPA: eicosapentaenoic acid; DHA: 

docosahexaenoic acid; n-3 PUFA: omega-3 polyunsaturated fatty acids; NATO: North Atlantic 

Treaty Organization. 
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According to the Canadian Health Measures Survey (CHMS), only 15% of Canadian 

adults consume fish at least twice a week; as such, only 2.6% of Canadian adults (20 – 79 years 

old) meet the recommended longer chain n-3 PUFA index (Langlois & Ratnayake, 2015). Of 

keen interest is the fact that the mean n-3 PUFA intake among Canadian women of reproductive 

age (20 – 39 years old) was lower, compared to older adults (Langlois & Ratnayake, 2015). 

Surprisingly, only 27 % and 25 % of women consume adequate amounts of longer chain n-3 

PUFA during pregnancy and lactation, respectively (Jia et al., 2015). Apparently, most women 

do not get enough longer chain n-3 PUFA during and after pregnancy. The requirement for 

longer chain n-3 PUFA increases during pregnancy because the fetus accumulates about 50 – 70 

mg of longer chain n-3 PUFA during pregnancy (Innis, 2005). Nevertheless, the amount of 

longer chain n-3 PUFA required as pregnancy progresses from early to late gestation is yet to be 

established.  

1.1 Metabolism of essential fatty acids  

 

LA and ALA are considered essential fatty acids because humans lack the enzyme 

required for their endogenous synthesis via the insertion of a cis double bond at the 3
rd

 and 6
th

 

carbon of n-3 and n-6 PUFA, respectively (Bell et al., 1997).  Thus, LA and ALA must be 

obtained from dietary sources. Plant seeds and vegetable oils such as soybean, corn, safflower 

and sunflower oils are major sources of LA, while seeds like flax, chia and perilla are rich in 

ALA (Saini & Keum, 2018). Upon the consumption of these fatty acids, longer chain n-6 PUFA 

(arachidonic acid; AA) and n-3 PUFAs (eicosapentaenoic acid; EPA and docosahexaenoic acid; 

DHA) are synthesized endogenously from LA and ALA, respectively through a series of 

desaturation and elongation processes (Leonard et al., 2004) (Figure 1.1).  
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Figure 1.1: Pathway for the synthesis of longer chain essential PUFA. Modified from (Bokor et 

al., 2010). Journal of Lipid Research 51 (8); 2325–2333. ALA: Alpha linolenic acid; DHA: 

Docosahexaenoic acid; EPA: Eicosapentaenoic acid; LA: Linoleic acid; PUFA: Polyunsaturated 

fatty acid. 
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Desaturases regulate fatty acid metabolism by removing two hydrogen atoms from a fatty 

acid, thus creating a carbon-carbon double bond. The double bond is inserted between the third 

and fourth carbon from the methyl end to create n-3 PUFA (Hastings et al., 2001). Desaturase-5 

and -6 are required for the synthesis of longer chain n-3 and n-6 PUFA. In the biosynthesis of 

longer chain fatty acids, elongases alternate with desaturases repeatedly. Elongases catalyse 

carbon chain extension of fatty acids (Jump, 2009). Members of the elongation of very long 

chain fatty acids (ELOVL), particularly ELOVL-2 and -5 play major role in the elongation of n-

6 and n-3 PUFA (Jakobsson et al., 2006). 

Longer chain n-3 PUFAs such as docosapentaenoic acid (DPA), EPA and DHA can be 

obtained directly from fatty fish and fish oils like menhaden, salmon, sardine and herring oils 

(Saini & Keum, 2018). Interestingly, a number of studies using radiolabelled fatty acids have 

established that the rate of metabolism of essential PUFA is sex-specific; the conversion of ALA 

to DHA has been shown to be higher and faster in women of reproductive age compared to men 

of similar age group (Burdge & Wootton, 2002; Burdge & Calder, 2005). This finding was 

supported by a kinetic study revealing that the rate of DHA synthesis was about 4-fold higher in 

females, compared to males (Pawlosky et al., 2003). In men, the conversion rate of ALA to EPA 

is about 8%, while ALA to DHA conversion is between 0 - 4%. On the other hand, about 21% 

and 9% of ALA is converted to EPA and DHA, respectively, in women (Burdge & Wootton, 

2002). 

The conversion of ALA to DHA has been suggested to increase during pregnancy, 

essentially as a physiological adaptation that ensures adequate delivery of essential fatty acids to 

the developing fetus during pregnancy (Burdge, 2004; Burdge & Calder, 2005). Differences in 

the DHA levels between non-pregnant and pregnant women have therefore been established to 

reflect a huge variation in the metabolic capacity for endogenous DHA synthesis (Burdge & 

Wootton, 2002). Metabolic regulation is carefully controlled during pregnancy; this allows 

mothers to support fetal growth and development as pregnancy progresses. For example, the 
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fetus relies on the supply of lipids, and specific fatty acids, from maternal source for proper 

growth and development (Herrera & Ortega-Senovilla, 2010; Zeng et al., 2017), thereby 

establishing the importance of maternal lipids and lipoprotein metabolism during pregnancy. 

 

1.2 Lipid and lipoproteins regulation during pregnancy 
 

Pregnancy is a dynamic state involving several physiological changes, with a 

concomitant alteration in maternal metabolic profile (Lain & Catalano, 2007). Metabolic changes 

in the liver alter the levels of circulating triacylglycerol (TG), cholesterol, and fatty acids. 

However, changes in maternal lipid metabolism during pregnancy could be divided into two 

distinct phases: anabolic and catabolic, respectively (Grimes & Wild, 2018). Maternal lipids 

profile changes significantly as pregnancy transitions from anabolic to catabolic phase (Hadden 

& McLaughlin, 2009; Vrijkotte et al., 2012). The first trimester of pregnancy is characterized by 

increased lipid synthesis and storage (anabolic phase), in order to meet fetal lipid and energy 

requirement at later stage of pregnancy (Herrera, 2002; Zeng et al., 2017).  

Interestingly, endogenous lipid synthesis (de novo lipogenesis) at early gestation in 

humans is in-part regulated by increased insulin sensitivity (Benito et al., 1982; Wilcox, 2005). 

A similar study in rats has attributed lipid accumulation during early pregnancy to enhanced 

insulin responsiveness (Ramos et al., 2003). Knockout mouse models of the rate-limiting 

enzymes for endogenous lipid synthesis (acetyl-CoA carboxylase; ACACA and fatty acid 

synthase; FAS) showed embryonic death, demonstrating the importance of lipogenesis during 

pregnancy (Abu-Elheiga et al., 2005; Chirala et al., 2003). Besides ACACA and FAS, 

diacylglycerol acyltransferase-2 (DGAT2) also plays a key role in hepatic lipogenesis by 

catalysing the final reaction for the formation of TG; TG plays a key role in fetal growth and 

development by carrying essential fatty acids to the placental interface (Yen et al., 2008; 

Zammit, 2013). Maternal plasma TG level increases as pregnancy progresses in humans and in 

mice, however, its level falls progressively to pre-conception levels, as pregnancy approaches 
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parturition (Grimes & Wild, 2018; Hadden & McLaughlin, 2009; Herrera, 2002; Nikolova et al., 

2017). 

Cholesterol is also an important contributor to pregnancy progression and fetal 

development (Bartels & O’Donoghue, 2011; Woollett, 2005). Cholesterol is a key component of 

the cell membrane, where it plays pivotal roles such as regulation of membrane fluidity and 

permeability (Woollett, 2005). Cholesterol within the membranes has been shown to affect the 

function of other membrane lipids (Patton, 1970), thus indicating that cholesterol is an important 

mediator of fundamental lipid metabolism via signal transduction (Fielding & Fielding, 2004). 

Tissue cholesterol originates from either exogenous sources or from de novo synthesis, and the 

rate-limiting enzyme for endogenous cholesterol synthesis is 3-hydroxy-3-methylglutaryl-CoA 

reductase (HMGCR), which catalyses the conversion of HMG-CoA to mevalonate (Friesen & 

Rodwell, 2004) 

Fetuses depend largely on maternal cholesterol during pregnancy, and it has been shown 

that fetal cholesterol levels correlate directly with maternal plasma cholesterol in rodents 

(McConihay et al., 2001). Increased delivery of maternally-derived cholesterol to fetal 

circulation occur during gestation, so as to meet fetal high cholesterol demand during rapid 

growth phase (Woollett, 2005). It has been shown that mothers with impaired cholesterol 

synthesis have a high risk of congenital malformations (Herman, 2003; Kratz & Kelley, 2003). 

In mice, plasma total cholesterol (TC) decreases as pregnancy progresses from early to late 

gestation (Nikolova et al., 2017). Maternally derived cholesterol has been shown to cross the 

placenta during early gestation to support fetal growth, and also serves as a precursor for the 

synthesis of sex steroid hormones, particularly progesterone and estradiol, which are essential for 

a successful pregnancy (Grimes & Wild, 2018; Herrera, 2002; Lindegaard et al., 2005). 

Steroidogenic acute regulatory protein (StAR) mediates the cellular cholesterol delivery, 

intracellular processing and utilization for biosynthesis of estradiol and progesterone (Hu et al., 

2010; Stocco & Clark, 1996). Of interest is the establishment of direct relationship between 
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changes in sex-steroid hormones during pregnancy and lipogenesis (Goldberg & Hegele, 2012). 

For instance, increased circulating maternal lipids during pregnancy has been found to be driven 

by rise in the levels of progesterone during pregnancy (Grimes & Wild, 2018). 

Pregnancy has also been associated with a significant decrease in the proportion of low-

density lipoprotein (LDL) particles, with a concomitant increase in the level of high-density 

lipoprotein cholesterol (HDL)-c (Belo et al., 2002; Brizzi et al., 1999); this phenotype is 

considered to be potentially protective and less-atherogenic to mothers. Maternal HDL-c peaks at 

mid-gestation and decreases progressively towards late-gestation (Belo et al., 2002). However, 

dysregulation in maternal lipids metabolism during pregnancy has been implicated in a number 

of adverse pregnancy outcomes such as pre-eclampsia, gestational hypertension, gestational 

diabetes and complications during delivery (Belo et al., 2002; Enquobahrie et al., 2004; Hadden 

& McLaughlin, 2009; Herrera, 2002; Catov et al., 2007; Vrijkotte et al., 2012). Our laboratory 

and others have shown that dietary n-3 PUFA regulates lipid and lipoprotein metabolism in mice 

and humans, respectively, to confer cardiovascular benefits (Balogun et al., 2014; Ooi et al., 

2015). However, no study has investigated the effects of maternal diet varying in the quality and 

quantity of n-3 PUFA on the regulation of maternal lipids and lipoprotein metabolism prior to, 

and at different stages of pregnancy, and its impact on pregnancy outcomes in mice. 

1.2.1 Roles of n-3 PUFA in lipids and lipoproteins metabolism during pregnancy 

 

Abnormal lipids levels during pregnancy is an independent risk factor for adverse 

pregnancy outcomes (Enquobahrie et al., 2004). Longer chain n-3 PUFA (EPA + DHA; 3-4 g/d) 

has been reported to reduce TG levels in dyslipidemic individuals by up to 35% (Harris, 1997; 

Kris-Etherton et al., 2002; Leslie et al., 2015; Skulas-Ray et al., 2019). The mechanism through 

which n-3 PUFA reduces TG has been linked to the propensity of longer chain n-3 PUFA to 

regulate key lipogenic genes such as peroxisome proliferator-activated receptors (PPARs), sterol 

regulatory element-binding proteins (SREBPs), liver X receptor (LXR)-alpha and retinoid X 

receptor (RXR)-alpha (Yoshikawa et al., 2002). LXR regulates the expression of SREBP1-c by 
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forming a heterodimer with RXR-alpha and binding to the LXR-response site in SREBP1-c, 

thereby inhibiting its expression (Yoshikawa et al., 2002). SREBP1-c has been established as the 

key regulator of lipid synthesis (Eberlé et al., 2004). As such, n-3 PUFA regulates endogenous 

lipid synthesis by regulating the gene expression of SREBP1-c, and consequently ACACA and 

FAS gene expressions, which are required to initiate de novo synthesis of TG (Strable & Ntambi, 

2010). Longer chain n-3 PUFA has also been suggested to lower cirulating TG levels and 

prevent dyslipidemia by increasing β-oxidation of free fatty acids (Pégorier et al., 2004). N-3 

PUFA has also been shown to indirectly stimulate β-oxidation of free fatty acids by regulating 

the expression of PPAR-alpha, which then increase fatty acid catabolism by upregulating the 

expression of acyl coenzyme A oxidase (Jump & Clarke, 1999).  

Endogenous lipid synthesis is a normal physiological response required to maintain 

pregnancy, and gestation-dependent increase in lipid metabolism during pregnancy has been well 

documented (Hadden & McLaughlin, 2009; Herrera, 2002). As such, the risk of dyslipidemia has 

been shown to be high during pregnancy (Belo et al., 2002; Enquobahrie et al., 2004). Maternal 

dyslipidemia impairs placental function, with extended consequences on pregnancy and perinatal 

health outcomes (Louwagie et al., 2018). A number of studies have reported that n-3 PUFA 

regulates maternal metabolism and elicits positive pregnancy outcomes (Horvath et al., 2007; 

Makrides et al., 2006). For instance, intake of n-3 PUFA has been shown to improve 

hyperlipidemia and restore anti-oxidant status of diabetic dams and their offspring in rats 

(Soulimane-Mokhtari et al., 2005; Yessoufou et al., 2006). Nonetheless, the effects of n-3 PUFA 

on maternal lipids metabolism at different time points during gestation, and how this influence 

placental lipids profile and pregnancy outcomes is not known.  

1.2.2  N-3 PUFA and placenta lipids metabolism during pregnancy 

 

Placental development during pregnancy is a remarkable adaptation required for efficient 

materno-fetal interaction, and optimal fetal growth. Placental functions are precisely coordinated 

to ensure adequate and timely exchange of oxygen, nutrient and waste materials between the 
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mother and the developing fetus. As pregnancy progresses, dilated blood vessels and the 

resultant increase in blood flow to the placenta enhances the transfer of nutrients and oxygen to 

meet the demand of the growing fetus (Gude et al., 2004).  In addition to the physiological and 

functional characteristics of the placenta, other changes such as preferential transfer of essential 

fatty acids occur during the last trimester of pregnancy in order to accommodate the metabolic 

requirement of the developing fetus (Duttaroy, 2009; Gude et al., 2004).  

During pregnancy, increased transfer of DHA across the placenta, coupled with the 

upregulation of maternal metabolic capacity for DHA synthesis, play a key role in regulating the 

amount of DHA available in fetal circulation (Duttaroy, 2009). Pre-formed longer chain PUFA, 

especially DHA and AA are selectively and preferentially transferred from maternal circulation 

across the placenta to the fetus during pregnancy (Duttaroy, 2009; Montgomery et al., 2003). 

Thus, the pool of longer chain n-3 PUFA available for fetal use is predominantly regulated by 

maternal dietary longer chain n-3 PUFA status and the placental function (Duttaroy, 2009). The 

transfer of essential fatty acids across the placenta interface has been shown to occur either by 

passive diffusion or through membrane transporters (Duttaroy, 2009; Y. Xu et al., 2006). 

However, membrane protein-mediated translocation of fatty acids has been established to be the 

major means through which fatty acids are delivered to the fetus (Duttaroy, 2009; Lewis et al., 

2018). A number of membrane transporters have been identified to be quantitatively important in 

the transport of n-3 PUFA across the placenta interface; these include fatty acid translocase 

(FAT/CD36), fatty acid transport proteins (FATP) and plasma membrane fatty acid binding 

protein (FABPpm) (Duttaroy, 2009; Lewis et al., 2018). 

The activity of key lipase enzymes has been shown to be upregulated during pregnancy, 

which further contribute greatly to the availability of longer chain n-3 PUFA at the placental 

interface, and subsequent transfer to the fetus (Herrera, 2002; Waterman et al., 1998). During 

gestation, the placenta uptakes the maternal circulating non-esterified fatty acids (NEFA) 

released by maternal lipoprotein lipase (LPL) and endothelial lipase (EL) (Gil-Sánchez et al., 
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2012). EL hydrolyses both phospholipids and TGs (McCoy et al., 2002); studies have shown that 

increased EL expression contributes majorly to placental fatty acid uptake (Lindegaard et al., 

2005). Interestingly, lipolytic activity has been shown to increase exponentially at late gestation 

(Elliott, 1975), leading to the release of NEFA and perhaps contributes greatly to the delivery of 

longer chain n-3 PUFA to the fetus to promote healthy fetal growth and development. This may 

explain why deficiency in essential longer chain n-3 PUFA supply due to inadequate perinatal 

consumption or placental dysfunction has been attributed to specific adverse pregnancy 

outcomes (Morgan, 2014). Furthermore, n-3 PUFA has been shown to cause significant changes 

in the placental fatty acid composition and function during pregnancy (Jones et al., 2014). 

However, the implication of maternal diet containing different dosage of n-3 PUFA on the fatty 

acid composition and regulation of placental fatty acid transporters at mid- and late gestation 

remain unknown. 

1.2.3 Roles of placenta in sex-steroid hormones synthesis and n-3 PUFA 

metabolism 

 

In addition to serving as a functional interface for materno-fetal substance exchange 

during pregnancy, placenta also participates in the biosynthesis of sex-steroid hormones such as 

progesterone and estradiol, which play key roles in pregnancy maintenance (Grimes & Wild, 

2018; Herrera, 2002; Lindegaard et al., 2005). Maternal circulating estradiol level increases 

during pregnancy due to increased synthesis by the placenta, and this has been suggested to 

contribute substantially to increased conversion of ALA to DHA during pregnancy (Giltay et al., 

2004). The effect of estradiol on ALA to DHA conversion was subsequently proposed to be 

mediated by PPAR-alpha activation (Kitson et al., 2010). Alteration in this conversion pathway 

could affect the proportion of EPA and DHA in maternal circulation (Lemaitre et al., 2011), and 

perhaps impact pregnancy progression and fetal development negatively. The ALA to DHA 

conversion pathway is also complemented by increased mobilization of accumulated DHA 

reserves in the maternal tissues prior to conception (Burdge & Calder, 2005), and also by 
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supplementing maternal diet with DHA during pregnancy. As such, DHA intake of women prior 

to conception and during pregnancy may impact the amount of DHA available for fetal use.  

A number of studies have reported higher levels of circulating EPA and DHA in women, 

particularly in lipid fractions such as free fatty acids and phospholipids, as well as total lipids, 

compared to men (Bakewell et al., 2006; Crowe et al., 2008; Giltay et al., 2004). Sex-dependent 

difference in DHA levels has also been reported in tissue samples, indicating that females have 

higher DHA in adipose tissues (Walker et al., 2014), red blood cells (RBC) (Metherel et al., 

2009), and platelets (Geppert et al., 2010). This observation has been consistent across a number 

of ethnic groups (Abdelmagid et al., 2015). One plausible explanation for greater DHA in 

females is that estradiol may influence the enzymatic synthesis of longer chain fatty acids. 

Synthesis of DHA was observed to be 3-fold higher in women using contraceptive containing 17 

α-ethylnyloestradiol, compared to those who did not use synthetic estrogen (Burdge & Wootton, 

2002). Administration of oral ethinyl estradiol also increased the concentration of DHA in 

plasma cholesteryl esters by 42%, compared to control (Giltay et al., 2004). An animal study 

using rats revealed a higher gene expression of desaturases and elongases in females (Extier et 

al., 2010), which further increased when subcutaneously injected with estradiol, therefore 

enhancing the conversion of ALA to DHA (Kim et al., 2019). Apparently, estradiol plays a key 

role in upregulating the elongation and desaturation pathway in females, which may contribute to 

the physiological increase in plasma DHA concentration during pregnancy.  

Progesterone has also been established to mediate a sex-dependent increase in the 

synthesis of longer chain n-3 PUFA in a dose-dependent fashion by increasing the mRNA 

expression of desaturase enzyme in an in vitro study (Sibbons et al., 2014). However, greater 

fractional conversion of ALA to DHA in women could also in part be due to a significantly 

lower rate of dietary ALA utilization for beta-oxidation (Williams and Burdge 2006; Abedi and 

Sahari 2014). Another possible biological significance of greater DHA synthesis capacity in 

pregnant women is to meet the demands of the fetus and neonate for this essential fatty acid. 
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During pregnancy, the pathway for the synthesis of longer chain n-3 PUFA has been shown to be 

highly efficient, so as to meet both maternal and fetal requirements (Chambaz et al., 1985). Since 

desaturase activity in developing liver of human neonates appears to be lower than that in adults 

(Poisson et al., 1993), the fetus depends on pre-formed DHA from maternal circulation in order 

to satisfy their DHA requirement. As such, maternal plasma phosphatidylcholine DHA increases 

by approximately 33% between mid- and late gestation (Postle et al., 1995). Increase in maternal 

blood volume (Gregersen & Rawson, 1959) could also be a significant adaptation to an increase 

in maternal DHA levels during pregnancy. 

 

1.2.4  Dietary n-3 and n-6 PUFA intake 

 

Drastic changes in the dietary pattern over the years to a Western diet has been 

implicated in a significant shift in the ratio of n-6 to n-3 PUFA from about 1 - 2:1 to about 20-

30:1 (Gómez Candela et al., 2011). This transition has been found to promote the pathogenesis 

of chronic diseases such as cardiovascular disease (CVD), diabetes and obesity (Simopoulos, 

2016). Metabolism of longer chain n-3 PUFAs, especially DHA and EPA, generally produce less 

inflammatory lipid mediators, which have been shown to reduce the risks of specific clinical 

conditions such CVD (Mori, 2014; Mozaffarian & Wu, 2011), while n-6 PUFA are generally 

considered inflammatory in nature (Calder, 2013). As such, a diet with a balanced intake of n-6 

and n-3 PUFAs produce less inflammatory and less immunosuppressive eicosanoids (Abedi & 

Sahari, 2014), thereby protecting maternal health, and improving fetal growth and development. 

Most international organizations and countries have made different recommendations regarding 

n-3 PUFA intake; however, the recommended ratio of total n-6 to n-3 PUFA intake is 

approximately 5:1 (Table 1.2). 
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Table 1.2: International n-6:n-3 PUFA intake recommendation 

A summary of the n-6:n-3 PUFA intake recommendation worldwide composed by the 

International Society for the Study of Fatty Acids and Lipids (ISSFAL)  

2010.http://www.issfal.org/statements/pufa-recommendations/recommendations-by-

others. CHD: Coronary heart disease; EPA: Eicosapentaenoic acid; DHA: 

Docosahexaenoic acid; N-3: Omega-3; LCPUFA: Long chain polyunsaturated fatty 

acids; NATO: North Atlantic Treaty Organization. 

  

Source 
n-6:n-3 

ratio 

Other specific recommendations 

(%en=% of daily energy intake)  

National Nutrition Council of Norway (1989) none 0.5% en n-3 LCPUFA (1-2 g/day) 

NATO Workshop on n-3/n-6 (1989) none 0.8 g/day EPA/DHA (0.27%en) 

Scientific Review Committee of Canada (1990) 5:1-6:1 n-3 PUFA at least 0.5%en 

British Nutrition Foundation Task force (1992) 6:1 EPA 0.2-0.5%en: DHA 0.5%en 

FAO/WHO Expert Committee on Fats and Oils 

in Human Nutrition (1994) 
5:1-10:1 

Consider pre-formed DHA in 

pregnancy 

UK Committee on Medical Aspects of Food 

Policy (COMA) (1994) 
none 

Fish twice/week, one of which 

should be oil, minimum intake 

EPA/DHA 200 mg/day 

Ad Hoc Expert Workshop (2000) none 
EPA+DHA 0.3%en:0.65 g/day 

minimum 

French Food Safety Agency (AFSSA) (2001) 5:1 
500 mg n-3 LCPUFA/day: DHA 

120 mg minimum 

US National Academy of Science/Institute of 

Medicine (2002) 
none 130-260 mg EPA + DHA/day 

American Heart Association (2002) none 

If no CHD, eat (oily) fish 

twice/week; if CHD consume 

1000mg n-3 LCPUFA/day; if high 

triglycerides, take 2-4g per day, 

under medical supervision. 

UK Scientific Advisory Committee on Nutrition 

(SACN) (2004) 
none 

Fish twice/week, one should be oily, 

min intake EPA/DHA 450 mg/day 

ISSFAL (2004) none 500 mg n-3 LCPUFA/day 

Australia and New Zealand Government 

Recommendations (2005) 
none 

N-3 LCPUFA men 160 mg/day; 

women 90 mg/day 

Superior Health Council of Belgium (2006) none 
Minimum of 0.3en% EPA+DHA for 

adults 

Health Council of the Netherlands (2006) none 

To achieve the dietary reference 

intake of 450 mg of n-3 PUFA from 

fish a day, it is necessary to eat two 

portions of fish a week, at least one 

of them being oily fish (such as 

salmon, herring or mackerel). 
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1.3. Roles of inflammatory cytokines in pregnancy establishment and 

outcomes 

 

Pregnancy was initially thought to be characterized by either pro-inflammatory or anti-

inflammatory molecules (Wegmann et al., 1993). However, other studies have disproved the 

pro- or anti-inflammatory dichotomy during pregnancy.  Pregnancy in human is divided into 

three (3) distinct stages (trimesters), which are characterized by different proportions of anti- and 

pro-inflammatory molecules (Paulesu et al., 2010). The first trimester of pregnancy has been 

shown to be primarily characterised by increased production of pro-inflammatory cytokines, 

which play key roles in embryo reception / implantation, as well as the co-ordination of materno-

fetal cross-talk (Dimitriadis et al., 2005; Jones et al., 2014; Paulesu et al., 2010). 

Complex sequences of signalling cascades are required during implantation (a critical 

stage in pregnancy establishment), involving a harmonized dialogue between the active 

blastocyst and the endometrium; this is largely mediated by pro-inflammatory cytokines (Paulesu 

et al., 2010; Simón et al., 2000). Likewise, activities involving uterine contraction regulation and 

cervical ripening at late gestation are mediated by pro-inflammatory signals in the uterus (Kelly, 

2002; Paulesu et al., 2010). On the other hand, mid-gestation (second trimester of pregnancy) 

requires anti-inflammatory molecules to establish uterine quiescence (absence of myometrial 

contractions and reduced risk of pregnancy loss), which is important for optimal fetal 

development.   

Embryonic implantation occurs about 9 days after fertilization in humans and this process 

involves several cytokines such as interleukins (IL), interferon (IFN)-γ, and tumour necrosis 

factor (TNF)-α. TNF-α regulates the synthesis and activity of matrix metalloproteinase (MMP-2 

and MMP-9) which is associated with the invasive phase of blastocyst implantation (Cohen et 

al., 2006; Meisser et al., 1999). IFN-γ is involved in the initiation of endometrial vasculature 

remodelling, maintenance of implantation sites, and the decidua (maternal component of the 

placenta) (Murphy et al., 2009; Orsi, 2008). Prior to embryo implantation, activities involving 
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endometrial function and embryo reception regulation has been shown to be mediated by 

cytokines such as TNF-α (Cohen et al., 2006; Meisser et al., 1999), IL-1 (Minas et al., 2005; 

Paulesu et al., 2010), IL-6 (Cork et al., 2002; Dimitriadis et al., 2005), and IFN-γ (Murphy et al., 

2009; Suzuki et al., 1996) (Table 1.3).  

IL-1 also plays an important role in pregnancy establishment; injection of IL-1 receptor 

antagonist into mice, prior to implantation, resulted in implantation failure (Simón et al., 1998). 

IL-1 is also involved in the stimulation of several other cytokines such as TNF-α, and IL-6 

(Minas, Loutradis and Makrigiannakis, 2005). The presence of IL-1 ligands (IL-1α and IL-1β) in 

human embryo culture medium has been associated with high implantation rates in patients 

undergoing in vitro fertilization-embryo transfer (Karagouni et al., 1998).  

Progression of pregnancy towards mid-gestation elicits a shift in cytokines profile toward 

less inflammatory/anti-inflammatory molecules (Paulesu et al., 2010). A handful of studies have 

shown that anti-inflammatory cytokines such as IL-10 play an important role in the inflammation 

resolution during pregnancy, especially at mid-gestation (Chatterjee et al., 2014; Paulesu et al., 

2010). Inflammation resolution system is essentially required during pregnancy to regulate 

complex processes that could degenerate into inflammation-mediated complications. Pre-term 

birth (PTB) has been associated with the induction of prostaglandin synthesis before term via 

excessive production of  pro-inflammatory cytokines like TNF-α, IL-6, and IL-1β which trigger 

pre-term labour (Keelan et al., 2003). Also, infusion of IL-6 and TNF-α has been shown to 

produce symptoms of pre-eclampsia in rats (Lamarca et al., 2011; LaMarca et al., 2005). 

However, other studies have associated IL-10 deficiency with the onset of hypoxia-induced pre-

eclampsia features such as proteinuria, hypertension and renal pathology (Lai et al., 2011). As 

such, administration of recombinant IL-10 was observed to reverse features of pre-eclampsia in 

IL-10 knock out pregnant mice (Lai et al., 2011). 
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Table 1.3: Roles of pro-inflammatory cytokines in pregnancy establishment 

        

Cytokines Production site(s) Roles in implantation Reference(s) 

TNF-α 
Peri-implantation 

endometrium 

Regulates the synthesis and 

activity of matrix 

metalloproteinase (MMP-2 and 

MMP-9) 

  (Cohen et al., 2005; Meisser 

et al., 1999) 

IFN-γ 
Uterus NK cells and 

trophoblasts 

Initiates endometrial vasculature 

remodelling, angiogenesis at 

implantation sites, maintenance 

of the decidua 

(Murphy et al., 2009; Orsi, 

2008) 

 

IL-1 
Endometrium and 

blastocyst 

Stimulate the secretion of other 

cytokines (IL-6, LIF, and TNF-

α), regulates uterine receptivity, 

play important role in embryo 

implantation and decidualization 

 

(Dimitriadis et al., 2005; 

Minas et al., 2005; Paulesu et 

al., 2010) 

 

IL-6 

Embryo and uterus 

(stroma cells and 

endometrial epithelium) 

Regulates endometrial function 

and synthesis of MMP-2 and 

MMP-6, involved in viability of 

implantation sites and decidua 

formation 

(Cork et al., 2002; Dimitriadis 

et al., 2005; Paulesu et al., 

2010) 

 

 

IFN-γ: Interferon gamma; IL: Interleukine; LIF: Leukemia inhibitory factor; MMP: Matrix 

metalloproteinase; TNF-α: Tumour necrosis factor alpha; uNK cells: Uterine natural killer cells.  
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 IL-10 has been shown to peak on gestation day 12 in mice, which represents second 

trimester (Lin et al., 1993). Inhibition of IL-10 during pregnancy has been shown to result in 

neonatal growth retardation (Rijhsinghani et al., 1997), while administration of exogenous IL-10 

has been shown to prevent fetal resorption in pregnant CBA/J x DBA/2 mice (Chaouat et al., 

1995). Although the role of IL-10 in neonatal survival has not been clearly elucidated in mice 

(Svensson et al., 2001); however, IL-10 plays a pivotal role in inflammation regulation and the 

prevention of detrimental pregnancy outcomes. GATA-3 has been implicated in the maintenance 

of IL-10 levels (Lee et al., 2000; Zheng & Flavell, 1997), thus regulating the levels of 

corresponding pro-inflammatory cytokines such as IL-6, TNF-α, IFN-γ, and monocyte 

chemotactic protein-1 (MCP-1) in maternal placental interface (Akerele & Cheema, 2016; 

Thaxton & Sharma, 2010). 

At near term, cytokine profiles have been characterized to align towards increased 

production of pro-inflammatory cytokines, as they play vital roles in the coordinating processes 

leading to cervical ripening and uterine contraction during labour (Paulesu et al., 2010). More so, 

an increased production of major pro-inflammatory cytokines such as TNFα, IL-1β, and IL-6 in 

the uterus has been shown to play key role in cervical dilation and myometrial contraction during 

labour (Molnár et al., 1993).  

Clearly, a balance of pro- and anti-inflammatory cytokine is very important for successful 

pregnancy establishment and maintenance. As such, an imbalance in cytokines profile could 

result in detrimental pregnancy outcomes.  A plethora of evidence has shown that longer chain n-

3 PUFA could alter the production, as well as the activities of pro- and anti-inflammatory 

cytokines (Simopoulos, 2002), which may have a profound effect on pregnancy establishment 

and outcomes. However, the effects of maternal diet varying in the amounts of n-3 PUFA (and/or 

n-6:n-3) on maternal cytokines profile during different stages of gestation and its impact on 

pregnancy outcome are not known. 
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1.3.1 N-3 PUFA and cytokine regulation during pregnancy 

 

Metabolism of n-3 PUFA gives rise to anti-inflammatory molecules (Calder, 2013). Of 

keen interest is the fact that the same group of enzymes are required for the metabolism of n-6 

and n-3 PUFA. The anti-inflammatory properties of n-3 PUFA is partly mediated by inhibiting 

the downstream production of pro-inflammatory molecules from n-6 PUFA metabolism such as 

prostaglandins and leukotrienes, which are regulated by cyclooxygenase and lipoxygenase 

enzymes, respectively (Schmitz & Ecker, 2008) (Figure 1.2).  

N-3 PUFA has also been shown to elicit anti-inflammatory effects by producing pro-

resolving molecules (Resolvins and protectins) and by inhibiting the production of nuclear factor 

kappa-B (NF-κB), which is a known transcription factor for a number of pro-inflammatory 

cytokines, including TNF-α and IL-6 (Calder, 2013). Also, n-3 PUFA has been shown to directly 

inhibit the gene expression of IL-6 and IL-1β (Yamashita et al., 2013). Studies have shown that 

supplementing maternal diet with 2 g n-3 PUFA (EPA + DHA per day) significantly decreased 

the production of IL-1, IL-6, and TNF-α by mononuclear cells (Trebble et al., 2003). Also, fish 

oil feeding reduces ex vivo production of IL-1β, IL-6, and TNF-α by macrophages in rodents 

(Renier et al., 1993). Cell culture studies also observe similar results, such that EPA and DHA 

inhibited the production of pro-inflammatory cytokines in macrophages and endothelial cells 

(Khalfoun et al., 1997; Lo et al., 1999). However, DHA has been shown to be more effective in 

reducing plasma TNF-α concentrations, compared to EPA with similar concentration, by 35% 

and 20% for DHA and EPA respectively (Mori et al., 2003); this effect can be attributed to the 

chain length of the fatty acids. 
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Figure 1.2: Anti-inflammatory property of omega-3 polyunsaturated fatty acids. N-3 PUFAs 

inhibit the downstream production of pro-inflammatory molecules such as leukotrienes and 

prostaglandins, and promote the secretion of protectins and resolvins. AA, Arachidonic acid; 

COX, Cyclooxygenase; EPA, Eicosapentaenoic acid; DHA, Docosahexaenoic acid; LOX, 

Lipoxygenase. 
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The complexity of pregnancy establishment and progression is largely regulated by a 

number of cytokines and other factors playing unique roles at different stages of gestation (Jones 

et al., 2014; Paulesu et al., 2010). As such, dietary intake of high amounts of n-3 PUFA prior to 

embryo implantation may downregulate the activities of key pro-inflammatory cytokines 

involved in the regulation of endometrial receptivity and labour induction; this may result in the 

prolongation of gestation length. From a paediatric point of view, extended gestational period 

and higher birth weight could be positive outcomes, compared to premature delivery. However, 

prolonged gestation is a predisposing factor for adverse fetal development, as well as 

complications during parturition (Olesen et al., 2003). Risk of peri-partum complications and 

perinatal death increases as pregnancy progresses beyond 40
th

 week of gestation (Caughey et al., 

2007; Hilder et al., 1998). A majority of perinatal deaths in post-term pregnancy has been 

attributed to reduced placental function (Vorherr, 1975). Hence, establishing the required 

balance of n-6 to n-3 PUFA during gestation to prevent detrimental pregnancy outcomes is 

highly pertinent. 

1.4 Roles of n-3 PUFA in the prevention of adverse pregnancy 

outcomes 
 

The spectrum of evidence from the literature has shown that supplementing the maternal 

diet with n-3 PUFA during pregnancy reduces the risk of PTB, especially in high risk 

pregnancies (De Giuseppe et al., 2014; Horvath et al., 2007; Makrides et al., 2006; Sjúrdur Fródi 

Olsen & Secher, 2002). Evidence from other studies has also shown that intake of marine-

derived n-3 PUFA during pregnancy reduced the risk of adverse pregnancy conditions such as 

gestational diabetes mellitus (GDM), pre-eclampsia, maternal obesity and PTB (Haghiac et al., 

2015; Makrides et al., 2006; Redman & Sargent, 2009; Rylander et al., 2014). A retrospective 

study on 84 women with GDM revealed that diabetes during pregnancy induces dyslipidemia, 

which was characterized by elevated TG and TC in maternal circulation (McGrowder et al., 

2009). Intake of n-3 PUFA, especially DHA, was observed to be significantly lower in women 
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with gestational diabetes (Chen et al., 2010). More so, women with GDM have different plasma 

fatty acids profile compared to non-diabetic women (Chen et al., 2010), suggesting changes in 

maternal fatty acid metabolism in diabetic mothers.  

GDM has also been shown to alter lipid metabolism in the offspring (Kilby et al., 1998), 

indicating that GDM is an underlying cause of dyslipidemia in the offspring. Several studies 

have established beneficial health effects of n-3 PUFA supplementation during pregnancy on 

maternal and fetal health. A prospective population based cohort study showed that fish 

consumption (75-100 g/d) among Norwegian women caused 30% reduction in the risk of 

developing type 2 diabetes, compared to those who did not consume fish (Rylander et al., 2014). 

 GDM is associated with systemic increase in the production of pro-inflammatory 

cytokines during pregnancy (Xu et al., 2014), thus exposing the fetus to an inflammatory 

environment during development. Supplementation of maternal diet with DHA and EPA (1200 

mg/day) from week 16 of gestation to delivery exerts potent anti-inflammatory properties by 

lowering the expression of inflammatory cytokines in both adipose and placental tissues 

(Haghiac et al., 2015).  

N-3 PUFA has also been shown to provide beneficial effects on the risk of PE. A 

prospective cohort study revealed that intake of EPA and DHA (100 mg/day), or fish 

consumption during the first trimester of pregnancy reduced the risk of PE (Oken et al., 2007). 

Observational studies found that women with higher levels of n-6 PUFA in the erythrocytes and 

platelets were 7.6 times more likely to have their pregnancies complicated by PE (Williams et al. 

1995; Velzing-Aarts et al. 1999). As such, a 15% increase in the ratio of n-3 to n-6 PUFA has 

been associated with a 46% reduction in the risk of PE (Williams et al. 1995). An inverse 

association between n-3 PUFA intake during pregnancy is associated with PTB. Fish oil 

supplementation (2.7 g/d of EPA and DHA) at 20 weeks gestation reduced the recurrence of 

PTB from 33% to 21% (Olsen et al. 2000). Cohort studies have shown a dose dependent effect 

of marine foods consumption during pregnancy and the prevention of PTB (Olsen and Secher 
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2002; Olsen et al. 1993). An increased n-3 PUFA intake during pregnancy reduced the risk of 

PTB in high risk pregnancies (Horvath, Koletzko, and Szajewska 2007; Olsen and Secher 2002; 

Makrides, Duley, and Olsen 2006). As such, improving maternal n-3 PUFA status during 

pregnancy could be harnessed as a prophylactic strategy to prevent adverse pregnancy outcomes 

and improve fetal outcomes. 

1.5 Omega-3 PUFA and fetal brain development    

   
DHA is important for healthy brain development, as well as overall fetal growth during 

pregnancy (Singh, 2005; Uauy et al., 1992).  The brain has the largest amount of lipids (60% dry 

weight), compared to other organs in the body (Chang et al., 2009). DHA constitutes about 10-

15% of total fatty acids in the brain, which represents more than 97% of total n-3 PUFA 

(Makrides et al., 1994; O’Brien et al., 1964). It has been shown that there is acceleration of fetal 

brain growth during the second trimester (Coletta et al., 2010); perhaps, this is the most critical 

stage for DHA supplementation. However, DHA accumulation in the brain is most rapid during 

the third trimester of pregnancy and within the first year after birth (Clandinin et al., 1980; 

Martínez & Mougan, 1998). The fetus accrues up to 70 mg DHA per day during the last 

trimester, mostly in the brain (Innis, 2005), demonstrating the significance of maternal DHA 

status on healthy fetal brain development. Interestingly, a number of studies have shown that 

maternal DHA status is usually low during the third trimester, which explains a higher rate of 

transfer of DHA to the fetus (Montgomery et al., 2003). In contrast, low maternal n-3 PUFA 

levels (~20%) at the third trimester could be an in-built regulatory mechanism to support the 

synthesis of the pro-inflammatory molecules required to initiate cervical dilation and myometrial 

labour contractions. Nonetheless, a deficit of n-3 PUFA during pregnancy results in impaired 

cognitive and physiological functions in infants (Catalan et al., 2002), which has been suggested 

to be irreversible by postnatal supplementation (Nesheim & Yaktine, 2007). 

Phospholipid is the primary lipid component in the brain, which is highly enriched in 

DHA (Sastry, 1985). Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most 
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abundant phospholipid fractions in the brain (Rapoport, 2001). Longer chain n-3 PUFA in the 

form of phospholipid has been shown to be more bioavailable and efficiently metabolised by the 

brain, due to their higher sensitivity to phospholipases (Parmentier et al., 2007). However, it has 

been suggested that the absorption of DHA is further increased if present at the sn-1 position in 

phospholipids, as it becomes unavailable to pancreatic PLA2 (Subbaiah et al., 2016). Thus, it is 

absorbed as lysophosphatidylcholine (LPC), and subsequently converted by acetyltransferase to 

PC, which readily enters the lymph and supplies DHA to the brain (Subbaiah et al., 2016). A 

member of the major facilitator superfamily (Mfsd2a) is required for the uptake of DHA into the 

brain (Nguyen et al., 2014), where DHA affects brain growth and development (Sona et al., 

2018). However, the effect of maternal diet containing different dosages of n-3 PUFA on the 

regulation of Mfsd2a gene expression and fetal brain fatty acid composition at different stages of 

pregnancy remains unknown. 

During pregnancy, the brain preferentially accumulates DHA, especially during late 

gestation to about two years after birth in humans and up to 21 days after birth in rodent (Green 

et al., 1999; Martinez, 1992); Martinez revealed a 30-fold increase in brain DHA. During this 

period, there is a rapid increase in the maturation of synapses and neuronal myelination 

(Dobbing & Sands, 1973), with a concomitant increase in brain weight (Carlson et al., 2013). It 

has been shown that the offspring of mothers consuming high amounts of n-3 PUFA during 

pregnancy have better cognitive abilities than non-consuming mothers (Daniels et al., 2004), 

suggesting that n-3 PUFA is vital for brain development and function. However, the exact 

mechanism through which n-3 PUFA regulates brain function during development remains 

unclear. The function of the brain is largely regulated by neurotrophins, and the expression of 

neurotrophins has been suggested to be altered by n-3 PUFA. 

1.5.1 Neurotrophins and the brain 

 

Neurotrophins are a group of trophic factors required for neuronal differentiation and 

survival (Huang & Reichardt, 2001); these include nerve growth factor (NGF) and brain-derived 
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neurotrophic factor (BDNF). Neurotrophins have been shown to be expressed in early life during 

the embryonic stage, as well as during middle and later stages of fetal development (Bernd, 

2008; Birling & Price, 1995). Neurotrophins play a pivotal role in the development and function 

of the central nervous system by regulating neuronal survival, synaptic plasticity and cell 

differentiation (Reichardt, 2006). BDNF is one of the most studied neurotrophins in the central 

nervous system, and it has received tremendous attention in literature because of its importance 

in the development and maintenance of normal brain function (Bathina & Das, 2015). BDNF 

promotes neuronal development and survival, and prevents the death of peripheral sensory 

neurons at an early post-natal period in mice (Ernfors et al., 1994), while it modulates synaptic 

plasticity to enhance learning and long-term memory in adult mice (Egan et al., 2003). BDNF is 

synthesized as a precursor protein (pro-neurotrophin), which is then cleaved to release the 

mature BDNF (Chao et al., 2006), which binds to its high affinity receptor, tropomyosin receptor 

kinase B (TrKB).  

Binding of BDNF to its receptor signals the downstream activation of the transcription 

factor cAMP-response element binding protein (CREB) to elicit brain development (Bhatia et 

al., 2011). DHA is known to differentially regulate BDNF and its target receptor at weaning and 

16-weeks post-weaning in mice (Balogun & Cheema, 2014). A plethora of recent evidence from 

the literature have also shown that n-3 PUFA regulates BDNF in adult humans (Ferreira et al., 

2014; Pawełczyk et al., 2019); however, a vast majority of neurons are formed prenatally in the 

brain. To date, the effects of maternal diet varying in the amount of n-3 PUFA on DHA accretion 

in fetal brain, and the regulation of gene expression of BDNF and its downstream signalling 

cascades at different stages of gestation are not known. 

1.6  Controversies on n-3 PUFA and fetal sustainability during 

pregnancy 
 

Literature reports are inconsistent on the effects of n-3 PUFA on fetal number/litter size 

in mice, and other animal models; some reported increases (Rebollar et al., 2014; Smits et al., 
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2011), while others showed decreases (Fountain et al., 2008; Smit et al., 2015) or no effects 

(Estienne et al., 2006; Perez Rigau et al., 1995). This is likely due to differences in the amount 

and/or the source of n-3 PUFA in these studies. While a diet high in n-6 PUFA during gestation 

was not necessarily associated with an increase in litter size (Fattahi et al., 2018; Fountain et al., 

2008; Ni et al., 2002; Shahnazi et al., 2018), it was found to cause intrauterine growth restriction 

(Reyes-Hernández & Ramiro-Cortijo., 2018). Fat-1 transgenic mice that are engineered to 

endogenously synthesize n-3 PUFA, and yield 1:1 tissue ratio of n-6:n-3 PUFA, show increased 

pregnancy rates (Hohos et al., 2018). 

1.7 Mice as an animal models 

 

Mice offer the advantage of short gestational periods (Croy et al., 2015). Their small size 

dramatically reduces the facilities required and allows for a large number of animals to be 

housed at one time, which is advantageous for doing larger and more comprehensive studies 

within a feasible time frame. Mice models have been extensively adopted over years by a 

multitude of research groups; thus, many functionally relevant antibodies, immunoassay and 

biochemical assay kits have been developed and are commercially available. Moreover, invasive 

cell types and implantation in mice are very similar to that in humans (Malassiné et al., 2003). 

Mice have also been extensively used to model innate and adaptive maternal immunity, as well 

as trafficking across the materno-fetal interface during pregnancy (Bonney & Matzinger, 1997).  

The C57BL/6 mouse was used for this study because it is susceptible to high fat diet-

induced dyslipidemia (Podrini et al., 2013). Moreover, our laboratory has established the 

C57BL/6 mouse as a model to study the effects of maternal dietary fats on offspring metabolism. 

These mice show significant diet-induced changes in lipid metabolism and are widely used for 

studies on reproduction, thus making it suitable for the study of lipid and lipoprotein metabolism 

during pregnancy. The C57BL/6 mouse model is also the strain of choice for the generation of 

numerous transgenic models to study pathological conditions related to lipid metabolism, as well 
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as brain function and behavioural studies, thus leaving the option of extending the scope of our 

study in the future.   

1.8 Rationale: Aims and Objectives      

   
Pregnancy is a dynamic process, with intricate metabolic adaptions to ensure proper 

establishment, smooth progression, as well as positive maternal and fetal outcomes. The quantity 

and quality of dietary fats consumed during pregnancy have profound implications on both 

maternal and fetal health during and after pregnancy. Our laboratory has previously reported the 

effects of maternal diets varying in the amount of n-3 PUFA on the regulation of lipid and 

lipoprotein metabolism, and alterations in the lipidomic profile of the offspring. However, the 

literature reports inconsistent effects of n-3 PUFA on pregnancy/fetal outcomes in animal 

models, reporting a decrease increase or no effect; this is likely due to differences in the amount 

and/or the source of n-3 PUFA in these studies. More so, dyslipidemia and disrupted balance of 

pro- and anti-inflammatory cytokines elicited adverse pregnancy outcomes. N-3 PUFA regulates 

lipid metabolism and inflammation; however, the regulation of maternal lipid metabolism and 

cytokines profile by n-3 PUFA during different gestation stages, and its impact on fetal 

sustainability is not known. This thesis explored the effects of maternal diet varying in n-3 

PUFA prior to, and during gestation, on maternal metabolic profile, placental inflammatory 

cytokines, and fetal outcomes. Moreover, n-3 PUFA is known to regulate neurotrophin signalling 

in offspring brain. This thesis also sought to identify novel mechanisms through which n-3 

PUFA elicits proper brain development during pregnancy via neurotrophin signalling using 

C56BL/6 mice.  

The specific aims and the underlying hypotheses of my thesis were: 

Aim 1: To investigate the effects of two different breeding chow diets varying in the quality and 

the quantity of dietary fat on maternal metabolic profile during different stages of pregnancy and 

its impact on pregnancy sustainability (Chapter 2). 
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Hypotheses: Several studies, including research from our laboratory, have shown that both the 

quality and the quantity of fat intake during pregnancy impact the health outcomes of the 

offspring. However, the effect of the quantity and the quality of dietary fat intake on maternal 

metabolic profile during different stages of gestation and its impact on fetal sustainability is not 

known. I therefore hypothesized that a maternal diet low in fat will cause an increase in 

lipogenesis during pregnancy to meet the requirements of the fetus. I further hypothesized that a 

maternal diet enriched with n-3 PUFA from fish oil will improve pregnancy outcome in terms of 

sustaining the number of fetuses during gestation.  

Objectives: The specific objectives of this study were to investigate the effect of breeding chow 

diets differing in the quality and the quantity of dietary fats during gestation on:  

1) the fatty acid composition of maternal RBC;  

2) maternal plasma lipids and the mRNA expression of rate-limiting lipogenic genes in the liver,  

3) cholesterol efflux capacity of maternal plasma using J774 cells;  

4) the mRNA expression of StAR in the placenta and plasma concentration of progesterone and 

estradiol;  

5) fetal sustainability as a measure of pregnancy outcome. 

 

Aim 2: To investigate the effects of two different breeding chow diets varying in the quality and 

the quantity of dietary fat on the fatty acid composition of maternal uterus and the placenta at 

different stages of pregnancy, and its influence on the levels of pro- and anti-inflammatory 

cytokines in the maternal plasma and placenta (Chapter 3). 

Hypotheses: There is a paucity of evidence on the effect of breeding chow diets differing in the 

quality and the quantity of dietary fats on the fatty acid composition of maternal uterus and the 

placenta at different stages of gestation, and its influence on the concentration of inflammatory 

and anti-inflammatory cytokines in the maternal plasma and placenta. I therefore hypothesized 

that a breeding chow diet containing n-3 PUFA from fish oil will cause a gestation-dependent 

increase in the incorporation of longer chain n-3 PUFA into the uterus and placenta, as well as 
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increase the accretion of longer chain n-3 PUFA in fetal brain of C57BL/6 mice, compared to a 

chow diet containing a plant-based n-3 PUFA. I further hypothesized that incorporation of longer 

chain n-3 PUFA from fish oil will cause a gestation-dependent reduction in the concentration of 

pro-inflammatory cytokines in maternal plasma and placenta to induce beneficial effects on 

pregnancy outcome.  

Objectives: The specific objectives of this study were to investigate the effect of breeding chow 

diets differing in the quality and the quantity of dietary fats during gestation on:  

1) the fatty acid composition of maternal uterus;  

2) the mRNA expression placental fatty acid transporter and the incorporation of n-3 PUFA into 

the placenta and fetal brain;  

3) concentration of pro-and anti-inflammatory cytokines in the maternal plasma and placenta. 

 

Aim 3: To investigate the effects of maternal diet varying in the amount of n-3 PUFA on 

maternal lipids and lipoprotein regulation during gestation in C57BL/6 mice, and its impact on 

pregnancy outcome (Chapter 4).  

Hypothesis: The effects of n-3 PUFA on the regulation of lipid metabolism and immune 

response are well known; however, no study to date has investigated the effects of different 

amounts of n-3 PUFA on maternal lipid profile during different stages of gestation, placental 

inflammatory response and its impact on pregnancy outcome. I hypothesized that a maternal diet 

high in n-3 PUFA will prevent gestational dyslipidemia, reduce inflammatory cytokines on the 

placental interface, and improve fetal outcomes, compared to low and very low n-3 PUFA diet.  

Objectives: The specific objectives of this study were to investigate the effects of maternal diets 

containing different dosages of n-3 PUFA prior to and during gestation on:  

1) the RBC and hepatic fatty acid composition, and the mRNA expression of lipogenic genes 

(FAS, ACACA, and DGAT2) in the liver;  

2) maternal plasma and hepatic lipids profile, and the levels of sex-steroid hormones;  

3) placental inflammatory cytokines, and the mRNA expression of GATA-3;  
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4) fetal numbers as an indicator of pregnancy outcomes. 

 

Aim 4: To investigate the effects of maternal diets varying in the amount of n-3 PUFA on the 

fatty acid composition, and the regulation of mRNA expression of BDNF, TrKB and CREB in 

fetal brain at different gestation stages (Chapter 5).  

Hypothesis: Neurotrophins and n-3 PUFA are important to proper functioning of the brain. 

However, the mechanism(s) through which n-3 PUFA regulate neurotrophin signalling at 

different gestation stages are not clear. I therefore hypothesized that maternal diet high in n-3 

PUFA will cause an accretion of DHA in fetal brain during pregnancy, and consequently 

increase the mRNA expressions of BDNF, TrKB, and CREB in a gestation-dependent fashion.  

Objectives: The specific objectives of this study were to investigate the effects of maternal diets 

containing different dosages of n-3 PUFA prior to and during gestation on:  

1) placental fatty acid composition and fatty acid transporters;  

2) the mRNA expression of Mfsd2a and incorporation of n-3 PUFA into fetal brain;  

3) the regulation of mRNA expression of BDNF, TrKB and CREB in fetal brain. 

1.8.1 Study Design and Limitation 

 

The first set of studies outlined in this thesis were carried out to better understand the in 

utero effects of breeding chow diets, differing in the quantity and the quality of dietary fats, on 

maternal metabolic regulation and pregnancy outcome in C57BL/6 mice. A limitation of this 

study was that the breeding chow diets varied in both the quantity (5% vs. 11% w/w fat), and the 

quality (providing n-3 PUFA from fish oil at 8% vs. soybean oil at 3% w/w, respectively) of fat. 

In follow-up studies, I fed semi-purified diets (20% fat w/w) where the amount of n-3 PUFA was 

varied to give a diet high (9%), low (3%) and very low (1%) in n-3 PUFA (from fish oil), to 

C57BL/6 mice. 
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2.1 ABSTRACT 

 

There is clear evidence that the nutritional strategy employed during pregnancy has 

profound influence on the offspring health outcomes. However, the effect of the quality and the 

quantity of maternal fat intake on maternal metabolic profile during different stages of pregnancy 

and its impact on pregnancy sustainability is not known. Female C57BL/6 mice (7 weeks old) 

were fed diets varying in the quantity of fat (5% vs. 11%) for two weeks prior to mating and 

throughout pregnancy. The 5% fat diet was enriched with longer-chain omega (n)-3 

polyunsaturated fatty acids (PUFA) from fish oil. Maternal plasma and tissues were collected 

before mating and during pregnancy at day 6.5, 12.5 and 18.5. Plasma lipids, glucose, insulin, 

progesterone and estradiol levels were measured. Cholesterol efflux capacity of maternal plasma, 

as well as the mRNA expression of placental steroidogenic acute regulatory protein and hepatic 

lipogenic genes (acetyl-CoA carboxylase-1, fatty acid synthase, diacylglycerol acyltransferase-2 

and stearoyl-CoA desaturase-1) was determined. Feto-placental weight and fetuses sustained 

throughout gestation were recorded. A low fat maternal diet enriched with n-3 PUFA increased 

maternal plasma triacylglycerol and the mRNA expression of rate limiting lipogenic enzymes, 

along with increasing cholesterol efflux capacity (P<0.05), likely to meet fetal lipid demand 

during pregnancy. Furthermore, a low fat diet enriched with longer-chain n-3 PUFA increased 

the maternal plasma concentration of progesterone and estradiol during pregnancy (P<0.05), 

which coincides with an increase in the number of fetuses sustained till day 18.5. These novel 

findings may be important when designing dietary strategies to optimize reproductive capability 

and pregnancy outcomes. 

 

 



58 
 

2.2 INTRODUCTION 
 

The susceptibility of offspring to developing pathological conditions primarily originate 

from compromised intrauterine environment via nutritional insults (Barker et al., 1989; Perera & 

Herbstman, 2011). We have previously shown that the quantity and the quality of fat consumed 

during pregnancy and lactation has a profound effect on the aortic function, as well as the 

expression of brain derived neurotrophic factor in the offspring (Balogun & Cheema, 2014; 

Kanta et al., 2010). Furthermore, we have established that the fatty acid composition of maternal 

diet has the potential to induce long lasting changes in the tissue fatty acid composition of the 

offspring (Chechi et al., 2010); this is very important because fatty acids play a key role in 

maintaining metabolic functions (Martínez-Fernández et al., 2015). The quality as well as the 

quantity of maternal fat intake is capable of programming set points for several physiological 

and metabolic factors for the mother, and also in the developing embryo during pregnancy, 

thereby impacting the health of the mother, as well as that of the offspring (Martin-Gronert & 

Ozanne, 2006). 

As pregnancy progresses, complex metabolic adaptations occur which allow the mother 

to support the growth and development of the fetus. For example, during pregnancy, there is  an 

increase in insulin secretion at early gestation as insulin stimulates hepatic de-novo synthesis and 

storage of TG (Benito et al., 1982; Wilcox, 2005). Studies using knock-out mouse models of 

ACACA and FAS, the rate limiting enzymes for endogenous lipid synthesis, showed increased 

embryonic death demonstrating the importance of lipogenesis during pregnancy (Abu-Elheiga et 

al. 2005; Chirala et al. 2003). DGAT2 and stearoyl-CoA desaturase-1 (SCD1) enzymes also play 

key role in hepatic lipid synthesis (Miyazaki et al., 2001; Zammit, 2013). DGAT2 enzyme 

catalyses the final reaction for hepatic formation of TG (Yen et al., 2008; Zammit, 2013). 

Interestingly, lipogenesis has been shown to be inhibited in SCD1 knock out mice model despite 

increased expression of FAS (Miyazaki et al., 2001).  
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An increase in TG synthesis during pregnancy contributes to fetal development by 

serving as a depot for fatty acids, which are released into fetal circulation via active feto-

placental nutrient transport (Duttaroy, 2009). Additionally, maternally derived cholesterol also 

crosses the placenta at early gestation to support fetal growth and development (Herrera 2002). 

Cholesterol is also the precursor for the synthesis of estradiol and progesterone (sex steroid 

hormones), which are essential for a successful pregnancy (Hu et al., 2010). StAR protein 

expression mediate cholesterol transfer within the mitochondrial, especially in the steroid-

producing tissues such the ovary, testis, adrenal cortex, and the placenta (Lin et al., 1995; Stocco 

& Clark, 1996). Thus, maternal changes in lipid metabolism during pregnancy play an important 

role towards maintaining pregnancy and proper growth and development of the fetus. 

The fetus also relies on the mother for the supply of essential fatty acids, especially DHA, 

a n-3 PUFA, that is important for brain and eyes (retina) development (Innis, 2007; Neuringer et 

al., 1988). The intake of maternal DHA has also been shown to reduce the risk of preterm 

delivery (Horvath et al., 2007; Olsen & Secher, 2002), and low birth weight (Imhoff-Kunsch et 

al., 2012), especially in high risk pregnancies.  The essential fatty acid, alpha-linolenic acid 

(ALA), once obtained in the diet, is converted to DHA via elongation and desaturation. Since 

DHA is essential for brain and eyes development, the conversion of ALA to DHA is upregulated 

during pregnancy; however, this process is limited to about 9% conversion rate in women 

(Burdge & Wootton, 2002b; Childs et al., 2011). Thus, optimal growth and development of the 

fetus is dependent upon the nutritional, metabolic and hormonal environment provided by the 

mother.   

Several studies, including research from our laboratory, have shown that both the 

quantity as well the quality of maternal fat intake impacts the health of the offspring (Balogun et 

al., 2013; Chechi et al., 2010; Coletta et al., 2010). However, the effect of the quality and the 

quantity of maternal fat intake on maternal metabolic profile during different stages of pregnancy 

and its impact on pregnancy sustainability is not known. We hypothesized that a low fat maternal 
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diet with longer chain n-3 PUFA will increase lipogenesis during pregnancy to meet the 

requirements of the fetus and will increase pregnancy outcome in terms of sustaining the number 

of fetuses during gestation. Our findings have revealed for the first time that a low fat maternal 

diet increased lipogenesis, and that a diet enriched in longer chain n-3 PUFA sustained a higher 

number of fetuses at late gestation. 

 

2.3 MATERIALS AND METHODS  
 

2.3.1 Animals and experimental design 

 

All experimental procedures involving animals were carried out in accordance with the 

principles and guidelines of the Canadian Council on Animal Care and were approved by 

Memorial University’s Animal Care Committee (approval no: 15-11-SC). Male and female 

C57BL/6 mice (seven weeks old) were purchased from Charles Rivers Laboratories (MA, USA), 

and were housed in separate cages  under controlled temperature (21 ± 1°C) and humidity (35 ± 

5%) conditions with a 12-hour light/12-hour dark period cycle. Mice were kept on standard 

rodent chow pellets (Prolab RMH 3000) (PMI nutrition, MO, USA) for one-week 

acclimatization period. After this period, female mice were randomly divided into two groups, 

and each group was fed with breeding chow diet varying in the quantity and quality of fat (Table 

2.1); 5% (w/w) fat (Pico-Vac Lab Rodent Diet, 5061; LabDiet, MO, USA) and 11% (w/w) fat 

(Mouse Diet, 5015; LabDiet, MO, USA) for two weeks. The 5 % fat diet contained n-3 PUFA 

from fish oil, while the 11 % fat diet contained n-3 PUFA from soybean oil. 

Mating was carried out and female mice were checked by 6:00 am the following morning 

for vaginal plug formation to confirm pregnancy. Pregnant mice were continued on the assigned 

diets throughout gestation. Fresh food and water were provided ad-libitum every day. Body 

weight and food intake was recorded every day; no significant difference in food intake was 

observed (Appendix I). 
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Table 2.1: Macronutrient and caloric composition of the experimental diets (provided by 

LabDiet) 

 Macronutrients (% w/w) 5% Fat    11% Fat  

Protein 20.0 

 

18.9 

Carbohydrate 52.9 

 

51.8 

Fat 5.0 

 

11.1 

Calories provided (%)  

 

 

Protein 24.6 

 

19.8 

Carbohydrate 62.1 

 

54.2 

Fat 13.2 

 

26.1 
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Mice were sacrificed before pregnancy (non-pregnant) at early gestation (day 6.5), mid 

gestation (day 12.5), and late gestation (day 18.5) using isoflurane. Figure 2.1 depicts each stage 

of pregnancy.  Blood was collected by cardiac puncture in tubes containing EDTA (4.5 mM, pH 

7.4), and was separated immediately into plasma and red blood cells (RBC). Tissues were 

removed and weighed at the time of sacrifice, snap frozen in liquid nitrogen and stored at -80ºC 

until further analyses. Implantation sites and fetuses sustained throughout the gestation period 

were recorded. Uterine and fetal pictures were taken using Canon camera (SX500 IS). A 

statistical power analysis was performed to determine the sample size required to obtain 

significant effects of diet and gestation stage at p<0.05. All effort was made to minimize animal 

suffering. 

2.3.2 Analyses of biochemical parameters and fatty acid composition 

 

Lipids were extracted from the diets, RBC and liver samples according to the method of 

Folch et al. (1957) as per our previous publication (Chechi et al., 2010). Plasma biochemical 

parameters were quantified using commercially available kits according to the manufacturers’ 

instructions: plasma and liver TG kit #236-17 (Genzyme Diagnostics, PEI, Canada); total 

cholesterol (TC) kit #234-60 (Genzyme Diagnostics, PEI, Canada); plasma glucose kit 

#10009582 (Cayman Chemical, US) and insulin (Mouse) ELISA Kit #KA3812 (Abnova 

corporation, Taiwan). Plasma progesterone and estradiol concentrations were determined using 

Architect Systems (B7K770 and B7K720 respectively). The fatty acid composition of the 

extracted lipids was determined using gas chromatography-flame ionization detection according 

to our previously published method (Chechi et al., 2010). The fatty acid composition of the diets 

is given in Table 2.2. 

http://www.abnova.com/products/products_detail.asp?catalog_id=KA3812
http://www.abnova.com/products/products_detail.asp?catalog_id=KA3812
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Figure 2.1: Developmental stages of mouse fetus. The uterus of a non-pregnant mouse (A); the 

uterus of a pregnant mouse at day 6.5 with forceps revealing the implantation site during surgery 

(B); the uterus of a pregnant mouse at day 12.5 showing fetus before (to the left side of the 

arrow) and after separation from the embryo sac and the placenta (to the right side of the arrow) 

(C); and the uterus of a pregnant mouse at day 18.5 showing a fully-developed fetus and placenta 

(D).  
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Table 2.2: Fatty acid composition of the diets 

Fatty Acids (%) 5% Fat  11% Fat  

C14:0 0.94 1.24 

C16:0 14.77 20.98 

C18:0 4.46 8.61 

ƩSFA 20.17 30.82 

C16:1 1.40 2.05 

C18:1 21.40 31.73 

C20:1 0.42 0.43 

ƩMUFA 23.23 34.21 

C18:2n6 48.85 31.87 

C20:4n6 ND 0.18 

Ʃ N-6 PUFA 48.85 32.05 

C18:3n3 5.78 2.72 

C20:5n3 0.88 ND 

C22:5n3 0.31 ND 

C22:6n3 0.86 ND 

Ʃ N-3 PUFA 7.76 2.72 

n-6:n-3 6:1 12:1 

 

Data are expressed as weight percentage of the total extracted fatty acids. ƩSFA: sum of 

saturated fatty acids; ƩMUFA: sum of monounsaturated fatty acids; Ʃn-6 PUFA: sum of omega-

6 polyunsaturated fatty acids; Ʃn-3 PUFA: sum of omega-3 polyunsaturated fatty acids; n-6:n-3: 

Omega-6 to omega-3 ratio; ND: Not detected. 
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2.3.3 Cholesterol efflux assay 

 

Macrophage cholesterol efflux capacity assay of the plasma samples was determined 

using J774 cells according to our previously published method (Balogun et al., 2014). Briefly, 

the cells were seeded in 12-well plates at a density of 2x10
5
 cells/well in RPMI medium 

supplemented with 10% fetal bovine serum (FBS) and 1x antibiotic / anti-mycotic. The 

following day, the cells were labelled with RPMI supplemented with 1% FBS, 1μCi/ml 
3
(H)-

cholesterol (Perkin Elmer, MA, USA), 2 μg/ml acyl-CoA:cholesterol acyltransferase inhibitor 

(Sandoz, QC, CA), and 1x antibiotic / anti-mycotic for 24 hrs. Cells were equilibrated for 18 hrs 

in RPMI medium in the presence of liver X receptor agonist (1 μM) (Sigma, MO, USA), retinoic 

X receptor agonist (1 μM) (Sigma, MO, USA), retinoic acid (1 μM) (Sigma, MO, USA), and 

ATP-binding cassette A1 agonist (1 μM) (Sigma, MO, USA).  

Cholesterol efflux was initiated by treating cells with 2% plasma samples from both 5% 

(n=8) and 11% fat group (n=8) collected at different stages of pregnancy as the efflux acceptor 

or 0.2% bovine serum albumin (BSA) as the negative control for 5 hrs. At the end of the efflux 

interval, the medium was collected from each well and centrifuged at 2000 rpm for 5 minutes. 

Supernatants were removed for liquid scintillation counting. Wells were washed twice with 1X 

PBS, and residual radioactivity in the cells was determined after scraping the cells in 1X PBS. 

Cholesterol efflux was calculated as ([
3
H]-cholesterol in medium / [

3
H]-cholesterol in medium + 

[
3
H]-cholesterol in cells) x 100. All the efflux values were corrected by subtracting the 

percentage efflux at time zero (before active/passive efflux). 

2.3.4 RNA extraction and real-time qPCR 

 

Total RNA was extracted from liver and placenta samples using Trizol method 

(Chomczynski & Sacchi, 1987). Genomic DNA contamination was removed by treating with 

DNase enzyme (Promega, USA; #M6101). The concentration of the extracted RNA was 

determined using Nano Drop 2000 (Thermo Scientific, USA). RNA integrity was assessed using 

1.2% agarose gel. Synthesis of cDNA from the extracted RNA was carried out using reverse-
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transcription as per our previous publication (Balogun & Cheema, 2014). All primers used for 

qPCR were designed using NCBI primer blast (www.ncbi.nlm.nih.gov/tools/primer-blast/) 

(Accessed on 09/06/2016) and obtained from IDT technologies (IA, USA); primer sequences and 

efficiencies are given in Table 2.3.  

Amplification was performed using iQ SYBR Green Supermix (Bio-rad, USA). The 

reactions were run at a reaction volume of 10 μl and 50 ng cDNA per reaction. Samples were run 

using the CFX96TM Real-Time System while data output was managed using the CFX 

Manager
TM

 Software Version 3.0. The delta Ct values were recorded for each of the gene of 

interest, corrected for amplification efficiency, and normalized with Beta-Actin (Actb) as the 

reference gene; there were no changes in the Actb gene expression between groups. The 

expression levels between the two groups were compared using the Livak method (Livak & 

Schmittgen, 2001), as shown in appendix II. 

2.3.5 Statistical Analysis 

 

Data were analysed using GraphPad Prism Software (version 5.0). Sample means were 

compared using two-way analysis of variance (ANOVA) to determine main effects of diet and 

time, and the interactions between them. Pairwise comparison using Bonferroni correction was 

used to determine differences among the groups. Results are expressed as mean ± standard 

deviation (SD) for n=8 in each experimental group. Real-time qPCR data were log10 transformed 

and fatty acid composition data were arcsine transformed (to normalize the data) prior to 

statistical analyses. Differences were statistically significant if p<0.05. Pearson’s correlation was 

used to compare the relationship between plasma cholesterol and sex steroid hormones 

(progesterone and estradiol). 

  

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 2.3: Primers sequences and efficiencies 

        

Gene(s) Primers sequence (5’ – 3’) Efficiency (%)   

ACACA (S) ggccagtgctatgctgagat 
89.2 

 ACACA (AS) agggtcaagtgctgctcca 

 
    FAS (S) ctgcggaaacttcaggaaatg 

104.7 
 FAS (AS) ggttcggaatgctatccagg 

 
    DGAT2 (S) ctagctagttaggctaggtttcac 

101.1 
 DGAT2 (AS) caggaggatatagcgccagag 

 
    SCD1 (S) agagtagctgagctttgggc 

92.8 
 SCD1 (AS) acaccccgacagcaatatccag 

 
 

 
 

 STAR (S) tgcccatcatttcattcatcctt 
94.8 

 STAR (AS) aaaagcggtttctcactctcc 

 
  

 
 Actb (S) cacgcagctcattgtagaagg 

107.5 
 Actb (AS) atggtgggaatgggtcagaag   

 

ACACA: Acetyl CoA carboxylase 1; Actb: Beta Actin; AS, anti-sense primer; DGAT2: 

Diacylglycerol acyltransferase-2; FAS: Fatty acid synthase; S: sense primer; SCD1: stearoyl-

CoA desaturase-1; StAR: Steroidogenic acute regulatory protein. 
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2.4 RESULTS 

 

2.4.1 Effects of diets on maternal RBC fatty acid composition 

 

The RBC fatty acid composition is given in Table 2.4. The 5% diet group showed lower 

levels of C18:0 and total saturated fatty acids (SFA) (p<0.005 and p<0.0001, respectively), 

compared to the 11% group. The 5% fat group also showed lower levels of C18:1 and total 

monounsaturated fatty acids (MUFA), compared to the 11% group (p<0.0001), while C16:1n7 

decreased with gestation in both groups (p<0.05). Moreover, the 5% diet group revealed a 

significant interaction between diet and gestation for C20:1; there was a significant decrease 

from day 6.5 to 18.5 (p<0.05) in the 5% group.  

There was an independent effect of gestation on linoleic acid (C18:2n6; LA) and 

arachidonic acid (C20:4n6; AA); LA decreased as gestation progressed from day 6.5 to 18.5 for 

both dietary groups (p<0.05), while AA increased with gestation in the 5% group only (p<0.01). 

The 5% group revealed a higher amount of alpha-linolenic acid (C18:3n3; ALA), 

eicosapentaenoic acid (C20:5n3; EPA), docosapentaenoic acid (C22:5n3; DPA), and DHA, 

compared to the 11% group (p<0.0001). Both diet and gestation showed a significant interaction 

for EPA and total n-3 PUFA; EPA increased as the gestation progressed from day 6.5 to 18.5 in 

11% group (p<0.0001). Interestingly, ALA was not detected at day 12.5 and 18.5 in the 11% diet 

group. Diet and gestation also had an independent effect on DHA; there was a significant 

increase from day 6.5 to 18.5 in both dietary groups (p<0.001); 5% group had higher DHA, 

compared to the 11% group (p<0.0001).  

  

http://www.fasebj.org/content/29/1_Supplement/884.25.short
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Table 2.4: Fatty acid composition of maternal red blood cells 

Fatty 5% Diet   
 

11% Diet  
 

Main Effect 

Acids Day 6.5 Day 12.5 Day 18.5 
 

Day 6.5 Day 12.5 Day 18.5 Diet 
Gestation 

Stage 

Diet * 

Gestation 

C14:0 1.70±0.15 1.44±0.43 1.54±0.12 

 

1.23±0.15 1.46±0.07 1.25±0.23 p<0.0001 NS NS 

C16:0 29.28±0.99 29.17±1.43 30.30±1.97 

 

29.42±0.99 29.62±0.41 30.58±0.24 NS NS NS 

C18:0 13.84±0.57 14.31±0.51 14.60±1.00 

 

17.38±0.57 15.81±0.52 15.91±1.02 p<0.005 NS NS 

ƩSFA 44.82±0.84 44.92±1.91 46.44±2.72 

 

48.04±0.84 46.88±1.02 47.73±1.10 p<0.0001 NS NS 

C16:1n7 0.91±0.20
a
 0.67±0.15

b
 0.66±0.25

b
 

 

0.82±0.20
a
 0.71±0.24

b
 0.52±0.22

c
 NS p<0.05 NS 

C18:1 13.03±0.94 12.98±1.14 12.09±1.44 

 

14.60±0.50 15.19±1.49 14.46±0.78 p<0.0001 p<0.05 NS 

C20:1n9 0.41±0.31
a
 0.24±0.08

b
 0.27±0.20

b
 

 

0.35±0.05 0.25±0.07 0.34±0.05 NS p<0.05 p<0.05 

ƩMUFA 14.35±0.50
a
 13.89±1.01

ab
 13.02±0.95

b
 

 

15.77±0.41 16.15±1.48 15.32±1.88 p<0.0001 p<0.05 NS 

C18:2n6 14.77±0.39
a
 12.04±1.10

b
 10.54±3.68

c
 

 

12.61±0.39
b
 10.69±0.73

c
 10.72±0.24

c
 NS p<0.05 NS 

C20:4n6 13.97±0.34
b
 14.52±0.58

ab
 15.75±0.90

a
 

 

14.55±0.51
b
 16.54±1.48

a
 15.18±1.06

b
 NS p<0.01 p<0.05 

C22:4n6 1.24±0.09
b
 1.17±0.31

b
 1.48±0.69

a
 

 

1.95±0.09 2.20±0.29 2.04±0.03 p<0.0001 p<0.05 NS 

ƩN-6 

PUFA 
29.98±0.61

a
 27.73±1.47

b
 27.77±3.02

b
 

 

29.11±0.62
a
 29.44±1.04

a
 27.94±1.67

b
 p<0.0001 NS p<0.05 

C18:3n3 0.37±0.34 0.29±0.07 0.25±0.01 

 

0.20±0.04 ND ND p<0.05 NS NS 

C20:5n3 1.15±0.08 0.99±0.03 0.94±0.03 

 

0.49±0.05
c
 0.85±0.06

b
 0.98±0.02

a
 p<0.05 p<0.05 p<0.001 

C22:5n3 1.21±0.15 1.37±0.28 1.19±0.08 

 

0.61±0.08 0.88±0.37 0.56±0.03 p<0.0001 NS NS 

C22:6n3 7.59±0.39
c
 8.74±1.38

b
 9.68±0.51

a
 

 

4.79±0.39
e
 5.03±0.21

e
 6.45±1.80

d
 p<0.0001 0.001 NS 

ƩN-3 

PUFA 
10.32±0.30

b
 11.96±1.48

a
 12.53±0.57

a
 

 
6.09±0.51

d
 6.76±0.21

d
 7.99±1.71

c
 p<0.0001 p<0.001 p<0.0001 

N6/N3 2.9:1 2.4:1 2.3:1 

 

4.8:1 4.4:1 3.5:1       

 

Data are expressed as weight percentage of the total extractedfatty acids. Values are expressed as 

mean ± SD, n = 8. Main effects and interactions were determined by two-way ANOVA after 

arcsine transformation. Pairwise comparison using Bonferroni correction was used to determine 

differences among the groups. Mean values within a row with unlike superscript letters (a, b, c, 

d, and e) were significantly different for each group (p<0.05). ƩSFA: sum of saturated fatty 

acids; ƩMUFA: sum of monounsaturated fatty acids; Ʃn-6 PUFA: sum of omega-6 

polyunsaturated fatty acids; Ʃn-3 PUFA: sum of omega-3 polyunsaturated fatty acids. ND: Not 

detected; NS: Not significant. 
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2.4.2 Effects of diets on maternal plasma lipids profile 

 

The plasma TG was significantly higher in the 5% group, compared to the 11% group 

(p<0.0001) (Figure 2.2A). There was also an interaction between diet and gestation on the 

plasma TG (p<0.005) to reveal an increase from day 6.5 to 18.5 in the 5% group. However, there 

was no significant difference in plasma TG in the 11% group as gestation progressed from day 

6.5 to 18.5. There was a significant time dependent decrease in plasma TC (Figure 2.2B) from 

day 6.5 to 18.5 (p<0.0001) in both dietary groups; this effect was more pronounced in the 5% 

group, compared to the 11% group (42.7% vs. 29.4% decrease). Furthermore, the cholesterol 

efflux capacity was significantly higher in the 5% group, compared to the 11% group (p=0.0002; 

Figure 2.2C). Time of gestation also had an effect on cholesterol efflux capacity (p<0.0001), 

where day 12.5 showed a significantly lower cholesterol efflux capacity in both dietary groups, 

compared to day 6.5 and 18.5.  

2.4.3 Effects of diets on maternal glucose and insulin levels 

 

Diet had an independent effect on plasma insulin and glucose where 5% group showed 

higher levels, compared to the 11% group (p<0.0001; Figure 2.3A and B, respectively). There 

was also an interaction between gestation and diet (p<0.05) for plasma insulin and glucose in the 

5% group to show higher levels at day 12.5; however, there was no change in the 11% group.   
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Figure 2.2: Effects of diets varying in the quantity and the quality of fat on maternal plasma 

lipid profile at different stages of pregnancy: plasma triacylglycerol (A), total cholesterol (B) and 

cholesterol efflux capacity (C) were measured for non-pregnant (NP) mice and during gestation 

at day 6.5, 12.5, and 18.5 as explained in the method section. Values are presented as means ± 

SD, n=8 at each stage of pregnancy. Data were assessed using two-way ANOVA to determine 

the main effects and the interactions of diet and gestation; Pairwise comparison using Bonferroni 

correction was used to determine differences among the groups. Letters (a, b, c) represent 

significant difference between stages of pregnancy in each diet groups. p<0.05 was considered 

significant; BSA: Bovine serum albumin. 



72 
 

 

 

 

Figure 2.3: Effects of diets varying in the quantity and the quality of fat on maternal plasma 

insulin (A) and glucose levels (B) was measured for non-pregnant (NP) mice and during 

gestation at day 6.5, 12.5, and 18.5 as explained in the method section. Values are presented as 

means ± SD, n=8 at each stage of pregnancy. Data were assessed using two-way ANOVA to 

determine the main effects and the interactions of diet and gestation; Pairwise comparison using 

Bonferroni correction was used to determine differences among the groups. Letters (a, b, c) 

represent significant difference between stages of pregnancy in each diet groups. p<0.05 was 

considered significant. 
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2.4.4 Effects of diets on maternal hepatic lipid concentrations 

 

Diet had an independent effect on liver TG concentrations (p<0.05; Figure 2.4A), 

revealing higher TG in the 5% group, compared to the 11% group. The liver TG concentration 

peaked at day 12.5 for both dietary groups and decreased thereafter in both dietary groups. 

Contrary to liver TG, there was no change in liver cholesterol concentration in the 5% group as 

gestation progressed  (Figure 2.4B); however, there was a significant effect of gestation on liver 

TC in the 11% group revealing a significant decrease at day 12.5 (p<0.05).   

2.4.5 Effects of diets on maternal mRNA expression of hepatic lipogenic genes 

 

There was an independent effect of diet on the mRNA expression of ACACA, revealing a 

higher expression in the 5% group, compared to the 11% group (p<0.05; Figure 2.5A). There 

was also an independent effect of time on the mRNA expression of ACACA (p<0.05); ACACA 

mRNA expression increased significantly as gestation progressed from day 6.5 to 18.5 in the 5% 

group. Interestingly, there was no change in the mRNA expression of hepatic ACACA in the 11% 

group. Similarly, diet had an independent effect on the mRNA expression of FAS; the expression 

was significantly higher in the 5% group, compared to the 11% group (p<0.05; Figure 2.5B). 

Gestation also had an independent effect on the mRNA expression of FAS (p<0.05) in the 5% 

group, revealing a significant increase as gestation progressed to day 18.5. Similar to ACACA, 

there was no change in the hepatic mRNA expression of FAS in the 11% group. Diet had an 

independent effect on both DGAT2 and SCD1 (Figure 2.5C and D respectively), revealing a 

higher expression in the 5% group (p<0.05), compared to the 11% group. 
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Figure 2.4: Effects of diets varying in the quantity and the quality of fat on maternal hepatic 

lipidsconcentration at different stages of pregnancy: liver triacylglycerol (A), and total 

cholesterol (B) were measured for non-pregnant (NP) mice and during gestation at day 6.5, 12.5, 

and 18.5 as explained in the method section. Values are presented as means ± SD, n=8 at each 

stage of pregnancy. Data were assessed using two-way ANOVA to determine the main effects 

and the interactions of diet and gestation; Pairwise comparison using Bonferroni correction was 

used to determine differences among the groups. Letters (a, b, c) represent significant difference 

between stages of pregnancy in each diet groups. p<0.05 was considered significant. 
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Figure 2.5: Effects of diets varying in the quantity and the quality of fat on maternal mRNA 

expression of hepatic lipogenic genes at different stages of pregnancy: The gene expression of 

acetyl CoA carboxylase; ACACA (A), fatty acid synthase; FAS (B), Diacylglycerol 

acyltransferase-2 (DGAT2) and stearoyl-CoA desaturase-1 (SCD1) was determined in non-

pregnant (NP) and during gestation at day 6.5, 12.5, and 18.5 as explained in the method section.  

Values are presented as means ± SD, n=8 at each stage of pregnancy. The mRNA expression of 

ACACA, FAS, DGAT2 and SCD1 were normalized with Actb as the reference gene. Data were 
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assessed using two-way ANOVA to determine the main effects and the interactions of diet and 

gestation; Pairwise comparison using Bonferroni correction was used to determine differences 

among the groups. Letters (a, b) represent significant difference between stages of pregnancy in 

each diet groups. p<0.05 was considered significant. 
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2.4.6 Effects of diets on maternal plasma sex-hormones level and placental StAR 

mRNA expression at different stages of pregnancy 

 

There was an independent effect of diet on maternal plasma progesterone (p<0.05; 

Figure 2.6A) revealing a higher level in the 5% group, compared to the 11% group, especially 

at days 12.5 and 18.5. There was also an independent effect of gestation (p<0.0001), where 

maternal plasma progesterone levels increased significantly in both groups as gestation 

progressed. There was a significant inverse correlation (p<0.05) between maternal plasma 

progesterone concentration and plasma cholesterol levels in both the 5% (Figure 2.6B) and 

the 11% group (Figure 2.6C).  

The maternal plasma estradiol concentration was also significantly higher in the 5% 

group (p<0.001) at day 12.5 and 18.5 respectively, compared to the 11% group (Figure 2.6D).  

There was a significant interaction between diet and gestation; estradiol concentrations 

increased significantly in both dietary groups as gestation progressed (p<0.0001). There was 

also an inverse correlation (p<0.05) between maternal plasma estradiol concentration and 

plasma cholesterol levels in both the 5% (Figure 2.6E) and the 11% group (Figure 2.6F). 

Diet had a significant effect on the mRNA expression of StAR in the placenta, 

revealing higher expression in the 5% diet group compared to the 11% (Figure 2.7; p<0.05). 

There was also an independent effect of gestation, such that the mRNA expression of StAR 

increased in the placenta as gestation progressed from mid- to late gestation. However, the 

mRNA expression of StAR was higher in the 5% group at both mid- and late gestation 

(p<0.05), compared to the 11% group.  
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Figure 2.6: Effects of diets varying in the quantity and the quality of fat on maternal plasma 

sex steroid hormones at different stages of pregnancy: Plasma progesterone (A) and estradiol 
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(D) were measured in non-pregnant (NP) and during gestation at day 6.5, 12.5, and 18.5 as 

explained in the method section. Values are presented as means ± SD, n=8 at each stage of 

pregnancy. Data were assessed using two-way ANOVA to determine the main effects and the 

interactions of diet and gestation. Pairwise comparison using Bonferroni correction was used 

to determine differences among the groups. p<0.05 was considered significant. Pearson’s 

correlation analyses between plasma cholesterol and progesterone in the 5% (B) and the 11% 

group (C); Pearson’s correlation analyses between plasma cholesterol and estradiol 

concentration in the 5% (E) and the 11% group (F) were carried out; p<0.05 represent 

signinficant correlation.  
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Figure 2.7: Effects of diets varying in the quantity and the quality of fat on maternal mRNA 

expression of placental steroidogenic acute regulatory protein (StAR) at different stages of 

pregnancy: The mRNA expression of StAR was measured at day 12.5 and 18.5 as explained 

in the methods section.  Values are presented as means ± SD, n=8 at each stage of pregnancy. 

The mRNA expression of StAR was normalized with Actb as the reference gene. Data were 

assessed using two-way ANOVA to determine the main effects and the interactions of diet 

and gestation; Pairwise comparison using Bonferroni correction was used to determine 

differences among the groups. Letters (a, b, c) represent significant difference between stages 

of pregnancy in each diet groups. p<0.05 was considered significant. 
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2.4.7 Effects of diets on pregnancy outcomes 

 

Fetal and placental weight increased significantly from day 12.5 to 18.5 in both 

dietary groups (p<0.0001 and p<0.05, respectively); however, there was no effect of diet on 

either fetal or placental weight (Table 2.5). Both diet and gestation had a significant 

interaction on the whole uterine weight (p<0.05) to reveal an increase as gestation progressed 

(p<0.0001) in both groups, however, the 5% group showed higher uterine weight, compared 

to the 11% group (p<0.05). Interestingly, diet had an independent effect on fetal number; 

number of fetuses sustained from day 6.5 to 18.5 was significantly higher in the 5% group, 

compared to the 11% group (p<0.05; Figure 2.8).  
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Table 2.5: Pregnancy outcomes 

Pregnancy 5% Fat 11% Fat  Main Effect 

Outcomes Day 6.5 Day 12.5 Day 18.5 Day 6.5 Day 12.5 Day 18.5 Diet  
Gestation 

Stage 

Diet* 

Gestation 

Fetal weight 

(g) 
N/A 0.90±0.02

b
 1.11±0.12

a
 N/A 0.90±0.01

b
 1.08±0.12

a
 NS p<0.0001 NS 

Placental 

weight (g) 
N/A 0.06±0.14

b
 0.09±0.15

a
 N/A 0.05±0.14

b
 0.07±0.20

a
 NS p<0.05 NS 

Whole 

Uterine 

Weight (g) 

0.29±0.07
d
 2.85±0.60

c
 13.48±3.14

a
 0.32±0.05

c
 2.89±.36

d
 9.45±4.53

b
 p<0.05 p<0.0001 p<0.05 

Implantation 

/ Fetal 

number 

8.25±1.63
a
 7.71±1.70

 a
 8.00±1.83

 a
 8.43±0.10

a
  6.43±1.23

b
 5.14±0.24

b
 p<0.05 NS NS 

Values are presented as mean ± SD, n=8 dams at each stage of pregnancy. Data were 

analyzed using two-way ANOVA to determine the main effects and the interactions of diet 

and gestation. Pairwise comparison using Bonferroni correction was used to determine 

differences among the groups. Letters (a, b c) represent significant difference between stages 

of pregnancy in each dietary group; p<0.05 was considered significant. N/A: Not available; 

NS: Not significant. 
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Figure 2.8: Number of fetuses sustained till day 18.5 in the 5% group (A) and 11% group 

(B). 
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2.5 DISCUSSION 

The quality as well as the quantity of fat consumed during pregnancy has the potential 

to programme set points for several physiological and metabolic events in the mother, with a 

concomitant impact on the health of the offspring (Hartil et al., 2009; Jones et al., 2009; 

Martin-Gronert & Ozanne, 2006; Williams et al., 2014). We have previously shown that a 

maternal diet high in n-3 PUFA has protective effects on the cardiovascular health of the 

offspring (Balogun et al., 2014; Balogun et al., 2013), and that the quality of maternal diet 

alters the tissue fatty acid composition of the offspring (Chechi et al., 2010). We have also 

shown previously that supplementing maternal diet with n-3 PUFA during pregnancy 

enriches offspring RBC with DHA (Balogun et al. 2013).   

Similar to our previous findings, we found that females fed the 5% diet that contained 

higher levels of n-3 PUFA showed higher amounts of EPA, DPA and DHA, compared to the 

11% group. It was interesting that ALA was not detected at day 12.5 and 18.5 in the 11% fat 

group, which coincided with an increase in EPA and DHA. The 11% diet only contained 

ALA as a source of n-3 PUFA, thus it is obvious that ALA is being converted to longer chain 

n-3 PUFA as gestation progressed to provide these fatty acids for fetal growth and 

development. On the other hand, the 5% group showed no change in ALA from day 6.5 to 

18.5. Studies have shown that dietary EPA and DHA downregulate the conversion of ALA to 

longer chain n-3 PUFA by up to 70% (Arterburn et al. 2006; Burdge et al. 2003; Pawlosky et 

al. 2003); this would explain the detection of ALA throughout gestation in the 5% group as 

this diet contained longer chain n-3 PUFA.  

Although, the conversion of ALA to DHA is generally limited in women and often 

not detectable in men (Burdge & Wootton, 2002a; Burdge & Calder, 2005; Hussein et al., 

2005); the conversion becomes highly efficient during pregnancy (Burdge & Wootton, 
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2002a; Childs et al., 2011). The rate limiting step in the conversion of ALA to DHA is the 

conversion of intermediate DPA to DHA (Arterburn et al., 2006). Our data revealed lower 

DPA in the 11% group; this may be due to a higher conversion of DPA to DHA to increase 

the availability of DHA for fetal brain at late gestation. DHA is critical for brain and eyes 

(retina) development (Innis, 2007; Neuringer et al., 1988). DHA accumulation in the brain 

has been shown to be most rapid during the last trimester and at the first year of birth; fetus 

accrues approximately 70 mg DHA per day during third trimester (Clandinin et al., 1980). As 

anticipated, the highest amount of DHA was observed at day 18.5 in both dietary groups. 

Children from mothers with high intake of DHA during pregnancy has been shown to have 

higher cognitive capability and better problem solving skills compared to those with low 

intake (Dunstan et al., 2008; Judge et al., 2007). Our findings have established that feeding a 

diet containing longer chain n-3 PUFA shows higher levels of EPA and DHA in RBC, 

compared to the diet without longer chain n-3 PUFA, suggesting that the most effective way 

to supply longer chain n-3 PUFA is by providing these specific fatty acids in the diet.    

As pregnancy progresses, metabolic changes occur in the mother to increase the levels 

of circulating lipids to supply to the fetus (Emet et al., 2013; Ghio et al., 2011; Qureshi et al., 

1999). An increase in maternal TG during pregnancy has been shown to contribute to embryo 

development as it serves as a carrier for fatty acids which are later released and transferred 

into fetal circulation (Duttaroy, 2009). Our data revealed that both plasma and hepatic TG 

were significantly higher in the 5% group, compared to the 11% group likely to meet fetal fat 

requirement. A study by Nakashima (2009) revealed an increase in maternal plasma TG in 

response to a maternal low fat diet during pregnancy. We also observed a time dependent 

increase in plasma TG levels during pregnancy; maternal plasma TG peaked at day 18.5 in 

the 5% group. This is consistent with the findings of Qureshi et al. (1999), who reported that 

maternal plasma TG increased significantly during the second trimester and reached 
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maximum in the third trimester. An established mechanism for increased plasma TG 

concentration is via lipogenesis in the liver (Kersten, 2001). We observed a higher mRNA 

expression of lipogenic genes (ACACA, FAS, DGAT2 and SCD1) in the liver obtained from 

the 5% group, supporting our observation that the increase in plasma and hepatic TG is due to 

increased lipogenesis. Interestingly, there was no significant change in plasma TG 

concentration across gestation time in the 11% group.  

We also found a significantly higher level of insulin in the 5% group, which may have 

played a role in increasing lipogenesis (Kersten 2001). During pregnancy, maternal lipids are 

used as the primary energy source to spare amino acids and glucose for fetal use (Ghio et al., 

2011).   Although the fetus has been shown to have a considerably high capacity to adapt to 

changes in glucose supply during pregnancy, however, lower maternal plasma glucose level 

has been associated with reduced fetal development (Scholl et al., 2001). We observed a 

higher plasma glucose level in the 5% group, compared to the 11% group, which could have 

a profound effect on the development of the fetus. Maternal glucose levels has been shown to 

decrease slightly during third trimester (Riskin-Mashiah et al., 2011); we found a similar 

trend, however, the reduction in maternal plasma glucose was only significant in the 5% 

group. 

There was a time-of-gestation dependent decrease in plasma cholesterol in both 

groups from day 6.5 to 18.5; however, the percentage decrease was higher in the 5% group, 

compared to the 11% group (42.7% vs. 29.4%). Maternal cholesterol is an important source 

of fetal cholesterol at early gestation, especially for cell membranes formation (Krause & 

Regen, 2014). However, the significance of maternal cholesterol to fetal development 

decreases as gestation progresses, owing to the ability of fetal tissues to synthesize 

cholesterol  (Herrera, 2002).  We found a consistent decrease in maternal cholesterol levels as 

gestation progressed to day 18.5 suggesting that cholesterol is being delivered to fetal 
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circulation, as it plays a key role in regulating cascade of activities required for optimal fetal 

development (Miller, 1998). We also found an increase in cholesterol efflux capacity of 

plasma obtained from mothers fed the 5 % diet that contained higher levels of longer chain n-

3 PUFA.  This was consistent with our previous studies to show that a diet high in n-3 PUFA 

increases cholesterol efflux capacity (Balogun et al. 2014). However, further studies are 

required to determine the effects of these diets on cholesterol transporters, such as ABCA1 

and ABCG1, and and HDL-cholesterol uptake receptor SR-B1.  

Our findings revealed an inverse correlation between maternal plasma cholesterol and 

the concentration of progesterone and estradiol. It is well known that cholesterol is a 

precursor for the synthesis of steroid hormones. An increase in the level of cholesterol during 

pregnancy makes cholesterol available for the synthesis of progesterone and estradiol, which 

are indispensable in creating a suitable uterine environment for implantation and pregnancy 

maintenance (Miller, 1998). StAR is a rate-limiting regulator of steroid hormones synthesis by 

mediating cholesterol transfer within the mitochondrial in the steroid-producing tissues cells 

(Stocco & Clark, 1996).  However, the placenta becomes the primary site for estradiol and 

progesterone synthesis during pregnancy (Yivgi-Ohana et al., 2009). Approximately 83% of 

spontaneous abortions have been directly associated with low levels of progesterone during 

pregnancy (Hahlin et al., 1990). Although progesterone treatment is controversial, a handful 

of studies have attempted the use of progesterone to treat recurrent miscarriages (El-Zibdeh, 

2005; Palagiano et al., 2004; Yassaee et al., 2014).   

Impaired progesterone synthesis and action has also been associated with preterm 

birth in both human and mice, partly due to its ability to suppress the expression of 

inflammatory cytokines at the materno-fetal interface (Blanks & Brosens, 2012; Mendelson, 

2009). Progesterone also regulate uterine quiescence by preventing contractions that could 

disturb the growing embryo (Blanks & Brosens, 2012). In addition, oral administration of 
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both progesterone and estradiol has been considered to reduce miscarriage rates (Tonguc et 

al., 2011). Increased production of estradiol is very critical at mid-pregnancy as it has been 

shown that progesterone alone could not maintain pregnancy at this stage (Barkley et al., 

1979). The demand for progesterone and estradiol increases as gestation progresses (Milligan 

& Finn 1997; Barkley et al. 1979); interestingly, this was also observed in our results. 

However, our results revealed that the level of progesterone and estradiol in maternal plasma 

was consistently higher in the 5% group, compared to the 11% group and this coincides with 

an increase in the mRNA expression of StAR in the placenta at mid- and late gestation.  

Our finding suggests that besides the possible contribution from plasma cholesterol 

for progesterone and estradiol synthesis, the presence of n-3 PUFA in the 5% group may also 

be regulating the synthesis of these hormones. A study by Richardson et al. (2013) showed 

that feeding cows with dietary n-3 fatty acids increased serum progesterone levels. Although 

the mechanism through which n-3 PUFA might be regulating the synthesis of progesterone 

and estradiol has not been comprehensively examined, our results show for the first time that 

higher level of these hormones may elicit higher number of fetuses as the number of fetuses 

sustained till day 18.5 was significantly higher in the 5% group, compared to the 11% group. 

In conclusion, our findings demonstrate for the first time that a low fat maternal diet 

enriched with longer chain n-3 PUFA increased the mRNA expression of rate limiting 

enzymes for lipogenesis and increased cholesterol efflux, likely to meet fetal lipid demand 

during pregnancy. In addition, our findings indicate that supplementing maternal diet with 

longer chain n-3 PUFA increased the maternal plasma concentration of progesterone and 

estradiol during pregnancy, which may be responsible for an increase in the number of 

fetuses sustained till day 18.5 as proposed in Figure 2.9. The effects of longer chain n-3 

PUFA in eliciting positive pregnancy outcomes by regulating sex-steroid hormones has been 

well established in human. However, these novel findings may be important when designing 
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dietary strategies to optimize reproductive capability and maternal and fetal health in mice, 

and other animals. 
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Figure 2.9: Schematic representation of the effects of a low fat maternal diet supplemented 

with longer chain n-3 PUFA on maternal metabolic profile and fetal outcome. N-3 PUFA: 

Omega-3 polyunsaturated fatty acids; TC: total cholesterol; TG: triacylglycerol. 
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3.1 ABSTRACT 
 

Omega (n)-3 polyunsaturated fatty acids (PUFA) are important regulators of 

inflammatory response that may impact pregnancy outcome. The effects of breeding chow 

diets containing n-3 PUFA from either fish oil (FO) or soybean oil (SO) were investigated on 

tissue fatty acid composition, inflammatory cytokines, and pregnancy outcome. Female 

C57BL/6 mice (7 weeks old) were fed FO or SO diets for 2 weeks before mating and 

throughout pregnancy. Animals were sacrificed before and during pregnancy at day 6.5, 12.5 

and 18.5. The FO diet increased the incorporation of n-3 PUFA in placenta, with a 

concomitant decrease in the concentration of pro-inflammatory cytokines. The FO diet 

increased the mRNA expression of placental specific PUFA transporter, which coincided 

with accretion of n-3 PUFA in fetal brain. Sites of fetal resorption were noticeable in the SO 

group but not in the FO group. N-3 PUFA may improve fetal sustainability via altering 

inflammatory cytokine levels in placenta. 
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3.2 INTRODUCTION 

 

Pregnancy relies on a careful balance between pro- and anti-inflammatory cytokines 

(Challis et al., 2009; Zourbas et al., 2001). As such, an imbalance in the levels of pro- and 

anti-inflammatory cytokines can result in aberrant inflammation, with a concomitant adverse 

pregnancy outcome such as spontaneous abortion, preterm labor, and intrauterine growth 

restriction (Cotechini & Graham, 2015; El-Shazly et al., 2004; Renaud et al., 2011; 

Zenclussen et al., 2003). Studies have shown that the consumption of longer chain n-3 PUFA 

during pregnancy reduces the risk of pre-term delivery by modifying gestation length and 

increasing offspring weight at birth (De Giuseppe et al., 2014; Olsen et al., 1992, 1994; 

Szajewska et al., 2006). However, the mechanism through which n-3 PUFA regulates 

pregnancy duration and fetal sustainability during different stages of pregnancy is vaguely 

understood.  

N-3 PUFAs are considered to be less inflammatory/anti-inflammatory, while n-6 

PUFAs are generally associated with increased inflammation (Calder, 2009). Interestingly, n-

3 and n-6 PUFA are metabolized by the same group of enzymes; thus, n-3 PUFA exerts its 

anti-inflammatory properties by inhibiting the metabolism of n-6 PUFAs such as arachidonic 

acid (AA) into downstream inflammatory metabolites (Schmitz & Ecker, 2008). As such, low 

intake of n-3 PUFA has been implicated in the pathogenesis of several inflammatory diseases 

during pregnancy (Coletta et al., 2010). Pregnancy was initially categorized as a single event 

characterized by either pro-inflammatory or anti-inflammatory cytokines (Wegmann et al., 

1993). However, recent studies revealed that each stage of pregnancy is regulated by different 

proportions of anti- and pro-inflammatory molecules which are localized in maternal 

reproductive tissues, such as the placenta and the uterus (Paulesu et al., 2010; Zourbas et al., 

2001). Early and late gestation involves increased production of pro-inflammatory cytokines 

in the uterine milieu (Paulesu et al., 2010; Singh et al., 2011).  
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Implantation is a critical step in the establishment of pregnancy, involving a 

harmonized dialogue between maternal endometrium and the semi-allograft blastocyst, and 

this stage is largely regulated by increased production of inflammatory cytokines such as 

TNFαIL-6, IL-12, IFNγ, and MCP-1 in maternal utero-placental interface (De et al., 1993; 

Paulesu et al., 2010; Singh et al., 2011). Similarly, activities involving labour stimulation, 

uterine contraction and cervical ripening at late gestation are all mediated by pro-

inflammatory cytokines (Kelly, 2002; Paulesu et al., 2010).  

Cytokines profile shift towards less inflammatory cytokines as pregnancy progresses 

towards second trimester. As such, anti-inflammatory cytokines such as IL-10 is well 

characterized in maternal utero-placental interface at mid-gestation where it plays a key role 

in inflammation resolution (Paulesu et al., 2010). Uterine quiescence is highly essential 

during mid-gestation for optimum fetal growth; thus, a well-coordinated inflammation 

resolution system is required to prevent persistent inflammation, which could degenerate into 

complications during pregnancy (Chatterjee et al., 2014). Apparently, successful pregnancy 

establishment and progression is dependent on the establishment of a healthy balance 

between pro- and anti-inflammatory cytokines at different stages of pregnancy (Chatterjee et 

al., 2014; Zourbas et al., 2001).  

Increased intake of n-6 PUFA, as typified by western diet has been shown to cause 

significant changes in the fatty acid composition of membrane phospholipids with a resultant 

effect on inflammatory response (Simopoulos, 2016), whilst increased levels of uterine n-3 

PUFA has been shown to prevent pathological inflammatory response in pregnant mice 

(Yamashita et al., 2013). The average intake of n-3 PUFA among Canadian women is 82 

mg/d, which is below the recommendations by the International Society for the study of Fatty 

Acids and Lipids (300 mg/d) (Denomme et al., 2005). However, there is paucity of evidence 

on the effect of diets differing in the types and amount of n-3 PUFA on the fatty acid 
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composition of maternal uterus and the placenta at different stages of pregnancy, and its 

influence on the levels of pro- and anti-inflammatory cytokines in the maternal plasma and 

placenta. We hypothesized that a breeding chow diet containing longer chain n-3 PUFA from 

fish oil will cause a gestation dependent increase in the incorporation of longer chain n-3 

PUFA into maternal uterus and placenta, as well as increase the accretion of longer chain n-3 

PUFA in fetal brain of C57BL/6 mice, compared to a breeding chow diet containing n-3 

PUFA from soybean oil. We further hypothesized that incorporation of longer chain n-3 

PUFA from fish oil will reduce the concentration of pro-inflammatory cytokines in maternal 

plasma and placenta in a gestation dependent manner to induce beneficial effects on 

pregnancy outcome, compared to a diet containing soybean oil.  

 

3.3 MATERIALS AND METHODS 

 

3.3.1 Ethics statement 

 

All experimental procedures involving animals were carried out in accordance with 

the principles and guidelines of the Canadian Council on Animal Care and were approved by 

Memorial University’s Animal Care Committee (approval no: 15-11-SC). All effort was 

made to reduce the number of animals and to minimize animal suffering.  

3.3.2 Animals and experimental design 

 

Male and female C57BL/6 mice were purchased from Charles River Laboratories 

(MA, USA) at seven weeks of age, and housed in separate cages under controlled temperature 

(21 ± 1°C) and humidity (35 ± 5%) condition with a 12-hour light/12-hour dark period cycle. 

Mice were kept on standard rodent chow pellets (#RMH 3000; LabDiet, St. Louis, MO, USA) 

for one-week acclimatization period. After this period, female mice were randomly divided 

into two groups and were assigned to either a fish oil (FO) based (#5061, LabDiet, St. Louis, 
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MO, USA) or a soybean oil (SO) based (#5015, LabDiet, St. Louis, MO, USA) breeding 

chow diet (Table 2.1) for two weeks, as per our previous publication (Akerele & Cheema, 

2017).  

Mating was carried out and female mice were checked by 6:00am the following 

morning for vaginal plug formation to confirm pregnancy, representing day 0.5 (Croy et al., 

2015). Pregnant mice were continued on the assigned diets throughout gestation. Fresh food 

and water were provided ad-libitum every other day. Body weight and food intake was 

recorded every day; no significant difference in food intake was observed, and there was no 

difference in maternal weight across the two dietary groups before pregnancy and at each 

stage of pregnancy (Appendix I). Mice were sacrificed before pregnancy (non-pregnant), at 

early-gestation (day 6.5), mid-gestation (day 12.5), and late-gestation (day 18.5) using 2.5% 

isoflurane. Blood was collected by cardiac puncture in tubes containing EDTA (4.5 mM, pH 

7.4) and was separated immediately into plasma and red blood cells. Maternal and fetal 

tissues were removed and weighed at the time of sacrifice. All fetuses were removed from the 

uterus; placenta was carefully separated from the fetus and washed free of maternal blood in 

ice-cold phosphate buffered saline (PBS). Fetal brain was collected from each fetus. Tissues 

were snap frozen in liquid nitrogen and stored at -80ºC until further analyses. Pictures of fetal 

resorption were taken using Canon camera (SX500 IS).   

3.3.3 Fatty acid composition analyses 

 

Lipids were extracted from maternal uterus, placenta and fetal brains according to the 

method of Folch et al., (1957), and the fatty acid composition was determined as per our 

previous publication (Akerele & Cheema, 2017). Brain samples for all fetuses in each litter 

were collected, analyzed individually and results averaged for each dam. The fatty acid 
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composition of the breeding chow diets has been previously published (Akerele & Cheema, 

2017), and is provided as Table 2.2 of Chapter 2 .  

3.3.4 Cytokine assay 

 

Cytokines concentration in the maternal plasma and placental samples was determined 

using BD Cytometric Bead Array (CBA) mouse inflammation kit (#552364, BD Biosciences, 

ON, Canada) according to the manufacturer’s instruction. The linearity and efficiency of the 

kit was established for placental cytokines. Briefly, mouse inflammation standard was 

reconstituted in assay diluent and incubated at room temperature for 15 minutes before 

carrying out serial dilutions (1:2 up to 1:256). The mouse inflammation capture beads were 

mixed and transferred to each assay tube prior to the addition of standards or samples. The 

placenta samples were homogenized in 1mL of PBS with 10 μl of protease inhibitor cocktail 

(#P8340, Sigma-Aldrich, Canada).  

Clear placental supernatant was separated by centrifuging the placental homogenate at 

800 x g for 10 minutes and used for cytokine assay. Detection reagent was added to each tube 

and incubated for 2 hours at room temperature protected from light. Each tube was then 

washed with wash buffer and centrifuged at 200 x g for 5 minutes. The supernatant was 

discarded, and the pellet was re-suspended in 300 μl of wash buffer. Cytokines concentration 

was determined using FACSAria flow cytometer (#650110C8, BD Bioscience, Canada). Data 

analysis was performed using Flow Cytometry Analysis Program (FCAP) Array software 

(version 3.0). 

3.3.5 RNA extraction and real-time qPCR 

 

Total RNA was extracted from placenta samples using Trizol method (Chomczynski 

& Sacchi, 1987). Genomic DNA contamination was removed by treating with DNase enzyme 

(#M610A, Promega, USA). The concentration of the extracted RNA, and the A260/A280 was 
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determined using Nano Drop 2000 (Thermo Scientific, USA). RNA integrity of each sample 

was confirmed using 1.2 % agarose gel. Synthesis of cDNA from the extracted RNA was 

carried out using reverse-transcription method as per our previous publication (Balogun & 

Cheema, 2014). All primers used for qPCR were designed using NCBI primer blast 

(www.ncbi.nlm.nih.gov/tools/primer-blast/) (accessed on 02/06/2018) and obtained from IDT 

technologies (IA, USA); primer sequences and efficiencies are given in Table 3.1. 

Amplification was performed using iQ SYBR Green Supermix (#1708880, Bio-rad, USA) 

and samples were run using the CFX96TM Real-Time System while data output was 

managed using the CFX ManagerTM Software Version 3.0. The delta Ct values were 

recorded for each of the gene of interest, corrected for amplification efficiency, and 

normalized with Beta-Actin (Actb) as the reference gene; there was no change in the 

expression of Actb between groups. The expression levels between the two groups were 

compared using the Livak method (Livak & Schmittgen, 2001). 

  

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 3.1: Primers Sequences 

      

Gene Primers sequence (5’ – 3’)                     Primer Efficiency (%) 

FAT / CD36 (S) atgggctgtgatcggaactg                                       
98.11 

FAT / CD36 (AS) gtcttcccaataagcatgtctcc  

   FABPpm (S) agcggctgaccaaggagtt                                        

97.09 FABPpm (AS) gacccctgccacggagat 

   Actb (S) cacgcagctcattgtagaagg                                      
107.47 

Actb (AS) atggtgggaatgggtcagaag 

 

Actb, beta actin; AS, antisense; FABPpm, placental plasma membrane fatty acid binding 

protein; FAT / CD36, fatty acid translocase; S, sense. 
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3.3.6 Statistical analysis 

 

Data were analysed using GraphPad Prism Software (version 5.0). Sample means 

were compared using two-way analysis of variance (ANOVA) to determine main effects of 

diet and time, and the interactions between them. Pairwise comparison using Bonferroni 

correction was used to determine differences among the groups. Results are expressed as 

mean ± standard deviation (SD) for n=8 dams in each experimental group. Placenta and brain 

samples for all fetuses in each litter were individually analysed, and results were averaged for 

each dam. Fatty acid composition data were arcsine transformed prior to statistical analyses. 

Differences were statistically significant if p<0.05.  

 

3.4 RESULTS 

 

3.4.1 Effects of diets on maternal uterine fatty acid composition 

 

There was no effect of diet on saturated fatty acids (SFA) but there was an 

independent effect of gestation time on SFA in both diet groups (p<0.0001) (Table 3.2). 

Myristic acid (C14:0) decreased significantly at day 12.5 and 18.5 compared to day 6.5 in 

both diet groups (p<0.05). Animals fed the FO diet showed no difference in palmitic acid 

(C16:0) during pregnancy, while stearic acid (C18:0) increased at day 12.5, compared to day 

6.5 (p<0.05). On the other hand, animals fed the SO diet showed an increase in palmitic acid 

and stearic acid as gestation progressed from day 6.5 to day 18.5 (p<0.05).  

Gestation time also had a significant effect on monounsaturated fatty acids (MUFA). 

Palmitoleic acid (C16:1n7), oleic acid (C18:1) and total MUFA decreased at day 12.5 and 

18.5 in both diet groups, compared to day 6.5 (p<0.05). Eicosenoic acid (C20:1n9) increased 

at day 18.5 in both diet groups (p<0.05), compared to day 6.5, and there was a significant 

interaction between diet and gestation time (p<0.05).  
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Animals fed the FO diet had lower levels of arachidonic acid (C20:4n6; AA), adrenic 

acid (C22:4n6) and total n-6 PUFA (p<0.05), compared to the SO diet group. Linoleic acid 

(C18:2n6; LA) decreased with gestation time in both diet groups (p<0.05), while AA, adrenic 

acid and total n-6 PUFA increased significantly at day 18.5 in both diet groups, compared to 

day 6.5 (p<0.05). Animals fed the FO diet had higher levels of eicosapentaenoic acid 

(C20:5n3; EPA), docosapentaenoic acid (C22:5n3; DPA), docosahexaenoic acid (C22:6n3; 

DHA) and total n-3 PUFA, compared to the SO group (p<0.05). Alpha linolenic acid 

(C18:3n3; ALA) decreased as gestation progressed from day 6.5 to 18.5 in the FO group 

(p<0.05). Interestingly, there was no detection of ALA at day 12.5 and 18.5 in the SO group. 

DPA, DHA and total n-3 PUFA increased from day 6.5 to 12.5 in both diet groups (p<0.05), 

and DPA also revealed an interaction between diet and gestation time (p<0.05). 
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Table 3.2: Fatty acid composition of maternal uterus 

       

      

Fatty Acids  FO Diet (High n-3) SO Diet (Low n-3) Main Effect 

 

Day 6.5 Day 12.5 Day 18.5 Day 6.5 Day 12.5 Day 18.5 Diet Gestation Diet*Gestation 

C14:0 0.79±0.13
a
 0.48±0.04

c
 0.57±0.04

c
 0.69±0.14

b
 0.51±0.04

c
 0.54±0.07

c
 NS p<0.05 NS 

C16:0 19.12±1.58 18.19±0.54 18.97±0.36 17.56±0.47
b
 17.85±0.70

b
 19.04±0.75

a
 NS p<0.05 NS 

C18:0 11.73±1.74
c
 17.23±2.32

a
 14.53±4.18

b
 11.80±3.89

c
 18.67±2.36

a
 16.74±2.05

a
 NS p<0.05 NS 

ƩSFA 31.64±5.58
b
 35.90±1.80

a
 34.07±4.08

a
 30.05±4.16

b
 37.03±2.28

a
 36.32±2.37

a
 NS p<0.0001 NS 

          C16:1n7 2.33±0.29
a
 1.47±0.10

b
 1.74±0.52

b
 2.18±0.75

a
 1.25±0.14

b
 1.22±0.19

b
 NS p<0.05 NS 

C18:1 19.01±2.08
a
 13.98±0.72

bc
 16.25±0.20

b
 20.64±5.53

a
 14.11±0.73

b
 15.68±1.84

b
 NS p<0.05 NS 

C20:1n9 0.46±0.10
d
 0.76±0.06

cd
 0.86±0.43

c
 0.96±0.18

c
 1.44±0.39

a
 1.18±0.07

b
 NS p<0.05 p<0.05 

ƩMUFA 21.80±4.67
a
 16.21±2.49

b
 18.85±3.91

b
 23.78±4.47

a
 16.81±2.39

b
 18.08±2.19

b
 NS p<0.05 NS 

          C18:2n6 14.00±2.80
a
 9.79±0.42

b
 9.74±2.40

b
 9.67±2.32

b
 8.23±0.4b

c
 6.77±1.16

d
 p<0.05 p<0.05 NS 

C20:4n6 7.16±1.72
d
 12.40±2.12

b
 11.90±0.17

b
 9.33±3.95

c
 15.27±2.15

a
 13.22±0.67

b
 p<0.05 p<0.05 NS 

C22:4n6 1.38±0.32
c
 2.63±0.16

b
 2.25±0.67

b
 2.60±0.98

b
 2.99±0.51

ab
 3.44±0.56

a
 p<0.05 p<0.05 p<0.05 

ƩN-6 PUFA 22.54±0.80
cd

 24.82±0.87
b
 23.89±0.44

b
 21.60±0.9

d
 26.49±0.27

a
 23.43±0.65

bc
 p<0.05 p<0.05 NS 

          C18:3n3 0.72±0.25
a
 0.24±0.00

c
 0.18±0.01

d
 0.35±0.11

b
 ND ND p<0.05 p<0.05 NS 

C20:5n3 0.22±0.07
a
 0.27±0.02

a
 0.25±0.07

a
 0.09±0.01

b
 0.27±0.01

a
 0.10±0.04

b
 p<0.05 p<0.0001 NS 

C22:5n3 1.10±0.29
c
 1.67±0.58

a
 1.50±0.38

a
 0.66±0.10

d
 1.06±0.14

c
 1.25±0.12

b
 p<0.05 p<0.05 p<0.05 

C22:6n3 3.53±0.60
b
 6.45±0.21

a
 6.74±1.53

a
 2.32±0.09

c
 4.63±0.67

b
 4.96±0.81

b
 p<0.05 p<0.05 NS 

ƩN-3 PUFA 5.57±1.30
c
 8.63±1.68

a
 8.67±0.55

a
 3.42±0.67

d
 5.96±0.98

c
 7.22±0.78

b
 p<0.05 p<0.05 NS 
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Data are expressed as weight percentage of total fatty acids. Values are expressed as mean ± SD, n = 8. Main effects and interactions were 

determined by two-way ANOVA after arcsine transformation. Pairwise comparison using Bonferroni correction was used to determine differences 

among the groups. Mean values within a row with unlike superscript letters (a, b, c and d) were significantly different for each group (p<0.05). FO, 

fish oil based diet; ƩMUFA, sum of monounsaturated fatty acids; Ʃn-3 PUFA, sum of omega-3 polyunsaturated fatty acids; Ʃn-6 PUFA, sum of 

omega-6 polyunsaturated fatty acids; ND, not detected; NS, not significant; ƩSFA: sum of saturated fatty acids; SO, soybean oil based diet. 
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3.4.2 Effects of diets on maternal placental fatty acid composition 

 

There was no effect of diet on SFA, but gestation time had an independent effect on 

myristic acid, stearic acid and total SFA (Table 3.3). Myristic acid decreased significantly 

(p<0.05), while stearic acid increased in both diet groups from day 12.5 to 18.5 (p<0.0001). 

Gestation time had no effect on palmitic acid in both diet groups. There was no change in total 

SFA in the FO group, while total SFA increased at day 18.5 in the SO group (p<0.05). There 

was a significant effect of diet on palmitoleic acid, eicosenoic acid and total MUFA, revealing 

that the FO group had higher levels of palmitoleic acid (p<0.0001) and lower levels of 

eicosenoic (p<0.05) acid and total MUFA, compared to the SO group (p<0.05). Gestation time 

also had an independent effect on all MUFAs; palmitoleic acid, oleic acid, and total MUFA 

decreased from day 12.5 to 18.5 in both diet groups (p<0.05). Eicosenoic acid increased from 

day 12.5 to day 18.5 in the FO group, and decreased from day 12.5 to day 18.5 in the SO group 

(p<0.05). 

 Diet had a significant effect on AA, adrenic acid and total n-6 PUFA. The FO group had 

lower levels of AA (p<0.0001), adrenic acid (p<0.05) and total n-6 PUFA (p<0.05), compared to 

the SO group. Total n-6 PUFA decreased from day 12.5 to 18.5 in the FO group (p<0.05), while 

there was no change in the SO group. Diet also had a significant effect on n-3 PUFAs; the 

amount of ALA, DPA, DHA and total n-3 PUFA was significantly higher in the FO group, 

compared to the SO group (p<0.0001). ALA decreased from day 12.5 to 18.5 in the FO group 

(P<0.05), while it was not detectable at day 18.5 in the SO group. EPA increased from day 12.5 

to 18.5 in the FO group, while there was no change in the SO group (p<0.05). There was no 

change in DPA as gestation progressed from day 12.5 to 18.5 in both diet groups, while DHA 

and total n-3 PUFA increased significantly from day 12.5 to 18.5 in both groups (p<0.0001). The 

effect of the FO diet on ALA and DHA was dependent on the gestation time (p<0.05).  
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Table 3.3: Fatty acid composition of maternal placenta 

      

        

Fatty Acids FO Diet (High n-3)   SO Diet (Low n-3) 

 

Main Effect 

  Day 12.5  Day 18.5    Day 12.5  Day 18.5    Diet Gestation 

Diet * 

Gestation 

C14:0 0.42±0.03
a
 0.31±0.04

b
 

 

0.42±0.06
a
 0.34±0.07

b
 

 

NS p<0.05 NS 

C16:0 17.21±0.37 16.78±0.19 

 

16.56±0.43 16.56±0.86 

 

NS NS NS 

C18:0 19.90±0.83
b
 22.00±0.53

a
 

 

20.67±0.62
b
 22.55±1.03

a
 

 

NS p<0.0001 NS 

Ʃ SFA 38.24±1.11
b
 39.88±0.74

ab
 

 

38.37±0.83
b
 40.27±0.40

a
 

 

NS p<0.05 NS 

          C16:1n7 1.22±0.04
a
 1.07±0.07

b
 

 

1.06±0.07
b
 0.91±0.06

c
 

 

p<0.0001 p<0.0001 NS 

C18:1 11.09±0.77
a
 10.03±0.60

b
 

 

11.40±0.42
a
 10.43±0.78

b
 

 

NS p<0.05 NS 

C20:1n9 0.27±0.03
d
 0.51±0.03

c
 

 

1.74±0.31
a
 1.08±0.28

b
 

 

p<0.05 p<0.05 NS 

Ʃ MUFA 12.61±0.67
b
 11.63±0.65

c
 

 

14.09±0.79
a
 12.44±0.82

b
 

 

p<0.05 p<0.05 NS 

          C18:2n6 11.89±1.40
a
 10.26±0.13

ab
 

 

10.58±0.32
ab

 9.19±0.69
b
 

 

NS p<0.05 NS 

C20:4n6 13.34±0.45
c
 14.69±0.84

b
 

 

15.35±0.55
ab

 16.34±1.59
a
 

 

p<0.0001 p<0.05 NS 

C22:4n6 3.86±0.28
a
 2.29±0.19

b
 

 

4.03±0.14
a
 3.31±1.31

a
 

 

p<0.05 p<0.05 NS 

Ʃ N-6 PUFA 29.41±1.98
a
 27.52±0.79

b
 

 

30.62±0.51
a
 29.35±1.73

a
 

 

p<0.05 p<0.05 NS 

          C18:3n3 0.26±0.00
a
 0.19±0.01

b
 

 

0.10±0.01
c
 ND 

 

p<0.05 p<0.05 <0.05 

C20:5n3 0.52±0.09
b
 0.69±0.05

a
 

 

0.47±0.12
b
 0.65±0.45

ab
 

 

NS p<0.05 NS 

C22:5n3 1.60±0.16
a
 1.56±0.16

a
 

 

0.84±0.13
b
 0.77±0.11

b
 

 

p<0.0001 p<0.05 NS 

C22:6n3 7.59±0.35
b
 9.69±0.63

a
 

 

5.48±0.31
d
 6.48±0.42

c
 

 

p<0.0001 p<0.0001 <0.05 

Ʃ N-3 PUFA 10.05±0.39
b
 12.40±0.72

a
   8.06±0.46

c
 9.06±0.44

b
   p<0.0001 p<0.05 NS 
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Data are expressed as weight percentage of total fatty acids. Values are expressed as mean ± SD, n = 8. Main effects and interactions were 

determined by two-way ANOVA after arcsine transformation. Pairwise comparison using Bonferroni correction was used to determine 

differences among the groups. Mean values within a row with unlike superscript letters (a, b, c and d) were significantly different for each group 

(p<0.05). FO, fish oil based diet; ƩMUFA, sum of monounsaturated fatty acids; Ʃn-3 PUFA, sum of omega-3 polyunsaturated fatty acids; Ʃn-6 

PUFA, sum of omega-6 polyunsaturated fatty acids; ND, not detected; NS, not significant; ƩSFA: sum of saturated fatty acids; SO, soybean oil 

based diet.
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3.4.3 Effects of diets on fetal brain fatty acid composition 

 

There was no effect of either diet or gestation time on SFA (Table 3.4). There was a 

significant effect of diet on eicosenoic acid; the FO group had higher levels of eicosenoic acid, 

compared to the SO group (p<0.05). Gestation time had an independent effect on oleic acid and 

total MUFA, showing a decrease from day 12.5 to 18.5 in both diet groups (p<0.0001), while 

there was no change in palmitoleic acid. There was no effect of diet on n-6 PUFAs in both diet 

groups. However, LA decreased from day 12.5 to day 18.5 in both diet groups (p<0.0001). There 

was an independent effect of diet on n-3 PUFAs, revealing that the FO group had higher amount 

of EPA, DPA, DHA, and total n-3 PUFA in fetal brain, compared to the SO group (p<0.0001). 

Gestation time also had a significant effect on PUFAs; ALA decreased from day 12.5 to 18.5 in 

both diet groups (p<0.05), while EPA, DHA and total n-3 PUFA increased from day 12.5 to day 

18.5 in both diet groups (p<0.0001).  

3.4.4 Effects of diets on maternal placental fatty acid transporters 

 

Diet had a significant effect on the mRNA expression of placental plasma membrane 

fatty acid binding protein (FABPpm), revealing higher expression in the FO group, compared to 

the SO group (p<0.0001; Figure 3.1). However, there was no effect of gestation time on the 

mRNA expression of FABPpm in both diet groups. There was no effect of diet on the mRNA 

expression of fatty acid translocase FAT/CD36 (Appendix III). 



 

116 
 

           Table 3.4: Fatty acid composition of fetal brain 

Fatty Acids FO Diet (High n-3) 

 

SO Diet (Low n-3)   Main Effect 

 

Day 12.5 Day 18.5 

 

Day 12.5 Day 18.5   Diet Gestation Diet*Gestation 

C14:0 1.92±0.26 2.14±0.42   2.26±0.08 2.29±0.11 

 

NS NS NS 

C16:0 28.47±1.16 28.14±0.89 

 

30.33±0.96 29.43±0.71 

 

NS NS NS 

C18:0 14.33±1.30 15.64±0.65 

 

14.03±0.64 16.12±0.56 

 

NS NS NS 

ƩSFA 44.71±1.44 45.31±2.76 

 

46.62±1.54 47.84±1.19 

 

NS NS NS 

C16:1n7 5.90±0.82 5.79±0.87 

 

6.71±0.18 6.29±0.16 

 

NS NS NS 

C18:1 22.00±1.24
a
 16.89±1.08

b
 

 

22.88±0.43
a
 17.68±0.52

b
 

 

NS p<0.0001 NS 

C20:1n9 2.44±0.84
a
 2.77±1.06

a
 

 

1.80±0.51
b
 0.91±0.34

c
 

 

p<0.05 NS p<0.05 

ƩMUFA 30.34±2.00
a
 25.45±1.05

b
 

 

30.75±1.77
a
 24.88±0.58

b
 

 

NS p<0.0001 NS 

C18:2n6 2.28±0.60
a
 0.67±0.08

b
 

 

2.38±0.38
a
 0.77±0.05

b
 

 

NS p<0.0001 NS 

C20:4n6 10.39±0.55 10.31±0.54 

 

11.53±0.84 11.41±0.24 

 

NS NS NS 

C22:4n6 3.07±0.88 2.88±0.69 

 

2.93±0.29 3.78±0.71 

 

NS NS NS 

ƩN-6 PUFA 12.67±2.80 10.98±0.56 

 

13.91±1.22 12.18±0.22 

 

NS NS NS 

C18:3n3 0.63±0.07
a
 0.41±0.03

c
 

 

0.53±0.07
b
 0.30±0.06

d
 

 

NS p<0.05 NS 

C20:5n3 1.77±0.23
b
 2.82±0.63

a
 

 

0.75±0.27
d
 1.22±0.53

c
 

 

p<0.0001 p<0.05 NS 

C22:5n3 0.80±0.21
a
 0.70±0.18

a
 

 

0.14±0.00
c
 0.25±0.07

b
 

 

p<0.0001 NS NS 

C22:6n3 6.51±0.58
c
 11.47±0.75

a
 

 

4.38±0.45
d
 9.54±0.52

b
 

 

p<0.0001 p<0.0001 NS 

ƩN-3 PUFA 9.21±1.58
c
 15.39±1.15

a
   5.80±0.62

d
 11.32±1.02

b
   p<0.0001 p<0.0001 NS 

 



 

117 
 

Data are expressed as weight percentage of total fatty acids. Values are expressed as mean ± SD, n = 8. Main effects and interactions were 

determined by two-way ANOVA after arcsine transformation. Pairwise comparison using Bonferroni correction was used to determine 

differences among the groups. Mean values within a row with unlike superscript letters (a, b, c, and d) were significantly different for each 

group (p<0.05). FO, fish oil based diet; ƩMUFA, sum of monounsaturated fatty acids; Ʃn-3 PUFA, sum of omega-3 polyunsaturated fatty 

acids; Ʃn-6 PUFA, sum of omega-6 polyunsaturated fatty acids; ND, not detected; NS, not significant; ƩSFA: sum of saturated fatty acids; 

SO, soybean oil based diet. 
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Figure 3.1: Effects of dietary n-3 polyunsaturated fatty acids on maternal mRNA expression of 

placental membrane fatty acid binding protein (FABPpm) was determined during gestation at 

day 12.5 and 18.5 as explained in the Material and Method section. Values are presented as 

mean ± SD, n=8 at each stage of pregnancy. The mRNA expressions were normalized with Actb 

as the reference gene. Data were assessed using two-way ANOVA to determine the main effects 

and the interactions of diet and gestation; Pairwise comparison using Bonferroni correction was 

used to determine differences among the groups. p<0.05 was considered significant. Actb; beta 

actin; FO, fish oil based diet; NS, not significant; SO, soybean oil based diet.  
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3.4.5 Effects of diets on maternal plasma cytokines 

 

Diet had no independent effect on plasma cytokines. However, there was a significant 

effect of gestation time on the concentrations of IFN-γ, TNFα, MCP-1, IL-12, IL-6 and IL-10 in 

both diet groups (Figure 3.2). The concentrations of IFN-γ decreased from day 12.5 to 18.5 in 

the FO group, while it increased from day 12.5 to 18.5 in the SO group (p<0.0001). There was 

no change in TNFα as gestation progressed from day 6.5 to 18.5 in the FO group, while it 

increased from day 6.5 to 18.5 in the SO group (p<0.05). MCP-1 decreased significantly at day 

18.5 in the FO group, compared to the SO group (p<0.05). IL-12 decreased as pregnancy 

progressed from day 6.5 to 18.5 in the FO group, while it increased in the SO group (p<0.0001). 

IL-6 decreased significantly from day 12.5 to 18.5 in the FO group, compared to the SO group 

(p<0.0001). IL-10 increased significantly from day 6.5 to 18.5 in the FO group, while there was 

no change in IL-10 levels in the SO group as pregnancy progressed from day 6.5 to 18.5 

(p<0.0001). There were significant interactions between diet and gestation time on the 

concentration of IFN-γ, IL-12 and IL-10 in both diet groups (p<0.05).  

3.4.6 Effects of diets on placental cytokines 

 

Diet had an independent effect on IL-6, TNFα and MCP-1 (p<0.05), revealing lower 

levels in the FO group, compared to the SO group (Figure 3.3). There was also an independent 

effect of gestation time on TNFα and MCP-1, revealing that TNFα increased as gestation 

progressed from day 12.5 to 18.5 in both dietary groups (p<0.0001). In contrast, MCP-1 

decreased as gestation progressed from day 12.5 to 18.5 in both diet groups (p<0.0001). There 

was no effect of gestation time on IL-6; neither diet nor gestation time had an effect on IL-10 

(p>0.05).
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Figure 3.2: Effects of dietary n-3 polyunsaturated fatty acids on maternal plasma cytokines 

concentration at different stages of pregnancy Interferon gamma (IFNγ; A), tumor necrosis 

factor alpha (TNFα; B), monocyte chemotactic protein-1 (MCP-1; C), interleukin-12 (IL-12; 

D), IL-6 (E), and IL-10 (F) were measured for non-pregnant (NP) mice and during gestation 

at day 6.5, 12.5, and 18.5 as explained in the Materials and Methods section. Values are 
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presented as mean ± SD, n=8 at each stage of pregnancy. Data were assessed using two-way 

ANOVA to determine the main effects and the interactions of diet and time; Pairwise 

comparison using Bonferroni correction was used to determine differences among the groups. 

Letters (a, b, c, and d) represent significant difference between stages of pregnancy in each 

diet groups. p<0.05 was considered significant. FO, fish oil based diet; NS, not significant; 

SO, soybean oil based diet. 
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Figure 3.3: Effects of dietary n-3 polyunsaturated fatty acids on maternal placental cytokines 

concentration at different stages of pregnancy; Interleukin-6 (IL-6; A), tumor necrosis factor 

alpha (TNFα; B), monocyte chemotactic protein-1 (MCP-1; C), and IL-10 (D) were measured 

for non-pregnant (NP) mice and during gestation at day12.5, and 18.5 as explained in the 

Materials and Methods section. Values are presented as mean ± SD, n=8 at each stage of 

pregnancy. Data were assessed using two-way ANOVA to determine the main effects and the 

interactions of diet and time; Pairwise comparison using Bonferroni correction was used to 

determine differences among the groups. Letters (a, b, c and d) represent significant 
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difference between stages of pregnancy in each diet groups. p<0.05 was considered 

significant. FO, fish oil based diet; NS, not significant; SO, soybean oil based diet. 

3.4.7 Effects of diets on fetal resorption 

 

The number of resorption sites observed in the FO and the SO diet groups, at all 

stages of gestation, are given in Table 3.5. No resorption sites were observed in the FO group; 

however, the SO group clearly revealed resorption sites as evident from the pictorial images, 

particularly at day 12.5 (Figure 3.4).   
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Figure 3.4: Evidence of fetal resorption in the low n-3 PUFA (SO) diet group; arrows show 

the resorption sites at pregnancy day 12.5. PUFA: Polyunsaturated fatty acids, SO: Soybean 

oil based diet. 
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Table 3.5: Number of fetal resorption sites during pregnancy 

 

  FO Diet (High n-3)                     SO Diet (Low n-3) 

Day 6.5              NA                                               NA                

Day 12.5 

 

            Nil                                               1.75±0.71                                        

Day 18.5               Nil                                               2.00±0.76 

 

Values represent number of fetal resorption sites, expressed as mean ± SD, n = 8. FO, fish oil-

based diet; n-3, omega-3; NA, not applicable; SO, soybean oil-based diet. 
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3.5 DISCUSSION 
 

We have previously shown that breeding chow diet containing fish oil as a source of 

n-3 PUFA increased the incorporation of longer chain n-3 PUFA into maternal red blood cells 

and improved fetal outcomes of C57BL/6 mice, compared to a diet containing soybean oil 

based n-3 PUFA (Akerele & Cheema, 2017). In the current study, we have shown that 

maternal diet containing longer chain n-3 PUFA alters the fatty acid composition of maternal 

uterus, placenta and fetal brain, along with causing changes in cytokine levels of maternal 

plasma and placenta, at each stage of pregnancy corresponding to different trimesters of 

pregnancy. Rodent models have proven useful to further understand the cascades of events 

during pregnancy in human. Reduction in uterine n-3 PUFA during pregnancy contributes to 

dysfunctional myometrial activity in rats, resulting in adverse pregnancy outcomes (Muir et 

al., 2018). Furthermore, the ratio of n-6 to n-3 PUFA is important in regulating uterine 

function (Robinson et al., 2002; Verma et al., 2018). 

The transfer of longer chain n-3 PUFA into fetal tissues during pregnancy is 

considerably regulated by the availability of n-3 PUFA in maternal uterine and placental 

interface (Larque et al., 2011). Our findings have shown that females fed a diet containing 

longer chain n-3 PUFA from FO had higher levels of EPA, DPA, and DHA in maternal 

uterus and placental samples, compared to the SO group. Although the availability of longer 

chain n-3 PUFA such as DHA in the placenta is predominantly regulated by dietary intake, 

ALA (the essential n-3 PUFA) is also metabolised through a series of elongation and 

desaturation processes to DHA (Leonard et al., 2004). The conversion of ALA to DHA is 

generally high in females, and becomes more efficient during pregnancy, largely due to an 

increase in the demand for DHA during pregnancy (Innis, 2005; Mulder et al., 2014). We 

found that ALA was not detectable in the uterine and placental tissues in the SO group at late 

gestation (day 18.5). The disappearance of ALA coincided with an increase in the levels of 
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longer chain n-3 PUFAs (EPA, DPA and DHA) in the placental and uterine tissues at late 

gestation in the SO group. ALA was the only source of n-3 PUFA in the SO diet, and the total 

amount of n-3 PUFA in the SO diet was also lower as compared to the FO diet, thus no 

detection of ALA at late gestation indicates that ALA is being all converted to longer chain n-

3 PUFA in the SO group, specifically DHA to meet fetal requirement as gestation progressed.  

The delivery and accretion of PUFA in the fetus is through the mother via placental 

transfer (Innis, 2005). Cell culture models (Tobin et al., 2009), perfused placenta (Haggarty et 

al., 1997), as well as in vivo studies using radio-labelled DHA (Gil-Sánchez et al., 2010) 

revealed that placenta preferentially transfers essential fatty acids such as DHA into fetal 

circulation during pregnancy via passive diffusion and by specific placental membrane fatty 

acid transporters (Duttaroy, 2009). Hence, abnormal placental function involving impaired 

transfer of longer chain n-3 PUFA has been implicated in the pathogenesis of adverse 

pregnancy outcomes such as intrauterine growth restriction (Gauster et al., 2007; Larque et 

al., 2011).  

Fatty acid transport proteins (FATPs), fatty acid translocase (FAT/CD36), as well as 

FABPpm have been identified as key membrane proteins involved in fatty acid transport 

across the placenta (Duttaroy, 2009). Among these membrane proteins, FABPpm functionally 

exhibits a high affinity for longer chain n-3 PUFAs, suggesting that the transfer of DHA 

across the placenta is most probably mediated by this protein (Campbell et al., 1997). Our 

data revealed that the expression of FABPpm was significantly higher in the FO diet, 

compared to the SO diet. The role of FABPpm in the transport of DHA from maternal pool to 

fetal circulation has been linked to its exclusive location in the microvillous membrane of the 

placenta, as well as its binding specificity for longer chain n-3 PUFAs (Campbell et al., 

1998). In our study, FAT/CD36 was only expressed on day 18.5, and it revealed no 
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significant difference between the two dietary groups, suggesting that FABPpm is the major 

DHA transporter in the placenta.   

DHA is essential for brain development during pregnancy (Innis, 2007; Neuringer et 

al., 1988). Growth and development of fetal brain is rapid during second trimester of 

pregnancy (Coletta et al., 2010), emphasizing that this stage of pregnancy is perhaps the most 

critical period for DHA supplementation. However, DHA accretion in fetal brain has been 

shown to be very rapid at near term and during the first year of birth in human (Clandinin et 

al., 1980; Martínez & Mougan, 1998); fetal brain accrues about 70 mg DHA per day in the 

third trimester of pregnancy (Martínez & Mougan, 1998). Our findings using C57BL/6 mice 

show a significant increase in the amount of longer chain n-3 PUFA, especially DHA in fetal 

brain as gestation progressed from mid-gestation (day 12.5) to late-gestation (day 18.5) in 

both dietary groups.  

DHA increased as gestation progressed to day 18.5 in both dietary groups, which is 

consistent with human studies demonstrating increase in DHA accretion at late gestation 

(Clandinin et al., 1980; Martínez & Mougan, 1998). However, we acknowledge that there are 

differences in fetal brain maturity at late gestation between mice and human. We also found 

that DHA as well as total n-3 PUFA in the fetal brain was consistently higher in the FO group 

compared to the SO group, signifying that maternal dietary intake of DHA is critical for DHA 

accretion in fetal brain during pregnancy. The incorporation of DHA into different brain 

regions, containing specific classes of lipids, has important implication in brain function; this 

will be explored in the future. 

 Studies have shown that an increase in the relative concentration of phospholipids 

DHA in cord serum by about 1% increased the duration of pregnancy by 1.5 days (Grandjean 

et al., 2001). Longer chain n-3 PUFAs perhaps regulates gestation length by decreasing the 

levels of inflammatory cytokines at near term. Elevated levels of pro-inflammatory cytokines 
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are suggested to trigger premature activation of labour in humans (Pandey et al., 2017). 

Inflammatory cytokines play vital roles in coordinating several processes leading to 

parturition such as cervical ripening, fetal membrane rupture and myometrial contraction 

during labour (Dimitriadis et al., 2005; Mendelson, 2009; Paulesu et al., 2010; Singh et al., 

2011). In the current study, the most significant effect of the FO diet containing longer chain 

n-3 PUFA was seen at late gestation when pro-inflammatory cytokines such as IFN-γ, TNFα, 

MCP-1, IL-6, and IL-12 decreased significantly in both maternal plasma and placenta, 

compared to the SO group.  The first trimester of pregnancy is primarily characterized by 

increased production of pro-inflammatory cytokines as they are required for embryo 

reception, successful implantation, and co-ordination of feto-maternal cross-talk (Dimitriadis 

et al., 2005; Paulesu et al., 2010).  

IL-6 plays a key role in regulating the viability of the implantation sites at early 

gestation (De et al., 1993); impaired production at this stage may delay or prolong pregnancy 

establishment. IFN-γ has been shown to initiate uterine vasculature remodelling in mice 

(Ashkar et al., 2000), while a network of IL-6 and TNFα has been identified in the chorio-

decidual environment, thereby indicating their role in membrane rupture and uterine 

contraction during labour (Paulesu et al., 2010). However, elevated levels of pro-

inflammatory cytokines such as IL-6 and TNFα has been implicated in adverse pregnancy 

establishment and outcomes such as impaired implantation in mice and human (Chaouat et 

al., 1990; Chaouat et al., 2004), embryo rejection and spontaneous abortion in mice (Kiger et 

al., 1985; Zenclussen et al., 2003).  

Although functions of IL-12 and MCP-1 during pregnancy are yet to be clearly 

defined; elevated levels of IL-12 has also been reported in women with history of miscarriage 

(Wilson et al., 2004), while MCP-1 has been suggested to potentially play an important role 

in the induction of inflammatory responses leading to preterm labour in mice (Diamond et al., 
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2007). Our findings showed sites of fetal resorption in the SO group that had significantly 

higher levels of placental IL-6, TNFα and MCP-1 at day 12.5 and 18.5, compared to the FO 

group. We found a significant increase in maternal plasma concentrations of IL-6, IL-12, 

TNFα and IFN-γ as pregnancy progressed from mid- to late gestation; interestingly fetal 

resorption sites also increased as pregnancy progressed. We have previously reported a 

decrease in fetal numbers in the SO group, as gestation progressed from early- to mid-

gestation, leading to smaller litter size at day 18.5 (Akerele & Cheema, 2017). Thus, a 

balance of pro- and anti-inflammatory cytokines at different stages of pregnancy may be 

important for pregnancy sustainability.   

Cytokines profile has been reported to shift towards less inflammatory/anti-

inflammatory cytokines, especially IL-10 as pregnancy progressed towards mid-gestation 

(Paulesu et al., 2010). IL-10 primarily exerts its anti-inflammatory effect by inhibiting a wide 

range of pro-inflammatory cytokines during pregnancy, thereby eliciting the required balance 

during critical stages of pregnancy (Thaxton & Sharma, 2010). As such, IL-10 plays a key 

role in inflammation resolution during mid-pregnancy (Chatterjee et al., 2014; Paulesu et al., 

2010). We observed a significant increase in the concentration of IL-10 in maternal plasma at 

mid-gestation in the FO group, while there was no change in the SO group.  IL-10 has also 

been shown to peak at mid-gestation during pregnancy which is equivalent of day 12.5 in 

mice (Lin et al., 1993); this is consistent with our finding where IL-10 peaked at day 12.5 in 

maternal plasma. Others have shown that fetuses exhibit growth retardation when IL-10 was 

inhibited in the mothers during pregnancy (Rijhsinghani et al., 1997), while administration of 

exogenous IL-10 prevent fetal resorption in pregnant mice (Chaouat et al., 1995). Our data 

suggest that the fetal resorption sites observed in the SO group could be due to lower 

concentration of IL-10 in maternal plasma at mid-gestation, compared to the FO group.  
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Moreover, higher concentration of IL-10 observed in maternal plasma at mid-

gestation in the high n-3 PUFA (FO) group is consistent with other studies showing that n-3 

PUFA increases the production of IL-10 (Foitzik et al., 2002) at the expense of pro-

inflammatory cytokines (Calder, 2013). As such, the implication of anti-inflammatory 

cytokines in mediating positive pregnancy outcomes cannot be over-emphasized. 

 The anti-inflammatory property of n-3 PUFA is exemplified partly by suppressing the 

downstream metabolism of n-6 PUFA to produce pro-inflammatory cytokines (Schmitz & 

Ecker, 2008), and directly by downregulating the gene expression of pro-inflammatory 

cytokines (Yamashita et al., 2013). We found that the levels of both EPA and DHA were 

significantly higher in the placental samples from high n-3 PUFA (FO) groups at both mid- 

and late gestation, which coincided with lower levels of placental TNFα as compared to the 

low n-3 PUFA (SO) group. On the other hand, higher levels of pro-inflammatory cytokines in 

the low n-3 PUFA (SO) group could be mediated by the predominance of n-6 PUFA in the 

maternal placental. Metabolism of AA to downstream eicosanoids has been linked to 

increased production of TNFα and IL-6 (Patterson et al., 2012). AA was significantly higher 

in both uterine and placental samples obtained from the low n-3 PUFA (SO) group, compared 

to the high n-3 PUFA (FO) group; this explains higher levels of placental TNFα and IL-6 in 

the low n-3 (SO) PUFA group. 
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3.6 CONCLUSION 
 

Our findings provide evidence that a maternal diet enriched in longer chain n-3 PUFA 

from fish oil caused accretion of EPA and DHA in reproductive tissues. The accretion of 

longer chain fatty acids coincided with a significant reduction in the concentration of pro-

inflammatory cytokines at late gestation in both maternal plasma and placenta, with a 

resultant increase in the levels of anti-inflammatory cytokines. Furthermore, the SO diet 

revealed sites of resorption, while there were no resorption sites observed in the FO group. 

We have previously shown that the FO diet sustained higher number of fetuses, compared to 

the SO diet. Our current findings suggest that a diet enriched in longer chain n-3 PUFA may 

improve fetal sustainability via altering cytokine levels. The breeding chow diets used in our 

study varied in both the quantity and the quality of fat; it is possible that the amount of fat 

during pregnancy may also be important. Furthermore, fetuses used in our study comprised of 

both sexes; future studies will investigate sex-specific effects.   
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4.1 ABSTRACT 
 

Omega (n)-3 polyunsaturated fatty acids (PUFA) are known to regulate lipid metabolism and 

inflammation; however, the regulation of maternal lipid metabolism and cytokines profile by 

n-3 PUFA during different gestation stages, and its impact on fetal sustainability is not 

known. We investigated the effects of maternal diet varying in n-3 PUFA prior to, and during 

gestation, on maternal metabolic profile, placental inflammatory cytokines, and fetal 

outcomes. Female C57BL/6 mice were fed either a high, low or very low (9, 3 or 1% w/w n-3 

PUFA) diet, containing n-6:n-3 PUFA of 5:1, 20:1 and 40:1, respectively for 2 weeks before 

mating, and throughout pregnancy. Animals were sacrificed prior to mating (NP), and during 

pregnancy at gestation days 6.5, 12.5 and 18.5. Maternal metabolic profile, placental 

cytokines and fetal outcomes were determined. Our results show for the first time that a 

maternal diet high in n-3 PUFA prevented dyslipidemia in NP mice and maintained the 

expected lipid profile during pregnancy. However, females fed the very low n-3 PUFA diet 

became hyperlipidemic prior to pregnancy and carried this profile into pregnancy. Maternal 

diet high in n-3 PUFA maintained maternal plasma progesterone and placental pro-

inflammatory cytokines profile, and sustained fetal numbers throughout pregnancy, while 

females fed the low and very-low n-3 PUFA diet had fewer fetuses. Our findings demonstrate 

the importance of maternal diet before, and during pregnancy, to maintain maternal metabolic 

profile and fetus sustainability. These findings are important when designing dietary 

strategies to optimize maternal metabolism during pregnancy for successful pregnancy 

outcome. 
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4.2 INTRODUCTION 
 

Maternal nutrition during pregnancy has a profound impact on the developmental and 

metabolic outcomes of the offspring at early or later life (Laker et al., 2013; Perera & 

Herbstman, 2011). Moreover, maternal nutrition during pregnancy has been shown to 

influence the initiation (Fleming et al., 2011), progression (Hiersch & Yogev, 2017), and the 

outcomes of pregnancy (Veena et al., 2016). Pregnancy is a dynamic state involving several 

physiological changes, with a concomitant alteration in maternal metabolic profile (Lain & 

Catalano, 2007). Metabolic regulation is carefully controlled at each stage of pregnancy; this 

allows mothers to support fetal growth and development as pregnancy progresses. For 

example, the fetus relies on the supply of lipids, and specific fatty acids, for proper growth 

and development (Herrera & Ortega-Senovilla, 2010; Zeng et al., 2017), thus establishing the 

importance of lipids and lipoprotein metabolism during pregnancy.  

During pregnancy, alterations in maternal lipid metabolism could be divided into two 

distinct phases: anabolic and catabolic phases (Grimes & Wild, 2018). The first trimester of 

pregnancy is typified by increased lipid synthesis and storage (anabolic phase), in order to 

meet fetal lipid and energy requirement at later stage of pregnancy (Zeng et al., 2017). 

Interestingly, de novo lipogenesis at early gestation in humans is, in part, regulated by 

increased insulin sensitivity (Wilcox, 2005). A similar study in rats attributed fat 

accumulation during early pregnancy to enhanced insulin responsiveness (Ramos et al., 

2003). Knockout mouse models of the rate-limiting enzymes for de novo lipid synthesis 

(ACACA and FAS) showed embryonic death, demonstrating the importance of lipogenesis 

during pregnancy (Abu-Elheiga et al., 2005; Chirala et al., 2003). Besides ACACA and FAS, 

DGAT2 also plays a key role in hepatic lipogenesis by catalysing the final reaction for the 

formation of TG; TG plays a key role in fetal growth and development by carrying essential 

fatty acids to the placental interface (Zammit, 2013). 
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In mice, plasma TG levels increase gradually during gestation, while TC decreases 

(Nikolova et al., 2017). Maternally derived cholesterol has been shown to cross the placenta 

during early gestation to support fetal growth, and also serves as a precursor for the synthesis 

of sex steroid hormones, particularly progesterone and estradiol, which are essential for a 

successful pregnancy (Grimes & Wild, 2018; Lindegaard et al., 2005). StAR mediates cellular 

cholesterol delivery, as well as intracellular processing and utilization for biosynthesis of 

estradiol and progesterone (Hu et al., 2010). Of interest is the establishment of direct 

relationship between changes in sex steroid hormones during pregnancy and lipogenesis 

(Goldberg & Hegele, 2012). For instance, increased circulating TG levels during pregnancy 

has been found to be driven by rise in the levels of progesterone during pregnancy (Grimes & 

Wild, 2018).  

Although hepatic lipogenesis increases in early pregnancy to supply lipids to the 

fetus, levels return to preconception levels in late pregnancy (Grimes & Wild, 2018; 

Nikolova et al., 2017). Failure to maintain the levels of circulating lipids (within the normal 

range during pregnancy) results in maternal dyslipidemia, which is characterized by elevated 

lipid levels. Elevated lipid levels during pregnancy is known to elicit adverse pregnancy 

outcomes, which includes GDM, hypertensive complications such as preeclampsia, preterm 

birth, and other complications during delivery (Hadden & McLaughlin, 2009; Vrijkotte et al., 

2012). Maternal dyslipidemia has also been shown to impair placental function, with 

extended consequences on pregnancy and perinatal health outcomes (Louwagie et al., 2018). 

Most adverse pregnancy outcomes can trace their origin to placental inflammation (Redline, 

2004). 

We have previously shown that a maternal diet high in omega (n)-3 PUFA increased 

the incorporation of n-3 PUFA by the placenta (Akerele & Cheema, 2020). N-3 PUFAs have 

been shown to cause significant changes in the fatty acid composition of membranes lipids, 
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with a resultant anti-inflammatory response in pregnant mice (Yamashita et al., 2013), whilst 

n-6 PUFA are generally pro-inflammatory in nature (Simopoulos et al., 1999). GATA-3 has 

been implicated in the maintenance of anti-inflammatory cytokine levels such as interleukin 

IL-10 (Lee et al., 2000; Zheng & Flavell, 1997), which regulate the levels of corresponding 

pro-inflammatory cytokines such as IL-6, TNF-α, IFN-γ, and MCP-1 in the placental 

interface (Akerele & Cheema, 2016; Thaxton & Sharma, 2010). An imbalance in the levels of 

anti- and pro-inflammatory cytokines has been reported to cause aberrant inflammatory 

response during pregnancy, resulting in a number of adverse pregnancy outcomes (Cotechini 

& Graham, 2015; Renaud et al., 2011). Interestingly, a maternal diet high in n-3 PUFA has 

been shown to ameliorate several adverse pregnancy outcomes such as low birth weight, 

preterm birth and perinatal death by regulating inflammatory cytokines (Albert et al., 2017; 

Imhoff-Kunsch et al., 2012).  

The effects of n-3 PUFA on the regulation of lipid metabolism and immune response 

are well known; however, no study to date has investigated the effects of maternal n-3 PUFA 

on maternal metabolic and inflammatory profile during different stages of gestation, and its 

impact on pregnancy outcome. We investigated the effects of maternal diets varying in the 

amount of n-3 PUFA on the regulation of maternal lipid metabolism, placental inflammatory 

response, and the pregnancy outcomes. We hypothesized that a maternal diet high in n-3 

PUFA will maintain optimum maternal plasma and hepatic lipid profiles, maintain a balance 

of pro- and anti-inflammatory cytokines on the placental interface, and improve fetal 

outcomes. The specific objectives of this study were to investigate the effects of maternal 

diets varying in the amount of n-3 PUFA prior to and during gestation on: 1) the RBC and 

hepatic fatty acid composition, and the mRNA expression of genes involved in lipid synthesis 

(FAS, ACACA, and DGAT2; 2) maternal plasma and hepatic lipid profiles, and the levels of 

sex steroid hormones; 3) placental inflammatory cytokines, and the mRNA expression of 
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GATA-3; and 4) fetal numbers as an indicator of pregnancy outcomes. Our findings show for 

the first time that a maternal diet containing high n-3 PUFA (9% w/w; n-6/n-3 5:1) 

maintained maternal lipid and progesterone profiles, prior to and during pregnancy, reduced 

the concentration of inflammatory cytokines on the placental interface, and sustained higher 

number of fetuses.  

 

4.3 MATERIALS AND METHODS 

 

4.3.1 Experimental Diets 

 

A semi-purified base diet was purchased without fat to allow the control of fat level at 

20% w/w (MP Biomedicals, USA). Safflower oil, extra-virgin olive oil, lard, and Menhaden 

fish oil were used as sources of saturated fatty acids (SFA), monounsaturated fatty acids 

(MUFA), n-6 PUFA, and n-3 PUFA, respectively, as per our previous studies (Akerele & 

Cheema, 2020; Balogun et al., 2014). Three different oil mixtures were prepared to contain 

approximately 9% (High), 3% (Low) and 1% (Very low) n-3 PUFA of the total dietary fat 

using a mathematical model (Appendix IV), while keeping the total amounts of SFA and 

MUFA constant as per our previous publication (Akerele & Cheema, 2020). The high n-3 

PUFA diet contained n-6:n-3 PUFA of 5:1, which has been recommended for optimal body 

homeostasis (Gómez Candela et al., 2011). The low n-3 PUFA diet was designed to contain 

n-6:n-3 PUFA of 20:1, which represents the current n-6:n-3 PUFA in a typical North 

American diet (Simopoulos, 2016). The very low n-3 PUFA diet contains n-6:n-3 PUFA of 

40:1, which has been characterized in several vegetarian communities, especially in India 

(Urban) (Mani & Kurpad, 2016; Simopoulos, 2016). The amount of dietary fat in each 

experimental diet represents approximately 40% calories from fat (FAO, 2010). The fatty 

acid composition of the experimental diets has been previously published (Akerele & 

Cheema, 2020), and is given in Table 5.2 of Chapter 5.   
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4.3.2 Animals and experimental design  

 

All experimental procedures were carried out in accordance with the principles and 

guidelines of the Canadian Council on Animal Care and were approved by Memorial 

University’s Animal Care Committee (approval no: 18-11-SC). The 3 Rs for animal ethics 

were duly followed. Seven weeks old C57BL/6 mice (male and female) were purchased from 

Charles Rivers Laboratories, and were housed in separate cages under controlled temperature 

(21 ± 1°C) and humidity (35 ± 5%) conditions with a 12-h light/12-h darkness period cycle. 

All animals were kept on rodent chow (Prolab RMH 3000) (PMI Nutrition, MO, USA) for 

one-week acclimatization period. After this period, female mice were randomly divided into 

three (3) groups, and each group was assigned one of the three experimental diets that differ 

in their n-3 PUFA composition (High, Low and Very-low) for two weeks before mating 

(Figure 4.1). The nutritional and fatty acid composition of the experimental diets are provided 

in table 4.1 and 4.2, respectively. 

Estrous cycle of the female mice was determined by vaginal physical examination, 

and mating was carried out. Female mice were checked by 6:00 am the following morning for 

vaginal plug formation to confirm pregnancy, representing gestation day 0.5 (Croy et al., 

2015). Mice with confirmed pregnancy were continued on the assigned diets throughout 

gestation; fresh food and water was provided ad-libitum every other day. Daily food intake 

and body weight was recorded every other day; no significant difference in food intake was 

observed, and there was no difference in maternal weight across the dietary groups at each 

stage of pregnancy (Appendix V).  
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Table 4.1: Composition of the experimental diets with 20% (w/w) fat level  

    

Ingredients   

Experimental Diet 

(g/kg) 
 

Casein   200  

DL-methionine   3  

Sucrose   305  

Corn starch   190  

Alphacel non-

nutritive bulk  

 50  

Vitamin mix
¥
  12  

Mineral mix*   40  

Fat   200  

Supplied in quantities adequate to meet NRC requirements (National Research Council, 

1995) 

¥
Vitamin Mix: Thiamine hydrochloride, 0.6 g; riboflavin, 0.6 g; pyridoxine hydrochloride, 0.7 g; 

nicotinic acid, 3.0 g; d-calcium pantothenate, 1.6 g; folic acid, 0.2 g; d-biotin, 0.02 g; cyanocobalamin 

(vitamin B12), 0.001 g; retinyl palmitate (vitamin A) pre-mix (250,000 IU/g), 1.6 g; DL-α-tocopherol 

acetate (250 IU/g), 20 g; cholecalciferol (vitamin D3, 400,000 IU/g), 0.25 g; menaquinone (vitamin 

K2), 0.005 g; sucrose, finely powdered, 972.9 g 

*Mineral Mix: Calcium phosphate dibasic, 500.0 g/kg; sodium chloride, 74.0 g/kg; potassium citrate 

monohydrate, 220.0 g/kg; potassium sulfate, 52.0 g/kg; magnesium oxide, 24.0 g/kg; manganese 

carbonate (43-48% Mn), 3.50 g/kg; ferric citrate (16-17% Fe), 6.0 g/kg; zinc carbonate (70% ZnO), 

1.6 g/kg; cupric carbonate (53-55% Cu), 0.30 g/kg; potassium iodate, 0.01 g/kg; sodium selenite, 0.01 

g/kg; chromium potassium sulfate, 0.55 g/kg; sucrose, finely powdered, 118.0 g/kg.  
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Table 4.2: Fatty acid composition of the experimental diets 

        

Fatty acids 

(%) 
   High n-3  Low n-3  Very-low n-3  

C14:0 

 

       2.42 

 

         1.06 

 

      0.66 

C16:0       11.94          11.89       11.70 

C18:0       4.36          4.75       5.16 

Ʃ SFA       18.72          17.70       17.53 

C16:1n7       3.70          1.49        0.94 

C18:1       22.80          24.16        25.32 

C20:1n9       0.35          0.11        0.04 

Ʃ MUFA       26.85          25.76        26.30 

C18:2n6       45.23          53.77        54.81 

C20:4n6       0.42          0.10        ND 

Ʃ Omega-6        45.65          53.87        54.81 

C18:3n3       0.81          0.80        0.82 

C18:4n3       0.56          0.14        0.26 

C20:5n3       4.13          0.88        0.16 

C22:5n3       0.66          0.32        0.12 

C22:6n3       2.59          0.52        ND 

Ʃ Omega-3        8.75          2.66        1.36 

n-6/n-3       5.2          20.1        40.1 

Data are expressed as relative weight percentage of the total extracted fatty acids.  Ʃ SFA = 

sum of saturated fatty acids; Ʃ MUFA = sum of monounsaturated fatty acids; Ʃ Omega-6 = 

sum of omega-6 polyunsaturated fatty acids; Ʃ Omega-3 = sum of omega-3 polyunsaturated 

fatty acids.  
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Mice (non-fasted) were sacrificed before pregnancy (non-pregnant; NP), at early 

gestation (day 6.5), mid-gestation (day 12.5) and late gestation (day 18.5) using isoflurane by 

inhalation. Blood was collected by cardiac puncture in tubes containing EDTA (4.5mM, pH 

7.4) and was separated immediately into plasma and red blood cells (RBC). Maternal tissues 

were removed and weighed at the time of sacrifice. Maternal liver was carefully removed, 

freeze-clamped immediately in liquid nitrogen and stored at −80 °C until further analyses. 

Number of fetuses at day 12.5 and 18.5 were recorded; pictures of embryonic resorption sites 

were taken at gestation day 12.5 and 18.5 using Canon camera (SX500 IS).  
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Figure 4.1: Experimental design: Each group of mice were fed one of the three experimental 

diets that differed in their n-3 PUFA amount, and designated as ‘‘High’’, ‘‘Low’’ and ‘‘Very-

low’’, for two weeks before mating, and throughout gestation. Mice were sacrificed before 
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pregnancy (non-pregnant; NP), at early gestation (day 6.5), mid-gestation (day 12.5), and late 

gestation (day 18.5). Maternal blood and liver samples were collected at NP and day 6.5, 

while maternal blood, liver, placentae and fetuses were collected at day 12.5 and 18.5. N-3 

PUFA: omega-3 polyunsaturated fatty acids. 
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4.3.3 Analyses of biochemical parameters  

 

Lipids were extracted from the diets, RBC and liver samples according to the method 

of Folch et al.  (Folch, Lees & Sloane, 1957) as per our previous publication (Chechi et al., 

2010). Plasma biochemical parameters were quantified using commercially available kits 

according to the manufacturers’ instructions: plasma and liver TG kit #236-17 (Genzyme 

Diagnostics, PEI, Canada); TC kit #234-60 (Genzyme Diagnostics, PEI, Canada); plasma 

glucose kit #10009582 (Cayman Chemical); insulin ELISA kit #KA3812 (Abnova 

Corporation, Taiwan); and non-esterified fatty acids (NEFA) kit #993-35191. Plasma 

progesterone concentration was determined using Architect Systems (#B7K770). The fatty 

acid composition of the extracted total lipids from diets, RBC and liver samples was 

determined using gas chromatography–flame ionization detection according to our previously 

published method (Chechi et al., 2010).  

4.3.4 RNA extraction and real-time qPCR  

 

Total RNA was extracted from placental and liver samples using Trizol method 

(Chomczynski & Sacchi, 1987). Genomic DNA contamination was removed by treating with 

DNase enzyme (Promega). The concentration of the extracted RNA was determined using 

Nano Drop 2000 (Thermo Scientific), and RNA integrity was assessed using 1.2% agarose 

gel. Complementary DNA (cDNA) was synthesized from the extracted RNA using reverse 

transcription as per our previous publication (Balogun & Cheema, 2014). All primers used 

for qPCR were designed using NCBI primer blast (www.ncbi.nlm.nih.gov/tools/primer-

blast/) (Accessed on 09/10/2019) and obtained from IDT technologies (IA, USA); primer 

sequences and efficiency are given in Table 4.1. Amplification was performed using iQ 

SYBR Green Supermix (Bio-rad). The reactions were run at a reaction volume of 10 μL and 

50 ng cDNA per reaction.  
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Table 4.1: Primer sequences and efficiency 

Gene (s) Primers sequence (5′–3′) 
Primer Efficiency 

(%) 

Acetyl-CoA carboxylase 1; ACACA (Forward) ggccagtgctatgctgagat 
89.2 

Acetyl-CoA carboxylase 1; ACACA (Reverse) agggtcaagtgctgctcca 

  
 Fatty acid synthase; FAS (Forward)  ctgcggaaacttcaggaaatg 

104.7 
Fatty acid synthase, FAS (Reverse)  ggttcggaatgctatccagg 

  
 Diacylglycerol acyltransferase-2; DGAT-2 (Forward)  ctagctagttaggctaggtttcac 

95.2 
Diacylglycerol acyltransferase-2; DGAT-2 (Reverse)  caggaggatatagcgccagag 

  
 Steroidogenic acute regulatory protein; StAR 

(Forward)  
tgcccatcatttcattcatcctt 

94.8 
Steroidogenic acute regulatory protein; StAR 

(Reverse)  
aaaagcggtttctcactctcc 

  
 Gata-3 gene; Gata-3 (Forward) ggaaactccgtcagggcta 

90.8 
Gata-3 gene; Gata-3 (Reverse) agagatccgtgcagcagag 

  
 Beta-Actin; Actb (Forward)  cacgcagctcattgtagaagg 

107.5 
Beta-Actin; Actb (Reverse)  atggtgggaatgggtcagaag 

All primers were designed using NCBI primer blast and obtained from IDT technologies. 

  



 

155 
 

Samples were run using the CFX96TM Real-Time System, while data output was 

managed using the CFX Manager
 
version-3.0. The delta Ct values were recorded for each of 

the gene of interest and normalized with Beta-Actin (Actb) as the reference gene. The mRNA 

expression of enzymes involved in lipid synthesis (ACACA, FAS, and DGAT2) was measured 

in the liver, while StAR and GATA-3 was measured in the placenta. The expression levels 

between groups were compared using the Livak method (Livak & Schmittgen, 2001).  

4.3.5 Cytokine assays 

 

Cytokine concentrations in the maternal placental samples were determined using BD 

Cytometric Bead Array (CBA) mouse inflammation kit #552364 (BD Biosciences, Canada) 

according to the manufacturer's instruction, and as per our previous publication (Akerele & 

Cheema, 2018). The efficiency and linearity of the kit for placental cytokines have been 

previously established (Akerele & Cheema, 2018). Cytokine concentrations were determined 

using FACSAria flow cytometer #650110C8 (BD Bioscience, Canada). Data analysis was 

performed using FCAP (flow cytometry analysis program) version-3.0. 

4.3.6 Statistical analysis  

 

Data were analysed using GraphPad Prism Software version-8.0. Sample means were 

compared using two-way analysis of variance (ANOVA) to determine main effects of diet 

and gestation stage, and the interactions between diet and gestation. Pairwise comparison 

using Bonferroni correction was used to determine differences among the groups. Results are 

expressed as mean ± standard deviation (SD) for n = 8 in each experimental group. 

Differences were considered to be statistically significant if p < 0.05. Pearson’s correlation 

was used to compare the relationship between plasma TG and NEFA, as well as plasma 

progesterone and StAR mRNA expression.  
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4.4 RESULTS 

 

4.4.1 High n-3 PUFA diet increased the incorporation of longer chain n-3 PUFA 

into maternal RBC during gestation  

 

Diet had a significant effect on myristic acid (C14:0), showing higher levels in the 

high n-3 PUFA group (before and during pregnancy), compared to the low and very low n-3 

PUFA groups (Table 4.2; p<0.05). Gestation stage had no effect on myristic acid. Diet and 

gestation stage had no significant effect on palmitic acid (C16:0), stearic acid (C18:0), and 

total SFA (p>0.05). However, there was a significant interaction between diet and gestation 

stage on stearic acid (p<0.05), revealing a decrease as gestation progressed in the low and 

very low n-3 PUFA groups, compared to the high n-3 PUFA group. Diet and gestation stage 

also had no effect on palmitoleic acid (C16:1n7), oleic acid (C18:1) and total MUFA 

(p>0.05). Interestingly, there was an interaction between diet and gestation stage on 

palmitoleic acid in all groups, revealing a significant decrease as gestation progressed in all 

groups (p<0.05).  

There was no effect of diet on linoleic acid (C18:2n6; LA), however, there was a 

significant effect of gestation stage on LA (p<0.05). NP animals fed the very low n-3 PUFA 

diet had higher levels of LA, compared to the high and low n-3 PUFA groups. The levels of 

LA decreased as gestation progressed from day 6.5 to 18.5 in all diet groups (p<0.05). There 

was also a significant effect of diet on arachidonic acid (C20:4n6; AA), adrenic acid 

(C22:4n6), and total n-6 PUFA. The levels of AA (p<0.001), adrenic acid (p<0.05), and total 

n-6 PUFA (p<0.001) were lower in the high n-3 PUFA diet at NP and at all stages of 

gestation compared to the low and very low n-3 PUFA groups, respectively.  
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Table 4.2: Fatty acid composition of maternal red blood cells (RBC) 

Fatty Acids 

(%) 

High n-3 Low n-3  Very low n-3 Main Effects 

NP Day 6.5 Day 12.5 Day 18.5 NP Day 6.5 Day 12.5 Day 18.5 NP Day 6.5 Day 12.5 Day 18.5 Diet Gestation 
Diet*                                   

Gestation 

 

C 14:0 0.64±0.09 0.59±0.13 0.51±0.07 0.42±0.07 0.25±0.06 0.23±0.02 0.25±0.02 0.28±0.07 0.31±0.01 0.37±0.07 0.31±0.04 0.27±0.05 NS NS NS 

C 16:0 31.73±3.46 30.37±2.95 31.66±0.94 32.32±1.34 23.81±0.54 25.69±0.76 24.89±0.96 27.37±0.30 28.77±1.16 28.36±1.24 30.49±0.39 31.58±1.72 NS NS NS 

C 18:0 17.50±0.59b 17.21±1.73b 16.10±0.69bc 15.34±1.07c 21.44±1.08a 18.19±0.72b 21.47±0.28a 18.77±1.71b 16.81±0.64bc 17.45±1.08b 16.46±0.77bc 16.37±0.57bc NS NS p<0.05 

Ʃ SFA 49.87±3.36a 48.17±1.67a 48.27±0.94a 48.08±0.49a 45.5±1.33b 44.11±3.66b 46.61±2.96ab 46.42±0.93ab 45.89±0.63b 46.18±1.38ab 47.26±0.80a 48.22±0.87a NS NS p<0.05 

C 16:1n7 0.78±0.15a 0.72±0.14a 0.70±0.04a 0.56±0.13b 0.53±0.22b 0.34±0.03c 0.38±0.08c 0.31±0.19c 0.52±0.11b 0.38±0.14c 0.34±0.05c 0.31±0.07c NS NS p<0.05 

C 18:1 14.00±1.63 12.31±0.84 12.06±0.82 11.92±0.48 12.07±1.27 11.93±0.38 11.75±0.30 11.17±0.09 12.17±0.59 12.55±0.75 12.86±0.24 12.40±0.43 NS NS NS 

Ʃ MUFA 15.15±1.63 13.35±0.84 12.98±0.81 12.73±0.52 12.6±1.14 12.27±1.66 12.13±0.86 11.48±0.44 13.01±0.60 13.3±1.51 13.5±0.20 13.01±0.18 NS NS NS 

C18:2n6 14.68±0.42b 15.83±0.90a 12.87±0.68c 12.14±1.04c 14.81±0.72b 15.69±0.25a 12.20±0.61c 11.66±0.76c 16.17±0.68a 15.17±1.23a 12.98±1.37c 12.67±0.98c NS p<0.05 NS 

C20:4n6 8.34±2.03b 9.78±1.58b 9.86±0.75b 9.98±0.84b 17.09±0.46a 18.03±2.23a 17.13±0.19a 17.47±0.70a 17.18±0.90a 16.80±1.20a 17.98±0.70a 17.58±0.43a p<0.001 NS NS 

C22:4n6 1.25±0.12c 0.53±0.08d 0.51±0.11d 0.64±0.09d 1.62±0.12c 1.45±0.20c 1.61±0.08c 1.50±0.03c 1.82±0.12b 1.86±0.18b 2.52±0.16a 2.45±0.11a p<0.05 NS p<0.05 

Ʃ n6 PUFA 24.27±1.31cd 26.14±1.18c 23.24±0.69d 22.76±0.97d 33.52±1.50ab 35.17±2.63a 30.94±1.61b 30.63±1.80b 35.17±0.69a 33.83±2.19ab 33.48±0.60ab 32.7±0.53b p<0.001 NS NS 

C20:5n3 2.33±0.46b 4.09±0.42a 3.97±0.96a 3.58±0.70a 0.86±0.10d 0.91±0.12d 1.60±0.23c 1.04±0.08c 0.21±0.02e 0.21±0.01e 0.20±0.07e 0.19±0.06e p<0.0001 NS NS 

C22:5n3 2.21±0.45a 1.72±0.30a 1.95±0.11a 1.88±0.08a 0.89±0.06c 0.69±0.29c 0.75±0.50c 1.10±0.05b 0.52±0.04d 0.48±0.05d 0.47±0.04d 0.45±0.04d p<0.01 NS p<0.05 

C22:6n3 5.55±0.66c 7.48±1.72b 9.13±0.63a 10.77±0.86a 7.01±0.27b 6.44±1.54b 7.54±0.44b 9.42±0.93a 4.95±0.52c 4.96±0.45c 4.65±0.25c 5.14±0.62c p<0.0001 p<0.001 p<0.001 

Ʃ n3 PUFA 10.09±0.68c 13.29±0.46b 15.05±0.95a 16.23±0.89a 8.76±0.45c 8.04±1.91c 9.89±0.48c 11.56±1.11b 5.68±0.57d 5.65±1.23d 5.32±0.82d 5.78±0.52d p<0.0001 p<0.001 p<0.001 

Data are expressed as nmol percentage of total fatty acids. Values are expressed as mean ± SD, n=8. Main effects and interactions were determined by two-way 

ANOVA. Pairwise comparison using Bonferroni correction was used to determine differences among the groups. Mean values within a row with unlike superscript 

letters (a, b, c, d, and e) show significant difference at NP and during gestation for each group (p<0.05).  Ʃ SFA: sum of saturated fatty acids; Ʃ MUFA, sum of 
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monounsaturated fatty acids; Ʃ n-3 PUFA, sum of omega-3 polyunsaturated fatty acids; Ʃ n-6 PUFA, sum of omega-6 polyunsaturated fatty acids; ND, not determined; 

NS, not significant. 
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Diet also had a significant effect on the levels of eicosapentaenoic acid (C20:5n3; EPA), 

docosapentaenoic acid (C22:5n3; DPA), docosahexaenoic acid (C22:6n3; DHA) and total n-3 

PUFA. The high n-3 PUFA diet had higher levels of EPA (p<0.0001), DPA (p<0.01), DHA 

(p<0.0001) and total n-3 PUFA, at NP and during gestation (p<0.0001), compared to the low and 

very low n-3 PUFA groups. DHA (p<0.001) and total n-3 PUFA (p<0.001) increased progressively 

from NP stage to late gestation (day 18.5) in the high n-3 PUFA group, while it only increased from 

day 12.5 to 18.5 in the low n-3 PUFA group. There was no change in DHA and total n-3 PUFA 

level in the very low n-3 PUFA group during gestation. The effect of diet on DPA, DHA and total 

n-3 PUFA was dependent on the gestation stage in the high and low n-3 PUFA groups, while there 

was no interaction between diet and gestation stage in the very low n-3 PUFA group. 

 

4.4.2 High n-3 PUFA diet increased maternal hepatic n-3 PUFA as gestation 

progressed. 

 

Diet and gestation stage had no significant effect on myristic acid, palmitic acid, stearic 

acid, and total SFA (Table 4.3). However, there was a significant interaction between diet and 

gestation stage on palmitic acid and total SFA (p<0.05), revealing a significant increase in palmitic 

acid from NP stage to late gestation (day 18.5) in the high n-3 PUFA group only, while total SFA 

increased significantly from NP stage to late gestation in high n-3 and very low n-3 PUFA groups, 

compared to the low n-3 PUFA group. Diet had no effect on palmitoleic acid, oleic acid, eicosenoic 

acid (C20:1n9), and total MUFA. However, gestation stage had an independent significant effect on 

oleic acid, eicosenoic acid and total MUFA to reveal a significant decrease in oleic acid, eicosenoic 

acid and total MUFA from NP stage to day 18.5 in the low n-3 PUFA and very low n-3 PUFA 

groups, compared to the high n-3 PUFA group. There was a significant interaction between diet and 

gestation stage on oleic acid, eicosenoic acid and total MUFA (p<0.05). The very low n-3 PUFA 

group had the highest levels of oleic acid, eicosenoic acid and total MUFA, at NP stage, followed 

by the low n-3 and high n-3 PUFA, respectively. 

 



 

160 
 

Diet and gestation stage had no significant effect on LA, AA, adrenic acid and total n-6 

PUFA (p>0.05). However, there was an interaction between diet and gestation stage, revealing 

lowest levels in the high n-3 PUFA group at NP stage and at day 6.5, compared to the low and very 

low n-3 PUFA groups.  There was a significant independent effect of diet on n-3 PUFAs, revealing 

that the high n-3 PUFA diet had higher amount of EPA, DPA, DHA, and total n-3 PUFA at NP 

stage and during gestation (p<0.001), compared to other groups. Gestation stage also had an 

independent significant effect on ALA, EPA, DHA and total n-3 PUFA (p<0.05). There was no 

change in ALA in the high n-3 PUFA group as gestation progressed to day 18.5, while ALA 

decreased significantly as gestation progresses in the low n-3 PUFA group. Interestingly, ALA was 

not detected in the low n-3 PUFA group at day 18.5, while it was not detected at all gestation stages 

(day 6.5 to 18.5) in the very low n-3 PUFA group.  
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Table 4.3: Maternal hepatic fatty acid composition 

 

Fatty 

Acids (%) 

High n-3 Low n-3 Very low n-3 Main Effects 

NP Day 6.5 Day 12.5 Day 18.5 NP Day 6.5 Day 12.5 Day 18.5 NP Day 6.5 Day 12.5 Day 18.5 Diet Gestation 
Diet*                    

Gestation 

 

C 14:0 

 

0.30±0.04 

 

0.47±0.09 

 

0.38±0.09 

 

0.45±0.14 

 

0.27±0.12 

 

0.51±0.12 

 

0.25±0.03 

 

0.23±0.06 

 

0.51±0.11 

 

0.41±0.08 

 

0.37±0.04 

 

0.40±0.12 

 

NS 

 

NS 

 

NS 

C 16:0 22.05±1.06b 24.14±2.21ab 24.58±1.04ab 26.91±1.25a 18.91±0.39c 20.81±2.06bc 19.97±0.51c 19.57±0.76c 21.54±1.15bc 21.20±1.84bc 24.29±0.41ab 23.77±1.61ab NS NS p<0.05 

C 18:0 14.92±0.66 13.07±1.25 14.53±1.67 15.65±1.72 14.30±1.44 11.49±1.42 13.96±1.44 13.16±0.75 12.32±0.47 12.91±2.35 14.75±1.35 14.45±1.83 NS NS NS 

Ʃ SFA 37.27±0.91b 37.68±1.43b 39.49±1.20ab 43.01±2.23a 33.48±1.56c 32.81±0.85d 34.18±1.14c 32.96±1.23cb 34.37±1.93c 34.52±0.95c 39.41±1.59ab 38.62±1.53b NS  NS p<0.05 

C 16:1n7 1.21±0.22 1.62±0.45 1.24±0.44 1.18±0.44 0.83±0.29 1.51±0.38 0.70±0.16 0.53±0.11 1.73±1.04 1.23±0.85 1.24±0.28 0.75±0.29 NS NS NS 

C 18:1 14.35±1.12d 20.52±2.13a 13.03±1.76d 12.32±1.36de 16.03±2.40c 21.76±3.73a 15.78±1.70c 11.54±1.07e 22.37±1.34a 19.81±1.61ab 18.82±2.51b 18.18±1.47b NS p<0.05 P<0.05 

C 20:1n9 0.15±0.07c 0.16±0.07c 0.12±0.06d 0.14±0.03c 0.23±0.07b 0.28±0.01a 0.13±0.03c 0.15±0.00c 0.33±0.06a 0.23±0.05b 0.14±0.02c 0.21±0.05b NS p<0.05 P<0.05 

Ʃ MUFA 15.71±1.33d 22.3±2.16a 14.39±1.02d 13.64±1.70d 17.09±1.92c 23.55±3.37a 16.61±1.22cd 12.22±1.23e 24.43±2.46a 21.27±1.72a 20.2±2.20ab 19.14±1.45b NS p<0.05 P<0.05 

C18:2n6 22.30±1.95bc 20.80±1.65c 21.28±0.80c 25.00±1.78ab 26.74±1.83a 27.50±2.19a 22.87±2.58bc 22.25±2.53bc 24.37±1.83b 23.62±2.91b 20.88±1.89c 21.19±2.81c NS NS p<0.05 

C20:4n6 8.67±0.78b 6.85±0.90c 8.05±0.89b 10.17±1.22b 12.11±1.57a 9.10±1.22b 11.37±1.67ab 11.03±0.87ab 11.30±2.20ab 11.30±2.01ab 12.32±1.28a 13.52±2.29a NS NS p<0.001 

C22:4n6 0.12±0.02d 0.09±0.01e 0.12±0.04d 0.13±0.05d 0.19±0.06c 0.34±0.17b 0.26±0.02c 0.36±0.02b 0.33±0.08b 0.30±0.05b 0.46±0.09a 0.55±0.17a NS NS p<0.05 

Ʃ N6 PUFA 31.09±1.46c 27.74±2.21e 29.45±1.03d 35.3±2.13b 39.04±1.48a 36.94±2.31b 34.5±1.07b 33.64±2.59bc 36.00±1.78b 35.22±3.61b 33.66±1.53bc 35.26±3.07b NS NS p<0.05 

C18:3n3 0.12±0.08 0.13±0.07 0.11±0.01 0.18±0.03 0.13±0.07 0.12±0.02 0.10±0.02 ND 0.13±0.04 ND ND ND NS p<0.05 p<0.05 

C20:5n3 3.11±0.47a 2.70±0.37ab 1.92±0.48b 2.30±0.29b 0.53±0.09c 0.42±0.07d 0.17±0.03e 0.20±0.04e 0.16±0.07e 0.14±0.07e 0.09±0.00f 0.06±0.00f p<0.001 p<0.001 NS 

C22:5n3 1.30±0.09 0.89±0.19 1.01±0.09 1.15±0.40 0.45±0.05 0.39±0.05 0.32±0.02 0.59±0.05 0.65±0.19 0.45±0.18 0.77±0.11 0.56±0.17 p<0.001 NS NS 

C22:6n3 10.92±0.97c 9.32±1.06c 13.33±1.11b 19.00±1.09a 8.80±0.81c 6.28±0.61d 9.19±0.85c 13.97±1.78b 4.94±1.13e 4.20±0.83e 4.73±0.57e 5.51±0.54e p<0.001 p<0.001 NS 

Ʃ N3 PUFA 15.45±1.75bc 13.04±1.39c 16.37±1.16b 22.63±2.34a 9.91±0.81d 7.21±1.11e 9.78±0.76d 14.76±1.77c 5.88±1.26f 4.79±1.40f 5.59±0.38f 6.13±1.66fe p<0.001 p<0.001 NS 
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Data are expressed as nmol percentage of total fatty acids. Values are expressed as mean ± SD, n=8. Main effects and interactions were 

determined by two-way ANOVA. Pairwise comparison using Bonferroni correction was used to determine differences among the groups. Mean 

values within a row with unlike superscript letters (a, b, c, d, e, and f) show significant difference at NP and during gestation for each group 

(p<0.05).  Ʃ SFA: sum of saturated fatty acids; Ʃ MUFA, sum of monounsaturated fatty acids; Ʃ n-3 PUFA, sum of omega-3 polyunsaturated fatty 

acids; Ʃ n-6 PUFA, sum of omega-6 polyunsaturated fatty acids; ND, not determined; NS, not significant. 
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EPA decreased from NP stage to day 18.5 in all groups. DHA and total n-3 PUFA increased 

significantly from NP stage to day 18.5 in the high n-3 and low n-3 PUFA groups 

(p<0.0001), while there was no change in the very low n-3 PUFA group. 

 

4.4.3 High n-3 PUFA diet maintained maternal plasma metabolic profile during 

gestation  

 

Diet had a significant effect on plasma NEFA, revealing lower maternal plasma 

NEFA in the high n-3 PUFA diet group at NP stage and during gestation, compared to the 

low n-3 PUFA and very low n-3 PUFA group (p<0.0001; Fig 4.2A). Gestation stage had no 

effect on plasma NEFA across all groups (p>0.05). However, there was a significant 

interaction between diet and gestation stage (p=0.048), revealing that maternal plasma NEFA 

increased from NP stage and peaked at mid-gestation in the high and low n-3 PUFA groups 

only, compared to the very low n-3 PUFA group. Intriguingly, maternal plasma NEFA 

returned to pre-pregnancy state (NP) at late gestation in all groups.  

There was a significant effect of diet on plasma TG (p<0.0001; Fig. 4.2B). Maternal 

plasma TG level was two times higher in the very low n-3 PUFA group at NP stage, 

compared to the high n-3 and low n-3 PUFA groups. The high n-3 PUFA group had the 

lowest TG, followed by the low n-3 PUFA and very low n-3 PUFA group, respectively, at 

NP stage and during gestation. Gestation stage had significant effect on maternal plasma TG 

levels (p<0.05), revealing an increase from NP stage and peaked at mid-gestation (day 12.5) 

in the high n-3 and low n-3 PUFA groups only, while there was no change in the very low n-

3 PUFA group. There was a significant interaction between diet and gestation stage 

(p=0.002); maternal plasma TG increased as gestation progressed and returned to NP level at 

day 18.5 in high n-3 PUFA group only.  

Maternal plasma TG also increased during gestation in the low n-3 PUFA group but 

did not return to NP level at day 18.5, while maternal plasma TG remained high at NP stage 

and during gestation in the very low n-3 PUFA group. Plasma TG levels correlated positively 
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with plasma NEFA across all diet groups (Fig. 4.2F). Diet also had a significant effect on 

maternal plasma TC levels (p<0.001; Fig. 4.2C). Maternal plasma TC level was significantly 

higher in the very low and low n-3 PUFA group at NP stage, compared to the high n-3 PUFA 

group.  The high n-3 PUFA group had the lowest TC levels, compared to the low n-3 PUFA 

and very low n-3 PUFA groups, respectively at NP and during gestation. Gestation stage had 

a significant effect on maternal plasma TC level (p<0.001), revealing a progressive decrease 

from NP stage to late gestation (day 18.5) in all groups. There was a 41% decrease in 

maternal plasma TC level from NP stage to day 6.5 in the very low n-3 PUFA group. 

Diet had an independent effect on maternal plasma insulin (p<0.0001; Fig. 4.2D), 

revealing that high n-3 PUFA diet had lower maternal plasma insulin level, compared to the 

very low n-3 PUFA group at NP, and during gestation. Gestation stage had an independent 

significant effect on maternal plasma insulin that increased from NP stage and peaked at mid-

gestation (day 12.5) in the high n-3 PUFA and low n-3 PUFA groups. Maternal plasma 

insulin increased from NP stage to day 6.5 in the very low n-3, while there was no change 

during gestation. There was no effect of either diet or gestation stage on plasma glucose at 

NP and during gestation (Fig. 4.2E). 
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Figure 4.2: Effects of maternal diets varying in the amount of n-3 PUFA on plasma non-

esterified fatty acid (NEFA; A), triacylglycerol (TG; B), total cholesterol (TC; C), insulin 
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(D), and glucose (E) was measured in non-pregnant (NP) females, and during gestation at day 

6.5, 12.5 and 18.5 as explained in the materials and methods section. Data were analysed 

using two-way ANOVA to determine the main effects and the interactions between diet and 

gestation stage; Pairwise comparison using Bonferroni correction was used to determine 

differences among the groups. Pearson’s correlation analysis was carried out on plasma 

NEFA and TG (F). Data are presented as mean (n=8 at each gestation stage) ± SD; p<0.05 

was considered significant. N-3 PUFA: omega-3 polyunsaturated fatty acids. 
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4.4.4 High n-3 PUFA diet maintained maternal hepatic lipid profile during 

gestation 

Diet had a significant effect on maternal hepatic TG (Fig. 4.3A; p<0.0001), revealing 

lowest TG levels in the high n-3 PUFA group, followed by the low n-3 and very low n-3 

PUFA groups, respectively at NP, and during gestation. Maternal liver TG level at NP stage 

was three-times higher in the very low n-3 PUFA and two-times higher in the low n-3 PUFA 

group, compared to the high n-3 PUFA group. Gestation stage also had an independent 

significant effect (p<0.05); hepatic TG increased from NP stage and peaked during gestation 

at day 12.5 in all diet groups. There was no interaction between diet and gestation stage 

(p>0.05).  

Diet also had a significant effect on hepatic TC (Fig. 4.3B; p<0.0001), revealing 

lower TC levels in the high n-3 PUFA group, compared to the other groups at NP stage, and 

during gestation. Gestation stage had a significant effect on hepatic TC (p<0.05); lowest level 

of hepatic TC was observed on day 18.5 across all groups. There was an interaction between 

diet and gestation stage, revealing an increase from NP to day 6.5 in the high n-3 PUFA and 

low n-3 PUFA groups, while it decreased from NP to day 6.5 with no change during gestation 

in the very low n-3 PUFA group.   

Diet had an independent significant effect on ACACA (p<0.05; Fig. 4.3C), FAS 

(p<0.05; Fig. 4.3D) and DGAT2 (p<0.05; Fig. 4.3E), revealing lowest expressions in the high 

n-3 PUFA group, followed by the low n-3 and very low n-3 PUFA groups, respectively at NP 

stage, and during gestation. The mRNA expressions of ACACA and FAS at NP stage were 

two-times higher in the very low n-3 and low n-3 PUFA groups, compared to the high n-3 

PUFA group. There was no effect of gestation stage on ACACA and FAS (p>0.05), while the 

mRNA expression of DGAT2 increased as gestation progressed in the very low n-3 PUFA 

group only (p< 0.05).  
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Figure 4.3: Effects of maternal diets varying in the amount of n-3 PUFA on hepatic 

triacylglycerol (TG; A), total cholesterol (TC; B), and the mRNA expressions of acetyl-CoA 

carboxylase 1 (ACACA; C), fatty acid synthase (FAS; D), and diacylglycerol 
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acetyltransferase 2 (DGAT2; E) was measured in non-pregnant (NP) females, and during 

gestation at day 6.5, 12.5 and 18.5 as explained in the materials and methods section. The 

mRNA expressions were normalized to β-actin (ActB) as the reference gene. Data were 

analyzed using two-way ANOVA to determine the main effects and the interactions between 

diet and gestation stage; Pairwise comparison using Bonferroni correction was used to 

determine differences among the groups. Data are presented as mean (n=8 at each gestation 

stage) ± SD; p<0.05 was considered significant. N-3 PUFA: omega-3 polyunsaturated fatty 

acids.  
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4.4.5 High n-3 PUFA diet maintained maternal plasma progesterone and 

placental StAR mRNA expression during gestation 

Diet and gestation stage had significant effects on plasma progesterone (Fig. 4.4A; 

p<0.001). The high n-3 PUFA group had higher levels of plasma progesterone in the NP 

females, compared to the low n-3 and very low n-3 PUFA groups. The low n-3 PUFA group 

had highest levels of plasma progesterone during gestation, followed by the high n-3 PUFA 

and very low n-3 PUFA group, respectively. Plasma progesterone levels peaked at mid-

gestation (day 12.5) in all diet groups. There was an interaction between diet and gestation 

stage, revealing highest level of progesterone in the low n-3 PUFA group at both day 6.5 and 

12.5, followed by the high n-3 PUFA group and then very low n-3 PUFA group. Similarly, 

StAR gene expression was highest in the low n-3 PUFA group, followed by high n-3, and 

then very low n-3 PUFA group (Fig. 4.4B; p<0.0001). Gestation stage also had an 

independent effect (p<0.0001), revealing that the mRNA expression of StAR decreased as 

gestation progressed from day 12.5 to 18.5 in all dietary groups. There was an interaction 

between diet and gestation stage (p=0.02); low n-3 PUFA group had the highest expression at 

both day 12.5 and 18.5, followed by high n-3 and very low n-3 PUFA group, respectively. 

The mRNA expression of StAR correlates positively with the plasma progesterone levels in 

all diet groups (Fig. 4.4C).  

 

 

  



 

171 
 

 
 

Figure 4.4: Effects of maternal diets varying in the amount of n-3 PUFA on plasma 

progesterone (A) and the mRNA expression of placental steroidogenic acute regulatory 

protein (StAR; B) was measured during different stages of gestation ((A: NP, day 6.5, 12.5 

and 18.5; B: day 12.5 and 18.5) as explained in the materials and methods section. The 

mRNA expression was normalized to β-actin (ActB) as the reference gene. Data were 

analysed using two-way ANOVA to determine the main effects and the interactions between 

diet and gestation stage; Pairwise comparison using Bonferroni correction was used to 

determine differences among the groups. Data are presented as mean (n=8 at each gestation 

stage) ± SD; p<0.05 was considered significant. Pearson’s correlation analysis was carried 
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out on plasma progesterone and StAR mRNA expression (C). N-3 PUFA: omega-3 

polyunsaturated fatty acids; NP: non-pregnant 

4.4.6 High n-3 PUFA diet reduced placental inflammatory cytokines levels 

during gestation 

Diet had a significant effect on TNF-α (Fig. 4.5A; p<0.0001), revealing the lowest 

level in the high n-3 PUFA group, compared to other diet groups. Gestation stage also had an 

independent significant effect (p<0.0001); TNF-α increased as pregnancy progressed from 

day 12.5 to 18.5 in all diet groups. High n-3 PUFA group had the lowest level of TNF-α at 

both day 12.5 and 18.5, compared to other groups. Diet had a significant effect on IFN-γ (Fig. 

4.5B; p=0.009), revealing the lowest level in the high n-3 PUFA group, compared to other 

diet groups. Gestation stage also had an independent significant effect on IFN-γ (p=0.008); 

IFN-γ increased as pregnancy progressed from day 12.5 to 18.5 in the low n-3 PUFA diet 

group only, while there was no change in other groups. The high n-3 PUFA group had the 

lowest level of IFN-γ at day 18.5. 

Diet had significant effect on IL-6 (Fig. 4.5C; p<0.0001), revealing highest level in 

the very low n-3 PUFA group, compared to other groups. There was also a significant effect 

of gestation stage on IL-6 levels (p<0.0001). A significant interaction was observed between 

diet and gestation stage, revealing that the levels of IL-6 increased from day 12.5 to 18.5 in 

the high and low n-3 PUFA groups only, while there was no change in the very low n-3 

PUFA group. There was no significant difference in IL-6 levels at day 18.5 in all diet groups. 

Diet had a significant effect on MCP-1 (Fig. 4.5D; p=0.0001), revealing highest level in the 

low n-3 PUFA group, compared to the other groups; gestation stage had no effect on MCP-1 

levels (p>0.05). There was an interaction between diet and gestation stage, revealing that the 

levels of MCP-1 increased from day 12.5 to 18.5 in the low n-3 PUFA, while it decreased in 
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the very low n-3 PUFA group. However, there was no change in MCP-1 levels the high n-3 

PUFA group as gestation progressed from day 12.5 to 18.5. 
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Figure 4.5: Effects of maternal diets varying in the amount of n-3 PUFA on placental tumor 

necrosis factor alpha (TNF-α; A), interferon gamma (IFN-γ; B), interleukin-6 (IL-6; C), monocyte 

chemotactic protein-1 (MCP-1; D), IL-10 (E), and the mRNA expression of GATA-3 (F) was 
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measured during pregnancy at gestation day 12.5 and 18.5 as explained in the materials and 

methods section. The mRNA expression was normalized to β-actin (ActB) as the reference gene. 

Data were analysed using two-way ANOVA to determine the main effects and the interactions 

between diet and gestation stage; Pairwise comparison using Bonferroni correction was used to 

determine differences among the groups. Data are presented as mean (n=8 at each gestation stage) 

± SD; p<0.05 was considered significant. N-3 PUFA: omega-3 polyunsaturated fatty acids. 



 

176 
 

Diet had significant effect on IL-10 (Fig. 4.5E; p<0.0001), revealing highest level in 

the high n-3 PUFA group, compared to other groups. Gestation stage also had a significant 

effect on IL-10 levels (p=0.003). However, there was an interaction between diet and 

gestation stage (p<0.0001), revealing that the levels of IL-10 increased from day 12.5 to 18.5 

in the high and low n-3 PUFA groups, while it decreased in the very low n-3 PUFA group.  

Diet had significant effect on the mRNA expression of GATA-3 (Fig. 4.5F; p<0.0001), 

revealing highest level in the high n-3 PUFA group, followed by low n-3 PUFA group and 

very low n-3 PUFA group. There was no significant effect of gestation stage on the mRNA 

expression of GATA-3 (p>0.05). There was an interaction between diet and gestation stage 

(p=0.004), revealing lower expression in the very low n-3 PUFA group, compared to the high 

n-3 and low n-3 PUFA groups. 

4.4.7 High n-3 PUFA diet improves fetal sustainability during gestation 

 

There was no significant difference in the pregnancy rates among all diet groups; 

however, it was also interesting to see that some animals delivered before day 18.5 in the low 

n-3 PUFA and very low n-3 PUFA groups, compared to the high n-3 PUFA group (Appendix 

VI). There was a significant independent effect of gestation stage on fetal number, revealing a 

decrease in fetal numbers as gestation progressed from day 6.5 to 18.5 in the low and very 

low n-3 PUFA group, while there was no change in fetal numbers as gestation progressed in 

the high n-3 PUFA group. Pictorial images revealed fewer fetuses at day 18.5 in the low n-3 

and very low n-3 PUFA groups, with clear evidence of fetal resorption in the very low n-3 

PUFA group at day 18.5, compared to the high n-3 PUFA group (Fig. 4.6). Diet had no effect 

on fetal weight, placental weight, liver weight and whole uterine weight (p>0.05) (Table 4.4). 

Gestation stage had an independent significant effect on fetal weight, placental weight, liver 

weight and whole uterine weight, revealing an increase in these parameters as gestation 

progressed from day 6.5 to day 18.5. There was no interaction between diet and gestation 

stage. 
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Figure 4.6: Representative images of fetuses at gestation day 18.5. The low n-3 and very low 

n-3 PUFA groups had fewer fetuses at gestation day 18.5, with clear evidence of fetal 

resorption (reddish-black spots) in the very low n-3 PUFA group at day 18.5, compared to the 

high n-3 PUFA group; n-3 PUFA: omega-3 polyunsaturated fatty acids. 
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Table 4.4: Pregnancy Outcomes 

 

Outcomes 

High n-3   Low n-3   Very low n-3 
Main Effects 

Day 6.5 Day 12.5 Day 18.5   Day 6.5 Day 12.5 Day 18.5   Day 6.5 Day 12.5 Day 18.5 Diet Gestation 
Diet*                    

Gestation 

Fetal 

Number 
9.0±1.07

a
 8.3±1.11

a
 8.0±1.41

a
 

 
8.4±0.92

a
 7.9±1.70

ab
 7.1±1.95

b
 

 
8.9±1.38

a
 8.6±1.06

a
 6.4±2.67

b
 p>0.05 p=0.01 p>0.05 

               
Fetal 

Weight (g) 
N/A 0.11±0.03

b
 1.15±0.16

a
 

 
N/A 0.13±0.04

b
 1.10±0.14

a
 

 
N/A 0.11±0.01

b
 1.02±0.12

a
 p>0.05 p<0.001 p>0.05 

               
Placental 

Weight (g) 
N/A 0.07±0.01

b
 0.11±0.01

a
 

 
N/A 0.08±0.01

b
 0.11±0.02

a
 

 
N/A 0.08±0.01

b
 0.09±0.01

ab
 p>0.05 p<0.001 p>0.05 

               
Liver 

Weight (g) 
1.25±0.16

b
 1.41±0.36

ab
 1.64±0.24

a
 

 
1.22±0.18

b
 1.40±0.11

ab
 1.50±0.15

a
 

 
1.29±0.21

b
 1.63±0.16

a
 1.66±0.23

a
 p>0.05 p<0.05 p>0.05 

               
Whole 

Uterus (g) 
0.16±0.04

d
 3.44±0.16

c
 11.10±0.84

a
   0.14±0.02

d
 3.19±0.09

c
 9.21±0.14

b
   0.15±0.04

d
 3.04±0.25

c
 9.52±2.58

b
 p>0.05 p<0.0001 p>0.05 

 

 

Values are presented as mean ± S.D., n = 8 females at each stage of pregnancy. Data were analysed using two-way ANOVA to determine the main 

effects and the interactions of diet and gestation stage. Pairwise comparison using Bonferroni correction was used to determine differences between 

groups. Letters (a, b, c, and d) represent significant difference between stages of pregnancy in each dietary group. p < 0.05 was considered significant; 

N/A: not available. 
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4.5 DISCUSSION  

 

Dyslipidemia, as well as disrupted balance of cytokine profile in maternal placenta, 

has been implicated in the pathophysiology of several adverse pregnancy outcomes (Ilekis et 

al., 2016; Nasioudis et al., 2019). N-3 PUFA are well known to regulate lipid metabolism and 

the levels of cytokines; however, the effects of maternal diet varying in the amount of n-3 

PUFA (and/or n-6:n-3) on maternal lipid metabolism and placental cytokines, and how it 

impacts pregnancy outcomes is not known. The key finding of this study was that maternal 

diet enriched in n-3 PUFA maintained maternal lipid metabolism prior to pregnancy, and as 

gestation progresses from early to late gestation, compared to the low and very low n-3 

PUFA diet. Furthermore, a maternal diet high in n-3 PUFA increased the mRNA expression 

of GATA-3, a transcription factor involved in the induction of anti-inflammatory cytokine 

synthesis in the placenta. We show for the first time that these metabolic regulations by n-3 

PUFA had a positive effect on fetal sustainability during pregnancy in C57BL/6 mice.  

We found that females fed the high n-3 PUFA diet have higher levels of EPA, DPA 

and DHA, as well as total n-3 PUFA in RBC and liver, prior to pregnancy, and the levels 

further increased as gestation progressed, compared to other diet groups. Interestingly, there 

was no difference in hepatic ALA at NP stage for all dietary groups. However, hepatic ALA 

was not detected at day 18.5 in the low n-3 PUFA group, while ALA was not detected during 

any stage of gestation in the very low n-3 PUFA group. These findings indicate that ALA is 

being metabolized to longer chain n-3 PUFA in the low and very-low n-3 PUFA groups as 

pregnancy progressed.  

The conversion of ALA to DHA is upregulated up to about 9% during pregnancy 

(Burdge & Wootton, 2002; Childs et al., 2011); no detection of ALA in the low and very-low 

n-3 PUFA groups in our study suggests that ALA is being converted to DHA to provide DHA 

for proper fetal growth and development. This is likely responsible for the observed increase 
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in the levels of DHA as gestation progressed to day 18.5. In contrast, the high n-3 PUFA 

group revealed no change in ALA before pregnancy and as gestation progressed from day 6.5 

to 18.5.  It has been reported that dietary DHA and EPA downregulate the conversion of 

ALA to EPA and DHA by up to 70% (Arterburn et al., 2006; Pawlosky et al., 2003); this 

would explain why there was no change in ALA during gestation in the high n-3 PUFA 

group. DHA is crucial for fetal brain development (Innis, 2007); accretion of DHA in fetal 

brain has been shown to occur more rapidly during late gestation (Clandinin et al., 1980), 

demonstrating the significance of maternal DHA status on fetal brain development. We have 

previously shown that a maternal diet high in n-3 PUFA increased the mRNA expression of 

DHA transporters in maternal placental and fetal brain, which correlated with an increase in 

DHA accretion in the fetal brain (Akerele & Cheema, 2020). More so, we have previously 

reported that a diet high in n-3 PUFA increased neurotrophin signalling in fetal-brain as 

gestation progressed, demonstrating the importance of n-3 PUFA on fetal brain development 

(Akerele & Cheema, 2020).  

Elevated lipid levels during pregnancy has deleterious impact on pregnancy (Wild et 

al., 2016); studies have revealed negative effects of maternal hypertriglyceridemia on 

pregnancy outcomes (Hadden & McLaughlin, 2009; Vrijkotte et al., 2012). Our findings 

revealed that the TG levels in the NP females fed the low and very low n-3 PUFA diet were 

significantly higher, compared to NP females fed the high n-3 PUFA diet. In fact, plasma TG 

levels in the NP females fed a very low n-3 PUFA diet was two-times higher than those of 

NP females in the high n-3 PUFA group. Thus, hyperlipidemia in NP females fed the very-

low n-3 PUFA group may have caused further complications during pregnancy to impact 

fetal sustainability/pregnancy outcome. Apparently, females fed the very low n-3 PUFA diet 

entered pregnancy being hypertriglyceridemic.  
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Hypertriglyceridemia at early pregnancy has been associated with an increased risk of 

pregnancy-induced hypertension, pre-eclampsia and induced preterm delivery (Cortés-

Vásquez et al., 2018; Vrijkotte et al., 2012). During pregnancy, an increase in maternal TG 

contributes to proper fetal development by serving as a carrier for essential fatty acids, which 

are later released and transported across the placenta into fetal circulation (Catov et al., 

2007). We found a significant increase in plasma TG at both early and mid-gestation in both 

high and low n-3 PUFA groups, while there was no further increase from NP as gestation 

progressed in the very low n-3 PUFA group. Plasma TG higher than 1.79 mmol/L has been 

suggested to be hypertriglyceridemic in mice (Nikolova et al., 2017), revealing an optimum 

maternal plasma TG levels in the high n-3 PUFA group during pregnancy. However, the low 

n-3 PUFA group tends towards hypertriglyceridemia at early gestation, and became 

hypertriglyceridemic at mid-gestation., while the very low n-3 PUFA group was clearly 

hypertriglyceridemic prior to mating (NP stage), and TG levels remained high throughout 

pregnancy and did not return to normal levels at the end of pregnancy.  

Women with high TG at early pregnancy were associated with 2.8-fold increase in the 

risk of spontaneous preterm birth (Catov et al., 2007). Maternal dyslipidemia was also 

significantly associated with increased odds of premature membrane rupture during 

pregnancy (Smith et al., 2018). As such, any abnormality in the regulation of lipid 

metabolism during pregnancy could elicit deleterious fetal/pregnancy outcomes. Our result 

showed that females fed with low and very low n-3 PUFA had fewer fetuses at late gestation, 

compared to the female mice fed a diet high in n-3 PUFA. Pictorial image taken at day 18.5 

clearly showed evidence of fetal resorption in the very low n-3 PUFA group. This 

corroborates a previous report showing that hypertriglyceridemia during pregnancy elicits 

fetal death at neonatal period in mice (Weinstock et al., 1995). More so, hypertriglyceridemia 
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has also been shown to impact embryonic viability and consequently neonatal lethality in 

mice (Ehrhardt et al., 2014).  

De novo lipogenesis is an established mechanism responsible for increased plasma 

TG during pregnancy (Grimes & Wild, 2018). The increase in plasma and hepatic TG during 

gestation coincided with an increase in the mRNA expression of hepatic lipogenic genes; 

ACACA, FAS and DGAT2. Maternal plasma insulin levels increased during pregnancy and 

peaked at mid-gestation in the high and low n-3 PUFA groups. Maternal plasma insulin 

levels were higher in the very low n-3 PUFA group during gestation, and this corresponds 

with the plasma TG levels, which corroborates previous evidence that insulin plays a key role 

in de novo lipid synthesis during pregnancy (Kersten, 2001). Maternal lipids serves as the 

primary source of energy during pregnancy, thus sparing glucose and amino acid (Ghio et al., 

2011); this could explain no change in maternal plasma glucose during gestation in all groups 

(as shown in Figure 4.2E). 

The very low n-3 PUFA group had two-fold higher TC levels at NP stage, compared 

to the high n-3 PUFA group, indicating maternal hypercholesterolemia prior to pregnancy. 

Pre-pregnancy hypercholesterolemia has been implicated in adverse pregnancy progression, 

as well as impaired fetal development in rodents (Miller, 1998). However, during pregnancy, 

maternally derived cholesterol is a major source of fetal cholesterol as it plays a key role in 

cell membrane formation and fetal growth (Bartels & O’Donoghue, 2011; Krause & Regen, 

2014). Plasma and hepatic TC decreased progressively in all groups from NP stage to late 

gestation, suggesting a gestation-dependent delivery of cholesterol to fetal circulation.  

It is well known that cholesterol is also used for the synthesis of sex steroid hormones 

(progesterone and estradiol) (Grimes & Wild, 2018), which are necessary for a suitable 

uterine environment for pregnancy establishment and progression (Miller, 1998). 

Dysregulation in progesterone synthesis during pregnancy has been greatly associated with a 
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number of adverse pregnancy outcomes, such as preterm birth in both humans and mice 

(Blanks & Brosens, 2012; Mendelson, 2009). Progesterone also plays a key role in 

maintaining uterine quiescence and preventing early contraction during pregnancy (Wira et 

al., 2010). During pregnancy, placentae become the primary site for sex steroid hormone 

synthesis (Yivgi-Ohana et al., 2009), and StAR predominantly mediates the rate-limiting step 

in the pathway (Stocco & Clark, 1996). We found that the mRNA expression of StAR 

correlates with the level of progesterone at both day 12.5 and 18.5 in all diet groups.  

Progesterone peaked at mid-gestation in all dietary groups but the very low n-3 PUFA 

group had the lowest levels, which correlates with StAR mRNA expression. Earlier studies 

have also shown similar plasma progesterone levels, which peaked at mid-gestation (Bell & 

Dawson, 1983; Holinka et al., 1979). As such, our results revealed that plasma progesterone 

level was higher than optimum level (Bell & Dawson, 1983; Holinka et al., 1979) in the low 

n-3 PUFA group, while it was lower in the very low n-3 PUFA level. Although the effect of 

excess progesterone has not been fully determined, however, evidence suggests that excess 

progesterone could impair endometrial function during pregnancy (Liang et al., 2018). Mice 

with progesterone levels similar to the high n-3 PUFA group maintained viable embryos and 

reduced resorption frequency throughout pregnancy (Holinka et al., 1979). Interestingly, 

more fetuses were sustained in the high n-3 PUFA group. Progesterone has been shown to be 

potent in treating pregnancies threatened by abortion/miscarriage, in part by suppressing the 

expression of inflammatory cytokines in the placental interface (Blanks & Brosens, 2012; 

Kumar & Magon, 2012).  

The high n-3 PUFA group had the lowest levels of  pro-inflammatory cytokines 

(TNF-α, IFN-γ and MCP-1) in the placenta, especially at mid-gestation, which could further 

explain why more fetuses were sustained in the high n-3 PUFA group, while fetuses 

decreased significantly in the low n-3 and very low n-3 PUFA groups, respectively. N-3 
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PUFAs are generally anti-inflammatory, while n-6 PUFA propagates pro-inflammatory 

signals (Simopoulos, 2016). We have previously shown that a maternal diet high in n-3 

PUFA increased the incorporation of n-3 PUFA into the placenta (Akerele & Cheema, 2020). 

Although pro-inflammatory cytokines play key roles during parturition by regulating cervical 

ripening, membrane rupture and myometrial contraction (Paulesu et al., 2010; Singh et al., 

2011); however, elevated levels have been implicated in the pathogenesis of several adverse 

pregnancy outcomes such as preterm labour in humans (Pandey et al., 2017).  

In this study, the levels of pro-inflammatory cytokines such as TNFα, IFN-γ, IL-6 and 

MCP-1 were significantly higher in the placentae of animals fed the low and very low n-3 

PUFA diets, compared to the high n-3 PUFA group. Studies have shown that high levels of 

TNFα, IFN-γ and IL-6 in the placenta mediate spontaneous fetal resorption by up to 50% in 

mice (Ali et al., 2014; Carpentier et al., 2011; Prins et al., 2012). Although the functions of 

MCP-1 are yet be fully understood during pregnancy, MCP-1 has been suggested to be 

involved in the initiation of fetal growth restriction in rats (Robb et al., 2017). Our findings 

show evidence of fetal resorption in the low and very low n-3 PUFA groups, which had 

higher levels of pro-inflammatory cytokines, leading to significantly lower number of fetuses 

in these groups at late gestation, compared to the high n-3 PUFA group.  

On the other hand, IL-10 is an anti-inflammatory cytokine which has been shown to 

inhibit the activity of several inflammatory cytokines (Paulesu et al., 2010), thereby 

establishing a required cytokine balance at critical stages of pregnancy (Thaxton & Sharma, 

2010). We observed that the level of IL-10 was significantly higher in the high n-3 group 

during gestation, compared to other groups. IL-10 decreased significantly as gestation 

progressed from day 12.5 to 18.5 in the very low n-3 PUFA group. Fetal growth retardation 

has been reported when IL-10 was inhibited during pregnancy (Rijhsinghani et al., 1997), 

while fetal resorption was prevented when exogenous IL-10 was administered in mice 
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(Chaouat et al., 1995). Our data suggest higher fetal resorption when IL-10 decreased as 

gestation progressed from day 12.5 to 18.5 in the very low n-3 PUFA group. Other studies 

have also showed that n-3 PUFA increases the production of IL-10 (Foitzik et al., 2002), with 

a concomitant reduction in inflammatory cytokines (Calder, 2013). We also found a 

significant increase in the expression of GATA-3 which plays a major role in the synthesis of 

IL-10 (Lee et al., 2000; Zheng & Flavell, 1997). Thus, the implication of IL-10 in mediating 

fetal sustainability during pregnancy cannot be over-emphasized.  

Literature reports are inconsistent on the effects of n-3 PUFA on fetal number/litter 

size in mice, and other animal models; some reported increase, while others reported a 

decrease or no effects  (Anderson et al., 2014; Eastwood et al., 2014; Fountain et al., 2008; 

Rebollar et al., 2014; Smit et al., 2015; Smits et al., 2011; Yi et al., 2012). Nonetheless, a diet 

high in n-6 PUFA during gestation was not necessarily associated with an increase in litter 

size (Fattahi et al., 2018; Shahnazi et al., 2018), but was found to cause intrauterine growth 

restriction (Reyes-Hernández & Ramiro-Cortijo., 2018). Fat-1 transgenic mice that are 

engineered to endogenously synthesize n-3 PUFA, and yield 1:1 tissue ratio of n-6:n-3 

PUFA, show increased pregnancy rates and shorter time to pregnancy (Hohos et al., 2018). 

Our result showing that more fetuses were sustained till late gestation in mice fed a diet high 

in n-3 PUFA is consistent with other reports (Kasture et al., 2019; Yan et al., 2013). 

4.6 CONCLUSION  
 

Overall, our results show for the first time that a maternal diet high in n-3 PUFA 

prevented dyslipidemia in NP mice, while very low n-3 PUFA diet caused hyperlipidemia 

prior to pregnancy. Females with elevated lipids before pregnancy carried this profile into 

pregnancy and lacked metabolic regulation during pregnancy. As such, maternal diet before, 

and during pregnancy, is very important to ensure that mothers enter pregnancy with the 

metabolic profile required to establish pregnancy successfully, as well as to maintain 
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pregnancy; Fig. 4.7 proposes an overview of the effects of n-3 PUFA on maternal metabolic 

regulation, and its effects on fetal sustainability.  Furthermore, maternal diet high in n-3 

PUFA maintained the maternal plasma progesterone and placental pro-inflammatory 

cytokines profile thereby sustaining fetal numbers. These novel findings may be important 

when designing dietary strategies to optimize maternal metabolism during pregnancy and to 

elicit fetal sustainability. 
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Figure 4.7: High n-3 PUFA diet prevented maternal dyslipidemia prior to pregnancy, 

maintained metabolic and inflammatory profile during pregnancy, and improved pregnancy 

outcomes. 
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5.1 ABSTRACT 
 

Neurotrophins play a critical role in the development, maintenance, and proper 

function of the brain. We investigated the effects of maternal diet high in omega (n)-3 

polyunsaturated fatty acids (PUFA) on fatty acids composition and the gene expression of 

neurotrophins in fetal brain at different gestation stages. Female C57BL/6 mice (7 weeks old, 

n=8/group) were fed a diet containing high, low or very low n-3 PUFA (9, 3 or 1% w/w, 

respectively), with an n-6:n-3 PUFA of 5:1, 20:1 and 40:1, respectively, for two weeks before 

mating and throughout pregnancy. Animals were sacrificed during pregnancy at gestation day 

12.5 and 18.5 to determine placental and fetal-brain fatty acids composition. The gene 

expressions of endothelial lipase (EL) and plasma membrane fatty acid-binding protein 

(FABPpm) were measured in the placenta, while major facilitator superfamily domain-

containing protein-2 (Mfsd2a), brain-derived neurotrophic factor (BDNF), tropomyosin-

receptor kinase (TrK)-B, and cAMP response element-binding protein (CREB) were 

measured in fetal-brain, using qPCR. The protein expression of phosphorylated CREB 

(pCREB) was determined using ELISA. The high n-3 PUFA diet increased the mRNA 

expression of EL, FABPpm, and Mfsd2a at both gestation days, compared to other groups. 

Docosahexaenoic acid (DHA) and total n-3 PUFA were significantly higher in the high n-3 

PUFA group, compared to the other groups at both gestation days. The high n-3 PUFA diet 

also increased the mRNA expressions of BDNF, TrKB and CREB, as well as the protein 

concentration of pCREB as gestation progressed, compared to the other groups. Our findings 

show for the first time that maternal diet high in n-3 PUFA increased the mRNA expression 

of Mfsd2a, which correlated with an increase in DHA accretion in the fetal-brain. A diet high 

in n-3 PUFA increased neurotrophin signalling in fetal-brain as gestation progressed, 

demonstrating the importance of n-3 PUFA during brain development. 
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5.2 INTRODUCTION 
 

Mental and neurological disorders are rising at an alarming rate, with a global burden 

surpassing cardiovascular diseases and cancer (Collins et al., 2011; Whiteford et al., 2015). 

Currently, mental and neurological disorders affect more than 1 billion people globally 

(Rehm & Shield, 2019). The causes of most neurological disorders are vaguely understood 

and are defined by numerous factors. Neurodevelopmental hypotheses have been suggested 

to explain the pathogenesis of a number of neurological disorders (Murray et al., 2017; Owen 

et al., 2011). These hypotheses identify disrupted developmental processes occurring in the 

brain, such as impaired synaptogenesis, aberrant genes, as well neuronal hazards (involving 

abnormal maturation and differentiation of neuronal cells) as the major players in the 

development of neurological problems. Gestational environment / early life insult has been 

identified as a risk factor for the development of neurodegenerative diseases at late-life 

(Barlow et al., 2007; Miller & O’Callaghan, 2008) as the composition and numbers of 

neurons are determined early in development (Oppenheim, 1991).  

Approximately 60% of the brain’s structural component is lipid (Chang et al., 2009). 

The accumulation of PUFA in the brain is critical during development; PUFA represents 

about 35% and 30% of brain lipids and dry weight of the brain, respectively (Hallahan & 

Garland, 2005; Liu et al., 2015). The brain is highly enriched in arachidonic acid (AA; omega 

(n)-6 PUFA) and docosahexaenoic acid (DHA; n-3 PUFA); these fatty acids make up about 

90% of brain PUFAs (Lauritzen et al., 2001; Singh, 2005). DHA constitute about 10-15% of 

total fatty acids in the brain, representing more than 97% of total n-3 PUFA (Makrides et al., 

1994; O’Brien et al., 1964). Both n-6 and n-3 PUFA are regarded as essential fatty acids 

because the body cannot synthesize these endogenously; hence, the developing fetus relies 

solely on the mother to meet their requirement (Crawford et al., 1976; Devarshi et al., 2019). 

A recent global survey revealed a significant decline in the consumption of n-3 PUFA due to 
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Westernized dietary habits (Stark et al., 2016), with a concomitant increase in the burden of 

neurological disorders across the globe (Collins et al., 2011).  

Different international organisations have made dietary recommendations of n-6 to n-

3 PUFA ratio of approximately 5:1 as an optimal ratio for whole-body homeostasis (Gómez 

Candela et al., 2011). However, a typical Western diet contains a high ratio of n-6 to n-3 

PUFA of between 20-30:1 (Gómez Candela et al., 2011; Simopoulos, 2016). Accretion of 

DHA in the brain is most rapid during the third trimester of pregnancy and the first year after 

birth (Clandinin et al., 1980; Martínez & Mougan, 1998). Developing fetus accrues up to 70 

mg DHA per day during the last trimester, specifically in the brain (Innis, 2005), 

demonstrating the significance of maternal DHA status on fetal brain development at this 

critical stage. Maternal DHA level is low during the last trimester of pregnancy, which 

perhaps explains a higher rate of transfer of DHA to the fetus (Montgomery et al., 2003). 

Nonetheless, insufficient intake of n-3 PUFA during pregnancy results in impaired cognitive 

and physiological functions in infants (Catalan et al., 2002), which has been suggested to be 

irreversible by postnatal supplementation (Nesheim & Yaktine, 2007).  

During gestation, the placenta uptakes the maternal circulating free fatty acids 

released by maternal LPL and EL (Gil-Sánchez et al., 2012). EL hydrolyses both 

phospholipids and TGs (McCoy et al., 2002); studies have shown that increased EL 

expression contributes majorly to placental fatty acid uptake (Lindegaard et al., 2005). Fatty 

acids are then transported across the placenta through passive diffusion and majorly by 

membrane carrier proteins (Gil-Sánchez et al., 2012). These membrane carrier proteins 

include FAT/CD36, FATP and FABPpm. However, FABPpm is the main transporter for 

longer chain PUFAs (AA and DHA) across the placenta into fetal circulation (Campbell et 

al., 1998). A member of the major facilitator superfamily domain containing 2a (Mfsd2a) is 
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required for the uptake of DHA into the brain (Nguyen et al., 2014), where DHA affects 

brain growth and development by regulating neurotrophins (Sona et al., 2018).  

BDNF has been extensively studied and characterized as an important neurotrophin in 

the central nervous system, due to its pivotal role in the development and maintenance of 

normal brain function (Bathina & Das, 2015). The mRNA expression of BDNF has been 

shown to fluctuate at different stages of development, indicating different regulatory roles at 

different stages of life (Maisonpierre et al., 1990). For instance, BDNF promotes neuronal 

development and survival, and prevent the death of peripheral sensory neurons at early 

postnatal period in mice (Ernfors et al., 1994), while it modulates synaptic plasticity to 

enhance learning and long-term memory in adult mice (Egan et al., 2003). BDNF binds to its 

high-affinity receptor, TrKB, and signals the downstream activation of the transcription 

factor CREB (Bhatia et al., 2011). In the developing brain, CREB regulates crucial cell stages 

such as proliferation, differentiation, and survival of neurons, as well as neuronal plasticity 

(Ortega-Martínez, 2015). 

We have previously shown that DHA differentially regulates BDNF and its target 

receptor at weaning and 16-weeks post-weaning in mice (Balogun & Cheema, 2014). A 

plethora of recent evidence from the literature have shown that n-3 PUFA regulates BDNF in 

adult human (Ferreira et al., 2014; Pawełczyk et al., 2019); however, vast majority of 

neurons are formed prenatally in the brain. Thus, we investigated the effects of maternal diets 

high or low in n-3 PUFA on DHA accretion in fetal brain and the regulation of gene 

expression of BDNF, its receptor TrkB, and CREB during different stages of gestation. We 

hypothesized that maternal diet high in n-3 PUFA would cause an accretion of DHA in the 

fetal brain during gestation, and consequently increase the mRNA expression of BDNF, 

TrKB, and CREB as gestation progresses.  
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The specific objectives of this study were to investigate the effects of maternal diets 

varying in the amount of n-3 PUFA during different stages of gestation on: 1) placental fatty 

acid composition, and the mRNA expressions of EL and FABPpm, 2) the mRNA expression 

of Mfsd2a and incorporation of n-3 PUFA into fetal brain, and 3) the regulation of mRNA 

expression of BDNF, TrKB, and CREB. Our findings show for the first time that maternal 

diets high in n-3 PUFA cause increased mRNA expression of Mfsd2a, which correlates with 

increased accretion of DHA in the fetal brain, with a concomitant increase in the mRNA 

expression of neurotrophins and their target receptors as  gestation progressed.  

 

5.3 MATERIALS AND METHODS 

 

5.3.1 Ethics statement 

 

All experimental protocols involving animal handling and surgeries were approved by 

Memorial University's Animal Care Committee (approval number: 18-11-SC) in accordance 

with the principles and guidelines of the Canadian Council on Animal Care, and following 

the 3 Rs for animal ethics.  

 

5.3.2 Diets 

 

A custom semi-synthetic base diet was purchased without fat (MP Biomedicals, USA) 

to allow the control of fat level at 20% w/w. Four different oils (menhaden fish oil, safflower 

oil, extra-virgin olive oil, and lard) were used as sources of fatty acids (saturated fatty acids, 

SFA; monounsaturated fatty acids, MUFA; n-3 PUFA; n-6 PUFA) (Table 4.1). These oils 

were used to make three different diet mixtures: high n-3, low n-3, and very low n-3, 

containing approximately 9, 3, and 1% (w/w fatty acids) n-3 PUFA, respectively. The amount 
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of total SFA and MUFA in all experimental diets was kept constant using a mathematical 

model as per our previous publication (Balogun & Cheema, 2014). The high n-3 PUFA diet 

contained n-6:n-3 PUFA of 5:1; this ratio has been suggested to be adequate for optimum 

body homeostasis (Gómez Candela et al., 2011). The low n-3 PUFA diet was designed to 

contain n-6:n-3 PUFA of 20:1, which represents a typical North American diet (Simopoulos, 

2016); while the very low n-3 PUFA diet contains n-6:n-3 PUFA ratio of 40:1, which has 

been characterised in vegetarian communities, especially in current India (Urban) (Mani & 

Kurpad, 2016; Simopoulos, 2016). The fatty acid composition of all the experimental diets is 

given in Table 4.2.  

 

5.3.3 Experimental design 

 

Seven-week old male and female C57BL/6 mice were purchased from Charles River 

Laboratories (MA, USA). Female mice were housed in separate cages with regulated 

environmental conditions (temperature, 21 ± 1
0
C; humidity, 35 ± 5%; 12 hours light / 12 

hours dark period cycle). All mice were fed the standard rodent chow (Prolab RMH 3000; 

PMI nutrition, USA) during one week of acclimatization period. Females were then randomly 

divided into three (3) groups (Figure 5.1) and each group was fed with one of the three 

experimental diets (high n-3, low n-3 and very low n-3 PUFA diets, respectively), for two 

weeks prior to mating. Animals were then mated, and females were checked for plug 

formation by 6:00 am the following morning. Animals with plugs were recorded with 

gestation day 0.5  (Croy et al., 2015).  
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Figure 5.1: Experimental design. Each group was fed one of the three experimental diets that 

differed in their n-3 PUFA amount, and designated as ‘‘High n-3’’, ‘‘Low n-3’’ and ‘‘Very- 

low n-3’’ PUFA diets, for two weeks before mating; n-3 PUFA: omega-3 polyunsaturated 

fatty acids. 
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Female mice confirmed for pregnancy were continued on the assigned diets 

throughout gestation. All animals were fed with fresh food and water ad-libitum every other 

day. Food intake and body weight were recorded every day; there was no significant 

difference across all the dietary groups when adjusted for fetal weight at each gestation stage. 

Mice were sacrificed at gestation day 12.5 and 18.5 using 2.5% isoflurane. Blood was 

collected in tubes containing EDTA (4.5 mM, pH 7.4) via cardiac puncture and was 

immediately centrifuged to obtain plasma and red blood cells. Maternal and fetal tissues were 

collected and weighed at the time of sacrifice. All fetuses were carefully separated from the 

uterus. Placenta attached to each fetus was carefully separated and washed free of maternal 

blood in ice-cold phosphate-buffered saline. Each fetus was dissected, and the brain was 

collected. Collected tissue samples were snap-frozen in liquid nitrogen and stored at −80 °C 

until further analyses.  

 

5.3.4 Fatty acids analyses 

 

Total lipids were extracted from the maternal placenta and fetal brains (Folch, Lees & 

Sloane, 1957), and trans-methylated as per our previous publications (Akerele & Cheema, 

2018; Chechi et al., 2010). The fatty acids composition was then determined using gas 

chromatography according to our previous publications (Akerele & Cheema, 2018; Chechi et 

al., 2010); heptadecanoic acid (C17:0) was used as an internal standard. Placenta and fetal 

brain samples were analysed individually, and results were averaged per litter for each dam; 

data were expressed as nmol%. The amount of DHA per mg brain tissue was calculated for 

each fetus, and results were averaged for each dam. 
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5.3.5 RNA extraction and real-time qPCR 

 

Trizol method was used to extract total RNA from the placenta and fetal brain 

samples  (Chomczynski & Sacchi, 1987). DNase enzyme (#M610A, Promega, USA) 

treatment was used to eliminate genomic DNA contamination in the RNA samples. The 

concentration of the extracted RNA samples was then determined using NanoDrop 2000 

(Thermo Scientific, USA). Agarose gel (1.2%) was used to confirm the integrity of each 

RNA sample. Complementary DNA (cDNA) was synthesized from the extracted RNA 

samples using reverse-transcription method as per our previous publications (Akerele & 

Cheema, 2018; Balogun & Cheema, 2014). Real-time qPCR primers were designed using 

NCBI primer blast (www.ncbi.nlm.nih.gov/tools/primer-blast/) (accessed on 02/05/2019) and 

obtained from integrated DNA technologies (IDT) (IA, USA). The forward and reverse 

sequences for each primer pair are given in Table 5.3. SYBR Green Supermix (#1708880, 

Bio-rad, USA) was used to initiate amplification, and samples were run using the CFX96TM 

Real-Time System. Data output was managed using the CFX Manager
TM 

Software 3.0. The 

cycle threshold (Ct values) of each reaction was determined. The delta Ct values were 

calculated for each of the genes of interest, corrected for amplification efficiency, and 

normalized with the reference gene (β-actin; ActB). The expression levels of each gene 

between groups were compared using the Livak method (Livak & Schmittgen, 2001). 
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                Table 5.3: Sequences of primers used for qPCR 

        

Gene (s)   Primers (5' - 3') 
Efficiency 

(%) 

Brain-derived neurotrophic factor (BDNF) 
Forward tacttcggttgcatgaaggcg 

97.6 
Reverse gtcagacctctcgaacctgcc 

    

Tropomyosin receptor kinase B (TrKB) 
Forward cggcacataaatttcacacg 

98.4 
Reverse ttacccgtcaggatcaggtc 

    
CAMP response element binding protein 

(CREB) 

Forward acaatggtacggatggggta 
100.5 

Reverse ctgctgtccatcagtggtc 

    
Plasma membrane fatty acid-binding protein 

(FABPpm) 

Forward agcggctgaccaaggagtt 
97.1 

Reverse gacccctgccacggagat 

    

Endothelial lipase (EL) 
Forward acgcacattctttgcatctg 

91.9 
Reverse acccaaggtggaagtcacag 

    
Major facilitator superfamily domain-containing 

protein 2a (Mfsd2a) 

Forward aaagacacgcaaaatgcttacct 
90.4 

Reverse aatgaaggcacagaggacgtaga 

    

Beta-Actin (ActB) 
Forward cacgcagctcattgtagaagg 

107.5 
Reverse atggtgggaatgggtcagaag 

 

All primers were designed using NCBI primer blast and obtained from IDT technologies.  
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5.3.6 Measurement of CREB protein concentration 

 

Fetal brain samples were homogenized in an extraction buffer as per our previous 

publication (Balogun & Cheema, 2014). Bicinchoninic acids (BCA) protein assay method 

was used to determine the total protein concentration of the lysate, using bovine serum 

albumin (BSA) as standards. Phosphorylated-CREB (pCREB) and total CREB protein 

concentrations were determined using ELISA kits (# KHO0241 and # KHO0231, Invitrogen, 

USA) according to the manufacturer’s instructions. PowerWave XS microplate reader 

(Biotek, USA) was used to measure the intensity of the coloured product at 450 nm. The total 

amount of pCREB derived from the phosphorylation of 80 pg of CREB by protein kinase A 

is equivalent to one unit of the standard. Values of pCREB were normalized for total CREB, 

and the results are presented as pCREB/total CREB. 

 

5.3.7 Statistical analyses 

 

Group means were compared using two-way ANOVA to determine the main effects 

and the interactions between diet and gestation stage. Pairwise comparison using Bonferroni 

correction was used to determine differences among the groups. Results are expressed as 

mean ± SD (standard deviation); n=8 dams in each experimental group. Pearson’s correlation 

was used to compare the relationship between gene or protein expression levels and fetal 

brain DHA composition. Placenta and brain samples for all fetuses in each litter were 

individually analysed, and results were averaged per litter for each dam. Differences were 

statistically significant if p<0.05. All data were analysed using GraphPad Prism 8.0. 
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5.4 RESULTS 
 

5.4.1 High n-3 PUFA diet increased the incorporation of longer chain n-3 PUFA 

into the placenta during gestation 

 

Diet had no significant effect on total saturated fatty acids (SFA). However, gestation 

time had a significant independent effect on myristic acid (C14:0), stearic acid (C18:0), and 

total SFA (Table 5.4). Myristic acid decreased significantly (p<0.05), while stearic acid 

increased from day 12.5 to 18.5 in all diet groups (p<0.0001). Interestingly, gestation time 

had no effect on palmitic acid in all diet groups. Furthermore, gestation time had no effect on 

total SFA in the high n-3 PUFA group, compared to the low and very-low n-3 PUFA groups; 

total SFA increased at day 18.5 in the low and very-low n-3 PUFA groups (p=0.002). Diet 

and gestation time had no significant effect on palmitoleic acid (C16:1n7), oleic acid (C18:1), 

eicosenoic acid (C20:1n9), and total MUFA. However, there was a significant interaction 

between diet and gestation stage on palmitoleic acid and total MUFA (p<0.05), revealing a 

gestation dependent decrease in palmitoleic acid and total MUFA in the low n-3 PUFA group 

only. 

Diet and gestation stage had no significant effect on linoleic acid (C 18:2n6; LA); 

however, the diet had a significant effect on arachidonic acid (C20:4n6; AA), adrenic acid 

and total n-6 PUFA. The high n-3 PUFA diet had lower levels of AA (p<0.0001), adrenic 

acid (p<0.0001) and, total n-6 PUFA (p<0.0001), compared to the low and very low n-3 

PUFA groups, respectively. Total n-6 PUFA and adrenic acid decreased from day 12.5 to 

18.5 in all diet groups (p<0.0001). 

 



 

213 
 

Table 5.4: Fatty acid composition of maternal placenta 

                    

Fatty 

Acids 

(nmol%) 

High n-3 Low n-3 Very low n-3 Main Effects 

Day 12.5 Day 18.5 Day 12.5 Day 18.5 Day 12.5 Day 18.5 Diet Gestation Diet*        

Gestation 

C14:0 0.55±0.06 0.42±0.02 0.52±0.09 0.31±0.03 0.44±0.03 0.36±0.07 NS p=0.049 NS 

C16:0 19.28±0.43 19.08±0.59 18.70±.040 18.49±0.31 18.09±0.21 18.91±.018 NS NS NS 

C18:0 23.93±0.45 25.25±0.59 22.54±2.08 24.82±0.52 24.05±0.31 26.25±0.83 NS p<0.0001 p=0.01 

Ʃ SFA 43.76±0.61 44.74±0.46 41.75±1.92 43.62±0.77 42.58±0.35 45.51±0.76 NS p<0.0001 p=0.0024 

C16:1n7 0.79±0.25 0.67±0.17 0.84±0.34 0.54±0.05 0.63±0.04 0.50±0.07 NS NS p=0.017 

C18:1 10.18±0.68 9.35±0.23 12.31±2.26 10.15±0.29 10.81±0.27 10.38±0.66 NS NS NS 

C20:1n9 0.24±0.05 0.22±0.08 0.32±0.06 0.25±0.06 0.32±0.06 0.39±0.13 NS NS NS 

Ʃ MUFA 11.22±0.88 10.16±0.36 13.71±2.91 10.84±0.40 11.77±0.28 11.04±0.86 NS NS p=0.041 

C18:2n6 13.90±0.75 12.87±0.39 15.46±1.54 14.04±0.40 14.40±1.02 13.43±0.36 NS NS p=0.0013 

C20:4n6 12.00±0.96
c
 11.71±0.78

c
 15.50±1.17

b
 15.44±0.30

b
 19.08±0.90

a
 18.77±0.62

a
 p<0.0001 NS NS 

C22:4n6 1.97±0.24
c
 1.19±0.17

d
 3.38±0.30

b
 2.32±0.12

c
 5.12±0.31

a
 3.45±0.04

b
 p<0.0001 p<0.0001 p=0.0004 

Ʃ n-6 

PUFA 
27.86±0.58

d
 25.77±0.76

e
 34.33±0.49

b
 31.80±0.18

c
 38.59±0.60

a
 35.65±0.42

b
 p<0.0001 p<0.0001 p<0.05 

C20:5n3 2.19±0.44
a
 2.28±0.14

a
 0.50±0.13

b
 0.49±0.03

b
 0.56±0.14

b
 0.56±0.02

b
 p<0.0001 NS NS 

C22:5n3 3.34±0.11
a
 2.44±0.08

b
 0.99±0.19

c
 1.02±0.03

c
 0.51±0.04

d
 0.49±0.04

d
 p<0.05 NS NS 

C22:6n3 11.63±0.49
b
 14.62±0.46

a
 8.66±0.95

c
 11.85±0.36

b
 6.00±0.41

d
 6.58±0.19

d
 p<0.0001 p<0.0001 p<0.0001 

Ʃ n-3 

PUFA 
17.16±0.96

b
 19.33±0.56

a
 10.21±1.11

d
 13.74±0.37

c
 7.06±0.42

e
 7.80±0.25

e
 p<0.0001 p<0.0001 p<0.0001 

 

 

Data are expressed as nmol percentage of total fatty acids. Values are expressed as mean ± SD, n=8. Main effects and interactions were 

determined by two-way ANOVA. Pairwise comparison using Bonferroni correction was used to determine differences among the groups. Mean 
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values within a row with unlike superscript letters (a, b, c, d, and e) show significant difference during gestation for each group (p<0.05). Ʃ SFA: 

sum of saturated fatty acids; Ʃ MUFA, sum of monounsaturated fatty acids; Ʃ n-3 PUFA, sum of omega-3 polyunsaturated fatty acids; Ʃ n-6 

PUFA, sum of omega-6 polyunsaturated fatty acids; NS, not significant.  
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Diet also had a significant effect on n-3 PUFAs; the amount of eicosapentaenoic acid 

(C20:5n3; EPA), docosapentaenoic acid (C22:5n3; DPA), DHA (C22:6n3) and total n-3 

PUFA was significantly higher in the high n-3 PUFA group, followed by the low n-3 and 

very low n-3 PUFA group, respectively (p<0.0001). DHA and total n-3 PUFA increased from 

day 12.5 to 18.5 in the high n-3 PUFA (p<0.0001) and low n-3 PUFA groups (p<0.0001), 

while there was no change in the very low n-3 PUFA group. The effect of diet on DHA and 

total n-3 PUFA in the high and low n-3 PUFA groups was dependent on the gestation time 

(p<0.0001). 

5.4.2 High n-3 PUFA diet increased the mRNA expression of endothelial lipase 

and plasma membrane fatty acid-binding protein in the placenta during 

gestation 

 

Diet had a significant effect on the mRNA expression of EL in the placenta; high n-3 

PUFA group had higher mRNA expression at both days 12.5 and 18.5 (p<0.0001; Figure 

5.2A), followed by the low and very low n-3 PUFA group, respectively. The gestation stage 

had no effect on the mRNA expression of EL in all the diet groups. Similarly, the diet had an 

independent significant effect on the mRNA expression of plasma membrane fatty acid-

binding protein (FABPpm) in the placenta, revealing a higher expression in the high n-3 

PUFA group (p=0.03; Figure 5.2B) during pregnancy, compared to other groups. Gestation 

stage also had an independent effect on the mRNA expression of FABPpm (p<0.001), and 

there was no interaction between diet and gestation stage. There was a significant positive 

correlation between FABPpm mRNA expression and the fetal brain DHA in the high n-3 

PUFA group (p=0.002; Figure 5.2E), while the correlation was not significant in the low and 

very low n-3 PUFA groups (p>0.05). Both diet and gestation stage had no effect on the 

mRNA expression of FAT/CD36 (Appendix VII).  
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5.4.3 High n-3 PUFA diet increased the mRNA expression of major facilitator 

superfamily domain-containing protein 2 in fetal brain during gestation 

 

Diet had an independent significant effect on the mRNA expression of Mfsd2a in fetal 

brain (p<0.0001; Figure 5.2C); the high n-3 PUFA group had higher expression at both 

gestation days 12.5 and 18.5, compared to the low and very low n-3 PUFA groups. There was 

no effect of gestation stage on the mRNA expression of Mfsd2a. However, there was a 

significant interaction between diet and gestation stage (p<0.05), revealing a gestation-

dependent increase in the low n-3 PUFA group only. There was a significant effect of diet on 

fetal brain DHA composition (p<0.0001; Figure 5.2D). The high n-3 PUFA group had higher 

DHA levels at both day 12.5 and 18.5, compared to the low and very low n-3 PUFA groups. 

Gestation stage also had a significant effect on fetal brain DHA levels (p<0.001), showing an 

increase from day 12.5 to 18.5 in all diet groups. There was also a significant positive 

correlation between Mfsd2a mRNA expressions and fetal brain DHA in the high n-3 PUFA 

and low n-3 PUFA groups (p=0.004 and 0.030 respectively; Figure 5.2F), while the 

correlation was not significant in the very low n-3 PUFA group (p>0.05). 
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Figure 5.2: Effects of maternal diets varying in the amount of n-3 PUFA on the placental 

mRNA expression of endothelial lipase (EL; A), plasma membrane fatty acid-binding protein 
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(FABPpm; B), fetal brain mRNA expression of major facilitator superfamily domain-

containing protein 2 (Mfsd2a; C) and fetal brain DHA levels (D) was measured at gestation 

day 12.5 and 18.5 as explained in the materials and methods section. The mRNA expressions 

were normalized to β-actin (ActB) as the reference gene. Data were analysed using two-way 

ANOVA to determine the main effects and the interactions between diet and gestation stage; 

Pairwise comparison using Bonferroni correction was used to determine differences among 

the groups. p<0.05 was considered significant. Data are presented as mean (n=8 at each 

gestation stage) ± SD; DHA: docosahexaenoic acid; n-3 PUFA: omega-3 polyunsaturated 

fatty acids. 
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5.4.4 High n-3 PUFA diet increased the accretion of longer chain n-3 PUFA into 

fetal brain during gestation 
 

Diet and gestation stage had no significant effect on myristic acid, palmitic acid, 

stearic acid, and total SFA (Table 5.5). However, there was an independent effect of gestation 

stage on stearic acid and total SFA (p<0.0001), revealing an increase from day 12.5 to 18.5 in 

the low and very low n-3 PUFA groups, respectively. There was no effect of diet on 

palmitoleic acid, oleic acid and total MUFA, while gestation stage had a significant effect to 

reveal a significant decrease in total MUFA from day 12.5 to 18.5 in all the diet groups. Diet 

had no effect on LA and AA, while LA decreased as gestation progressed in all diet groups 

(p<0.05). Diet had a gestation dependent effect on adrenic acid and total n-6 PUFA (p<0.05), 

revealing lower levels at day 18.5 in the high n-3 PUFA group, compared to the low and very 

low n-3 PUFA groups. 

There was a significant effect of diet on n-3 PUFAs, revealing that the high n-3 PUFA 

diet had higher amount of EPA, DPA, DHA, and total n-3 PUFA in fetal brain at both 

gestation days, compared to the low and very low n-3 PUFA groups (p<0.05). Gestation time 

also had a significant effect on PUFAs; DHA and total n-3 PUFA increased from day 12.5 to 

day 18.5 in all diet groups (p<0.0001). EPA was not detected in the low and very low n-3 

PUFA groups at all stages of pregnancy, while DPA was not detected at both day 12.5 and 

18.5 in the very low n-3 PUFA group only.  
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Table 5.5: Fetal brain fatty acid composition 

 

                    

Fatty Acids 

(%) 

High n-3 Low n-3 Very low n-3 Main Effects 

Day 12.5 Day 18.5 Day 12.5 Day 18.5 Day 12.5 Day 18.5 Diet Gestation Diet*        

Gestation 

C14:0 2.02±0.11 1.98±0.13 1.90±0.10 1.96±0.09 1.99±0.21 2.05±0.07 NS NS NS 

C16:0 29.66±0.88 29.20±0.95 29.85±.1.18 30.16±0.24 29.57±1.55 30.71±0.19 NS NS NS 

C18:0 14.69±0.70 17.11±0.42 15.35±0.80 17.81±0.17 15.09±1.51 18.01±0.33 NS p<0.0001 NS 

Ʃ SFA 46.38±1.55 48.29±1.31 47.09±0.60 49.93±0.34 46.66±3.07 50.771±0.34 NS P<0.0001 NS 

C16:1n7 3.93±0.10 2.64±0.09 3.60±0.08 2.56±0.10 3.84±0.17 2.74±0.05 NS p=0.0001 p<0.05 

 C18:1 23.21±1.12 18.64±0.86 23.11±0.22 18.10±0.36 23.39±1.37 18.63±0.41 NS p<0.0001 NS 

Ʃ MUFA 27.14±1.15
a
 21.28±0.77

b
 26.71±0.26

a
 20.66±0.38

b
 27.33±1.47

a
 21.37±0.39

b
 NS p<0.0001 NS 

C18:2n6 3.79±0.35
a
 0.87±0.12

b
 3.99±0.17

a
 1.01±0.13

b
 3.54±0.10

a
 1.02±0.12

b
 NS p<0.05 NS 

C20:4n6 11.04±0.17 10.79±0.97 13.36±0.49 12.24±0.32 13.38±1.72 13.69±0.32 NS NS p<0.05 

C22:4n6 2.12±0.06 2.06±0.16 3.39±0.15 2.97±0.11 3.54±0.50 3.44±0.21 p<0.05 NS p<0.05 

Ʃ n-6 PUFA 16.95±0.94
c
 13.72±1.55

d
 20.74±0.57

a
 16.22±0.41

c
 21.43±0.48

a
 18.15±0.50

b
 p<0.05 p<0.05 p<0.05 

C20:5n3 0.26±0.07 0.21±0.03 ND ND ND ND p<0.05 NS NS 

C22:5n3 3.63±0.82 0.86±0.05 0.01±0.00 0.48±0.17 ND ND p<0.05 NS NS 

C22:6n3 6.71±0.37
d
 14.10±0.94

a
 5.31±0.12

d
 12.66±0.35

b
 3.68±0.49

e
 9.63±0.47

c
 p<0.0001 p<0.0001 p=0.007 

Ʃ n-3 PUFA 10.60±0.87
c
 15.17±2.09

a
 5.32±0.24

d
 13.14±0.28

b
 3.68±0.49

e
 9.63±0.47

c
 p<0.0001 p<0.0001 p<0.05 

 

Data are expressed as nmol percentage of total fatty acids. Values are expressed as mean ± SD, n=8. Main effects and interactions were 

determined by two-way ANOVA. Pairwise comparison using Bonferroni correction was used to determine differences among the groups. Mean 

values within a row with unlike superscript letters (a, b, c, d and e) show significant difference during gestation for each group (p<0.05). Ʃ SFA: 
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sum of saturated fatty acids; Ʃ MUFA, sum of monounsaturated fatty acids; Ʃ n-3 PUFA, sum of omega-3 polyunsaturated fatty acids; Ʃ n-6 

PUFA, sum of omega-6 polyunsaturated fatty acids; ND, not determined; NS, not significant. 
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5.4.5 High n-3 PUFA diet increased the mRNA expressions of neurotrophins 

during gestation 

 

There was a significant effect of diet (p<0.0001) and gestation stage (p<0.0001) on the 

mRNA expression of BDNF. The mRNA expression of BDNF increased significantly from day 

12.5 to 18.5 in all diet groups (p<0.001; Figure 5.3A). However, a diet high in n-3 PUFA had 

significantly higher mRNA expression of BDNF at all gestation stages, compared to the low and 

very low n-3 PUFA diet. Furthermore, there was a significant positive correlation between 

BDNF mRNA expression and fetal brain DHA composition in the high n-3 and low n-3 PUFA 

group; however, no significant correlation was observed in the very low n-3 PUFA group (Figure 

5.3B). 

Diet and gestation stage had a significant effect on the mRNA expression of TrKB 

(p<0.0001; Figure 5.3C). More so, a significant interaction was observed between diet and 

gestation stage on the mRNA expression of TrKB. The mRNA expression of TrKB was not 

different across all groups at day 12.5; however, there was a significant increase as gestation 

progressed from day 12.5 to 18.5 in all diet groups. Diet high in n-3 PUFA had higher mRNA 

expression of TrKB at day 18.5, compared to the low and very low n-3 PUFA diets. 

Furthermore, there was a positive correlation between TrKB mRNA expression and fetal brain 

DHA composition, which was only significant in the high n-3 diet group (r=0.77; p=0.03; Figure 

5.3D).  
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Figure 5.3: Effects of maternal diets varying in the amount n-3 PUFA on the mRNA expression 

of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrKB) in fetal 

brain at different gestation days: The data represent fetal brain mRNA expressions of BDNF (A) 

and TrKB (B) normalized to β-actin (ActB) as the reference gene. Pearson’s correlation analyses 

were performed between fetal brain DHA and the mRNA expressions of BDNF (C) and TrKB 

(D) at gestation day 12.5 and 18.5. Data were analysed using two-way ANOVA to determine the 

main effects and the interactions between diet and gestation stage; Pairwise comparison using 
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Bonferroni correction was used to determine differences among the groups. p<0.05 was 

considered significant. Data are presented as mean (n=8 at each gestation stage) ± SD; n-3 

PUFA: omega-3 polyunsaturated fatty acids.  
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There was a significant effect of diet and gestation stage on the mRNA expression of 

CREB (p=0.003; Figure 5.4A). There was no difference in the mRNA expression of CREB at 

day 12.5 across all diet groups. However, the mRNA expression of CREB increased significantly 

during gestation from day 12.5 to 18.5 in the high n-3 PUFA group only, while there was no 

change in the mRNA expression of CREB as gestation progressed from day 12.5 to 18.5 in the 

low n-3 and very low n-3 groups. There was a significant positive correlation between CREB 

mRNA expression and fetal brain DHA in the high n-3 diet group only (r=0.91; p=0.002; Figure 

5.4B), compared to the other groups. CREB has been shown to be activated by phosphorylation; 

thus, the protein expressions of total CREB and CREB phosphorylated at Ser-133 (pCREB) were 

measured. There was a significant effect of diet on the relative expression of pCREB to total 

CREB (pCREB/total CREB) (p<0.0001; Figure 5.4C). Phosphorylated CREB/total CREB 

increased significantly as gestation progressed in all groups (p<0.001); however, phosphorylated 

CREB/total CREB was significantly higher in the high n-3 PUFA group at both day 12.5 and 

18.5, compared to the low n-3 and very low n-3 PUFA groups. There was also a significant 

positive correlation between pCREB/total CREB and fetal brain DHA in the high n-3 PUFA and 

low n-3 PUFA groups (p=0.026 and 0.047 respectively; Figure 5.4D), while the correlation was 

not significant in the very low n-3 PUFA group (p>0.05). 
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Figure 5.4: Effects of maternal diets varying in the amount n-3 PUFA on the expression of 

cAMP response element-binding protein (CREB) in fetal brain at different gestation days: The 

data represent the mRNA expression of CREB normalized to β-actin (ActB) as the reference 

gene at gestation day 12.5 and 18.5 (A),  phosphorylated CREB (pCREB) protein concentration 

normalized for total CREB (pCREB/total CREB) at day 12.5 and 18.5 (C), and Pearson’s 

correlation analyses between the fetal brain DHA composition and CREB mRNA expression (B) 

and pCREB/total CREB (D) during gestation. Data were analysed using two-way ANOVA to 

determine the main effects and the interactions between diet and gestation stage; Pairwise 

comparison using Bonferroni correction was used to determine differences among the groups. 
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p<0.05 was considered significant. Data are presented as mean (n=8 at each gestation stage) ± 

SD; n-3 PUFA: omega-3 polyunsaturated fatty acids. 
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5.5 DISCUSSION 
 

Fetal brain develops rapidly during the last trimester of pregnancy and the early postnatal 

period in humans (Wainwright, 2002), and this correlates with increased accretion of DHA in the 

brain. (Dyall, 2015; McNamara & Carlson, 2006). Deficiency in n-3 PUFA during pregnancy 

has been implicated in altered brain lipid composition in fetuses and induces spatial memory 

deficits in adult mice (Labrousse et al., 2018). N-3 PUFA has been shown to have positive 

effects on the brain function by regulating the expression of neurotrophins, such as BDNF and its 

target receptor (Balogun & Cheema, 2014; Bhatia et al., 2011; Sable et al., 2012).  

The placenta uptakes the maternal circulating non-esterified fatty acids (NEFAs) released 

by maternal LPL and EL (Gil-Sánchez et al., 2012). We found a significantly higher mRNA 

expression of EL in the placenta of mice fed a high n-3 PUFA diet at both gestation days, 

compared to the low and very low n-3 PUFA groups. EL hydrolyses both phospholipids and TGs 

(McCoy et al., 2002); studies have shown that increased EL expression contributes greatly to 

placental fatty acid uptake (Lindegaard et al., 2005). The NEFAs released by the EL are then 

transported across the placenta through passive diffusion and majorly by membrane carrier 

proteins (Gil-Sánchez et al., 2012). These membrane carrier proteins include FAT/CD36, FATP 

and FABPpm. We found that a diet high in n-3 PUFA significantly increased the mRNA 

expression of FABPpm in the placenta at both gestation days. The FABPpm is the main 

transporter for longer chain PUFA, such as DHA, across the placenta interface into fetal 

circulation (Campbell et al., 1998). We found a significant correlation between the mRNA 

expression of placental FABPpm and accretion of DHA into the placenta in mice fed the high n-

3 PUFA diet (Figure 5.2E). We did not find a significant effect of diet or gestation stage on the 

mRNA expression of FAT/CD36; these findings are similar to our previously published 

observations (Akerele and Cheema, 2018). We further found that a diet high in n-3 PUFA 
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increased the mRNA expression of Mfsd2a, which correlated with an increased accretion of 

DHA in the high n-3 PUFA group, compared to the low n-3 and very low n-3 PUFA groups.  

Mfsd2a has been identified as the major transporter for DHA uptake into the brain 

(Nguyen et al., 2014). Mfsd2a-knockout mice showed a drastic reduction in the levels of DHA in 

the brain, with a concomitant loss of neuronal cells, as well as cognitive deficits (Nguyen et al., 

2014). EPA was only detected in the high n-3 PUFA diet group, while it was not detectable in 

the low n-3 and very low n-3 PUFA group at both day 12.5 and 18.5. However, the levels of 

EPA were relatively very low in the brain, compared to DHA. Increased EPA metabolism via 

beta-oxidation or rapid conversion to DHA is possible explanations for lower EPA levels in the 

fetal brain (Chen et al., 2013).  The high n-3 PUFA diet showed lower amounts of total n-6 

PUFA, compared to the low and very low n-3 PUFA groups. We have previously reported 

similar findings in mice offspring fed a high n-3 PUFA diet at weaning and at 16-weeks post-

weaning (Balogun & Cheema, 2014; Feltham et al., 2019). Linoleic acid (LA), an n-6 PUFA, 

decreased as gestation progressed in all diet groups; however, the levels were not different across 

all dietary groups at day 18.5. A similar observation was reported in neonatal rats that were fed 

diets varying in n-3 PUFA, where no difference was observed in brain LA composition 

(Suganuma et al., 2010). Interestingly, there was no significant change in AA levels in all diet 

groups.  

Desaturation and elongation of LA to AA has been shown to greatly reduce in mouse 

brain (Bourre et al., 1990; Cook, 1991). It has been shown that brain elongation of LA is a 

negligible source of the AA in the brain of rats (DeMar et al., 2006). More so, it has been 

suggested that LA that enters the brain is largely beta-oxidized and is not a major source of AA 

in the brain (DeMar et al., 2006). However, the effect of n-3 PUFA on the oxidation of LA in 

fetal brain is not known and requires further investigation. Furthermore, reduced incorporation of 

AA into the brain has also been suggested to be due to an increase in the expression of 
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phospholipase-A2 (Bosetti & Weerasinghe, 2003). Our findings show a gestation-dependent 

decrease in LA and no changes in AA, suggesting a gestation-dependent increase in beta-

oxidation of LA, or reduced elongation and desaturation of LA to AA. Reduction in brain n-6 

PUFA has also be suggested to be a compensatory mechanism for increased incorporation of 

DHA into the brain (Wainwright et al., 1991).  

Although the brain de novo synthesizes SFA and MUFA (Edmond et al., 1998; Marbois 

et al., 1992), diets varying in the amount of n-3 PUFA were found to influence brain SFA and 

MUFA. There was a significant interaction between diet and gestation stage, revealing an 

increase in SFA, while MUFA decreased from gestation day 12.5 to 18.5.  A human study that 

examined gestational age-dependent changes in fetal brain fatty acids also reported a significant 

gestational-dependent decease in MUFA (Kuipers et al., 2012). We have recently shown that 

MUFA increases significantly from weaning to 16 weeks post-weaning in mice offspring fed 

similar diets (Feltham et al., 2019). MUFA has been shown to play a key role in myelin sheath 

formation during development (Velasco et al., 2003). Evidence from the literature suggests that 

myelination in fetal brain begins around mid-gestation and continues progressively up to 60 days 

post-natal periods in mice (Baumann & Pham-Dinh, 2001; Luse, 1956). In humans, cortical 

myelination peaks during the first year of life, but continues into early adulthood (Fields, 2008). 

Our findings revealing a gestation-dependent decrease in MUFA suggests that the increase in 

brain MUFA perhaps only occurs after parturition.  

Brain neurotrophins, especially BDNF, promote synaptic plasticity and survival of nerve 

cells by playing a major role in the growth, maturation (differentiation), and maintenance of 

neuronal cells (Huang & Reichardt, 2001). We have previously shown that a maternal diet high 

in n-3 PUFA increased the mRNA expression of BDNF in mice offspring at weaning and at 16 

weeks post-weaning (Balogun & Cheema, 2014). Recent evidence has also shown that n-3 

PUFA regulates BDNF in adult humans (Ferreira et al., 2014; Pawełczyk et al., 2019). However, 
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the effect of a maternal diet high in n-3 PUFA on BDNF mRNA expression in fetal brain during 

different stages of gestation is not known. We found that a diet high in n-3 PUFA increased the 

mRNA expression of BDNF, compared to the low and very low n-3 PUFA groups, at both day 

12.5 and 18.5. Gestation stage also had a significant effect on the mRNA expression of BDNF, 

revealing a significant increase from day 12.5 to 18.5 across all the diet groups. We also found a 

positive correlation between BDNF mRNA expression and fetal brain DHA composition.  

BDNF modulates neurotransmitters and participates in neuronal plasticity, which is 

essential for learning and memory by binding and activating its high-affinity receptor TrKB 

(Huang & Reichardt, 2001). The binding of BDNF to TrkB leads to the phosphorylation of 

TrKB, with concomitant activation of the downstream signal transduction pathway critical for 

BDNF activities in the brain  (Numakawa et al., 2010). We found that the mRNA expression of 

TrKB increased significantly as gestation progressed from day 12.5 to 18.5 in all dietary groups. 

Although there was no difference in the mRNA expression of TrKB at mid-gestation (day 12.5), 

the expression at day 18.5 was higher in the high n-3 PUFA group, compared to the low and very 

low n-3 PUFA groups. Furthermore, the mRNA expression of TrKB at day 18.5 was consistent 

with the mRNA expression of BDNF, and there was a positive correlation between TrKB mRNA 

expression and fetal brain DHA levels. Our findings suggest a potential role of DHA in 

regulating BDNF and TrKB mRNA expression during gestation. We have previously shown that 

maternal diets high in n-3 PUFA increased the mRNA expression of offspring BDNF and TrKB 

in mice (Balogun & Cheema, 2014). A similar study has also shown that n-3 PUFA increased the 

protein expression of BDNF and TrKB in rats offspring (Bhatia et al., 2011).  

The binding of BDNF to TrkB activates CREB via phosphorylation at serine 133 (S133), 

thereby stimulating intracellular signalling critical for neuronal survival and differentiation 

(Landeira et al., 2016), neuronal plasticity and protection (Sakamoto et al., 2011), learning, 

memory formation and long-term potentiation (Kida, 2012). Similar to our observation with 
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BDNF and TrKB, a diet high in n-3 PUFA increased the mRNA expression of CREB in the fetal 

brain at both mid- and late gestation, which positively correlated with the levels of DHA in the 

fetal brain. CREB-binding sequences have been identified in the BDNF gene (Yossifoff et al., 

2008); thus, most of CREB’s functions in the central nervous system are mediated through 

positive feedback activation of BDNF as a major target gene.  

CREB is post-translationally regulated (Wang et al., 2017); we found that a diet high in 

n-3 PUFA significantly increased the protein concentration of phosphorylated CREB, thereby 

increasing the pCREB/total CREB protein at both day 12.5 and 18.5, compared to the low and 

very low n-3 PUFA groups. We have previously reported the effects of n-3 PUFA on post-

translational regulation of CREB in adult mice (Balogun & Cheema, 2014); however, this is the 

first study to report that n-3 PUFA regulates CREB at both transcription and post-translational 

level in the fetal brain during pregnancy. Moreover, we found that pCREB/total CREB protein 

correlated positively with the levels of DHA in the fetal brain, indicating a relationship between 

n-3 PUFA and CREB phosphorylation. The phosphorylation of CREB via TrKB activation could 

be a potential mechanism through which DHA regulates neurotrophin signalling. We are 

proposing a mechanism by which n-3 PUFA affects transport and accretion of DHA into the 

brain and the regulation of neurotrophins in the brain. 
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Figure 5.5: Proposed pathway on the effects of maternal diet high in n-3 PUFA on brain fatty 

acids and neurotrophins during fetal brain development. N-3 PUFA increases EL gene 

expression, likely releasing DHA, which is then selectively transported across the placental 
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interface to fetal circulation by FABPpm. N-3 PUFA also increase the mRNA expression of 

Mfsd2a, thereby increasing the accretion of DHA in fetal brain, which then upregulates the 

mRNA expression of BDNF and TrKB, with a concomitant increase in CREB phosphorylation. 

Phosphorylated CREB then activates BDNF as a target gene via positive feedback loop to 

regulate brain development, synaptic plasticity, memory and cognition. BDNF: Brain-derived 

neurotrophic factor; CREB: cAMP response element-binding protein; DHA: Docosahexaenoic 

acid; EL: Endothelial lipase; FABPpm: Plasma membrane fatty acid-binding protein; FAT/CD36: 

fatty acid translocase; LC-PUFA: long chain polyunsaturated fatty acids; Mfsd2a: Major 

facilitator superfamily domain-containing 2a; TrkB: Tropomyosin receptor kinase B; n-3 PUFA: 

omega-3 polyunsaturated fatty acids; up arrow represent an increase; flat line represent no 

change.  
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5.6 CONCLUSION 

 

In conclusion, we report for the first time that a maternal diet high in n-3 PUFA increased 

the mRNA expression of placental EL and placental fatty acid transporter (FABPpm), with a 

concomitant increase in placental DHA. Subsequently, the high n-3 PUFA diet influenced the 

accretion of DHA into the fetal brain as gestation progressed by regulating the mRNA 

expression of mfsd2a during pregnancy. Our findings further revealed that n-3 PUFA increases 

the expression of BDNF and TrKB as gestation progresses, and that n-3 PUFA regulates CREB 

at both transcription and post-translational levels. Impaired BDNF expression has been widely 

implicated in neuropsychiatric disorders (Autry & Monteggia, 2012), thus maintaining the levels 

of BDNF and other neurotrophins during critical stages of brain development may be important 

in preventing neurological problems later in life. Therefore, an adequate dietary intake of n-3 

PUFA during pregnancy is of critical importance. 
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6.1 Summary and conclusions 
 

Maternal nutritional status before and during pregnancy is a crucial factor in healthy 

prenatal development and fetal health outcomes (Laker et al., 2013). Maternal diet is also vital 

for a successful pregnancy establishment and progression (Grieger & Clifton, 2015; Marangoni 

et al., 2016). The quantity, as well as the quality of dietary fats, consumed during pregnancy 

have profound health implication on both maternal and fetal health during and after pregnancy 

(Coletta et al., 2010; Schwab et al., 2014). Our laboratory has previously shown that offspring 

born to C57BL/6 females fed a diet high in n-3 PUFA during gestation and lactation, and 

continuing on their maternal diet, had lower levels of lipids, had higher accretion of n-3 PUFA in 

offspring brain, along with an increase in the expression of neurotrophins. During these studies, 

it was observed that females fed a diet low in n-3 PUFA had fewer fetuses. The effects of n-3 

PUFA on pregnancy/fetal outcomes are controversial, suggesting an increase (Rebollar et al., 

2014; Smits  et al., 2011), decrease (Fountain et al., 2008; Smit et al., 2015) or no change 

(Estienne et al., 2006; Perez Rigau et al., 1995) in fetal numbers. This discrepancy is likely due 

to differences in the amount and/or source of n-3 PUFA used in these studies.  

In my first study, I exposed C57BL/6 female mice were exposed to two different 

breeding chow diets with varied quantity (5% vs. 11% w/w), and the quality (providing n-3 

PUFA from fish oil vs. soybean oil) of fat.  Females were fed the specific diets for 2 weeks prior 

to mating, and throughout gestation. I examined the in-utero effects at different stages of 

gestation (day 6.5, 12.5 and 18.5). As expected, perinatal exposure of mice to breeding chow diet 

containing n-3 PUFA from fish oil caused higher accretion of n-3 PUFA into maternal uterus, 

placenta, and reduced inflammatory cytokines in the placenta and plasma (Chapter 3). Diet 

containing n-3 PUFA from fish oil also increased the levels of plasma estradiol and 

progesterone, two important hormones involved in pregnancy establishment and maintenance, as 

well as fetal development, compared to the diet containing n-3 PUFA from soybean oil. The low 
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fat diet containing n-3 PUFA from fish oil was found to increase maternal plasma TG as 

gestation progressed, which coincided with higher mRNA expressions of rate-limiting lipogenic 

genes. There was also an increase in cholesterol efflux, which likely occurred to meet fetal 

demand for cholesterol during pregnancy. The diet containing n-3 PUFA from fish oil had a 

lower fetal resorption rate and higher fetal numbers sustained at day 18.5, compared to the diet 

containing n-3 PUFA from soybean. These findings suggested that n-3 PUFA from fish oil likely 

created a favourable in utero environment, with a concomitant improvement in fetal 

sustainability.  

A limitation to this study however was that the breeding chow diets varied in both the 

quantity (5% vs 11% w/w fat), and the quality (n-3 PUFA from fish oil at 8% vs soybean oil at 

3% w/w, respectively) of fat. However, this study allowed us to investigate the effect of maternal 

diet before and during gestation on maternal lipid profile, pregnancy-related sex steroid 

hormones, placental fatty acids composition, and the mRNA expressions of key transporters, 

plasma and placental cytokines profile. My findings from this study clearly revealed that the 

quantity and the quality of dietary fat is important in regulating maternal metabolic profile 

during pregnancy, and impact pregnancy/fetal outcome (Chapters 2 and 3).  

The previous study led me to study fish oil more in depth. As such, I designed a follow 

up study where I kept the amount of fat consistent to the levels consumed by a typical North 

American population (Simopoulos, 2016), and investigated the effects on maternal metabolic 

profile and pregnancy outcomes. This study was designed using semi-purified diets (20% fat 

w/w) and the amount of n-3 PUFA (from fish oil) was controlled to give a high (9%), low (3%) 

and very low (1%) n-3 PUFA respectively, for 2 weeks before mating and throughout pregnancy. 

The effects of maternal diets varying in the amount of n-3 PUFA were investigated on the 

regulation of maternal lipid and lipoprotein metabolism, transporters involved in fatty acids 
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transport to the fetus and fetal brain, placental and blood cytokines, and accretion of n-3 PUFA 

in fetal brain and the gene expression of neurotrophins (Chapters 4 and 5).   

The main objective of the current thesis was to investigate the effects of the quality, and 

the quantity of fat, on maternal metabolic profile prior to pregnancy, and at different stages of 

pregnancy, with particular focus on the regulation of maternal lipid metabolism, plasma and 

placental cytokines profile, and fetal sustainability. The propensity of n-3 PUFA to potentially 

ameliorate adverse pregnancy outcomes by maintaining optimum maternal lipids profile prior to 

pregnancy and at different stages of pregnancy was explored in this thesis. The effect of high n-3 

PUFA diet on the mRNA expression of placental endothelial lipase and fatty acid transporters, 

accretion of longer chain n-3 PUFA in fetal brain and how it regulates signalling of neurotrophin 

during different stages of pregnancy were also studied.  

The findings from the current thesis revealed that maternal diet high in n-3 PUFA has a 

gestational-dependent effect on maternal lipids metabolism, and further showed a novel 

regulatory pathway through which n-3 PUFA could prevent placental inflammation and maternal 

dyslipidemia before and during pregnancy. Furthermore, findings from this thesis demonstrated 

the importance of maternal diet enriched in n-3 PUFA during pregnancy on the accretion of 

DHA in fetal brain, and the regulation of neurotrophin. Finally, the findings from this thesis 

revealed the potential mechanism through which high n-3 PUFA diet could improve fetal 

sustainability during pregnancy through a common pathway. 

 

6.1.1 Key observations 

 

My first study shows that a low fat breeding chow diet containing n-3 PUFA from fish oil 

alters maternal plasma, hepatic and placental lipid metabolism, likely to meet fetal demand at 

different stages of gestation. In addition, the low fat breeding chow diet maintained a balance of 

pro- and anti-inflammatory cytokines, and sex steroid hormone profiles to improve fetal 

sustainability during gestation (Figure 6.1). However, I was not able to pinpoint that the effects 
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of the diets are specifically due to n-3 PUFA from fish oil in the breeding chow diet. I thus 

designed my second study to specifically investigate the effects of n-3 PUFA, from fish oil, 

using a semi-purified diet containing varying amounts of n-3 PUFA. This study revealed that a 

maternal diet containing high n-3 PUFA prevented maternal dyslipidemia prior to pregnancy and 

maintained maternal plasma and hepatic metabolic profile, and progesterone levels during 

different stages of gestation. The high n-3 PUFA diet also increased anti-inflammatory cytokines 

and decreased pro-inflammatory cytokines. In addition, the high n-3 PUFA diet increased 

placental transport and incorporation of DHA in fetal brain, and upregulated neurotrophin 

signalling pathway in fetal. My second study confirmed that the amount of n-3 PUFA (from fish 

oil) has important implications in regulating maternal metabolism during gestation thereby 

affecting fetus sustainability (Figure 6.2). 
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Figure 6.1: Breeding chow diet containing n-3 PUFA from fish oil altered maternal metabolic profile, cytokine levels, and sustained more 

fetuses during pregnancy. N-3: Omega-3 polyunsaturated fatty acid; DHA: Docosahexaenoic acid; EPA: Eicosapentaenoic acid.  
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Figure 6.2: A diet high in n-3 PUFA (9%) prevented dyslipidemia prior to pregnancy, and improved fetal sustainability. N-3: Omega-3 

polyunsaturated fatty acid; DHA: Docosahexaenoic acid. 



 

252 
 

6.2 Implications and future directions 

 

During pregnancy, several physiological, anatomical and metabolic changes occur in the 

mother to permit adequate fetal development, and to prepare the body for parturition. These 

changes are initiated at early pregnancy and progresses till late gestation. The series of studies 

presented in this thesis show the effects of longer chain n-3 PUFA in the prevention of maternal 

dyslipidemia, which is a known risk factor for several adverse pregnancy outcomes in rodents (de 

Assis et al., 2003; Nikolova et al., 2017; Reijnders et al., 2019) and in humans (Grimes & Wild, 

2018; Jiang et al., 2017; Jin et al., 2016; Wild et al., 2016).  

Judging by the effects of breeding chow diet containing n-3 PUFA from fish oil (8% w/w) 

on maternal lipid metabolism during pregnancy, as presented in chapter 2, a low fat maternal diet 

containing n-3 PUFA from fish oil increased maternal endogenous lipid synthesis, along with 

increasing cholesterol efflux, likely to meet fetal lipid demand during pregnancy. Interestingly, 

macrophage cholesterol efflux increased as gestation progressed in response to plasma from the 

diet containing n-3 PUFA from fish oil. As such, I can speculate that n-3 PUFA from fish oil 

increases cholesterol efflux in a gestation-dependent fashion during pregnancy; however, I cannot 

unequivocally say that the observed increase in cholesterol efflux was due to direct regulation of 

HDL function by n-3 PUFA, owing to the fact that we used plasma samples as our acceptor. 

Increased HDL-mediated cholesterol efflux during pregnancy has been suggested as a rescue 

mechanism to prevent adverse pregnancy outcomes, such as preeclampsia in women with high 

risk pregnancies by removing cholesterol from cells to limit peroxidation (Mistry et al., 2017).  

Plasma is known to contain other proteins and lipoproteins capable of influencing the 

efficiency of cholesterol efflux; the particle size of HDL and the concentration of apolipoprotein 

(APO)-A1 could influence cholesterol efflux capacity (Sacks & Jensen, 2018). Interestingly, high 

n-3 PUFA has no significant effect on maternal plasma concentration of HDL-c before and during 

gestation (Appendix VIII). Although I studied cholesterol efflux in my first study, I did not study 
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this in my second study due to sample limitation. Cholesterol efflux assay would have further 

corroborated our previous observation that n-3 PUFA increases cholesterol efflux in a gestation-

dependent fashion during pregnancy. Future studies could investigate the direct effect of n-3 

PUFA on cholesterol efflux capacity at different time-points during pregnancy by isolating HDL 

from plasma samples. This will give direct information on the influence of n-3 PUFA on HDL 

function during pregnancy. 

Longer chain n-3 PUFA are known to regulate inflammatory markers, such as pro-

inflammatory cytokines and eicosanoids (Calder, 2013). My data, presented in chapter 3 and 4 

showed that n-3 PUFA from fish oil reduced the level of pro-inflammatory cytokines in maternal 

plasma, as well as in the placenta. The propensity of n-3 PUFA to influence inflammation is 

usually mediated in part by changing the fatty acid composition of the corresponding cell 

membrane. Our findings provide evidence that a maternal diet containing n-3 PUFA from fish oil 

caused accretion of EPA and DHA in reproductive tissues, particularly the uterus and the 

placenta. The accretion of longer chain fatty acids coincided with a significant reduction in the 

concentration of pro-inflammatory cytokines at late gestation in both maternal plasma and 

placenta, with a resultant increase in the levels of anti-inflammatory cytokines.  

Furthermore, the diet containing n-3 PUFA from fish oil showed no fetal resorption, 

compared to the breeding chow diet containing n-3 PUFA from soybean which showed clear fetal 

resorption sites. Recent evidence revealed that spontaneous fetal resorption starts with 

endogenous apoptosis of the embryo; apoptotic embryo is aborted into the uterine lumen, and then 

rapidly resorbed (Drews et al., 2020). The initiation of the apoptotic process has in part been 

associated to innate inflammation in the embryonic cells (Drews et al., 2020). Inflammation 

during pregnancy clearly influences fetal development. Eicosanoids are lipid mediators derived 

from PUFAs which can influence inflammation. Future studies could examine keys eicosanoids, 

particularly prostaglandin E2, which is known to contribute to the upregulation of pro-
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inflammatory cytokines, and consequently spontaneous abortion (Ricciotti & FitzGerald, 2011).  

More so, future studies could collect resorption sites to classify and characterize these sites based 

on the morphology. 

Our findings on the effect of maternal semi-purified diet high in n-3 PUFA on maternal 

lipid metabolism revealed that a high n-3 diet (9% w/w) prevented dyslipidemia in non-pregnant 

mice, while very low n-3 PUFA diet (1% w/w) caused hyperlipidemia prior to pregnancy. Dams 

with elevated lipids before pregnancy carried this profile into pregnancy and lacked lipid 

regulation during pregnancy. As such, I can safely say that maternal diet before pregnancy is also 

very important to ensure that dams enter pregnancy with the metabolic profile required to 

establish pregnancy successfully, as well as to maintain pregnancy. Future studies could 

investigate the effects of maternal hyperlipidemia on offspring lipid metabolism at early and later 

life. More so, the effects of a different post-weaning diet on the regulation of lipid metabolism in 

the offspring could also be investigated. 

We studied fetuses at gestation day 6.5, 12.5 and 18.5; these gestation stages correspond to 

first, second and third trimesters of pregnancy in mice. Our findings demonstrate for the first time 

that a high n-3 PUFA diet maintained maternal plasma concentration of maternal sex-steroid 

hormones during pregnancy, which may be responsible higher fetal sustainability till late 

gestation. Dietary n-3 PUFA has been suggested to affect offspring sex-ratio (Fountain et al., 

2008). Fetuses used in our study comprised of both sexes; future studies should investigate sex-

specific effects in fetal sustainability; this will give insight into whether there are more males, 

compared to females, or vice versa in terms of fetal resorption and survival.  

A number of studies have documented the neuroprotective effects of n-3 PUFA in rodents 

(Firląg et al., 2013; Lopes et al., 2017) and humans (Yanai, 2017); however, it is not known if 

maternal diets containing high n-3 PUFA cause DHA accretion in fetal brain at different stages of 

gestation, and regulate the expression of neurotrophins. I investigated the gestation-dependent 
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effect of n-3 PUFA on the expressions of key proteins involved in neurotrophin signalling. I 

observed an increase in BDNF and TrKB gene expression in response to maternal diet high in n-3 

PUFA, as presented in chapter 5. Our findings suggest that increased mRNA expression of BDNF 

as gestation progressed from mid gestation to late gestation was due to increased CREB 

phosphorylation by n-3 PUFA. This finding is novel; however, nerve growth factor (NGF) also 

contributes to brain development by promoting neuronal survival and preventing neuronal 

apoptosis (Chen et al., 1997).  

High n-3 PUFA increased the mRNA expression of NGF at day 12.5, compared to other 

diets, while there was no change at day 18.5 across all dietary groups (Appendix IX). This is a 

fascinating observation, as the mRNA and protein expressions of NGF has been previously shown 

to fluctuate at different stages of development in rats (Maisonpierre et al., 1990). As such, future 

studies could investigate the effect of high n-3 PUFA diet on the signalling pathway of NGF in 

fetal brain at both mid- and late gestation. To further appreciate the significance of maternal diet 

enriched in high n-3 PUFA during pregnancy on neurotrophin signalling, it may be pertinent to 

explore the effect of these diets on the fetal brain’s lipidomic profile. 

Finally, this current thesis showed that maternal diet varying in the quantity and quality of 

dietary fat has a gestational-dependent effect on maternal lipids metabolism, and further showed 

that breeding chow diet containing high n-3 PUFA from fish oil regulates maternal lipid and 

cytokine profile to elicit positive pregnancy outcomes. My findings further demonstrated that a 

maternal semi-purified diet high in n-3 PUFA (9% w/w) increased the incorporation of DHA into 

the placenta, and subsequently influenced the accretion of DHA into the fetal brain as gestation 

progressed. We have identified novel mechanisms on the neuroprotective potentials of maternal 

diet high in n-3 PUFA. Specifically, our findings revealed that n-3 PUFA increases the expression 

of BDNF and TrKB as gestation progresses, and that n-3 PUFA regulates CREB at both 

transcription and post-translational levels; thus maintaining the levels of BDNF and other 
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neurotrophins during critical stages of brain development may be important in preventing 

neurological problems later in life.  

As the understanding of positive effects of n-3 PUFA on high risk pregnancies continues 

to grow, our data also report that a high n-3 PUFA diet maintained maternal metabolic profile and 

prevented maternal dyslipidemia, prior to and during pregnancy, to elicit positive pregnancy 

outcomes. Therefore, dietary intake of high n-3 PUFA during pregnancy is of critical importance. 

Overall, dietary intervention remains the safest strategy to prevent adverse pregnancy outcomes; 

thus, intake of high n-3 PUFA diet (9% w/w) could serve as a promising approach to prevent 

maternal dyslipidemia and improve fetal sustainability. 
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APPENDICES 

Appendix I 

 

Body weight and average weekly food intake before pregnancy and at different stages of 

gestation (Chapter 2) 

      

Body Weight (g) 5% Fat Diet 11% Fat Diet 

NP 17.93 ± 0.22 17.90 ± 0.30 

   Day 6.5 19.31 ± 0.22 19.16 ± 0.14 

   Day 12.5 25.57 ± 0.92 25.40 ± 1.04 

   Day 18.5 29.14 ± 0.81 28.88 ± 0.32 

   Food Intake (g/week) 22.99 ± 0.50 22.82 ± 0.88 

 

Values are expressed as means ± SD, n=8. Data were analysed using one-way ANOVA. NP: Non-

pregnant mice. 
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Appendix II 

 

        

 
Ct Values (FAS) 

 cDNA 

Conc. 

(ng/ul) Rep1 Rep2 

Ave. 

Ct 

100 23.98 23.91 23.945 

10 26.79 26.74 26.765 

1 30.26 30.4 30.33 

0.1 33.66 33.79 33.725 

 

 

      

 Conc. 

(ng/ul) 

Log 

cDNA  

Ave. 

Ct 

100 2 24.09 

10 1 27.095 

1 0 30.33 

0.1 -1 33.725 

 

 

 

 
 

Slope = -3.214 

Efficiency = 10^(-1/slope)-1*100 

       = 10^(-1/-3.214)-1*100 

       = 104.7 

y = -3.214x + 30.417 
R² = 0.9993 
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Gene Expression Calculation 

*ΔCt = Avg. FAS Ct – Avg. Actb Ct 

**ΔΔCt = Avg. ΔCt - Avg. ΔCtLiver 

***Normalized FAS expression = 2
-ΔΔCt
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Appendix III 
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Effect of dietary omega-3 polyunsaturated fatty acids on maternal mRNA expression of fatty acid 

translocase (FAT/CD36) was determined during gestation at day 18.5 as explained in the Material 

and Methods section. Values are presented as mean ± SD, n=8. The mRNA expressions were 

normalized with Actb as the reference gene. Data analyzed using student’s t-test. Actb, beta actin; 

FO, fish oil based diet; SO, soybean based diet (Chapter 3). 
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Appendix IV 

Mathematical model for diet formulation 

 

FORMULA FOR 5:1 

       x(3.28-(5*31.56))+y(73.27-(5*0.23))+z(15.54-(5*0.72))+w(17.38-(5*0.76))=0 x 0.99489 

x(28.19-32)+y(16.96-32)+z(66.58-32)+w(49.74-32)=0 

   

y 1.8751 

x(25.48-19)+y(9.27-19)+z(16.81-19)+w(31.70-19)=0 

   

z 0.41213 

        

w 1 

 

FORMULAR FOR 20:1 

      x(3.28-(20*31.56))+y(73.27-(20*0.23))+z(15.54-(20*0.72))+w(17.38-(20*0.76))=0 x 0.22582 

x(28.19-32)+y(16.96-32)+z(66.58-32)+w(49.74-32)=0 

   

y 1.4259 

x(25.48-19)+y(9.27-19)+z(16.81-19)+w(31.70-19)=0 

   

z 0.13205 

        

w 1 

 

FORMULAR FOR 40:1 

      x(3.28-(40*31.56))+y(73.27-(40*0.23))+z(15.54-(40*0.72))+w(17.38-(40*0.76))=0 x 0.056442 

x(28.19-32)+y(16.96-32)+z(66.58-32)+w(49.74-32)=0 

   

y 1.327 

x(25.48-19)+y(9.27-19)+z(16.81-19)+w(31.70-19)=0 

   

z 0.07036 

        

w 1 

NB: X, Y, Z and W represent variables for n-3 PUFA, n-6 PUFA, MUFA and SFA respectively. 

N: omega; PUFA: polyunsaturated fatty acids; MUFA: monounsaturated fatty acids; SFA: 

saturated fatty acids.  
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Appendix V 

 

Body weight and average weekly food intake of mice fed with maternal diet varying in the 

amount of n-3 PUFA (Chapter 4). 

 

      

Gestation Stage 

High n-3 Low n-3 Very low n-3 

Body Weight (g) 
NP 18.16 ± 0.32 18.25 ± 0.90 18.31 ± 0.93 

    Day 6.5 19.22 ± 0.42 19.11 ± 0.64 19.28 ± 0.78 

    Day 12.5 24.64 ± 0.88 24.78 ± 0.45 24.83 ± 0.32 

    Day 18.5 28.19 ± 0.50 28.41 ± 0.41 28.88 ± 0.63 

    Food Intake (g/week) 22.05 ± 0.49 23.10 ± 0.71 22.40 ± 0.62 

 

Values are expressed as means ± SD, n=8. Data were analysed using one-way ANOVA. NP: Non 

pregnant; n-3 PUFA: omega-3 polyunsaturated fatty acids. 
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Appendix VI 

 

        

  

Total number                          

of female mice bred 
Confirmed pregnancy Delivery before day 18.5 

High n-3 PUFA  12 10 0 

    
Low n-3 PUFA 12 9 1 

    
Very low n-3 PUFA 12 10 2 
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Appendix VII 

 

 

 

 
Effect of maternal diets varying in the amount of n-3 PUFA on the placental mRNA expression of 

fatty acid translocase (FAT/CD36) was measured at gestation day 12.5 and 18.5 as explained in 

the material and method section. The mRNA expressions were normalized to β-actin (ActB) as the 

reference gene. Data were analysed using two-way ANOVA to determine the main effects and the 

interactions between diet and gestation stage. p<0.05 was considered significant. Data are 

presented as mean (n = 8 at each gestation stage) ± SD; n-3 PUFA: omega-3 polyunsaturated fatty 

acids (Chapter 5).  
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Appendix VIII 

 

 

 
 

 

        Effect of maternal diets varying in the amount of n-3 PUFA on plasma HDLc was measured 

in non-pregnant and pregnant mice at gestation day 6.5, 12.5 and 18.5. Data were analysed 

using two-way ANOVA to determine the main effects and the interactions between diet and 

gestation stage. p<0.05 was considered significant. Data are presented as mean (n = 8 at each 

gestation stage) ± SD; n-3 PUFA: omega-3 polyunsaturated fatty acids 
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Appendix IX 

 

 

 
 

 

 

Effects of maternal diets varying in the amount n-3 PUFA on the mRNA expression of nerge 

growth factor normalized to β-actin (ActB) as the reference gene. Data were analysed using two-

way ANOVA to determine the main effects and the interactions between diet and gestation stage; 

pairwise comparison using Bonferroni's correction was used to determine differences between 

groups. p<0.05 was considered significant. Data are presented as mean (n=8 at each gestation 

stage) ± SD; n-3 PUFA: omega-3 polyunsaturated fatty acids. 

 

 


