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Abstract 

Despite the already existing advantages of additively manufactured AlSi10Mg, there are still 

process-induced imperfections associated with the Laser-Powder Bed Fusion process, such as 

microstructural inhomogeneity and high level of porosity. This thesis aims to examine the impact 

of (i) low-temperature heat-treatment, (ii) recycled feedstock powder, (iii) the laser-powder bed 

fusion (L-PBF) process parameters, and (iv) post-printing surface treatment on the solidification 

defects, microstructures, and the resultant corrosion properties of L-PBF-AlSi10Mg alloy. 

Scanning electron microscopy and X-ray diffraction analysis confirmed that heat-treatment from 

200 °C to 350 °C promotes the homogeneity of the microstructure, characterized by the uniform 

distribution of eutectic Si in the α-Al matrix. Moreover, the microstructural analysis confirmed 

that using the recycled powder in the fabrication of AlSi10Mg leads to (i) an increased volume 

fraction of internal porosities and solidification micro-cracks, (ii) more coarsening of interdendritic 

eutectic-Si network particularly along the melt pool boundaries, which were correlated to the larger 

size and irregular shape of the recycled powders compared to the virgin powders, leading to the 

reduced thermal conductivity of the recycled powders. Additionally, the implemented process 

parameters modifications were found to be not only effective in reducing the as-printed surface 

roughness of the components, but also led to the formation of cyclic small-large melt pools (MPs) 

in the Upskin layers of the fabricated samples. Employing friction stir processing (FSP) as a post-

printing surface modification technique was shown to be effective in eliminating the process-

induced porosities of the L-PBF AlSi10Mg alloy, and resulted in drastic microstructural 

homogenization, grain refinement, and uniform dispersion of refined Si particles. To investigate 

the impacts of the above-mentioned microstructural changes on the corrosion performance of the 

alloy, anodic polarization testing, electrochemical impedance spectroscopy in aerated and 

deaerated 3.5 wt.% NaCl solutions, intergranular corrosion, and Mott-Schottky tests were 

performed. The electrochemical measurements confirmed the improved corrosion resistance of the 

alloy and reduced susceptibility to penetrating selective attack at initial immersion time in the 

electrolyte solution by increasing the heat-treatment temperature from 200 °C to 300 °C. 

Moreover, the corrosion results confirmed a slight degradation of the corrosion properties of the 

recycled-powder fabricated samples, ascribed to further coarsening of Si-network along their melt 

pool boundaries. Additionally, optimization of the process parameters confirmed that the 

fabricated sample at the highest volumetric energy density revealed a degraded corrosion 

performance resulted from its extended HAZ and coarser microstructure. Moreover, improvement 

of the corrosion performance of the FSPed sample was confirmed by the positive shift of the pitting 

potential and reduction in the corrosion rate and corrosion current density as compared to the as-

printed samples. This research provides solutions to the existing challenges in the industries for 

adopting additive manufacturing methods due to the final cost, microstructural homogeneity, high 

level of porosity, residual stress, and initial surface roughness.  
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Chapter 1 

Introduction  

1.1. Background 

During the last decades, the continuous development of advanced manufacturing components with 

more elaborate designs and enhanced mechanical and corrosion properties for applications in the 

automobile, marine, and aerospace industries has necessitated the utilization of innovative 

production technologies. Metal additive manufacturing as a novel and rapidly emerging fabrication 

technology provides promising resolutions to the existing knowledge gaps and deficiencies in 

design and manufacturing. This leads to a versatile technique to manufacture complicated parts 

with improved functionalities and performance.  

As Figure 1.1 shows, the metal additive manufacturing (AM) processes can be classified based 

on the implemented heating source into two main categories, i.e., beam-based methods, such as 

powder bed fusion known as selective laser melting (SLM) and electron beam melting (EBM), and  

tivesuch as wire arc addi, based technologies-arc  manufacturing (WAAM) [1].  
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Figure 1. 1. Different Metal Additive Manufacturing processes 

 

Laser-Powder Bed Fusion (L-PBF) is an additive manufacturing process that proposes 

specific advantages, such as cost- and time-effective production with the feasibility to produce 

near-net-shape intricate geometries without almost any material's waste and shorter time to market 

compared with conventional technologies. The components manufactured by Powder-bed fusion 

(PBF) technologies, including both laser-based and electron beam-based, are currently gaining 

significant interests from the academia and industry, such as biomedical, marine, automotive, and 

aerospace [2]. As shown in Figure 1.2, in the laser-powder bed fusion process, a laser beam with 

high energy is applied to beds of powders, resulting in a fully melting and metallurgical joining 

during each single scanning track layer-by-layer until a functional and fully dense part is 

fabricated. Likewise, electron beam melting (EBM) instead of a laser an electron beam as the heat 

source in an inert controlled- and vacuumed-atmosphere; is applied. The same technology with 

different terminologies has been reported in different studies to introduce this process, such as 
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Selective Laser Melting (SLM) [3], Direct Metal Laser Sintering (DMLS) [4], or Laser Beam 

Melting (LBM) [2]. So far, several types of metallic components have been successfully fabricated 

employing different AM technologies, including Ni alloys [5,6], stainless steel [7–9], Ti alloys 

[10,11], and Al-based alloys [12–16].  

 

 

Figure 1. 2. Generic representation of an AM powder bed system. 

 

As Figure 1. 3 shows, WAAM is an AM technology that usually benefits from a robotic arm, 

carrying an arc welding torch as the energy source to fabricate metallic parts additively in the form 

of weld beads overlaid on previously deposited layers [17,18]. Although the WAAM technology 

has not been completely industrialized yet, it has gained substantial attention in different industries, 

including aerospace, marine, and oil and gas for the fabrication of meter-scale metallic components 

for structural applications [1]. As compared to other AM technologies, WAAM is mainly identified 

by its low capital cost, unlimited build envelope, and significantly high deposition rate (3-8 kg/h), 
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leading to substantial reduction in the fabrication time [1]. The common WAAM processes 

implement either a gas metal arc (GMA), gas tungsten arc (GTA), or plasma arc (PA) as the heat 

source [8,19,20]. Cold metal transfer (CMT) is also a new variation of GMA technology and 

widely adopted as the heat source to produce WAAM components [21]. 

 

 

Figure 1. 3. Generic representation of an WAAM system. 

 

1.2. AM methods for Al alloys 

The additive manufacturing of aluminum alloys is a challenging process owning to the light-

weight, high thermal conductivity, high reflectivity, and low laser absorptivity of the feedstock 

powders [22]. Another reason is that the Al alloys have good machinability and the costs of 

machined Al components are still lower than the AM fabricated parts [23]. Moreover, considering 

the significantly high cooling rates associated with the AM processes, the Al alloys are susceptible 

to solidification micro-crack during L-PBF processing, giving rise to low mechanical properties 

and structural integrity [24]. In addition to that, some Al alloys such as the 7xxx series contain Zn, 

which is a highly volatile element, resulting in melt pools turbulent, splatter, and high porosity 



5 
 

levels [25]. Therefore, although the research in the AM of these alloys is promising, there are still 

struggles to adopt Al alloys by AM industries successfully such as final cost, microstructural 

inhomogeneity, high level of porosity, surface roughness, and residual stress [26]. However, the 

Al-Si alloys such as AlSi10Mg [27] and AlSi12 [28] have gained more attention from AM 

industries due to their great cast-ability and low solidification shrinkage resulting from the large 

fraction of Al-Si eutectic. Among all the Al-Si alloy family, AlSi10Mg as a traditional cast alloy 

has been predominantly adopted by the AM industry, particularly through L-PBF process [15]. 

Low solidification shrinkage and cracking susceptibility and good weldability are common 

characteristics of this alloy due to its near-eutectic composition [29]. Furthermore, the addition of 

Mg to the composition of this alloy has provided an age-hardening property through precipitation 

sequences of α(Al) → (Guinier–Preston) GP zones → β″ → β′ → β, where GP zones are separated 

clusters of Mg and Si atoms, β″ and β′ are non-stable compounds of Mg and Si atoms with different 

stoichiometry, and β phase is the stable Mg2Si phase [30]. All these distinctive properties of 

AlSi10Mg alloy have led to a multiplicity of applications in aerospace and automotive industries 

[31]. However, the traditional fabrication methods, such as casting, forging, and powder 

metallurgy techniques, have substantially limited the accelerated adoption of the family of Al-Si-

Mg alloys, particularly in harsher environments due to the required prolonged fabrication cycles 

for complex parts and the obtained microstructure of the alloy in as-fabricated condition. The cast 

AlSi10Mg alloy commonly contains a coarse eutectic silicon phase in addition to various hard and 

brittle intermetallic components, which can severely deteriorate its mechanical and corrosion 

properties [15,31,32]. In addition, implementing the L-PBF process in the fabrication of AlSi10Mg 

alloys has opened many new avenues for novel designs and applications for this alloy in various 

industries. 
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2. Motivation and Research objectives: 

The unique processing characteristics of L-PBF, such as extremely rapid rate, contribute to the 

formation of a super fine microstructure and a great amount of residual thermal stress induced in 

the structure. The residual stress within the fabricated structure can cause distortion in the printed 

part with a dimensional inaccuracy [33]. Therefore, post-printing thermal-treatment is commonly 

applied to avoid any part’s distortion and release the inherent residual stress [34,35]. However, 

previous investigations have revealed that a high-temperature thermal-treatment can extensively 

change the microstructure of the as-printed L-PBF-AlSi10Mg alloy and consequently cause a 

mechanical and corrosion performance degradation [36,37].  

Moreover, as feedstock powder size and morphology are changed, many fabricated parts are 

expected to change [38,39]. Therefore, understanding the impacts of using different feedstock 

powder on the final microstructure, forming solidification imperfections, and corrosion 

performance of the L-PBF fabricated AlSi10Mg components is crucial for AM industries. 

Furthermore, in addition to the size and morphology of the feedstock metal powder, 

controlling the L-PBF processing parameters, such as laser power, hatching distance, and scanning 

speed can also impact the internal imperfections’ density, the achieved surface roughness, as well 

as the microstructural characteristics and consequently, the corrosion and mechanical properties 

of the fabricated L-PBF-AlSi10Mg parts[38–40]. 

Additionally, despite the well-known capabilities of the Friction Stir Processing in modifying 

the final microstructure and enhancing the mechanical properties of L-PBF AlSi10Mg alloy 
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[41,42], there is still very limited information available in the literature on implementing this 

unique post-printing surface treatment method to develop the performance of AM parts. 

Therefore, despite all the benefits that L-PBF technologies contribute to the different 

manufacturing industries and similar to any other manufacturing method, it should not be 

considered a perfect fabrication technique with no drawback. In particular, for the L-PBF-

AlSi10Mg alloy, the adopted high laser power, fast scanning speed, as well as balling and dross 

formation as the alloy is solidified commonly promote the formation of various imperfections, 

such as residual stresses within the part and microstructural inhomogeneity, high porosity level, 

the as-printed surface roughness, and solidification micro-defects. These process-induced 

imperfections are reported to be an unfavorable impact on the corrosion and mechanical 

characteristics of the fabricated components [13,16,40,43,44]. In order to eliminate the formation 

of these imperfections and consequently improve the corrosion and mechanical properties of the 

fabricated components, various post-printing solutions, such as post-heat treatments, using 

different feedstock metal powder size, tuning L-PBF process parameters, and post-printing surface 

treatments have been investigated. Therefore, this thesis aims to answer the following questions: 

1. What is the impact of the post-printing heat-treatment on the microstructural evolution 

and corrosion performance of the L-PBF AlSi10Mg? 

2. What is the impact of the feedstock powders, recycled powders in particular, with 

different size and morphology on the microstructure and corrosion properties of the L-PBF 

AlSi10Mg? 

3. What is the true impact of the processing parameters on the microstructure and corrosion 

properties of the L-PBF AlSi10Mg? 
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4. What is the impact of the post-printing surface treatment such as Friction Stir Processing 

(FSP) on the microstructure and corrosion properties of the L-PBF AlSi10Mg? 

Focusing on these questions, this thesis investigates the impact of four different solutions 

to eliminate the process-induced imperfection on the microstructure and corrosion performance of 

the L-PBF produced AlSi10Mg alloy. 

3. Organization of the thesis 

This thesis is written in a manuscript format (paper-based). Overall, the thesis's outcomes are 

published in eight peer-reviewed journal papers as a first author, four peer-reviewed journal as 

second or third author, three conference papers as a first author and two conference papers as 

second or third author, and three conference abstracts as a first author. The details of each 

publication are listed below. 

Journal Papers: 

1) M. Rafieazad, M. Mohammadi, A. Gerlich, A. Nasiri, Enhancing the Corrosion Properties 

of Additively Manufactured AlSi10Mg Using Friction Stir Processing, Corros. Sci. (2020) 

109073. doi: https://doi.org/10.1016/j.corsci.2020.109073 (IPF=6.720) 

 

2) M. Rafieazad, P. Fathi, M. Mohammadi, A. Nasiri, Effects of Laser-Powder Bed Fusion 

Process Parameters on the Microstructure and Corrosion Properties of AlSi10Mg Alloy, 

journal of electrochemical society (JES), 2021 https://doi.org/10.1149/1945-7111/abdfa8 

(IPF=3.721) 

 

3) M. Rafieazad, A. Chatterjee, A.M. Nasiri, Effects of Recycled Powder on Solidification 

Defects, Microstructure, and Corrosion Properties of DMLS Fabricated AlSi10Mg, JOM. 

71 (2019). https://doi:10.1007/s11837-019-03552-2 (IPF=2.305) 

 

4) M. Rafieazad, M. Mohammadi, A. Nasiri, On Microstructure and Early Stage Corrosion 

Performance of Heat Treated Direct Metal Laser Sintered AlSi10Mg, Addit. Manuf. 28 

(2019) 107–119. doi: https://doi.org/10.1016/j.addma.2019.04.023 (IPF=7.002) 

 

5) M. Rafieazad, M. Ghaffari, A. Vahedi Nemani, A. Nasiri, Microstructural evolution and 

mechanical properties of a low-carbon low-alloy steel produced by wire arc additive 

https://doi.org/10.1016/j.corsci.2020.109073
https://doi.org/10.1149/1945-7111/abdfa8
https://doi:10.1007/s11837-019-03552-2
https://doi.org/10.1016/j.addma.2019.04.023
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manufacturing, Int. J. Adv. Manuf. Technol. (2019) 1–14. https://doi.org/10.1007/s00170-

019-04393-8 (IPF=2.633) 

 

6) M. Rafieazad, J.A. Jaffer, C. Cui, X. Duan, A. Nasiri, Nanosecond Laser Fabrication of 

Hydrophobic Stainless Steel Surfaces: The Impact on Microstructure and Corrosion 

Resistance, Materials (Basel). 11 (2018) 1577. https://doi.org/10.3390/ma11091577 

(IPF=3.057) 

 

7) M. Rafieazad, A. Vahedi Nemani, M. Ghaffari, A. Nasiri, On Microstructure and 

Mechanical Properties of a Low-Carbon Low-Alloy Steel Block Fabricated by Wire Arc 

Additive Manufacturing, journal of the Materials Engineering and Performance, 2020. 

https://doi.org/10.1007/s11665-021-05568-9 (IPF=1.467) 

 

8) M. Rafieazad, P. Fathi, A. Nasiri, M. Haghshenas, M. Mohammadi, Isotropic Corrosion 

Performance of the Newly Developed L-PBF Fabricated A205 Aluminum Alloy, Materials 

Letter. https://doi.org/10.1016/j.matlet.2021.129541 (IPF=3.019)  

 

9) M. Amiriafshar, M. Rafieazad, X. Duan, and A. Nasiri, “Fabrication and Coating 

Adhesion Study of Superhydrophobic Stainless Steel Surfaces: the Effect of Substrate 

Surface Roughness,” Surfaces and Interfaces, p. 100526, 2020. 

https://doi.org/10.1016/j.surfin.2020.100526 (IPF=3.724) 

 

10) P. Fathi, M. Rafieazad, X. Duan, M. Mohammadi, and A. M. Nasiri, “On microstructure 

and corrosion behaviour of AlSi10Mg alloy with low surface roughness fabricated by 

direct metal laser sintering,” Corros. Sci., vol. 157, 2019. 

https://doi.org/10.1016/j.corsci.2019.05.032 (IPF=7.002) 

 

11) M. Ghaffari, A. Vahedi Nemani, M. Rafieazad, and A. Nasiri, “Effect of Solidification 

Defects and HAZ Softening on the Anisotropic Mechanical Properties of a Wire Arc 

Additive-Manufactured Low-Carbon Low-Alloy Steel Part,” JOM, vol. 71, no. 11, pp. 

4215–4224, Nov. 2019. https://doi.org/10.1007/s11837-019-03773-5 (IPF=2.305) 

 
12) P. Fathi, M. Rafieazad, …, A.  Nasiri, M. Mohammadi, Corrosion Performance of Additively 

Manufactured Bimetallic Aluminum Alloys, Submitted to Journal of Electrochemical Acta 

(IPF=6.215) 

 

Conference papers: 

1) M. Rafieazad, M. Mohammadi, A. Gerlich, A. Nasiri, Impacts of Friction Stir Processing 

on Microstructure and Corrosion Properties of DMLS-AlSi10Mg, in: TMS 2020 Conf., 

2020. 

 

2) M. Rafieazad, A. Chatterjee, and A. M. Nasiri, Additively Manufactured DMLS-

AlSi10Mg using Recycled Powder: the Impacts on Microstructure and Corrosion 

Properties, CSME conference, (Full Paper), Jun 2019 

https://doi.org/10.1007/s00170-019-04393-8
https://doi.org/10.1007/s00170-019-04393-8
https://doi.org/10.3390/ma11091577
https://doi.org/10.1007/s11665-021-05568-9
https://doi.org/10.1016/j.matlet.2021.129541
https://doi.org/10.1016/j.surfin.2020.100526
https://doi.org/10.1016/j.corsci.2019.05.032
https://doi.org/10.1007/s11837-019-03773-5
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3) M. Rafieazad, P. Fathi, M. Mohammadi, and A.M. Nasiri, Low temperature heat-

treatment cycle on AlSi10Mg_200C alloy fabricated by direct laser metal sintering: 

Microstructure evolution and corrosion resistivity, ICAA16 conference, (Full Paper), 

Feb2018 

 

4) P. Fathi, M. Rafieazad, M. Mohammadi, X. Duan, and A.M. Nasiri, Effect of surface 

finishing procedures on corrosion resistance of DMLS-AlSi10Mg_200C alloy, ICAA16 

conference, (Full Paper), Feb2018 

5) A. Vahedi, M. Ghaffari, M. Rafieazad, and A. M. Nasiri, Post-Printing Heat Treatment of a 

Wire Arc Additively Manufactured Low Carbon Low Alloy Steel, CSME conference, (Full 

Paper), Jun 2019  

 

Conference Abstracts: 

1) M. Rafieazad, M. Mohammadi, Adrian Gerlich, and A. M. Nasiri, On Corrosion 

Behavior of Direct Metal Laser Sintered AlSi10Mg Alloy Before and After Friction Stir 

Processing, ICAA17 conference, (Full Paper), June 2020 

 

2) M. Rafieazad, Mohsen Mohammadi, and A. M. Nasiri, Comprehensive Study on 

Microstructure, Mechanical, and Corrosion properties of DMLS AlSi10Mg, Annual 

research day of MUN, (Poster), May 2019 

 

3) M. Rafieazad, and A. M. Nasiri, Microstructural Evolution and Mechanical Properties of 

a High-Strength Low Alloy Steel Produced by Wire Arc Additive Manufacturing, 

CANWELD Conference, (Abstract), 2018 

 

4) J. A. Jaffer, M. Rafieazad, C. Cui, X. Duan, and A. M. Nasiri, Corrosion Resistance 

Analysis of Laser Fabricated Hydrophobic Stainless Steel Surfaces, CMSC2017, 

(Presentation), Jun 2017 

 

5) M. Ghaffari, A. Vahedi, M. Rafieazad, and A. M. Nasiri, Anisotropy in Mechanical 

Properties of a Wire Arc Additive Manufactured Low Carbon Low Alloy Steel, CSME 

conference, (Presentation), Jun 2019  

 

Figure 1.5 shows the structure of this Ph.D. thesis. As shown in this figure, Chapters 2 to 5 and 

Appendixes 1 to 3 of this thesis are prepared based on the paper submissions to peer-reviewed 

journals. 
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Chapter 2 examines the impact of low-temperature heat-treatment on the microstructure 

and corrosion performance of direct metal laser sintered (DMLS)-AlSi10Mg alloy. 

Chapter 3 investigates the impacts of using recycled powder with different size and 

morphology as compared to the virgin powder on solidification defects, microstructures, and the 

resultant corrosion properties of direct metal laser sintered AlSi10Mg alloy. 

Chapter 4 study the effects of microstructural modifications induced by tuning the laser-

powder bed fusion (L-PBF) process parameters on electrochemical stability of the L-PBF-

AlSi10Mg alloy. 

In Chapter 5 the solid-state structural modification technique friction-stir-processing (FSP) 

was applied on the surface of a laser-powder-bed-fusion fabricated AlSi10Mg alloy to locally 

modify the microstructure and enhance the corrosion properties of the alloy. 

In addition to the above chapters that cover the primary structure of this thesis, the author 

has been also involved with a few side projects during the course of his PhD program (presented 

as appendices 1 and 2 at the end of this thesis). These projects were focused on understanding the 

full potential of the state-of-the-art wire arc additive manufacturing (WAAM) technology to 

fabricate large-scale components. Owing to its significantly high deposition rate (3-8 kg/h), 

substantial reduction in the fabrication time, and an unlimited build envelope, WAAM technology 

has the potential to be one of the most significant manufacturing innovations in many industries. 

However, the industrial evolution and adoption of this technology are currently limited due to the 

current lack of a commercially available robotic WAAM platform. The presented chapters as 

Appendix 1 and 2 contribute critical knowledge related to the development of a versatile robotic 

WAAM platform and advancement of the process in fabrication of large-scale parts. Moreover, 



12 
 

the anisotropy in mechanical properties and microstructure of the fabricated parts were 

investigated.  

In another side project (Appendix 3), the effectiveness of hydrophobic 17-4 PH stainless 

steel surfaces fabricated through nanosecond fiber laser surface texturing combined with applying 

a hydrophobic coating and its impact on the microstructure and corrosion resistance of the surface 

were also investigated. Appendix 3 studies nanosecond fiber laser surface texturing capability, 

followed by a low energy coating in the fabrication of hydrophobic 17-4 PH stainless steel surfaces 

as an alternative to the ultrashort lasers previously utilized for hydrophobic surfaces production.
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Figure 1. 4. Structure of the PhD thesis and related publications 



14 
 

References: 

[1] A. Taşdemir, S. Nohut, An overview of wire arc additive manufacturing (WAAM) in 

shipbuilding industry, Ships Offshore Struct. 0 (2020) 1–18. 

doi:10.1080/17445302.2020.1786232. 

[2] S.L. Sing, J. An, W.Y. Yeong, F.E. Wiria, Laser and electron-beam powder-bed additive 

manufacturing of metallic implants: A review on processes, materials and designs, J. 

Orthop. Res. 34 (2016) 369–385. doi:10.1002/jor.23075. 

[3] W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, The metallurgy and processing 

science of metal additive manufacturing, Int. Mater. Rev. 61 (2016) 315–360. 

doi:10.1080/09506608.2015.1116649. 

[4] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta 

Mater. 117 (2016) 371–392. doi:https://doi.org/10.1016/j.actamat.2016.07.019. 

[5] B.S. Amirkhiz, D. Chalasani, M. Mohammadi, TEM Study of Additively Manufactured 

Metallic Alloys: Nickel Aluminum Bronze, Microsc. Microanal. 25 (2019) 2588–2589. 

doi:10.1017/S1431927619013679. 

[6] S.-H. Sun, K. Hagihara, T. Nakano, Effect of scanning strategy on texture formation in 

Ni-25at.%Mo alloys fabricated by selective laser melting, Mater. Des. 140 (2018) 307–

316. doi:https://doi.org/10.1016/j.matdes.2017.11.060. 

[7] M. Rafieazad, M. Ghaffari, A. Vahedi Nemani, A. Nasiri, Microstructural evolution and 

mechanical properties of a low-carbon low-alloy steel produced by wire arc additive 

manufacturing, Int. J. Adv. Manuf. Technol. (2019) 1–14. doi:10.1007/s00170-019-

04393-8. 

[8] M. Ghaffari, A. Vahedi Nemani, M. Rafieazad, A. Nasiri, Effect of Solidification Defects 

and HAZ Softening on the Anisotropic Mechanical Properties of a Wire Arc Additive-

Manufactured Low-Carbon Low-Alloy Steel Part, JOM. 71 (2019) 4215–4224. 

doi:10.1007/s11837-019-03773-5. 

[9] M. Kazemipour, M. Mohammadi, E. Mfoumou, A.M. Nasiri, Microstructure and 

Corrosion Characteristics of Selective Laser-Melted 316L Stainless Steel: The Impact of 

Process-Induced Porosities, JOM. 71 (2019) 3230–3240. doi:10.1007/s11837-019-03647-

w. 

[10] T. Ishimoto, K. Hagihara, K. Hisamoto, S.-H. Sun, T. Nakano, Crystallographic texture 

control of beta-type Ti–15Mo–5Zr–3Al alloy by selective laser melting for the 

development of novel implants with a biocompatible low Young’s modulus, Scr. Mater. 

132 (2017) 34–38. doi:https://doi.org/10.1016/j.scriptamat.2016.12.038. 

[11] H. Attar, S. Ehtemam-Haghighi, D. Kent, X. Wu, M.S. Dargusch, Comparative study of 

commercially pure titanium produced by laser engineered net shaping, selective laser 

melting and casting processes, Mater. Sci. Eng. A. 705 (2017) 385–393. 

doi:https://doi.org/10.1016/j.msea.2017.08.103. 

[12] P. Fathi, M. Rafieazad, X. Duan, M. Mohammadi, A. Nasiri, On Microstructure and 

Corrosion Behaviour of AlSi10Mg Alloy with Low Surface Roughness Fabricated by 

Direct Metal Laser Sintering, Corros. Sci. 157 (2019) 126–145. 

[13] M. Mohammadi, H. Asgari, Achieving low surface roughness AlSi10Mg_200C parts 

using direct metal laser sintering, Addit. Manuf. 20 (2018) 23–32. 

doi:https://doi.org/10.1016/j.addma.2017.12.012. 



15 
 

[14] P. Fathi, M. Mohammadi, X. Duan, A. Nasiri, Effects of Surface Finishing Procedures on 

Corrosion Behavior of DMLS-AlSi10Mg_200C Alloy Versus Die-Cast A360.1 

Aluminum, JOM. (2019) 1–12. doi:10.1007/s11837-019-03344-8. 

[15] P. Fathi, M. Mohammadi, X. Duan, A.M. Nasiri, A Comparative Study on Corrosion and 

Microstructure of Direct Metal Laser Sintered AlSi10Mg_200C and Die Cast A360.1 

Aluminum, J. Mater. Process. Technol. 259 (2018) 1–14. 

doi:https://doi.org/10.1016/j.jmatprotec.2018.04.013. 

[16] M. Rafieazad, M. Mohammadi, A. Nasiri, On Microstructure and Early Stage Corrosion 

Performance of Heat Treated Direct Metal Laser Sintered AlSi10Mg, Addit. Manuf. 28 

(2019) 107–119. doi:https://doi.org/10.1016/j.addma.2019.04.023. 

[17] W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform. 23 

(2014) 1917–1928. doi:10.1007/s11665-014-0958-z. 

[18] S. Das, D.L. Bourell, S.S. Babu, Metallic materials for 3D printing, MRS Bull. 41 (2016) 

729–741. 

[19] J.P. Oliveira, B. Crispim, Z. Zeng, T. Omori, F.M. Braz Fernandes, R.M. Miranda, 

Microstructure and mechanical properties of gas tungsten arc welded Cu-Al-Mn shape 

memory alloy rods, J. Mater. Process. Technol. 271 (2019) 93–100. 

doi:https://doi.org/10.1016/j.jmatprotec.2019.03.020. 

[20] F. Martina, J. Mehnen, S.W. Williams, P. Colegrove, F. Wang, Investigation of the 

benefits of plasma deposition for the additive layer manufacture of Ti–6Al–4V, J. Mater. 

Process. Technol. 212 (2012) 1377–1386. 

doi:https://doi.org/10.1016/j.jmatprotec.2012.02.002. 

[21] P.P. Nikam, D. Arun, K.D. Ramkumar, N. Sivashanmugam, Microstructure 

characterization and tensile properties of CMT-based wire plus arc additive manufactured 

ER2594, Mater. Charact. 169 (2020) 110671. 

doi:https://doi.org/10.1016/j.matchar.2020.110671. 

[22] M. Zavala-Arredondo, N. Boone, J. Willmott, D.T.D. Childs, P. Ivanov, K.M. Groom, K. 

Mumtaz, Laser diode area melting for high speed additive manufacturing of metallic 

components, Mater. Des. 117 (2017) 305–315. 

doi:https://doi.org/10.1016/j.matdes.2016.12.095. 

[23] C. Brice, R. Shenoy, M. Kral, K. Buchannan, Precipitation behavior of aluminum alloy 

2139 fabricated using additive manufacturing, Mater. Sci. Eng. A. 648 (2015) 9–14. 

doi:https://doi.org/10.1016/j.msea.2015.08.088. 

[24] T. Qi, H. Zhu, H. Zhang, J. Yin, L. Ke, X. Zeng, Selective laser melting of Al7050 

powder: Melting mode transition and comparison of the characteristics between the 

keyhole and conduction mode, Mater. Des. 135 (2017) 257–266. 

doi:https://doi.org/10.1016/j.matdes.2017.09.014. 

[25] J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, 3D 

printing of high-strength aluminium alloys, Nature. 549 (2017) 365–369. 

doi:10.1038/nature23894. 

[26] K. Bartkowiak, S. Ullrich, T. Frick, M. Schmidt, New Developments of Laser Processing 

Aluminium Alloys via Additive Manufacturing Technique, Phys. Procedia. 12 (2011) 

393–401. doi:https://doi.org/10.1016/j.phpro.2011.03.050. 

[27] M. Krishnan, E. Atzeni, R. Canali, F. Calignano, D. Manfredi, E.P. Ambrosio, L. Iuliano, 

On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS, 

Rapid Prototyp. J. 20 (2014) 449–458. doi:10.1108/RPJ-03-2013-0028. 



16 
 

[28] P. Vora, K. Mumtaz, I. Todd, N. Hopkinson, AlSi12 in-situ alloy formation and residual 

stress reduction using anchorless selective laser melting, Addit. Manuf. 7 (2015) 12–19. 

doi:https://doi.org/10.1016/j.addma.2015.06.003. 

[29] H. Asgari, C. Baxter, K. Hosseinkhani, M. Mohammadi, On microstructure and 

mechanical properties of additi[1], Mater. Sci. Eng. A. 707 (2017) 148–158. 

doi:https://doi.org/10.1016/j.msea.2017.09.041. 

[30] L. Zhou, A. Mehta, E. Schulz, B. McWilliams, K. Cho, Y. Sohn, Microstructure, 

precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat 

treatment, Mater. Charact. (2018). doi:https://doi.org/10.1016/j.matchar.2018.04.022. 

[31] B.A. Fulcher, D.K. Leigh, T.J. Watt, Comparison of AlSi10Mg and Al 6061 processed 

through DMLS, in: Proc. Solid Free. Fabr. Symp. Austin, TX, USA, 2014. 

[32] A. Leon, A. Shirizly, E. Aghion, Corrosion Behavior of AlSi10Mg Alloy Produced by 

Additive Manufacturing (AM) vs. Its Counterpart Gravity Cast Alloy, Metals (Basel). 6 

(2016). doi:10.3390/met6070148. 

[33] M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, F. Abe, Residual Stress within 

Metallic Model Made by Selective Laser Melting Process, CIRP Ann. 53 (2004) 195–198. 

doi:https://doi.org/10.1016/S0007-8506(07)60677-5. 

[34] D. Manfredi, E.P. Ambrosio, F. Calignano, M. Krishnan, R. Canali, S. Biamino, M. 

Pavese, E. Atzeni, L. Iuliano, P. Fino, C. Badini, Direct Metal Laser Sintering: an additive 

manufacturing technology ready to produce lightweight structural parts for robotic 

applications, La Metall. Ital. 105 (2013) 15–24. 

[35] J. Fite, S. Eswarappa Prameela, J.A. Slotwinski, T.P. Weihs, Evolution of the 

microstructure and mechanical properties of additively manufactured AlSi10Mg during 

room temperature holds and low temperature aging, Addit. Manuf. 36 (2020) 101429. 

doi:https://doi.org/10.1016/j.addma.2020.101429. 

[36] N.T. Aboulkhair, C. Tuck, I. Ashcroft, I. Maskery, N. Everitt, On the Precipitation 

Hardening of Selective Laser Melted AlSi10Mg, Metall. Mater. Trans. A. 46 (2015) 

3337–3341. doi:10.1007/s11661-015-2980-7. 

[37] A. Mertens, O. Dedry, D. Reuter, O. Rigo, J. Lecomte-Beckers, Thermal treatments of 

AlSi10Mg processed by laser beam melting, in: Proc. 26th Int. Solid Free. Fabr. Symp., 

2015: pp. 1007–1016. 

[38] H. Asgari, C. Baxter, K. Hosseinkhani, M. Mohammadi, On microstructure and 

mechanical properties of additively manufactured AlSi10Mg_200C using recycled 

powder, Mater. Sci. Eng. A. 707 (2017) 148–158. doi:10.1016/J.MSEA.2017.09.041. 

[39] A.H. Maamoun, M. Elbestawi, G.K. Dosbaeva, S.C. Veldhuis, Thermal post-processing of 

AlSi10Mg parts produced by Selective Laser Melting using recycled powder, Addit. 

Manuf. 21 (2018) 234–247. doi:https://doi.org/10.1016/j.addma.2018.03.014. 

[40] M. Rafieazad, A. Chatterjee, A.M. Nasiri, Effects of Recycled Powder on Solidification 

Defects, Microstructure, and Corrosion Properties of DMLS Fabricated AlSi10Mg, JOM. 

71 (2019) 3241–3252. doi:10.1007/s11837-019-03552-2. 

[41] M. Navaser, M. Atapour, Effect of Friction Stir Processing on Pitting Corrosion and 

Intergranular Attack of 7075 Aluminum Alloy, J. Mater. Sci. Technol. 33 (2017) 155–165. 

doi:https://doi.org/10.1016/j.jmst.2016.07.008. 

[42] A.H. Maamoun, S.C. Veldhuis, M. Elbestawi, Friction stir processing of AlSi10Mg parts 

produced by selective laser melting, J. Mater. Process. Technol. 263 (2019) 308–320. 

doi:https://doi.org/10.1016/j.jmatprotec.2018.08.030. 



17 
 

[43] A. Leon, E. Aghion, Effect of surface roughness on corrosion fatigue performance of 

AlSi10Mg alloy produced by Selective Laser Melting (SLM), Mater. Charact. 131 (2017) 

188–194. doi:https://doi.org/10.1016/j.matchar.2017.06.029. 

[44] A. Hadadzadeh, B.S. Amirkhiz, A. Odeshi, J. Li, M. Mohammadi, Role of hierarchical 

microstructure of additively manufactured AlSi10Mg on dynamic loading behavior, 

Addit. Manuf. 28 (2019) 1–13. doi:https://doi.org/10.1016/j.addma.2019.04.012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



18 
 

Chapter 2 

On Microstructure and Early-Stage Corrosion Performance of 

Heat-Treated Direct Metal Laser Sintered AlSi10Mg1 2 
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Abstract 

This study examines the impact of low-temperature heat-treatment on the microstructure and 

corrosion performance of direct metal laser sintered (DMLS)-AlSi10Mg alloy. Differential 

scanning calorimetry (DSC) was used to determine the phase(s) transition temperatures in the 

alloy. Two exothermic phenomena were detected and associated with the Mg2Si precipitation and 

Si phase precipitation in the as-printed alloy. Based on DSC results, thermal-treatments including 

below and above the active Si precipitation temperature at 200 °C and 300 °C, respectively, and 

350 °C as an upper limit temperature for 3 h were applied to the as-printed samples. Scanning 

electron microscopy and X-ray diffraction analysis confirmed that heat-treatment from 200 °C to 

350 °C promotes the homogeneity of the microstructure, characterized by uniform distribution of 

eutectic Si in α-Al matrix. To investigate the impact of the applied heat-treatment cycles on 

corrosion resistance of DMLS-AlSi10Mg at early stage of immersion, anodic polarization testing 

and electrochemical impedance spectroscopy were performed in aerated 3.5 wt.% NaCl solution. 

The results revealed more uniformly distributed pitting attack on the corroded surfaces by 

increasing the heat-treatment temperature up to 300 °C, attributed to the more protective nature of 

the spontaneously air-formed passive layer on the surface of the alloy at initial immersion time. 

Further increase of the heat treatment temperature to 350 °C induced severe localized corrosion 

attacks near the coarse Si particles, ascribed to the increased potential difference between the 

coalesced Si particles and aluminum matrix galvanic couple. In comparison, the corrosion of the 

as-printed and 200 °C heat treated samples was characterized by a penetrating selective attack 

along the melt pool boundaries, leading to a higher corrosion current density and an active surface 

at early exposure, associated with the weakness of the existing passive film on their surfaces. 
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1. Introduction 

The growing demand for advanced engineering components with complex designs and exceptional 

mechanical performances requires implementing innovative manufacturing technologies. In this 

vein, additive manufacturing (AM) procedures as revolutionary fabrication techniques are gaining 

enormous attention owing to their innovative freedom to design complicated and near-net shape 

functional components mostly without any geometrical constraint, saving material due to lack of 

scrap, and efficient product fabrication within a few hours at lower costs [1]. AM usually leads to 

extremely rapid cooling and solidification rates (103–1011 K/s [2]), giving rise to the formation of 

unique microstructural features different from the ones obtained from conventional manufacturing 

techniques [3]. 

Aluminum alloys containing silicon and magnesium as the primary alloying elements have 

conceived a lightweight alloy family owning a proper mechanical performance coupled with 

sufficient corrosion resistance [4]. Among a wide variety of alloys in this family, AlSi10Mg as a 

traditional cast alloy has been predominantly adopted by the AM industry, particularly through 

Direct Metal Laser Sintering (DMLS) process [5]. Low solidification shrinkage and cracking 

susceptibility and good weldability are common characteristics of this alloy due to its near-eutectic 

composition [1]. Furthermore, the addition of Mg to the composition of this alloy has provided an 

age-hardening property through precipitation sequences of α(Al) → (Guinier–Preston) GP zones 

→ β″ → β′ → β, where GP zones are separated clusters of Mg and Si atoms, β″ and β′ are non-

stable compounds of Mg and Si atoms with different stoichiometry, and β phase is the stable Mg2Si 
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phase [6]. All these distinctive properties of AlSi10Mg alloy have led to a multiplicity of 

applications in aerospace and automotive industries [7]. 

The unique processing conditions during DMLS, such as rapid solidification of the material 

associated with extremely high cooling rates of small melt pools, produce a fine microstructure 

and a large amount of residual thermal stresses within the structure, which can create dimensional 

inaccuracy or distortion in the printed part [8]. For this reason, partial annealing heat-treatment is 

commonly utilized to avoid part’s distortion and release some of the residual stresses [9]. However, 

previous studies have shown that a high-temperature heat-treatment cycle extensively alters the 

inherent microstructure of the as-printed DMLS-AlSi10Mg alloy, and consequently leads to 

mechanical properties degradation [10,11]. A few previous studies reported that increasing heat-

treatment temperatures for this alloy decreases the solubility of Si in supersaturated α-Al matrix, 

which contributes to the coarsening and coalescence of the eutectic Si particles inside the α-Al 

matrix, resulting in a decrease in hardness value and tensile strength, whereas the elongation was 

found to increase significantly [6,12,13]. From this perspective, heat-treatment can be applied to 

optimize and tune mechanical properties of DMLS-AlSi10Mg alloy through microstructural 

modifications [14]. 

The impact of heat treatment on corrosion resistance of DMLS-AlSi10Mg alloy has been 

highlighted heretofore in three previous studies [15–17]. The first study was reported by Cabrini 

et al. [15], in which the effects of two heat treatment cycles, including low temperature partial 

annealing at 573 K for 2 h (also known as stress relieving), and annealing for 4 h at 823 K followed 

by water quenching, on corrosion behavior of DMLS-AlSi10Mg alloy were investigated in aerated 

Harrison solution. In this work, the high-temperature annealing of DMLS-AlSi10Mg alloy at 823 

K was reported to form a uniform microstructure composed of coarse Si particles within the α-Al 
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matrix [15]. After such a drastic change of the microstructure, an active behavior and a decreased 

corrosion resistance of the alloy, characterized by a severe localized corrosion in the Al matrix 

along the periphery of the coarse Si particles, were reported [15]. On the contrary, the untreated 

DMLS-AlSi10Mg sample and the stress-relieved ones were reportedly exhibited a better corrosion 

resistance, characterized by localized and selective attacks predominantly along the melt pool 

boundaries. Such preferential attack on the melt pool borders were ascribed to the increased 

content of the Si and the breakage of its network along the heat affected zone, where Si particles 

separate as idiomorphic crystals [5]. Furthermore, the authors reported that stress relieving of the 

alloy at 573 K does not contribute to a noticeable microstructural modification [15]. Analogously, 

very similar corrosion properties, i.e. corrosion potential and pitting potential, were reported for 

the untreated and stress relieved DMLS-AlSi10Mg alloy [15]. Therefore, a comparable short-term 

and long-term corrosion performance were reported for the untreated and stress relieved DMLS-

AlSi10Mg samples [15].  

Contrarily, the same authors, but in another study [16] conducted intergranular corrosion tests 

as per ISO 11846 and highlighted a different corrosion response for the DMLS-AlSi10Mg after 

heat treatment at 200 °C and 300 °C for 2 h followed by air cooling. According to this study, 

susceptibility of the alloy to the selective corrosion attack increases from the untreated AlSi10Mg 

to the heat treated ones up to 300 °C, whereas higher temperature heat treatments (at 400 °C and 

500 °C) were reported to change the corrosion morphology, provoking more general corrosion 

characteristics in the AlSi10Mg alloy [16]. Therefore, the 300 °C (573 K) heat treated AlSi10Mg 

samples were shown to behave differently when exposed to the Harrison solution [15] versus a 

more aggressive electrolyte used to perform intergranular corrosion testing (30 g/L NaCl solution 

with 10 mL/L HCl for 24 h) [16]. Although no quantitative corrosion properties were presented in 
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this work, the reported findings seems to contradict the authors’ first work [15], in which a similar 

corrosion behavior was reported for the untreated and 300 °C stress relieved AlSi10Mg. This 

discrepancy, albeit was not explicated, could be attributed to the differences in the type of 

electrolyte and testing method used in aforementioned studies.  

Finally, in a recent study by Rubben et al. [17], the impacts of three heat treatment cycles, 

including artificial aging at 170 °C for 6 h, stress relieving at 300 °C for 2 h, and stress relieving 

at 250 °C for 2 h, on the microstructure and corrosion behavior of the selective laser melted (SLM) 

AlSi10Mg in a 0.1 M NaCl solution were investigated. Interestingly, no change in the 

microstructure of the alloy was found after the artificial aging at 170 °C, although no elucidation 

for the stability of the microstructure even after 6 h at 170 °C was provided [17]. Analogous to 

Cabrini’s first work [15], the polarization behavior of all heat treated samples were reported to be 

very similar [17]. However, the corrosion morphology of the samples were reported to change 

noticeably from a superficial corrosion attack coupled with formation of micro-cracks along the 

melt pool boundaries for the untreated and 170 °C aged samples to a more severe penetrating 

corrosion attack still preferentially oriented along the melt pool borders [17]. The long-term 

exposure of the samples to the electrolyte seemed to cause more degradation of the 250 °C and 

300 °C heat treated samples than the untreated ones [17].  However, the reported deterioration of 

the corrosion performance of the heat treated AlSi10Mg samples was not supported by quantitative 

electrochemical data in their study [17]. This observation is not consistent with the Cabrini’s first 

work [15], where a similar corrosion performance was reported for untreated and 300 °C heat 

treated DMLS-AlSi10Mg alloy, requiring further investigation.  

Therefore, in the context of developing and applying appropriate heat treatment cycles for 

additively manufactured AlSi10Mg components, there are still many unanswered questions that 



24 
 

demand for a complementary analysis. Further investigation on the impact of low temperature heat 

treatment cycles on the corrosion properties of DMLS-AlSi10Mg alloy is required to be able to 

clarify some of the contradictions that currently exist in the literature. In addition, defining a 

appropriate methodology to select appropriate heat treatment temperatures with respect to the 

existing phase transformations in this alloy would be an efficient way to effectively tailor the 

desired properties in the component through heat treatment. Focusing on these gaps, this study 

aims for a detailed investigation of the impact of low-temperature heat-treatments on the 

microstructure and early stage corrosion performance of DMLS-AlSi10Mg alloy. A thorough 

differential scanning calorimetric analysis was conducted to be able to select the desired heat 

treatment temperatures deliberately.     

2. Experimental Procedure 

2.1. Materials  

In this work, AlSi10Mg cubes with 10 mm × 10 mm × 10 mm dimensions were produced using 

an EOS M290 metal additive manufacturing machine equipped with a 400 W Yb-fibre laser and 

100 μm spot size, where the building platform was held at 200 °C throughout the whole process. 

The gas atomized AlSi10Mg powder used herein had an average particle size distribution of 15-

45 μm with a nominal chemical composition given in Table 1. Other processing parameters used 

in the fabrication process include laser power of 370 W, scanning speed of 1300 mm/s, hatching 

distance of 190 µm, and powder layer thickness of 30 μm. Stripe hatch strategy with 67° laser 

beam rotation between successive layers was used to manufacture the samples. In addition, an 

argon atmosphere with an oxygen content of maximum 0.1% was used in the process. 
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Table 2. 1 Nominal chemical composition of AlSi10Mg powder (wt.%) 

Si 
Mg Fe Mn Ti Zn Cu Al 

9.00-11.00 0.20-0.45 ≤0.55 ≤0.45 ≤0.15 ≤0.10 ≤0.05 Bal. 

 

2.2. Differential Scanning Calorimetry  

Thermal analyses were conducted using differential scanning calorimetry (Mettler-Toledo DSC1) 

to detect any physical transformation such as phase transformations, or precipitation phenomena 

that the DMLS manufactured alloy might undergo. The tests were performed on the as-printed 

specimens in the temperature range of 0-550 °C, utilizing different heating rates of 2 °C/min, 5 

°C/min, 10 °C/min, and 20 °C/min. The consistency of the results was determined by repeating 

each test on at least three samples. 

2.3. Heat-treatment of the DMLS-AlSi10Mg Specimens  

The analysis of the DSC results led to the selection of three different heat-treatment temperatures, 

including 200 °C, 300 °C, and 350 °C. The DMLS-AlSi10Mg samples were subjected to those 

temperatures for 3 h in an Argon atmosphere to minimize the oxidation during heat-treatment. This 

was followed by water quenching of the heat-treated samples to the room temperature. 

2.4. Microstructure Characterization  

To characterize the microstructure of the samples, all DMLS-samples were sectioned along both 

the building plane and the building direction, followed by standard grinding and polishing 

procedures for Al alloys utilizing a Struers Tegramin-30 auto-grinder/polisher. The Keller’s 

reagent (2.5 vol.% HNO3, 1 vol.% HF, 1.5 vol.% HCl, and 95 vol.% H2O) was used to etch and 

reveal the microstructure. The microstructure of all samples was characterized using an optical 

https://en.wikipedia.org/wiki/Differential_scanning_calorimetry
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microscope (Nikon Eclipse 50i) and a scanning electron microscope (SEM) (FEI MLA 650F). 

Phase characterization of the samples after each heat-treatment was determined using a Rigaku 

Ultimate IV X-ray diffraction (XRD) with Cu-Kα source at 40 kV and 44 mA over a diffraction 

angle range of 20°-50° with a step size of 0.02°. 

2.5. Micro-hardness Measurement  

Vickers micro-hardness tests were performed on planes parallel (side view) and perpendicular (top 

view) to the building direction utilizing a Buehler Micromet hardness test machine at a load of 100 

gf and loading time of 15 s. It is worth mentioning that the reported micro-hardness test results for 

each sample in this study are the average value from at least 10 different indentation points on 

polished surfaces. 

2.6. Anodic Polarization Test  

The electrochemical measurements of all polished DMLS-produced samples were conducted using 

an IVIUM CompactStat™ Potentiostat with a three-electrode cell setup based on the ASTM G5 

standard for potentiodynamic polarization measurements [18], using a graphite rod as the counter 

electrode (CE), a saturated silver/silver chloride (Ag/AgCl) as the reference electrode (RE), and 

the sample as the working electrode. Previous studies have shown a lower corrosion resistivity on 

the side view (parallel to the building direction) of the DMLS-AlSi10Mg than that of the top view, 

which was reported to be associated with the higher density of the melt pool boundaries containing 

an increased content of Si and breakage of the Si network along the heat affected zone [15]. For 

this reason, in this study, the electrochemical properties of the samples were only measured on the 

side planes. The samples were immersed in an aerated 3.5 wt.% NaCl solution to simulate seawater 

corrosion conditions at 25±0.5 °C using a temperature-controlled water bath. Before the tests, the 
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open circuit potential (OCP) was monitored for 1 h to allow for the OCP stabilization. The applied 

potential range for the polarization measurements was from −0.02 VAg/AgCl to +0.3 VAg/AgCl versus 

the OCP employing the scanning rate of 0.125 mV/s. 

Following the polarization tests, the corrosion morphology was investigated using the SEM, 

after corrosion product removal using concentrated HNO3 solution (15.8 N) in an ultrasonic bath 

for 20 min [19]. Repeatability of the results was measured by testing at least three samples. 

2.7. Electrochemical Impedance Spectroscopy (EIS) Test  

EIS tests were also carried out on the polished samples after 1 h of immersion time at OCP in 

aerated 3.5 wt.% NaCl solution at 25±0.5 °C. Sinusoidal potential signals with ±0.01 V amplitude 

over the OCP with a frequency range between 100000 Hz and 10 mHz with ten points per decade 

were applied. All corrosion tests herein were carried out only on the polished surfaces to evaluate 

the effect of microstructure resulted from the heat-treatment on the corrosion properties.  

3. Results and Discussion 

3.1. DSC Results 

Figure 2.1 shows the DSC scan of the as-printed sample performed at 5 °C/min, indicating two 

distinguishable exothermic peaks with maximum temperatures at 236.7 °C and 296.5 °C and 

released enthalpies of 2.57±0.13 J/g and 0.57±0.04 J/g, respectively. The DSC curves obtained 

from the DMLS-AlSi10Mg specimens using four different heating rates (2 °C/min, 5 °C/min, 10 

°C/min, and 20 °C/min) were analyzed and the resultant peak temperature values are reported in 

Table 2. 
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Figure 2. 1. DSC curve of the as-printed AlSi10Mg sample recorded at 5 °C/min. 

 

Table 2. 2. Temperature values of Peak 1 and Peak 2 measured from the DSC scans of as-printed 

AlSi10Mg samples at various heating rates. 

Rate 

(°C/min) 

Peak 1 

(°C) 

Peak 2 

(°C) 

2 233.9±3.1 283.3±3.8 

5 236.7±3.2 296.5±3.9 

10 241.8±3.2 312.4±4.2 

20 259.7±3.5 322.9±4.3 

 

Considering the existence of two exothermic phase transformations, as shown in Figure 2.1, 

in order to determine proper heat-treatment cycles, the endpoint temperatures for the two 

distinguished transformations were determined. The peak temperature values versus the applied 

heating rates are plotted in Figure 2.2. To calculate the peaks’ temperature values at isothermal 

transformation condition, the peaks’ temperatures at the lowest possible heating rate value (𝜑 = 0 

°C/min) should be calculated. Using two polynomial regressions, shown in equations (1) and (2) 
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for the Peak 1 and Peak 2, respectively, the peaks’ temperature values at 𝜑 = 0 °C/min were 

calculated using the error parameter value (R2) above 0.99.  

 

 

Figure 2. 2. Endpoint temperatures of peaks 1 and 2 as a function of different heating rates used 

in the DSC experiments. 

 

𝑇𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡
𝑃𝑒𝑎𝑘 1 = 0.0436𝜑2 + 0.4673𝜑 + 232.92          (𝑅2 = 0.9996)   (1) 

𝑇𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡
𝑃𝑒𝑎𝑘 2 = −0.1438𝜑2 + 5.36𝜑 + 273.22          (𝑅2 = 1.0000)   (2) 

where Tendpoint is the lowest possible temperature for the transformations activation, and 𝜑 is the 

imposed heating rate. Therefore, by considering the lowest possible heating rate, 𝜑 = 0 °C/min, 

the isothermal temperatures for the two distinguished transformations, corresponding to Peaks 1 

and 2, were calculated to be 232.9 °C and 273.2 °C, respectively. The calculated endpoint 

temperatures can also be considered as the Y-intercepts, where the fitted graphs cross the 

temperature axis, as illustrated in Figure 2.2.  
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The temperature obtained from DSC scan for the lower temperature transformation, peak 1, 

is approximately the temperature reported in the previous studies [20–22] for the precipitation of 

Mg2Si in β" form. The temperature of the second peak is close to the temperature reported for the 

activation of Si interdiffusion in Al, which would typically contribute to the precipitation, 

coarsening, and spheroidization of Si particles in the alloy [23,24]. Therefore, such knowledge of 

the primary phase transformation temperatures based on the DSC analysis procedure presented 

herein is a great asset and a proper methodology to identify the right temperatures for the heat 

treatment of the alloy to obtain the desired microstructure. As an example, the DSC analysis results 

can rationalize the reason the aging heat treatment at 170 °C for 6 h does not lead to a profound 

effect on the microstructure of the DMLS-AlSi10Mg, reported in the recent work by Rubben et al. 

[17], as the selected temperature is significantly lower than the minimum required temperature for 

an active interdiffusion of Si in Al.  

As the impact of Si network evolution resulted from applying a low temperature heat treatment 

on the early-stage corrosion properties of the DMLS-AlSi10Mg alloy is of particular interest 

herein, the heat treatment of the alloy was carried out at three temperatures with respect to the 

minimum required temperature for active interdiffusion of Si in Al (Si precipitation). These 

include a temperature below the activation of supersaturated Si precipitation from α-Al matrix 

(200 °C), a temperature close but higher than the Si interdiffusion activation temperature (300 °C), 

and a noticeably higher temperature (350 °C). The following section describes the microstructural 

characteristics of the alloy after applying each heat treatment cycle.  

3.2. Microstructure Characterization 

Optical and SEM micrographs of the untreated DMLS-AlSi10Mg samples in the as-printed 

condition are shown in Figure 2.3. The 3D representation of the optical micrographs of the DMLS-



31 
 

AlSi10Mg sample in the as-printed condition (Figure 2.3a), from both side and top views (parallel 

and perpendicular to the building direction, respectively) confirm a proper overlapping and 

densification between melt pools (MP). From the side view, melt pools have a semi-circular shape, 

also known as a fish-scale pattern [1], which their size depends on the laser beam parameters, i.e. 

the beam power, hatch distance, and the scanning speed. As clearly shown on the top view of the 

Figure 2.3a, having columnar patterned melt pools with irregular geometries and directions is 

attributed to 67° rotation of the laser scan between consecutive layers [25].  

 

Figure 2. 3. 3D representation of (a) optical and (b) SEM micrographs of DMLS-AlSi10Mg 

sample, demonstrating the side view along the building direction, as well as the top view 

perpendicular to the building direction. 

The SEM micrographs of the DMLS-AlSi10Mg from the sides and top views, presented in Figure 

2.3b, demonstrate a fine cellular structure composed of an interconnected fine network of fibrous 

Si eutectic phase (light grey phase) distributed in a supersaturated α-Al matrix (darker phase). 
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Three distinguishable regions with distinct microstructures across the melt pool, including the fine 

cellular structure in the center (MP fine), a coarser structure from the center to the melt pool 

boundary (MP coarse), and a heat affected zone (HAZ) containing coarser idiomorphic Si crystals, 

can be clearly detected in Figure 2.3b. This transition in microstructure forms due to the 

overlapping scanning lines and layer-by-layer solidification of material, resulting in different 

thermal histories from the center of a melt pool to the boundaries of its adjacent melt pools [26]. 

It should be noted that, critical solidification parameters, i.e. temperature gradient (G) and 

solidification rate (R) dictate the solidified microstructure for a given composition [27]. These 

values vary from the melt pool borders towards its center, resulting in a fine cellular-dendritic 

morphology in the melt pool center, where G is maximum and R is minimum during solidification, 

and more elongated and coarser dendritic structure along the melt pool boundaries, where the melt 

pool experiences the lowest temperature gradient and the highest solidification rate [5]. Such 

transitions in the microstructure of the AlSi10Mg alloy based on the solidification behavior during 

the DMLS process have been modeled in a recent study [28]. The reported modeling results 

affirmed that the angle between the nominal growth rate and the aluminum dendrite growth 

direction is the dictating parameter that controls the transition of microstructure from a fine 

cellular-dendritic morphology to a columnar dendritic structure [28]. 

Figure 2.4 shows the optical micrographs taken from the side views of the DMLS-AlSi10Mg 

sample after heat-treatment at 200 °C, 300 °C and 350 °C. As Figure 2.4a depicts, after heat-

treatment at 200 °C, the overall macrostructure remains unchanged when compared to the as-

printed condition (Figure 2.3a). After heat treatment of as-printed samples at 300 °C (Figure 2.4b), 

the melt pool boundaries’ features were still preserved and the micrograph is quite similar to that 

of the as-printed sample, shown in Figure 2.3a. However, the heat-treated sample at 350 °C (Figure 
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2.4c) shows that the melt pool boundaries have started to diminish and are no longer as sharp and 

clear as the lower temperatures heat treated or the as-printed ones. Heat-treatment temperatures 

above 400 °C have been reported to make the boundaries totally blurry and absent [12,16]. 

Therefore, from the low magnification view, the low-temperature heat-treatments performed on 

the as-printed DMLS-AlSi10Mg in this study do not interrupt the melt pools’ overall 

macrostructure and their boundaries noticeably. 

 

Figure 2. 4. Optical micrographs taken from side view of the DMLS-AlSi10Mg heat-treated at a) 

200 °C, b) 300 °C and c) 350 °C. 

 



34 
 

Figure 2.5 shows the 3D representation of SEM images including the sides and top views of the 

DMLS-AlSi10Mg after heat-treatment at various temperatures, i.e. 200 °C, 300 °C, and 350 °C. 

The evolving of the Si network morphology and distribution in the DMLS-AlSi10Mg structure by 

increasing the heat-treatment temperature is clearly visible. The SEM micrographs revealed that 

by increasing the heat-treatment temperature from 200 °C to 350 °C, not only the light grey 

intercellular Si network is broken by the growth of silicon phase into idiomorphic particles (see 

Figure 2.5c), which has resulted in an obscured Si network boundary, but also the precipitation of 

newly formed Si particles inside the α-Al dendrites arises.  

 

Figure 2. 5. 3D representation of the SEM micrographs taken from the DMLS-AlSi10Mg after 

heat-treatment at a) 200 °C, b) 300 °C, and c) 350 °C. 
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As shown in Figure 2.5a, the heat-treatment at 200 °C has not altered the microstructure of the as-

printed sample, and as reported in previous studies, heat treatments at 200 °C or lower temperatures 

are primarily recommended for relieving the internal residual stresses derived from the 

manufacturing process of this alloy [29]. A noticeable breakage of the Si network was detected 

after 300 °C heat treatment (see Figure 2.5b). Some remaining features corresponding to the melt 

pool boundaries were still retained at 300 °C, and as reported in a previous study, the heat-

treatment at 200 °C and 300 °C keeps the melt pools still visible [16]. As shown in Figure 2.5c, 

heat-treatment at 350 °C has resulted in a heavily precipitated microstructure (Si spheroidization 

and coarsening), containing a high density of Si particles (approximately 0.20-4.00 µm in size) 

with irregular shapes embedded in the α-Al matrix.   

The heat treated microstructures of the top and the side views of the DMLS-AlSi10Mg (see 

Figure 2.5) confirmed a similar morphology and distribution of Si particles after the low-

temperature heat treatment cycle on both cross sections. Uniform precipitation of Si particles was 

also detected along the intercellular boundaries with the increase in the heat-treatment temperature, 

which was found to be consistent with the results reported in a previous study [30], giving rise to 

a more uniform microstructure than that of the as-printed AlSi10Mg sample [15].  

The observed microstructures after low-temperature heat treatments at different temperatures 

are consistent with the DSC analysis results, in which two exothermic transformations, i.e. 

precipitation of Mg2Si phase and precipitation and coarsening of Si in α-Al matrix, were predicted 

to occur at 232.9 °C and 273.2 °C temperatures, respectively. An active interdiffusion of Si in the 

aluminum matrix at T > 273.2 °C has contributed to the breakage of the Si network and 

precipitation of Si particles from the matrix by an exothermic reaction, followed by further 

coarsening of the existing Si particles when the heat-treatment temperature reached 350 °C. 
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Therefore, the cellular structure of the as-printed AlSi10Mg is ceased after heat-treatment at 350 

°C, ascribed to the compositional homogenization and the Si particles’ coarsening in the 

microstructure. It is worth noting that, although formation of Mg2Si phase was predicted by the 

DSC testing to occur at 232.9 °C, due to the extremely small size of this phase (< 10 nm [6,31]), 

it was not detected under SEM. Further microstructural characterization at higher magnifications 

using transmission electron microscopy (TEM) is required to investigate formation of Mg2Si phase 

during low temperature heat treatment of DMLS-AlSi10Mg alloy, which is the subject of a future 

study by the authors. Similarly, previous studies have reported the temperature range of 200 °C to 

275 °C for the formation of β''-Mg2Si phase [12]. 

The XRD spectra of the as-printed DMLS-AlSi10Mg sample and the heat-treated ones are 

presented in Figure 2.6, revealing a strong texture in the (200) plane of the α-Al matrix, confirming 

the preferred crystal growth direction of <001> for Aluminum, indicating that z-direction (building 

direction) has been the main heat flow direction during solidification [28]. Also, the co-existence 

of both Al and Si phases in the structure was confirmed.  
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Figure 2. 6. X-ray diffraction spectra of the DMLS-AlSi10Mg samples before and after heat-

treatment at different temperatures. 

 

Based on Vegard’s law, increasing the heat-treatment temperature reduces Si solid solubility in 

the Al matrix [14]. Accordingly, XRD patterns confirmed that increasing the heat-treatment 

temperature from 200 °C to 350 °C expands the Si peaks’ intensity, corresponding to the increased 

volume fraction of the Si precipitates in the matrix. Therefore, the low-temperature heat-treatment 

of DMLS-AlSi10Mg at about 300 °C initiates the Si network breakage, and can result in a uniform 

dispersion of Si precipitates in the α-Al matrix at sufficiently long holding time. 

3.3. Hardness Measurement Results 

The trend of Vickers micro-hardness of the DMLS-AlSi10Mg samples after heat treatment at 

various temperatures vs the as-printed condition is presented in Figure 2.7. The hardness values of 
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the samples were reduced by increasing the heat-treatment temperature from 200 °C to 350 °C. 

The as-printed sample showed the highest hardness value at 134 ± 2 HV0.1 associated with the 

fine grain structure and dispersion of fine eutectic Si in a supersaturated α-Al matrix, which 

resulted from the extremely fast solidification and cooling rate of the DMLS process (103 –1011 

K/s) [2]. The measured as-printed hardness value is very close to the reported values for the 

hardness of as-printed AlSi10Mg samples in previous studies [32]. As confirmed by the DSC 

results, heat-treatment at 232.9 °C can initiate the precipitation of the Mg2Si phase, providing 

precipitation hardening characteristics for this alloy. However, a continuous softening in this alloy 

is induced by further increasing the heat-treatment temperature from 200 ℃ to 350 ℃, resulting 

in a drastic decrease in the micro-hardness value from 132±2 HV0.1 to 69±2 HV0.1. This general 

behavior can be attributed to the breakage of Si network as well as the coarsening and coalescence 

of Si particles by increasing the temperature, which allows Si to diffuse at a higher extent, 

stimulating the growth of Si particles and reducing their number. Consequently, reinforcing Si 

particles become less effective in obstructing the movement of dislocations, causing softening of 

the alloy. Similar softening of as-printed additively manufactured AlSi10Mg alloy after applying 

common precipitation hardening heat treatments of Al-Si alloy, such as T6 heat treatment, were 

reported in a previous study [13]. 
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Figure 2. 7. The Vickers micro-hardness of the as-printed vs heat-treated DMLS-AlSi10Mg. 

 

Comparing the micro-hardness results of the as-printed and heat-treated specimens, it is quite 

noticeable that the hardness values on the plane along the building direction (denoted as side in 

Figure 2.7) is lower than those on planes transverse to the building direction (denoted as top in 

Figure 2.7), confirming the existence of mechanical anisotropy even after heat treatment. A similar 

discrepancy in the hardness values measured from the top cross section vs the side cross section 

of a DMLS-AlSi10Mg alloy was also reported in a previous work [25], and the authors attributed 

that to the morphology of the melt pools, the used layer-by-layer additive method, and the non-

homogeneous grain structure established through the non-uniform thermal gradient across the melt 

pools, resulting in the formation of more borderline porosities and defects on the side plane of the 

sample. Such imperfections make the side view planes softer than the top view planes [25]. Even 

from the electrochemical stability’s perspective, Cabrini et al. [15] reported higher susceptibility 
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of the side planes to selective corrosion attack in a chloride-containing environment than the top 

plane. 

3.4. Anodic Polarization Results 

Figure 2.8a shows the open circuit potential (OCP) evolution with time for the untreated and heat 

treated samples. The open circuit potential was measured over 3600 s before the anodic 

polarization tests in aerated 3.5 wt.% NaCl solution. The OCP values for all four samples were 

stabilized eventually in the range of -0.65 to -0.75 VAg/AgCl. The minor difference in the stable OCP 

values of the samples can be explained by the consistency of the entire composition on their 

surfaces, even though various microstructural features were formed on the heat-treated samples 

[17,33]. Analogously, very close OCP values were reported for the DMLS-AlSi10Mg alloy and 

its cast counterpart by Revilla [33], owing to their similar chemical composition and despite their 

significantly different microstructure. However, it should be mentioned that, by increasing the 

heat-treatment temperature, the OCP trend became noisier and more unstable, confirming that the 

applied heat-treatment can affect the degree of surface activity. The slightly higher OCP values of 

the 300 °C heat treated samples can also be ascribed to the uniformity of the microstructure and 

the reduced compositional inhomogeneity between the melt pools’ center and their boundaries 

dominated by the extend of Si interdiffusion in -Al matrix.  
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Figure 2. 8. a) Open circuit potential measurement over time, b) anodic polarization curves 

comparing the corrosion behavior of the as-printed DMLS-AlSi10Mg sample to the heat treated 

ones. 

 

As illustrated in Figure 2.8b, all samples, except for the 300 °C heat treated DMLS-AlSi10Mg, 

revealed an active-like behavior at initial immersion time in the electrolyte, corresponding to the 

rapid increase of the current in their anodic branch by increasing the applied potential. However, 

after applying the heat treatment at 300 °C, a clear wide passive region (ECorr. + 0.06 VAg/AgCl) with 

lower corrosion current density appears on the graph, affirming a lower tendency for pit nucleation 

in 300 °C heat treated sample. Also, the slight shift of the corrosion potential to more active values 

in this sample can be plausibly attributed to the inherent microstructural inhomogeneity in a DMLS 

part on various planes, and was similarly detected in the previous studies [17]. However, the as-

printed DMLS-AlSi10Mg and the 200 °C and 350 °C heat-treated ones exhibited approximately 

the same corrosion and pitting potentials (~ -0.69 VAg/AgCl, -0.69 VAg/AgCl, and -0.70 VAg/AgCl, 

respectively), meaning surface pitting can be readily triggered once the corrosion potential is 

reached.   
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Table 3 summarizes the polarization parameters derived from the anodic polarization plots 

shown in Figure 2.8, including the corrosion potential (ECorr.), corrosion current density (ICorr.), and 

pitting potential (Epit) values of each of the as-printed and heat-treated DMLS samples.  

Table 2. 3. Anodic polarization parameters of the heat-treated DMLS samples in aerated 3.5 

wt.% NaCl solution 

 As-printed 200 °C 300 °C 350 °C 

ECorr. (VAg/AgCl) -0.69±0.03 -0.69±0.02 -0.74±0.01 -0.70±0.02 

ICorr. (µA/cm2) 1.90±0.38 1.79±0.24 0.19±0.45 3.66±0.86 

Epit (VAg/AgCl) -0.69±0.03 -0.70±0.03 -0.68±0.01 -0.70±0.02 

 

As shown in Figure 2.5a, the low-temperature heat-treatment cycle at 200 °C has not altered the 

microstructure of the as-printed sample (compare Figure 2.5a with Figure 2.3b). The low-

temperature heat-treatment at 200 °C is known as a recommended residual stress relieving cycle 

for DMLS-AlSi10Mg parts [29], derived from the manufacturing of the part as a result of Si atoms 

oversaturation in α-Al matrix due to extremely high cooling rates and thermal gradients inherently 

present in the DMLS [12]. The 200 °C heat treated sample exhibited very similar corrosion 

resistance to that of the as-printed sample, indicated by having approximately the same corrosion 

potential and corrosion current density values. The minor variation of the polarization data 

between the as-printed and 200 °C heat treated samples can be likely ascribed to the existing 

differences in terms of the density of the melt pool boundaries from sample to sample, rather than 

the change in the microstructure of the samples [17]. Also, the pitting potential of the as-printed 

and 200 °C heat treated samples remained approximately constant (around ~ -0.69 VAg/AgCl). 

The polarization data demonstrates that the measured corrosion current density of the DMLS-

AlSi10Mg samples reduces by increasing the heat-treatment temperature from 200 °C to 300 °C. 

This shift in the corrosion resistance of the DMLS-AlSi10Mg alloy can be attributed to the 

uniformity of the protective passive layer owing to the existing differences in the distribution of 
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silicon particles on the surface affected by the heat-treatment [34]. The passive film breakdown 

potential values were similar for all DMLS samples and remained relatively unchanged (Epit ~ -

0.690.01 VAg/AgCl), suggesting that the passive film composition remains almost constant, as the 

Epit value is primarily controlled by the passive film composition [34].  

By further increasing the heat treatment temperature to 350 °C, the corrosion current density 

was found to increase drastically (ICorr.= 3.66±0.86 µA/cm2), indicating the increased intensity of 

corrosion attack on the surface, contributing to a significant deterioration of the corrosion 

performance even at initial immersion time. 

To investigate the severity and morphology of the corrosion attack, the samples’ surfaces were 

studied using SEM after corrosion products removal. Figure 2.9 shows the SEM micrographs taken 

from the as-printed, 200 °C, 300 °C, and 350 °C heat-treated DMLS-AlSi10Mg surfaces after the 

anodic polarization test. As shown in Figures 2.9a-2.9d, a penetrating selective corrosion attack 

was clearly detected on the untreated and 200 °C heat-treated DMLS-AlSi10Mg samples that 

preferentially expanded along the melt pools’ borders. Very similar corrosion attack was revealed 

on the untreated DMLS-AlSi10Mg samples in previous studies [15–17]. The presence of coarse 

idiomorphic silicon crystals, which act as preferential cathodic sites relative to the α-Al matrix 

along the melt pool boundaries, explains the selective attack in the HAZ [33]. After heat-treatment 

at 300 °C, as depicted in Figures 2.9e and 2.9f, the applied heat-treatment cycle resulted in the 

interruption of the Si network and stimulated the precipitation of Si from supersaturated α-Al 

matrix (as T > 273.2 °C). However, the improved uniformity of the microstructure has suppressed 

penetrating selective corrosion attacks and contributed to a lower corrosion current density at 

initial immersion time in 3.5 wt.% NaCl electrolyte.  
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In addition, since the heat-treatment at 300 °C does not promote Si coarsening significantly 

(the average particles size < 0.20 µm), the galvanic coupling between the Si particles and the 

surrounding Al matrix was not provoked noticeably at initial immersion time. Therefore, as 

Figures 2.9e and 2.9f show, there are limited number of pits formed on the surface of 300 °C heat 

treated DMLS-AlSi10Mg after anodic polarization test. On the other hand, the 350 °C heat-treated 

sample, as shown in Figures 2.9g and 2.9h, behaved differently and showed more severe localized 

corrosion in the Al matrix around the periphery of the Si particles, but without a penetrating 

selective attack. This is ascribed to the interruption of the continuous Si network and their breakage 

into small Si particles, followed by their growth and coalescence with further increasing of the 

heat treatment temperature to 350 °C. Albeit more uniform microstructure seems to be formed, the 

growth of small Si particles into large Si precipitates with irregular shapes and geometries (the 

case of 350 °C heat treated sample), has resulted in a higher potential difference between the coarse 

Si precipitates and α-Al matrix, and induced a galvanic corrosion with a higher driving force. For 

a better interpretation of polarization results and to further investigate the protectiveness of the 

existing passive layer on all samples after the applied low-temperature heat-treatment, the EIS tests 

were conducted at initial immersion time.  
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Figure 2. 9. SEM back-scattered (left column) and secondary electron (right column) images 

taken from the surface of the DMLS-AlSi10Mg heat treated at a) and b) As-printed, c) and d) 

200 °C, e) and f) 300 °C, g) and h) 350 °C after the anodic polarization test and corrosion 

product removal. 
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3.5. Electrochemical Impedance Spectroscopy (EIS) Results 

Figure 2.10 shows the modification of the EIS spectra in the aerated 3.5 wt.% NaCl solution after 

1 h of immersion time. The constant high-frequency impedance values in the Bode plots follow 

the electrolyte resistance and the resultant ohmic drop in the solution. The impedance differences 

in the middle-low frequency ranges are more evident when changing the heat-treatment 

temperature. The phase angle vs frequency diagrams (shown in Figure 2.10a) of both untreated 

(as-printed) and the heat treated samples were characterized by two capacitive peaks with well-

defined time constants one at lower frequency (30-200 mHz) and the other at higher frequency 

ranges (100-800 Hz). The low-frequency peak describes diffusion within corrosion products and 

within localized and selective attack zones, while the high-frequency peak displays the sealing of 

the corrosion products inside porosities [35]. It is also worth mentioning that the frequencies of 

the distinct peaks were approximately constant, independent from the heat-treatment temperatures. 

Correspondingly, two peaks were also generated on the Nyquist plots (shown in Figure 2.10b). 

The first Nyquist curvature corresponds to the high-frequency peak and the second one describes 

the low-frequency peak in the phase plot. As a general trend, the larger radius of the Nyquist 

curvature is an indication of improvement in the corrosion resistance of the sample.  



47 
 

 

Figure 2. 10. EIS spectra and the fitting data, a) Z modulus, Bode phase angle plot, b) Nyquist 

spectra of the as-printed and heat treated DMLS-AlSi10Mg after heat-treatment at various 

temperatures, and c) the simplified equivalent circuit proposed to simulate the EIS spectra 

evolution. 

 

The Bode plots show a significantly higher (approximately one order of magnitude) absolute value 

of impedance for the 300 °C heat treated sample than the other samples at the lower frequency 

range after 1 h of immersion time, which is consistent with the anodic polarization graphs shown 

in Figure 2.8, indicating the lowest corrosion current density for the 300 °C heat treated DMLS-

AlSi10Mg sample. This confirms an improvement in the protective nature of the passive layer 

against corrosive environment after the low-temperature heat-treatment at optimum temperature 

of 300 °C. It should be noted that the reported results herein and the observed improved corrosion 



48 
 

resistance of the 300 °C heat treated sample is limited to only the initial immersion time, 

representing the material’s behavior at the early stage of corrosion. Studying the behavior of the 

material at longer immersion time or immersion in more aggressive environments, such as in 

Harrison solution, was not the aim of this study and has been already reported in the previous 

works [15–17]. Such improvement of the passive film properties on the surface of 300 °C heat 

treated DMLS-AlSi10Mg at the early stage of immersion was not reported in the work by Rubben 

[17], even though the anodic polarization results in their study revealed a slight improvement in 

the pitting potential of the alloy on the x-y plane with a clear passive region (~ 0.2 VAg/AgCl above 

the pitting potential), whereas the as-printed and lower temperature heat treated surfaces, i.e. 170 

°C and 250 °C, exhibited an active-like behavior. The authors attributed the observed differences 

in the polarization data of the sample to the inherent microstructural inhomogeneity of additively 

manufactured parts, such as having different density of the melt pool boundaries on each surface 

[17]. However, the anodic polarization results and the electrochemical impedance spectroscopy of 

the DMLS-AlSi10Mg surfaces before and after applying the heat treatment herein confirmed that 

low temperature heat treatment of the alloy at 300 °C can slightly enhance the protectiveness of 

the passive layer on its surface, leading to an improved corrosion performance at initial immersion 

time.    

Although the heat-treatment at 300 °C promotes silicon particles precipitation followed by a 

slight coarsening, their size remains significantly smaller than that of the 350 °C heat-treated 

sample. By further increasing the heat treatment temperature to 350 °C, as Figure 2.5c shows, 

more active interdiffusion of Si in α-Al matrix led to a significant coarsening and coalescence of 

Si precipitates, particularly around the melt pool boundaries, where the existing particles were 

initially coarser in the as-printed condition. Therefore, the formation of lager size Si precipitates 
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coupled with an overall higher Si concentration in the precipitation form would lead to a greater 

potential difference between the coarser Si particles and Al matrix, rendering a higher driving force 

for the galvanic corrosion [17,33]. Consequently, a deeper localized corrosion attacks on the Al 

matrix phase at the periphery of the coarse Si particles can be detected. An analogous observation 

but for a more extreme heat treatment cycle was reported by Cabrini et al. [15], in which a reduced 

corrosion resistance of the DMLS-AlSi10Mg samples after annealing for four hours at 550 °C was 

observed. This high-temperature heat-treatment cycle resulted in a significant coarsening of the Si 

particles [15], which was reported to cause a severe localized corrosion attack in the Al matrix at 

the periphery of the coarse Si particles, without features of penetrating selective attack. 

As shown by arrows in Figure 2.11b, the severe localized corrosion of the Al matrix adjacent 

to the larger silicon particles of the 350 °C heat treated DMLS sample after 15 days of immersion 

time in the electrolyte caused the detachment and leaching of the silicon particles from the surface, 

leading to a localized penetrating attack. On the contrary, in the untreated or the lower temperature 

heat treated sample, i.e. 200 °C, as a result of inherent microstructural inhomogeneity of the printed 

part and the existing coarser Si network/particles in the MP coarse and HAZ regions along the 

melt pool borders than those formed in the interior of the melt pools (MP fine regions), the attack 

tends to follow the melt pool boundaries, leading to a selective corrosion attack along the melt 

pool borders, shown in Figure 2.11a by arrows.  

In addition, Figure 2.11a reveals that a long exposure time to the corrosive electrolyte can 

contribute to the formation of micro-cracks at the border of the melt pool boundaries. Similar 

cracking of the melt pool boundaries was also detected on the untreated and artificially aged 

DMLS-AlSi10Mg samples at 170 °C in the previous work by Rubben [17] after polarization 

testing in 0.1 M NaCl solution, and was associated with the existing residual stress from the 
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fabrication process in the as-printed and 170 °C artificially aged samples along with preferential 

dissolution of α-Al predominantly from the melt pool boundaries. Occurrence of such cracking 

along the melt pool boundaries even after 200 °C heat treatment herein confirms that the heat 

treatment of the DMLS-AlSi10Mg alloy for 3 h at 200 °C is not sufficient to entirely release the 

residual stresses from the structure of the printed part.  

After 350 °C heat treatment for 3 h, the corroded surfaces of the samples did not reveal any 

superficial cracking even after a long immersion time in the electrolyte (i.e. 15 days, shown in 

Figure 2.11b), affirming that both temperature and time were high enough for a complete relief of 

the residual stresses.      

The observed improvement in corrosion resistance of DMLS-AlSi10Mg alloy after 300 °C 

heat treatment of as-printed alloy is plausibly limited to only the initial immersion time, as the 

previous study [16] has reported that after long immersion time of the 300 °C heat treated DMLS-

AlSi10Mg sample in a more corrosive electrolyte (30 g/L of NaCl with 10 mL/L of HCl), the 

sample’s surface experienced a more severe selective corrosion attack than the untreated sample. 

Similar increased susceptibility of the alloy after 300 °C heat treatment for 2 h to the selective 

corrosion attack after immersion testing at OCP in 0.1 M NaCl solution was also reported by 

Rubben et al. [17], and was correlated to the larger Volta potential difference between the Si phase 

and the Al matrix after applying the heat treatment, leading to a greater driving force for galvanic 

coupling to initiate. Therefore, the presented results in this study do not contradict the previously 

reported investigations, but rather complement their observations, as it primarily describes the 

behavior of the heat treated DMLS-AlSi10Mg surface at initial immersion time rather than the 

long term behavior of the surface when exposed to a more corrosive electrolyte.   
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Figure 2. 11. SEM images from the surface of the DMLS-AlSi10Mg heat-treated at a) 200 °C 

and b) 350 °C after 15 days of immersion time in aerated 3.5 wt.% NaCl solution, followed by 

the corrosion product removal. 

 

3.6. EIS Spectra Fitting and Modelling  

For a better interpretation of the EIS data obtained in this study and to be able to describe the 

modification of protective passive film on the surface, the simplified equivalent circuit (SEC), 

shown in Figure 2.10c, was employed and fitted to the experimental EIS data. The equivalent 

electrical circuit model is able to physically interpret the complexity of the corrosion behavior of 

the DMLS samples [15].  

The impedance response of all samples was described using a simplified equivalent circuit, 

similar to the one suggested by Cabrini et al. [15], which leads to a model of Rel(QpRp)(QpitRpit), 

shown in Figure 2.10c. This circuit is appropriate to explain the observed capacitive arcs on the 

Bode plots of the DMLS-AlSi10Mg through simulating two well-defined peaks and time 

constants. This circuit is composed of series of resistance, and two resistance/constant phase 

element parallels, where Rel describes the ohmic drop in the solution, resulted from the resistance 

of the electrolyte. In this circuit, Rp and CPEp correspond to the resistance and capacitive behavior 



52 
 

of the passive layer, respectively. Similarly, Rpit and CPEpit correspond to the resistance and the 

constant phase element of the corroding pits, respectively. The impedance of a Constant Phase 

Element (CPE) is defined as: 

𝑍𝐶𝑃𝐸 = [𝑄(𝑖𝜔)𝑛]−1         (3) 

where Q is the CPE constant, i is the imaginary unit (𝑖 = √−1), ω is the angular frequency, and 

n is the dispersion coefficient and its value ranges between -1 and 1, describing inductivity, 

resistance, Warburg impedance, and the capacity for n equal to -1, 0, 0.5, and 1, respectively [36]. 

In all investigated samples, the calculated values for the dispersion coefficient (n) was 0.89±0.01 

so that the constant phase element can be replaced by the capacitor in the proposed equivalent 

circuit shown in Figure 2.10c. Figures 2.10a and 2.10b also show the fitting data of the EIS results 

collected from applying the equivalent circuit, which fitted closely with the experimental data, and 

include a clear description of two well-defined capacitive peaks. Considering the capacitive 

behavior shown in Figures 2.10a and 2.10b, the capacitive arcs at the higher frequency range 

display the general surface corrosion, and the low-frequency arcs are associated with the localized 

corrosion attacks on the surface. The computed parameters of the equivalent circuits are 

summarized in Table 4. Comparing the general response of the passive layer resistivity (Rp) and 

the pitting resistance (Rpit) for each sample confirms that except for the 300 °C heat treated sample, 

for all other samples the pitting resistance values are lower than the general passive layer 

resistance. This indicates that pitting corrosion is the dominant factor in controlling the corrosion 

behavior of the samples, which is in agreement with the observed anodic polarization curves in 

Figure 2.8b, showing an active-like behavior for all heat treated samples, except for the 300 °C 

heat treated one. Differently, the 300 °C heat treated sample revealed a higher pitting resistance 
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than the passive layer resistance at initial immersion time, promoting the formation of a clear 

passive region, shown in Figure 2.8b.   

 

Table 2. 4. EIS parameters of the equivalent circuits shown in Figure 2.10c. 

Sample 
Rel. 

(Ωcm2) 

Rp. 

(kΩ.cm2) 

Rpit 

(kΩ.cm2) 

CPE, Q 

(µω-1 s-n cm-2) 

CPEpit, Q 

(µω-1 s-n cm-2) 

As-printed 10.69 5.96 4.93 518 4.94 

DMLS 200°C 13.22 11.18 8.32 3.39 504 

DMLS 300°C 18.79 40.38 64.62 1.46 1190 

DMLS 350°C 11.68 4.81 2.92 786 2.55 

 

As opposed to the 300 °C heat treated one that showed a noticeably high pitting resistance at the 

initial stage of immersion (an indication for having a passive surface), the as-printed, 200 °C, and 

350 °C heat treated samples revealed relatively low Rp and Rpit values, particularly the 350 °C heat 

treated one, indicating characteristics of a surface that has not been fully passivated. The 

significantly low Rp and Rpit values of the 350 °C heat treated sample is ascribed to the existence 

of larger size Si particles in its structure, leading to an active behavior. However, it is known that 

as the corrosion progresses, either detachment of the large Si particles from the growing and 

coalesced pits, as the Al matrix around them oxidizes, or their coverage by the corrosion products 

could potentially lead to the surface’s full repassivation [37]. When such state of full passivation 

is reached, plausibly at longer immersion time, the impedance value could potentially increase, 

attributed to the formation of a more stable passive film on the surface [38]. 

Therefore, the EIS results and the modeled data herein confirmed existence of a passive layer 

with a more protective nature on the 300 °C heat treated DMLS-AlSi10Mg surface at initial 

immersion time, leading to an improved electrochemical response. This is possibly associated with 

the increased uniformity of the microstructure with confined coarsening of Si particles, resulted 
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from the heat treatment, which could potentially contribute to the spontaneous formation of a more 

uniform and stable passive layer in air. It should be noted that the improved corrosion response of 

the DMLS-AlSi10Mg surface after 300 °C heat treatment in this study was detected at the early 

stage of immersion. The recent studies on this alloy [15–17] are persuasive to believe that upon 

breakage of this pre-existing passive layer, either as a result of long exposure time or being exposed 

to a more corrosive electrolyte, the enhanced corrosion response of the 300 °C heat treated surface 

will be diminished. At that point, the Volta potential difference between the Si particles and the α-

Al matrix becomes the dominant factor in controlling and dictating the corrosion properties. As 

the Si network breakage and slight growth of Si particles occur during the heat treatment, the Si-

Al galvanic couple’s potential difference arises, leading to a deeper and more intensified local 

penetrating attack, deteriorating the long-term corrosion performance of the DMLS-AlSi10Mg 

alloy as compared to that of its as-printed (untreated) counterpart. 

 4. Conclusions 

In this study, the effects of low temperature heat-treatment cycles on microstructure, hardness, and 

electrochemical behavior of DMLS-AlSi10Mg in aerated 3.5 wt.% NaCl electrolyte at early stage 

of immersion were investigated. The results of this study can be summarized as follows: 

• The differential scanning calorimetry analysis of the as-printed samples revealed two 

distinguishable exothermic transformations at 232.9 °C and 273.2 °C, which were interpreted 

as the Mg2Si precipitation and Si phase precipitation via solid-state diffusion, respectively. 

• According to the DSC analysis results, the as-printed samples were heat-treated at 200 °C (< 

273.2 °C), 300 °C (> 273.2 °C), and 350 °C (as an upper limit temperature) for 3 h followed 

by water quenching. Microstructural analysis results confirmed that increasing the heat-
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treatment temperature from 200 °C to 350 °C resulted in the interruption of the intercellular Si 

network, followed by the coalescence and coarsening of the eutectic Si particles, and in 

general, increased content of Si precipitates in the structure. Therefore, the uniformity of the 

microstructure, in terms of the size and distribution of Si particles in the α-Al matrix, was 

promoted by the increase in the heat-treatment temperature.  

• A continuous decrease in the Vickers micro-hardness values by increasing the heat-treatment 

temperature was found to be associated with the microstructural evolution due to the Si 

network interruption followed by the Si precipitates coarsening. 

• The electrochemical measurements, i.e. anodic polarization and EIS tests, confirmed the 

improved corrosion resistance of the alloy and a reduced susceptibility to penetrating selective 

attack at initial immersion time in the electrolyte solution by increasing the heat-treatment 

temperature from 200 °C to 300 °C. This was evidenced by the reduced corrosion current 

density, and the existence of a more protective passive film on the alloy with a higher value of 

impedance at early stage of immersion after 300 °C heat treatment.  

• Further increase of the heat treatment temperature to 350 °C was revealed to deteriorate the 

corrosion response significantly at early stage of immersion, inducing a severe localized 

corrosion attack around the coarse and coalesced Si particles. Formation of coarse Si 

precipitates as cathodic sites embedded in the anodic aluminum matrix provoked an active-like 

behavior on the surface and hindered the complete re-passivation of the surface at initial 

immersion time. 

• The corrosion morphology was also found to change from a penetrating selective attack along 

the melt pool boundaries for the untreated and 200 °C heat-treated DMLS-AlSi10Mg samples 

to a more localized corrosion in the α-Al matrix along the border of Si particles when heat-
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treated at 300 °C, ascribed to the uniformity of the microstructure achieved after 300 °C heat-

treatment.   

• The improved corrosion performance of the DMLS-AlSi10Mg alloy at early stage of 

immersion by low-temperature heat-treatment at 300 °C can be ascribed to the quality of the 

pre-existing passive layer attributed to the uniformity in distribution of the fine Si particles on 

the surface, which inhibited penetrating selective attack along the melt pool boundaries, despite 

localized corrosion evolved.  
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Chapter 3 

Effects of Recycled Powder on Solidification Defects, 

Microstructure, and Corrosion Properties of DMLS Fabricated 

AlSi10Mg3 4 
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Abstract 

This study examines the impacts of using recycled powder on solidification defects, 

microstructures, and the resultant corrosion properties of Direct Metal Laser Sintered (DMLS) 

AlSi10Mg alloy. Microstructural analysis confirmed that using recycled powder in the fabrication 

of AlSi10Mg leads to (i) an increased volume fraction of internal porosities and solidification 

micro-cracks, (ii) more coarsening of interdendritic eutectic-Si network particularly along the melt 

pool boundaries, which were correlated to the larger size and irregular shape of the recycled 

powders compared to the virgin powders, leading to the reduced thermal conductivity of the 

recycled powders. To investigate the impacts of above-mentioned microstructural changes on the 

corrosion performance of the alloy, anodic polarization testing and electrochemical impedance 

spectroscopy in aerated 3.5 wt.% NaCl solution were performed. The results confirmed a slight 

degradation of the corrosion properties of the recycled-powder fabricated samples, ascribed to 

further coarsening of Si-network along their melt pool boundaries.  
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1. Introduction 

Additive manufacturing (AM) technology is an emerging manufacturing technique, which is 

gaining enormous attention from industrial manufacturing sectors, owing to its malleability to 

design complicated, near-net-shape engineering components mostly without any geometrical 

constraint [1]. Regardless of the economic impacts of the AM technology on the manufacturing of 

intricate engineering parts, there is still a significant drawback of adopting this technology by many 

industries due to the cost-intensive printed components, particularly for parts having medium to 

simple designs [2]. To improve the affordability of the DMLS process, wasting of the feedstock 

metal powder is minimized by collecting and reusing ~ 90% of the feedstock powder after each 

building cycle [3]. However, the high temperature of the powder bed in the preheating stage and 

more severely the interaction between the virgin powder and the laser can cause possible 

microstructural and morphological changes in the virgin powder close to the parts that are being 

built [4].  

As powder reuse cycle increases, many properties of the powder are changed [2]. This can 

adversely affect the build quality. To suppress all the side effects associated with implementing 

the used powder in fabrication of new parts without compromising on the build quality, many AM 

industries have incorporated a sieving process into the manufacturing cycle of the AM products. 

Accordingly, all collected powders after completion of each building cycle are passed through a 

sieving step to separate and discard partially melted or highly heated condensate powder from the 

remaining unmelted virgin powder, denoted as the recycled powder, and are being reused after the 

sieving process. Nonetheless, it has been shown that the recycled powder will not be identical to 

the virgin powder in terms of shape, size distribution, and the microstructure [1,5,6].  
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So far, a few studies have investigated the effect of using recycled powder on porosity level, 

density, and mechanical properties of the AM components [1,5,6]. For instance, Ardila et al. [6] 

reported comparable mechanical properties for the selective laser melting (SLM) fabricated 

Inconel 718 using virgin powder and the recycled powder even after 14 times of recycling. In a 

recent study, Asgari et al. [1] characterized the AlSi10Mg recycled powders after the DMLS 

process and reported a noticeably different particles’ size, morphology, and chemical composition 

for the recycled powder relative to the virgin powder [7,8]. The sintering of the AlSi10Mg metal 

powder during the DMLS process and the subsequent agglomeration was reported to cause 

approximately 12% increase in the average size of the particles [1]. Furthermore, it was shown 

that the recycled AlSi10Mg powder is slightly deformed and elongated as compared to the 

spherical shape of the virgin powder [1], which can potentially contribute to a lower apparent 

density as compared to that of the spherical virgin powder [5]. 

The change in the morphology and the size of metal powder has been also reported to impact 

the density and volume fraction of the internal defects in the AM fabricated parts. Abd-Elghany 

and Bourell [9] have reported that an increase in 304L stainless steel particle size used in the 

powder layer thickness range of 30-70 μm can lead to a 6% decrease in the density of manufactured 

parts due to a reduction in the contact area of each powder layer. It is also known that the 

densification process has a significant impact on the formation of pores in the samples. As 

Maamoun et al. [5] reported, two types of pores have been commonly detected in the DMLS-

AlSi10Mg samples fabricated using the recycle powders, i.e., spherical pores and keyhole pores. 

Small spherical pores (diameter<10 µm) form due to the large interparticle spacing in the powder 

during the laser-melting process. Such interparticle voids can potentially act as gas entrapment 

sites, contributing to the formation of the spherical pores [5]. On the other hand, large keyhole 
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pores mainly form due to the improper melting of the powders, ascribed to the lack of thermal 

conduction between the powders during the laser melting process [5].  

In the context of corrosion properties, although Revilla et al. [10] reported no significant 

influence of the recycled powder on the corrosion potential of SLM-AlSi10Mg using anodic 

polarization testing, the observed slight corrosion performance difference between the recycled 

powder fabricated samples and the virgin ones were not adequately correlated to the 

microstructural variations between the samples. Furthermore, although the increased size of the 

recycled powder were detected in the previous studies [1,5,10], the effect of the powder size on 

the final microstructure of the samples were not clearly discussed, and no elucidation for the slight 

microstructural variations between the recycled powder and the virgin powder fabricated samples 

has been provided. 

Therefore, despite the existing few studies on the microstructure and mechanical properties of 

the DMLS fabricated AlSi10Mg alloy using the recycled powders [1,5], the impacts of using 

recycled powder on the formation of solidification defects and corrosion properties of the 

fabricated parts are still unknown. This knowledge is crucial for AM fabricated AlSi10Mg parts 

since one of the major concerns with using DMLS-AlSi10Mg components in marine or aerospace 

applications is their corrosion performance [11]. This study aims to investigate the impact of using 

recycled powder on solidification-induced defects, the microstructural evolution, and the resulting 

corrosion properties of the DMLS-AlSi10Mg parts.  
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2. Materials and Methods  

2.1. Material  

DMLS-AlSi10Mg cubic samples with a dimension of 15×15×15 mm were fabricated employing 

an EOS-M290 machine at AMM Company in Concord, Canada, using the processing parameters 

of 30 µm powder layer thickness, the platform temperature of 200 °C, laser power of 360 W with 

the spot size of 100 µm, scanning speed of 1000 mm/s, hatching distance of 0.21 mm, and 67° 

laser beam rotation between the consecutive layers. Three types of AlSi10Mg feedstock powders 

with chemical composition of 9.0-11.0 wt.% Si, 0.2-0.4 wt.% Mg, Fe and Mn ≤ 0.55 wt.%, and 

balance Al [12,13] were utilized for fabrication, including a virgin powder and two types of 

recycled powders, one after four times and the other after five times of reuse cycles. These 

fabricated samples were denoted as Virgin, 4X and 5X-samples, respectively. For the case of the 

recycled powders, after each building cycle, the collected powder was sieved prior to the next 

building cycle. Therefore, the 4X-samples were built using a recycled powder that was passed 

through 4 building cycles along with 4 subsequent sieving steps before being used for fabrication 

of 4X-samples, whereas the used recycled powder for fabrication of 5X-sample was passed 

through one additional building and its subsequent sieving cycle as compared to the 4X-sample. 

Albeit the samples of used feedstock powders were not provided to the research team by the 

manufacturer for further chemical and morphological analyses, the particle size distribution 

analysis of all feedstock metal powders used herein was conducted by the manufacturer and the 

data (plotted in Figure 3.1) were shared with the research team. Accordingly, the average particle 

size of the Virgin, 4X, and 5X-recycled powders were measured to be 8.8±7 µm, 12.4±7 µm, and 

13.7±9 µm, respectively. 
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Figure 3. 1. Particle size distribution for the Virgin and recycled powders used in this study 

 

2.2. Microstructure Characterization  

To characterize the microstructures of the samples, all DMLS-samples were sectioned along both 

the building plane and the building direction and prepared following the standard grinding and 

polishing procedures for aluminum alloys. The polished surfaces were then chemically etched 

using Keller’s reagent [14] to reveal the microstructure. The microstructures of all samples were 

characterized using an optical microscope and a FEI-MLA-650F field emission scanning electron 

microscope (FESEM). Phase characterization of different samples was carried out using X-ray 

diffraction (XRD) with Cu-Kα source at the diffraction angle range of 20°-70° with a step size of 

0.02°.  
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2.3. Anodic Polarization Testing 

The anodic potentiodynamic polarization (APP) testing was conducted using an IVIUM-

CompactStatTM Potentiostat computer-controlled instrument with a three-electrode cell setup 

according to the ASTM-G5 standard. All electrochemical corrosion tests were performed in an 

aerated 3.5wt.% NaCl solution at 25±0.5°C in a temperature-controlled water bath. Prior to each 

polarization test, the open circuit potential (OCP) was monitored for 1h to ensure that samples 

attained the electrochemical stability before the test was run. The APP tests were conducted in the 

potential range of -0.02V to +0.3V with respect to the OCP value and with a scanning rate of 

0.15mV/s.  

2.4. Electrochemical Impedance Spectroscopy (EIS) Testing 

Additionally, the EIS tests were carried out on polished samples after 1h and 120h of immersion 

times in an aerated 3.5wt.% NaCl solution at 25±0.5°C. Signals with 0.01V amplitude were applied 

over the OCP with a frequency range between 105-10-2Hz. All corrosion tests were conducted on 

the polished surfaces to eliminate the effects of surface roughness on corrosion properties. 

2.5. Intergranular Corrosion Testing 

The intergranular corrosion testing was performed on the polished surfaces of the side view of 

different samples as per ISO-11846 standard, where samples were immersed in 30g/L of NaCl 

solution containing 10mL/L of HCl at 25°C for 24h. After one day of immersion, samples were 

rinsed with distilled water and investigated using FESEM. Repeatability of the corrosion results 

was measured by testing at least three samples. 
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3. Results and Discussion  

3.1. Microstructure Characterization 

The optical micrographs taken from the Virgin, 4X, and 5X DMLS-AlSi10Mg samples are shown 

in Figure 3.2. The 3D representation of the optical micrographs of DMLS-AlSi10Mg samples from 

both side and top views confirmed a proper overlapping and densification between melt pools. The 

morphology of the melt pools from the side view of the fabricated samples revealed a semi-circle 

shape, which its size is primarily dependent on the volumetric energy density used in the 

manufacturing of the samples. The top view of all three fabricated samples shows irregular melt 

pool geometries and directions, attributed to the 67° rotation of the laser scan between the 

consecutive layers [1]. The optical microscopy investigation also confirmed that employing 

recycled powders does not alter the overall macrostructure and morphology of the melt pools 

noticeably in the fabricated samples. This was found to be in agreement with the results reported 

in previous studies [1,5,10], confirming a consistent overall macrostructure for both virgin 

powders and recycled powders fabricated samples. 

A critical difference between the Virgin sample and the recycled ones to note is the volume of 

the formed internal porosities in the samples. A closer look at the optical microscopic images of 

the built samples both in as-polished (Figures 3.2(b), (e), and (h)) or etched condition (Figures 

3.2(c), (f), and (i)) reveals that using recycled powders in the fabrication of DMLS-AlSi10Mg has 

resulted in the formation of larger and higher quantities of spherical and keyhole porosities in the 

4X and 5X-samples compared to the Virgin sample. The average porosity percentage in the Virgin 

sample was calculated to be 0.54±0.16%, which can be considered a low porosity level compared 

to the available values in the literature [1]. However, by increasing the re-use/recycling times, the 

porosity percentage was increased to 1.10±0.76% and 1.56±0.84% for the 4X and 5X-samples, 
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respectively. The higher volume fraction of internal porosities in both 4X and 5X-samples can be 

correlated to the reduced effective thermal conductivity of the recycled powders, as it depends on 

the size, shape, and void fraction between the powders. The increased size and the distorted shapes 

of the recycled powders [5] relative to the virgin powders would increase the volume fraction of 

internal voids between the powder particles, leading to a lower thermal conductivity between them 

[8]. In other words, in the case of virgin powders, the sintering kinetics are more accelerated than 

that of the recycled powders, ascribed to the higher active contact surface area of small particles 

along with smaller gaseous pockets in the inter-particle spacing of the virgin powder.  

It has been shown by Olakanmi [2] that the irregular shapes of the metal powders as a result 

of the agglomeration can intensify the formation of voids and porosities in the SLM fabricated Al-

Mg, and Al-Si parts. In addition, the substantial impact of the particle size on the increased porosity 

level of the iron parts manufactured by direct laser sintering method has been reported [8]. Thus, 

the irregular shape [5] and the larger particle size [1] of the recycled powders contribute to the 

entrapment of larger gaseous pores between the powder layers and even inside the powders [15], 

leading to a reduced thermal conductivity between the particles. Consequently, the sintering 

kinetics during the fabrication process are lowered, promoting the formation of internal porosities. 

Furthermore, the larger size of the porosities in the recycled powder fabricated samples than the 

Virgin sample was attributed to the decreased packing density of the recycled powders as a result 

of their agglomeration.  
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Figure 3. 2. Optical micrographs of the DMLS-AlSi10Mg samples fabricated from the a), b) and 

c) Virgin, d), e) and f) 4X-recycled, g), h) and i) 5X-recycled powders. 

 

To further investigate the microstructure of the fabricated DMLS-AlSi10Mg samples, FESEM 

analysis was employed. FESEM micrograph of the Virgin sample (Figure 3.3a) revealed the 

formation of an extremely fine cellular dendritic structure of aluminum containing a continuous 

network of eutectic-Si phase (Figure 3.3b) primarily formed along the interdendritic regions. This 

microstructure is commonly reported for the additively manufactured AlSi10Mg alloy [12,14]. 

Over a melt pool area, three distinguishable regions with well-defined microstructures were 



72 
 

formed, i.e., a region with fine cellular structure (MP-Fine), followed by a confined region with 

coarse cellular structure (MP-coarse), and a narrow heat affected zone (HAZ) that forms on the 

edge of the melt pools in the previously solidified track due to the overlapping scanning lines and 

layer-by-layer solidification of the material [16]. It should be noted that the essential solidification 

parameters, i.e., temperature gradient (G) and solidification rate (R), control the variation of 

microstructure across the melt pool [21]. Along the melt pool boundaries, where G is the lowest 

and R is the highest, more elongated and coarser dendritic structure forms.  

Comparing the microstructure along the melt pool boundaries in the vicinity of the HAZ in 

Virgin, 4X, and 5X-samples revealed a noticeably coarser Si-network along the melt pool 

boundary of the recycled samples (Figures 3.3 (c–f)), particularly in the 5X-sample. As 

schematically shown in Figures 3.4a and 4b, the increased average particle size in the recycled 

powder (Figure 3.4b) reduces the packing factor and the density of the powder bed as compared 

to that of the virgin powder bed (Figure 3.4a). Simchi [8] reported that the effective thermal 

conductivity of the particles varies with their size, void space between them, arrangement, and 

active surface contact. Therefore, the recycled powders, having a larger size [1] and elongated 

shapes [5], form a greater void space and smaller contact areas, leading to a lower thermal 

conductivity between them. Thus, a smaller portion of laser’s volumetric energy density is 

dissipated by conduction through the metal powders into the previously solidified tracks. 

Consequently, a larger portion of laser beam energy is consumed for melting of the metal powders, 

and plausibly resulting in the formation of higher temperature melt pools. This can potentially 

cause a slower cooling rate of the melt pool, leading to further coarsening of the solidified structure 

and excessive solute segregation (eutectic-Si) from the liquid during solidification. The observed 

coarser Si-network along the interdendritic regions and further precipitation of this phase at the 
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interior of the dendrites confirmed the slower cooling rate of the melt pools during solidification 

in the case of 4X and more noticeably 5X-sample. 

 

Figure 3. 3. SEM micrographs from the side view of the a) Virgin sample, b) EDX concentration 

maps of the enclosed are in (a) shown by B, c) and d) 4X-sample, e) and f) 5X-sample. 

 

In addition to the increased solute segregation in the recycled samples, a closer look at the 

microstructure of the samples in Figure 3.3 confirms that by increasing the particle size from the 
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virgin powder to the 4X and 5X-recycled ones, the α-Al dendrite arm spacing (cell size) has been 

expanded. For aluminum alloys that undergo a rapid cooling during solidification, Equation 3.1 

has been proposed showing the inverse relationship between the cooling rate (Ṫ (K/s)) and the size 

of dendrite arm spacing (λ (µm)) [15]. 

λ = 43.2Ṫ−0.324       Eq. 3.1 

Accordingly, considering the coarser cells of α-Al in recycled samples, it can be interpreted that 

the recycled powders fabricated samples experienced a slower cooling rate during solidification 

compared to the Virgin samples. This observation is also consistent with the relationship suggested 

by Tang et al. [15], showing the proportionality between the secondary dendrite arm spacing 

(SDAS (µm)) and the particle size (D (µm)) in SLM-AlSi10Mg alloy as follows: 

SDAS = 0.14D0.61       Eq. 3.2 

Therefore, when the recycled powders are used as the feedstock material instead of virgin powders, 

the change in the particle size and the resulting change in the convective heat transfer coefficient 

would primarily affect the cooling rate during solidification and the resultant microstructure. 

Interestingly, in the coarse region of the recycled samples along the melt pool boundary, 

especially in the 5X-sample, the formation of the solidification micro-cracks primarily in the areas 

where interdendritic Al-Si lamellar eutectic structure had formed, was detected (shown in Figures 

3.3(c – f) and 4f by arrows). It is well established that in materials with high coefficient of thermal 

expansion, such as aluminum alloys, excessive solute segregation during solidification, e.g. Si 

phase in the case of AlSi10Mg alloy, in the presence of high degree of residual stresses (common 

to the DMLS fabricated parts, as material experiences extremely high cooling rates) can enhance 

the solidification cracking susceptibility of the material.  
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Figures 3.4c and 4d schematically illustrate the solidification of α-Al dendrites and 

interdendritic Al-Si eutectic phase in AlSi10Mg alloy. In the Virgin sample (Figure 3.4c), a finer 

α-Al dendrite surrounded by a lower volume fraction of eutectic-Si has formed, ascribed to the 

higher cooling rate associated with the smaller particle size of the metal powder as compared to 

the recycled samples. On the other hand, the slower solidification/cooling rates of the melt pools 

in the recycled samples (Figure 3.4d) has provided a longer time at high temperature, promoted 

not only further growth of α-Al dendrites, but also rejection of more Si solute atoms from the α-

Al solid solution (indicated by the red arrows in Figure 3.4d), leading to formation of coarser 

lamellae of eutectic-Si. Therefore, as shown in Figure 3.4d, in the recycled samples, a coarser α-

Al dendrite with excessive solute segregation has formed along the melt pool boundaries as 

compared to the Virgin sample. Consequently, the samples fabricated using the recycled powders 

seem to be more susceptible to solidification cracking than the virgin powder fabricated ones 

(compare the FESEM micrographs in Figures 3.4e and 3.4f).  

Although, comparable mechanical properties were reported for the DMLS-AlSi10Mg parts 

fabricated using virgin and recycled powders [1], their investigated recycled powder was only one 

time re-used, implying that their recycled powders could not have experienced a significant change 

in their shape, size distribution, and morphology, only after one building cycle. Accordingly, the 

formation of solidification cracks was not detected in that study [1]. However, the presented results 

herein confirmed that after four or five times of powder re-use cycles, a noticeable number of 

solidification micro-cracks formed in the as-printed samples, which can potentially deteriorate the 

mechanical properties of the fabricated part. Despite the vital importance of the mechanical 

properties in the build quality, the current study is mainly focused on the microstructure and 
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corrosion properties of the parts, and the study of mechanical properties of the fabricated samples 

is subjected to a future work by the authors.   

 

Figure 3. 4. Schematic of the DMLS process using the (a) virgin and (b) recycled powders. 

Schematic of solidification features in the c) Virgin and d) 4X/5X-samples. FESEM image of the 

coarse Al-Si eutectic phase in the e) Virgin and f) 5X-samples. 
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The XRD spectra of the DMLS-AlSi10Mg samples are presented in Figure 3.5, revealing the co-

existence of both Al and Si phases for all three different samples. Noticeably, the Si peaks at 28°, 

47°, and 56° in the XRD patterns of the samples intensify from the Virgin to 4X, and 5X-recycled 

samples, corresponding to the increased content of Si in precipitation/eutectic form from the Virgin 

to 4X and 5X-samples. This is consistent with the microstructural observations results presented 

in Figure 3.3, revealing the coarsening of interdendritic Si-network in the recycled samples 

compared to that of the Virgin sample.  

 

Figure 3. 5. XRD spectra of the DMLS-AlSi10Mg samples fabricated using virgin and recycled 

powders. 
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3.2. Corrosion Properties  

Figure 3.6a shows the evolution of the OCP for all samples over 3600s in an aerated 3.5wt.% NaCl 

solution. Since the entire composition of all samples was approximately the same, the OCP values 

for all fabricated samples using different powders were stabilized around -0.70±0.01 VAg/AgCl, 

which was found to be consistent with previous studies [10]. However, the 5X-recycled sample 

revealed a slightly lower and more unstable corrosion potential, as compared to the other samples. 

The fluctuations of the OCP value have been ascribed to simultaneous localized dissolution and 

re-formation of the passive film on the surface of alloys with self-passivating properties, causing 

the electrochemical instability of the surface [17]. Meanwhile, the more negative EOCP value of the 

5X-recycled sample indicates the higher activity and less electrochemical stability of its surface. 

This can be associated with the impact of using the recycled powders on the microstructure, and 

the resulted higher volume fraction of porosities in the fabricated samples, in addition to further 

coarsening and breakage of Si-network into idiomorphic crystals in the HAZ of 4X and 5X-

recycled samples, as compared to those in the Virgin sample [10].  

Figure 3.6b shows anodic polarization curves of the virgin and recycled powders fabricated 

samples with polished surfaces. Previous studies have shown a lower corrosion resistance on the 

side plane of the DMLS-AlSi10Mg than the top view plane, associated to the higher density of the 

melt pool boundaries on the side view plane, where an increased content of Si and the breakage of 

the Si-network and their growth have been detected [10,18]. For this reason, all electrochemical 

properties of the samples were measured on the side view planes. As depicted in Figure 3.6b, for 

all samples, the anodic current was rapidly increased by increasing the applied potential, resulting 

in the metal dissolution at an elevated rate [19]. This represents an active-like behavior for all 

polished surfaces herein, which is in agreement with the results reported in previous studies 
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[10,19,20]. Therefore, regardless of the type of the employed metal powder, formation of a passive 

region was not detected on the polarization graphs of all samples, confirming that surface pitting 

can immediately happen once the corrosion potential is reached. 

As a general trend, a higher corrosion potential and a lower corrosion current density represent 

greater corrosion properties and higher electrochemical stability [12]. The corrosion potential of 

all three samples was approximately in the same range (-0.672±0.02, -0.679±0.01, and -

0.690±0.03VAg/AgCl for the Virgin, 4X, and 5X-recycled samples, respectively), which is likely 

ascribed to the uniformity of the chemical composition on the surface of all samples. However, 

when the corrosion current density (ICorr.) values are compared, a noticeably higher (~2 times) 

corrosion current density was measured for the 5X-recycled sample (1.262±0.02µA/cm2) versus 

the Virgin sample (0.642±0.01µA/cm2), and the 4X-recycled sample showed an intermediate value 

(0.828±0.02µA/cm2). This indicates increased severity of corrosion attack on the surface of the 

samples in the order of Virgin<4X<5X samples, confirming the deterioration, although not 

significant, of the corrosion performance when the recycled powders are used as the feedstock 

material.  

The degraded corrosion properties of the recycled powder samples were attributed to the 

coarser microstructure along the melt pool borders of the recycled samples containing a higher 

content of eutectic-Si phase and lower content of solute Si in α-Al solid solution. This consequently 

results in an increased potential difference between the cathodic Si precipitates and anodic α-Al 

matrix, leading to a greater susceptibility of melt pool boundaries of the recycled samples to 

galvanic selective attack [10,21,22]  

To further investigate the stability and protectiveness of the passive layer formed on the 

fabricated samples over time, EIS tests in aerated 3.5wt.% NaCl solution were carried out at 
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different immersion times. Figures 3.6c and 6d show the modification of the Nyquist spectra for 

all samples over two different immersion times, i.e., 1h and 120h. The radius of Nyquist curvature 

characterizes the stability of the protective passive film on the surface of the samples. The first and 

the second curvatures in the Nyquist plots correspond to the high-frequency (102-103Hz) and low-

frequency (0.01-0.1Hz) responses, respectively [12–14]. As a general trend, the larger curvature 

of Nyquist arcs for the Virgin sample confirms a slower kinetic for the corrosion reactions (Figure 

3.6c). This is in agreement with the anodic polarization results (shown in Figure 3.6b), 

corroborating the lowest corrosion current density (ICorr.) for the Virgin sample. The Nyquist plots 

in just immersed condition (after 1h) for both 4X and 5X-recycled samples confirmed the lower 

resistance of the protective passive film on their surfaces as compared to the Virgin sample. The 

Nyquist plot of the Virgin sample showed one broad capacitive arc at the early stage of immersion 

(shown in Figure 3.6c). However, a closer look at the Nyquist plots of the recycled samples (in 

Figure 3.6c) reveals that the broad arc is comprised of two different arcs, one in low frequencies 

and the other in intermediate frequencies, with non-evident time constants [11], which is typical 

behavior of passive aluminum. 

After a longer immersion time (120h), the Nyquist diagram (Figure 3.6d) revealed two distinct 

capacitive arcs with well-defined time constants in the range of low to intermediate frequencies. 

The first peak (at the intermediate frequency) corresponds to the sealing effect of the corrosion 

products inside the surface porosities or other active areas, such as α-Al/Si interface, while second 

peak (at low-frequency) is assigned to the diffusion within the passive layer and through localized 

corroded zones [18]. Analogous to the initial immersion time, even after 120h of immersion time, 

the Nyquist responses of all three samples (shown in Figure 3.6d) revealed a larger capacitive arc 
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for the Virgin sample, confirming the higher stability of the protective passive film on its surface, 

leading to its greater corrosion resistance compared to the 4X and 5X-recycled samples.  

Therefore, although the microstructural variations resulted from applying recycled powders in 

fabrication of DMLS-AlSi10Mg were not significant, the corrosion testing results presented herein 

confirmed that even a slight coarsening of interdendritic Si-network along the melt pool boundaries 

can affect the corrosion performance of the part, leading to a deterioration of its electrochemical 

stability in chloride containing environments.  
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Figure 3. 6.  a) OCP measurements over time, b) anodic polarization curves comparing the 

corrosion behavior of the Virgin, 4X, and 5X-samples. Nyquist spectra and the fitting data after 

c) 1h and d) 120h of immersion times. 

 

To further explain and interpret the EIS data obtained in this study and describe the modification 

of protective passive film on the surface over time, a simplified equivalent circuit (SEC), shown 

in Figure 3.6d, was fitted to the experimental EIS data to physically interpret the complexity of the 
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corrosion behavior of DMLS samples [11–14]. In the simplified equivalent circuit, Rel describes 

the resistance of the electrolyte, Rp and CPEp correspond to the resistance and constant phase 

element of the passive layer, and similarly, Rpit and CPEpit correspond to the resistance and the 

constant phase element of the corroding pits, respectively. 

The SEC fitted data are shown in Figures 3.6c and 3.6d, and the simulated parameters of the 

equivalent circuit are summarized in Table I. The higher values of the passive layer resistance (Rp) 

than the pitting resistance (Rpit) for all samples indicates that the pitting corrosion of the surface 

dominates over the general uniform corrosion attack, which is in agreement with the active-like 

behavior of all surfaces observed on the polarization graphs. Furthermore, at both immersion 

times, the Rp and Rpit values of the Virgin sample were found to be higher than those in the 4X and 

5X-recycled samples, confirming the existence of a less protective passive film on the surface of 

the recycled powder fabricated samples compared to their virgin powder fabricated counterpart. 

Comparing the Rp and Rpit values of the 4X to the 5X-recycled one also indicates a slight 

degradation of passive layer resistance against both general corrosion and pitting corrosion attacks 

in the 5X-sample, which is consistent with the polarization results (Figure 3.6b). 

Table 3. 1. The EIS parameters of the equivalent circuit shown in Figure 3.6d. 

Sample 
Rp. 

(kΩ.cm2) 

CPEp(Qp) 

(µω-1s-ncm-2) 

Rpit 

(kΩ.cm2) 

CPEpit(Qpit) 

(µω-1s-ncm-2) 

1 h     

Virgin 62.04 12.12 47.45 57.04 

4x 14.70 227.80 13.50 23.80 

5x 13.13 213.10 10.98 2.62 

120 h     

Virgin 36.3 79.60 31.92 0.92 

4x 30.95 275.00 14.54 2.26 

5x 20.85 3.93 13.14 413.80 
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The intergranular corrosion test was also conducted to investigate the corrosion morphology of the 

recycled samples compared to the Virgin sample. Figure 3.7 shows the FESEM images from the 

exposed surfaces of the Virgin, 4X, and 5X-samples after the intergranular corrosion testing. As 

shown in Figures 3.7a and 3.7b, a selective corrosion attack preferably along the melt pools borders 

was detected on the Virgin sample. The selective corrosion attack along the melt pool boundaries 

of DMLS/SLM-AlSi10Mg is commonly reported in previous studies [12,14], and is attributed to 

the enrichment of Si phase in that region, stimulating the micro-galvanic corrosion of the anodic 

Al matrix along the melt pool boundaries and in particular in the HAZ, where coarsening and 

breakage of Si-network into idiomorphic crystals were observed.  

On the other hand, the surfaces of the recycled samples (Figures 3.7 (c – f)) revealed a more 

severe selective corrosion attack accompanied by formation of several superficial cracks on the Al 

matrix along the melt pool boundaries, particularly in the HAZ, after the intergranular corrosion 

testing. Formation of these corrosion mediated surface cracks in DMLS-AlSi10Mg products was 

also reported in a recent study and was ascribed to the existence of high level of residual stresses 

in the as-printed part provoking the adverse effect of the microstructural evolutions near the melt 

pool boundaries [20,23]. Therefore, further coarsening of Si-network along the melt pool regions 

in the recycled samples relative to the Virgin sample and the resulted accelerated dissolution of 

the anodic α-Al matrix from those regions have contributed to the surface cracking of the 4X and 

5X-recycled samples after intergranular corrosion testing.  
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Figure 3. 7. SE-SEM micrographs of the DMLS-AlSi10Mg fabricated from the a) virgin powder, 

b) enclosed area in (a), c) 4X-recycled powder, d) enclosed area in (c), e) 5X-recycled powder, 

and f) enclosed area in (e), after the intergranular corrosion test. 
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4. Conclusions 

In this work, the effects of using AlSi10Mg recycled powder after 4 times (4X) and 5 times (5X) 

of re-use cycles on the solidification defects, microstructure, and electrochemical properties of the 

DMLS-produced AlSi10Mg parts were investigated. The following conclusions can be drawn 

from this study: 

1. Microstructural analysis results confirmed that using the recycled powder in the fabrication of 

the alloy leads to the formation of a higher density of internal discontinuities and defects, 

including porosities and solidification micro-cracks, accompanied by an increased content of 

eutectic-Si and coarsening of the interdendritic Si-network in the structure, mostly along the 

melt pool boundaries. 

2. Such microstructural variations in the recycled samples were correlated to the larger size and 

irregular shape of the recycled powders compared to the virgin powders, leading to a reduced 

thermal conductivity for the recycled powders. The reduced thermal conductivity associated 

with the recycled powders was found to lessen the cooling rate of the melt pools during 

fabrication, causing excessive Si solute segregation during solidification, which was found to 

increase the solidification cracking susceptibility of the alloy. 

3. The electrochemical measurements, i.e., anodic polarization and EIS tests, confirmed that the 

increased eutectic-Si content along the melt pool boundaries in the 4X and 5X-samples 

deteriorated the corrosion resistance in the recycled powder fabricated samples.  

4. The intergranular corrosion test confirmed an accelerated preferential corrosion attack 

combined with the formation of superficial micro-cracks along the melt pool boundaries in the 

4X and 5X-recycled samples dominated by the microstructural evolutions and in particular 

coarsening of the Si phase in the recycled samples. Therefore, the slight microstructural 
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variations in the recycled samples were found to play a key role in dictating the material’s 

corrosion behavior.  
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Chapter 4 

Effects of Laser-Powder Bed Fusion Process Parameters on the 

Microstructure and Corrosion Properties of AlSi10Mg Alloy5 
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Abstract 

In this study, the effects of microstructural modifications induced by tuning the laser-powder bed 

fusion (L-PBD) process parameters on electrochemical stability of the L-PBF-AlSi10Mg alloy are 

investigated. Three groups of L-PBF-AlSi10Mg samples were fabricated utilizing combinations 

of L-PBF process parameters for their Upskin layers. The implemented process parameters 

modifications were found to be not only effective in reducing the as-printed surface roughness of 

the components, but also led to the formation of cyclic small-large melt pools (MPs) in Upskin 

layers of the fabricated samples. Such consecutive modification in the size of MPs led to the 

increased inhomogeneity of the microstructure, contributing to the formation of a coarser 

intercellular eutectic-Si network, larger grain size, and lower density of low angle grain 

boundaries. Among all fabricated samples, the sample that experienced the fastest cooling during 

solidification was found to reveal the highest corrosion resistance and the best passive film stability 

on its Upskin surface both in naturally-aerated and deaerated 3.5 wt.% NaCl electrolyte, owing to 

the finer Al-Si eutectic structure that forms along its large MP-boundaries. The as-printed 

microstructure of the L-PBF-AlSi10Mg was found a dominant factor in determining the necessity 

of applying post-printing surface polishing procedures to attain better corrosion properties.   

 

Keywords: Additive manufacturing (AM); laser-powder bed fusion (L-PBF); AlSi10Mg; 

microstructure; corrosion. 
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1. Introduction 

Over the past decades, the continuously growing attention to advanced engineering components 

with more intricate designs and improved mechanical and corrosion performance for applications 

in harsher environments has demanded the implementation of innovative manufacturing 

technologies [1]. Metal-based additive manufacturing, or three-dimensional (3D) printing, as a 

novel and rapidly evolving fabrication technology, offers a variety of solutions to the existing gaps 

and deficiencies both in design and manufacturing and introduces a versatile method to fabricate 

intricate parts with improved performance and functionalities. Laser-powder bed fusion is an 

additive manufacturing process that offers distinct advantages, such as cost-effective 

manufacturing with the feasibility to create near net shape complex geometries without almost any 

loss of material, and shorter time to market compared with traditional technologies. Different 

terminologies have been used in different studies to refer to this process, such as Selective Laser 

Melting (SLM) [1], Direct Metal Laser Sintering (DMLS) [2], or Laser Beam Melting (LBM) [2]. 

Heretofore, various types of metals have been successfully fabricated using different AM 

technologies, including Ti alloys [3,4], Ni alloys [5,6], stainless steel [7–9], and Al-based alloys 

[10–14]. From the large family of aluminum alloys, AlSi10Mg alloy has been primarily 

implemented as the feedstock material by the additive manufacturing industry, and in particular, 

through the laser-powder bed fusion (L-PBF) process. The hypo-eutectic AlSi10Mg alloy has 

many applications in different industries, including aerospace, marine, and automotive due to its 

low thermal expansion, lightweight, and decent corrosion, and mechanical performance [14–16]. 

However, the traditional fabrication methods, such as casting, forging, and powder metallurgy 

techniques, have substantially limited the accelerated adoption of the family of Al-Si-Mg alloys, 

particularly in harsher environments due to the required prolonged fabrication cycles for complex 
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parts and the obtained microstructure of the alloy in as-fabricated condition. AlSi10Mg commonly 

contains a coarse eutectic silicon phase in addition to various hard and brittle intermetallic 

components, which can severely deteriorate its mechanical and corrosion properties [13,15,17]. In 

addition, implementing the L-PBF process in the fabrication of AlSi10Mg alloys has opened many 

new avenues for novel designs and applications for this alloy in various industries. 

Regardless of all the advantages that L-PBF technology is able to offer to the manufacturing 

industry, analogous to any other manufacturing process, it should not be considered as a flawless 

fabrication technique. In particular, for the L-PBF-AlSi10Mg alloy, the implemented high laser 

power, fast scanning rate, and balling and dross formation during solidification of the alloy 

commonly lead to the formation of various imperfections, such as microstructural inhomogeneity, 

high level of porosity, solidification micro-defects, residual stresses within the part, and the as-

printed surface roughness. Such process-induced imperfections can adversely impact the corrosion 

and mechanical properties of the fabricated components [11,14,18–20]. In order to diminish the 

formation of these defects and subsequently improve the corrosion and mechanical performance 

of the parts, various post-printing solutions, such as post-heat treatments [14,21,22], using different 

feedstock metal powder size [16,19], tuning L-PBF process parameters [10,11,23], hot isostatic 

pressing (HIP) [24], and post-printing surface treatments [25,26] have been implemented. 

It was reported that solution heat treatment improves the ductility of L-PBF-AlSi10Mg alloy 

at the expense of the tensile strength reduction [27–29]. Other post-printing heat treatment cycles 

have been introduced as an effective way to improve the microstructural homogeneity in L-PBF-

AlSi10Mg alloy [14,30]. It has been shown that by elevating the post-printing thermal-treatment 

temperature of the L-PBF-AlSi10Mg alloy from 200 °C to 350 °C, the breakage of the continuous 

Si network occurs, followed by the coarsening and growth of Si phase into idiomorphic particles, 
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resulted in an ulterior Si network boundaries and a more homogenous microstructure as compared 

to the as-printed condition [14]. Therefore, any heat treatment cycle at temperatures higher than 

250 °C ultimately disturbs the as-printed cellular microstructure of L-PBF-AlSi10Mg alloy and 

consequently deteriorates the corrosion performance of the alloy [22,30–32].  

Controlling the L-PBF processing parameters, such as size and morphology of the feedstock 

metal powder, laser power, hatching distance, and scanning speed can also impact the internal 

defects’ density, the achieved surface roughness, as well as the microstructure and consequently, 

the corrosion performance of the fabricated L-PBF-AlSi10Mg parts [16,19,33]. Microstructural 

analysis of the L-PBF-AlSi10Mg alloy using a feedstock powder with a larger size (13.7±9 µm) 

as compared to the smaller powders (8.8±7 µm) revealed that the size and morphology of the 

powders primarily impact the degree of Si networks coarsening, level of porosity, and 

solidification micro-cracks, giving rise to the deterioration of the corrosion performance of this 

alloy [19]. Other studies also reported the impact of tuning the L-PBF process parameters on the 

initial surface roughness of L-PBF-AlSi10Mg samples in the as-printed condition [10,11,23]. It 

has been reported that changing the laser power, beam offset, hatching distance, and scanning 

speed can drastically alter the final surface roughness of the samples [10,11,23]. For instance,  the 

previous study by the authors showed that by reducing the hatch distance from 0.21 mm to 0.12 

mm, scanning speed from 1000 mm/s to 775 mm/s, and beam offset from 0.2 mm to 0.1 mm, the 

surface roughness of the fabricated L-PBF-AlSi10Mg can be noticeably improved from Ra = 5.1 

± 1.5 μm to 1.1 ± 0.2 μm [10]. The reported adjusted process parameters also resulted in a low 

level of porosity in the fabricated parts as compared to the published data in the literature for L-

PBF-AlSi10Mg [11]. It is also reported that the modification of the process parameters not only 
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can impact the achieved as-printed surface roughness of the part, but also it can modify the 

microstructure, and consequently, the corrosion property of the printed sample [10].  

In the recent study by the authors [10], the corrosion response of the fabricated samples was 

investigated in the as-printed surface finish. However, it is known that the corrosion properties of 

the as-printed L-PBF-AlSi10Mg sample can be significantly affected and even controlled by the 

heavily oxidized partially melted particles that shroud the as-printed surfaces [10,13]. Therefore, 

to be able to accurately identify the exclusive impacts of the microstructural modifications in L-

PBF-AlSi10Mg on its corrosion properties and electrochemical stability, the as-printed surface 

roughness and the pre-existing partially melted powder particles should be eliminated from the 

surface of the alloy through polishing. Focusing on this gap, this research, as a supplementary 

study to the previous works by the authors [10,11], aims to investigate the effect of the applied 

microstructural modifications by tuning the printing process parameters, independent from the 

resultant surface roughness, on the corrosion properties of the L-PBF-AlSi10Mg alloy. The impact 

of dissolved oxygen in naturally-aerated 3.5 wt.% NaCl electrolyte on the corrosion response of 

the L-PBF AlSi10Mg alloy is also investigated. Furthermore, comparisons are made between the 

corrosion response of the fabricated samples with the as-printed surface finish reported in the 

authors’ previous study [10] and their polished counterparts to further clarify the necessity of 

implementing a post-printing surface modification method, such as polishing, on the L-PBF 

fabricated AlSi10Mg components.   
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2. Experimental Procedure 

2.1. Material and Fabrication Process 

In this study, three AlSi10Mg cubes with 15 × 15 × 15 mm dimensions were fabricated using an 

EOS M290 metal 3D printer machine equipped with a 400 W Ytterbium-fiber laser with 100 μm 

spot size at platform temperature of 165 °C. The used gas atomized AlSi10Mg powders in this 

study had the particle size distribution of 15-45 μm. The chemical composition of the used 

feedstock metal powder is summarized in Table 1. Other processing parameters, such as 30 μm 

thickness of the powder layer and stripe hatch rotation of the laser beam by 67° between successive 

layers, were kept constant in the fabrication of all samples [10]. 

Table 4. 1. Nominal chemical compositions of AlSi10Mg_200C powder (wt. %) 

Si Mg Fe Mn Ti Zn Cu Al 

9.00-11.00 0.20- 0.45 ≤0.55 ≤0.45 ≤0.15 ≤0.10 ≤0.05 Bal. 

 

To investigate the effect of the fabrication process parameters on the modification of the 

microstructure, solidification behavior, and corrosion properties of the L-PBF-AlSi10Mg samples, 

three groups of samples, i.e. Surface I, Surface II, and Regular, having the same processing 

parameters for their core but different fabrication parameters for their last three to seven printed 

layers (so-called Upskin layer), were fabricated [10]. The detailed L-PBF process parameters used 

for the manufacturing of the Upskin layers in different samples are summarized in Table 2, whereas 

the employed process parameters for the core of these three samples can be found in the previous 

study by the authors [10]. The process parameters employed for the printing of the Surface I and 

Surface II samples are the same except that the hatch distance and beam offset used for the Upskin 

layer of Surface II sample were slightly lower than those in the Surface I sample.  
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Table 4. 2. Process parameters for the deposition of the Upskin layers of each samples. 

Process Parameters  Surface I Surface II Regular 

Hatch Distance / mm 0.13 0.12 0.21 

Speed / mm.s-1 775 775 1000 

Power / W 370 370 360 

Beam Offset / mm 0.15 0.10 0.20 

VED* / J.mm-3 122.42 132.62 57.14 

*Volumetric Energy Density of the laser 

2.2. Microstructure Characterization 

To be able to assess the applied microstructural modifications on the Upskin layer of each sample, 

the Upskin surfaces were delicately polished perpendicular to the building direction, using 

Tegramin-30 Struers auto-grinder/polisher to a mirror-like finish surface using a 0.02 µm alumina 

suspension. Keller’s reagent (2.5 vol.% HNO3, 1.5 vol.% HCl, 1 vol.% HF, and 95 vol.% H2O) 

were used to expose the microstructural features. The microstructural analysis of the samples was 

carried out using scanning electron microscopy (SEM-FEI MLA 650F) with an energy dispersive 

X-ray (EDX from Bruker) detector and an HKL Electron backscattered diffraction (EBSD) system. 

The grains size, crystallographic orientations, and grain boundary evolutions were also examined 

by EBSD analysis using Nordlys II HKL EBSD detector over two different scanning areas of 

300×300 μm and 150×150 μm at the step size of 0.7 μm and 0.35 μm, respectively. An EBSD 

post-processing software (Channel 5) was used to post-process and analyze the EBSD results.  

2.3. Electrochemical Measurements 

The corrosion analyses were conducted on the top surface of the polished Upskin layers of the L-

PBF fabricated samples using an IVIUM CompactStat™ Potentiostat with a three-electrode cell 

setup according to the ASTM G5 standard for anodic polarization measurements [34]. A graphite 

rod as the counter electrode (CE) and a saturated silver/silver chloride (Ag/AgCl) electrode as the 
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reference electrode (RE) were used. For all electrochemical testing, aerated 3.5 wt.% NaCl solution 

at 25 °C was used as the electrolyte. Prior to the corrosion tests, the open circuit potentials (OCP) 

were monitored for 1 h for stabilization. The potential range for the anodic curve measurements 

was applied from −0.02 V to +0.3 V vs. OCP, employing a scanning rate of 0.125 mV/s. To easily 

observe the pitting potential (Epit) of the samples, the anodic polarization tests were also performed 

using the same parameters in deaerated condition, prepared by bubbling argon gas at the rate of 

150 cm3/min for an hour in the electrolyte [35]. The electrochemical impedance spectroscopy 

(EIS) tests were also performed on the polished Upskin surfaces of each sample from 1 h up to 96 

h of immersion time in aerated 3.5 wt. % NaCl solution. Signals with 0.01 V amplitude over the 

OCP with a sinusoidal frequency range between 100 kHz and 10 mHz were applied. To confirm 

the repeatability of the obtained corrosion data, at least three samples were tested for each 

condition. The corrosion morphology of the samples was also studied after polarization testing in 

both aerated and deaerated solutions as well as after EIS testing at 1 h and 96 h of immersion times 

using the SEM. Prior to the corrosion morphology analysis, the formed corrosion products were 

removed from the samples’ surfaces by immersing the corroded samples in concentrated HNO3 

(15.8 N) solution for 15 min [36]. 

3. Results and Discussion 

3.1. Microstructural Characterization 

Since the effects of adopted variations in the process parameters can only be detected in the last 

three to seven deposited layers, the top surface of the fabricated samples was the main focus of the 

conducted microstructural and corrosion studies herein. The SEM micrographs taken from 

different Upskin layers (shown in Figure 4.1) clearly depict the morphologies of the MPs from 
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both the top and side views of the Surface I, Surface II, and Regular samples. The polished surfaces 

were delicately prepared aligned with the building plane (top view) and building direction (side 

view) to ensure the observed MPs on the top view are perfectly parallel to the direction of the laser 

scan and on the side view are perpendicular to the scanning plane (x-y plane).  

Figures 4.1a-4.1c show the SEM micrographs taken from the side view of all samples, 

confirming the cyclic formation of the small-large MPs in the Upskin layer of Surface I and Surface 

II samples. On the other hand, a relatively consistent MP size in the Upskin layer of the Regular 

sample was detected (Figure 4.1c). It has been reported that by enhancing the overlap between two 

subsequent passes resulted from decreasing the hatch distance during fabrication, the heat transfer 

intensity through the previously solidified MP increases, giving rise to a more notable difference 

in the size of MPs between the two successive passes [10].  

As can be seen in Figures 4.1d-4.1f, the observed MPs on the top view of the fabricated 

samples do not exhibit a tear-dropped morphology with irregular geometries and directions similar 

to what commonly reported in the previous studies [12–14]. Differently, the MP boundaries are 

side by side parallel with the direction of the laser scan, confirming the 67° rotation between 

different layers. However, the microstructure of the core of all three samples, i.e., the 

microstructural features of the MPs and their boundaries, was found to be very comparable to 

common L-PBF-AlSi10Mg microstructure reported earlier in the literature [10–14]. 

Comparing the geometrical characteristics of the MPs of the top and side views of different 

samples, shown in Figures 4.1a-4.1f, confirmed the variation of the MPs’ width in a periodic 

manner in Surface I, and more noticeably, in Surface II. The slight change in the hatch distance 

and beam offset from the Regular sample to Surface II led to the formation of such bi-layer MP 
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structure, leading to the formation of almost two times more compacted MPs per unit area in the 

Surface I and Surface II’s Upskin layers as compared to that of Regular sample.  

The detailed microstructural features taken from the Upskin layer of the fabricated samples 

are presented in Figure 4.1g-4.1l. All samples similarly revealed the formation of a notably fine 

cellular network of eutectic Si along the interdendritic regions of the primary Al phase, commonly 

reported as the dominant microstructure in all powder bed fusion fabricated AlSi10Mg parts 

(shown in Figure 4.1g) [10,14,19]. Across each MP, there are three distinct regions with different 

microstructures formed as a result of different thermal histories, i.e., fine cellular structure (MP-

fine), coarse cellular structure (MP-coarse), and transition heat-affected zone (HAZ) structure. It 

is worth noting that two solidification parameters, i.e., solidification rate (R) and temperature 

gradient (G), contribute to such microstructural variations for a given composition. During the 

solidification in the MP center, R is minimum, and G is maximum, resulting in the formation of 

the fine cellular-dendritic morphology. On the other hand, along the MP boundaries, the more 

elongated and coarser dendritic structure is formed due to the highest solidification rate and the 

lowest temperature gradient that material undergoes [14]. 

The SEM micrographs of both small and large MPs of different samples revealed different 

shape and size distribution of the eutectic Si network parallel to the extension of each region, 

resulting from different solidification behavior. Figure 4.1g and 4.1j confirmed that the 

microstructure of the two neighboring MPs and their MP-coarse region’s average size (extension 

towards the MP fine region) of the Surface I sample are almost comparable. However, the MP 

boundaries of the Surface II sample (Figures 4.1h-4.1k) revealed two different MP microstructure, 

including the smaller MPs (Figure 4.1h) with a narrow MP-coarse region and larger MPs (Figure 

4.1k) containing a broader MP-coarse region. The SEM images shown in Figures 4.1i and 4.1l 
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confirmed that the MPs of the Regular sample possess almost the same size, distribution, and 

morphology of the intercellular Si network along their boundaries. However, due to the lower 

volumetric energy densities (VED) employed in the printing of the Regular sample, a slightly 

smaller average size of the eutectic Si network was found in the Regular sample compared with 

the Surface I sample. A more comprehensive microstructural analysis of the fabricated samples is 

presented in the authors’ previous study [10].  

 

Figure 4. 1. SEM micrographs taken from the side (y-z plane) and top (x-y plane) view of the (a) 

and (d) Surface I, (b) and (e) Surface II, (c) and (f) Regular samples, (g) higher magnification 

image from the small MP boundary, the enclosed are in (d) indicated by G, (j) large MP 

boundary, the enclosed are in (d) indicated by J, (h) higher magnification image from the small 

MP boundary, the enclosed are in (e) indicated by H, (k) larger MP boundary, the enclosed are in 

(e) indicated by K, (i) higher magnification image from the small MP boundary, the enclosed are 

in (f) indicated by I, and (l) large MP boundary, the enclosed are in (f) indicated by L. 
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In a complementary analysis to the SEM microstructural investigation on three Upskin layers 

herein, EBSD analysis was carried out. The obtained inverse pole figure (IPF-z) maps, where the 

z-axis is parallel to the building direction of the Upskin layer, are shown in Figure 4.2a-c. A 

combination of equiaxed and columnar grains with varying volume fractions within each MP can 

be detected in the IPF maps of all samples, ascribed to the gradual variations of the temperature 

gradient (G) and solidification rate (R) from the center of the MP towards its boundary. It is well-

known that in the L-PBF process, the heat is mainly dissipated through the previously solidified 

layers [10,20,37]. Therefore, the detected variation in the MP size in each sample and also from 

one sample to another would affect the heat flux intensity and direction (cooling rate), and 

consequently, the resultant microstructures. 

The grains size distribution and grains aspect ratio of the Upskin layers of all samples in both 

large and small MPs were extracted from the IPF maps and are presented in Figure 4.3. The grain 

size distributions of the large MPs shown in Figures 4.2a-c were calculated to be 0.79 ± 0.90, 0.95 

± 1.44, and 0.89 ± 1.27 μm for the Surface I, and Surface II, and Regular samples, respectively. 

The finer and more randomly orientated equiaxed grains (grains with aspect ratio < 3) in the larger 

MP of Surface I sample (shown in Figure 4.2a) are associated with the fastest solidification/cooling 

rate of the large MPs in this sample. On the other hand, the coarser microstructure with more 

columnar grains (grains with aspect ratio > 3) of the Surface II in its large MPs, is attributed to the 

highest VED used in the fabrication of this sample along with the smaller size of the previously 

solidified MP adjacent to each large MP (see Figure 4.1b), causing a smaller overlap between the 

small and large MPs, which leads to solidification of the large MPs in Surface II sample at slower 

cooling rates as compared to that of the Surface I sample. The average grain size of the Regular 

sample is also slightly higher than the grain size of the Surface I sample, which is ascribed to the 
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larger hatch distance used in printing of this sample, causing the reduced heat dissipation intensity 

from the MPs of this sample during solidification, even though its MPs sizes are significantly 

smaller than the Surface I and II samples (due to the lower VED used for the fabrication of the 

Regular sample). Therefore, the largest grain structure was measured for the large MPs of the 

Surface II sample, resulting from the lowest R for its large MPs as compared to the Surface I and 

Regular samples.  

Regarding the small MPs in the Upskin layers of the additively manufactured samples, the 

grain size distributions of the small MPs of the Upskin layers shown in IPFs (Figures 4.2a-c) were 

measured to be 0.64 ± 0.40, 0.55 ± 0.23, and 0.81 ± 0.27 μm for the Surface I, Surface II, and 

Regular samples, respectively. Comparing the small MPs of all samples reveals that the finest and 

more randomly orientated grain structure with aspect ratio < 3 has been formed in the Surface II 

sample ascribed to the fastest solidification rate of its small MPs abutting to the large MPs in this 

sample, leading to the formation of a higher density of equiaxed grains compared with the small 

MPs of the other two samples. 

To further elaborate on the microstructural variations between the fabricated samples and 

establish a correlation between the grain boundary migration and particular boundary formation 

during solidification of each MP, the grain boundary analysis of the MPs in the Upskin layers of 

the samples was also carried out. Figures 4.2d-i depict the grain boundary (GB) maps taken from 

the fabricated samples. In these maps, the low angle grain boundaries (LAGBs), possessing 

misorientation angles less than 15° (subgrains), and the high angle grain boundaries (HAGBs) with 

misorientation angles higher than 15° (typically correspond to fully recrystallized grains [20,38]), 

are shown by red and black lines, respectively. The measured areas were focused on a region that 

contained at least two adjacent MPs, including their MP-fine and MP-coarse regions, and the HAZ 
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of the large MPs. The MP-coarse region was particularly important to be characterized (depicted 

in the enclosed areas in Figures 4.2d-f indicated by G, H, and I, respectively) since this area has 

been reported to be more vulnerable to selective corrosion attack [10,19]. As a general trend, the 

density of the LAGBs close to the MP boundaries is higher than the MP’s center. The formation 

of this non-uniform LAGBs distribution is ascribed to the moving heat source-induced temperature 

gradient during the L-PBF process. In the large MP boundaries of the Surface I (Figure 4.2g), a 

higher density of cellular LAGBs, as subgrains, confined inside the HAGBs were found. The 

fastest solidification rate in the large MP of the Surface I sample acts as an impediment to grain 

boundaries’ migration, promoting the formation of more LAGBs [39,40]. Differently, during the 

fabrication of the Regular sample, the MPs stay at the high temperature for a longer time as 

compared to the Surface I sample, contributing to merging each subgrain boundaries with its 

neighboring subgrains and forming more expanded subgrains, while still surrounded by the 

HAGBs (Figure 4.2i). In Surface II sample, on the other hand, upon exposure of the large MPs to 

a high temperature for a more extended period of time during the solidification (in comparison 

with Surface I and Regular samples), the cellular LAGBs greatly merge with their adjacent 

subgrain boundaries, causing the annihilation of LAGBs. Therefore, the observed refined grains 

and subgrains in Surface I sample are associated with the rapid solidification rate of the MPs in 

this sample, as the mobility of the grain boundaries is primarily the temperature and time-

dependent [41]. However, by decreasing the solidification rate and exposing the MPs to a higher 

temperature for a longer time (the case of large MPs of Surface II), those LAGBs are gradually 

disappeared and transformed into the HAGBs.  

It is worth mentioning that the non-coherent HAGBs that possess a higher grain boundary 

energy are more susceptible to localized corrosion attack, while coherent LAGBs with lower grain 
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boundary energy are more resistant to corrosion [42–44]. The detailed analysis of the 

electrochemical response of all samples is presented in the following section. 

 

Figure 4. 2. EBSD inversed pole figure (IPF-z) maps taken from the Upskin layer of the (a) 

Surface I, (b) Surface II, and (c) Regular samples. The grain boundary maps taken from the (d) 

Surface I, (e) Surface II, and (f) Regular samples, (g) higher magnification image from the large 

MP boundary of Surface I, the enclosed area in (d) indicated by G, (h) higher magnification 

image from the large MP boundary of Surface II, the enclosed area in (e) indicated by H, and (i) 

higher magnification image from the large MP boundary of Regular sample, the enclosed area in 

(f) indicated by I. 
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Figure 4. 3. The statistical distribution plots showing the distribution of (a) grain size, and (b) 

grains’ shape aspect ratio at different regions across both the large melt pool (L-MP) and small 

melt pool (S-MP) for the Surface I, Surface II, and Regular samples. 

 

The pole figures (PF) of the MPs’ microstructure were calculated from the EBSD maps to 

investigate the micro-texture distribution resulted from the different processing parameters and 

solidification behavior of the Upskin layers in all three samples. Figure 4.4 demonstrates {100}, 

{110}, and {111} PFs for both small and large MPs of each sample shown in Figures 4.2 (a-c), in 

which z-axis is normal to plane of the {100} pole figure. The {001}<100> cube texture appeared 

in the PFs are commonly reported for the epitaxial growth in the solidification of the Al alloys 

[41,45]. The <001> direction is the easy growth and heat dissipation direction for cubic structures 

during solidification [10]. Comparing the large and small MPs of the studied samples revealed that 

the large MPs of Surface I and Surface II samples (Figures 4.4a and 4c) indicated the highest 

texture intensity of 8.77 and 11.12, respectively. This is correlated to the slower solidification rate 
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of these MPs that has resulted in the formation of a higher fraction of columnar grains, promoting 

the strong texture in the {100} PFs along the large MP boundaries. The displayed overview of the 

MPs’ cross-section in Figure 4.1 (a-c) clearly shows a more notable size difference between two 

successive MPs in the Surface II sample, resulting in a comparably slower solidification rate in its 

large MPs relative to those in Surface I and Regular samples. On the other hand, comparing the 

PFs taken from the small MPs of the Surface I and Surface II samples confirmed that the weaker 

texture intensity is corresponding to the small MP of the Surface II sample (5.86), conforming well 

with their expected cooling rates during solidification. 

Figure 4.4 also shows a more noticeable difference between the intensity regions in the PFs 

of the Surface I and Surface II samples, corresponding to the noticeable difference between the 

solidification behavior of their large and small MPs, especially for the Surface II sample, whereas 

the texture difference between the consecutive MPs of the Regular sample was not that significant, 

ascribing to the consistency of the MPs’ size and geometry over the entire Upskin layer of the 

Regular sample. 
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Figure 4. 4. Pole figures (PFs) taken from the Upskin layer of the (a) large and (b) small MPs of 

Surface I, (c) large and (d) small MPs of Surface II, (e) large and (f) small MPs of Regular 

samples. 
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3.2. Corrosion Properties 

Figure 4.5a illustrates the open circuit potential (OCP) measurements on the as-polished surfaces 

over 3600 s prior to the anodic polarization tests in both naturally-aerated and deaerated 3.5 wt.% 

NaCl electrolyte. In the aerated solution, the OCP values independent from different Upskin layers 

were stabilized eventually around ~ −0.70 VAg/AgCl. Expectedly, removing the oxygen content from 

the used electrolyte was found to shift the OCP values to less noble potentials and led to the 

stabilization of the OCP values at different potentials in the order of Surface II < Regular < Surface 

I samples.    

Figure 4.5b shows the anodic polarization plots of the studied samples obtained from testing 

in both aerated and deaerated electrolyte in polished condition. Revealing a very similar 

polarization behavior in aerated condition, all three samples showed a rapid increase of the anodic 

current by applying potential, plausibly due to occurrence of localized corrosion attacks on the 

surface at an elevated rate. Such active-like behavior of the polished L-PBF-AlSi10Mg surfaces is 

consistent with the previously reported results in the literature [14,19,46]. Moreover, no passive 

region was observed to appear, confirming that approximately the same values of pitting potential 

and corrosion potential resulted in an instantaneous localized attack on the surface once the 

corrosion potential is attained. Since the formation of the passive region was not detected for the 

samples, the electrolyte was deaerated to shift the corrosion potentials to less noble values than the 

Epit by diminishing the oxygen reduction reaction. 
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Figure 4. 5. a) The OCP measurements over time, (b) the anodic polarization curves comparing 

the corrosion behavior of the Surface I, Surface II, and Regular samples in aerated and deaerated 

3.5 wt.% NaCl solution, (c) the Epit. distribution graph. 

 

Table 4. 3 shows the results extracted from the anodic polarization curves demonstrated in 

Figure 4.5b, i.e. the corrosion potential (Ecorr.) and the pitting potential (Epit) values of each of the 

fabricated samples. It is worth mentioning that the quantitative Ecorr. values extracted from the 

anodic polarization plots can only be used qualitatively to compare the polarization response of 
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different samples due to the anticipated localized nature of corrosion attack on Al-Si-Mg alloys 

[47]. Figure 4.5b shows that the pitting potentials of all three samples in aerated condition are 

approximately the same, which is plausibly associated with the severity of the environment that 

has dominated over the impact of microstructural variations between the samples in controlling 

the polarization response of the samples. For the same reason, the corrosion potential was also 

hard to distinguish in all three samples. However, in the deaerated condition, the corrosion 

potentials were shifted to less noble values than the pitting potentials. Also, a distinct passive 

region was detected for all three samples. Despite the significant variation of the passive window’s 

range between the samples, the distribution of pitting potential values in deaerated solution (Figure 

4.5c) did not reflect a drastic change between the samples (-0.68±0.03 VAg/AgCl, -0.71±0.02, and -

0.72±0.03 VAg/AgCl for the Surface I, Regular, and Surface II samples, respectively). However, a 

slight reduction (~ 40 mV) in the average value of the pitting potential for the Surface II sample 

as compared to the Surface I sample is notable. The similarity between the measured Epit values in 

deaerated solution and the Ecorr. values in aerated solution for all three samples confirms that in 

presence of oxygen in the testing electrolyte, the pitting is initiated even at Ecorr. during the 

equilibration time. 

Therefore, the observed initial response of the anodic polarization of the studied samples in 

aerated electrolyte did not capture a clear difference between the corrosion properties of the 

samples. However, the significant variation of the OCP value and Ecorr. for the Surface II sample 

and the slight change of its pitting potential towards less noble potentials in deaerated electrolyte 

as compared to other samples can be ascribed to the coarser microstructure and more extended MP 

coarse region along the large MP borders of the Surface II sample. The extended microstructure is 
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possessing a higher content of interdendritic Si phase with a greater potential difference as 

compared to the α-Al matrix.  

Table 4. 3. Anodic polarization parameters of the as-polished Upskin layer of the Surface I, 

Surface II, and Regular samples in aerated and deaerated 3.5 wt.% NaCl solution. 

Sample Ecorr.(VAg/AgCl) Epit. (VAg/AgCl) 

Surface I (aerated) -0.69±0.02 - 

Surface I (deaerated) -0.71±0.02 -0.68±0.03 

Surface II (aerated) -0.68±0.03 - 

Surface II (deaerated) -0.92±0.03 -0.72±0.03 

Regular (aerated) -0.69±0.01 - 

Regular (deaerated) -0.77±0.03 -0.71±0.02 

 

In order to study the morphology and severity of the corrosion attack, the Upskin surfaces of 

the samples were investigated using SEM after removing corrosion products. Figure 4.6 and 4.7 

show the corrosion morphology of the Surface I, Surface II, and Regular samples after anodic 

polarization testing in aerated and deaerated conditions, respectively. As shown in Figures 4.6a-

4.6c, in all samples tested in aerated electrolyte the corrosion has initiated preferentially in the 

form of localized selective attack along the melt pool boundaries. As a result of the greater 

concentration of coarser silicon particles along the melt pool borders than those formed in the 

interior of the melt pools, the attack tends to follow the melt pool boundaries, leading to the 

selective corrosion attack shown at a higher magnification in Figures 4.6d-4.6f by arrows. The 

coarser Si network along the melt pool boundaries of the L-PBF-AlSi10Mg alloy has been proven 

to create a larger Volta potential difference between the Si phase and the Al matrix than that in the 

interior of the melt pools, giving rise to a greater driving force for galvanic corrosion to occur 

[46,48,49]. Similar corrosion morphology around the melt pool boundaries of L-PBF-AlSi10Mg 

alloy was also reported in the literature [31,50]. Despite the similarity of the corrosion morphology 

between the studied samples herein, the detected selective attack on the Surface II sample was 
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noticeably more severe (Figures 4.6b and 4.6e), ascribed to the coarser Si network and more 

extended MP-coarse region formed in the Upskin layer of Surface II sample.  

A similar corrosion morphology in the form of selective corrosion attack along the melt pool 

boundaries (shown by arrows in Figures 4.7a-4.7c) was observed for the tested samples in 

deaerated electrolyte. Despite the existing literature has confirmed that generally the corrosion rate 

of metals increases by increasing the concentration of dissolved oxygen in an aqueous medium 

through expediting the cathodic reduction reaction [51], the corrosion attacks on the samples 

exposed to the deaerated solution were found to be more severe than those immersed in aerated 

solution. Such discrepancy can be ascribed to the lower corrosion potentials, and consequently 

longer polarization duration of the samples in deaerated electrolyte before the tests were 

interrupted at a constant current threshold, leading to higher anodic charge of the samples and the 

formation of deeper attacks. Consistent with the results obtained from testing in aerated solution, 

the detected selective corrosion attacks for the Surface II sample in deaerated condition were more 

severe than the Regular and Surface I samples, conforming to the corrosion results shown in Table 

3. 
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Figure 4. 6. SEM micrographs taken from the L-PBF AlSi10Mg after anodic polarization testing 

in aerated 3.5 wt.% NaCl solution: a) Surface I (aerated), d) higher magnification of the enclosed 

area in (a), b) Surface II (aerated), e) higher magnification of the enclosed area in (b), c) Regular 

sample (aerated), f) higher magnification of the enclosed area in (c). 

 

Figure 4. 7. SEM micrographs taken from the L-PBF AlSi10Mg after anodic polarization testing 

in deaerated 3.5 wt.% NaCl solution: a) Surface I (deaerated), d) higher magnification of the 

enclosed area in (a), b) Surface II (deaerated), e) higher magnification of the enclosed area in (b), 

c) Regular sample (deaerated), f) higher magnification of the enclosed area in (c). 

To investigate the protectiveness and integrity of the passive film that formed on the Upskin layer 

of different samples, EIS tests were performed in aerated 3.5 wt.% NaCl electrolyte. The obtained 

Bode diagrams for all samples after 1 h and 96 h of immersion times at room temperature are 

shown in Figures 4.8a and 4.8b, respectively. The impedance values at the high frequency range 

in the Bode plots correspond to the electrolyte resistance and the resultant ohmic drop in the 

solution, while the low to middle frequency range impedance values represent the passive film 

stability on the Upskin surface of three different samples. The Bode plots after 1 h of immersion 

exhibit a noticeably higher absolute value of impedance for the Surface I sample than the Surface 

II and Regular samples at the lower frequency range. After 96 h of immersion times, the Surface I 

sample showed more than one order of magnitude higher impedance at the lower frequency range 
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than the Surface II or the Regular samples (see Figure 4.8c). This indicates a slower kinetic rate 

for all possible corrosion reactions on Surface I sample, confirming the presence of a more 

protective and stable passive layer against the diffusion of aggressive species on the Upskin layer 

of the Surface I sample after 96 h of immersion time.  

After 1 h of immersion time, the phase angle vs frequency diagrams of all three samples 

(Figure 4.8a) revealed an inductive behavior at very low frequencies, as evidenced by the shift of 

the phase angle to positive values. Although the interpretation of the inductive loop for Al alloys 

has been discussed in several corrosion studies [50,52,53], it is still controversial. Arrabal et al. 

[50] stated that the inductive behavior of a cast Al-Si-Mg alloy is associated with active nucleation 

of pits at the periphery of the intermetallic particles, while in others studies, it was indicated that 

inductive behavior is more likely promoted by decreasing the protectiveness of the aluminum 

oxide layer [53,54]. Considering the noisy impedance and phase angle responses at the low 

frequency range detected in this study (shown in Figure 4.8a), it was concluded that the observed 

inductive behavior of the studied surfaces after 1 h of immersion time was also associated with the 

frequent change of the active surface area (melt pool boundaries), resulted from the adsorption and 

subsequent separation of hydrogen bubbles. The deformed peaks in the low-frequency range are 

also reported to be ascribed to the diffusion processes inside the developing pits [50].  To better 

reveal the presence of constant phase element at higher frequencies, corresponding to the 

formation of oxide layer on Al alloys, the phase angle and modulus diagrams were corrected (𝜑𝑎𝑑𝑗 

and |𝑍|𝑎𝑑𝑗, respectively) according to the electrolyte ohmic resistance [55–57]. The modified Bode 

representations for ohmic resistance are expressed as: 

𝜑𝑎𝑑𝑗 = 𝑡𝑎𝑛−1(𝑍𝑖𝑚𝑔 𝑍𝑟𝑒𝑙 − 𝑅𝑒𝑙,𝑒𝑠𝑡.⁄ )     Eq. 4.1 

|𝑍|𝑎𝑑𝑗 = √𝑍𝑖𝑚𝑔
2 + (𝑍𝑟𝑒𝑙 − 𝑅𝑒𝑙,𝑒𝑠𝑡.)2    Eq. 4.2 



116 
 

where Rel,est. is the electrolyte resistance estimation, which is the average value of the 

measured electrolyte resistance among different samples (Rel, est. = 7.70 Ωcm2 herein). The 

modified Bode plots after 1 h of immersion time is shown in Figure 4.8b. The modified phase 

angle (𝜑𝑎𝑑𝑗) after 1 h of immersion time clearly presents the constant value of 80° for Surface I 

and Regular samples and 60° for Surface II sample at frequencies higher than 158 Hz, representing 

constant phase element (CPE) behavior. 

The impedance of a constant phase element (CPE) is determined by ZCPE= [Q(iω)n]-1, in 

which Q is considered as the CPE constant, i is the imaginary unit (j =√−1), ω describes the 

angular frequency (rad/s), and n is known as the dispersion coefficient of the constant phase 

element, and its value changes within -1 and 1 range, representing inductivity, resistance, Warburg 

impedance, and the capacitance for the n value equals to -1, 0, 0.5, or 1, respectively. The 

determined values for the dispersion coefficient (n) were 0.92±0.02 for all different samples; 

therefore, the CPE constants can be substituted by capacitors in the equivalent circuits shown in 

Figures 4.8g and 4.8h. The calculated parameters of the SECs are given in Table 4. 

The Bode diagrams of the samples after 96 h of immersion time (Figure 4.8c) revealed a 

drastic change by showing three capacitive arcs with well-defined time constants, i.e. one at low 

frequencies, one at intermediate frequencies, and the other at higher frequencies. The low-

frequency peak defines localized and selective attack zones resulted from anodic dissolution of Al, 

creating a charge transfer resistance, as well as diffusion within corrosion products, while the mid-

frequency peak corresponds to the formation of the passive layer and sealing effect of the corrosion 

products within the porosities and other active areas [52]. The capacitive peak at high-frequency 

range for this alloy has been reported to be ascribed to the formation of an exterior layer of 

corrosion products between the sample’s surface and the electrolyte [10]. The observed transition 
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of the surfaces from active with inductive behavior at 1 h of immersion time to passive after 96 h 

of immersion time can be attributed to (i) repassivation of the growing pits or localized attack 

regions resulted from detachment of cathodic Si particles from the exposed surface to the 

electrolyte due to the anodic dissolution of Al matrix at their periphery, and (ii) the formation and 

accumulation of corrosion products on the surface. The ohmic resistance corrected Bode diagrams 

after 96 h of immersion time are also shown in Figure 4.8d. The corrected phase angle plots after 

96 h of immersion time show distinct constant values of 86°, 59°, and 68° for Surface I, Surface 

II, and Regular samples, respectively, at frequencies higher than 4 kHz, confirming the CPE 

response of all three samples in the high frequency range.  

Figures 4.8e and 4.8f show the OCP trends before running the EIS testing at 1 h and 96 h of 

immersion times, respectively. Similar to the OCP trend before the anodic polarization testing 

(Figure 4.5a), the OCP values after 1 h of immersion time were stabilized around ~ −0.70 VAg/AgCl, 

confirming the spontaneous pitting of all surfaces at the OCP at the initial immersion time. 

Analogous to the observed state of full repassivation for all samples from EIS data after 96 h of 

immersion time, the OCP values (Figure 4.8f) were also found to shift to less noble potentials than 

the samples’ pitting potentials after 96 h and led to the stabilization of the OCP values at distinct 

potentials in the order of Surface II < Regular < Surface I samples.  

 The deterioration of the corrosion performance in the Surface II sample can be 

explained by the formation of the expanded HAZ and MP coarse region in the Surface II sample 

(resulted from the slower cooling rate for its larger MPs), leading to a greater driving force for 

micro-galvanic corrosion of aluminum matrix as the anodic site along the MP boundaries [48,58]. 

Furthermore, the positive impact of the higher density of LAGBs in the Surface I sample as 

compared to the other two samples (shown in Figures 4.2d-i), although not as a controlling factor 
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but rather as a contributing factor to its electrochemical stability should be considered. Previous 

studies have reported a direct correlation between the density of LAGBs and the improved 

corrosion resistance of various grades of aluminum alloys [42–44].  
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Figure 4. 8. (a) The Bode spectra, the fitting data, and (b) electrolyte resistance corrected Bode 

spectra after 1 h, (c) the Bode spectra, the fitting data, and (d) electrolyte resistance corrected 

Bode spectra after 96 h of immersion time. The OCP measurements after (e) 1 h and (f) 96 h of 

immersion time. The equivalent electric circuits suggested to interpret the EIS data after (g) 1 h, 

and (h) 96 h of immersion time. 

For a better interpretation of the characteristics of the passive layer that formed on all polished 

Upskin layers of the printed samples and to describe its modification over time, two simplified 

equivalent circuits (SEC), demonstrated in Figures 4.8g and 4.8h, was applied and fitted to the 

obtained EIS spectra. For the EIS spectra after 1 h of immersion time with inductive behavior, an 

equivalent circuit, shown in Figure 4.8g, similar to the one proposed by Arrabal et al.[50] was used 

to describe the active-like behavior of the surface. In this circuit, Rel is the electrolyte resistance, 

CPEcath and Rcath represent the capacitive behavior and resistance of the cathodic Si particles (vs 

the anodic Al matrix), Ra and La refer to the resistance of the corrosion products at the periphery 

of the Si particles and the inductance of protons created by hydrolysis of Al3+ species [50]. The 

impedance response of the samples after 96 h of immersion time with three capacitive arcs was 

described using a simplified equivalent circuit, similar to the one suggested by Fathi et al.[10], 

shown in Figure 4.8h. In this equivalent circuit, Rel explains the ohmic drop in the electrolyte, 

derived from the resistance of the solution. The constant phase element and the resistor 

corresponding to the newly formed layer of corrosion products (oxide layer) on the surface after 

96 h are shown by CPEoxide and Roxide, respectively. The CPEp and its parallel Rp correspond to the 

capacitive and resistance response of the passive layer, respectively. Likewise, CPEdl and its 

parallel Rct correspond to the constant phase element and resistance of the double layer (dl) 

charging-discharging at the Upskin’s surface, respectively. Finally, the Warburg diffusion element 

(Wpit) describes the ionic diffusion of corrosive ions within the passive film and inside the localized 

corrosion areas (pits). The protective oxide layer formed on aluminum alloys is known to be 

composed of two different layers, i.e. an inner and an outer layer [59]. The inner layer adjacent to 
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the metal surface with the maximum thickness of 4 nm is characterized by having a compact and 

amorphous nature, and is formed spontaneously in air [60–62]. Differently, the outer oxide layer 

is reported to be a thicker and more porous layer of hydrated oxide with the thickness of hundreds 

of nanometers, promoted by the reactions between the metal and its environment [59]. 

The significantly higher Rct value of the Surface I sample after 96 h of immersion time as 

compared to its Ran value at 1 h confirms that the full repassivation of its surface has occurred after 

96 h. A similar trend, although to a lesser extent, can be detected for the Regular and Surface II 

samples. After 96 h of immersion time, when the state of full repassivation is reached, the 

impedance value is increased, attributed to the formation of a stable passive film on the surface. 

Moreover, all samples showed a third time constant at high frequencies, characterizing the 

formation of an outer oxide layer in contact with the electrolyte. The calculated low Roxide values 

in Table 4 revealed a minor contribution for the outer oxide layer in providing protection for the 

underlying substrates. After 96 h of immersion time, the Surface I sample exhibited the highest 

passive resistance (Rp=12.3±1.24 kΩcm2) and charge transfer resistance (Rct=8.7±0.45 kΩcm2) 

and the Surface II sample showed the lowest passive layer resistance (Rp=5.33±0.34 kΩcm2) as 

well as charge transfer resistance (Rct=4.27±0.05 kΩcm2). Therefore, the EIS data confirmed the 

formation of a passive layer with better stability and quality on the Upskin layer of the Surface I 

sample, resulting in its improved corrosion performance as compared to the Surface II and Regular 

samples. 
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Table 4. 4. The fitting parameters of the EIS measurements including the elements of the SEC shown in Figure 4.8g and 4.8h. 

 
R 

(Ωcm2) 

Rcath 

(kΩ.cm2) 

Ran 

(kΩ.cm2) 

Roxide 

(kΩ.cm2) 

Rp. 

(kΩ.cm2) 

Rct 

(kΩ.cm2) 

Chi-

square 

(10-3) 

Surface I        

1 h 7.47±0.34 0.42±0.04 0.71±0.02 - - - 0.83 

96 h 8.23±0.27 - - 0.13±0.02 12.3±1.24 8.7±0.45 0.14 

Surface II        

1 h 6.43±0.22 0.56±0.07 0.33±0.05 - - - 0.85 

96 h 8.67±0.87 - - 0.6±0.01 5.33±0.34 4.27±0.05 0.14 

Regular        

1 h 7.44±0.35 0.33±0.01 0.54±0.04 - - - 0.80 

96 h 7.98±0.54 - - 0.08±0.01 6.24±0.56 5.67±0.04 0.15 

        

 

CPEcath,Q 

(µω-1 s-n 

cm-2) 

CPEoxide, Q 

(µω-1 s-n 

cm-2) 

CPEp, Q 

(µω-1 s-n 

cm-2) 

CPEdl, Q 

(µω-1 s-n 

cm-2) 

Lan 

(kΩ.s) 

Wpit 

(kΩ.cm2) 
 

Surface I        

1 h 5.42±0.11 - - - 2.5±0.15   

96 h - 18.23±1.34 13.25±0.45 8.36±0.64 - 0.45±0.03  

Surface II        

1 h 3.23±0.34 - - - 0.56±0.04   

96 h - 3.11±1.06 89.44±0.77 65.76±2.04 - 0.56±0.02  

Regular        

1 h 4.36±0.73 - - - 0.58±0.06   

96 h - 12.65±1.55 45.44±0.35 34.41±1.25 - 0.48±0.05  
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To further investigate the corrosion morphology after the EIS testing, the Upskin surfaces of 

the three samples were studied using the SEM after 1 h and 96 h of immersion time in the 

electrolyte followed by removing corrosion products. As shown in Figures 4.9a-4.9f, after 1 h of 

immersion time, a slight corrosion attack was detected on all the samples. The severity of localized 

attack on Surface II sample was found to be slightly more noticeable along its melt pool boundaries 

as compared to the other two samples (shown by arrows). Analogously, after 96 h of immersion 

time (Figures 4.10a-4.10f), the onset of corrosion attack was detected preferentially along the melt 

pool boundaries resulted from the selective dissolution of aluminum matrix adjacent to the coarse 

Si particles at the melt pool boundaries 14. The detrimental effect of increased Si content on the 

oxide layer’s structure and stability formed on additively manufactured Al-Si alloys has been 

reported in a recent study, where increased Si content from 7 to 12 wt.% was reported to cause the 

formation of less uniform and locally thinner anodic oxide layer containing wider pores with a 

greater inter-pore distance with a lower density [63]. Similar to the corrosion morphology after 

anodic polarization testing, the Surface II sample revealed a more severe attack along its melt pool 

borders, while the Surface I sample was found to be affected the least.  
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Figure 4. 9. SEM micrographs taken from the L-PBF AlSi10Mg after EIS testing at 1 h of 

immersion time, showing the surface of the a) Surface I , d) higher magnification of the enclosed 

area in (a), b) Surface II, e) higher magnification of the enclosed area in (b), c) Regular sample, 

and f) higher magnification of the enclosed area in (c). 

 

 

Figure 4. 10. SEM micrographs taken from the L-PBF AlSi10Mg after EIS testing at 96 h of 

immersion time, showing the surface of the a) Surface I , d) higher magnification of the enclosed 

area in (a), b) Surface II, e) higher magnification of the enclosed area in (b), c) Regular sample, 

and f) higher magnification of the enclosed area in (c). 
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3.3. Comparisons with the As-printed Surfaces: the Inconsistent Role of Polishing  

To better understand the impact of polishing as a post-printing surface modification procedure on 

the electrochemical properties of the fabricated samples, comparisons were made between the 

corrosion properties of the fully polished samples studied herein and their as-printed counterparts 

studied in the authors’ previous work [10]. 

The previous study revealed a significant difference between the OCP values of the fabricated 

samples with as-printed surface finish. The EOCP values of the as-printed Surface I, Surface II, and 

Regular samples were reported to be stabilized around −0.52 ± 0.02 VAg/AgCl, −0.73 ± 0.03 VAg/AgCl, 

and −0.62 ± 0.05 VAg/AgCl, respectively [10]. The trend and values of all samples’ EOCP with as-

printed surface finish indicate that the Surface I possess the highest passive film stability, and the 

Surface II has the lowest stability of the passive film. The attachment of partially melted oxidized 

powder particles to the as-printed surfaces is believed to have a contribution to the formation of a 

passive film with improved stability on the as-printed surfaces as compared to that of the polished 

ones [13].  

Different from the active-like response of the polished surfaces in aerated solution, as reported 

in the previous study [10], the as-printed surfaces were reported to reveal a clear passive window 

for all the samples and a pitting potential higher than the corrosion potential occurring at Epit= -

0.38 ± 0.10 VAg/AgCl, -0.62 ± 0.08 VAg/AgCl, and -0.14 ± 0.06 VAg/AgCl for Surface I, Surface II, and 

Regular samples, respectively [10]. This indicates a lower tendency for pitting formation; also, a 

favorable condition for the repassivation of the surface in the samples with the initial as-printed 

surface roughness as compared to their polished counterparts. The detected active-like behavior of 

the polished surfaces in aerated solution was found to diminish upon removing the oxygen content 

of the electrolyte, leading to the formation of a clear passive window for all samples with stable 
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pitting occurring at -0.68±0.03VAg/AgCl, -0.72±0.03 VAg/AgCl, and -0.71±0.02 VAg/AgCl for Surface I, 

Surface II, and Regular samples, respectively.  

Comparing the anodic polarization curves of the as-polished surfaces in aerated solution 

(shown in Figure 4.5b) to those of the as-printed ones reported in [10] reveals a clear change of 

the corrosion potentials towards more negative values for the as-polished surfaces. The order of 

corrosion potential for the as-printed surfaces were reported to be Surface II (Ecorr.=−0.68 ± 0.08 

VAg/AgCl) < Regular (Ecorr.= -0.58 ± 0.05 VAg/AgCl) < Surface I (Ecorr.= -0.51 ± 0.04 VAg/AgCl). 

Therefore, the polished surfaces seem to have a higher tendency for corrosion reactions to begin 

as compared to the as-printed surfaces. Removing the oxygen content of the electrolyte further 

contributed to lowering the corrosion potentials to less noble values. 

Moreover, comparing the protectiveness and integrity of the passive layer that formed on the 

polished Upskin surfaces (Figure 4.8c) to those of the as-printed surfaces after 96 h of immersion 

time reported in [10] also confirms a clearly different electrochemical response between the as-

polished and the as-printed samples, correlated to the impact of heavily oxidized and partially 

melted powder particles that cover the surface of the as-printed samples and act as a preserving 

barrier facing the corrosion attacks on the surface, eliminating a direct exposure of the surface with 

the corrosive environment [12,13]. Surface polishing completely removes the partially melted 

powder particles and eliminates the pre-existing thick and stable surface layers from the samples. 

For the case of the Regular and Surface II samples with coarser microstructure along their large 

MPs boundaries, polishing of the samples exposes their coarse as-printed microstructure 

(particularly the case of Surface II sample) to the corrosive medium, causing the deterioration of 

their corrosion properties. Therefore, to attain a better corrosion response from the Regular and 

Surface II samples in a chloride-containing environment, such as in marine, the post-printing 
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polishing of the samples should be avoided. On the other hand, for the Surface I sample, comparing 

the impedance response of the sample with as-polished and the as-printed surface finishes after 96 

h of immersion time revealed an improved corrosion response, possessing a higher impedance 

values in a wide range of frequencies, for the as-polished surface. This observation suggests that 

the finer microstructure of the Surface I sample, particularly along its large MP boundaries, has 

better electrochemical stability at longer immersion time as compared to the as-printed surface 

finish, confirming the positive impact of post-printing polishing on the corrosion response of the 

Surface I sample.  

Furthermore, the general response of the passive layer resistance (Rp) and charge transfer 

resistance (Rct) of each sample in the polished condition was found to be different from those with 

as-printed surface finish reported in [10], revealing a general uniform corrosion of the surface than 

a stable pitting attack for all L-PBF-AlSi10Mg samples with as-printed surface finish, as evidenced 

by their higher Rct than their general passive layer resistance [10]. This was similarly ascribed to 

the presence of the partially oxidized particles on the as-printed surfaces, which can eliminate the 

active nucleation of pits adjacent to the Si phases [13]. Post-printing polishing of the surface 

completely removes the partially melted powder and exposes the MP boundaries to the active 

corrosive species. 

Comparing the obtained results in this study with the existing literature on the impact of as-

printed surface roughness on the corrosion properties of L-PBF-AlSi10Mg alloy reveals both 

similarities and inconsistencies. Analogous to the results obtained for the Surface I sample, Cabrini 

et al. [52] and Leon et al. [18] also reported an improved corrosion response for the L-PBF-

AlSi10Mg after polishing and removing the as-printed surface roughness of the alloy. However, 

the improved corrosion response of as-polished samples in their study was primarily correlated to 
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the reduced surface roughness of the alloy after polishing. Differently, the enhanced corrosion 

performance of polished Surface I sample studied herein is mainly due to the better quality of the 

passive film that reforms after polishing on Surface I sample at longer immersion times as 

compared to the native oxide layer on the as-printed sample.   

Contrary to the reported results by Cabrini et al. [52] and Leon et al. [18], the presented results 

herein confirmed the corrosion properties degradation of the Regular and Surface II samples after 

polishing. To elucidate such discrepancy, a close attention should be paid to the reported as-printed 

surface roughness of the samples in previous studies as compared to the obtained surface 

roughness values in this study. The reported L-PBF-AlSi10Mg arithmetic surface roughness (Ra) 

by Cabrini et al. [52] and Leon et al. [18] were approximately 18 µm and 3.2-12.5 µm, 

respectively, which are significantly higher than the Surface II roughness (~ 1.1 µm). Therefore, 

regardless of the microstructural features induced by the process parameters, the high roughness 

of fabricated parts in previous studies has a dominant impact on controlling the electrochemical 

properties of the surfaces, leading to appearance of localized corrosion attacks preferentially at the 

roughness sites [18]. Accordingly, it is expected that removing the superficial roughness of as-

printed surfaces by polishing in their studies would contribute to a better electrochemical stability 

of the surfaces. Differently, the obtained as-printed surface roughness in current study (1.1 µm for 

Surface II) is comparable to the reported roughness of as-polished surfaces in previous studies (~ 

0.8 µm [18]). Consequently, the adverse effect of surface roughness on the corrosion properties of 

the samples studied herein has been diminished, and instead the positive effect of the native passive 

film formed during the fabrication process for the as-printed samples has dominated over the 

negative impact of the obtained non-homogenous microstructure for the as-polished surfaces (the 
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case of Surface II and Regular samples). This has resulted in relatively better corrosion 

performance of the as-printed Surface II and Regular samples than their as-polished counterparts.   

It should be also mentioned that the significantly higher volumetric energy density of the laser 

used in this study to fabricate the samples (122.4 J/mm3 and 132.6 J/mm3 for the Surface I and II 

samples, respectively) as compared to the previous works (47.8 J/mm3 [52] and 66.6 J/mm3 [18]) 

enhances the interlayer connection and improves the wettability of molten metal, leading to flatten 

melt pools and drastically lower surface roughness in as-printed condition.  

Therefore, to be able to decide on the best post-printing surface finishing practices for 

improved corrosion response of the L-PBF-AlSi10Mg, a careful assessment of the as-printed 

microstructure of the fabricated part is required. Although a meticulous tuning of the L-PBF 

process parameters used in the fabrication of the AlSi10Mg components has been shown herein to 

be an effective method to tailor a desired microstructure with an improved corrosion response on 

the surface of the component (the case of Surface I sample), to be able to fully benefit from such 

improvement, a careful polishing of the surface is recommended. Differently, if such 

microstructural refinement is not being considered in the fabrication process, tuning of the process 

parameters can still contribute to a significant reduction of the surface roughness (the case of 

Surface II sample), and meanwhile, in order to diminish any possible degradation in the corrosion 

performance of the fabricated parts due to the coarsening of the microstructure, polishing of the 

as-printed surface finish should be avoided.  

4. Conclusions 

In this work, the effects of L-PBF process parameters on the microstructure and the resultant 

corrosion properties of the L-PBF-produced AlSi10Mg in both naturally-aerated and deaerated 3.5 

wt.% NaCl solution were studied. Reducing the hatch distance used in the manufacturing process 



130 
 

of the L-PBF-AlSi10Mg was found to contribute to the formation of a bimodal structure, 

comprised of small and large MPs in a cyclic manner. For the fabricated sample with the lowest 

hatch distance, the variation in the MPs’ size was found to create a non-homogenous 

microstructure by forming a coarser eutectic Si network with a stronger {100}<100> cubic texture 

and a lower density of low angle grain boundaries along the large MPs’ boundaries, attributed to 

the reduced cooling rate during solidification of such large MPs. On the other hand, the sample 

that experienced the fastest cooling rate during the solidification revealed a finer eutectic Si phase, 

more uniformly distributed grains, a high density of LAGBs bounded by HAGBs, and a weaker 

texture along its large MP boundaries.  

Anodic polarization testing at the initial immersion time in naturally-aerated electrolyte did 

not reveal a noticeable difference between the fabricated samples and all samples unveiled 

spontaneous localized corrosion along their melt pool boundaries when their corrosion potentials 

were reached. Differently, testing in deaerated electrolyte separated the corrosion potentials from 

their corresponding pitting potentials by shifting the corrosion potentials to less noble values, and 

revealed a clear passive region for all samples. The fabricated sample at the highest volumetric 

energy density (leading to its lowest cooling rate during solidification) showed significantly lower 

OCP and Ecorr. values and a slightly lower breakdown potential in deaerated solution at compared 

to the other samples. Contrarily, the nobler Ecorr. value for the sample that underwent a faster 

cooling/solidification rate was attributed to the reduced driving force for galvanic corrosion 

between Al and Si phases due to the formation of a finer Al-Si eutectic structure along its large 

MPs boundaries.  

EIS results in aerated solution confirmed that although the state of full repassivation for all 

samples was achieved at longer immersion times (96 h), the fabricated sample at the highest 



131 
 

volumetric energy density revealed a degraded corrosion performance resulted from its extended 

HAZ and coarser microstructure. 

The comparisons between the as-printed L-PBF-AlSi10Mg surfaces versus their polished 

counterparts revealed that the presence of the accumulated partially melted powder particles on 

the as-printed samples can be beneficial towards the improved corrosion performance of the part, 

only if the as-printed microstructure of the alloy contains a coarse Al-Si structure along the MP 

boundaries. However, if the fabrication process has led to the formation of a fine eutectic structure 

along the MP boundaries, polishing of the as-printed surfaces is recommended to be able to fully 

benefit from the enhanced electrochemical stability of the formed microstructure. 
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Chapter 5 

Enhancing the Corrosion Properties of Additively Manufactured 

AlSi10Mg Using Friction Stir Processing 6 7 
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Abstract 

The solid-state structural modification technique friction-stir-processing (FSP) was applied on the 

surface of a laser-powder-bed-fusion fabricated AlSi10Mg alloy to locally modify the 

microstructure and enhance the corrosion properties of the alloy. A uniform microstructure was 

formed after FSP, comprised of a homogenous distribution of the Si-particles embedded in an Al-

matrix with an ultrafine-grained structure containing a low fraction of subgrains, and reduced 

porosity level. This structure offers improved corrosion properties, ascribed to the formation of a 

thicker passive layer with a lower donor density on the FSPed regions as compared to the as-

fabricated metal.  

 

Keywords: Additive manufacturing (AM), Laser-powder bed fusion (L-PBF), Friction Stir 

Processing (FSP), AlSi10Mg, Microstructure, Corrosion. 
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1. Introduction 

Among various types of Al alloys, the hypo-eutectic AlSi10Mg alloy has excellent castability and 

weldability due to a high fluidity and narrow solidification range associated with a eutectic Al-Si 

composition (Al-11.7 wt.% Si). It also offers age hardening response through Mg2Si precipitation, 

and has been widely used in a variety of applications in the aerospace, aeronautics, automotive, 

and marine industries [1–3]. However, the as-cast AlSi10Mg alloy is characterized by a coarse 

dendritic microstructure containing acicular Si phase, where second phase particles and 

intermetallic constituents can lead to mediocre corrosion resistance and mechanical performance 

for this alloy [4–6]. In recent years, to exploit the full potential of this alloy particularly for more 

intricate components with integrated functionality, state-of-the-art additive manufacturing (AM) 

technology has been adopted. 

Various AM methods, such as Laser-Powder Bed Fusion (L-PBF), also known as Selective 

Laser Melting (SLM), Laser Beam Melting (LBM), Direct Metal Laser Sintering (DMLS), or 

Direct Laser Fabrication (DLF) have been developed so far to produce a broad range of metallic 

components [7], such as Ti-based alloys [8,9], Ni-based alloys [10–12], Cu-based alloys [13,14], 

steels [15–17], stainless steels [18,19], and Al-based alloys [3,4,7,20,21]. Compared to the 

traditional manufacturing methods, the unique processing conditions associated with the L-PBF 

technology, involving a high volumetric energy density and rapid scanning strategy, lead to 

drastically high solidification and cooling rates of small melt pools (103–1011 K/s2) [3], which 

induces a high-temperature gradient and a large amount of residual stresses within the fabricated 

components [22,23]. Therefore, the AM fabricated parts are potentially susceptible to the 

formation of different solidification defects, such as microstructural inhomogeneities, high 

porosity levels, inclusions, and solidification micro-cracks, adversely impacting the mechanical 
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and corrosion properties of the printed components [3,21,24,25]. To eliminate such process-

induced imperfections, a variety of post-printing methods have been attempted by the AM 

manufacturing industries and researchers, including post-printing thermal processing [3,26–31] 

and surface [7,25] treatments, using feedstock powders with different sizes and morphologies 

[21,24,32,33], and optimization of the printing processing parameters [7,34,35]. 

Previous studies reported that applying post-printing heat-treatment cycles above 200 °C 

ultimately improves the microstructural homogeneity of L-PBF-AlSi10Mg alloy by disturbing the 

continuous network of the Si phase, followed by the diffusion and agglomeration of the Si phase 

into idiomorphic particles [3]. Consequently, the corrosion performance of the alloy is reported to 

be deteriorated [3,29–31,36]. Even though a post-printing heat-treatment cycle can be applied to 

tailor the microstructure of the L-PBF AlSi10Mg alloy, it cannot reduce the level of internal 

porosities [37]. Hot isostatic pressing (HIP) is capable of reducing the process-induced pores 

present in the as-printed sample [38,39], which has been shown to improve the elongation of L-

PBF processed AlSi10Mg alloy by almost 20%, while the tensile strength was reported to decrease 

by around 60%. 

So far, a few studies have examined the impact of processing parameters optimization, 

such as the size of the feedstock powder, laser power, hatching distance, and scanning speed on 

the size and distribution of the Si particles, grain refinement, density of the printed part, level of 

internal porosities, corrosion and mechanical performance of the L-PBF-AlSi10Mg components 

[4,25,35,40]. In a recent study by the authors, the microstructure of the L-PBF AlSi10Mg alloy, 

fabricated using a feedstock powder with a larger size (13.7±9 µm), revealed a coarser 

microstructure with a higher level of porosity and solidification micro-cracks as compared to the 

regular powders size (8.8±7 µm) [21]. This consequently led to deterioration of the corrosion 
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properties of the alloy [21], although its mechanical performance was not significantly affected 

[24]. It has been also reported that the presence of porosities in L-PBF AlSi10Mg samples can 

negatively impact the corrosion performance of the alloy in chloride-containing environments 

[21,40]. Furthermore, the process-induced porosities on the surface of the L-PBF AlSi10Mg alloy 

were shown to deteriorate the stability of the anodized layer, ascribed to the cracking of the anodic 

oxide film inside the pores [40]. A recent study also showed that by reducing the content and size 

of the porosities of L-PBF AlSi10Mg from 1.56 ± 0.84% to 0.54 ± 0.16%, the corrosion current 

density noticeably decreased from 1.262 ± 0.02 µA/cm2 to 0.642 ± 0.01 µA/cm2, indicating a 

significant improvement in the corrosion performance [21]. Other studies also investigated the 

effect of tuning the L-PBF process parameters on the initial surface roughness, level of porosity, 

and microstructural modification of the as-printed L-PBF-AlSi10Mg samples [7,25]. It has been 

reported that by reducing the hatch distance from 0.21 mm to 0.13 mm, scanning speed from 1000 

mm/s to 775 mm/s, and beam offset from 0.2 mm to 0.15 mm, the surface roughness of the 

fabricated L-PBF-AlSi10Mg can be noticeably improved from Ra = 5.1 ± 1.5 μm to 1.1 ± 0.2 μm 

[7]. Such modifications of the processing parameters were reported to create a finer grain structure 

in the fabricated part possessing a uniform distribution of Si particles, lower level of porosity, and 

better resistance to pitting and general corrosion attacks [7]. Analogous to the post-printing heat-

treatment and HIP, optimization of the printing process parameters does not entirely eliminate the 

process-induced porosities from the structure of the as-printed alloy, despite promoting 

microstructural uniformity. Consequently, it is necessary to establish a new post-printing method 

to improve the microstructural homogeneity and corrosion performance of the L-PBF-AlSi10Mg 

alloy simultaneously. 
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Only a few recent studies have reported the impact of applying friction stir processing 

(FSP), as a solid-state technique, on the microstructure of the L-PBF AlSi10Mg [41–43]. Yang et 

al. [41] reported that FSP is capable of eliminating the porosity of the L-PBF-AlSi10Mg alloy and 

refining the grain structure from 13.6 μm to 2.3 μm. In another study [42], it was demonstrated 

that the level of porosity is decreased from 0.13% in the as-printed condition to below 0.03% after 

FSP of L-PBF-AlSi10Mg. The positive impact of the FSP on the corrosion performance of the as-

cast Al–30Si alloy has been reported by Rao et al. [44], correlating such improvement to both 

grains size and the Si particles size reduction after FSP. The refined grains and uniform distribution 

of Si particles in the FSPed Al-30Si alloy were reported to cause the formation of a thicker and 

denser passive layer as compared to the as-cast condition [44]. Furthermore, it has been reported 

that increasing grain size from 40 µm to 290 µm can potentially promote the intergranular cracking 

susceptibility in 7075-T6 aluminum alloy immersed in deaerated 0.5 M NaCl solution [45]. In 

another study, Pang et al. [46] also showed that the FSP of the AA7075 Al alloy resulted in a 

uniform distribution of the cathodic constituent phase with a smaller distance from each other, 

giving rise to the improved resistance of the alloy against the intergranular corrosion. 

Regardless of the reported promising capabilities of the FSP in modifying the 

microstructure and improving the mechanical performance of L-PBF AlSi10Mg alloy, there is still 

very limited information available in the open literature on adopting this new post-printing surface 

treatment technique to modify the performance of AM components. Also, the impacts of the FSP-

induced microstructural modifications on the electrochemical stability and corrosion resistance of 

the L-PBF-AlSi10Mg alloy are hitherto unreported. Focusing on these gaps, the present study aims 

to better understand the microstructural evolution during FSP of L-PBF-AlSi10Mg alloy and the 



143 
 

resultant corrosion performance of the processed alloy as compared to the non-processed as-

printed L-PBF-AlSi10Mg. 

2. Experimental Methods 

2.1. Material and FSP Process Parameters 

In this study, 25×10×45 mm cuboid samples of L-PBF AlSi10Mg were fabricated utilizing an EOS 

M290 metal 3D printer machine (EOS, Germany) with a 400 W Yb-fibre laser and spot size of 

100 μm. Fabrication was performed using standard optimized parameters, including a laser power 

of 370 W, powder layer thickness of 30 μm, hatch spacing of 0.19 mm, scanning speed of 1300 

mm/s, and the stripe scanning strategy with the rotation angle of 67° between consecutive layers. 

The laser’s volumetric energy density (VED) [7] used for fabrication of the samples was calculated 

to be 49.93 J/mm3. To abate the process-induced residual stresses in the fabricated samples, the 

specimens were printed while maintaining the platform temperature at 200 °C in an argon 

atmosphere. Gas atomized AlSi10Mg feedstock powder was used with a particle size distribution 

of 8.8±7 μm and the measured chemical composition listed in Table 1. Inductively coupled plasma-

optical emission spectrometry (ICP-OES) was employed to precisely measure the chemical 

composition of the feedstock powder employing an Agilent ICAP (Model 725) ICP-OES machine 

located at Cambridge Materials Testing Limited (Cambridge, ON) [47]. 

Table 5. 1. The measured chemical composition of AlSi10Mg powder used in this study (wt. %) 

Si 
Mg Fe Ni Cu Al 

10.8 0.35 0.55 - - Bal. 

 

The applied post-printing friction stir processing of the L-PBF AlSi10Mg specimen and 

the position and geometries of the used FSP tool are shown in Figure 5.1a schematically. The 
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surface of the L-PBF AlSi10Mg sample was cleaned with acetone prior to the FSP. A single-pass 

FSP was conducted along the building direction (Z-axis) of the L-PBF sample, using a tool made 

of H13 steel, with a shoulder diameter of 15 mm and a 4.5 mm pin length, respectively. The tilt 

angle of the tool from the normal direction was 3°, and the plunge depth was 0.2 mm. The tool’s 

travel and rotation speeds were 63 mm.min−1 and 1120 rpm, respectively. The final processed L-

PBF-AlSi10Mg sample is shown in Figure 5.1b. 

 

 

Figure 5. 1. (a) Schematic demonstration of conducting the FSP on the L-PBF-AlSi10Mg, and 

(b) the FSPed L-PBF-AlSi10Mg sample. 

 

2.2. Microstructure Characterization  

For the microstructural characterization of the FSPed specimen, the fabricated sample was 

sectioned perpendicular and parallel to the FSP direction, followed by cold-mounting in an epoxy 

resin (EpoFix, Struers, Denmark). Following the standard sample preparation procedures for Al 

alloys, employing a Struers’ Tegramin-30 grinder/polisher (Struers, Denmark), the FSPed cross-
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section of the sample (X-Y plane) was polished to obtain a mirror-like finish using a 0.02 µm 

alumina suspension in the final polishing step. In order to reveal the microstructural features, the 

polished surfaces were etched using Keller’s reagent [7] for 20 s. Macro- and microstructural 

characteristics of the FSPed sample were investigated using a Nikon Eclipse 50i optical 

microscope (Nikon Instruments, Melville, NY) and field emission scanning electron microscope 

(FESEM, FEI MLA 650 F, Hillsboro, Oregon) equipped with a QUANTAX Energy Dispersive 

X-Ray Spectroscopy (EDS) detector (Bruker, Billerica, Massachusetts) and an HKL Electron 

Backscatter Diffraction (EBSD) system (Oxford Instruments, Abingdon, UK). In order to compare 

the porosity contents before and after the FSP in the L-PBF-AlSi10Mg sample, the porosity size 

and distribution on the polished surfaces of the samples at different cross-sections were measured 

using the ImageJ software. For detailed microstructural analysis of the FSPed region, transmission 

electron microscopy (TEM) in the scanning mode (STEM) was conducted using an FEI Tecnai 

Osiris TEM equipped with a Super-EDS X-ray detection system operated at 200 kV. A sub-

nanometer electron probe was used for the STEM-EDS elemental mapping analysis to obtain 

spatial resolutions in the order of 1 nm. To prepare TEM foils from the center of the FSPed region, 

an in situ lift-out technique [48] using a focused ion beam (FIB)-field emission SEM (Zeiss 

NVision 40 [Carl Zeiss, Chicago, IL] was adopted. The grains size and their morphology were 

also investigated using EBSD analysis (Nordlys II HKL EBSD detector) over scanning areas of 

150 μm×150 μm and 300 μm×300 μm at a step size of 0.35 μm and 0.70 μm, respectively. The 

post-processing of the raw EBSD data was performed using Channel 5 software (HKL Inc., Hobro, 

Denmark).  
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2.3. Corrosion Properties Analysis 

All electrochemical testing were performed on 5 mm×5 mm polished surfaces prepared from the 

X–Y plane of the FSPed area, as well as the side view (Y–Z plane) and the top view (X–Y plane) 

of the non-processed base metal (BM), denoted as the Side and the Top samples, respectively. A 

standard three-electrode corrosion cell setup [49], connected to a computer-controlled IVIUM 

CompactStat™ Potentiostat (IVIUM Technologies, Eindhoven, The Netherlands) was used in this 

study. The L-PBF-AlSi10Mg sample, a saturated silver/silver chloride (Ag/AgCl) electrode, and 

a graphite rod were employed as the working electrode, the reference electrode (RE), and the 

counter electrode (CE), respectively. The samples were tested in 1000 ml aerated 3.5 wt.% NaCl 

electrolyte to mimic the corrosion conditions in seawater environment. The temperature of the 

electrolyte during each test was kept constant at room temperature (25±0.1 °C) using a 

temperature-controlled water bath. For each electrochemical characterization measurement, the 

polished surface of the samples was ultrasonically cleaned in ethanol for 5 min and then washed 

with distilled water and dried under cold air. Before each electrochemical testing, the open circuit 

potential (OCP) was monitored for 3600 s for stabilization. The anodic polarization measurements 

were conducted in the potential range of −0.02 V to +0.3 V vs OCP, using a potential sweep rate 

of 0.125 mV/s.  

The electrochemical impedance spectroscopy (EIS) tests were also performed in aerated 

3.5 wt.% NaCl electrolyte at 25 °C for immersion times of 1 h, 72 h, and 120 h, using the AC 

signal with 0.01 V amplitude over the OCP in the frequency range of 100 kHz to 10 mHz. The 

impedance data and the corrosion parameters were evaluated employing the IviumSoft 

electrochemical optimization software (IVIUM Technologies, Eindhoven, The Netherlands). 
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The intergranular corrosion (IGC) measurement was conducted on the polished surfaces of 

the BM samples, including the top and side views as well as the FSPed samples according to the 

ISO 11846 standard [29], in which each sample was immersed in a solution containing 30 g/L of 

sodium chloride and 10 mL/L of HCl at room temperature (25°C) for 1 day [50]. After 24 h of 

immersion, the corrosion products were mechanically removed by ultra-soft brushing followed by 

rinsing with water [29], and then investigated via FESEM.  

To investigate the semiconducting property of the oxide/passive layer formed on the 

surface of the FSPed and the BM samples, Mott–Schottky analyses were performed by monitoring 

the frequency response at 1 kHz and 10 kHz during a 25 mV/s negative potential scan between -

1.5 V to 0.0 V vs OCP. The repeatability of the results obtained from all corrosion tests was 

measured by testing at least three samples. 

3. Results and Discussion 

3.1. Microstructure Characterization 

Figure 5.2a shows a low-magnification view from the entire transverse cross-section (X-Y plane) 

of the FSPed L-PBF-AlSi10Mg sample, showing the processed zone, including the stir zone (SZ), 

thermo-mechanically affected zone (TMAZ), and the base metal (BM) (see Figure 5.2d). Despite 

the presence of a heat affected zone (HAZ) between the TMAZ and the BM, the fine 

microstructural features associated with this region could not be captured using the optical 

microscope. Figure 5.2b shows the microstructural characteristic of the L-PBF AlSi10Mg, in 

which the plane of view is perpendicular to the building direction (top view), revealing a tear-drop 

morphology for the melt pools, similar to what has been commonly reported in previous studies 

[4,7,20]. The used hatching strategy with a 67° laser beam rotation between the consecutive layers 
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during the L-PBF process resulted in the formation of the irregular melt pool directions and 

geometries in the top view of the BM. The long axis of each single oval-shaped melt pool indicates 

the laser scanning direction. Figure 5.2c shows the optical micrograph from the as-printed L-PBF-

AlSi10Mg sample parallel to the building direction (side view), revealing a fish-scale morphology 

for the melt pools’ cross sectional overview with a width in the range of 100-150 μm.  

Figure 5.2d shows a higher magnification image taken from the SZ-BM interface 

(corresponding to the enclosed area in Figure 5.2a indicated by D). The TMAZ region is quite 

narrow, about 75–100 µm wide, leading to a sharp microstructural transition from the BM to the 

SZ. The optical microscopy investigation of the SZ (shown in Figure 5.2e) revealed that the 

observed melt pools characteristics in the BM (Figures 5.2b and 5.2c) were absent and entirely 

annihilated in the stir zone, which was attributed to the severe plastic deformation combined with 

the generated frictional heat during the FSP in this region. As compared to the SZ, TMAZ 

experiences a significantly lower level of deformation during the FSP and is mostly affected by 

the generated high temperature during the process. 

The level of L-PBF process-induced porosity was measured on the polished surfaces using 

the ImageJ software before and after performing FSP on different cross-sections. The Top and 

Side samples from the BM showed almost the same porosity content with average porosity 

percentage of 0.664±0.14% (indicated by small arrows in Figure 5.2f), which can be considered a 

low porosity level as compared to what has been reported in the literature [24]. Interestingly, the 

polished surface of the SZ (Figure 5.2g) clearly indicates that applying the FSP has eliminated the 

nearly all of the porosity, causing a significant reduction of the porosity level in the SZ. It is 

generally accepted that porosity and solidification micro-cracks in the L-PBF AlSi10Mg alloy are 

susceptible regions to pitting corrosion attacks [44,46]. Therefore, the reduction of internal pores 
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in the FSPed L-PBF sample can plausibly contribute to the corrosion properties of the alloy 

positively.  

 

Figure 5. 2. Optical micrographs taken from (a) the entire cross-sectional overview of the FSPed 

L-PBF-AlSi10Mg sample, (b) the top view, perpendicular to the building direction (X-Y plane), 

(c) the side view, along the building direction (Y-Z plane), (d) the enclosed area in (a) indicated 

by D, (e) the enclosed area in (a) indicated by E, and the polished surface of (f) BM, (g) SZ. 
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Figures 5.3a and 5.3b show the characteristics of the microstructural features for the L-PBF 

AlSi10Mg alloy, perpendicular (X-Y plane) and parallel (Y-Z plane) to the building direction, 

respectively, consisting of a remarkably fine dendritic structure (~ 0.5-2 μm) within the aluminum 

matrix (dark grey), and a continuous network of Si phase (light grey) formed along the 

interdendritic regions (shown in Figure 5.3a). The as-printed microstructure of the L-PBF 

AlSi10Mg revealed a nonhomogeneous microstructure with a non-uniform distribution of Si 

particles with different morphologies. In the vicinity of the melt pool boundaries, three distinct 

regions with different microstructures were formed due to the variation of solidification behavior 

and thermal history along the centerline of the melt pool. These microstructures consist of the 

coarse melt pool (MP) and fine MP regions, both having a cellular structure inside the melt pool, 

and a narrow HAZ in the previously solidified track containing broken idiomorphic Si crystals. 

The directional solidification features of the side view's microstructure in Figure 5.3b indicate the 

cellular growth towards the melt pool’s center. Such directional solidification features were absent 

in the top view microstructure, confirming the asymmetric microstructure of the as-printed sample 

in terms of size and morphology of Si, and possibly the density of the grain boundaries. 

Figures 5.3c-5.3f show the modifications of the intercellular Si phase in the stir zone and 

TMAZ. Comparing the microstructure of the SZ with that of the top and side views clearly 

indicates that the severe plastic deformation and the high temperature associated with the FSP have 

completely disrupted the continuous network of Si and resulted in a slight growth of the silicon 

phase into a more globular particle. Therefore, the FSP has completely eliminated the observed 

inhomogeneity and irregularities in the as-printed microstructure of the L-PBF-AlSi10Mg alloy 

and formed a uniform distribution of discontinuous Si phase in the Al matrix (Figure 5.3e). 
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The EDX chemical composition maps for Si element shown in Figure 5.3f were taken from 

the as-printed BM and the SZ (Figure 5.3f1 and 5.3f2, respectively), illustrating the distribution of 

the Si phase in the Al matrix. The more uniform distribution of the Si phase in the SZ (Fig 3f2) as 

compared to that in the side view sample (Fig 3f1) was also accompanied with an increase in the 

area fraction of this phase from 30% in the side sample to almost 36% in the SZ. A similar 

observation was reported by Rao et al. [44] after applying 3 FSP passes on the hypereutectic Al-

30Si alloy, causing the increase of the Si phase volume fraction from 35% to 61%. 

It is well known that the shape, size, and distribution of Si particles play an essential role 

in the corrosion performance of the L-PBF-AlSi10Mg alloy [3,21]. It was observed that the SZ 

and TMAZ showed finer and uniformly distributed idiomorphic Si particles in comparison with 

the BM (Figure 5.3d). Similar to the SZ, the TMAZ experienced plastic deformation (even though 

at much lower level as compared to the SZ) and heating during the FSP, so the light grey 

intercellular Si network has also completely disrupted. However, due to the lower temperature that 

the TMAZ is exposed to during the FSP as compared to the SZ, the Si particles in the TMAZ were 

finer than those in the SZ (see Figure 5.3d). 
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Figure 5. 3. SEM micrographs taken from (a) the top (X-Y plane) view, (b) the side (Y-Z plane) 

view, and (c) FSPed cross-section of the L-PBF-AlSi10Mg, the distribution of the Si particles in 

the (d) TMAZ and e) SZ, (f) EDX-Si maps taken from the side view (f1) and the SZ (f2), 

 

The STEM in bright-field mode (STEM-BF) combined with Energy dispersive X-Ray 

spectroscopy (EDS) were employed to investigate the positions of the Si particles in the stir zone 
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of the FSPed L-PBF AlSi10Mg with respect to the grains of the α-Al matrix. Figure 5.4 shows the 

STEM-BF image from the SZ of the FSPed L-PBF AlSi10Mg sample and its corresponding EDS 

elemental maps, confirming uniform distribution of very fine Si particles throughout the SZ. As 

clearly revealed from Figure 5.4b, despite the formation of Si precipitates in the interior of each 

Al grain, the majority of detected Si particles were found to be accommodated along the α-Al grain 

boundaries. These intergranular Si particles correspond to the disrupted eutectic Si phase that were 

formed in the as-printed sample with a continuous network morphology primarily along the grain 

boundaries of cell-like α-Aluminum matrix [32][47]. Furthermore, Figure 5.4a revealed a 

substantial grain refinement in the processed region, characterized by the formation of fine 

equiaxed grains uniformly distributed throughout the SZ. The observed grain refinement in the SZ 

has been thoroughly investigated using EBSD analysis in the following section. 

 

 

Figure 5. 4. (a) STEM-BF image from the microstructure of FSPed L-PBF AlSi10Mg in the SZ 

and (b) EDS elemental maps of Al (green), Si (red), and Fe (blue) superimposed on the STEM-

BF image shown in (a). 
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In addition to all existing secondary phases/micro-constituents, the grain size and grain boundaries 

density are known to be critical factors in controlling the corrosion performance of the metallic 

components [44,46,51]. Therefore, EBSD analysis was conducted before and after FSP to study 

the grain size/morphology in detail. The obtained EBSD inverse pole figures (IPF) maps along the 

Z-direction, where the Z-axis is parallel to the building direction, for three different samples 

studied herein are demonstrated in Figure 5.5.  

Figure 5.5a indicates the formation of equiaxed and ultrafine recrystallized grains that were 

uniformly distributed across the SZ. Such refinement in the grain structure of SZ is known to be 

governed by dynamic recrystallization (DRX) during FSP [52]. Therefore, the dual action of the 

severe plastic deformation and friction-induced heat during stirring has triggered DRX, leading to 

the evolution of ultrafine grain structure in the SZ. In contrast to the non-uniform microstructure 

of the as-printed L-PBF AlSi10Mg sample, the FSPed region revealed a refined and homogenous 

structure comprised of uniformly distributed broken Si phase embedded in a matrix of ultra-fine 

Al grains.  

Figures 5.5b and 5.5c show the grain structure of the Top and Side samples, respectively. 

As a general observation, the Top and Side samples have significantly coarser and non-uniform 

grain structures as compared to the SZ. The IPF map of the Top sample (Figure 5.5b) revealed 

primarily equiaxed grains with a random grain orientation (similar to the SZ), but significantly 

larger grain size than that of the SZ sample. The positions of the melt pool boundaries can also be 

traced along the paths that contain highly accumulated smaller equiaxed grains, as shown by the 

dashed lines in Figure 5.5b.  

The IPF map of the Side sample (Figure 5.5c) revealed the formation of mostly columnar 

grains (dominantly presented with red color (<100>)), which are aligned with the easy growth 
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direction of the crystal (<100> direction for cubic structures) during solidification. Analogous to 

the Top sample, the positions of highly accumulated small grains correspond to the melt pool 

boundaries. Therefore, as-printed L-PBF AlSi10Mg has a non-uniform grain structure with the 

combination of columnar and equiaxed grains. In general, during solidification, by decreasing the 

value of the temperature gradient over the solidification rate ratio (G/R) at the solidification front, 

the grain morphology is changed from columnar to equiaxed [53]. Therefore, the equiaxed grains 

are expected to form at the melt pool boundaries with the lowest temperature gradient and highest 

solidification rates. Moving from the melt pool boundaries towards the melt pool’s center, the 

grains become dominantly columnar (especially on the Side sample), due to the reduced 

solidification rate and increased temperature gradient [7].  

Figures 5.5d-5.5f show the grain boundary (GB) misorientation maps from the SZ, Top, 

and Side samples, respectively, where the low angle grain boundaries (LAGBs) with 

misorientation angle less than 15° and the high angle grain boundaries (HAGBs) having 

misorientation angles higher than 15° [54] were differentiated using red and black lines, 

respectively. As Figure 5.5d shows, the SZ has the lowest density of the LAGBs as compared to 

the Top and Side samples, confirming that during FSP, the occurrence of continuous dynamic 

recrystallization causes the subgrains boundaries (LAGBs) to migrate into high angle grain 

boundaries resulted from severe plastic straining of the material at high temperature associated 

with the FSP [55]. On the other hand, the Top and Side samples show approximately a similar 

distribution of LAGBs (Figures 5.5e and 5.5f). 

The grain size distribution of the SZ, Top, and Side samples is shown in Figure 5.5g. The 

occurrence of DRX in the SZ has resulted in a significant grain refinement (~ 90% of the grains 

with a size <2 μm) as compared to that of the as-printed BM samples. The Top and Side samples 
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revealed significantly coarser grain structure with the average grain size of 12±0.40 μm and 23±0.7 

μm, respectively. Therefore, considering all the detected microstructural variations between the 

FSPed region and the non-processed BM, including the shape, size, and distribution of Si phase 

and the grain size and the grains morphology, it is reasonable to expect different electrochemical 

performance for the FSPed sample. The electrochemical properties of all studied samples herein 

are presented and compared in the following section.   
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Figure 5. 5. The EBSD inverse pole figure maps taken from the (a) SZ, (b) Top view (X-Y 

plane), and (c) Side view (Y-Z plane) of the L-PBF AlSi10Mg. The grain boundary maps taken 

from the (d) SZ, (e) Top, and (f) Side samples, (g) statistical distribution plots showing the mean 

grain size distribution in all studied samples. 

3.2. Corrosion Properties Analysis 

3.2.1. OCP and anodic polarization results 

The steady-state open-circuit potential (OCP) evolution over 3600 s of immersion time in aerated 

3.5% NaCl solution for the SZ, Top, and Side samples are presented in Figure 5.6a. The OCP 
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values for all samples were stabilized at about the same value, around -0.73±0.06 VAg/AgCl, and no 

considerable difference resulted from variations in the microstructural features between the 

samples was detected. The measured proximity in the OCP values of different samples is plausibly 

attributed to the chemical composition uniformity on the surface of three samples, suggesting the 

formation of native oxide layers with similar nature on all samples [21,56]. However, the SZ 

sample revealed a slightly higher (more positive), although not significant, OCP values than the 

Top and Side samples. The nobler EOCP value of the SZ sample indicates marginally higher 

electrochemical stability and lower activity of its surface. This can possibly be ascribed to the 

uniformity of the microstructure and the lower volume fraction of porosities in the SZ after FSP.  

The anodic polarization plots of the SZ, Top, and Side samples in polished condition are 

illustrated in Figure 5.6b and Table 2 lists all anodic polarization parameters for all samples. The 

pitting potential (Epit), corrosion potential (Ecorr.), corrosion rate, and corrosion current density 

(Icorr.) values for each sample were obtained from their respective polarization plots. The reported 

mean values of Ecorr., Epit, and Icorr. in Table 2 were calculated from independent measurements 

from different samples. 

The polarization curve obtained from the Side sample reveals that the anodic current 

density increased rapidly at approximately the corrosion potential, confirming an instantaneous 

pitting on the Side surface once the corrosion potential is attained. Such active-like behavior with 

almost no passivity has been also reported in previous studies for the side view of the L-PBF 

AlSi10Mg [3,21]. The higher density of melt pool boundaries exposed to the corrosive 

environment on the Side sample than those on the Top sample leads to the active-like behavior of 

the Side surface [40,57]. However, during the FSP, the entire Si network of the L-PBF AlSi10Mg 

was eliminated, resulting in a significant change of its corrosion performance. As Figure 5.6b 
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shows, a wide passivity range was detected on the polarization curve of the SZ sample, leading to 

a nobler pitting potential for this sample as compared to the Top and Side samples (+0.16 V higher 

than the Side sample). Analogously, Rao et al. [44] reported +0.27 V increase in the breakdown 

potential of the cast Al-30Si alloy after applying one FSP pass to this alloy. The Top surface sample 

showed an intermediate behavior, suggesting an asymmetric corrosion response for the L-PBF 

AlSi10Mg BM, which is also consistent with the previous studies [40,57]. The lower density of 

the melt pool boundaries and also finer grain structure on the Top view (X-Y plane) as compared 

to the Side view (Y-Z plane) contributed to the higher pitting potential of the Top sample, and 

ultimately the better resistance of the top plane against localized pitting attack compared with the 

side plane in as-printed sample [40,57].  

It can be clearly noted that the pitting potential and the overall corrosion performance of 

the L-PBF AlSi10Mg improved as the Si morphology changed from the Side sample, to the Top 

and SZ sample. The lower pitting potential of the Top and Side samples as compared to the SZ 

can be attributed to the presence of the continuous network of large eutectic silicon phase, 

particularly along the melt pool boundaries (see Figure 5.3b) with a non-uniform distribution, 

provoking the susceptibility of the interface between the coarse silicon and the surrounding Al 

matrix to the penetration of the corrosive chloride ions in addition to the existence of the L-PBF 

produced porosities on the as-printed BM, leading to the easier breakdown of the passive layer 

[40]. Similar observations have been previously reported for an FSPed Al-30Si alloy and ECAPed 

pure Al [44,51,58]. Rao et al. [44] showed that during FSP of the as-cast hypereutectic Al-30Si 

alloy, the average grains size and the size of the Si particles are reduced from the 20.00 µm and 

188.00 µm to 0.74 µm and 2.10 µm, respectively, resulting in the improved corrosion performance 

of the alloy, indicated by the decreased corrosion current density from 4.15±0.35 µA/cm2 to 
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2.49±0.2 µA/cm2 and increased pitting potential from -0.709±0.002 VAg/AgCl to 0.435±0.003 

VAg/AgCl. Analogous to the results obtained herein, Rao et al. [44] also reported that FSP transforms 

the LAGBs in the as-cast structure to the HAGBs, positively contributing to the improved 

corrosion performance of the alloy through increasing the passive layer thickness from 14±0.06 

nm to 52±0.56 nm. 

Previous studies [44,51] have reported a Hall-Petch type relationship (a linear regression) 

between the corrosion current density (or corrosion rate) and the grain size (d) for materials that 

are able to form protective passive layer on them, such as aluminum alloys, as follows: 

 

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝐴 + 𝐵𝑑−0.5       Eq. (1) 

 

where A is a corrosion environment constant and B is a material-dependent constant (varies with 

chemical composition and level of impurity) [51]. Therefore, if a passive layer is formed on the 

surface, the grain size reduction of the base material decreases the corrosion rate or corrosion 

current density. Thus, the formed ultra-fine grain structure in the SZ sample is expected to 

positively contribute to the improved corrosion performance of the alloy. Figures 5.6c and 5.6d 

display the correlation between the corrosion current density (Icorr.) and pitting potential (Epit.) vs 

the grain size raised to the power of -0.5, respectively, measured for the SZ, Top, and Side samples. 

Applying the FSP was found to drastically reduce the corrosion current density value (Figure 5.6c) 

and shifted the pitting potential to more positive values (Figure 5.6d). The obtained linear 

regression trend, with the R2 value (the square of correlation coefficient) higher than 0.94, clearly 

indicates that the corrosion performance of the L-PBF AlSi10Mg alloy is improved by decreasing 

the average grain size of the alloy.  
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In addition to the impact of the refined grain structure of the Al matrix, the FSP has also 

resulted in breaking up the Si network and their uniform distribution, giving rise to the increased 

area fraction of cathodic Si and decreased area of the anodic Al. Therefore, the increased area 

fraction of cathodic sites (Figure 5.3f2), decreased area fraction of anodic sites, and the increased 

density of grain boundaries as fast diffusion paths, promoting the oxygen diffusion, all contributed 

to the reduced dissolution of the Al matrix. However, it is worth mentioning that in the absence of 

the passive layer, the grain size reduction, and consequently the increased density of the grain 

boundaries, will likely increase the overall reactivity on the surface and deteriorate the corrosion 

performance [59,60]. 

It is also evident that the FSP-induced microstructural modifications have mostly impacted 

the anodic reaction as well as the pitting potential of the alloy and only a small change in the 

cathodic reactions was detected. This can be ascribed to diverse natures of the cathodic and anodic 

reactions. It is known that the anodic reaction relies more on ionic conduction than electronic 

conduction, and the fast diffusion paths along the grain boundaries can accelerate the ionic 

conduction in metallic components [44]. Lee et al. [61] studied the impact of the grain size and 

the grain boundary density on the corrosion response of aluminum by comparing the single crystal 

and polycrystalline Al, and reported an increase in the passive film ion conduction in the 

polycrystalline aluminum sample as compared to the single-crystal Al, attributed to the existence 

of the grain boundaries [61].  

Equation (1) can also be applied to yield a correlation between the grain size and the 

measured pitting potentials of the samples (see Figure 5.6d). The anodic polarization data also 

confirmed that after applying FSP, the Epit value shifted to a more positive value (see Table 2 and 

Figure 5.6d), suggesting that decreasing the grain size and uniform distribution of the Si particles 



162 
 

lead to the improved pitting resistance of the alloy as well. The overall conclusion from the anodic 

polarization results was that applying the FSP on the as-printed L-PBF AlSi10Mg alloy is 

beneficial as it improved the pitting potential and decreased the corrosion current density, and 

subsequently the corrosion rate of the alloy.  

 

Figure 5. 6. (a) The OCP measurements over 3600 s, (b) the anodic polarization graphs 

comparing the polarization response of the SZ, Top, and Side samples, Hall–Petch type 

relationship between (c) corrosion current density (Icorr) and (d) pitting potential (Epit.) vs 

aluminum matrix grain size. 
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Table 5. 2. Electrochemical parameters extracted from anodic polarization graphs (Figure 5.6b) 

of the SZ, Top, and Side samples. 

Sample 
Ecorr. 

(VAg/AgCl) 

Icorr. 

(µA/cm2) 

Epit. 

(VAg/AgCl) 

Corrosion rate 

(µm/year) 

SZ -0.77±0.05 0.32±0.20 -0.68±0.02 12±1 

Top -0.76±0.02 11.07±1.40 -0.72±0.02 28±3 

Side -0.77±0.03 16.04±0.90 -0.77±0.09 580±12 

 

3.2.2. Electrochemical impedance spectroscopy results 

To further analyze and compare the protectiveness and stability of the formed passive layer on the 

surface of the SZ, Top, and Side samples, impedance spectroscopy in aerated 3.5 wt.% NaCl 

electrolyte was conducted. Figure 5.7 shows the obtained Nyquist diagrams from the SZ, Top, and 

Side samples for different immersion times, i.e. 1 h, 72 h, and 120 h. At the initial immersion time 

(Figure 5.7a), the Nyquist plots of all samples showed one broad and well-defined capacitive arc. 

The formation of such broad capacitive peak in Al alloys is commonly attributed to the 

superposition of two individual peaks with non-discriminating time constants [30]. At longer 

exposure times (72 h and 120 h), the Nyquist diagrams have more complex behavior and revealed 

two distinct and partially overlapped capacitive peaks, one at low and the other at high-frequency 

ranges. The low-frequency capacitive loop (the second Nyquist peak) corresponds to the diffusion 

and charge transfer within the interface of the metal surface and the solution, while the capacitive 

semicircle at the high-frequency range (the first Nyquist peak) is attributed to the interface between 

the passive layer and the solution (representing the general surface corrosion) [3,7,44]. The 

Nyquist curvature radius describes the protectiveness and stability of the passive layer on the 

surface of the samples, such that the larger curvature radius of the Nyquist response indicates 

slower kinetics of corrosion reactions [21]. The largest semicircle was obtained for the SZ sample 
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and the smallest semicircles for the Side sample, which is consistent with the anodic polarization 

results (shown in Figure 5.6b), confirming the lowest current density and the corrosion rate as well 

as the highest pitting potential for the SZ sample. Therefore, after 1 h of immersion time, a passive 

film with a more protective nature was formed on the SZ sample than that of the Top and Side 

samples. After longer immersion times of 72 h and 120 h, similar to the just immersed condition, 

the Nyquist responses (shown in Figures 5.7b and 5.7c) exhibited a larger capacitive loop for the 

SZ sample, indicating the formation of a passive layer with higher electrochemical stability on its 

surface, resulting in better corrosion performance of the SZ sample as compared to the Top and 

Side samples. 

The grain structure is a critical factor affecting the passivation ability and the formation of 

a stable and protective passive/oxide layer on the metal surfaces [61–63]. Correlating the Nyquist 

plots with the formed microstructure in the studied samples reveals that even though the similarity 

in the shape of Nyquist plots indicated a comparable nature for the corrosion reactions on all 

samples, the electrochemical stability of the passive layer can noticeably vary by the modification 

in the microstructure. As previously reported, high density of the melt pool boundaries on the 

surface of L-PBF AlSi10Mg alloy adversely impacts the uniformity of the passive/oxide layer 

[40]. A thinner passive/oxide layer is reported to form along the melt pool boundaries of the L-

PBF AlSi10Mg alloy [40]. Also, the transformation of the LAGB to HAGB and reducing the level 

of porosities after FSP of the L-PBF AlSi10Mg alloys should be considered as contributing factors 

to the stability of the passive layer [44]. Therefore, the FSP-induced microstructural modifications, 

i.e. the grain refinement, uniform distribution of the interdendritic Si particles, and the reduced 

porosity level, can significantly influence the corrosion properties of the L-PBF AlSi10Mg part, 

leading to the improved electrochemical stability of the alloy in chloride-containing environments. 
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Figure 5. 7. Nyquist spectra and the fitted data after a) 1 h, b) 72 h, and c) 120 h of immersion 

time, d) the simplified equivalent circuit used to interpret the evolution of the EIS spectra. 

 

To gain a better understanding of the passive film evolution on all samples over immersion time, 

the simplified equivalent circuit (SEC) of Rs+(Qp[Rp+(QdlRct)]) (shown in Figure 5.7d) was fitted 
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to the measured impedance spectra. The obtained fitted data are also included on the Nyquist plots 

in Figure 5.7. 

In the SEC model used here (Figure 5.7d), Rs represents the ohmic drop in the 

electrolyte, Rp and CPEp correspond to the resistance and the capacitance of the passive layer, 

respectively, Rct and CPEdl represent the charge transfer resistance and its corresponding double 

layer (dl) constant phase element, respectively, at the interface of the substrate and the passive 

layer. The impedance of a Constant Phase Element (CPE) is defined as ZCPE= [Q(jω)α ]-1, where 

Q is the CPE constant, j is the imaginary unit ( j =√−1), ω is the angular frequency (rad/s), and α 

is the dispersion coefficient of the CPE, and its value changes from -1 (for a pure inductor) to 1 

(for a pure capacitor) [7]. It has been reported that even when the measured values for the 

dispersion coefficient (α) were higher than 0.90±0.02, the used CPE constants cannot be 

considered as accurate pure capacitors in the adopted SEC presented in Figure 5.7d [64]. 

Considering the uneven nature of the formed oxide layer, the constant phase elements are 

employed to represent its overall capacitance [65]. Although, in some studies, Q is reported as the 

capacitance, it should be noted that Q has the dimension of sn/Ω, while the capacitance (C) unit is 

s/Ω or F [66]. In this regard, Orazem et al. [64] showed that Q does not represent the actual and 

pure capacitance properties of the oxide film.  Therefore, converting Q into C is critical when 

experimental capacitance data are employed to calculate the thickness of the oxide layer on Al 

alloys quantitatively. There are a number of models developed by different researchers to 

determine the passive film capacitance (Ceff) by using CPE parameters, such as Simple Substitution 

(S-S model) method, which directly converts Ceff to Q for α~1 [64], Hsu and Mansfeld’s model 

[66], and Brug’s model [67].  
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According to the Hsu and Mansfeld’s model (H-M model), the correlation between Q and 

Ceff  is defined as [66]: 

𝐶𝑒𝑓𝑓 = 𝑄(𝜔𝑚
" )𝛼−1 = 𝑄(2𝜋𝑓𝑚

" )𝛼−1      Eq. (2) 

where Ceff  is the passive film capacitance, 𝜔𝑚
"  and 𝑓𝑚

"  are the angular frequency and the frequency 

at which the imaginary component of the impedance has the maximum value, respectively. The 

𝑓𝑚
" values can be extracted from the EIS spectra shown in Figure 5.7. Hamadou et al. [68] reported 

a different correlation between Ceff and Q as follows: 

𝐶𝑒𝑓𝑓 = 𝑄
1

𝛼⁄ 𝑅𝑝

(1−𝛼)
𝛼⁄

       Eq. (3) 

where Rp describes the resistance of the passive film. 

Brug et al. [67] also introduced a model to describe the behavior of constant phase elements 

based on the concept of a double-layer capacitance distribution on the surface and electrolyte 

interface resulted from the inhomogeneity of the surface. Their proposed equation for Ceff is shown 

below: 

𝐶𝑒𝑓𝑓 = 𝑄
1

𝛼⁄ (
𝑅𝑠𝑅𝑝𝑜𝑙

𝑅𝑠+𝑅𝑝𝑜𝑙
)

(1−𝛼)
𝛼⁄

       Eq. (4) 

where Rs represents the ohmic drop in the solution and Rpol corresponds to the polarization 

resistance.  

The alternative power-law (P-L) model, developed by Hirschorn et al. [69], described the 

CPE parameters using a normal resistivity distribution of time constants. The P-L model presents 
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an effective method for the interpretation of CPE parameters in terms of resistivity, film thickness, 

and dielectric constant. According to this model, the Ceff is represented as [69]: 

𝐶𝑒𝑓𝑓 = 𝑔𝑄(𝜌𝛿𝜀𝜀0)1−𝛼       Eq. (5) 

where g is a function of α (g = 1 + 2.88(1 − α)2.375), ε and ε0 are the dielectric constant and vacuum 

permittivity (8.85 × 10−14 Fcm−1), respectively. The 𝜌𝛿  represents the resistivity at the maximum 

thickness of the passive layer (x=δ). The value for the parameter ρδ is usually uncertain. However, 

its maximum value can be calculated using the following equation [64]: 

𝜌𝛿,𝑚𝑎𝑥 =
1

2𝜋𝑓𝑚𝑎𝑥𝜀𝜀0
        Eq. (6) 

Therefore the maximum value of the Ceff can be measured to be: 

𝐶𝑒𝑓𝑓,𝑚𝑎𝑥 = 𝑔𝑄(2𝜋𝑓𝑚𝑎𝑥)𝛼−1       Eq. (7) 

Therefore, the 𝜌𝛿,𝑚𝑎𝑥 at the maximum measured frequency (𝑓𝑚𝑎𝑥) of 100 kHz and dielectric 

constant of 8.5 for Al2O3 [44] was calculated to be 2.12×106 Ωcm.  

The fitting parameters extracted from the Nyquist plots of different samples are listed in Table 3, 

while the calculated capacitance of the passive layer (Ceff) at different immersion times using S-S 

model, H-M model, Brug’s, and P-L models are presented in Table 4. 

Comparing the passive layer resistance values (Rp) with the charge transfer resistance 

values (Rct) of the SZ and the Top samples at different immersion times reveals that the Rct values 

are always higher than their corresponding Rp values, indicating that general corrosion is the 

dominant corrosion attack on their surfaces. However, the Side sample behaved differently and 
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showed lower charge transfer resistance than passive layer resistance, revealing the pitting 

corrosion as the predominant corrosion on its surface. This observation is in agreement with the 

anodic polarization results (Figure 5.6b), exhibiting a clear passive region for the Top and, more 

obviously, the SZ sample, and an active-like behavior for the Side sample. 

After 1 h of immersion, the SZ sample showed a significantly higher passive layer and 

charge transfer resistance (34.21±1.80 KΩ.cm2 and 42.12±2.80 KΩ.cm2, respectively), indicating 

better corrosion performance of the SZ sample as compared to the Top and Side samples. The 

lowest passive layer and charge transfer resistance (6.24±1.40 KΩ.cm2 and 8.35±2.00 KΩ.cm2, 

respectively) were measured for the Side sample, indicating the lowest stability of the protective 

oxide layer on its surface, consistent with the trend of anodic polarization graphs (Figure 5.6b). 

After longer immersion times, i.e. 72 h and 120 h, the electrochemical stability of the SZ 

sample is slightly reduced, as evidenced by the moderate decrease in the Rp and Rct values after 

120 h of immersion time (18.23±1.50 KΩ.cm2 and 22.65±4.60 KΩ.cm2, respectively) as compared 

to the just immersed condition (1 h). However, the Top and Side samples showed a drastic 

reduction in their Rp and Rct values after 72 h and more significantly after 120 h of immersion time, 

indicating more accelerated dissolution and removal of the passive layer at longer immersion 

times.  
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Table 5. 3. The fitting parameters of the EIS spectra including the elements of the SEC shown in Figure 5.7d. 

 

Rs 

(Ωcm2) 

Rp 

(kΩcm2) 

CPEp, Q 

(µS Secn cm-2) 

αp 

Rct 

(kΩcm2) 

CPEdl, Q 

(µS Secn cm-2) 

αdl 

SZ 

1 h 8.32±0.70 34.21±1.80 5.54±0.70 0.90±0.02 42.12±2.80 5.24±1.30 0.95±0.03 

72 h 7.25±0.40 22.18±2.20 7.12±1.10 0.97±0.01 32.01±3.20 6.67±2.40 0.96±0.01 

120 h 4.10±0.60 18.23±1.50 20.34±2.50 0.91±0.03 22.65±4.60 15.35±3.70 0.94±0.01 

Top 

1 h 5.39±0.20 16.23±1.30 15.43±1.30 0.99±0.02 18.25±3.20 15.12±2.20 0.96±0.10 

72 h 5.15±0.80 2.95±0.90 22.23±1.80 0.97±0.02 5.07±1.20 18.75±2.40 0.98±0.03 

120 h 4.23±0.30 1.42±0.60 62.23±1.80 0.92±0.04 4.11±1.40 45.37±5.40 0.94±0.01 

Side 

1 h 9.23±0.50 8.35±2.00 17.33±4.20 0.93±0.01 6.24±1.40 18.48±1.20 0.97±0.03 

72 h 8.95±0.6 2.14±1.30 32.24±1.30 0.99±0.02 1.98±0.90 25.45±4.10 0.96±0.02 

120 h 6.76±0.20 1.45±0.40 84.54±1.40 0.95±0.01 1.02±0.40 65.22±7.50 0.95±0.03 
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The passive layer of the Al alloys is primarily composed of aluminum oxide (Al2O3) and 

aluminum hydroxide Al(OH)3, and is known to be an electrical insulator having a bandgap of 3 

eV with a higher charge transfer than the Al matrix [70]. The electrochemical cathodic and anodic 

reactions occurring on the surface of the L-PBF AlSi10Mg in an aerated and aqueous electrolyte 

are the reduction of oxygen and oxidation of aluminum, respectively, as follows [71]: 

2Al+3H2O→Al2O3+6H++6e−       Eq. (8) 

O2+2H2O+4e−→4OH−        Eq. (9) 

The dissolved oxygen in the aqueous electrolyte diffuses into the Al alloy-electrolyte 

interface to initiate the reduction reaction, resulting in producing hydroxide ions (Eq. 9), which in 

turn participate in the oxidation reaction of Al, causing the formation of aluminum oxide or 

aluminum hydroxide: 

Al+3OH−→Al(OH)3+3e−         Eq. (10) 

2Al+6OH−→Al2O3+3H2O+6e−        Eq. (11) 

The formation of aluminum oxide (Al2O3) or aluminum hydroxide (Al(OH)3) with a higher 

charge transfer than the substrate Aluminum results in interruption of the anodic reactions by 

abating the diffusion in the anodic Al part of the alloy [44]. On the other hand, the high level of 

strains and dynamic recrystallization induced by the FSP process can increase the potential sites 

for nucleation of the oxide layer [44], and plausibly contribute to the formation of a thicker oxide 

layer. Table 4 summarizes the oxide film capacitances (Ceff) calculated from the S-S, H-M, Brug’s, 

and P-L models. The thickness of the steady-state passive/oxide layer (Dox) can be determined 

based on the obtained EIS data and using the plate capacitor relationship [44]: 
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𝐷𝑜𝑥 =
𝜀𝜀0𝐴

𝐶𝑒𝑓𝑓
         Eq. (12) 

where ε is the dielectric constant of the passive/oxide layer, assumed to be equal to 8.5 for Al2O3 

[44], ε0 is the vacuum permittivity (8.854 ×10−14 F cm−1), Ceff is the pure passive film capacitance, 

and A is the geometric surface area of the corroded sample.  

The calculated thicknesses (Dox) of the passive layer for all three samples after different 

immersion times using three adopted models are also given in Table 4 [72]. The predicted values 

for the oxide layer thickness using the S-S and H-M models were found to be comparable and in 

the range of 10.18-10.6 Å for the Side sample, 12.44-12.79 Å for the Top sample, and significantly 

higher (35.91-37.68 Å) for the SZ sample after 1 h of immersion time. The estimated Dox values 

from the Brug’s model for different samples were almost 1.5-1.7 order of magnitude higher than 

the predictions from the S-S and H-M models (14.42 Å, 18.61 Å, and 68.13 Å for the Side, Top, 

and SZ samples, respectively, after 1 h). The P-L model also predicted a similar trend for the oxide 

layer thickness after 1 h of immersion time (16.64 Å, 23.95 Å, and 81.35 Å for the Side, Top, and 

SZ samples, respectively). Consistent with the observed trends in the EIS data (Rp and Rct trends), 

the thickness of the oxide layer was found to reduce at longer immersion times, ascribed to the 

anodic dissolution of the oxide film into the electrolyte over time.  

The aforementioned calculations, regardless of the adopted model, confirm that the FSP-

induced microstructural modifications can cause the formation of a thicker passive layer on the L-

PBF AlSi10Mg alloy, thereby improving the corrosion performance of the alloy. As reported in a 

previous study, the increased Si content in the melt pool boundaries of L-PBF AlSi10Mg alloy 

provokes the formation of a thinner passive/oxide layer along the melt pool boundaries [40]. 

Furthermore, reducing the thickness of oxide layer after longer immersion time is ascribed to the 
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higher rate of dissolution of the passive layer from the interface of the sample and the electrolyte 

than the formation rate of the passive layer [73]. Therefore, the EIS results in support of anodic 

polarization data confirmed that a thicker, more protective, and stable passive layer is formed over 

the SZ sample, giving rise to its better corrosion performance as compared to the Top and Side 

samples. 
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Table 5. 4. The calculated capacitance and the thickness of the oxide layer using S-S, H-M, Brug’s, and P-L models. 

 

Ceff (µF cm−2) 

S-S 

Ceff (µF cm−2) 

H-M 

Ceff (µF cm−2) 

Brug 

Ceff (µF cm−2) 

P-L 

Dox (Å) 

S-S 

Dox (Å) 

H-M 

Dox (Å) 

Brug 

Dox (Å) 

P-L 

SZ         

1 h 5.24±0.50 4.99±0.10 2.76±0.20 2.31±0.30 35.91±1.30 37.68±2.40 68.13±3.20 81.35±4.10 

72 h 6.67±0.70 6.39±0.60 4.18±0.30 3.46±0.20 28.21±2.20 29.43±2.00 45.04±3.60 54.29±3.00 

120 h 15.35±0.80 14.90±0.80 8.12±0.50 5.76±0.40 12.26±0.90 12.63±1.20 23.16±2.10 32.68±1.20 

Top         

1 h 15.12±0.50 14.72±0.50 10.11±0.40 7.86±0.30 12.44±1.20 12.79±1.30 18.61±2.20 23.95±3.10 

72 h 18.75±0.60 18.04±1.00 16.58±0.60 13.51±0.30 10.03±0.70 10.43±0.80 11.35±1.00 13.93±2.20 

120 h 45.37±0.80 41.54±1.90 23.16±1.20 17.02±1.00 4.15±0.20 4.53±0.50 8.12±0.90 11.06±0.80 

Side         

1 h 18.48±0.70 17.75±1.00 13.05±0.50 11.30±0.70 10.18±0.70 10.60±1.10 14.42±0.90 16.64±2.40 

72 h 25.45±1.40 23.17±1.50 14.92±0.50 13.22±1.10 7.39±0.60 8.12±0.70 12.61±0.60 14.23±1.20 

120 h 65.22±1.90 59.24±2.00 34.68±2.00 28.79±1.80 2.88±0.40 3.18±0.20 5.42±0.40 6.53±0.60 
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3.2.3. The intergranular corrosion 

The intergranular corrosion (IGC) test was carried out to investigate the morphology and severity 

of the corrosion attacks in the SZ of the FSPed L-PBF-AlSi10Mg sample as compared to the as-

printed Top and Side samples. The exposed surfaces of the SZ, Top, and Side samples after the 

IGC testing are shown in Figure 5.8. The FESEM micrograph in Figure 5.8a exhibits that the non-

processed BM (Top sample) is more vulnerable to the pitting corrosion attack than the FSPed side, 

as evidenced by the noticeably higher number of corrosion pits on the BM side compared to the 

SZ, which further supports the polarization and EIS results. Interestingly, the FSP had a remarkable 

impact on the resistance of the L-PBF AlSi10Mg against the intergranular corrosion, and only 

minor localized IGC attacks was detected in the SZ (see Figure 5.8b), which can be associated 

with the ultra-fine grain structure and uniform distribution of the Si particles within the α-Al matrix 

in the SZ of the FSPed sample as opposed to the larger grain size as well as coarser and higher 

concentration of Si phase precipitated along the melt pool boundaries of the as-printed samples 

[45]. On the other hand, Figures 5.8c-5.8f revealed that the Top and Side samples behaved 

differently and showed a selective corrosion attack primarily along the melt pools' boundaries 

(indicated by the arrows). The selective corrosion attack along the melt pool borders of L-PBF-

AlSi10Mg is a common corrosion type that has been reported frequently in other works [3,29]. 

This is ascribed to the breakage, coarsening, and enrichment of Si particles in the HAZ, causing 

the increased driving force for micro-galvanic corrosion between the Al matrix as the anodic site 

and Si particles (the cathodic sites) along the melt pool boundaries. As expected, a more intensive 

corrosion attack after IGC testing was detected on the Side sample (see Figures 5.8e and 5.8f) due 

to the accumulation of higher density of the melt pool boundaries on the Side surface relative to 

that on the Top surface (Figures 5.8c and 5.8d).  
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Figure 5. 8. SEM micrographs taken from the L-PBF AlSi10Mg after the intergranular corrosion 

testing, showing the surface of the a) SZ-BM interface, b) higher magnification of the enclosed 

area in (a) shown by B, c) Top sample, d) higher magnification of the enclosed area in (c) shown 

by D, e) Side sample, and f) higher magnification of the enclosed area in (e) shown by F. 
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3.2.4. Mott-Schottky analysis (capacitance measurements) 

The corrosion performance of Al alloys primarily depends on the characteristics of the protective 

passive layer on their surfaces [74], commonly showing semiconducting properties. In order to 

describe the semiconducting characteristics of the passive layer formed on different samples 

herein, Mott–Schottky analysis was performed at 1 kHz and 10 kHz in 3.5 wt.% NaCl electrolyte 

at room temperature. Figure 5.9a shows the obtained Mott-Schottky plots for the SZ, Top, and 

Side samples. Using the Mott-Schottky theory, the space charge capacitance of an n-type or p-type 

semiconductor can be calculated as follows [44]: 

 

 
1

𝐶𝑆𝐶
2 =

2

𝜀𝑟𝜀0𝑒𝑁𝐷
(𝐸 − 𝐸𝐹𝐵 −

𝑘𝑇

𝑞
)  For an n-type semiconductor  Eq. (13)  

1

𝐶𝑆𝐶
2 =

−2

𝜀𝑟𝜀0𝑒𝑁𝐴
(𝐸 − 𝐸𝐹𝐵 −

𝑘𝑇

𝑞
)   For a p-type semiconductor  Eq. (14) 

 

where CSC is the space charge capacitance (F−1 cm2), E is the applied potential (VAg/AgCl), ND and 

NA are the donor and acceptance density (cm−3), respectively, and can be determined from the slope 

of the linear correlation between CSC
-2 and E (𝑠𝑙𝑜𝑝𝑒 =

2

𝜀r𝜀0𝑒𝑁𝐷
), e is the electron charge 

(1.602 × 10−19 C), 𝜀𝑟 is the dielectric constant for the passive (oxide) layer (𝜀𝑟 =10 for Al2O3 

[44,75]); 𝜀0 is the vacuum permittivity (8.854 × 10−14 F cm−1), T is the absolute temperature, k is 

Boltzmann’s constant (8.16 × 10−5 eV/K), and EFB describes the flat band potential (VAg/AgCl) [44]. 

The type of the semiconductor (n or p) can be identified based on the negative or positive 

slope of the Mott-Schottky plots, indicating a p-type or an n-type semiconductor, respectively. As 

Figure 5.9a shows, all plots obtained at 1 kHz revealed a positive slope, suggesting the formation 

of a passive layer with n-type semiconducting behavior on all studied samples herein. In other 
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words, in the formed passive layers on all L-PBF AlSi10Mg samples, regardless of the applied 

post-printing FSP, the interstitials defects and oxygen vacancies dominate over the cation 

vacancies [75]. 

Comparing the three samples revealed an increase in the slope of the Mott-Schottky graph 

from the Side sample to the Top sample, followed by the SZ sample. Figure 5.9b compares the 

calculated donor density of the passive films that formed on the SZ, Top, and Side samples in 3.5 

wt.% NaCl solution. Considering the point defect model (PDM), the flux of oxygen vacancies and 

the interstitial defects (as determined by their density and diffusivity) within the passive film is a 

key factor that controls the kinetics of the passive film growth and its breakdown [44]. 

Furthermore, the adsorption and penetration of corrosive species, such as chloride ions, inside the 

passive layer, which is generally the initial step to pitting corrosion attack, is done through the 

oxygen vacancies that serve as a donor site of the electrons [75]. Therefore, a lower pitting 

resistance (lower breakdown potential) can be associated with the higher donor density of the 

passive layer. 

The measured donor density values at 1 kHz were found to increase from the SZ sample to 

the Top and then the Side samples (-2.03×1020 cm-3, -5.1×1020 cm-3, and -7.20×1020 cm-3, 

respectively), ascribed to the reduced microstructural homogeneity and increased grain size in the 

alloy. This can result in decreasing the resistance of the Side sample to the pitting corrosion, as 

evidenced by the lowest pitting potential for this sample in the anodic polarization results (Figure 

5.6b).  

The Mott–Schottky graphs obtained at 10 kHz (Figure 5.9c) presented a similar trend to 

those measured at 1 kHz, revealing an n-type semiconductor characteristic with a linear behavior 

for CSC
-2 versus the potential with a positive slope, inversely proportional to the donors’ 
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concentration. At the higher frequency of 10 kHz, although the range of linear relationship between 

CSC
-2 and potential is maintained, the graphs were found to be more inclined. Therefore, the n-

type-semiconducting nature of the passive film has not been altered by changing the frequency. 

However, increasing the frequency at which the measurements were performed, resulted in an 

increase in the value of derivative dCSC
−2/dE measured in the linear range.  

Figure 5.9d also compares the calculated donor density of the passive films that formed on 

the SZ, Top, and Side samples at 10 kHz. Albeit the donor density values were found to decrease 

by increasing the frequency from 1 kHz to 10 kHz for the SZ, Top, and Side samples (-6.59×1019 

cm-3, -1.99×1020 cm-3, and -3.79×1020 cm-3, respectively), an analogous trend between the 

frequencies were detected, revealing the lowest and the highest donor density values for the SZ 

and the Side samples, respectively.  
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Figure 5. 9. Mott-Schottky plots and the variations of the donor density of the passive layer 

formed on the L-PBF AlSi10Mg alloy samples, i.e. the Side, Top, and SZ samples measured at 

the frequency of (a) and (b) 1 kHz, (c) and (d) 10 kHz. 

 

Therefore, the non-uniformity and coarsening/enrichment of the Si phase along the melt pool 

boundaries of the as-printed L-AlSi10Mg sample diminish the tendency toward the formation of a 

slightly thicker passive/oxide layer on the sample. In a similar observation, Revilla et al. [40] 
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reported the adverse effect of the melt pool boundaries on the uniformity of the formed anodic 

oxide film in as-printed L-PBF-AlSi10Mg alloy. A thinner oxide layer was reported to form locally 

along the melt pool boundaries as compared with the center of the melt pools [40]. On the other 

hand, the SZ sample behaved differently and showed the lowest donor density, attributed to the 

microstructural uniformity of the L-PBF-AlSi10Mg sample after the FSP, characterized by the 

uniform distribution of the Si particles embedded in an Al matrix with an ultrafine grain structure 

containing a low density of LAGBs, and reduced porosity level. 

 

Conclusions 

In this study, the impact of friction stir processing on the microstructure and the electrochemical 

stability of the L-PBF AlSi10Mg in aerated 3.5 wt. % NaCl electrolyte was studied. The following 

conclusions were drawn: 

1. Applying FSP can effectively eliminate the process-induced porosities of the L-PBF 

AlSi10Mg alloy and result in drastic microstructural homogenization, grain refinement, and 

uniform dispersion of refined Si particles. 

2. The FSP-induced microstructural modifications in L-PBF AlSi10Mg alloy were found to 

promote the formation of the significantly more stable, denser, and thicker passive layer on the 

alloy as compared to the as-printed condition. 

3. Improvement of the corrosion performance of the FSPed sample was confirmed by the positive 

shift of the pitting potential and reduction in the corrosion rate and corrosion current density 

as compared to the as-printed samples. 
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4. The EIS results showed a higher passive layer resistance and charge transfer resistance for the 

FSPed alloy than those in the as-printed L-PBF AlSi10Mg. The calculated passive layer 

thickness on the FSPed region was almost three times higher than that on the as-printed Top 

and Side samples at different immersion times. 

5. The intergranular corrosion testing revealed preferential selective attack primarily around the 

melt pool boundaries of the as-printed L-PBF-AlSi10Mg alloy, whilst only minor localized 

attack occurred in the SZ. 

6. Although applying the FSP did not change the semiconducting nature of the passive layer on 

L-PBF AlSi10Mg (all passive layers revealed an n-type semiconducting response), the donor 

density of the passive layer was found to decrease after the FSP, leading to its improved 

resistance to pit initiation.  

7. An anisotropic corrosion response was detected for the as-printed L-PBF AlSi10Mg, indicated 

by a higher pitting potential and lower corrosion current density for the top view sample 

(perpendicular to the building direction) as compared to the side view sample (parallel to the 

building direction), ascribed to the lower density of the melt pool boundaries formed on the 

top vs the side surface.  
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Chapter 6 

Summary, Recommendations, and Future works 

6.1. Summary 

In this thesis, the feasibility of the four objectives of post-printing heat-treatment, using different 

size and morphology of the feedstock powder, optimization of the process parameters, and post-

printing surface treatment, as solutions for the elimination of the process-induced imperfection of 

L-PBF AlSi10Mg alloy was investigated.  

First of all, the impacts of post-printing heat-treatment on microstructural modification, 

mechanical properties, and corrosion performance of L-PBF AlSi10Mg were studied. 

Microstructural characterization results revealed that an increase in the heat-treatment temperature 

from 200 °C to 350 °C promotes the interruption of the intercellular Si network.  Moreover, 

increasing the heat-treatment temperature contributes to the microstructural uniformity in terms of 

the Si phase's size and distribution in the α-Aluminum matrix. The electrochemical analysis 

confirmed the improved corrosion performance of the heat-treated samples in the range of 200 °C 

to 300 °C, by decreasing susceptibility to penetrating selective attack at early-stage immersion 

time in the electrolyte.  

Secondly, the impacts of adopting AlSi10Mg recycled powder with different size and 

morphology on the final microstructure, and corrosion properties of the L-PBF-AlSi10Mg sample 

were studied. Microstructural analysis results confirmed that using larger size and irregular shape 

of the feedstock powders results in a reduced thermal conductivity between the powders and 

consequently decreased the cooling rate during fabrication.  This  can lead to the formation of a 
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higher level of internal defects and discontinuities, and coarsening of the Si-network phase within 

the final microstructure. The electrochemical measurements showed that the Si network 

coarsening along the melt pool boundaries deteriorated the corrosion performance of the L-PBF 

AlSi10Mg sample. 

Thirdly, the effects of L-PBF process parameters on the microstructure and the resultant 

corrosion properties of the L-PBF AlSi10Mg were studied. Microstructural characterization 

confirmed that the sample that underwent the fastest cooling rate during the solidification revealed 

a finer eutectic Si phase with a more uniform grain distribution. Such L-PBF-induced 

microstructural modifications led to the improved corrosion properties and electrochemical 

stability of the sample, which experienced a faster cooling/solidification rate, attributed to the 

reduced driving force for galvanic corrosion between Al and Si phases due to the formation of a 

finer Al-Si eutectic structure along its large melt pools boundaries. 

Finally, the effect of FSP on the microstructural characteristics and the corrosion properties 

of the L-PBF AlSi10Mg was investigated. Microstructure characterization results showed that the 

implementation of FSP could eliminate the internal porosities of the L-PBF AlSi10Mg alloy. 

Moreover, the final microstructure was significantly more homogenous with a fine grain structure 

and uniform distribution of the Si particles. The electrochemical stability of the FSPed sample was 

confirmed by the formation of the denser and thicker oxide layer on its surface compared to the 

as-printed condition. Moreover, reduction in the corrosion current density and the positive shift of 

the pitting potential compared to the as-printed samples further prove for improvement of the 

corrosion properties after applying FSP. 
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6.2. Recommendation and future works 

The following topics are suggested for future research:  

I. The addition of nano-particles as inoculants to the feedstock metal powder has been 

recently introduced as a new approach towards refining the grain structure and enhancing 

the microstructural uniformity throughout the AM fabricated parts. Therefore, the impact 

of the addition of the grain refiners to the feedstock materials on the final microstructure 

and corrosion performance of the Al alloys is a subject for future study. 

II. In this thesis, FSP is introduced as an effective post-printing process capable of grain 

refinement of the L-PBF-AlSi10Mg alloy.  On the other hand, the addition of TiB2 as a 

strong grain refiner to Al alloys is highly effective in creating an equiaxed and uniform 

microstructure. Therefore, comparing these two techniques in the grain refinement and 

resultant performance is a subject of future study. 

III. The joining of the dissimilar Al alloys is a challenging concept for many industrial 

applications. L-PBF technique is capable of the fabrication of the dissimilar Al alloys. 

However, the interface of the dissimilar sample is susceptible to micro-galvanic corrosion. 

Therefore, the feasibility of the dissimilar fabrication of the Al alloys using L-PBF and 

evaluating its electrochemical performance, particularly in the interface, demands 

extensive research for future study. 
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Appendix I 

Microstructural Evolution and Mechanical Properties of a Low 

Carbon Low Alloy Steel Produced by Wire Arc Additive 

Manufacturing 8 

Preface 

A version of this manuscript has been published in the International Journal of Advanced 

Manufacturing Technology. I am the first and corresponding author of the papers. Along with the 

co-authors, Mahya Ghaffari, Alireza Vahedi Nemani, and Dr. Ali Nasiri, I investigate ER70S-6 

low-carbon low-alloy steel thin wall that was manufactured by WAAM method, utilizing a gas 

metal arc welding (GMAW) torch translated by a six-axis robotic arm. The microstructural 

evolution and mechanical properties of the fabricated part were investigated. I prepared 

methodology, experimental, formal analysis, and the first original draft of the manuscript and 

subsequently revised the manuscript based on the coauthors’ feedback and also the peer review 

process. The co-authors, Mahya Ghaffari and Alireza Vahedi Nemani helped in the experimental 

procedure and writing the initial draft. Moreover, Dr. Ali Nasiri helped in conceptualization, 

design, project administration, and supervision, review & editing of the manuscript. 

 

 
8 M. Rafieazad, M. Ghaffari, A. Vahedi Nemani, A. Nasiri, Microstructural evolution and mechanical properties of a 

low-carbon low-alloy steel produced by wire arc additive manufacturing, Int. J. Adv. Manuf. Technol. (2019) 1–14. 

doi:10.1007/s00170-019-04393-8.(IPF=2.633) 
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Abstract 

The emerging technology of wire arc additive manufacturing (WAAM) has been 

enthusiastically embraced in recent years mainly by the welding community to fabricate various 

grades of structural materials. In this study, ER70S-6 low-carbon-low-alloy steel wall was 

manufactured by WAAM method, utilizing a gas metal arc welding (GMAW) torch translated by 

a six-axis robotic arm, and employing advanced surface tension transfer (STT) mode. The 

dominant microstructure of the fabricated part contained randomly oriented fine polygonal ferrite 

and a low volume fraction of lamellar pearlite as the primary micro-constituents. Additionally, a 

small content of bainite and acicular ferrite were also detected along the melt pool boundaries, 

where the material undergoes a faster cooling rate during solidification in comparison with the 

center of the melt pool. Mechanical properties of the part, studied at different orientations relative 

to the building direction, revealed a comparable tensile strength along the deposition (horizontal) 

direction and the building (vertical) direction of the fabricated part (~400 MPa and ~500 MPa for 

the yield and ultimate tensile strengths, respectively). However, the obtained plastic tensile strain 

at failure along the horizontal direction was nearly three times higher than that of the vertical 

direction, implying some extent of anisotropy in ductility. The reduced ductility of the part along 

the building direction was associated with the higher density of the interpass regions and the melt 

pool boundaries in the vertical direction, containing heat affected zones with coarser grain 

structure, brittle martensite-austenite constituent, and possibly a higher density of discontinuities. 

Keywords: Additive Manufacturing (AM); Wire Arc Additive Manufacturing (WAAM); 

Low-Carbon-Low-Alloy Steel; Microstructure; Mechanical Properties. 
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1. Introduction 

Additive manufacturing (AM) is a novel manufacturing technology in which a component is 

fabricated by depositing the feedstock material layer-by-layer to build a fully functional, dense, 

and 3D shaped component [1–3]. A wide range of different metals, composites, and polymers can 

be used as the feedstock material employing various AM techniques.  

The additive manufacturing of metallic components can be classified based on the adopted 

feedstock materials into three main categories, i.e. powder bed processes, such as selective laser 

melting (SLM) or direct metal laser sintering (DMLS), powder feed processes, such as laser metal 

deposition (LMD), also known as direct laser fabrication (DLF), and wire feed processes, such as 

wire arc additive manufacturing (WAAM) [4,5]. WAAM is an AM technology that usually 

benefits from a robotic arm, carrying an arc welding torch as the energy source to fabricate metallic 

parts additively in the form of weld beads overlaid on previously deposited layers [6,7]. In WAAM, 

all the consumable wire is continuously fed into the adopted electric arc or plasma and entirely 

melted [8,9], leading to extremely high deposition rates associated with this process (3-8 kg/h), 

which is drastically higher than that in -of the powder bed/feed AM systems (0.1-0.6 kg/h) [4]. 

Therefore, it is mostly suited for fabrication of large-scale engineering components with more 

simple geometries and less complexity in design [9–11].  

The most commonly used welding processes integrated with the WAAM technology are gas 

tungsten arc (GTA) and gas metal arc (GMA) welding processes [12]. In recent years, in multiple 

studies [12–14], the capabilities of the GMAW-based WAAM in terms of technological issues and 

metallurgical properties for different alloys have been widely explored. For instance, the 

microstructure and tensile properties of 316L austenitic stainless steel fabricated by GMA-AM 

[12], the feasibility of depositing steel parts by means of double electrode GMAW-based AM 
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system [14], and the effect of the main deposition process parameters on the surface roughness of 

low-carbon steel parts fabricated using GMAW-based additive manufacturing [13] have been 

investigated. 

From the fabrication perspective, there are many similarities between conventional GMAW 

and wire arc additive manufacturing methods, leading to analogous challenges and difficulties 

associated with both processes. For instance, the strength–ductility combinations in steels can be 

affected adversely from the thermal cycles experienced during layer-by-layer deposition of 

WAAM, correlated to either the heat affected zone (HAZ) softening [15–17] and/or formation of 

localized brittle zones (LBZs) along the interpass regions, commonly observed in the multi-pass 

welding processes [18,19]. Therefore, adopting an arc welding process with a low heat input 

transfer mode seems to be favorable for the purpose of WAAM.  

Another complexity associated with the WAAM of ferrous alloys is that depending on the 

carbon content, alloying elements, and cooling rate of the steel, the manufactured component in 

the as-printed condition may possess a blend of different microstructures, e.g. ferrite, 

Widmanstätten ferrite, bainite, martensite, or acicular ferrite [20]. Thus, to obtain a desired 

microstructure with adequate strength and toughness in a WAAM part, the GMAW process 

essential parameters should be carefully selected [21].  

In a recent study, Liberini et al. [1] characterized the microstructure of a wall-shape product 

obtained by the successive deposition of weld beads using an ER70S-6 steel wire through GMA-

AM. The authors reported microstructural inhomogeneity across the deposited wall in the sequence 

of a bainitic lamellar structure at the upper zone of the wall, equiaxed grains of ferrite in the middle, 

and a ferritic structure with thin strips of pearlite at the lower zone [1]. Consequently, it was 

concluded that different thermal cycles associated with the layer-by-layer deposition nature of the 
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WAAM can result in various microstructures from the top to the bottom of the manufactured walls 

[1]. Whilst the mechanical properties of the fabricated walls were not reported in their study [1], 

such microstructural non-uniformity across the building direction could lead to anisotropic 

mechanical properties.  

It is reported in multiple studies [22–25] that the high cooling rate and temperature gradient 

experienced throughout the components during the AM fabrication process dictate the grain 

growth direction and morphology, yielding heterogeneous microstructures and anisotropic 

mechanical properties. However, lower thermal input WAAM-based processes, such as WAAM- 

cold metal transfer (CMT) technique, can result in a more uniform microstructure and homogenous 

hardness profile [26]. Wang et al. [27] also showed that in a 304L austenitic stainless steel wall 

produced by directed energy deposition additive manufacturing, applying lower heat inputs 

resulted in a finer microstructure, and therefore, higher yield and tensile strengths than those in the 

wall fabricated using a higher heat input. They also reported that at a specific heat input, the coarser 

microstructure at the top of the walls compared to the bottom of the components resulted in a lower 

yield and tensile strengths due to a lower cooling rate at the top areas of the wall [27].  

Wilson-Heid et al. [22] studied the relationship between the microstructure and the anisotropy 

in ductility of an additively fabricated Ti-6Al-4V and concluded that the elongation percentage in 

the transverse direction is higher than that of the longitudinal direction. Wang et al. [28] also 

reported the anisotropic mechanical properties in a WAAM Ti-6Al-4V alloy, showing a higher 

strength and lower ductility in the horizontal direction compared to the building (vertical) 

direction. The authors correlated such properties to the existence of different crystallographic 

textures along the deposition direction versus the building direction developed from the directional 

columnar growth of Ti grains during solidification. On the other hand, Haden et al. [29] observed 
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no obvious anisotropy in mechanical properties such as yield and tensile strength in a low carbon 

low alloy steel (ER70S-6) produced via WAAM. However, in their study, the reported mechanical 

properties were not clearly correlated to the microstructure of the additively manufactured wall. In 

a recent study by Sridharan et al. [20], a GTA welding system was used to additively manufacture 

the low carbon low alloy steel ER70S-6 along the X-, Y- and Z-directions followed by a detailed 

mechanical properties investigation. A significant scatter in the elongation with respect to the 

sample directions was reported and correlated to the differences in the level of porosities and 

discontinuities and the localized variations of the microstructural features in each sample. 

In addition to all the experimental research on the advancement of the WAAM technology and 

its accelerated adoption in manufacturing of various engineering materials, the simulation and 

modelling of various aspects of the process have been also the focus of several studies. For 

example, the thermal history of the process [30], the deposition path [4,11], and the dynamics of 

metal transfer [31] during the fabrication process have been modeled in previous studies. In a study 

by Fachinotti et al. [30], a thermal-microstructural model capable of describing the thermal history 

of the WAAM process during the fabrication of Ti-6Al-4V alloy wall was developed. The 

proposed model was also capable of predicting important microstructural features in the fabricated 

part based on the predicted thermal history of the process [30]. In another study, the metal transfer 

dynamics of a wire feeding-based 3D printing process was extensively investigated, and a 

correlation model between the process parameters, such as heat input and scanning strategy, and 

the deposited bead geometry was developed [31]. 

It is well established that high heat input welding processes can lead to coarsening of the ferrite 

grains in steels due to recrystallization or abnormal phase transformation from Austenite [32,33]. 

The result can be a significant HAZ softening and a noticeable reduction in HAZ toughness. This 
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issue is even more critical in the WAAM process due to the multi-pass nature of the process. 

Therefore, adopting a fast cooling version of the GMAW/GTAW process would plausibly favor 

the HAZ toughness of the WAAM fabricated steels. 

Surface tension transfer (STT) is an advanced current controlled short circuit metal transfer 

mode in the GMAW process developed by the Lincoln Electric Company [34]. The unique feature 

of the STT transfer mode is that it offers a combined reduction in energy and improved energy 

control through droplet by droplet control of the fusion zone, which can be beneficial in 

minimizing the extent of HAZ softening and can achieve a smooth bead profile and improved bead 

geometry [34,35]. The heat input associated with the STT-GMAW process can be as low as 20% 

of that in conventional spray or pulsed-GMAW processes [34]. Hence, a fast cooling process, such 

as STT-GMAW, can dramatically enhance the HAZ toughness of high strength low alloy steels. 

The capabilities of this particular transfer mode for the WAAM of metallic components are hitherto 

unreported. 

In the context of WAAM, a large number of studies to date have been carried out on the 

fabrication of Ti-6Al-4V, but not so much on steels, which are the most commonly used materials 

in modern industry with an unlimited number of applications in various industrial sectors 

[29,31,36]. Therefore, this study aims at fabricating a low-carbon-low-alloy steel (ER70S-6) using 

wire arc additive manufacturing technique. For the first time herein, the surface tension transfer 

(STT) waveform control technology was adopted in wire arc additive manufacturing of the part. 

The used feedstock wire is commonly utilized for the welding of high-strength-low-alloy steels 

owning moderate amounts of scale or rust with widespread applications including structural steels, 

auto bodies, pipes, fittings, castings, and forgings [37]. This article presents a detailed study of the 

microstructure and mechanical properties of the WAAM thin-wall parts. Additionally, the 
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influence of the manufacturing process on the anisotropy of the mechanical properties was 

investigated, utilizing tensile testing and fractography techniques along both vertical and 

horizontal directions.  

2. Experimental Procedure 

2.1. Materials and Fabrication Process 

The used robotic WAAM platform, the fabricated wall, and its graphical representation are 

shown in Figure A1.1. Each deposited layer on the x-y plane was comprised of six beads with a 

length of 135 mm and the total height of about 150 mm, containing 50 consecutive layers. The 

layers have a 3 mm center-to-center overlap, leading to the total width of 22 mm for the wall and 

the resulting beads for each layer have a height of around 3 mm. The base plate was ASTM A36 

mild steel with 12 mm thickness, which was thoroughly cleaned using stainless steel wire brushing 

and degreased by acetone prior to the WAAM to avoid porosity formation during the fabrication 

process. As drawn in Figure A1.1b, a y-scanning strategy with alternating directions, and 3 mm 

overlap along the x-axis between the successive passes on each x-y layer was used (y-axis is 

aligned with the longer dimension of the base plate). The adopted alternating direction scanning 

strategy was found to contribute to the uniformity of the deposited beads’ profile at both ends of 

the y-axis, resulted in fabricating a straight wall. Moreover, the presented patterns on the front face 

(y-z plane) of the schematic in Figure A1.1b show the locations where vertical and horizontal 

tensile test samples were machined from the fabricated wall. Also, the squares labeled as the top, 

middle top, middle bottom, and the bottom on the front face show the location of the samples that 

were subjected to the microstructure and phase characterization analysis. Figure A1.1c is the side 

overview of the fabricated wall herein.  
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Figure A1. 1. (a) The used robotic WAAM platform, (b) schematic illustration of the WAAM-

ER70S-6 steel wall, and (c) the manufactured wall using WAAM method. 

 

The ER70S-6 wire with 0.889 mm (0.035 inches) diameter was used as the feedstock material with 

the chemical composition given in Table 1. A Lincoln Electric GMAW machine with a torch 

mounted on a 6-axis Fanuc robot was employed as the power source of the process (Figure A1.1a). 
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The process was carried out using the following parameters: an arc current of 320 A, an arc voltage 

of 28 V, a wire feeding rate of 104 mm/s (245 inches/min), a scan rate of 5 mm/s (12 inches/min), 

and pure argon as the shielding gas with the flow rate of 45 L/min. Additionally, advanced STT 

current controlled short circuit transfer process was used herein to minimize the heat input of the 

process and reduce the surface irregularities, the generated fume and spattering during the 

fabrication process. To further minimize the effects of consecutive thermal cycles on the 

microstructure of the previously deposited layers, a 10 min interlayer dwell time was implemented 

in the fabrication program after the completion of each x-y layer. The selected time interval 

allowed each layer to be cooled to a temperature below 165 C (325 F) [38] before each new layer 

was deposited. Consequently, a steady-state deposition and a more homogenous microstructure in 

all layers of the wall along the building direction would be expected due to the similarity of the 

thermal cycle associated with the solidification of each layer.  

Following the fabrication process, the base plate was cut off and separated from the fabricated 

portion prior to the microstructure and mechanical properties characterization to eliminate any 

effect resulted from the dilution at the bottom side of the component. 

Table A1. 1. The nominal chemical composition of the ER70S-6 feedstock wire (wt. %) 

C Mn Si Cr Ni Mo S V Cu P Fe 

0.06-

0.15 

1.40-

1.85 

0.80-

1.15 

0.15 

max 

0.15 

max 

0.15 

max 

0.04 

max 

0.03 

max 

0.50 

max 

0.03 

max 

Bal. 

 

2.2. Microstructure Characterization  

To perform microstructural characterization and investigate possible microstructural anisotropy in 

the printed wall, four samples from different locations of the wall, including the bottom, middle-

bottom, middle-top, and the top were sectioned along both the deposition direction and the building 
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direction (illustrated in Figure A1.1b). Standard steel grinding and polishing procedures were 

applied utilizing a Tegramin-30 Struers auto-grinder/polisher followed by etching using 5% Nital 

as the reagent. The microstructure of all specimens was examined using an optical microscope 

(Nikon Eclipse 50i) and a field emission scanning electron microscope (FEI MLA 650F). Phase 

characterization was carried out by means of a Rigaku Ultimate IV X-ray diffraction (XRD) with 

Cu-Kα source at 40 kV and 44 mA at the diffraction angle range of 5°-90° with a step size of 0.02°. 

Electron backscatter diffraction (EBSD) analysis was also conducted over an area of 600 × 600 

μm2 on polished samples with a step size of 1.4 μm and a tilt angle of 70°, using Nordlys II HKL 

EBSD detector, Oxford Instruments. To post-process the obtained EBSD data, the HKL Inc. 

software, known as Channel 5, was employed.  

2.3. Mechanical Properties Measurement  

Vickers microhardness testing was conducted on different areas of the wall including the bottom, 

middle-bottom, middle-top and the top (see Figure A1.1a), utilizing a Buehler Micromet hardness 

test machine at a load of 3 N and the loading time of 45 s. It should be noted that the reported 

microhardness test results for each sample in this study are the average value of 5 different 

indentation points on polished surfaces. The tensile test samples were prepared based on the ASTM 

E8m-04 standard subsize specimen [39] with 5 mm thickness, 25 mm gauge length, and 100 mm 

total length. Tensile properties were measured using an Instron load frame with a crosshead speed 

of 8 mm/min. It is also notable that the strain data was recorded using an extensometer. The 

horizontal specimens were machined from both the top and bottom zones of the wall, and the 

vertical tensile specimens were selected from the middle part of the wall, shown schematically in 

Figure A1.1b. In order to avoid the effect of endings, where the scanning direction is reversed and 

the arc experiences some degree of unstability, and also to eliminate the dilution effect of the base 
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plate, the microstructural characterization and mechanical testing herein were only conducted on 

an effective area 15 mm away from both ends and 10 mm above the base plate. Repeatability of 

the results was measured by testing at least five samples under the same conditions to obtain a 

reliable average value. The fractured surfaces of the tensile test samples from both vertical and 

horizontal directions were also studied using the SEM. For each direction, three fractured samples 

were analyzed to ensure the consistency of the reported features between the samples from the 

same direction. 

3. Results and Discussion  

3.1. Microstructure Characterization 

Figure A1.2a demonstrates the overall microstructure of the ER70S-6 steel wall at different 

regions, showing the variation of the microstructure from an area in the vicinity of a fusion line 

towards the center of the melt pool (top left corner of the image). Figures A1.2b and 2d depict the 

dominant microstructure of each melt pool center composed of the typical fine polygonal ferrite 

(F) as the primary phase and a low volume fraction of the lamellar pearlite (P) phase, which has 

primarily formed along the ferrite grain boundaries. Similar microstructural features were reported 

in a previous study for a WAAM fabricated ER70S-6 wall [29]. In addition, a closer look at the 

microstructure along the melt pool boundaries (Figures A1.2c and A1.2e) confirmed the formation 

of acicular ferrite along with bainite regions (AF + B) adjacent to the melt pool boundary. This 

transition in microstructure is developed because of the overlapping scanning lines and 

solidification of individual melt pools, resulting in different thermal histories from the center of 

each melt pool to the boundaries of its adjacent melt pools [40]. Since the fusion boundaries 

experience a higher cooling rate during solidification process compared to the center of the melt 
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pools, the formation of some non-equilibrium AF + B phases was detected adjacent to the fusion 

lines. In a past study, Haselhuhn et al. [41] analogously reported the transition of polygonal ferrite 

to acicular ferrite from the melt pool center to the melt pool boundary in a WAAM-ER70S-6 wall 

due to faster cooling rates that the material experiences during solidification along the fusion line.  

 

Figure A1. 2. Optical micrographs taken from (a) the WAAM-ER70S-6 steel wall at the fusion 

line and center of the melt pool, (b) higher magnification of the enclosed area in (a) shown by B, 

and the inserted image shows an example of a phase fraction analysis micrograph, presenting the 

distribution of the pearlite phase (in red) along the ferrite grain boundaries, (c) the enclosed area 

in (a) shown by C. SEM micrographs from (d) the enclosed area in (b) shown by D, and (e) the 

enclosed area in (c) shown by E. 
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To quantify the volume fraction of the pearlite phase formed along the ferrite grain 

boundaries, a detailed image analysis of the microstructure taken from various locations of the 

sample was performed using the ImageJ software (an example is shown in the inserted image in 

Figure A1.2b, in which the red phase corresponds to the pearlite). Due to the low carbon content 

of the feedstock wire (0.06-0.15%), the volume fraction of the pearlite phase was approximated to 

be only 12.54 ± 0.56 % of the total microstructure (the red highlighted phase shown in Figure 

A1.2b). 

As compared to the ferrite and pearlite phases, the volume fraction of the acicular ferrite and 

bainite phases that formed predominantly along the fusion boundaries were negligible (as evident 

from the micrographs in Figure A1.2). The presence of a small volume fraction of bainite and 

acicular ferrite has been also reported in the microstructure of API-X70 pipeline steel, which is 

commonly being welded using ER70S-6 filler wire [42]. In particular, bainite offers a higher 

strength and toughness due to its smaller grain size and higher dislocation density as a result of 

providing obstacles to dislocation movement as compared to the polygonal ferrite [42]. In the 

context of the microstructural modifications of the as-printed additively manufactured 

components, implementing a post-printing heat treatment would be an alternative to modify and 

refine the microstructure and ultimately improve the mechanical performance of the printed 

sample, which is the subject of a future study by the authors. 

It should be noted that the aforementioned microstructural features were observed throughout 

all layers of the component from the bottom to the top zones of the wall. Therefore, a uniform 

microstructure could be obtained in different zones of the WAAM manufactured part, albeit with 

some degree of inhomogeneity was detected in each deposited bead from the melt pool center 

towards its boundary. Such uniformity in the microstructure along the building direction of the 
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wall could be attributed to the sequence of the layer deposition and the adopted interlayer dwell 

period. It is well established that in metal additive manufacturing processes, the existence of 

multiple and complex thermal cycles is the primary factor leading to the non-uniformity of 

microstructure along the building direction [20,43]. However, as stated in the experimental 

procedure section, a 10 min interval between each layer can minimize the effect of heat 

accumulation and avoid microstructural variations in different layers across the z-direction. 

Therefore, all layers have experienced approximately consistent heating and cooling cycles, 

resulting in a uniform microstructure along the building direction.  

As a complement to the SEM analysis, an EBSD analysis was performed to obtain more 

information on crystallographic texture and orientation features of the printed sample. The EBSD 

inverse pole figure (IPF-z) map of the as-printed sample along the building direction (z-axis) is 

demonstrated in Figure A1.3a. The IPF-z map illustrates comprehensive information on the grains’ 

orientation/misorientation, their size, and aspect ratio. To quantify the detailed information of the 

grains, the IPF maps were evaluated through statistical analysis of the grain area, misorientation 

angle, and grains’ aspect ratio, shown in Figures A1.3b, A1.3c, and A1.3d, respectively. 

The IPF map and the statistical distribution of the grain area and the aspect ratio show that the 

wall is mainly composed of randomly oriented equiaxed grains (aspect ratio < 3) with an average 

grain size of ~7.30 µm. The grain size is considered as one of the most prominent microstructural 

characteristics that affects the mechanical properties. The grain coarsening in the HAZ of the 

previously deposited track is clearly visible in the IPF map, denoted by the coarse grain region 

with an average grain size of 15.76 ± 2.34 µm, whereas the area inside the melt pool revealed a 

noticeably smaller grain size (4.94 ± 1.26 µm). Considering the nature of layer-by-layer deposition 

associated with the WAAM method, each deposited layer reheats the previous one. The resulting 
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high temperature in the previously solidified track would facilitate the grain boundaries migration 

and consequently causes grain growth in the vicinity of each melt pool boundary. Such 

microstructural inhomogeneities in the structure of the printed component can adversely impact 

the mechanical properties of the part and contribute to anisotropic mechanical properties. As 

depicted in the grain area distribution plot (Figure A1.3b), the majority of the grains 

(approximately 80%) have an area smaller than 100 µm2, representing an overall fine grain 

structure for the as-printed WAAM-ER70S-6 part. The misorientation distribution graph (Figure 

A1.3c) confirms that the misorientation angle of the grains is mostly distributed between 0-4 

degree, corresponding to a uniform orientation of the cubic structure [44].   

The statistical distribution of the grain shape aspect ratio is plotted in Figure A1.3d. The grain 

shape aspect ratio can be used as a criterion to differentiate the equiaxed grains from the columnar 

grains. A grain would be considered an equiaxed grain when its shape aspect ratio is smaller than 

3, whereas columnar grains possess aspect ratios of ≥ 3 [45,46]. As revealed by the grains’ aspect 

ratio distribution graph (Figure A1.3d), more than 90% of the grains possess an equiaxed shape 

and only a small portion of the grains (<6%) were characterized by a columnar shape.  
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Figure A1. 3. (a) EBSD inverse pole figure map of the as-printed WAAM-ER70S-6 sample, 

statistical distribution plots showing the distribution of (b) grain area, (c) misorientation angle, 

and (d) grain shape aspect ratio. 

 

The pole figures (PFs) from the EBSD map shown in Figure A1.3a were determined to investigate 

the texture distribution produced by the manufacturing process of the sample, and the result is 

demonstrated in Figure A1.4. The {100}, {110}, and {111} pole figures of the WAAM-ER70S-6 

sample are illustrated in Figure A1.4. The X and Y directions are shown on the {100} pole figure, 
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and the Z-axis is normal to the plane of the pole figure. The PF maps revealed a weak texture, 

representing a random texture with a maximum intensity of 3.08 above the random background.  

 

 

Figure A1. 4. Pole figures from the WAAM-ER70S-6 wall. 

 

The XRD analysis of the WAAM-ER70S-6 wall was conducted for phase identification on the 

samples extracted from different heights along the building direction (shown in Figure A1.1b), and 

the obtained spectras are presented in Figure A1.5. As clearly revealed, the as-printed wall 

predominantly contains an α-Iron (BCC, Ferrite) phase as the main constituent, in which the α-

Iron peaks are located at 2θ of approximately 44.55, 64.85, and 82.11 according to the JCPDS 

patterns of 98-000-9982. The XRD measurements also revealed the absence of an austenite (Iron-

FCC) phase, confirming that either the retained austenite has not formed in the as-printed sample 

or its volume fraction is too low, below the detection limit of the XRD. The precipitated cementite 

phase (in the form of lamellae in the pearlite phase) was also not detected on the XRD spectra due 

to its drastically lower volume fraction as compared to the ferrite phase. The identical XRD 

patterns obtained from different locations across the building direction (shown in Figure A1.5) is 
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another compelling piece of evidence for the uniformity and homogeneity of the microstructure 

along the building direction of the wall.  

 

Figure A1. 5. XRD pattern of the WAAM-ER70S-6 samples taken from different locations along 

the building direction. 

3.2. Mechanical Properties 

Figure A1.6 presents the overall Vickers microhardness variation of the as-printed component 

along the building (vertical) direction from the bottom to the top of the wall with 10 mm margin 

from the bottom and top of the wall to eliminate the effects of both dilution and the last deposited 

layer. The microhardness testing results (Figure A1.6a) revealed that the overall average 

microhardness of the sample was 160  7 HV throughout the whole sample, indicating a uniform 

hardness distribution across the building direction due to the consistency of the microstructure 
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along the building direction. A uniform microhardness profile is generally favored as it represents 

more homogeneous and isotropic micro-mechanical properties in the fabricated part [20]. The 

evenly distributed microhardness values have a minor deviation ( 7 HV) from the average 

microhardness value (160 HV), attributed to the presence of various micro-constituents with 

different volume fractions within the melt pool boundaries, the center of the melt pool, versus the 

HAZ, as described in the microstructure characterization section. Vickers microindentation on 

different microstructures (Figure A1.6b) confirmed that the highest value of microhardness (~175 

 2 HV) corresponded to the acicular ferrite and bainite (AF + B) regions at the melt pool 

boundaries and the lowest value (~150  1 HV) belonged to the coarse polygonal ferrite plus 

pearlite region in the heat affected zone (F+P)HAZ. It should also be noted that the dominant 

microstructure of the sample, including the fine ferrite grains with the pearlite lamellae (F + P) 

formed at the ferrite boundaries, showed the average microhardness of 160  2 HV.  

 

Figure A1. 6. Vickers micro-hardness distribution on (a) different points on the surface along the 

building (vertical) direction from the bottom to the top of the wall, and (b) the measured 

microhardness values of different existing constituents in the structure. 
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The standard stress versus strain diagrams measured from the WAAM-ER70S-6 samples along 

both the deposition (horizontal) direction and the building (vertical) direction at room temperature 

are shown in Figure A1.7. Also, the bar chart enclosed in Figure A1.7 summarizes the extracted 

tensile properties, including the yield strength (YS) and ultimate tensile strength (UTS) of the 

WAAM-ER70S-6 wall along both the deposition and building directions. The average values of 

UTS and YS of the horizontal and vertical samples confirmed that the additively manufactured 

wall had approximately similar yield strength and ultimate tensile strength values in both directions 

(396  26 MPa and 503  21 MPa, respectively), indicating isotropic tensile properties. 

Analogously, a few recent studies have also reported isotropic tensile strengths for the WAAM 

fabricated ferrous parts [20,29,47]. However, as clearly visible in Figure A1.7, the vertical 

specimens show a significantly lower elongation than that of the horizontal samples (12  3% and 

35  2%, respectively), confirming the prominence of anisotropy in ductility. Such mechanical 

anisotropy in ductility and toughness commonly occurs in additively manufactured parts and has 

been reported in many studies for various metals and alloys [48–50]. 

The consistency in the tensile strength of the vertical and horizontal samples is mostly 

attributed to the uniformity and homogeneity of the microstructure, as confirmed by the evenly 

distributed microhardness values in all deposited layers from the bottom to the top of the WAAM 

manufactured wall. On the other hand, the drastic reduction in the ductility value from the 

horizontal sample to the vertical one can plausibly be rationalized by either (i) the presence of 

manufacturing discontinuities and defects, such as lack of fusion or porosity accumulated in the 

interlayer regions, (ii) the grain coarsening along the HAZ, and/or (iii) the formation of brittle 

martensite-austenite (MA) constituent within the bainite lamellar structures. Such a constituent 

with a brittle nature could potentially fracture during tensile loading of the sample prior to other 
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constituents (F or B), leading to the onset and propagation of internal micro-cracks in early stages 

of the loading and ultimately failure at significantly lower strain values. Further elucidation of 

these phenomena is discussed in the following sections. 

  

Figure A1. 7. The stress-strain curves and their corresponding tensile properties for the vertical 

and horizontal samples. 

Figure A1.8 shows the fractured samples after conducting uniaxial tensile testing herein. 

Collectively, all vertical tensile samples (Figure A1.8a) revealed the development of some 

transverse cracks, perpendicular to the building direction (or loading direction), formed equidistant 

from each other during the tensile test. Ultimately, one of those cracks propagated more than the 

others and resulted in the failure of the sample. Formation of similar cracks with constant intervals 

justifies the supposition that their formation is dictated by the same reason(s). As displayed clearly 

in Figure A1.8b, the onset and propagation of the cracks were detected mainly in the HAZ, which 

was characterized by grain coarsening due to the high temperature that the material experiences in 

this region during the solidification of the adjacent bead. The presence of coarse grains in the HAZ 
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deteriorates the mechanical properties, especially the ductility herein, implying that the grain 

coarsening around HAZ could be one of the main weakening mechanisms in the WAAM-ER70S-

6 alloy along the building direction. Therefore, the cracks could potentially nucleate and propagate 

preferentially along the heat affected zones leading to a premature failure through the HAZ.  

The impact of the grain size on the strength of the material can be described mathematically 

using the well-known Hall-Petch equation shown below, 

𝜎𝑦 = 𝜎0 + 𝐾𝑑
−1

2⁄                           (Eq. 1) 

where σy is the yield strength of the material, d is the average grain diameter, and σ0 and K 

are the material constants, representing the lattice resistance to the dislocation motion and 

strengthening coefficient, respectively [51]. Therefore, the HAZ can potentially yield prior to the 

rest of the structure during the tensile loading test. On the contrary, the horizontal samples (Figure 

A1.8a), which were machined primarily from the bulk of each weld bead along the deposition 

direction, contained the lowest possible HAZ structure incorporated in their gauge length. These 

samples did not reveal formation of multiple equidistant cracks on their gauge length during tensile 

testing. Such behavior could be ascribed to the grain size uniformity in this direction.  

It should also be noted that fusion boundaries are commonly prone to interpass defects, such 

as lack of fusion, entrapped gas, and porosity [52,53]. Although these defects were not detected 

visually on the as-printed tensile samples or on the polished samples, their existence in the structure 

is still plausible. Such defects can readily facilitate the brittle fracture by providing potential sites 

for crack initiation and growth since they can act as strong stress concentrators during tensile 

loading [54]. Among such defects, the lack of fusion is of particular interest and highly probable 

to form during multi-pass deposition based processes, such as WAAM, resulting from the special 

heat transfer condition between the layers in the sample along the building direction [20]. It is 
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reported that the high heat removal capacity from the interpass regions between the layers can 

potentially be attributed to a greater portion of the lack of fusion regions within the adjacent beads 

[20]. The formation of interpass defects can further be investigated by performing non-destructive 

testing (NDT) methods capable of detecting defects that are not open to the surface, i.e., 

radiography or ultrasonic testing, which is the subject of a future study.  

 

Figure A1. 8. (a) Tensile samples after fracture and (b) an optical micrograph taken from the 

cross section of one of the equidistant cracks (shown by the arrows in (a)) formed during tensile 

testing on the vertical sample. 

 

Another scenario can be defined that could further contribute to the observed lower mechanical 

integrity of the WAAM sample along the building direction. It is well established that in multi-

pass welding of steels, due to increasing the temperature of the interpass regions into the ferrite + 

austenite phase stability zone between Ac1 and Ac3 temperatures, a region so-called the inter-

critical heat affected zone (ICHAZ) adjacent to each melt pool in the previously deposited pass 

forms [55,56]. In this region, the austenite phase could potentially nucleate along the bainite lath 

boundaries or prior austenite grain boundaries. By further diffusion of carbon atoms from the 

matrix (F + B) into the nucleated austenite phase due to significantly high solid solubility of carbon 
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in austenite phase, the austenite phase can slightly grow, even though the carbon concentration of 

the ER70S-6 feedstock wire is low. Upon fast cooling of this region, if the carbon content is low, 

or there are no sufficient austenite stabilizing alloying elements to stabilize the austenite at room 

temperature (the case of ER70S-6), the reverted austenite phase transforms to the martensite-

austenite (MA) constituent, forming localized brittle zones (LBZs) in the ICHAZ [57]. 

Consequently, these LBZs potentially degrade the toughness of the low alloy steels by cracking of 

MA constituent and its detachment from the matrix [18]. As shown in Figure A1.9, a closer look 

at the HAZ of the WAAM-ER70S-6 sample revealed the formation of some of those LBZs. As 

Figure A1.9 reveals, the new MA constituent is nucleated within the bainite lamellar structure. 

Although the amount of this phase was very minor as compared to the other constituents in the 

microstructure, it is known that the formation of martensite-austenite promotes the crack 

nucleation under tensile loading due to the brittle nature of this phase [58], the induced residual 

tensile stress on the matrix resulted from the martensitic transformation [58], the incoherency of 

the MA-ferrite interface that leads to the MA-ferrite interfacial cracking [59], and finally the slip 

localization in the ferritic matrix around the hard MA phase that could potentially lead to the 

localized cleavage of the matrix [20]. Therefore, the formation of the MA constituent in the ICHAZ 

can further contribute to the de-bonding and fracture concentration between the consecutive layers. 

Due to the geometry of the vertical samples relative to the building direction, these samples 

accommodate a high density of melt-pool boundaries and ICHAZs. Therefore, the content of MA 

phase formed in these samples is significantly higher than that in the horizontal samples. Such 

microstructural variation between the vertical and horizontal samples can be partially responsible 

for not only the measured lower ductility of the vertical samples than that of the horizontal samples, 
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but also the formation of the equidistance macro-cracks on the vertical samples during the tensile 

testing.  

 

Figure A1. 9. SEM micrograph taken from (a) the HAZ of the as-printed WAAM-ER70S-6 and 

(b) the higher magnification of the enclosed area in (a) shown by B, demonstrating the formation 

of MA phase between coarse bainite lamellas. 

To further study the fracture behavior of the samples, the representative SEM fractographs of the 

horizontal and vertical samples were also analyzed and are depicted in Figure A1.10. The fracture 

surface of the horizontal sample was predominantly comprised of large and deep cuplike 

depressions and conical dimples with relatively uniform size, indicating occurrence of an extensive 

plastic deformation and ductile behavior during tensile testing [60]. It confirmed that the fracture 

is dominated and controlled by microvoids nucleation at regions of localized strain discontinuity, 

followed by the coalescence of microvoids, leading to a cup and cone-shaped failure surface with 

the shear lip of around 45° [61].  

A different fracture surface for the vertical sample is clearly distinguishable from the 

micrographs shown in Figures A1.10c and A1.10d. It was revealed that the degree of plastic 

deformation for the vertical sample was not as severe as that in the horizontal sample. Although 

dimples can be observed on the fractured surfaces of both vertical and horizontal samples, the 

morphology of the dimples was found to be different, corresponding to the variation of mechanical 
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behaviour and fracture mechanism of the samples during tensile testing [60]. A comparison 

between dimples formed on the fracture surface of the vertical and horizontal tensile samples at 

higher magnification (Figure A1.10b and A1.10d) reveals that their size is smaller and shallower 

in the vertical sample, implying that a lower plastic strain was retained by the sample prior to its 

failure [62,63]. Moreover, there are some nearly flat areas, including micro-cracks (marked by 

white arrows in Figure A1.10c), in the vertical samples, a compelling evidence for the occurrence 

of a relatively fast cleavage fracture due to the crack propagation [61]. Therefore, the observed 

morphological features of the fractured surfaces of both horizontal and vertical samples were found 

to be in good agreement with their tensile test results, confirming a lower ductility for the vertical 

samples than the horizontal ones, albeit the tensile strength remained approximately constant.  
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Figure A1. 10. SE-SEM micrographs taken from the fractured surfaces after uniaxial tensile 

testing: (a) and (b) the horizontal sample, (c) and (d) the vertical sample. The side view image 

from the gauge of the fractured (e) vertical sample and (f) horizontal sample. 

 

Likewise, the side view of the fractured samples after uniaxial tensile testing (Figures A1.10e and 

10f) confirmed that there is no sign of extensive plastic deformation and necking in vertical 

samples. On the other hand, an almost homogenous deformation has occurred in the necking area 

of the horizontal sample, consistent with the results of tensile testing. Hence, it can be concluded 
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that the horizontal samples showed a ductile failure during tensile testing, while vertical samples 

exhibited a mix ductile-brittle fracture. Due to the similarity of the WAAM process to the 

conventional welding processes, such as GMAW or GTAW, it was expected that the fabricated 

wall using WAAM might provoke anisotropy in tensile properties. Depending on the sources of 

non-uniformity herein, i.e. HAZ grain coarsening, interpass discontinuities, or formation of LBZs, 

authors may need to come up with various innovative strategies to suppress the measured 

anisotropy in mechanical properties through optimizing the process parameters, deposition 

strategy, and/or conducting post-printing heat treatment, which all are subjected to future studies. 

4. Conclusions 

In this study, ER70S-6 low-carbon-low-alloy steel walls were additively manufactured 

utilizing WAAM technique. Microstructure and mechanical properties of the manufactured 

component were characterized in different zones and directions. The following conclusions can be 

drawn: 

1. The microstructure of the fabricated wall included two distinct regions across the melt pools, 

i.e., a wide region composed of fine polygonal ferrite and lamellar pearlite phases as the 

predominant microstructure of each melt pool, and a confined region at the melt pool 

boundaries containing acicular ferrite along with bainite constituents. Formation of different 

regions with disparate microstructure in the fabricated part is primarily due to the existence of 

different temperature gradients and solidification rates from the center of each melt pool 

towards the boundaries of its adjacent solidified tracks.  

2. The printed microstructure was primarily comprised of randomly oriented equiaxed grains 

possessing a weak cubic texture. 
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3. The specific fabrication methodology in this study, utilizing advanced STT mode for the 

material’s deposition and the adopted y-scanning strategy with alternating directions and 3 

mm overlap along the x-axis between the successive passes, along with the implemented 

cooling intervals between the consecutive layers, contributed to the formation of a similar 

microstructure in all layers of the wall along the vertical direction. This further contributed to 

the consistency of the localized mechanical properties along the building direction.  

4.  The average microhardness of the WAAM fabricated component was 160 ± 7 HV, which was 

roughly consistent along the building direction of the component. However, the Vickers 

microindentation revealed that at the fusion boundaries, where some fraction of acicular ferrite 

and bainite micro-constituents were detected, the highest microhardness value was reached 

(~175 ± 2 HV), whereas the heat affected zone containing coarse ferrite grains revealed the 

lowest microhardness (~150 ± 1 HV). 

5. According to the tensile testing results, comparable yield and ultimate tensile strengths were 

obtained along the building (vertical) direction and deposition (horizontal) direction of the 

fabricated WAAM-ER70S-6 part. However, the ductility along the horizontal direction was 

approximately three times higher than that of the vertical direction. The significantly lower 

ductility in the building direction was primarily ascribed to the higher density of the interpass 

regions and the melt pool boundaries in the vertical direction, where a coarse grain structure 

in the HAZ, formation of localized brittle zones (MA constituent), and plausibly a higher 

density of interpass discontinuities exist. 

6. The fracture surfaces of both vertical and horizontal samples showed a dimple structure 

characteristic of microvoid coalescence. However, dimples were found to be larger and deeper 
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on the fracture surface of the horizontal samples, confirming the substantial plastic 

deformation of the part along the deposition direction as compared to the building direction.      
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Appendix II 

On Microstructure and Mechanical Properties of a Low-Carbon 

Low-Alloy Steel Block Fabricated by Wire Arc Additive 

Manufacturing9 

Preface 

A version of this manuscript has been submitted in the Journal of the Materials Engineering and 

Performance, 2020. I am the first and corresponding author of the papers. Along with the co-

authors, Mahya Ghaffari, Alireza Vahedi Nemani, and Dr. Ali Nasiri, I investigate ER70S-6 low-

carbon low-alloy steel block was manufactured by WAAM method, utilizing a gas metal arc 

welding (GMAW) torch translated by a six-axis robotic arm. The microstructure and mechanical 

anisotropy of the fabricated part were investigated and compared with the thin wall fabricated 

sample in the previous chapter. I prepared methodology, experimental, formal analysis, and the 
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Abstract 

In this study, wire arc additive manufacturing process is employed to fabricate a low-carbon low-

alloy steel block, using an ER70S-6 solid wire. Three sets of samples with different orientations, 

including perpendicular (Vertical), parallel (Horizontal), and 45° (45-degree) relative to the 

deposition plane, were prepared in order to investigate the anisotropy in mechanical properties and 

microstructure of the fabricated part. Both Horizontal and 45-degree samples showed a uniform 

microstructure containing mostly ferritic grains with a small volume fraction of pearlite at their 

grain boundaries. Differently, a periodic microstructure was detected in the Vertical sample, 

consisting of a combination of acicular ferrite, bainite, and allotriomorphic ferrite formed in the 

interlayer regions in addition to polygonal ferrite within the melt pools’ center. Moreover, the 

uniaxial tensile and Charpy impact results exhibited isotropic tensile, yield, elongation, and impact 

properties for both Horizontal and 45-degree samples; however, the Vertical sample showed a 

lower mechanical performance. The improved mechanical properties of the Horizontal and 45-

degree samples were correlated to their uniform ferritic microstructure. 

 

Keywords: Additive Manufacturing (AM); Wire Arc Additive Manufacturing (WAAM); Low-

Carbon Low-Alloy Steel; Microstructure; Mechanical Properties. 
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1. Introduction 

Additive Manufacturing (AM) is a rapidly developing technology by which 3D components are 

produced through layer-by-layer deposition of the metallic, polymeric, or even ceramic materials 

using feedstock powder particles or solid wires [1]. The metal AM process can be categorized 

based on the implemented heating source into two main categories, i.e., beam-based methods, such 

as selective  laser   based technologies-melting (SLM) or electron beam melting (EBM), and arc  ,

such as wire arc additive manufacturing (WAAM) [2]. Although the WAAM technology has not 

been completely industrialized yet, it has gained substantial attention in different industries, 

including aerospace, marine, and oil and gas for the fabrication of meter-scale metallic components 

for structural applications [2]. As compared to other AM technologies, WAAM is mainly identified 

by its low capital cost, unlimited build envelope, and significantly high deposition rate (3-8 kg/h), 

leading to substantial reduction in the fabrication time [2]. The common WAAM processes 

implement either a gas metal arc (GMA), gas tungsten arc (GTA), or plasma arc (PA) as the heat 

source [3–5]. Cold metal transfer (CMT) is also a new variation of GMA technology and widely 

adopted as the heat source to produce WAAM components [6]. 

Despite the cost-saving advantage of WAAM technology in fabrication of large-scale 

components from a wide range of materials, the high heat input and nonuniform solidification rate 

associated with the process lead to microstructural inhomogeneity and the anisotropy of the 

mechanical properties [3,7]. Wu et al. [8] reported a highly anisotropic tensile strength for a thin 

wall 316 L stainless steel fabricated by GMA-WAAM. It has been reported that the high 

temperature gradient, fast cooling rate, and sequential heating and cooling cycles experienced by 

components during WAAM can impact the final microstructure, leading to a heterogeneous grain 

structure and anisotropic mechanical properties [9–11]. Even reducing the heat input by 
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implementing the CMT-WAAM technology for the fabrication of a Cr-Mn type steel was not 

found to be an effective approach to hinder the anisotropy in mechanical properties [12]. It is well 

accepted that the WAAM processing parameters directly impact the in-situ thermal history during 

solidification of the part, determining the final microstructure and ultimately the part’s mechanical 

performance [13,14]. As one of the less studied processing parameters, scanning or deposition 

pattern is an important factor that affects the thermal history, microstructural characteristics, and 

mechanical performance of AM components [15]. In the WAAM technology, processing 

parameters, such as heat input [16], post-printing thermal treatment [17], and size of the deposited 

wire [18] have been widely studied to tailor the microstructure and mechanical properties of the 

fabricated part. However, only limited research in the literature has attempted to investigate the 

deposition strategy's impact on the microstructural modification and mechanical properties, 

especially for low-carbon low-alloy steels with broad applications for the pipeline, casting, and 

forgings [19]. Focusing on investigating the impact of deposition strategy on the microstructural 

modifications and the resultant mechanical properties, the present study has adopted a stripe 

scanning strategy with 90° rotation between consecutive layers to fabricate an ER70S-6 block 

using WAAM technology as compared to all-y scanning strategy commonly reported in the 

literature. The impact of the adopted deposition strategy on anisotropy in mechanical properties 

was investigated, utilizing tensile testing, impact testing, and fractography at different orientations 

of the fabricated block, i.e., vertical, horizontal, and 45° relative to the sample’s building plane.  
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2. Experimental Procedure 

2.1. Materials and fabrication procedures 

A cuboid block of ER70S-6 alloy (Figure A2.1b) was fabricated following a stripe strategy with a 

90° rotation between successive layers using a robotic-controlled WAAM platform as shown in 

Figure A2.1a, equipped with a GMA torch. In order to minimize the surface irregularities and heat 

input during the process, an advanced surface tension transfer (STT) mode was employed. Each 

deposited layer in X-Y plane contains 40 individual beads with a length of 120 mm and a 3 mm 

center-to-center overlap, leading to the overall width of 120 mm. The total height of the part is 200 

mm, comprising 40 consecutive layers with an average height of ~5 mm for each deposited layer. 

To control the impacts of complex thermal cycles associated with the WAAM process on the 

microstructure of the previously deposited layers, after each X-Y layer deposition, a 10-min 

interlayer dwell time was applied during the fabrication. Moreover, the presented schematic 

pattern in Figure A2.1c shows the positions where Horizontal, Vertical, and 45-degree tensile and 

impact test samples were machined from the WAAM fabricated block. A 0.035 in. diameter 

ER70S-6 wire (0.06–0.15 wt.% C, 1.40–1.85 wt.% Mn, 0.80–1.15 wt.% Si, and Bal. Fe) was 

utilized as the feedstock material. The detailed process parameters can be found in the previous 

authors’ publication [7]. 
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Figure A2. 1. (a) The robotic WAAM platform, (b) the fabricated block using WAAM method, 

(c) schematic drawing of the WAAM-ER70S-6 steel block showing the position of tensile and 

impact testing samples. 

 

2.2. Microstructural Characterization and Mechanical Properties 

The microstructural characterization and investigation of possible formed microstructural 

inhomogeneity in the fabricated component were carried out on three samples prepared from 

different orientations of parallel, perpendicular, and 45° with respect to the deposition plane (X-

Y), denoted by Horizontal, Vertical, and 45-degree samples, respectively. Standard grinding and 

polishing procedures for steels were implemented using a Tegramin-30 Struers auto-

grinder/polisher. In order to reveal the microstructure, the polished samples were etched using 5% 

Nital as the etchant. The microstructure of all samples was investigated using an optical 
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microscope (Nikon Eclipse 50i), and a field emission scanning electron microscope (SEM) (FEI 

MLA 650FEG). Electron backscatter diffraction (EBSD) analysis was also performed over a large 

area of 4000 × 600 μm2 with a step size of 1.5 μm and a tilt angle of 70°, using a Nordlys II HKL 

EBSD detector, Oxford Instruments. The tensile test samples were made based on the ASTM E8m-

04 standard sub-size specimen [20] and tested using an Instron load frame at the crosshead speed 

of 8 mm/min, and an extensometer to record strain data. The samples for the Charpy impact tests 

were made according to ASTM E23–18 [21]. The absorbed energy by each sample during fracture 

was obtained at six different temperatures, i.e. -146 °C, -100 °C, -20 °C, 0 °C, 23 °C (room 

temperature), and 98 °C using an automatic impact testing apparatus (a JBS-300 machine) with 

the maximum capacity of 300 J. The fractured surfaces of both tensile and impact test samples 

from all three directions were also analyzed using the SEM. 

3. Results and Discussion 

3.1. Microstructural Characterization 

Figure A2.2 shows the cross-sectional overview of the WAAM-ER70S-6 steel block taken from 

different orientations (from prepared gauge length of the tensile samples prior to testing), revealing 

the microstructural variations resulting from the implemented 90° rotation deposition strategy. 

Optical micrographs in Horizontal and 45-degree directions (Figure A2.2a and b) illustrate a 

uniform microstructure with almost no imperfection, such as pores and cracks, within the entire 

cross-section, indicating the formation of a sound and defect-free AM part on the X-Y plane with 

a clear metallurgical bonding between the neighboring tracks. The microstructures of the 

Horizontal and 45-degree samples were characterized with a relatively uniform microstructure 

without a significant grains morphology alternation between the tracks, attributed to the high 
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interlayer temperature and consequently the lower interpass cooling rates, resulted from the center-

to-center overlap of the tracks in the deposition (X-Y) plane. However, the Vertical sample (Figure 

A2.2c) shows a periodic nonuniform microstructure containing a variety of interlayer 

discontinuities, such as lack of fusion and porosities, formed particularly along the inter-layers’ 

regions perpendicular to the building direction. A banded structure comprised of polygonal ferrite 

and a mixture of acicular ferrite (AF), bainite (B), and allotriomorphic ferrite (α) (as shown in 

Figure A2.3) was found to form between consecutive layers, resulting from the nonuniform 

cooling rate of each melt pool in the areas near to its boundaries as compared to the center. 

Moreover, the Vertical sample has experienced a 10 min dwelling time between deposition of 

successive layers along the Z-direction, resulting in the nonhomogeneous energy input and 

consequently the formation of the periodic microstructure as shown in Figure A2.2c. Similar 

observations were reported in a previous study by Ge et al. [22] for a WAAM-2Cr13 thin wall 

fabricated with a long dwelling time (210 s), which was characterized by a periodic microstructure 

composed of martensite laths in a ferritic matrix. Differently, adopting a short dwelling time (30 

s) during fabrication was reported to create a uniform ferritic microstructure [22]. It is notable that 

the height of the banded microstructures is similar to the height of each deposited layer (~3 mm).  



236 
 

 

Figure A2. 2. Optical micrographs taken from the overall cross-sectional overview of the (a) 

Horizontal, (b) 45-degree, and (c) Vertical samples. 

 

Figure A2.3a schematically represents two consecutive deposited beads along the Z-direction, 

showing three distinguishable regions with distinct microstructures, i.e., melt pool center, melt 

pool boundary, and a heat affected zone (HAZ) in the previously deposited layer (Bead 1). Figure 

A2.3b shows the overall microstructure of the Vertical sample in the vicinity of a melt pool’ 

boundary, in which two successive beads and their corresponding HAZ are noticeable, revealing 

the variation of microstructure from an area adjacent to a fusion line (Figure A2.3d) towards the 

middle of the melt pool (Figure A2.3e). The microstructural transition from a uniform and fine 

polygonal ferritic (F) structure at the center of the melt pool to a combination of acicular ferrite 

(AF), bainite (B), and allotriomorphic ferrite (shaded areas in Figure A2.3d) microstructure in the 
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melt pool boundary (Figures A2.3c and A2.3d) is evident. Moving closer to the fusion line in the 

melt pool boundary areas revealed columnar grains of acicular ferrite, bainite, and allotriomorphic 

ferrite, elongated along the heat dissipation direction (the red arrow in Figure A2.3d) during 

solidification. However, the dominant microstructure of each melt pool is fine polygonal ferrite 

with a slight volume fraction of pearlite on the grain boundaries (Figure A2.3e).  
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Figure A2. 3. (a) Schematic representation of two consecutive deposited beads, Optical 

micrographs taken from (b) the fusion line and center of the melt pool, and higher magnification 

of the (c) melt pool boundary shown as C in (b), (d) fusion line shown as D in (b), and (e) melt 

pool center shown as E in (b). 
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In complementary to the performed optical microscopy investigation, SEM and EBSD 

analysis were also carried out (Figure A2.4) for detailed microstructural characterization of the 

samples. The EBSD inverse pole figure (IPF) map from the entire microstructure between two 

adjacent layers along the building direction (Z-axis) (Figure A2.4a) shows the overall grains’ 

orientation/misorientation, size, and aspect ratio. The variation of the grain size and morphology 

can be clearly seen along the entire cross section in the Vertical sample. In Figure A2.4a, there are 

regions (region B) with coarser grain structure with the average grain size of 38.88±1.54 µm 

located at the melt pool boundaries (Figure A2.4b). The SEM micrographs from the same area 

(Figure A2.4b1) revealed the formation of the nonequilibrium AF + B constituents adjacent to the 

melt pool boundary, resulted from the faster cooling rate of the fusion zone at the melt pool 

boundaries as compared to the center of the melt pool. Differently, the melt pool’s center was 

characterized by equiaxed (aspect ratio < 3) and randomly oriented ferritic grain structure with the 

average grain size of 7.23±0.34 µm (Figure A2.4d). The SEM micrograph from the melt pool 

center (Figure A2.4d1) confirmed the formation of the PF grains with a very small volume fraction 

of lamellar pearlite (P) (11.44 ± 0.47%) formed at the grain boundaries, which is the predominant 

microstructure over the entire fabricated block. The grain structure in HAZ (Figures A2.4c and 

A2.4c1) consists of coarser ferrite grains (10.86±0.25 µm) as compared to the center of the melt 

pool, which is a direct consequence of the grain boundaries migration in the previously deposited 

bead, triggered by the significantly high temperature from deposition of a new layer [23]. 
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Figure A2. 4. The EBSD inverse pole figure maps taken from (a) the entire cross-sectional 

overview along building direction of the WAAM-ER70SR-6 sample, (b) the higher 

magnification of the enclosed area in (a) noted by B, (b1) the SEM image from the same area of 

the (b), (c) the higher magnification of the enclosed area in (a) noted by C, (c1) the SEM image 

from the same area of the (c), (d) the higher magnification of the enclosed area in (a) noted by D, 

(d1) the SEM image from the same area of the (d). 
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3.2. Mechanical Properties 

The orientation of tensile and impact testing samples in the horizontal, vertical, and 45° directions 

in the fabricated block is presented in Figure A2.1c. Figure A2.5a shows the engineering tensile 

stress-strain graphs for the Vertical, Horizontal, and 45-degree samples. At each orientation, at 

least five samples were tested to ensure reproducibility of the results. 

The majority of the tensile graphs displayed the common yield point phenomenon 

frequently seen in low-carbon and mild steels [24,25]. A similar discontinuous yielding 

characteristic has been reported for other WAAM fabricated ER70S-6 parts as well [3,7,25]. Along 

the deposition plane, the Horizontal and 45-degree samples showed a uniform deformation with a 

similar ductile failure during tensile testing. Moreover, as shown in Figure A2.2a and A2.2b, since 

the Horizontal and 45-degree samples have a uniform microstructure, variation of MP boundaries 

orientation with respect to the tensile direction (90° and 45° for Horizontal and 45-degree sample, 

respectively) has not affected the ultimate tensile strength (UTS), yield strength (YS), and 

elongation of the samples. As a result, similar average UTS, YS, and elongation values (406 ± 23 

MPa, 524 ± 13 MPa, and 37 ± 3%, respectively) were obtained for both samples, confirming the 

isotropic mechanical performance of the fabricated block on its X-Y plane. On the other hand, the 

average UTS, YS, and elongation values of the Vertical samples were found to be lower than those 

of the other two samples (386 ± 26 MPa, 405 ± 22 MPa, and 10 ± 2%, respectively), confirming 

the anisotropic tensile properties of the WAAM manufactured block. The lower tensile strength 

and elongation properties of the Vertical sample can be correlated to either microstructural 

variations across the building direction or pre-existing interlayer imperfections, which are, in turn, 

associated with the heat dissipation characteristics and the implemented interlayer dwelling time 

during manufacturing of the part, consistent with the previous studies [3,7,9,22].  
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The Charpy V-notch impact results for the Horizontal, 45-degree, and Vertical samples 

performed at six different temperatures of -146 °C, -100 °C, -20 °C, 0 °C, 23 °C (room 

temperature), and 98 °C are given in Fig 5b. The fitted curves to the obtained experimental data 

points represent cubic functions with the error parameter value (R2) above 0.90, featuring a Ductile 

to Brittle Transition Temperature (DBTT) for the fabricated alloy at ~ −20 °C. The results also 

confirm that the DBTT is constant and independent from the samples' orientations. The average 

values of the absorbed energy for the Horizontal and 45-degree samples at all seven temperatures 

are higher than those of the Vertical sample, ascribed to their uniform ferritic and defect-free 

structure. The formation of uniform and smaller ferritic grains in Horizontal and 45-degree 

samples promotes both yield strength and tensile strength and further improves ductile fracture 

mechanisms, while the Vertical sample with periodic microstructure of acicular ferrite and bainitic 

are expected to have a more brittle nature and be more susceptible to crack propagation [26,27].  

 

Figure A2. 5. (a) the stress-strain curves and (b) the absorbed impact energy for the Horizontal, 

Vertical, and 45-degree samples 
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To further investigate the fracture performance of the fabricated samples, the fracture 

surfaces of all samples after uniaxial tensile and impact testing were analyzed and shown in Figure 

A2.6. The SEM fractographs of the Horizontal and 45-degree samples (Figure A2.6a and b) mainly 

showed the characteristics of dimple-like fracture, confirming an extended plastic deformation and 

ductile fracture. Differently, the Vertical sample (Figure A2.6c) showed inclusions combined with 

smaller and shallower dimples, indicating that it experienced a lower degree of plastic strain before 

failure. Using Energy Dispersive-X-ray Spectroscopy (EDS), the inclusions were characterized to 

be mainly composed of MnO-SiO2, commonly reported to form in ferrous alloys weld metals [28]. 

These inclusions in the Vertical sample can be formed due to the slag entrapment between 

successive layers. A comparison between the fracture surfaces after the impact test at room 

temperature revealed some nearly flat surfaces in the Vertical samples (Figure A2.6f), representing 

relatively fast crack propagation and occurrence of a rapid cleavage fracture [29]. However, the 

Horizontal and 45-degree samples (Figures A2.6d and e) showed no cleavage on their fractured 

surfaces. Another noticeable high absorbed energy feature on the fracture surfaces of the 

Horizontal and 45-degree samples is the secondary cracks, resulted from energy dissipation in the 

material during the dislocations movements [30]. 
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Figure A2. 6. SEM micrographs taken from the fractured surfaces after uniaxial tensile testing of 

(a) Horizontal, (b) 45-degree, and (c) Vertical samples and after impact testing of (d) Horizontal, 

(e) 45-degree, and (f) Vertical samples at room temperature (23 °C). 

 

3.3. Comparisons with the WAAM-ER70S-6 thin-wall fabricated using all-y scanning strategy 

To better understand the impact of deposition strategy and sample size on the microstructure and 

mechanical properties of the fabricated block, comparisons were made between the microstructure 

and mechanical properties of the block fabricated with a 90° deposition strategy studied herein and 

a thin-wall fabricated by all-y scanning strategy studied in the authors’ previous works [3,7]. 

The formation of the AF+B microstructure near the melt pool boundaries and fine 

polygonal ferrite with small amount of pearlite in its grain boundaries as a primary microstructure 

of the melt pool center have been also observed in a WAAM-ER70S thin-wall fabricated using 

all-y scanning strategy [3,7]. However, using a 90° deposition strategy led to the formation of the 

periodic microstructure along the building direction, which was not detected in the thin-wall 

fabricated sample [3,7]. Moreover, the grain size variations for the extreme fine and coarse regions 

of the thin-wall sample were reported to be in the range of ~4.94 μm to ~15.76 μm, respectively. 
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The thin-wall sample with 22 mm width has experienced significantly lower heat accumulation 

and a faster cooling rate as compared to the block sample with 120 mm width. Therefore, in the 

thin-wall sample, all the deposited layers have faced almost the same thermal cycles, giving rise 

to a finer and more uniform microstructure than the block sample. 

Furthermore, the anisotropy in mechanical properties of the Horizontal and Vertical 

samples detected for the block sample was also detected in the thin-wall sample. The reported 

average values of UTS, YS, and elongation for Horizontal and Vertical samples were 396 ± 26 

MPa, 503 ± 21 MPa, 35 ± 2%, 402 ± 23 MPa, 502 ± 19 MPa, 12 ± 3%, respectively [3,7]. The 

measured lower UTS and YS values for the Vertical sample in the block part than those in the thin-

wall sample can be attributed to the formation of the periodic microstructure with sharp boundaries 

between the deposited layer and also the formation of substantial interpass defects in the vertical 

direction of the block sample. Moreover, the formation of the martensite–austenite (MA) 

constituent within the bainite lamellar structures was reported as a contributing factor to the 

improved tensile strength and degradation of the toughness in the thin-wall sample [3,7]. However, 

in this study, larger geometrical features of the fabricated block create higher heat accumulation, 

leading to its slower cooling rate during solidification, which would consequently impact the final 

microstructure, level of interpass discontinuities, and suppress the MA micro-constituent 

formation [31,32].  

4. Conclusions 

In this study, a block of ER70S-6 low-carbon low-alloy steel was fabricated utilizing the WAAM 

technique with deposition strategy of 90° rotation between successive layers. Microstructure and 

mechanical characteristics of the fabricated part were measured at different orientations with 
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respect to the deposition plane and compared with the thin-wall sample of the same alloy fabricated 

using all-y scanning strategy. The following conclusions can be drawn: 

1. The microstructure of the Horizontal and 45-degree samples contained mainly ferrite 

grains with a small volume fraction of pearlite formed at the grain boundaries. However, a more 

heterogeneous microstructure was detected in the Vertical sample, composed of three distinct 

regions of fine polygonal ferritic grains formed in melt pools’ centers, a combination of 

allotriomorphic ferrite and acicular ferrite and bainite in the melt pools’ boundaries, and coarse 

polygonal ferritic grains in HAZ. The microstructure of the thin-wall sample was reported to be 

finer, more uniform and equiaxed than the block sample, resulted from higher cooling rate of the 

thin-wall sample during fabrication. 

2. The EBSD results revealed that the overall microstructure was predominantly composed 

of randomly oriented equiaxed grains across the entire building direction. The slower cooling rate 

during solidification in the block sample resulted in coarsening of the average grain size by 60% 

as compared to the thin-wall sample. 

3. The tensile test results of the Horizontal and 45-degree samples showed the isotropic 

YS, UTS, and elongation properties along with the building plane of the fabricated WAAM-

ER70S-6 block. However, the mechanical performance was dropped in the Vertical sample, 

associated with the existence of the discontinuities in the interpass regions and heterogeneity of 

the microstructure along the vertical direction. The reduced UTS and YS along the building 

direction of the block versus the thin-wall sample were ascribed to the formation of the periodic 

microstructure, interpass discontinuities, and suppressing of the MA micro-constituent formation. 
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4. The average impact resistance of the Horizontal and 45-degree samples at different 

temperatures were similar and higher than that of the Vertical samples, dictated by the 

microstructural variations between the samples. 

5. The fracture surfaces of Horizontal and 45-degree samples at room temperature revealed 

dimpled rupture characteristics and secondary cracks, suggesting a pure ductile fracture. However, 

the fracture surface of the Vertical sample showed smaller and shallower dimples, inclusions and 

some flat regions, confirming the reduced toughness of the fabricated sample along the building 

direction as compared to the building plane. 
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Appendix III 

Nanosecond laser fabrication of hydrophobic stainless-steel 

surfaces: the impact on microstructure and corrosion resistance10 
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A version of this manuscript has been submitted in the Journal of the Materials. I am the first and 

corresponding author of the papers. Along with the co-authors, Jaffer Alkarim Jaffer, Cong Cui, 

Dr. Xili Duan, and Dr. Ali Nasiri, I investigate the capability of nanosecond fiber laser surface 

texturing followed by a low energy coating in the fabrication of hydrophobic 17-4 PH stainless 

steel surfaces as an alternative to the ultrashort lasers previously utilized for hydrophobic surfaces 

production. I prepared methodology, experimental, formal analysis, and the first original draft of 

the manuscript and subsequently revised the manuscript based on the coauthors’ feedback and also 

the peer review process. The co-authors Jaffer Alkarim Jaffer and Cong Cui helped in the 

experimental procedure and writing the initial draft. Moreover, Dr. Xili Duan and Dr. Ali Nasiri 
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Abstract 

Creation of hydrophobic and super-hydrophobic surfaces has attracted broad attention as a 

promising solution for protection of the metal surfaces from corrosive environments. This work 

investigates the capability of nanosecond fiber laser surface texturing followed by a low energy 

coating in the fabrication of hydrophobic 17-4PH stainless steel surfaces as an alternative to 

ultrashort lasers previously utilized for hydrophobic surfaces production. Laser texturing of the 

surface followed by applying the hydrophobic coating resulted in steady-state contact angles of up 

to 145°, while the non-textured coated base metal exhibited the contact angle of 121°. The 

microstructure and compositional analysis results confirmed that the laser texturing process neither 

affects the microstructure of the base metal nor causes elemental loss from the melted regions 

during the ultrafast melting process. However, the electrochemical measurements demonstrated 

that the water-repelling property of the surface did not contribute to the anticorrosion capability of 

the substrate. The resultant higher corrosion current density, lower corrosion potential, and higher 

corrosion rate of the laser textured surfaces were ascribed to the size of fabricated surface micro-

grooves, which cannot retain the entrapped air inside the hierarchical structure when fully 

immersed in a corrosive medium, thus degrading the material’s corrosion performance. 

Keywords: Hydrophobicity; 17-4 PH Stainless Steel; Nanosecond Laser; Contact Angle; 

Corrosion Resistance. 
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1. Introduction 

Corrosion is an irreversible oxidation reaction on material due to its interaction with an immediate 

environment [1]. It is a common problem especially in highly aggressive environments [2], 

degrading the integrity and lifetime of metal surfaces and causing problems both economically and 

operationally in engineering applications. External factors such as salinity [3], temperature [4], pH 

[2], and pollutants [5] influence the rate of corrosion of materials. Fabrication processes such as 

welding [6] and heat treatment [7] can also affect the corrosion resistance of the metal. 

One form of corrosion protection that has been recently gaining significant interests among 

the research community is the application of hydrophobic properties on materials. Combining 

corrosion protection with other benefits of hydrophobicity such as anti-icing [8], control of bio-

fouling [2], self-cleaning [2], water repellency [9], reduction of turbulent flow resistance [10] 

makes this property extremely beneficial for applications in harsh or highly humid environments, 

such as pipelines, wellhead platforms, or power transmission lines. 

In nature, there are a variety of hydrophobic and super-hydrophobic surfaces such as 

plants’ leaf [11] and living creatures [12]. A surface with so-called hydrophobic property has a 

wet contact angle greater than 90°, while super-hydrophobic surfaces have remarkably higher 

water repellency with a wet contact angle greater than 150° [2,11]. Previous studies have discussed 

two major controlling factors that dictate the hydrophobicity of the surface, i.e., surface roughness 

and surface energy [2,13]. It should be noted that surface energy is the main factor to achieve 

hydrophobicity, which primarily is controlled by the surface’s chemical composition [2]. 

However, the superhydrophobicity cannot be obtained only by minimizing the surface energy. It 

also requires tailoring the surface roughness [10]. As an example, Nishino et al. [13] reported the 

lowest surface free energy of any solid to be 6.7 mJ/m2 obtained by covering the surface of a glass 



254 
 

with regular aligned closest hexagonal packed −CF3 groups, but the best-achieved contact angle 

was reported to be only 119°, which is far from super-hydrophobicity [13]. Therefore, hierarchical 

surface features are crucial requirements to achieve superhydrophobicity [10]. These hierarchical 

surfaces are composed of micro hills and valleys similar to the surface of a lotus leaf or insect 

bodies [10,11]. 

A wide variety of materials have been used so far to create hydrophobic and super-

hydrophobic properties on their surfaces, including both organic materials, which are commonly 

hydrophobic by nature and inorganic materials, such as metals with hydrophilic nature [2]. Also, 

various processes and techniques have been utilized to fabricate hydrophobic surfaces, such as 

photolithography [14], laser/plasma treatment [15], chemical etching [16], and layer by layer 

deposition [17], among others. In general, metals due to their better physical, mechanical, 

chemical, and thermal properties, and laser treatment technique due to its relatively shorter 

processing time and being highly reproducible have attracted more interests for fabrication of 

hydrophobic and superhydrophobic surfaces [18,19].  

Superhydrophobic surfaces are also evident to provide corrosion resistance improvement 

to different types of metallic substrates. Boinovich et al. [20] reported that nanosecond laser 

treatment of the Al surfaces induces hydrophobicity, which in turn enhances resistivity to pitting 

corrosion in sodium chloride solutions. Yuan et al. [18] similarly analyzed the corrosion 

characteristics of fluoropolymer films on copper substrates in NaCl medium. It was noted that 

polymeric films due to the chelating action and formation of insoluble diffusion barriers could 

protect the substrates from corrosion [19], resulting in 12 times lower corrosion current density for 

the coated samples than that of the base metal after 21 days of exposure in NaCl corrosive 

environment [19]. 
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Corrosion resistance evaluation of superhydrophobic stainless steel surfaces has also been 

investigated in some studies. Latthe et al. [21] studied the corrosion resistance of a chemically 

etched super hydrophobic 430 stainless steel substrate immersed in 5 wt.% NaCl aqueous solution 

and described the resultant superhydrophobic surface as a “physical barrier between the metal and 

the environment.” In a similar experiment, Park et al. [22] used 304 stainless steel substrate 

immersed in 3.5 wt.% NaCl aqueous solution to compare superhydrophobic and superhydrophilic 

variations of the substrate and found that the superhydrophobic surfaces showed a higher resistance 

to corrosion. A different approach, based on the application of three different superhydrophobic 

membranes on 080M46 steel, was taken by Wang et al. [23] to fabricate hydrophobic steel 

surfaces. Similarly, they reported that the corrosion resistivity of all three membranes was far 

superior to the base metal [23]. Trdan et al. [24] also reported a direct relation between wettability 

and corrosion behavior by showing the effect of the transition from superhydrophilicity to 

superhydrophobicity on corrosion behavior of AISI 316L stainless steel using nanosecond laser 

treatment. All the above studies indicate that there might be correlations between corrosion 

resistance and the wettability of metallic surfaces. 

As reported by Mohamed et al. [2], in all previous studies the mechanism behind the 

corrosion resistance improvement of the metallic surfaces due to their hydrophobic and 

superhydrophobic properties was claimed to be the retention of the air pocket layer on the surface 

of the metal, acting as a barrier and preventing the corrosion process from taking place. Air 

trapping on the surface can enhance the hydrophobicity since air is an extremely hydrophobic 

compound with a contact angle of 180° [25]. 

Although a few studies have been carried out on the correlation between hydrophobicity 

and corrosion resistance of stainless steel alloys [6,7,26], 17-4 PH stainless steel with broad 
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applications in marine, chemical, petrochemical, food processing, and aerospace industries has 

never been the focus of such studies. Furthermore, in most of the past studies, highly expensive 

ultrashort pulse lasers, also known as ultrafast lasers, such as femtosecond and picosecond lasers, 

have been utilized to fabricate hydrophobic surfaces with prolonged processing time (scanning 

speed of 1 mm/s) [23]. Very limited information is available on laser fabrication of hydrophobic 

surfaces and its effectiveness using nanosecond fiber lasers with fast processing time [23]. These 

lasers would be highly beneficial for surface texturing of materials for real industrial applications 

and should be considered as a cost-effective alternative to expensive ultrashort lasers. Therefore, 

the purpose of this study is to evaluate the effectiveness of hydrophobic 17-4 PH stainless steel 

surfaces fabricated through nanosecond fiber laser surface texturing combined with applying a 

hydrophobic coating and to analyze its impact on the microstructure and corrosion resistance of 

the surface. 

2. Materials and Methods  

2.1. Material 

Martensitic type 17-4 PH stainless steel (SS 630-H1025) with a size of 20 × 10 × 3 mm was used 

as the base metal coupons for laser surface texturing. The H1025 heat treatment designation 

indicates that the alloy has been precipitation hardened at 55115°C for 4 hrs, followed by air 

cooling. The measured chemical composition of the base metal before laser treatment is given in 

the Table 1.  

Table A3. 1. The measured chemical composition of 17-4 PH stainless steel before laser 

treatment (all in wt. %) 

Elements Cr Ni Cu Si Mn  Fe 

17-4 PH 16.70±0.05 3.70±0.06 2.91±0.07 0.26±0.08 0.46±0.01 Bal. 
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2.2. Preparation of Hydrophobic Surfaces 

To prepare the hydrophobic surfaces, a combination of laser surface texturing followed by 

applying a 2-4 nm thick optically clear hydrophobic dip coating, to roughen the surface and lower 

the surface energy, respectively, were used. The nanoscale thickness of the used hydrophobic 

coating is reported by the supplier [27]. The surface of the base metal was subjected to mechanical 

grinding using 600 grit SiC abrasive paper prior to the surface texturing. For the surface texturing, 

a BMF20A/B fiber laser machine with the wavelength of 1060 nm, laser power of 12 W, the 

frequency of 20 kHz, scanning speed of 600 mm/s, and the pulse width of 60 ns on a substrate 

surface of 20 × 10 mm in an argon atmosphere was employed. The chemical composition of the 

hydrophobic coating was 50-52% Ethanol, mixture of 42-46% 2-(difluoromethoxymethyl)-

1,1,1,2,3,3,3-heptafluoropropane and 4-methoxy-1,1,1,2,2,3,3,4,4-nona-fluorobutan, 2-3% 2 

propanol, and 2-3% Methanol (Metal Repellency Treatment from Aculon Performance Surface 

Solutions [27]). To remove oil and other contaminants from the specimens’ surfaces, the stainless 

steel samples were first cleaned ultrasonically in acetone. After this procedure, three variations of 

hydrophobic surfaces were produced. The first group of samples was simply coated with the 

hydrophobic coating (referred to as “coated base”), while the other two variations were textured 

with the laser first using two different topographical designs as shown in Figure A3.1 and then 

were coated using the hydrophobic coating (referred to as “coated channeled” and “coated varied 

channeled”). 
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Figure A3. 1. Desired designs of (a) the channeled structure, and (b) the varied channeled 

structure. 

2.3. Characterization 

The surface structures, morphologies, and microstructures of the prepared samples were studied 

using an optical microscope (Nikon Eclipse 50i) and a scanning electron microscope (SEM) (FEI 

MLA 650F) equipped with high throughput Bruker energy dispersive X-ray (EDX) analytical 

system, which was used to investigate compositional inhomogeneity and possible alloying 

elements loss from the regions that encounter superficial melting followed by solidification during 

the laser surface texturing process. To prepare the samples for microscopic analysis, the samples 

were mounted in an epoxy resin followed by standard grinding and polishing sample preparation 

procedures for stainless steels. The polished specimens were then etched using Nital 5% reagent 

(5 vol. % HNO3, and 95 vol. % Methanol) to reveal the microstructure. 

2.4. Wettability Measurements 

Contact angle measurements were performed using an optical-based contact angle measuring 

system (OCA 15) consisting of an adjustable sample support unit, a light source, a dosing syringe, 

camera, and lens under the clean experimental condition to eliminate the contamination of the 

surfaces via air-born organics. The system’s software captures and analyzes the drop shape and 
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measures the static contact angle. The sample was laid flat on a smooth and clean surface, in line 

with the camera at a distance of approximately 10 cm. The camera’s focus and light source were 

adjusted for optimal clarity and brightness of images. A water droplet of 10 μl was dosed using 

the software at a dispense rate of 2 μl/s. The given diameter of the sessile drop is about 1.4 mm. 

All analyses were carried out at room temperature. 

2.5. Electrochemical Measurements 

Electrochemical corrosion measurements were performed on the treated surfaces using an IVIUM 

CompactStat™ Potentiostat controlled by the software from the same manufacturer. Using a 

conventional three-electrode set-up, the samples were exposed to aerated 3.5 wt. % NaCl solution 

to mimic the seawater environment at the temperature of 25 °C. A graphite rod was used as the 

counter electrode (CE), and saturated silver/silver chloride (Ag/AgCl) was used as the reference 

electrode (RE). The samples were connected as an electrode using copper wire and conductive 

tape. The exposed area of the base metal and coated base metal samples was 2 cm2, and for 

channeled and varied channeled samples was 5.96 cm2 and 4.97 cm2, respectively. The rest of the 

sample was covered with polyester resin to isolate the surfaces not required for testing. 

Potentiodynamic polarization analysis was conducted by scanning from −0.3 V to +0.3 V about 

the open circuit potential (OCP) with a scanning rate of 0.125 mV/s. The repeatability of the 

corrosion test results was measured by testing at least three samples. 
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3. Results 

3.1. Surface Morphology 

The desired surface topographies for this study have been shown in Figure A3.1, while the SEM 

images from the surfaces of the actual fabricated samples from side and top views are presented 

in Figure A3.2. The tips are thinner in Figures A3.2a and A3.2c due to the ablation of material by 

the laser. The shorter tips in Figure A3.2b, and 2d show the effect of prolonged laser exposure and 

how the top has flattened due to melting and evaporation of material. There is also evidence of 

superficial melting followed by solidification (indicated in Figure A3.2b) of some of the material 

on the structured surface. 

 

Figure A3. 2/ SEM images of (a) the channeled structure-side view, (b) the varied channeled 

structure- side view, (c) the channeled structure-top view, and (d) the varied channeled structure-

top view. 
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3.2. Microstructure 

Figure A3.3 demonstrates the optical and SEM micrographs of the 17-4 PH stainless steel materials 

used in this study composed of martensite and δ-ferrite phases. The parallel groups of lath 

martensite as the matrix and elongated δ-ferrite phase in different directions along the primary 

austenite grain boundaries form the microstructure of the base metal. 

 

Figure A3. 3. (a) Optical microscope image and (b) SEM micrograph of the 17-4 PH stainless 

steel base material. 

As shown in Figure A3.3, the ferrite phase encompasses very fine precipitates, which were 

detected exclusively on the ferrite phase. Although no evidence of secondary phase formation from 

the martensitic phase was detected under SEM, the applied H1025 heat treatment should have 

triggered formation of coherent nano-precipitates, i.e. Cu-rich precipitates (CRPs), from the 

martensite phase [28,29].  

 The EDX concentration maps of the ferrite phases in Figure A3. 4 indicate a higher 

concentration of Cr in spherical precipitates within the δ-ferrite region [30]. Park et al. [31] 

reported that Cr-enriched phases deteriorate the corrosion resistivity of the alloy. As shown by the 

white arrows in the Cu map concentration, a few irregulars shaped Cu-enriched particles (CRPs) 

within the ferrite phase also present. In comparison, the martensite phase showed uniform 
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concentration of Cr and Cu elements. Table 2 shows EDX compositional analysis results of the 

major micro-constituents of the sample, including both ferrite and martensite phases. 

 

 

Figure A3. 4. EDX concentration maps of the δ-ferrite phase. 

Table A3. 2. The measured chemical composition of 17-4 PH stainless steel micro-constituents 

(all in wt. %) 

Phase Cr Ni Cu Si Mn Fe 

δ-Ferrite 22.3±0.2 1.6±0.1 1.2±0.2 0.4±0.1 0.1±0.1 Bal. 

Martesite 16.5±0.1 3.7±0.1 2.9±0.1 0.3±0.1 0.1±0.9 Bal. 

3.3. Wetting Behavior 

The static contact angles for the fabricated surfaces are shown in Figure A3.5. As expected, the 

base metal surface has the lowest contact angle (see Figure A3.5a). The coated base sample shows 
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an increase of 48° contact angle compared to the base metal indicating a hydrophobic surface. The 

channeled and varied channeled structures (Figures A3.5c and A3.5e) show higher hydrophobicity 

(~ 4° and 9° increase, respectively, from the coated base sample) primarily due to the surface 

micro-roughness that was fabricated on the surface using the laser texturing process. After 

applying the hydrophobic coating on the textured surfaces, the channeled and varied channeled 

surfaces exhibited more hydrophobic behavior with contact angles of 138°±5° and 145°±4°, 

respectively. Therefore, the combined effects of surface micro-roughness and the coating have 

resulted in a hydrophobic surface with contact angles just below the required contact angle for 

superhydrophobicity (150°).  

 

Figure A3. 5. Contact angle measurements of the (a) base without coating, (b) coated base, (c) 

channeled without coating, (d) coated channeled, (e) varied channeled without coating, (f) coated 

varied channeled. 

As evidenced by Figure A3.5, the varied channeled sample with or without coating shows a higher 

contact angle than its channeled counterpart. To fabricate the varied channeled samples, the laser 

beam was directly interacting with the surface of the channels to adjust the height of the channels 

relative to each other. This has resulted in the superficial melting of the tips followed by their rapid 
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cooling and solidification leading to the formation of solidified regions on the tips of the channels 

(shown in Figures A3.2d and A3.6). These regions provide multimodal roughness on the fabricated 

surface, contributing to further improvement of the hydrophobicity. Similar phenomena were 

reported in previous studies [23]. When additional smaller sized surface features are added to the 

existing surface structure, the water repellency and the contact angle can be increased [23]. 

However, in the channeled sample, channels’ tips do not experience melting and solidification, 

and less additional surface features were generated, resulting in a lower contact angle than the 

varied channeled sample. 

 

Figure A3. 6. Surface features of the sample with varied channeled morphology. 

 

In the context of surface wettability, there are two models capable of describing the correlation 

between surface roughness and hydrophobicity. The first one proposed by Wenzel [32] assumes 

that liquid droplet is in contact with the absolute area of the rough surface by, 

cos θ = r cos θ0                                    (1) 
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where θ shows the contact angle on the rough surface, θ0 represents the equilibrium contact angle 

on an ideal smooth surface, and r defines the non-dimensional surface roughness ratio, also known 

as topography factor [32] When this model is applied to rough surfaces, it predicts an increase of 

the apparent contact angle (θ) for hydrophobic surfaces and decrease of the contact angle for 

hydrophilic surfaces by increasing the surface roughness (r-value). Because the laser surface 

texturing in this study changed the wettability of the surface from a hydrophilic surface (θ = 73°±3) 

to a hydrophobic surface (θ > 90°), the Wenzel model is not expected to be able to describe the 

behavior of the fabricated laser textured surfaces. 

The other model is Cassie-Baxter model [33], in which it is assumed that droplets do not 

wet the rough surfaces completely due to the existing air packs that are trapped within the 

interstices of the rough surface. The apparent contact angle (θr
C) with this model is calculated by 

[26]: 

cos θr
C = f( cos θe + 1) − 1 (2) 

where f is the fraction of the surface in contact with the liquid and θe is the intrinsic contact angle 

for a smooth surface. Applying this model to both hydrophobic and hydrophilic surfaces confirms 

that apparent contact angle on rough surfaces is always higher than that of the smooth surfaces 

[34]. Therefore, the measured contact angles in this study are expected to fit the Cassie-Baxter 

model than the Wenzel model. 

3.4. Corrosion Behavior 

Figure A3.7 shows the polarization characteristics (Tafel plots) of all samples comparing the base 

metal with the hydrophobic surface variants. As a general trend, better corrosion resistance is 
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shown by an increase in corrosion potential and a decrease in corrosion current density. Hence, the 

preliminary observation of the graph shows that the base metal and coated base metal show higher 

corrosion resistance than the more hydrophobic textured samples. 

 

Figure A3. 7. Tafel plot comparison between (a) base metal, (b) coated base, (c) coated 

channeled, and (d) coated varied channeled. 

From the graph, each plot can be considered to calculate and quantify the corrosion rate. The 

anodic slope (βA) and the cathodic slope (βC) can thus be obtained for each plot. The intersection 

between the two slopes indicates the corrosion current (ICORR) and the corrosion potential (ECORR) 

versus the reference electrode. However, this can also be calculated (in SI units) from the following 

formula: 

ICORR = (βA βC)/(2.3 × Rp × (βA + βC)) (3) 

where Rp is the polarization resistance (in ohms.cm-2) measured by the potentiostat software. The 

corrosion current can then be used to calculate the corrosion rate (in mm/year) from the following 

formula: 
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Corrosion Rate = (3.27 × 103 × ICORR. × E. W. )/(A × ρ) (4) 

where E.W. stands for the equivalent weight of the alloy (in grams), A is the surface area (in cm2) 

exposed to the electrolyte, and ρ is the density of the sample (in g/cm3). 

Table 3 shows the corrosion potential, corrosion current, corrosion current density, and the 

corrosion rate of each of the samples calculated from the formulas above. The corrosion rate of the 

base metal shows an evident decrease from 0.012 mm/year to 0.005 mm/year with applying the 

hydrophobic coating, representing an almost 50% increase in its uniform corrosion resistance, 

which is ascribed to the protective nature of the coating on the substrate. On the other hand, the 

corrosion rate of the coated channeled and coated varied channeled was increased to 0.032 

mm/year and 0.043 mm/year, respectively, representing a loss of corrosion resistance by a factor 

of ~ 3 to 4, even though the coated textured surfaces were more hydrophobic, as evidenced by 

showing higher contact angles (Figure A3.5). As shown in Table 3, the corrosion current density 

values (ICORR) of the hydrophobic laser textured surfaces follow the same trend as the corrosion 

rate data since ICORR is directly related to the corrosion rate (see equation 4). However, the 

corrosion potential values (ECORR), correlating to the thermodynamic tendency for corrosion, 

show a pronounced negative shift to less noble values for the laser textured surfaces as compared 

to those of the base metal representing a higher corrosion tendency. Therefore, coated laser 

textured surfaces displayed both an increased corrosion rate and corrosion tendency, meaning 

water repellency unexpectedly was not found effective towards protection of the surface against 

uniform corrosion attack in this study. 
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Table A3. 3. Results obtained and calculated from the Tafel plots shown in Figure A3.7. 

Surface 

type 

Corrosion 

potential 

(VAg/AgCl) 

Corrosion 

current 

(A) 

Corrosion 

current 

density 

(A.cm-2) 

Corrosion 

Rate 

(mm/y) 

Base metal -0.136 2.070×10-6 1.035×10-6 0.012 

Coated base 

metal 
-0.110 8.036×10-7 4.018×10-7 0.005 

Coated 

channeled 
-0.209 1.657×10-5 2.776×10-6 0.032 

Coated 

varied 

channeled 

-0.205 1.878×10-5 3.799×10-6 0.043 

 

Contact angle measurements after the corrosion tests were also performed to check if the coating 

was compromised during the corrosion test. Figure A3.8 shows that although surfaces are still 

hydrophobic, there is a slight decrease in the contact angle values, which is more pronounced for 

the coated base metal. After fully immersion of the samples in the corrosive electrolyte and 

performing the potentiodynamic polarization testing, the hydrophobic coating might have been 

locally peeled off from the surface resulting in a decrease in the contact angle.  
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Figure A3. 8. Contact angle (in degrees) comparison before and after the potentiodynamic 

polarization tests. 

 

As mentioned above, hydrophobicity and the resultant corrosion resistivity enhancement 

are primarily controlled by two main factors, i.e., surface morphology and surface energy, and the 

inferior is controlled by surface chemical composition [2]. During the laser surface texturing, the 

interaction of the laser with the surface and the resultant high temperature on the surface melts and 

ablates materials, which can also cause undesirable volatile alloying elements loss from the 

superficial melted regions, and consequently, the metallurgical properties of the surface including 

its electrochemical resistance can change. To investigate the impact of the laser surface texturing 

on chemical composition inhomogeneity and possible loss of volatile elements from the melted 

regions (Figure A3.9a), SEM-EDX composition line scan analysis of the melted regions was 

performed. As Figure A3.9b shows, there is no elemental deficiency in the melted region adjacent 
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to the surface relative to the base metal, especially Chromium and Nickel elements, which are 

primarily responsible for corrosion resistivity of the alloy [35]. This confirms that the performed 

laser surface texturing had no detrimental effect on the chemical composition of the material after 

melting followed by solidification, which will be in contact with the corrosive medium. Therefore, 

the reduction of corrosion resistivity of the laser textured specimens is not due to the elemental 

loss from the superficial melted regions or any change in the substrate’s chemical composition.  

As shown in Figure A3.9b, two peaks were detected across the Cr line scan, in the same 

positions as another two valleys across the Ni and Cu lines, in which their positions correspond to 

the δ-ferrite phase containing higher Cr content and lower concentration of Ni and Cu relative to 

the martensitic matrix. Delta ferrite phase has been shown to have a higher solubility for Cr, since 

Cr is a ferrite stabilizing element, and lower solid solubility for Ni and Cu elements [36]. 
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Figure A3. 9. (a) SEM image taken from one surface feature of the sample with varied channeled 

morphology showing the position of the EDX-line scan using a dashed-line in the enclosed area, 

and (b) the corresponding EDX composition line scans indicating scans of Cr, Ni, Cu, Si, and 

Mg. 

The other controlling factor to be investigated is the surface morphology. The mechanism behind 

the improved corrosion resistivity of superhydrophobic stainless steels surfaces in previous studies 

[37] has been reported to be the trapped air (air-packs) within the micro/nano-structures that 

hinders the solution penetration into the surface (as proposed by the Cassie-Baxter’s model [33]), 

resulting in a reduced contact area between the surface and the corrosive medium, leading to the 

improved corrosion resistivity of the surface. Therefore, for the case of superhydrophobic surfaces, 

the surface features are small enough to retain the trapped air on the surface even after full 

immersion of the sample in the corrosive medium during electrochemical testing. This requires 

careful optimization of the size of grooves and surface protuberances. Luo et al. [38] reported that 

although having microfeatures can generate hydrophobic properties, superhydrophobicity can be 
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achieved only if the feature’s ratio is optimum. They noted that if the width of features decreases 

from 250 µm to 10 µm, the contact angle will be increased from 60° to 129° [38]. 

The presented results in this study demonstrated that when the laser textured stainless steel 

surface is only hydrophobic, the surface features are not small enough to maintain the protective 

air-packs between the surface and the solution. Therefore, all the trapped air might have escaped 

from the surface as soon as the surface is immersed in the corrosive medium. Consequently, all 

the surface micro-grooves will act as a channel for microfluidic, resulting in an increased area of 

solid-liquid interface and enhanced corrosion rate. Similar corrosion resistance degradation was 

reported by Trdan et al. [24] for the laser surface textured 316L stainless steel when the surface is 

not superhydrophobic. They observed a significant directional corrosion attack propagated inside 

the channels [24]. Contrarily, this effect is entirely annihilated, when the surface becomes super 

hydrophobic [24]. 

Although the applied hydrophobic coating contributed to water-repelling property of the 

surface and a slight improvement in corrosion performance of the base metal, the size of the 

nanosecond laser fabricated micro-grooves was found to be the primary factor in dictating 

corrosion performance of the hydrophobic surfaces. Therefore, nanosecond fiber laser surface 

texturing will be an effective replacement for slow and highly expensive ultrashort laser texturing, 

only if the size of micro-groove features is carefully optimized, resulting in superhydrophobic 

property, which allows the air-packs to remain on the surface inside the hierarchical structure in 

fully immersed condition. Otherwise, the resultant corrosion loss compromises the effectiveness 

of this technique. 
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4. Conclusions  

Hydrophobic 17-4 PH stainless steel surfaces were successfully fabricated using a fast and cost-

effective nanosecond laser surface texturing technique followed by applying a hydrophobic 

coating to the surfaces. This processing technique facilitates fabrication of large-scale hydrophobic 

metallic surfaces proper for various industrial applications. The samples showed hydrophobic 

properties directly after the fabrication process. The obtained hydrophobic property can be 

ascribed to the combined effects of the laser-induced roughness and low surface energy resulted 

from the coating. The coating could only increase the steady state contact angle of water on the 

non-textured base metal up to 121°; however, by laser texturing of the surface, the contact angle 

was increased up to 145° without undesirable loss of volatile elements from the melted zones.  

The resultant hydrophobicity did not render the desired corrosion protection capability to 

the stainless steel substrate. The lowest corrosion potential with the highest corrosion current 

density leading to the highest corrosion rate was measured on the laser textured hydrophobic 

samples. Therefore, the water repelling property of the 17-4 PH stainless steel was not found 

effective in preventing the aggressive chloride ions from approaching the substrate. This can be 

attributed to the large size of the fabricated micro-grooves on the surface, meaning the surface 

features are not capable of retaining the entrapped air inside the hierarchical structure in fully 

immersed condition in the corrosive medium, resulting in an increased contact area between water 

and the solid substrate and degradation of corrosion property. Nonetheless, the hydrophobicity of 

the fabricated samples was maintained even after electrochemical corrosion testing. Therefore, 

further optimization of the size of the micro-grooves is required to create a superhydrophobic 

surface with enhanced corrosion property. 
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