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Abstract

The analysis of past developments of processes through dynamic covariates is useful

to understand the present and future of processes generating recurrent events. In this

study, we consider two essential features of recurrent event processes through dynamic

models. These features are related to monotonic trends and clustering of recurrent

events, and frequently seen in medical studies. We discuss the estimation of these

features through dynamic models for event counts. We also focus on the settings in

which unexplained excess heterogeneity is present in the data. Furthermore, we show

that the violation of the strong assumption of independent gap times may introduce

substantial bias in the estimation of these features with models for event counts. To

address these issues, we apply a copula-based estimation method for the gap time

models. Our approach does not rely on the strong independent gap time assumption,

and provides a valid estimation of model parameters. We illustrate the methods

developed in this study with data on repeated asthma attacks in children. Finally, we

propose some goodness-of-fit procedures as future research.

ii



Lay summary

In many studies, subjects may experience an event of interest more than once over

their observation periods. For example, individuals may experience repeated asthma

attacks, older adults living in nursing homes, long-term care facilities may have repeat

emergency department transfers or individuals may have more than one heart attack.

Important characteristics of such recurrent events include the expected number of

events over a time period and the rate of occurrence of events. These characteristics

are defined as marginal characteristics in a sense that they ignore the effects of past

event occurrences in a process. Therefore, models based on these characteristics are

not adequate if there is an interest in understanding effects of the past of a process.

In this study, we explore two frequently seen features of the recurrent event process.

These features are related to trends and clustering of events over time. We consider

modelling them under two approaches. In the first approach, we use the event intensity

function to model event counts. In the second approach, our models based on the

hazard functions for the times between subsequent event occurrences. Our study

shows that these two approaches provide similar results only under specific settings,

and we discuss the advantages and disadvantages of these approaches.
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Chapter 1

Introduction

This chapter consists of four sections. Section 1.1 includes a general introduction

of the topics on which this thesis focuses. In Section 1.2, we provide a motivating

example for the methods developed in this thesis. The data set considered in this

section is analyzed in the remaining chapters of this thesis. We present a literature

review in Section 1.3. In the last section, we outline the goals and scope of this thesis.

1.1 Introduction

Statistical methods and models for the analysis of complex event histories are needed

in many fields of study including economics, insurance, public health, medicine,

engineering, reliability and sociology (Cox and Lewis, 1966; Allison, 1984; Cook and

Lawless, 2007; Aalen et al., 2008; Nelson, 2003). Throughout this thesis, we use the

word “individual” as a generic term to define any object such as human, animal,

electronic item and process unit, subject to experience certain events over its lifetime.

The statistical analysis of event history data is usually based on multi state modeling

(Cook and Lawless, 2018). Such an analysis allows us to understand and make

inferences on the behaviour of processes, each staying and moving among a finite

number of states over time or space. Survival analysis is a well-known example of

event history analysis, where the processes or individuals are allowed to move from an

alive state to a dead state (Aalen et al., 2008). Survival analysis contains statistical

models and methods for analyzing data describing lifetimes, waiting times, or more
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generally times to the occurrence of a specified event, which can be death or failure

of an individual in a study (Cox and Oakes, 1984; Lawless, 2003). These individuals

could be humans or animals subjected to some treatment, as well as mechanical or

electronic units. Such data, called survival data, can arise in various scientific fields

including medicine, engineering, and demography.

Typically, the event of interest in an event history study is not experienced by a

proportion of individuals in the sample during the follow-up period. The duration

of event occurrence is said to be right-censored for those individuals, which leads to

right-censored data. Such incomplete observations due to right-censoring must be

addressed in the analysis of event history data. Also, there is usually an interest

in the effects of explanatory variables on the timing of events or counts of events

over a given time period. These variables may change their values throughout the

follow-up of individuals. Such variables are called time-varying covariates. The

usual statistical analysis of event history data are based on the assumption that the

complete information on time-varying or time-fixed covariates are known. However,

in applications, an event process can be influenced by its past developments. In

literature, this phenomenon is referred to as the dynamic behaviour of an event process

(see e.g. Aalen et al., 2008). As discussed throughout this thesis, it is a challenging but

an important characteristic of modeling in the domain of the event history analysis.

Another challenge with the analysis of event history data arises when individuals do

not share the same baseline characteristics. In other words, they can be heterogeneous

with respect to some characteristics. If there is excess heterogeneity present in the

data, which cannot be explained with the available covariates, extended recurrent

event models should be used to accommodate it. Such a situation makes inference

in event history settings even more complicated when dynamic characteristics of

processes are of interest because the dynamic characteristic may be confounded with

the heterogeneity in some settings.

In this thesis, we focus on recurrent event processes, where a well defined event may

occur more than once over a period of time. Event occurrence time can be considered

as a time point, where the process moves from its current state to another state. Such

time points are sometimes called time epochs (Feller, 1968). A recurrent process may

depend on its history. Many models for recurrent events have been introduced and

studied in the literature (e.g., Cox and Lewis, 1966; Cox and Isham, 1980; Daley and

Vere-Jones, 2003, 2007). Cook and Lawless (2007) give a textbook length discussion
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of the statistical analysis of recurrent events. In some studies, there might be an

interest only in the time to the first event occurrences in recurrent event processes.

In this case, survival analysis techniques may be used to analyze time to first event

occurrences. As discussed by Cox and Lewis (1966) and Cook and Lawless (2007), in

many studies the purposes of analyzing recurrent event data include understanding

and describing individual event processes, identifying and characterizing variations

across a population of processes, comparing groups of processes, and estimating the

effects of fixed and time-varying covariates and treatments on event occurrences.

Two fundamental features of recurrent event processes are time trends and

clustering of events. There are various definitions of a time trend. For example,

a time trend in a recurrent event process may be defined as a systematic change

in the rate of event occurrences of a process over time. It can be either monotonic

or non-monotonic. Monotonic trends are common in many applications and widely

discussed in the literature. In recurrent event processes, trends may depend on

calendar time and/or on the number of previous events. Modeling and the analysis

of trends due to the number of previous events are crucial in many medical and

reliability studies involving recurrent events. For example, inclusion of the number

of previous events as a covariate in a process could be more informative than the

calendar time (age) trend to predict an individual’s future medical events, such as

repeated hospitalizations, heart attacks and asthma attacks.

Clustering of events over time in a recurrent event process refers to a phenomenon

when the number of event occurrences has sudden temporary hikes in short time

intervals during the follow-up of process. In such settings, patterns of event clusters

are observed for a given process. Carryover effects are defined as a particular type of

event clustering feature, in which the occurrence of a condition on the process itself

or an external condition causes a temporary increase in the number of events in a

recurrent event process. The distinction between carryover effects due to external

conditions and non-monotonic trends such as sinusoidal trends may become blurry in

the sense that such trends may also cause clustering of events over time. However,

patterns resulting from non-monotonic trends are usually more regular comparing

with those resulting from external carryover effects.

In this thesis, we develop novel models and methods to simultaneously estimate

carryover effects and monotonic trends in recurrent event processes. In the next
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section, we introduce data types and a data set used in this thesis to illustrate our

models and methods.

1.2 Data Types and Motivating Examples

The data sets in recurrent event studies usually include times of occurrences of a

well defined event or events in a continuum. The methods for the analysis of such

data sets are based on either event counts or the elapsed times between successive

events called gap times. Some studies include a single process or a relatively small

number of processes, but processes included may generate a large number of events

over their follow-up periods. The goal of such studies is usually to describe the

patterns appearing in the data obtained from each process. The heterogeneity across

processes is usually of little concern because each process generates data large enough

to accommodate heterogeneity. Examples include data from stoppages in assembly

lines, software fault detection and removal, and repeated incidences of injuries in

manufacturing plants. On the other hand, in some studies, data are obtained from

a large number of processes, each generating relatively small number of recurrent

events. This type of processes commonly appears in medical or epidemiology studies,

where a large number of individuals are usually included, and each may experience

only a few clinical events repeatedly throughout their follow-up. The occurrence

of asthma attacks in respiratory trials, epileptic seizures in neurology studies, and

fractures in osteoporosis studies are notable examples of such cases. Throughout this

thesis, we focus on studies in which a large number of individuals are included and

each experiences a small number of events.

1.2.1 Simulated Data

For the sake of interpretation of the features of trends and clustering, we present a

set of simulated data plotted in Figure 1.1 under different scenarios. The simulation

procedure is explained in Section 2.5. The horizontal lines in the plots given in

Figure 1.1 represent the individual processes and the cross symbols on the lines

represent the event occurrences.
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Figure 1.1: Dot plots of simulated data sets without any dynamic features (a), with
clustering (b), with an increasing trend (c) and with both clustering and increasing
trend (d).

The plot (a) in Figure 1.1 indicates that the repeated events do not show any

clustering of events or any systematic pattern within the processes. Clustering of

events can be observed in the plots (b) and (d) given in Figure 1.1 as many events

occur soon after the previous one. Plots (c) and (d) in Figure 1.1 reveal that the

gap times between successive events gradually decrease as time increases. A recurrent

event model with a constant rate of events over time is suitable only for settings, in

which the data do not indicates event clustering and trends. For other settings, more

elaborate models are required.

We next introduce a data set from an asthma study in children. This data has

been used in the thesis to illustrate the methods developed in the later chapters.
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Table 1.1: Frequencies of observed and censored gap times in each control and
treatment groups in asthma prevention trial data.

Gap-time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Control
observed 119 82 62 45 37 28 22 18 11 11 8 7 5 3 2 1
censored 0 37 19 17 8 8 6 4 6 0 3 1 2 1 0 0

Treatment
observed 113 63 38 27 20 17 15 12 9 8 3 2 2 1 1 1
censored 0 50 25 8 6 2 2 3 2 1 4 1 0 1 0 0

1.2.2 Asthma Prevention Trial

Asthma is a chronic inflammatory disease of the airways. It causes consecutive

episodes of wheezing, chest tightness or shortness of breath, commonly referred to

as asthma attacks. The symptoms can be mild to severe and intermittent to chronic.

Asthma is the most common chronic disease in children. Duchateau et al. (2003)

present a dataset from an asthma prevention trial in infants. They considered a

population with a high risk of asthma and focused on infants only. They sampled

232 infants with six months of age who had not yet experienced any asthma attacks.

Each infant was allocated to either a placebo control group or an active drug treatment

group and followed up for approximately 18 months. The treatment group included

113 infants, and the control group included 119 infants.

The primary purpose of the study was to assess the effect of a drug treatment

on the occurrence of asthma attacks. Besides, the evolution of the asthma recurrent

event rate over time, as well as how the presence of an event influences the event rate

were also of interest. Since an asthma attack can be longer than one day and a patient

is not considered at risk of having another asthma attack over that time period, the

timescale of the study should be arranged accordingly.

In Table 1.1, the observed and censored number of gap times in each control and

treatment group in asthma prevention trial data are given. There is one individual in

the control group with 38 asthma attacks and one individual in the treatment group

with 20 asthma attacks. For the illustrative purpose, we plotted subsets of asthma

data for each groups in Figure 1.2.
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Figure 1.2: Dot plots of randomly selected subsets of asthma data for control group (a)
and treatment group (b). The “×” symbol indicates the event time and the “o” symbol
indicates the censoring time.

1.3 Literature Review

Statistical analysis of recurrent event data has started by analyzing data generated

by single processes or populations. Early examples include occurrence of earthquakes,

the emission of particles from a radioactive source, occurrence of accidents and cases

of a disease in a human population. The event occurrences in these examples were

considered as point processes. There are excellent books on this topic providing

extensive probabilistic extensions and many examples of applications (see, for

example, Cox and Lewis, 1966; Cox and Isham, 1980; Rigdon and Basu, 2000; Daley

and Vere-Jones, 2003, 2007). Later, the modeling and analysis of recurrent events

for various processes or systems have extensively developed (Andersen et al., 1993;

Lawless, 1995; Cook and Lawless, 2007; Amorim and Cai, 2015). As discussed in

Section 1.1, since unexplained heterogeneity across individual processes are common

in studies, methods accommodating such heterogeneity have become important. Such

developments were applied to medical data sets (Byar, 1980; Gail et al., 1980; Prentice

et al., 1981), social science (Allison, 1984; Blossfeld and Rohwer, 2001), and product

or equipment reliability (Nelson, 1988; Lawless et al., 1992).
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Several regression models have been proposed to estimate the effects of covariates

on the risk of recurrent events. The Cox proportional hazards model (Cox, 1972a)

is the most popular approach for analyzing survival data, which estimates the

effects of the factors that influence the rate of a particular event happening. It

is a semiparametric multiplicative model, where a unit increment in a factor is

multiplicative to the event rate. The Cox proportional hazards model has been

extended in several ways to adapt the recurrent event settings (Andersen and Gill,

1982; Wei et al., 1989). The Cox-type proportional rate or intensity models that

presume multiplicative covariate effects on the baseline rate or intensity function of

recurrent event processes are also extensively studied in the literature (Prentice et al.,

1981; Pepe and Cai, 1993; Lawless and Nadeau, 1995; Lin et al., 2000). Lin et al.

(1998) studied an accelerated mean model, where covariates alter the timescale of the

cumulative mean function. The accelerated rate or intensity model that formulates

covariate effects to change the timescale directly on the baseline rate or intensity

function was also studied by Chang and Wang (1999) and Ghosh (2004). Sun and

Su (2008) proposed a general class of regression models for recurrent event processes

that covers most of the above mentioned models.

Another way of analyzing recurrent events is through the gap times between

successive events. Consider a recurrent event process where the process resets as

in the initial stage of it immediately after the occurrence of each event and each gap

time is identically distributed. Such processes are referred to as renewal processes.

Methods for the analysis of renewal processes are mostly based on the methods of

survival analysis, which were discussed broadly by Kalbfleisch and Prentice (2002)

and Lawless (2003). Chang and Wang (1999) and Therneau and Grambsch (2000)

implemented some models of gap time analyses using Cox models.

There has been a recent interest in the analysis of recurrent events through

dynamic models (Peña and Hollander, 2004; Peña, 2006; Aalen et al., 2008; Cook

and Lawless, 2013). Dynamic models typically include dynamic covariates, which

are basically time-dependent internal covariates (Kalbfleisch and Prentice, 2002) such

as the elapsed time since last event or the number of previous events in a process.

Following the motivation of Aalen et al. (2008), we use the term dynamic to emphasize

their role as explicitly picking up the past developments in processes.

The assumption of independent waiting (gap) times within individuals is a strong
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one, and should be carefully checked in all studies including recurrent events (Cook

and Lawless, 2007). The models in Cigsar and Lawless (2012) and Cook and

Lawless (2013) may result in biased estimates in some settings when the independent

gap times assumption is violated. Cox and Lewis (1966) discussed methods for

checking independence when no covariates are present. Another approach to deal with

dependent gap times is to apply a random effects model (Cook and Lawless, 2007;

Golzy and Carter, 2019). However, it does not give plausible results with dynamic

covariates because the random effects may confound with some dynamic features in the

recurrent event processes. We, therefore, apply a copula based estimation method first

proposed by Lawless and Yilmaz (2011) which incorporates the dependency among

gap times within individuals. For more than two gap times, more complicated copula

parameterizations were introduced by Barthel et al. (2018). However, their modelling

approach may result in a large number of nuisance parameters.

1.4 The Goal and Summary of the Thesis

In this thesis, we explore some features of recurrent event processes through dynamic

models. Dynamic models are needed in understanding the recurrent event processes

when the effect of past developments on the present or future evolution of a process

is of interest. The inherent nature of dynamic covariates and their complex relations,

dependent gap times, censoring and heterogeneity make modeling and inference

challenging issues when dynamic covariates are present.

In this study, we discuss the assessment of two important features of recurrent

event processes through dynamic intensity models. These features are monotonic

trends and carryover effects. Trend is a frequently seen feature of recurrent event

processes. There are various definitions of a trend. Broadly speaking, it can be

defined as a systematic variation in the intensity function of a recurrent event process.

In this thesis, we focus on monotonic trends due to the number of previous events in

a process. Modelling such type of trends has mostly been overlooked in the literature.

However, they may summarize valuable prognostic information about event processes,

especially when limited external explanatory information about systematic variations

in the intensity function is available. Carryover effects are defined as transient effects

caused by previous event occurrences or some external conditions experienced by
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event processes. Their presence results in the clustering of events in time or sparsity

of events.

In this study, our primary goal is to discuss simultaneous estimation of these

features with dynamic recurrent event models. We, therefore, consider two modelling

approaches. In the first approach, we carry out the maximum likelihood estimation

method through a parametric class of multiplicative intensity models for event counts.

In the second approach, we consider a gap time modelling approach under the

maximum likelihood estimation method. In this approach, we address the serial

dependency between gap times with copula models so that our approach allows us

to obtain a more detailed understanding of the aforementioned dynamic features.

We also hypothesize that these two approaches do not provide the same conclusions

in most applied settings. Heterogeneity and correlation within gap times among

individuals may affect the estimation of dynamic features in recurrent event data.

Our novel approach can handle these issues simultaneously. We believe that outcome

of this thesis will be instrumental in the analysis of the dynamic features of recurrent

events so that a deep understanding of the event generating mechanisms about

recurrent event processes can be obtained.

The remaining chapters of this thesis can be summarized as follows. We present

a brief theoretical background in Chapter 2. In Chapter 3 and 4, we consider models

for transient carryover effects and number of previous events, discuss the possible

extensions of the model to deal with unexplained heterogeneity. To this end, we

consider count-based models and gap times based models in Chapters 3 and 4,

respectively. We discuss the issue and the solution when the effect of the number

of previous events is included in the model and verify the asymptotic properties of

the estimates of the model parameters. In Chapter 4, we discuss the issues with

count-based models when the serial gap time dependency is present, and show why

we propose a copula based models, and present simulation results on their properties,

and examine the studies on asthma in infants. In many applications, the number of

events is very small per individual, especially in medical data. Therefore, in Chapter 4,

we first focus only on the first two gap times, and in later part of this chapter, we

consider more than two gap times with more complicated dependent structures. Some

goodness-of-fit procedures for checking the model adequacy for the models introduced

in Chapter 4 are introduced in Section 5.2.4 as a future research. Chapter 5 contains

concluding remarks and other future extensions.



Chapter 2

Theoretical Background

In this chapter, we introduce the notation frequently used in this thesis and provide

a background on technical concepts essential in the remaining part of the thesis.

In Section 2.1, we present the terminology and notation. Some basic statistical

approaches to analyze the recurrent event data from a single or multiple identical

processes are given in Section 2.2. The methods to deal with the non-identical

processes are given in Section 2.3. We next introduce copula models to handle the

dependency among random variables in Section 2.4. The simulation algorithms used

to generate independent and dependent data are provided in Section 2.5.

2.1 Terminology and Notation

In this thesis, we are interested in a specific type of random phenomenon, which

produces random occurrences of a well defined event as points over a time axis. In

this context, a point process is defined as a collection of points randomly located on

an underlying mathematical space such as the real line, the Cartesian plane, or on a

more abstract space (Cox and Isham, 1980). We, therefore, adopt models and methods

from the theory of point processes. Points represent times of events. Other than their

locations, they are indistinguishable. In this section, we introduce a standard notation

frequently used in the point processes framework (see e.g. Cox and Isham, 1980; Cook

and Lawless, 2007).

Let T1, T2, . . . , where 0 < T1 < T2 < · · · , represent times of occurrence of an event
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in a point process. The random variable Tk, k = 1, 2, . . . , is called the kth event time,

and its observed value is denoted by tk, k = 1, 2, . . .. We next define the waiting time

or gap time of a point process. Let the random variables W1, W2, . . . be the elapsed

times between successive event occurrences in a point process with the convention

that W1 = T1. The variable Wk, where Wk = Tk − Tk−1, k = 1, 2, . . ., is then called

the kth waiting time or gap time and, by convention, T0 = 0. The number of events

occurring over the time period (s, t], for s < t, is denoted by N(s, t). When the

starting point of observation is zero, i.e. s = 0, the number of events occurring over

(0, t] can be written as N(t) instead of writing as N(0, t). Let {N(t); t ≥ 0} denotes

the corresponding counting process with the condition that N(0) = 0. An extensive

discussion on the construction of a point process on the real line through the counting

measure can be found in Daley and Vere-Jones (2003, Section 3.1). Throughout this

thesis, we assume that the counting process {N(t); t ≥ 0} has the following property:

Pr
{
N(t)−N(t−) > 1

}
= 0, (2.1)

where N(t−) is the number of events occurring over the time period (0, t). That is,

at any time point t, at most one event can occur. The property (2.1) is referred to as

orderliness property of a counting process (Cox and Isham, 1980, Section 2.3).

The mean and rate functions are two important marginal characteristics of a

counting process. The mean function of a counting process is defined as µ(s, t) =

E {N(s, t)}, where 0 ≤ s < t. That is, the mean function µ(s, t) gives the expected

cumulative number of events occurring over the interval (s, t] for any s < t. For

convenience, we define the notation µ(t) as the expected cumulative number of events

occurring over the interval (0, t]; that is, µ(t) = E {N(t)}. Let δN(t) denote the

number of events in a short interval [t, t+δt), where δt denotes a small time increment.

In notation, δN(t) = N((t + δt)−)−N(t−). The rate function of a counting process

is then defined by

ρ(t) = lim
δt→0

Pr {δN(t) = 1}
δt

. (2.2)

Specifically, for a sufficiently small δt, ρ(t) δt ≈ E {δN(t)}. Since the mean function

µ(t) denotes the expected cumulative number of events in (0, t], we have the relation

that µ(t) = E {N(t)} =
∫ t

0
ρ(s)ds and ρ(t) = dµ(t)/dt, assuming the derivative exists.

Another crucial concept in modeling and analysis of recurrent event processes is

the intensity function. The intensity function of a counting process {N(t), t > 0} is
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mathematically defined by

λ[t|H(t)] = lim
δt→0

Pr {δN(t) = 1|H(t)}
δt

, t > 0, (2.3)

where the process history H(t) = {N(s); 0 ≤ s < t} contains the information of past

events in [0, t). The intensity function of a counting process in continuous time

completely specifies an event process (Cook and Lawless, 2007). From now on, we

assume that all counting processes are in continuous time. We note that, in the

limit as δt approaches zero, δN(t) is a 0-1 valued binary random variable. Thus,

E {δN(t)|H(t)} can be approximated by λ[t|H(t)]δt for a small δt.

For an orderly counting process {N(t); t ≥ 0}, the probability that “n events occur

in [t, t+δt)” can be written in terms of the intensity function defined in (2.3) as follows.

Let {N(t), t > 0} be a counting process and λ[t|H(t)] be its intensity function. Then,

for n = 0, 1, 2, . . . ,

Pr {δN(t) = n|H(t)} =





1− λ[t|H(t)]δt+ o(δt), if n = 0,

λ[t|H(t)]δt+ o(δt), if n = 1,

o(δt), otherwise,

(2.4)

where the notation o denotes the order of magnitude in a sense that, g(t) = o(t) means

that g(t)/t → 0 as t → 0. The likelihood function of the outcome “exactly n events

occur at times t1 < t2 < · · · < tn over the observation interval [τ0, τ ]”, conditional on

the history at time τ0 can be derived by using the result (2.4), which gives

(
n∏

j=1

λ[tj|H(tj)]

)
exp

{
−
∫ τ

τ0

λ[u|H(u)]du

}
. (2.5)

The derivation of the likelihood function (2.5) can be found in Andersen et al. (1993,

Section II.7) and Cook and Lawless (2007, Section 2.1).

We can also show from the result (2.4) that the probability of outcome “no event

occurs in (s, t]” conditional on the history H(s+) is given by

exp

{
−
∫ t

s

λ[u|H(u)]du

}
, (2.6)

where H(u) = {H(s+), N(s, u) = 0} and H(s+) is the history of the process up to and
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including time s. It can be derived from (2.6) that the conditional probability of the

jth gap time is greater than w, given the value tj−1 and the history up to tj−1, as

Pr {Wj > w|Tj−1 = tj−1,H(tj−1)} = exp

{
−
∫ tj−1+w

tj−1

λ[u|H(u)]du

}
. (2.7)

We use the result (2.7) to generate realizations of a recurrent event process for a given

intensity function as explained in Section 2.5.

Another important function is the hazard function of a gap time W , which is

defined as

h(w) = lim
δw→0

Pr {w ≤ W < w + δw|W ≥ w}
δw

, w ≥ 0. (2.8)

Let F (w) be the cumulative distribution function (c.d.f), and f(w) = dF (w)/dw be

the probability density function (p.d.f) of the gap time W . Then, it can be shown

that h(w) = f(w)/S(w), w ≥ 0, where S(w) = 1 − F (w) is the survival function of

the gap time W .

An important relationship between the counting process {N(t); t ≥ 0} and the

event time Ti, i = 1, 2 . . . , is that

N(t) ≥ j ⇔ Tj ≤ t, t > 0, j = 1, 2, . . . . (2.9)

Consequently, the probability of the number of events by time t is greater than or

equal to j is the same as the probability of jth event occurs before or at time t; that

is,

Pr {N(t) ≥ j} = Pr {Tj ≤ t} , t > 0, j = 1, 2, . . . . (2.10)

2.2 Recurrent Event Processes

Poisson and renewal processes are considered as fundamental stochastic processes

that provide models for recurrent events (Cook and Lawless, 2007). In this section,

we introduce them and discuss some of their features. Event counts over specified

time intervals are often used to analyze data from recurrent events. Poisson processes

provide natural models for describing event counts in many settings. Models based on

gap times provide another class of models for the analysis of recurrent events. These
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models are especially useful when the prediction of the next event time or the effects

of interventions after the occurrence of an event are of interest in a study. Renewal

processes and their ramifications provide mathematical models that are widely used

to model gap times. Before introducing the Poisson and renewal processes and other

related stochastic processes, we next discuss two important features of recurrent event

processes.

2.2.1 Some Fundamental Features of Recurrent Event

Processes

An important feature of recurrent event processes is the presence or absence of time

trends. Providing a general definition of the trend is not an easy task in recurrent

event analysis. This issue is discussed by Ascher and Feingold (1984, Section 9) in

recurrent events settings and by White and Granger (2011) in time series analysis

settings. Simple plots can be useful to reveal possible trends in data in some settings,

but due to the elusive nature of a trend, testing statistical hypothesis of the presence

or absence of trends, in general, is challenging.

Monotonic (increasing or decreasing) trends are common in applications. These

trends are usually related to stochastic ageing (Lawless et al., 2012). There are also

non-monotonic trends, such as seasonal trends. Trends may also occur due to factors

related to the number of previous events N(t−) prior to t in a process (Kvist et al.,

2008). Aalen et al. (2008) suggest the use of N(t−) as a covariate in the model to check

the presence or absence of frailty. A significant N(t−) in the model may represent a

monotonic trend in the waiting times between event occurrences. We use and discuss

such definition in Chapter 3 and 4 in this thesis.

Event clustering is another common feature of recurrent event processes. In

particular, events from a single recurrent event process may cluster together in time.

Carryover effects arise in settings where the intensity of an event is temporarily

increased or decreased following the occurrence of an external condition or an event

(Lindsey, 2004; Whitaker et al., 2006; Cigsar and Lawless, 2012). The presence

of carryover effects in processes may result in some forms of clustering of events.

Both internal and external conditions may be associated with carryover effects. We

include these conditions as covariates in the recurrent event models, and investigate
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their effects on the intensity functions. We focus on internal covariates, which is

mathematically a more challenging situation. An application of carryover effects due

to external covariates in vaccination studies is given by Whitaker et al. (2006). Simple

plots can be used to perceive clustering and trends in studies, especially, when each

process in the study provides a large number of events over its follow-up. However,

when there is a large number of processes under observation, and the number of

events per process is small, the detection of trends and carryover effects can be

problematic. It should be noted that this situation is often the case in many medical

and epidemiological studies, and was the motivation behind our study. In the thesis,

we develop models to assess the presence or absence of time trends and carryover

effects as internal factors to the processes under observation.

2.2.2 Poisson Processes

The Poisson processes can be characterized in various mathematically equivalent ways.

Characterization and many properties of Poisson processes can be found in Daley and

Vere-Jones (2003). Our goal in this section is to present some results that are used in

the remaining parts of the thesis. Any counting process {N(t); t ≥ 0} possessing the

following properties is a Poisson process with the rate function ρ(t).

• Property 1: The number of events occurred at the initiation time is zero; that

is, N(0) = 0.

• Property 2: For any time points a, b, c and d such that 0 ≤ a < b ≤ c < d, the

random variables N(a, b) and N(c, d) are independent.

• Property 3: For any time points s and t such that 0 ≤ s < t, the random

variable N(s, t) has a Poisson distribution with mean µ(s, t) = µ(t) − µ(s),

where µ(t) =
∫ t

0
ρ(u)du.

A stochastic process is called Markov process if, at any time t > 0, the conditional

probability of an arbitrary future event given the entire past of the process equals the

conditional probability of that future event given only the value of the process at time

t. In other words, conditional on the present value of the process, the distribution of

the increments of a Markov process does not depend on the past of the process. Such

a process is said to have the Markov property. Poisson processes also have Markov
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property due to the independent increments in non overlapping intervals, which is the

Property 2 given above.

The consequence of the third property is that, if {N(t); t ≥ 0} is a Poisson process

with the corresponding mean function µ(t), then

Pr {N(s, t) = n} =
[µ(s, t)]n

n!
exp {−µ(s, t)} , n = 0, 1, 2, . . . , (2.11)

for any 0 ≤ s < t. A proof of the claim that the above properties characterize that

the counting process {N(t); t ≥ 0} is a Poisson process with the rate function ρ(t),

t ≥ 0, can be found in Cook and Lawless (2007, Section 2.2.1). For general Poisson

processes, the marginal survival function of nth event occurrence time is

Pr(Tn > t) = Pr(N(t) < n),

=
n−1∑

k=0

µ(t)k exp {−µ(t)}
k!

,

=

∫ ∞

µ(t)

xn−1 exp {−x}
(n− 1)!

dx, for n ≥ 1.

(2.12)

The last equality can be proven from the recurrence relationship of incomplete gamma

function Γ(n, x); that is,

Γ(n, x) = (n− 1)Γ(n− 1, x) + xn−1 exp {−x} , (2.13)

where Γ(n, x) =
∫∞

x
tn−1 exp {−t} dt is the incomplete gamma function (Abramowitz

and Stegun, 1948, Section 6.5). For a counting process with an unbounded mean

function µ(t), t ≥ 0, the expected value of the nth occurrence time Tn can be written

as

E(Tn) =

∫ ∞

0

µ−1(x)
xn−1 exp {−x}

(n− 1)!
dx, for n ≥ 1, (2.14)

where µ−1(t) is the inverse function of µ(t).

Suppose that {N(t); t ≥ 0} is a Poisson process with the mean function µ(t),

t ≥ 0. Let t1, t2, . . . , tn be ordered arbitrary times, where t0 = 0 < t1−δ1 < t1 < t2−δ2
< t2 < . . . < tn − δn < tn. Also, let Pr (t1 − δ1 < T1 ≤ t1, . . . , tn − δn < Tn ≤ tn) and

Pr {N(t0, t1 − δ1) = 0, N(t1 − δ1, t1) = 1, . . . , N(tn−1, tn − δn) = 0, N(tn − δn, tn) = 1}
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are denoted by Pr (ti − δi < Ti ≤ ti; i = 1, . . . , n) and Pr {N(ti−1, ti − δi) = 0,

N(ti − δi, ti) = 1; i = 1, . . . , n}, respectively. Then, the joint probability of the

recurrent event times Ti observed within the interval (ti − δi, ti] for small values of

the δi, for i = 1, . . . , n, is

Pr(ti − δi < Ti ≤ ti; i = 1, . . . , n) = Pr {N(ti−1, ti − δi) = 0, N(ti − δi, ti) = 1;

i = 1, . . . , n} ,

=

{
n∏

i=1

[µ(ti)− µ(ti − δi)]

}
exp {−µ(tn)} ,

(2.15)

where the last equality follows from the properties of Poisson processes. Hence, the

joint density function of the recurrent event times T1, T2, . . . , Tn of the Poisson process

{N(t); t ≥ 0} with the rate function ρ(t), t ≥ 0, is

lim
max(δi)→0

Pr(ti − δi < Ti ≤ ti; i = 1, . . . , n)∏n
i=1 δi

=

{
n∏

i=1

ρ(ti)

}
exp {−µ(tn)} , (2.16)

where 0 < t1 < · · · < tn and the limit is taken as δi approaches zero for all i = 1, . . . , n.

Consequently, the joint density function of the gap times W1,W2, . . . ,Wn is given by

f1:n(w1, . . . , wn) =
n∏

i=1

ρw·i exp {−µw·n} , wi > 0, i = 1, . . . , n, (2.17)

where w·i =
∑i

j=1wj and w·n =
∑n

j=1wj. From (2.17) the conditional density function

of Wn+1 given the previous gap times is

fn+1|1:n(w|w1, . . . , wn) = ρ (tn + w) exp {− [µ (tn + w)− µ (tn)]} , w > 0, (2.18)

where tn = w1 + · · · + wn and n = 0, 1, 2, . . .. The conditional survival function of

Wn+1 given the previous gap times is

Sn+1|1:n(w|w1, . . . , wn) = exp {µ (tn)− µ (tn + w)} , w > 0, (2.19)

where n = 1, 2, . . .. The marginal survival function of Wn+1; that is, SWn+1(w) =
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Pr(Wn+1 > w), is given by

Sn+1(w) =

∫ ∞

0

Pr(Wn+1 > w|Tn = t) Pr(N(t−) = n− 1)ρ(t)dt,

=

∫ ∞

0

µ(t)n−1 exp {−µ(t+ w)}
(n− 1)!

ρ(t)dt, w > 0,

(2.20)

where n = 0, 1, 2, . . ., and exp {−µ(w)} for n = 0.

Poisson processes can also be characterized through their intensity functions. A

counting process {N(t); t ≥ 0} is said to be a Poisson process if its intensity function

is of the form

λ[t|H(t)] = ρ(t), t ≥ 0, (2.21)

where ρ(t) is a positive valued rate function on [0,∞) (Cook and Lawless, 2007, Section

2.2.1). The model in (2.21) implies that the Poisson process {N(t); t ≥ 0} has the

Markov property because the event occurrence rate ρ(t) does not depend on the history

H(t). A Poisson process is called a homogeneous Poisson process when λ[t|H(t)] given

in (2.22) is constant over time; otherwise, it is called a non-homogeneous Poisson

process. It can be shown from the marginal survival function given in (2.20) that if a

Poisson process is a homogeneous Poisson process with rate function α then the gap

times have an exponential distribution with mean 1/α, α > 0.

The Poisson process has some limitations to apply in some settings. In such cases,

more general intensity-based models can be used. An important class of intensity

models is of multiplicative form in which, for example, the intensity function (2.3)

takes the form

λ[t|H(t)] = λ0(t) exp[ψ
′W ∗(t)], t > 0, (2.22)

where λ0 is an age-specific baseline intensity function which can be specified

parametrically or non-parametrically, W ∗(t) is a q × 1 vector of processes that is

allowed to contain functions of the event history H(t) as well as external covariates,

and ψ is a q × 1 vector of parameters. Let W(t) = {W ∗(s); 0 ≤ s ≤ t} denote

the history of covariates of interest to the time t. We use the notation W(∞)

to denote the complete path information of W(t). For a given counting process

{N(t); t ≥ 0}, we let H(t) = {N(s),W ∗(u); 0 ≤ s < t, 0 ≤ u ≤ t} and H(∞) =

{N(s),W ∗(u); 0 ≤ s < t, u ≥ 0}. Now suppose that the intensity function of the

counting process {N(t); t ≥ 0} is defined by λ[t|H(t)] = λ0(t)g [W
∗(t);ψ], t > 0,
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where g is a non-negative function. The inclusion of covariates requires λ[t|H(∞)] =

λ[t|H(t)] for all t > 0. This condition merely states that the vector W ∗(t) includes

functions of events occurred prior to t and external covariates in the sense defined

by Kalbfleisch and Prentice (2002, Section 6.3). More technical discussion on how

to include covariate in recurrent event process are discussed by Cook and Lawless

(2007, Section 2.2.2) and Aalen et al. (2008, Section 2.2.7). It should be noted that if

there is one or more time-varying external covariates included in W ∗(t), the process

{N(t); t ≥ 0} is a non-homogeneous Poisson process. When internal covariates are

also included inW ∗(t), the corresponding process is then called a modulated Poisson

process (Cox, 1972b). With the non-parametric specification of the baseline intensity

function λ0(t), the model (2.22) is called a semi-parametric model.

2.2.3 Renewal Processes

Characterization of a renewal process is usually based on the gap times. A stochastic

process with independent and identically distributed (i.i.d.) waiting times W1,W2, . . .

is called a renewal process. The intensity function of a renewal process is given by

λ[t|H(t)] = h(B(t)), t ≥ 0, (2.23)

where the hazard function h is defined in (2.8) and B(t) = t − TN(t−) is called the

backward recurrence time, which is the elapsed time since the last event time strictly

before time t. Modeling and analysis of recurrent events can also be based on gap

times in this setting. The hazard function of the kth gap time is given by

hk(w) =
fk(w)

Sk(w)
, w > 0, k = 1, 2, . . . , (2.24)

where Sk(w) = Pr(Wk ≥ w) and fk(w) are the survival function and p.d.f. for the kth

gap time Wk, respectively. The hazard function hk(w) can also be considered as the

probability of the occurrence of the kth event in an infinitesimally small time period

[tk−1 + w, tk−1 + w + dw), given that the individual is under observation until time

tk−1 + w, k = 1, 2, . . ., where dw denotes infinitesimal time increment.

In a reliability setting, the renewal processes are called perfect repair models in

which after every repair, the system is stochastically considered as a new system. It
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should be noted that when the Wk are i.i.d. exponential random variables with mean

1/α, where α > 0, the renewal process is equivalent to a homogeneous Poisson process

with rate function α.

Fixed covariates or external time-varying covariates can also be included in a

renewal process model. Let x and x(t) be q × 1 vector of fixed and time varying

covariates and ψ be the q × 1 vector parameters for the corresponding vector

of covariates. Survival regression models such as the proportional hazards model

and accelerated failure time model are applicable for modeling the gap times in

renewal processes when fixed covariates are present. The resulting conditional hazard

functions of the kth gap time, given the covariates x, is of the form hk(w|x) =

h0k(w) exp(x
′ψ) and hk(w|x) = h0k[w exp(x′ψ)] exp(x′ψ) for proportional hazards

model and accelerated failure time model, respectively. When the covariates x contain

both external covariates and functions of t or H(t), the models are called modulated

renewal processes (Cox, 1972a; Cook and Lawless, 2007).

Since the density function of the kth gap time Wk, denoted by fk(w|x), is the first
partial derivative of −Sk(w|x) with respective to w, hk(w|x) can be written as

hk(w|x) =
−S ′

k(w|x)
Sk(w|x)

= − ∂

∂w
log(Sk(w|x)), k = 1, 2, . . . , (2.25)

where S ′
k(w|x) = ∂

∂w
Sk(w|x). By integrating both sides of (2.25), we can obtain the

following relationship;

Sk(w|x) = exp(−Λk(w|x)), k = 1, 2, . . . , (2.26)

where Λk(w|x) =
∫ w

0
hk(u|x)du, which is called as the cumulative hazard function of

the kth gap timeWk. From (2.25) and (2.26), it is easy to see that the density function

of the kth gap time, conditional on the covariates x, is given by

fk(w|x) = hk(w|x) exp(−Λk(w|x)), k = 1, 2, . . . . (2.27)

The result in (2.27) is useful to build a relation between the p.d.f. and the cumulative

hazard function.
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2.2.4 Other Stochastic Processes

Poisson and renewal processes establish the foundation of modeling and methods to

analyze recurrent event data. Although they are very useful in many studies, they may

not be adequate in some settings. In this section, we introduce some other modeling

approaches for recurrent event data.

2.2.4.1 Delayed Renewal Process

An important extension of the renewal processes is the class of delayed renewal

processes. The counting process {N(t); t ≥ 0} is called a delayed renewal process

if the gap timesW1,W2, . . . , are independent and the first gap timeW1 has a different

distribution from the identically distributed remaining gap times W2,W3, . . . , (Feller,

1982; Ross, 1996). Delayed renewal process models are adequate to fit many medical

data; for example, repeated heart attacks or repeated asthma attacks. In such data,

defining the starting point of the recurrent event process could be complicated and

delayed renewal processes provide flexibility in modeling such data. Also, in some

studies, it is naturally inappropriate to assume that the first gap time between the

starting point of the study and the initial event and the gap times between succeeding

events are identically distributed (e.g. see Cigsar and Lawless, 2012). Some studies

focus only on repeated events rather than on the whole process (e.g. see Gruneir

et al., 2018). In such cases, the starting point of the process can be defined as the

first event time and apply the renewal process model for the following subsequent gap

times.

2.2.4.2 Self Exciting Process

Self-exciting process is first introduced by Hawkes (1971) and it is sometimes referred

to as Hawkes Process. The complete intensity function of the self-exciting process

takes the linear form

λ[t|H(t)] = α +

∫ t

0

K(t− u)dN(u), (2.28)
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where α ≥ 0, K(u) ≥ 0 and
∫∞

0
K(u)du < 1. A special case of particular interest is

when

K(u) = γe−βu, (2.29)

where γ ≥ 0 and β ≥ 0. In this case, the intensity function makes a jump after

every event time and decays exponentially in time until the occurrence of next event.

This type of models are frequently used in financial analysis (Aı̈t-Sahalia et al., 2015),

earthquake studies (Ogata, 1988) and immigration-birth studies (Oakes, 1975). The

model in (2.28) is in additive form because the effect of contributions of past events

on the baseline rate function α is included in the model as an additive term. A Cox

type multiplicative form of extension of (2.28) can also be used to model medical data

(see e.g. Chen and Chen, 2014; Kim et al., 2019). The extension has the form

λ[t|H(t)] = λ0[t;η] exp

[
ψ′x+

∫ t

0

K(t− u)dN(u)

]
. (2.30)

With the specification (2.29), the semiparametric version of the model (2.30)

assumes no self-exciting effects from previous events, and becomes the Andersen–Gill

semiparametric model (Andersen and Gill, 1982) with time-independent covariates x

when γ = 0 and β ≥ 0. When γ 6= 0 and β > 0, the model (2.30) indicates that more

recent events have stronger effects than more distant events, whereas γ 6= 0 and β = 0

result in again a regular Cox-type model with the total number of events up to time

t, N(t−), as a time-varying covariate.

2.2.5 Likelihood Based Procedures

We now introduce the likelihood function for recurrent event processes. Suppose that

m independent event processes are under observation and the ith process, i = 1, . . .,

m, is observed over the fixed time interval [τ0i, τi], called the observation window. In

the interval [τ0i, τi], the values of τ0i and τi are the start and end-of-follow-up times

of the ith process, respectively.

Let {Ni(t); t ≥ 0} be a counting process with the intensity function λi [t|Hi(t)] ,

i = 1, . . . ,m. The likelihood function of the outcome “Ni(τ0i, τi) = ni events occurred
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at times ti1 < . . . < tini
over the interval [τ0i, τi], i = 1, . . ., m,” is

L =
m∏

i=1

Li, (2.31)

where

Li =

{
ni∏

j=1

λi [tij|Hi(tij)]

}
exp

(
−
∫ τi

τ0i

λi [u|Hi(u)] du

)
. (2.32)

The term in curly brackets in (2.32) corresponds to the likelihood of having ni

events at event times tij, j = 1, . . . , ni for the ith process. The second term,

exp
(
−
∫ τi
τ0i
λi [u|Hi(u)] du

)
, corresponds to the likelihood of having no events over

(τ0i, τi) for the i
th process, except in those tij, j = 1, . . . , ni, time points. An extensive

explanation to the construction of (2.32) with product-integration and Taylor series

expansion is given by Andersen et al. (1993, Section II.1).

It should be noted that the likelihood function (2.31) is valid for observation

schemes, in which follow-up of processes can start and end at various prespecified τi0

and τi times, respectively. The requirement of continuously follow-up and prespecified

τi0 and τi values can be restrictive in many real-life applications. For example, a

process may not be continuously at risk of experiencing an event. The likelihood

function can be extended to deal with such situations as explained next. Let the

random variable Yi(t), t > 0, takes the value 1 when the counting process {Ni(t); t > 0}
is under observation and at risk of having an event at time t; otherwise, it takes the

value 0. The random variable Yi(t) is called at risk indicator function of the ith process.

We then define a process {Yi(t); t ≥ 0}. Various observation schemes and scenarios can

be adapted by the use of the process {Yi(t); t ≥ 0}. For example, when the counting

process {Ni(t); t ≥ 0} is being continuously observed over the interval [τ0i, τi], where

τ0 and τ are prespecified quantities, and the process {Ni(t); t > 0} is under risk of

having an event all over the observation window [τ0i, τi], then Yi(t) = I(τ0i ≤ t ≤ τi),

which is deterministic. In this setting, however, the likelihood function in (2.31) is

the same. In more general settings, the likelihood function is given by

L =
m∏

i=1

{
ni∏

j=1

λi [tij|Hi(tij)] exp

(
−
∫ ∞

0

Yi(u) λi [u|Hi(u)] du

)}
, (2.33)

where we assume that the processes {Ni(t); t ≥ 0} and {Yi(t); t ≥ 0} are independent
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for i = 1, . . ., m. An excellent discussion of the generalization of the likelihood

function to (2.33) can be found in (Cook and Lawless, 2007, Section 2.6).

External covariates in the model (2.22) can be time fixed or time-dependent. We

consider covariates as processes. If observable external covariates x(t) are related to

event occurrences, they can be incorporated in the model by extending the process

history H(t) to include covariate information. This extension is referred to as

innovation theorem, more detail about this theorem is available in Section 2.4.2 in

Andersen et al. (1993) and Section 2.2.7 in Aalen et al. (2008). Following the notation

in Cook and Lawless (2007), we let x(t) = {x(s) : 0 ≤ s ≤ t} denote the history of the

external covariates over [0, t], and x(∞) denote the complete covariate path. Unless

stated otherwise, we assume that probabilities are conditional on the covariate path

of the external covariates and that their values are included in the initial information

H(0) for convenience so that λ[t|H(t)] depends only on x(t), not other way around.

In renewal process setting, the likelihood contribution by the ith individual in a

renewal process is formulated as

Li =

{
ni∏

j=1

fj(wij|xi)

}
Sni+1(wi,ni+1|xi), (2.34)

by assuming that ni renewals occurred and the ni
th gap time is right-censored. If the

observation terminates after ni
th event, that is, if wi,ni+1 = 0, the survival function of

the wi,ni+1 Sni+1(wi,ni+1|xi) in (2.34) becomes one.

2.3 Heterogeneity in Recurrent Event Processes

Individuals in a study cohort are usually heterogeneous with respect to some

characteristics. In such cases, even after conditioning on the available covariate

information, some models may not be adequate for accommodating such unexplained

heterogeneity. For example, if event counts are of interest, then a Poisson process may

not be adequate to address the excess heterogeneity in the counts of events across

individuals. This issue is especially common in medical studies when the subjects are

human (Cook and Lawless, 2007).

There are two common ways to deal with unexplained heterogeneity in recurrent
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events settings. Following our notation in the previous section, a natural extension of

the model (2.22) is given by

λi[t|H(t)] = λ0i(t;ηi) exp[ψ
′W ∗

i (t)], i = 1, . . . ,m, t > 0, (2.35)

where λ0i(t;ηi) is a subject specific baseline intensity function indexed with the vector

of parameters ηi. For example, a constant intensity for the baseline intensity function

can be specified for the ith individual as λ0i(t;η) = νi, where νi is a positive valued

parameter to be estimated. This type of models is called a fixed effects model.

Although fixed effects models can be useful in some applied settings, they may suffer

from the nuisance parameter problem when the number of events per individual over

a fixed follow-up period is small and the number of individuals m in the data is large.

In such cases, the maximum likelihood estimators of model parameters may become

inconsistent (Cigsar and Lawless, 2012).

Unexplained heterogeneity across individuals can be addressed with random effects

models as well. In this case, given ν1, ν2, . . . , νm, the conditional intensity function of

the ith individual, i = 1, . . . ,m, takes the form

λi[t|Hi(t), νi] = νi exp[ψ
′W ∗

i (t)], t > 0, (2.36)

where ν1, ν2, . . . , νm, are positive-valued independent and identically distributed

(i.i.d.) unobservable random variables. The νi are assumed to follow a distribution.

Because of its mathematical tractability, the gamma distribution with mean 1 and

variance φ > 0 is a popular choice for the distribution of the νi. In this case, the

probability density function (p.d.f.) of νi, i = 1, . . . ,m, is then given by

g(ν;φ) =
νφ

−1−1 exp(−ν/φ)
φφ−1Γ(φ−1)

, 0 < ν <∞, φ > 0, (2.37)

which is, in notation, νi ∼ Gamma(1, φ), for i = 1, . . . ,m.

The fixed effects model (2.35) with the baseline intensity function νi and the

random effects model (2.36) may look similar. However, an important difference here

is that the fixed effects model (2.35) is a marginal model in the sense that it only

conditions on the history Hi(t), but the random effects model (2.36) conditions on

the history Hi(t) and the value of the unobservable random effects νi. Under the
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assumption that the νi are i.i.d. gamma random variables with mean 1 and variance

φ, the resulting marginal intensity function is given by

λi[t | Hi(t)] =
(1 + φNi(t

−))[
1 + φ

τ∫
0

exp[ψ′W ∗

i (u)]du

] exp[ψ′W ∗

i (t)]. (2.38)

The derivation of (2.38) is available in Appendix A.

Estimation in the random effects models is usually carried out after integrating out

the random effects from the likelihood function. In this case, the resulting likelihood

contribution by the ith individual to the likelihood function L =
∏m

i=1 Li is

Li =

∫ ∞

0

{
ni∏

j=1

λi [tij|Hi(tij), νi]

}
exp


−

∞∫

0

Yi(u)λi [u|Hi(u), νi] du


 g(νi;φ)dνi.

(2.39)

In the renewal processes setting, conditional hazard functions of the kth gap time

Wik for the ith individual can be extended as

hik(w|xi, νi) = νih0k(w) exp(x
′

iψ), k = 1, 2, . . . ;w > 0, (2.40)

for proportional hazards model. The likelihood contribution by the ith individual is

then given by

Li =

∫ ∞

0

{
ni∏

j=1

fj(wij|xi, νi)

}
Sni+1(wi,ni+1|xi, νi) g(νi;φ)dνi. (2.41)

The model (2.41) is called the proportional hazards frailty model. More information

on these model is given by Cook and Lawless (2007, Section 4.2.2).

2.4 Dependence Concepts

In recurrent event settings, models based on renewal processes assume that the gap

times between event times are independent. This assumption is a strong one and

rarely true in many applications unless a complete renewal is assumed after each

event occurrence (Cook and Lawless, 2007, Section 4.1). Two common methods to
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deal with the dependency between gap times in recurrent event settings are based on

the random effects models and copula models. In this section, we discuss the models

based on copulas and related concepts. A more detailed discussion of the topics can

be found in Nelsen (2006) and Joe (2014).

Let X1 and X2 be two random variables with cumulative distribution functions

(c.d.f.) F1(x1) and F2(x2), respectively, and probability density functions (p.d.f.)

f1(x1) and f2(x2), respectively. Let F1,2(x1, x2) be the joint c.d.f. of the random

vector (X1, X2). Then, the joint distribution of (X1, X2) can be written as a product

of their marginal distributions only when the random variables X1 and X2 are

independent. That is, F1,2(x1, x2) = F1(x1)F2(x2) for any values of x1 and x2

within their domains. If X1 and X2 are not independent, we can replace one of the

marginal distributions with the conditional distribution of the other random variable,

given the other variable. In this case, we can write that F1,2(x1, x2) = F1(x1) ×
F2|1(x2|X1 = x1) or F1,2(x1, x2) = F1|2(x1|X2 = x2) × F2(x2), where F2|1(x2|X1 =

x1) =
∫ x2

−∞
f1,2(x1, u)/F1(x1)du, F1|2(x1|X2 = x2) =

∫ x1

−∞
f1,2(u, x2)/F2(x2)du and

f1,2(x1, x2) =
∂2

∂x1∂x2
F1,2(x1, x2). This is one way of formulating the dependency among

two variables X1 and X2. This procedure can be extended to more than two random

variables case.

The Pearson correlation coefficient, denoted by ρP , is a simplified measurement of

the linear dependence between two random variables coming from a bivariate normal

distribution. For a pair of continuous random variables (X1, X2), the formula of the

Pearson correlation coefficient is

ρP =
E(X1X2)− E(X1)E(X2)

σ1σ2
, (2.42)

where E(Xk) =
∫
xk dFk(xk), k = 1, 2, E(X1X2) =

∫
x1x2 dF1,2(x1, x2), σ1 > 0 and

σ2 > 0 are the standard deviations of the random variables X1 and X2, respectively.

The range of possible values for ρP is [−1, 1]. It is well-known that the ρP is not a

good measure of dependence for many bivariate distributions when the two variables

are not linearly related (Joe, 1997, Section 2.1.9). Therefore, nonparametric measures

based on concordance were developed. Two observations (xi1, xi2) and (xj1, xj2), i 6= j,

are called concordant if (xi1 − xj1)(xi2 − xj2) > 0 and discordant if (xi1 − xj1)(xi2 −
xj2) < 0. Kendall’s tau and Spearman’s rho, as defined next, are the most frequently

used measures of association for two random variables based on concordance and
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discordance.

Kendall’s tau is the probability of concordance minus the probability of

discordance between two random vectors (Xi1 −Xj1) and (Xi2 −Xj2); that is

τK = Pr((Xi1 −Xj1)(Xi2 −Xj2) > 0)− Pr((Xi1 −Xj1)(Xi2 −Xj2) < 0),

= 4

∫
F1,2(x1, x2)dF1,2(x1, x2)− 1,

= 4E[F1,2(X1, X2)]− 1.

(2.43)

The range of Kendall’s tau τK is [−1, 1]. The result in the second line of (2.43) can

be found in Joe (1997).

Spearman’s rho is defined as the Pearson correlation coefficient of F1(X1) and

F2(X2). It is proportional to the probability of concordance minus the probability

of discordance for the two vectors (Xi1, Xi2) and (Xj1, Xk2), i 6= j 6= k, such that

the joint distribution function of (Xi1, Xi2) is F1,2(x1, x2) and the joint distribution

function of (Xj1, Xk2) is F1(x1)F2(x2). Since F1(X1) and F2(X2) are standard uniform

random variables with expectations and variances are 1/2 and 1/12, respectively, the

Spearman’s rho is given by

ρS = 3[Pr((Xi1 −Xj1)(Xi2 −Xk2) > 0)− Pr((Xi1 −Xj1)(Xi2 −Xk2) < 0)],

= 12

∫ ∫
F1(x1)F2(x2)dF1,2(x1, x2)− 3,

= 12

∫ ∫
F1,2(x1, x2)dF1(x1)dF2(x2)− 3.

(2.44)

The range of Spearman’s rho ρS is [−1, 1]. These two measures are invariant with

respect to strictly increasing transformations of the random variables X1 and X2

(Joe, 1997). The relationship between Kendall’s tau and Spearman’s rho measures of

association and other details are given in Joe (1997) and Nelsen (2006).

Another important concept is tail dependence. Tail dependence measures

the dependence between two continuous random variables X1 and X2 in the

lower-quadrant and upper-quadrant tails of their distribution functions F1 and F2,

respectively (Nelsen, 2006, Section 5.4). The lower-tail dependence and upper-tail

dependence are defined as follows. Let x1p and x2p are the 100pth percentile of the

distributions of X1 and X2, respectively. That is, Pr(X2 ≤ x2p) = p, where p ∈ [0, 1]
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and Pr(X1 ≤ x1p) = p. If it exists, the lower tail dependence parameter λL is then

defined as the limit of the conditional probability that X2 is less than or equal to x2p,

given that X1 is less than or equal to x1p, as p approaches to 0. That is,

lim
p→0+

Pr(X2 ≤ x2p|X1 ≤ x1p) = λL. (2.45)

Similarly, the upper tail dependence parameter λU is the limit, if it exists, of the

conditional probability that X2 is greater than the x2p given that X1 is greater than

the x1p as p approaches to 1, i.e.

lim
p→1−

Pr(X2 > x2p|X1 > x1p) = λU , (2.46)

where x1p and x2p are same as defined above.

2.4.1 Copula Models

Another way of formulating dependencies is through copula functions. The word

“copula” derives from the Latin verb copulare, meaning “to join together.” Sklar

(1959, 1973) introduced the term “copula”, and obtained several characterizations for

k-dimensional copulas in the context of probabilistic measure spaces. Copulas are

functions used to construct a joint distribution function by combining the marginal

distributions. Theory and applications of copula functions are available in Joe (1997)

and Nelsen (2006).

Let the notation [0, 1]k denote the set of all k-dimensional vectors, in which each

element is in [0, 1]. A k-variate copula is a function C(u1, . . . , uk), where (u1, . . . , uk) ∈
[0, 1]k, with the following properties.

1. The margins of C are uniform if all the other arguments are equal to 1. That

is, for the ith argument, we have

C(1, . . . , 1, ui, 1, . . . , 1) = ui, i = 1, 2, . . . , k.

2. The k-variate copula C is zero if one of the arguments is zero. For example, if
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the ith argument is zero, we have

C(u1, . . . , ui−1, 0, ui+1, . . . , uk) = 0, i = 1, 2, . . . , k.

3. The k-variate copula C is k-non-decreasing. That is, for any two k-dimensional

vectors a and b in [0, 1]k that satisfy

VC([a, b]) ≥ 0, a ≤ b,

where VC([a, b]) = ∆b
aC(u) = ∆bk

ak
∆

bk−1
ak−1 . . . ∆

b2
a2
∆b1

a1
C(u), u = (u1, . . . , uk)

′ and

∆br
arC(u) = C(u1, . . . , ur−1, br, ur+1, . . . , uk) − C(u1, . . . , ur−1, ar, ur+1, . . . , uk).

Here we denote a ≤ b when ar ≤ br for all r, 1 ≤ r ≤ k.

Let W (u1, . . . , uk) = max

{
1− k +

k∑
i=1

ui, 0

}
and M(u1, . . . , uk) =

min{u1, . . . , uk}. The Fréchet-Hoeffding Theorem (see Nelsen, 2006, p. 47)

states that for any Copula C : [0, 1]k → [0, 1] and any (u1, . . . , uk) ∈ [0, 1]k the

inequality W (u1, . . . , uk) ≤ C(u1, . . . , uk) ≤ M(u1, . . . , uk) holds. The function W

and M are called lower and upper Fréchet-Hoeffding bounds, respectively.

The Sklar’s Theorem (Sklar, 1959) states that, if the marginal distribution

functions Fi(xi), i = 1, . . . , k, are continuous, there exists a unique copula C such

that

Pr(X1 ≤ x1, . . . , Xk ≤ xk) = F (x1, . . . , xk) = C(F1(x1), . . . , Fk(xk)). (2.47)

Similarly, if the marginal survival functions Si(xi), i = 1, . . . , k, are continuous, there

exists a unique copula C̆ (Georges et al., 2001) such that,

Pr(X1 > x1, . . . , Xk > xk) = S(x1, . . . , xk) = C̆(S1(x1), . . . , Sk(xk)). (2.48)

When k = 2, the relationship between C and C̆ can be shown as follows.

C(F1(x1), F2(x2)) = Pr(X1 ≤ x1, X2 ≤ x2),

= 1− Pr(X1 > x1)− Pr(X2 > x2) + Pr(X1 > x1, X2 > x2),

= 1− (1− F1(x1))− (1− F2(x2)) + C̆(S1(x1), S2(x2)),

= F1(x1) + F2(x2)− 1 + C̆((1− F1(x1)), (1− F2(x2))).
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Copula techniques have some attractive properties. For example, the marginal

distributions of the random variables X1, X2, . . . , Xk can be defined from different

families. This property is especially useful in the gap time analysis of recurrent events

when the gap times are assumed to have different characteristics. Another useful

property is that the dependence structure can be investigated independently from the

marginal distributions. Furthermore, copulas are invariant under strictly increasing

transformations of the margins. That is, for example in the bivariate case, if X2 =

G1(X1) and Y2 = G2(Y1), where G1 and G2 are strictly increasing functions, then

(X1, Y1) and (X2, Y2) have the same copula. Since τK and ρS in (2.43) and (2.44),

respectively, are invariant to strictly increasing transformations, they can be used as

summary measures of dependence for bivariate copulas. Let C be a bivariate copula

of the random variables of U1 and U2. The Kendall’s tau can be expressed as (see

Nelsen, 2006, p. 159)

τK = 4

∫ ∫
C(u1, u2)dC(u1, u2)− 1,

= 4E[C(U1, U2)]− 1,

(2.49)

and the Spearman’s rho becomes (see Nelsen, 2006, p. 167)

ρS = 12

∫ ∫
C(u1, u2)du1du2 − 3. (2.50)

The tail dependencies can also be formalized as follows (Joe, 1997, Section 2.1).

If a bivariate copula C of the random variables U1 and U2 is such that

lim
u→0+

Pr(U2 ≤ u|U1 ≤ u) = lim
u→0+

C(u, u)

u
= λL (2.51)

exists, then C has lower tail dependence if λL ∈ (0, 1] and no lower tail dependence if

λL = 0. The upper tail dependency can be defined as follows. If

lim
u→1−

Pr(U2 > u|U1 > u) = lim
u→1−

=
1− 2u+ C(u, u)

1− u
= λU (2.52)

exists, then the copula C has an upper tail dependence if λU ∈ (0, 1] and no upper

tail dependence if λU = 0.

A detailed list of one and two-parameter bivariate copula functions can be found in
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Joe (1997, Section 5). In the remainder part of the this section, we introduce bivariate

copula classes which are relevant to our study, and discuss some of their properties.

These copula models are used in the following chapters.

2.4.1.1 Archimedean Copulas

A bivariate Archimedean copula of the random variables U1 and U2 (Genest and

MacKay, 1986) can be written in the form

C(u1, u2) = ϕ[−1][ϕ(u1) + ϕ(u2)], (2.53)

where ϕ, called a generator function of corresponding copula function, is a strictly

decreasing convex function on (0, 1] to [0,∞] satisfying ϕ(1) = 0. The pseudo-inverse

function of ϕ is given by

ϕ[−1](t) =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0),

0, ϕ(0) ≤ t ≤ ∞.
(2.54)

A bivariate Archimedean copula contains all information about the 2-dimensional

dependence structure between random variables U1 and U2 through a univariate

generator function ϕ. A lengthy discussion of Archimedean copulas are given by Joe

(1997, Section 4.2) and Nelsen (2006, Section 4.3). Archimedean copula models can

be naturally derived from bivariate frailty models since ϕ−1 is the Laplace transform

of the underlying frailty distribution (Oakes, 1989; Joe, 1997).

2.4.1.2 One-Parameter Copula Models

We next introduce some frequently used one-parameter Archimedean families. The

Clayton family (Clayton, 1978) has the form

Cφ(u1, u2) =
(
u−φ
1 + u−φ

2 − 1
)−1/φ

, φ ∈ [−1,∞)\{0}. (2.55)

Its generator function is

ϕφ(t) = t−φ − 1, 0 < t ≤ 1. (2.56)
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Since ϕ−1
φ (v) = (v+1)−1/φ is the Laplace transform of a gamma distribution with the

shape parameter 1/φ and the scale parameter 1, the bivariate gamma shared frailty

model leads to the Clayton survivor copula model (Goethals et al., 2008). It should

be noted that, with the copula parameter φ in (2.55), the Kendall’s tau coefficient is

given by

τK(φ) =
φ

φ+ 2
, φ ∈ [−1,∞)\{0}. (2.57)

The random variables U1 and U2 are positively associated when φ > 0 and the

dependence between them increases as the value of the parameter φ increases. The

independent copula is obtained when the parameter φ approaches zero and the

Fréchet-Hoeffding upper bound is obtained as the parameter φ approaches infinity.

The lower tail dependence parameter of the Clayton copula is λL = 2−1/φ, whereas

there is no upper tail dependence.

The Gumbel-Hougaard family (Gumbel, 1960) is another family of copula models,

which is of the form

Cθ(u1, u2) = exp

[
−
{
(− log u1)

θ + (− log u2)
θ
}1/θ

]
, θ ≥ 1. (2.58)

Its generator function is

ϕθ(t) = (− log t)θ, 0 < t ≤ 1. (2.59)

Since ϕ−1
θ (v) = exp

(
−v1/θ

)
is the Laplace transform of a positive stable distribution,

the positive stable shared frailty model leads to the Gumbel-Hougaard survivor copula

model (Duchateau and Janssen, 2007, Section 4.4). It can be shown that, in this case,

the Kendall’s tau coefficient is

τK(θ) =
θ − 1

θ
, θ ≥ 1. (2.60)

The Kendall’s tau coefficient τθ indicates an increasing dependence between two

random variables as the value of the parameter θ increases. The independent copula

is obtained as θ approaches 1 and the Fréchet-Hoeffding upper bound is obtained as

θ → ∞. The upper tail dependence parameter is λU = 2− 21/θ, and there is no lower

tail dependence.

The next bivariate copula family that we introduce is the Frank family (Frank,
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1979), which has the form

Cν(u1, u2) = −1

ν
log

[
1 +

(e−νu1 − 1) (e−νu2 − 1)

(e−ν − 1)

]
, ν ∈ R\0, (2.61)

with the generator function

ϕν(t) = log

[
e−ν − 1

e−νt − 1

]
, 0 < t ≤ 1, (2.62)

and the Kendall’s tau coefficient

τK(ν) = 1 + 4
D1(ν)− 1

ν
, ν ∈ R\0, (2.63)

where D1 is the first Debye function; that is, D1(ν) =

∫ ν

0

t

ν(et − 1)
dt (Abramowitz

and Stegun, 1948, Section 27.1) and R is denoted as the set of real numbers. The

random variables U1 and U2 are positively associated when ν > 0 and negatively

associated when ν < 0. The independent copula is obtained as ν → 0. The

Fréchet-Hoeffding upper and lower bounds are obtained as ν → ∞ and as ν → −∞,

respectively.

It should be noted that Clayton copula has the potential to capture the lower tail

dependency and Gumbel-Hougaard copulas can capture the upper tail dependency,

whereas Frank copulas do not classify either tail behavior (Embrechts et al., 2003).

2.4.1.3 Two-Parameter Copula Models

Two or more-parameter copula families provide greater flexibility for fitting data since

they can capture more than one type of dependence. When such a family includes

some of the well-known one-parameter copula families such as Clayton, Frank and

Gumbel-Hougaard, testing of those models can be easily performed, for example, by

applying the model expansion technique (Lawless and Yilmaz, 2011). We provide an

example below.

A bivariate two-parameter family of the form of an Archimedean copula is

Cφ,θ(u1, u2) =

{[(
u−φ
1 − 1

)θ
+
(
u−φ
2 − 1

)θ]1/θ
+ 1

}−1/φ

, φ > 0 and θ ≥ 1. (2.64)
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This family includes the Clayton and Gumbel-Hougaard families as special cases.

In particular, it reduces to the Clayton family when θ = 1, and becomes the

Gumbel-Hougaard family as φ→ 0. Its generator function is

ψφ,θ(t) =
(
t−φ − 1

)θ
, 0 < t ≤ 1, (2.65)

and the Kendall’s tau is

τK(φ, θ) = 1− 2

θ(φ+ 2)
, φ > 0 and θ ≥ 1. (2.66)

The dependence increases as the parameters θ and/or φ increase. The independent

copula u1u2 is obtained as φ→ 0 and θ → 1 and the Fréchet upper bound is obtained

as φ→ ∞ or θ → ∞.

Scatter plots of different type of copula data are useful to understand more about

the requirement of different types of copulas. Figure 2.1 presents the scatter plots of

various copula dependent bivariate random variables. Here, we considered standard

exponential distribution for the marginals. In Figure 2.1, each pair of plots are based

on the same simulated data. The difference is the right side plots are plotted against

two random variables, say W1 versus W2, whereas the left side plots are plotted

against their corresponding cumulative probabilities, respectively, say U1 = F1(W1)

versus U2 = F2(W2).
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(a) Independent (φ = 0, θ = 1 =⇒ τK = 0)
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(b) Clayton (φ = 0.86, θ = 1 =⇒ τK = 0.3)
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(c) Clayton (φ = 4.67, θ = 1 =⇒ τK = 0.7)
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(d) Gumbel (φ = 0, θ = 1.43 =⇒ τK = 0.3)
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(e) Gumbel (φ = 0, θ = 3.33 =⇒ τK = 0.7)
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(f) 2-parameter (φ = 0.39, θ = 1.2 =⇒ τK = 0.3)
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(g) 2-parameter (φ = 1.65, θ = 1.83 =⇒ τK = 0.7)
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(h) Frank (ν = 2.92 =⇒ τK = 0.3)
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(i) Frank (ν = 11.41 =⇒ τK = 0.7)
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Figure 2.1: Scatter plots of simulated copula dependent (n=1,000) uniform random
variables (U1, U2) and their corresponding standard exponential quantiles (W1,W2)
with the contour plots of underlying theoretical densities for weak (τK = 0.3) and
strong (τK = 0.7) dependence.
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Notably, the points in the scatter plot of cumulative probabilities of observed

bivariate data under proper marginal assumption should be evenly distributed within

unit square when those two random variables are independent as seen in Figure 2.1a.

In many statistical approaches, such a property is essential because they assume

the independence. However, in many real data application, those approaches

may lead to wrong conclusions, in particular, in the marginal estimates due to

unavoidable dependency. Copula-based models play an important role in modeling

when dependency involved. From the plots, we can see that when the positive

dependency increases (i.e., when τK > 0 increases) the points in the scatter plots

of cumulative probabilities move near to line of equality.

2.4.1.4 Gaussian Copula and t Copula

Let Φ denote the distribution function of a random variable from the univariate

standard normal distribution. Then, the bivariate Gaussian copula with single

parameter ρ is given by

C(u1, u2; ρ) = Φρ

(
Φ−1(u1),Φ

−1(u2)
)
, (2.67)

where Φρ is a bivariate normal distribution function with the 2× 1 zero mean vector

and a 2 × 2 correlation matrix, in which the diagonal elements are equal to 1 and

off-diagonal elements are equal to ρ.

Similarly, let tν,ρ be the cumulative distribution function of the bivariate

t-distribution with the 2× 1 zero mean vector and a 2× 2 correlation matrix with 1

as diagonal elements and ρ as off-diagonal elements, and the parameter ν denotes the

degrees of freedom. Further, let tν denote the cumulative distribution function of the

univariate t-distribution with degrees of freedom ν. The bivariate Student or t-copula

with parameters ν and ρ is given by

C(u1, u2; ν, ρ) = tν,ρ
(
t−1
ν (u1), t

−1
ν (u2)

)
. (2.68)

All the copulas as mentioned above so far can be extended to incorporate more

than two variables.
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2.4.2 Pair-Copula Constructions

The joint and marginal conditional density functions of bivariate random variables

(W1,W2) can be written in terms of copula densities as

f12(w1, w2) =
∂2F12(w1, w2)

∂w1∂w2

= c12(F1(w1), F2(w2))× f1(w1)× f2(w2),

f2|1(w2|w1) =
f12(w1, w2)

f1(w1)
= c12(F1(w1), F2(w2))× f2(w2),

(2.69)

where

c12(F1(w1), F2(w2)) =
∂2C(F1(w1), F2(w2))

∂F1(w1)∂F2(w2)
, (2.70)

called pair-copula density function, and fi(wi) is the marginal density function of

wi, i = 1, 2. Consider a three-variate joint density function f(w1, w2, w3). Using the

relationship between density and copula functions, it can be decomposed as follows

f(w1, w2, w3) = f3|12(w3|w1, w2)× f2|1(w2|w1)× f1(w1),

= c13|2(F1|2(w1|w2), F3|2(w3|w2)) c23(F2(w2), F3(w3)) f3(w3)

× c12(F1(w1), F2(w2)) f2(w2)

× f1(w1),

(2.71)

where the function c13|2 is conditional on w2, and the arguments of c13|2 also conditional

on w2, which is called conditioning variable. When the number of variable increases,

the number of conditioning variables also increases. Thus, it may result in a large

number of parameters to be estimated. It can be assumed (Hobæk Haff et al., 2010)

that all the pair-copulas depend on the conditioning variables only through the two

conditional distribution functions which being their arguments, and not directly. That

is, for example, a simplified version of the pair copula construction for a three-variate

joint density function can be written by

f(w1, w2, w3) = c13|2(F1|2(w1|w2), F3|2(w3|w2))

× c12(F1(w1), F2(w2)) c23(F2(w2), F3(w3))

× f1(w1) f2(w2) f3(w3).

(2.72)

Any k-variate joint density function can be written in terms of marginal and
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pair-copula density functions. The decomposition given in (2.72) is not unique

for f(w1, w2, w3). There are two more decompositions that can be made. For

high-dimensional distributions, the number of possible pair-copula constructions

increases drastically. For example, there are 240 different constructions for a

five-dimensional density (Aas et al., 2009). Bedford and Cooke (2001) introduced

a graphical method to organize such possible decompositions and denoted as the

regular vine (R-vine). To form an R-vine, a sequence of trees V = (T1, . . . , Tk−1) has

to fulfill the following conditions.

1. T1 is a tree with nodes N1 = 1, . . . , k and edges E1.

2. For i ≥ 2, Ti is a tree with nodes Ni = Ei−1 and edges Ei.

3. If two nodes in Ti+1 are joint by an edge, the corresponding edges in Ti must

share a common node.

The condition is sometimes referred to as the proximity condition. There are two

important classes of vines; the canonical vine (C-vine) and the D-vine. Figure 2.2

and Figure 2.3 show k-dimensional C-vine and D-vine pair copula decompositions,

respectively. Both consist of k − 1 trees Tj, j = 1, . . . , k − 1, where Tj has k + 1− j

nodes and k − j edges. Every edge corresponds to a pair-copula density. The whole

decomposition is defined by the k(k − 1)/2 edges and the marginal densities of each

variable.

The k-dimensional density corresponding to a C-vine is given by

f(w1, . . . , wk) =
k∏

l=1

fl(wl)
k−1∏

j=1

k−j∏

i=1

cj,j+i|1:j−1 [F (wj|w1:j−1), F (wj+i|w1:j−1)] , (2.73)

where

F (wj+i|w1:j−1) =
∂Cj+i,j−1|1:j−2 [F (wj+i|w1:j−2), F (wj−1|w1:j−2)]

∂F (wj−1|w1:j−2)
, i = 0, . . . , k − j,

(2.74)

and a D-vine is given by

f(w1, . . . , wk) =
k∏

l=1

fl(wl)
k−1∏

j=1

k−j∏

i=1

ci,(i+j)|i+1:i+j−1 [F (wi|wi+1:i+j−1), F (wi+j|wi+1:i+j−1)] .

(2.75)
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Figure 2.2: A C-vine with k variables, k − 1 trees and k(k − 1)/2 edges. Each edge
corresponds to a pair-copula density.
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c1,k−1|2:k−2 c2,k|3:k−1

Tk−1

c1,k|2:k−1

Figure 2.3: A D-vine with k variables, k − 1 trees and k(k − 1)/2 edges. Each edge
corresponds to a pair-copula density.
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where

F (wi|wi+1:i+j−1) =
∂Ci,i+j|i+1:i+j−1 [F (wi|wi+1:i+j−1), F (wi+j|wi+1:i+j−1)]

∂F (wi+j|wi+1:i+j−1)
, (2.76)

and

F (wi+j|wi+1:i+j−1) =
∂Ci,i+j|i+1:i+j−1 [F (wi|wi+1:i+j−1), F (wi+j|wi+1:i+j−1)]

∂F (wi|wi+1:i+j−1)
. (2.77)

Note that here we denote the vector (wj, . . . , wk) by wj:k where j < k. A general

formula for R-vine structure of f(w1, . . . , wk) is available in Dißmann et al. (2013).

The arguments in the pair copulas are conditional on intermediate variables for D-vine

structure, whereas in C-vine they are conditional on non-intermediate variables. In

recurrent event context, those pair copulas are conditional on the previous gap times

when we consider C-vine structure. It is more intuitive to pick the C-vine over

the D-vine if our focus is on an event history analysis. Because the C-vine copula

parameters in tree Ti, i = 2, . . . , k − 1 give the strength of dependence between Wi

and Wj, j = i+ 1, . . . , k given W1, . . . ,Wi−1.

2.5 Simulation Procedures

In this section, we introduce how to simulate realizations of a recurrent event process

with a given intensity function. Our goal with the simulated data is to check whether

the parameters are correctly estimated when the correct model is fitted and to study

the behavior of the estimates of the parameters when the model is misspecified. In a

recurrent event process, the gap times can be either independent or dependent. We

therefore, present event generating algorithms under independence and dependence

cases separately. In real data, it is critical to identify the dependency structure of

the gap times. It can be either the current gap time depending on all the previous

gap time or depending only on the previous gap time. This thesis mainly focuses

on the latter one, and the corresponding data generation algorithm is presented in

Section 2.5.2.
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2.5.1 Simulation of a Serially Independent Event Process

Let {N(t); t ≥ 0} be a counting process with an associated intensity function λ[t|H(t)].

If we let

Ej =

∫ tj−1+Wj

tj−1

λ[t|H(t)]dt, j = 1, 2, . . . , (2.78)

where the Wj are the gap times generated by the process {N(t); t ≥ 0}, then, given
tj−1 and H(tj−1), each random variable Ej has an exponential distribution with mean

1 (Cook and Lawless, 2007). This result follows from the fact that Pr {Wj > tj−1 + w

|Tj−1 = tj−1, H(tj−1)} = exp
{
−
∫ tj−1+w

tj−1
λ[t|H(t)]dt

}
, j = 1, 2, . . . , and so Uj =

exp(−Ej) has a standard uniform distribution. The algorithm to generate event

times of a recurrent event process for a given intensity function in this thesis is given

as follows:

1. Set j = 1 and t0 = 0.

2. Generate Uj from a standard uniform distribution.

3. Use the transformation Ej = − log(Uj).

4. Calculate the jth event time Tj by solving Ej =
∫ Tj

tj−1
λ[t|H(t)]dt for Tj.

5. If Tj ≤ τ , let tj = Tj and advance j by 1. Then, return to the second step.

Otherwise, stop the loop. If j = 1, no events occurred over [0, τ ]. If j > 1, the

recurrent event times observed over [0, τ ] are given by t1, . . . , tn, where n = j−1.

By repeating the above algorithm m times, we can generate recurrent event times

from m identical processes with the intensity function λ[t|H(t)]. The algorithm

can be extended to generate nonidentical processes with a given intensity function

λi[t|Hi(t), νi], i = 1, . . . ,m. Note that this model is a random effects model, which is

discussed in Section 2.3. The data generation algorithm becomes:

1. Set j = 1 and ti0 = 0.

2. Generate the values of the random effect νi from a given distribution.

3. Generate Uij from a standard uniform distribution.

4. Use the transformation Eij = − log(Uij).
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5. Calculate the jth event time Tij for the ith individual by solving Eij =∫ Tij

ti(j−1)
λi[t|Hi(t), νi]dt for Tij.

6. If Tij ≤ τ , let tij = Tij and advance j by 1. Then, return to the third step.

Otherwise, stop the loop. If j = 1, no events occurred over [0, τ ]. If j > 1,

the recurrent event times observed over [0, τ ] are given by ti1, . . . , tini
, where

ni = j − 1.

2.5.2 Simulation of a Serially Dependent Event Process

This subsection introduces algorithms to generate recurrent event times, where the

subsequent gap times are serially dependent. Let Wj, j = 1, 2, . . . be jth gap time of

a recurrent event process where Wj = Tj − Tj−1 with T0 = 0. For each gap time, let

hj(w) = lims→0 Pr(Wj < w + s|Wj ≥ w)/s, w > 0, be the hazard function of Wj,

j = 1, 2, . . .. The data generation algorithm is as follows.

1. Set j = 1 and t0 = 0.

2. Calculate the jth event time Tj where Tj = tj−1 +Wj.

(a) When j = 1

i. Generate U1 from a standard uniform distribution.

ii. Calculate the W1 such that W1 = F−1
1 (U1) where

F1(w1) = 1− exp

{
−
∫ w1

0

h1(s)ds

}
.

(b) When j ≥ 2

Note: For a given copula function C(uj−1, uj) = C(Uj−1 ≤ uj−1, Uj ≤ uj),

the conditional distribution of Uj given Uj−1 = uj−1: cuj−1
(uj) = C(Uj ≤

uj|Uj−1 = uj−1) =
∂C(uj−1, uj)

∂uj−1

is a standard uniform distribution.

i. Generate U∗ from a standard uniform distribution.

ii. Calculate the Uj such that Uj = c−1
uj−1

(U∗)

iii. Calculate the Wj such that Wj = F−1
j (Uj) where

Fj(wj) = 1− exp

{
−
∫ wj

0

hj(s)ds

}
.
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3. If Tj ≤ τ , let tj = Tj and increase j by 1. Then, return to the second step.

Otherwise, stop the loop. If j = 1, no events occurred over [0, τ ]. If j > 1, the

recurrent event times observed over [0, τ ] are given by t1, . . . , tn, where n = j−1.

To generate nonidentical processes with individual specific hazard functions

hj(w|νi), j = 1, 2, . . . , i = 1, . . . ,m, we modify the above algorithm as below:

1. Set j = 1 and ti0 = 0.

2. Generate νi from a given distribution.

3. Calculate the jth event time for the ith individual Tij where Tij = ti(j−1) +Wij.

(a) When j = 1

i. Generate Ui1 from a standard uniform distribution.

ii. Calculate the Wi1 such that Wi1 = F−1
1 (Ui1) where

F1(wi1) = 1− exp

{
−
∫ wi1

0

h1(s|νi)ds
}
.

(b) When j ≥ 2

i. Generate U∗ from a standard uniform distribution.

ii. Calculate the Uij such that Uij = c−1
ui(j−1)

(U∗)

iii. Calculate the Wij such that Wj = F−1
ij (Uij) where

Fj(wij) = 1− exp

{
−
∫ wij

0

hij(s|νi)ds
}
.

4. If Tij ≤ τ , let tij = Tij and advance j by 1. Then, return to the third step.

Otherwise, stop the loop. If j = 1, no events occurred over [0, τ ]. If j > 1,

the recurrent event times observed over [0, τ ] are given by ti1, . . . , tini
, where

ni = j − 1.



Chapter 3

Analysis of Recurrent Events Using

Dynamic Models for Event Counts

Past event occurrences during the evolution of a recurrent process may alter the

probability of experiencing new events. In this chapter, we introduce a modulated

Poisson process model for event counts. This model can incorporate two important

features of recurrent event processes, event clustering and trend, as dynamic

covariates. We discuss large sample properties of maximum likelihood estimators

of model parameters, as well as some issues related to unexplained heterogeneity and

other difficulties in the estimation of these features.

The remaining part of this chapter is organized as follows. The model formulation

and issues regarding the existing approaches are discussed in Section 3.1 for identical

processes. We consider the non-identical processes case in Section 3.2. Section 3.3

includes a summary of set of simulation studies under various settings to understand

the issues related to models for event counts. In the last section of this chapter, we

analyze a real data set to illustrate the methods introduced in this chapter.
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3.1 A Dynamic Model for Carryover Effects and

Number of Previous Events

As discussed in the first chapter, carryover effects and the number of previous events

in a recurrent event process may cause clustering of events over time and some sort

of monotonic trend in the event intensity function, respectively. A flexible model

describing these effects as dynamic covariates along with other time-varying covariates

can be defined through a modulated Poisson process as explained below.

Suppose that {N(t); t ≥ 0} is a a counting process with intensity function of the

multiplicative form defined by λ[t|H(t)] = λ0(t)g [W
∗(t);ψ], where g is a non-negative

function, W ∗(t) is a vector of covariates and ψ is a vector of parameters. In

this study, we let g(t) = exp(t), t > 0. The vector of covariates W ∗(t) includes

functions of the history H(t). It may also include external covariates. Let W ∗(t) =

(H ′(t),Z ′(t),x′(t))
′
, where the vector H(t) includes nondecreasing functions of the

number of previous events N(t−), the vector Z(t) includes 0-1 valued terms that

temporarily take value of 1 after event occurrences, and x(t) is the vector of external

covariates. Note that components of the vectors H(t) and Z(t) are functions of

the history H(t), including information on number of previous events and time

since last event in the process {N(t); t ≥ 0}, respectively. Therefore, as discussed

in Section 2.2.2, the vector W ∗(t) can be included in a recurrent event model and

the likelihood based inference given in Chapter 2 can be applied to the vector of

parameters ψ.

In the remainder of this chapter, we specify W ∗(t) = (N(t−), Z(t),x′(t))′, where

Z(t) = I[N(t−) > 0] I[B(t) ≤ ∆], B(t) = t− TN(t−) is the backward recurrence time,

I is a typical 0-1 valued indicator function and ∆ is a positive valued prespecified

quantity, called the risk window. With this specification of W ∗(t), trends due to

number of previous events and carryover effects can be investigated through the

intensity function

λ[t|H(t)] = λ0(t) exp
[
γ N(t−) + β Z(t) + ξ′ x(t)

]
, t > 0, (3.1)

where γ, β and ξ are any real valued regression parameters. The baseline intensity

function λ0(t) in the model (3.1) can be parametrically or non-parametrically specified.

The model (3.1) is simple enough to apply the likelihood based inference methods but
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quite useful to investigate these dynamic features. For example, Cigsar and Lawless

(2012) used the model (3.1) without the trend component N(t−) to develop partial

score tests for the presence of carryover effects in recurrent event processes.

The choice of a value for the risk window ∆ is an important issue with the model

(3.1). This is usually based on the background information, in particular when there

are not too many events experienced per individual during their follow-ups. As an

alternative, the quantity ∆ can be treated as an unknown parameter to be estimated.

However, as discussed by Cigsar and Lawless (2012), the profile likelihood for ∆ is

flat with respect to mild changes in the values of ∆. As a result, estimability may

become an issue in some settings. Furthermore, Cigsar and Lawless (2012) showed

through a simulation study that mild misspecification of the value of ∆ does not

impact the inference on the model parameters. In essence, the value of ∆ should be

small comparing with the average time between events in a process. It should be

noted that the choice of ∆ is also an issue with the carryover effects due to external

factors (Farrington and Whitaker, 2006). Either internal or external carryover effects

are of interest, a sensitivity analysis can be conducted if uncertainty related to the

choice of a value for ∆ is present (Xu et al., 2011; Cigsar and Lawless, 2012). We

would like to note that, in Section 5.2.4, we discuss a semiparametric method, which

may give some insight on the value of ∆ by using the data.

As discussed later in this chapter, unexplained heterogeneity and trend due to

number of previous events may confound with carryover effects, and make it difficult

to investigate carryover effects in some cases. To discuss these issues and introduce

our methodology, we parametrically specify the baseline intensity function λ0(t) in

(3.1) with an unknown constant α, where α > 0. Figure 3.1 illustrates the shapes of

three different versions of the log transformed intensity function (3.1) fitted by using

a simulated data set as t increases.
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Figure 3.1: Realizations of three different dynamic intensity functions for an event
process over the interval [0, 2.5]. The ‘+’ signs in the plot indicate the events and the
‘∗’ signs are for the events which occur within the ∆ time period after an event.

Suppose that there are m independent processes under observation. Let θ =

(α, γ, β, ξ′)′, where ξ is a (q−3)×1 vector of parameters. The log-likelihood function

ℓ(θ) = logL(θ) with the model (3.1), where λ0(t) = α for t > 0, is given by

ℓ(θ) =
m∑

i=1

ni∑

j=1

log(α) + γ

m∑

i=1

ni∑

j=1

Ni(t
−
ij) + β

m∑

i=1

ni∑

j=1

Zi(tij)

+ ξ′
m∑

i=1

ni∑

j=1

xi(tij)−
m∑

i=1

∞∫

0

Yi(u) α e[γ Ni(u
−)+β Zi(u)+ξ′i x(u)] du,

(3.2)

where Yi(t) is the at risk indicator at time t for the ith process. Let (∂/∂θ)ℓ(θ) be

the gradient of ℓ(θ). Then U (θ) = [(∂/∂θ)ℓ(θ)] is a q × 1 vector of score functions
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with components

Uα(θ) =
∂ℓ(θ)

∂α
=

m∑

i=1

ni∑

j=1

1

α
−

m∑

i=1

∫ ∞

0

Yi(t)
1

α
λi [t|Hi(t)] dt,

Uγ(θ) =
∂ℓ(θ)

∂γ
=

m∑

i=1

ni∑

j=1

Ni(t
−
ij)−

m∑

i=1

∫ ∞

0

Yi(t)Ni(t
−)λi [t|Hi(t)] dt,

Uβ(θ) =
∂ℓ(θ)

∂β
=

m∑

i=1

ni∑

j=1

Zi(tij)−
m∑

i=1

∫ ∞

0

Yi(t)Zi(t)λi [t|Hi(t)] dt,

Uξ(θ) =
∂ℓ(θ)

∂ξ
=

m∑

i=1

ni∑

j=1

xi(tij)−
m∑

i=1

∫ ∞

0

Yi(t)xi(t)λi [t|Hi(t)] dt.

(3.3)

The maximum likelihood estimates θ̂ of θ can be obtained by solving the system of

score equations U (θ) = 0, where 0 is a q× 1 vector of zeros. It should be noted that

the existence of θ̂ as a unique maximizer of ℓ(θ) is discussed by Cook and Lawless

(2007, pp. 201–202). The condition required for it is that
∑m

i=1 Yi(t)W
∗∗

i (t)W ∗∗
′

i (t),

where W ∗∗

i (t) = (1, Ni(t
−), Zi(t),x

′
i(t))

′, should be positive definite for at least one

value of t > 0.

We let I(θ) = [−(∂2/∂θ∂θ′)ℓ(θ)] denote the q× q information matrix and I(θ) =

E(I(θ)) = E [−(∂/∂θ′)U (θ)] = E [U (θ)U ′(θ)] denote the q × q Fisher or expected

information matrix, which is the covariance matrix of the score vector U (θ). Model

based variance estimates of the maximum likelihood estimators are available from

I−1(θ) or I
−1(θ) by replacing θ by θ̂. As discussed in Section 3.1.1, under mild

regularity conditions, θ̂ is a consistent estimator of θ and the asymptotic distribution

of the q × 1 random vector
√
m(θ̂ − θ0), as m → ∞, is a q-dimensional multivariate

normal distribution with q × 1 vector of zeros and q × q covariance matrix I
−1(θ0),

where θ0 is the q×1 vector of true values of parameters; that is, in notation,
√
m(θ̂−

θ0) ∼ Nq(0,I
−1(θ0)) as m→ ∞, under mild regularity conditions.

An alternative to the model (3.1) which simultaneously includes trends due to

number of previous events and carryover effects is

λ[t|H(t)] = λ0(t) + γ N(t−) + β Z(t) + ξ′ x(t), t > 0. (3.4)

The model in (3.4) is of additive form. Since the intensity function λ[t|H(t)] is a

positive quantity, γ and β in (3.4) should also be restricted to positive values. Because
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of that reason, it assumes only a positive monotonic trend due to the number of

previous events and event clustering in the data, whereas the model (3.1) can capture

both positive (γ > 0) and negative (γ < 0) trends, as well as event clustering (β > 0)

and event sparsity (β < 0) in the data. The model (3.4) or its ramifications can,

however, be useful in some applications (Section 8.3.2 in Aalen et al., 2008; Simpson,

2013).

A rather technical issue related to the model (3.1) is that it may be dishonest

because of the dynamic covariate N(t−). A definition of dishonest processes can be

found in Cox and Miller (1965, p. 163). Dishonest models may subject to explosion

in a finite time interval. This issue has been discussed by Aalen et al. (2008, Section

8.6.3) in the context of dynamic models. We conducted a small simulation study

to illustrate this issue with the model (3.1). The details of the simulation study

can be found in Appendix B. The results of this study shows that the possibility of

explosion is increasing as the values of β, ∆ and/or τ increase only when the γ > 0.

A necessary and sufficient condition for models to be nonexplosive is called the Feller

condition, which can be applied in our case as follows. Let the intensity function only

depend on N(t−); that is, λi[t|Hi(t)] = g(Ni(t
−)) for a nonnegative function g and

t > 0. Then, the process is nonexplosive on finite intervals if and only if
∑∞

k=1 g(k)
−1

diverges (Feller, 1968, p. 453). For an exponential form λi[t|Hi(t)] = exp(γNi(t
−)),

it is clear that
∑∞

k=1 exp(−γk) converges for all positive values of γ, which implies

that there is a positive probability for an explosion on finite time intervals. If γ

takes negative values, then models with dynamic covariate N(t−) are honest. In this

study, we do not impose any restriction on the values that γ can take. However,

we can achieve an honest process for all values of γ by making some adjustment

in the function g. We use the trimmed version of N(t−) in this study to overcome

the issue of dishonest behaviour of the event generating process. That is, we choose

g(N(t−)) = exp(γN∗(t−)), where

N∗(t−) = N(t−) I[N(t−) ≤ c] + c I[N(t−) > c], t > 0, (3.5)

and the cutoff point c is a prespecified positive integer. It is clear that
∑∞

k=1 exp {−γ
[k I(k ≤ c) + c I(k > c)]} diverges for any positive finite integer c. The value of cutoff

point c may depend on the context of the study. We would like to note that the

issue of explosion is not too restrictive for the settings considered in this thesis.
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This is because, the observed number of events per individual in the applications

considered in our study is small as in many medical and epidemiological studies.

Nonetheless, we replace N(t−) with N∗(t−) in model (3.1), and take c = 20 just

to guarantee non-explosion. It should be noted that Cook and Lawless (2013)

encounter a similar problem, and they choose c = 20 to analyze trends due to N(t−)

in a medical data set. There are other choices for the function g(N(t−)) such as

exp(γN(t−)/t) or exp(γ logN(t−)) (Aalen et al., 2008, Section 8.6.3). However, the

practical interpretation of their corresponding parameter γ is not as straightforward

as that of γ in exp(γN(t−)) to understand the trend due to number of previous events

in recurrent event processes.

3.1.1 Large Sample Properties

The large sample properties of the maximum likelihood estimators in the context

of counting processes require five regularity conditions (Conditions A–E), which are

available in Andersen et al. (1993, pp. 420–421). For the completeness of the

discussion, we give these conditions in Appendix C. We would like to note that the

following discussion requires basic knowledge from the theory of counting process

martingales and stochastic integration. The required mathematical tools and concepts

can be found in Andersen et al. (1993, Chapter 2).

Conditions A and E are regularity conditions concerning the continuity,

boundedness and convergence of log-likelihood derivatives, similar to those Cramér

type regularity conditions found in the classical case (see Cox and Hinkley, 1974,

p. 281). Condition A states that the log-likelihood function is three times differentiable

with respect to model parameters by interchanging the order of integration and

differentiation. This condition is required for the Taylor series expansion of the score

vector U (θ) for any θ in the parameter space around the q-dimensional vector of true

values of parameter θ0. Condition B ensures that the variances (predictable variation

processes) of score functions

a−2
m

m∑

i=1

∫ ∞

0

{
∂

∂θk
λi [u|Hi(u);θ0]

}{
∂

∂θl
λi [u|Hi(u);θ0]

}

× Yi(u)λi [u|Hi(u);θ0] du,

(3.6)
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converge, in probability to deterministic functions σkl(θ0), (k, l = 1, 2, . . . , q), for some

sequence (am)
∞
m=1 of positive constants increasing to infinity as m → ∞. Typically,

the normalizing constants a2m can be considered as the sample size m.

Condition C is required to show that the jumps of martingales or stochastic

integrals with respect to these martingales approach zero as the normalizing constants

am approaches infinity. That is, for all ǫ > 0 and k = 1, . . . , q, the sum

a−2
m

m∑

i=1

∫ ∞

0

{
∂

∂θk
λi [u|Hi(u);θ0]

}2

I

(∣∣∣∣
∂

∂θk
λi [u|Hi(u);θ0]

∣∣∣∣ > amǫ

)

× Yi(u)λi [u|Hi(u);θ0] du,

(3.7)

should converge in probability to 0 as m → ∞. Condition D is that the matrix

constructed with the elements σkl(θ0) defined in Condition B should be positive

definite. Condition E is regarding the boundedness of the third derivative of the

log-likelihood function. This condition needs to be satisfied in order to show that the

remainder term in a Taylor expansion of log-likelihood function is negligible.

It should be noted that Conditions A to E should be verified separately for every

model considered in order to obtain large sample properties of the maximum likelihood

estimators. We now verify them for a specific case of the model discussed in the

previous section. Since our primary goal is to investigate the parameters related to

internal covariates, we ignore external covariates for brevity. However, results can

be extended to that case as well. The intensity function of the counting process

{N∗
i (t); t ≥ 0}, i = 1, . . . ,m, as defined in (3.5), with the parameter vector θ =

(α, β, γ)′ can be written as

λi [t|Hi(t);θ] = α exp
{
βZi(t) + γN∗

i (t
−)
}
, t ≥ 0, i = 1, . . . ,m, (3.8)

where α > 0, β ∈ R and γ ∈ R are the parameters to be estimated. Let N̄∗
i (t) =∫ t

0
Yi(u)dN

∗
i (u), where Yi(u) is the at-risk indicator. The corresponding intensity

function of the observed counting process
{
N̄∗

i (t); t ≥ 0
}
, i = 1, . . . ,m, is then

λ̄i
[
t|H̄i(t);θ

]
= Yi(t)α exp

{
βZi(t) + γN∗

i (t
−)
}
, t ≥ 0, i = 1, . . . ,m, (3.9)

where H̄i(t) =
{
N̄i(s), Yi(s); 0 ≤ s < t

}
. We assume that the predictable at-risk

process {Yi(t); t ≥ 0} and {N∗
i (t); t ≥ 0} are conditionally independent given the
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history. The likelihood obtained from m independent individuals is

L(α, β, γ) =
m∏

i=1

[
ni∏

j=1

αe{βZi(tij)+γN∗
i (t

−
ij)}
]
e
−

τ∫
0

Yi(u)α0e
{βZi(u)+γN∗

i (u−)}du
, (3.10)

where τ is the maximum of follow-up times of all the individuals; i.e. τ =

max{τ1, . . . , τm}. The likelihood function (3.10) is constructed using the

observed data {(ti1, . . . , tini
; τi); i = 1, . . . ,m} on the joint multivariate process{

N̄∗
i (t), Yi(t); i = 1, . . . ,m, t ≥ 0

}
as discussed in Section 2.1.

The first three elements Uα, Uγ and Uβ in the score vector defined in (3.3) are

differentiable with respect to α, γ and β, respectively. Therefore, Condition A is

satisfied for the model (3.8). In order to show that Condition B is fulfilled for the

model (3.8), we need to show that, as m→ ∞,

1

m

m∑

i=1

∫ τ

0

Yi(t)
1

α0

exp
{
β0Zi(t) + γ0N

∗
i (t

−)
}
dt

p→ σαα, (3.11)

1

m

m∑

i=1

∫ τ

0

Yi(t) Zi(t)
2 α0 exp

{
β0Zi(t) + γ0N

∗
i (t

−)
}
dt

p→ σββ, (3.12)

1

m

m∑

i=1

∫ τ

0

Yi(t) N
∗
i (t

−)2 α0 exp
{
β0Zi(t) + γ0N

∗
i (t

−)
}
dt

p→ σγγ, (3.13)

1

m

m∑

i=1

∫ τ

0

Yi(t) Zi(t) exp
{
β0Zi(t) + γ0N

∗
i (t

−)
}
dt

p→ σαβ, (3.14)

1

m

m∑

i=1

∫ τ

0

Yi(t) N
∗
i (t

−) exp
{
β0Zi(t) + γ0N

∗
i (t

−)
}
dt

p→ σαγ, (3.15)

1

m

m∑

i=1

∫ τ

0

Yi(t) Zi(t) N
∗
i (t

−) α0 exp
{
β0Zi(t) + γ0N

∗
i (t

−)
}
dt

p→ σβγ , (3.16)

where the notation
p→ represents convergence in probability. The integrals on the left

hand sides of all the convergence conditions given from (3.11) to (3.16) above have

integrands in the form of step functions. Therefore, they can be rewritten as sums

of rectangles. For example, when τ is sufficiently large for the underlying counting

process {N∗
i (t); t ≥ 0}, i = 1, . . . ,m, the integral

∫ τ

0
exp {β0Zi(t) + γ0N

∗
i (t

−)}dt is
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almost surely equivalent to

Wi1 +

Ni(τ)+1∑

k=2

e((k∧c)−1)γ0
{
Wik +

(
eβ0 − 1

)
(Wik ∧∆)

}
, (3.17)

where a∧ b = min{a, b} and c is defined in (3.5). Similarly, for the observable process{(
N̄i(t), Yi(t)

)
; i = 1, . . . ,m; t ≥ 0

}
, the integral

∫ τ

0
Yi(t) exp {β0Zi(t) + γ0N

∗
i (t

−)}dt
can be expressed as

W̃i1 +

N̄i(τ)+1∑

k=2

e((k∧c)−1)γ0
{
W̃ik +

(
eβ0 − 1

)
(W̃ik ∧∆)

}
, (3.18)

almost surely, where W̃ik =
∫ ti(k−1)+Wik

ti(k−1)
Yi(t)dt. Under the conditionally independent

assumption, following the weak law of large numbers, we can easily show that, as

m→ ∞, the random variable (3.18) converges in probability to

E(W̃1) +

E(N̄(τ))+1∑

k=2

e((k∧c)−1)γ0
{
E(W̃k) +

(
eβ0 − 1

)
E(W̃k ∧∆)

}
, (3.19)

where E(W̃k) =
∫ t(k−1)+E(Wk)

t(k−1)
E(Y (t))dt, E(W̃k ∧∆) =

∫ t(k−1)+E(Wk∧∆)

t(k−1)
E(Y (t))dt and

E(Wk) =
e∆α0e{(k−1)γ0+β0I(k>1)} − 1 + eβ0I(k>1)

α0 exp [(k − 1)γ0 + β0I(k > 1) + ∆α0e{(k−1)γ0+β0I(k>1)}]
,

E(Wk ∧∆) =
e∆α0e{(k−1)γ0+β0I(k>1)} − 1 + ∆− α0∆e{(k−1)γ0+β0I(k>1)}

α0 exp [(k − 1)γ0 + β0I(k > 1) + ∆α0e{(k−1)γ0+β0I(k>1)}]
.

(3.20)

Therefore, we obtain that the convergence result stated in (3.11) is equivalent to

σαα =
E(W̃1)

α0

+
1

α0

E(N̄(τ))+1∑

k=2

{
E(W̃k) +

(
eβ0 − 1

)
E(W̃k ∧∆)

}
e((k∧c)−1)γ0 . (3.21)
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Similarly, we can show that

σγγ = α0E(W̃1) +

E(N̄(τ))+1∑

k=2

α0((k ∧ c)− 1)2
{
E(W̃k) +

(
eβ0 − 1

)
E(W̃k ∧∆)

}
e((k∧c)−1)γ0 ,

(3.22)

σαγ = E(W̃1) +

E(N̄(τ))+1∑

k=2

((k ∧ c)− 1)
{
E(W̃k) +

(
eβ0 − 1

)
E(W̃k ∧∆)

}
e((k∧c)−1)γ0 ,

(3.23)

σββ = α0e
β0

E(N̄(τ))+1∑

k=2

E(W̃k ∧∆)e((k∧c)−1)γ0 , (3.24)

σαβ = eβ0

E(N̄(τ))+1∑

k=2

E(W̃k ∧∆)e((k∧c)−1)γ0 , (3.25)

and

σβγ = α0e
β0

E(N̄(τ))+1∑

k=2

((k ∧ c)− 1)E(W̃k ∧∆)e((k∧c)−1)γ0 . (3.26)

Combining the results in (3.11) – (3.16), the convergence can be rewritten as

1

m

m∑

i=1

∫ τ

0

Yi(t) Ai(t)α0 exp
{
β0Zi(t) + γ0N

∗
i (t

−)
}
dt

p→ Σ, (3.27)

where Ai(t) = bi(t)b
′
i(t), bi(t) = (1/α0, Zi(t), N

∗
i (t

−))′ and

Σ =



σαα σαβ σαγ

σαβ σββ σβγ

σαγ σβγ σγγ


 . (3.28)

For any 3-dimensional vector a such that a contains all non-zero values, the quadratic

form, a′Ai(t)a > 0. Therefore, the matrix Σ is a positive definite matrix, which

satisfies Condition D.

For Condition C, it is obvious that I(m−1/2 > ǫ) converges to 0 as m → ∞ for
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any constant ǫ > 0. Thus, we can show that

1

m

∫ τ

0

m∑

i=1

1

α2
0

I

(∣∣∣∣
1√
m

1

α0

∣∣∣∣ > ǫ

)
Yi(s)α0 exp

{
β0Zi(s) + γ0N

∗
i (s

−)
}
ds

p→ 0, (3.29)

1

m

∫ τ

0

m∑

i=1

Zi(s)
2I

(∣∣∣∣
1√
m
Zh(s)

∣∣∣∣ > ǫ

)
Yi(s)α0 exp

{
β0Zi(s) + γ0N

∗
i (s

−)
}
ds

p→ 0,

(3.30)

1

m

∫ τ

0

m∑

i=1

N∗
i (s

−)2I

(∣∣∣∣
1√
m
N∗

i (s
−)

∣∣∣∣ > ǫ

)
Yi(s)α0 exp

{
β0Zi(s) + γ0N

∗
i (s

−)
}
ds

p→ 0,

(3.31)

as m → ∞. The convergence results in (3.29) – (3.31) prove that the Condition C is

satisfied for the model (3.8).

To show that Condition E is satisfied, we need to introduce the following weak

assumption. For any fixed τ > 0,

1

m

m∑

i=1

∫ t

0

Yi(u) du
p→ r(t), 0 ≤ t ≤ τ, (3.32)

asm→ ∞, where r(t) is a positive constant for any t ∈ [0, τ ]. Now suppose thatM1 ≤
α ≤M2 for some M2 > M1 > 0, and β ≤M3 and γ ≤M4 for some M3,M4 ∈ R. The

required supremum norms of ∂3

∂θj∂θl∂θr
λi [t|Hi(t);θ] and

∂3

∂θj∂θl∂θr
log λi [t|Hi(t);θ] are

bounded by 2/M3
1 and M2c

2 exp(M3 + cM4) respectively for any θj, θl, θr ∈ {α, β, γ},
which do not depend on any parameter in {α, β, γ} for any m. Consequently, using

(3.11) and (3.32), we have

1

m

m∑

i=1

∫ τ

0

M2c
2 exp(M3 + cM4)Yi(u)du

p→M2c
2 exp(M3 + cM4)r(τ), (3.33)

1

m

m∑

i=1

∫ τ

0

1/α4
0Yi(u)α0 exp

{
βZi(u) +N∗

i (u
−)
}
du

p→ α−2
0 σαα, (3.34)
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1

m

m∑

i=1

∫ τ

0

2/M3
1Yi(u)α0 exp

{
β0Zi(u) + γ0N

∗
i (u

−)
}
du

p→ (2α2
0/M

3
1 )σαα, (3.35)

as m→ ∞. For any ǫ > 0,

1

m

m∑

i=1

∫ τ

0

2/M3
1 I

{√
2/M3

1√
m

> ǫ

}
Yi(u)α0 exp

{
β0Zi(u) + γ0N

∗
i (u

−)
}
du

p→ 0 (3.36)

as m → ∞. These convergence results conclude that Condition E is satisfied for

the model in (3.8). Hence, the model in (3.8) satisfies all the conditions (A–E)

specified in Andersen et al. (1993, pp. 420–421) to obtain the asymptotic properties

of the maximum likelihood estimator θ̂ = (α̂, β̂, γ̂). That is, the vector of maximum

likelihood estimators θ̂ is a consistent estimator of θ0, and
√
m(θ̂− θ0) convergences

in distribution to a 3-dimensional multivariate Normal distribution with the 3 × 1

mean zero vector and 3 × 3 covariance matrix Σ, where Σ is defined in (3.28) as

m → ∞. The covariance matrix Σ can be consistently estimated by plugging in the

maximum likelihood estimators in Σ; that is, Σ(α̂, β̂, γ̂) in notation. The proofs of

these assertions can be found in Andersen et al. (1993, Section 6.1.2). The likelihood

ratio and score statistics enjoy the usual large sample properties. For example, as

m→ ∞, the score vector under H0 : θ = θ0 satisfies

1√
m
U (θ0)

D→ N3(0,Σ(θ0)), (3.37)

where the notation
D→ denotes convergence in distribution. A score test can be then

developed from (3.37) for testing H0 : θ = θ0. Similarly, partial score tests can also

be developed for H0 : β = β0; α ∈ R
+, γ ∈ R and H0 : γ = γ0; α ∈ R

+, γ ∈ R.

3.2 Extensions of the Model to Deal with

Unexplained Heterogeneity

In recurrent event studies, including multiple events, there is often an excess

heterogeneity in the event counts across individuals. Environmental factors and
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differences in the individual characteristics usually result in such a heterogeneity.

If these variables are not included as a covariate in a model, there can be excess

variation in the intensity functions across processes. As a result, assumptions of a

common baseline intensity function for all processes become inadequate. We now

consider an extension of the model (3.1) to deal with unexplained heterogeneity in a

cohort. To this end, we introduce a random effects model with the intensity function

λi[t|Hi(t), νi] = ανi exp
[
γ Ni(t

−) + β Zi(t) + ξ
′ x(t)

]
, i = 1, . . . ,m, t > 0,

(3.38)

where ν1, ν2, . . . , νm are positive-valued i.i.d. unobservable random variables. In this

study, we assume that the νi have a gamma distribution with mean 1 and variance

φ. Let G and g denote the c.d.f and p.d.f. of the νi. As discussed in Section 2.3, the

likelihood function for m independent individuals is then given by L(α, β, γ, ξ, φ) =∏m
i=1 Li(α, β, γ, ξ, φ), where

Li(α, β, γ, ξ, φ) =

∫ ∞

0

{
ni∏

j=1

λi [tij|Hi(tij), νi] e
−

∞∫
0

Yi(u)λi[u|Hi(u),νi]du

}
g(νi;φ)dνi.

(3.39)

Note that, since the νi are unobservable, the likelihood contribution Li(α, β, γ, ξ, φ) in

(3.39) is obtained by integrating out the random effect νi. The resulting log-likelihood

function is given by

ℓ(α, β, γ, ξ, φ) =
m∑

i=1

[
log{Γ(ni + φ−1)} − log{Γ(φ−1)}+ ni log(φ)

]

+ n.. logα + β
m∑

i=1

ni∑

j=1

Zi(tij) + γ
m∑

i=1

ni∑

j=1

Ni(t
−
ij) + ξ

′

m∑

i=1

ni∑

j=1

xi(tij)

−
m∑

i=1

(ni + φ−1) log


1 + φ

τ∫

0

αe{βZi(u)+γNi(u
−)+ξ′xi(u)}du


 ,

(3.40)

where n.. =
∑m

i=1 ni. We maximize the log-likelihood function (3.40) with the nlminb

function in optimx R package to obtain the estimates of the parameters α, β, γ, φ

and ξ, and their standard errors.

It should be noted that random effects models to address the unexplained
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heterogeneity may cause unnatural clustering of events over time. This issue is

especially important when the goal of a study is to estimate the effects of dynamic

covariates because random effects models may lead to wrong conclusions in such

situations. To discuss this issue, we now consider the random effects model (3.38)

without carryover effects; that is,

λi[t|Hi(t), νi] = νi exp
[
γ Ni(t

−)
]
, i = 1, . . . ,m, t > 0. (3.41)

After a little algebra, it can be shown that the marginal intensity function is of the

form

λi[t|Hi(t)] =
[1 + φNi(t

−)] exp [γ Ni(t
−)]

1 + φ
t∫
0

exp [γ Ni(u−)] du

, t > 0. (3.42)

The derivation of such a marginal intensity function in (3.42) for the general case is

available in Appendix A. In (3.42), for γ > 0, the numerator increases at each event

occurrence because of the term Ni(t
−). In other words, the intensity makes a jump up

at each event occurrence time because of the terms in the numerator. After each jump,

the intensity function smoothly decreases until the occurrence of the next event as t

increases because of the integral term in the denominator (3.42). Carryover effects

also cause similar type of behavior on the intensity function. Therefore, carryover

effects and unexplained heterogeneity may confound in some settings. Cigsar and

Lawless (2012) conducted a simulation study to investigate the effect of confounding

of heterogeneity with carryover effects. Results of their study show that the carryover

effect is over estimated when the heterogeneity is ignored on a model while it is present

in the data. We also discuss the confounding issue under the model (3.42) through a

simulation study in the next section. Our conclusion is similar to that of Cigsar and

Lawless (2012). A lengthy discussion on the effects of unexplained heterogeneity in

the context of survival analysis can be found in Aalen et al. (2008, Chapter 6).

3.3 Simulation Studies

Our goal in this section is to present the results of two simulation studies conducted

to investigate confounding issues related to dynamic covariates. Since our main focus

in this thesis is not on the dynamic models for event counts, we do not study the
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finite sample properties of the estimators of the model parameters, such as when the

asymptotic normality satisfactorily holds. However, we provide some insight on this

issue in the next chapter, where we introduce methods based on gap times.

We conducted our first simulation study to explore the issue of confounding

between carryover effects and unexplained heterogeneity as briefly discussed in the

previous section. In simulations, we assumed that everyone is observed over [0, τ ],

and we took three values of τ (τ = 1, 2 and 5). For each τ , we generated 2,000

realizations of m (m = 100 and 200) processes with the intensity function (3.38),

where we took β = 0 and ξ = 0. That is, we generated realizations of the counting

process {Ni(t); t ≥ 0} with the intensity function

λi[t|Hi(t)] = νi exp
[
γ Ni(t

−)
]
, i = 1, . . . ,m, t > 0, (3.43)

where we considered three values for γ (γ = 0, 0.05 and 0.095), and two levels of

heterogeneity across m processes; a low level (φ = 0.1) and a high level (φ = 2). For

each generated realization of m processes under the scenarios with combinations of

(τ,m, γ, φ), we used the following model to fit the data.

λi[t|Hi(t)] = α exp
[
γ Ni(t

−) + βI(Ni(t
−) > 0)I(Bi(t) ≤ ∆)

]
, i = 1, . . . ,m, t > 0,

(3.44)

where Bi(t) is the backward recurrence time for the ith process at time t and ∆ = 0.05.

For each realization, we obtained estimates of the parameters in the model (3.44) by

maximizing the corresponding log-likelihood function with the optimx package in

R. The average of the estimates over 2,000 simulation runs and their corresponding

empirical standard deviations (within parenthesis) are presented in Table 3.1.

The results in Table 3.1 shows that, as the heterogeneity parameter φ increases,

the bias in the estimate of the carryover effect β increases. As a result, the fitted

modulated Poisson process model (3.44) gives a wrong conclusion that there is a

significant carryover effect present in the data. For example, when the model (3.44)

fitted to the data generated with φ = 2, β = 0, γ = 0.095 and τ = 5, the empirical

means of estimates of β (= 0.290 and 0.301 when m = 100 and 200, respectively) do

not include zero within its two standard deviations interval. For the corresponding

scenarios when φ = 0.1, the empirical means of estimates of β (= 0.028 and 0.038

when m = 100 and 200, respectively) include zero within its 2 standard deviations
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interval. It is also noted from the results in Table 3.1 that the bias in the estimates

of β is getting larger as the sample size m increases.

Table 3.1: Empirical means and standard deviations (within parenthesis) of parameter
estimates in the model (3.44) based on 2,000 simulation runs; data generated from
the model (3.43) over [0, τ ].

Estimates
τ = 1 τ = 2 τ = 5

m=100 m=200 m=100 m=200 m=100 m=200
Data generated with φ = 0.1, β = 0 and γ = 0

¯̂α 0.972 (0.120) 0.966 (0.080) 0.944 (0.090) 0.938 (0.062) 0.897 (0.065) 0.894 (0.046)
¯̂γ 0.050 (0.129) 0.062 (0.092) 0.054 (0.058) 0.058 (0.041) 0.041 (0.019) 0.042 (0.013)
¯̂
β∆=0.05 -0.177 (1.491) -0.013 (0.356) -0.032 (0.354) 0.006 (0.234) 0.013 (0.211) 0.035 (0.140)

Data generated with φ = 0.1, β = 0 and γ = 0.05
¯̂α 0.972 (0.115) 0.966 (0.081) 0.945 (0.086) 0.939 (0.063) 0.903 (0.060) 0.899 (0.041)
¯̂γ 0.100 (0.116) 0.111 (0.083) 0.100 (0.051) 0.106 (0.035) 0.084 (0.013) 0.085 (0.009)
¯̂
β∆=0.05 -0.161 (1.349) -0.011 (0.340) -0.010 (0.322) 0.006 (0.215) 0.028 (0.167) 0.034 (0.115)

Data generated with φ = 0.1, β = 0 and γ = 0.095
¯̂α 0.973 (0.116) 0.966 (0.080) 0.947 (0.085) 0.943 (0.061) 0.912 (0.055) 0.910 (0.038)
¯̂γ 0.142 (0.113) 0.154 (0.075) 0.142 (0.041) 0.146 (0.028) 0.122 (0.008) 0.122 (0.006)
¯̂
β∆=0.05 -0.108 (1.098) -0.005 (0.314) -0.004 (0.288) 0.011 (0.198) 0.028 (0.120) 0.038 (0.085)

Data generated with φ = 2, β = 0 and γ = 0
¯̂α 0.732 (0.117) 0.742 (0.087) 0.688 (0.102) 0.694 (0.070) 0.571 (0.066) 0.572 (0.046)
¯̂γ 0.337 (0.070) 0.321 (0.055) 0.208 (0.039) 0.198 (0.027) 0.130 (0.010) 0.129 (0.007)
¯̂
β∆=0.05 0.246 (0.414) 0.310 (0.282) 0.296 (0.279) 0.331 (0.188) 0.281 (0.158) 0.299 (0.110)

Data generated with φ = 2, β = 0 and γ = 0.05
¯̂α 0.780 (0.135) 0.793 (0.097) 0.767 (0.108) 0.773 (0.075) 0.604 (0.067) 0.603 (0.048)
¯̂γ 0.316 (0.079) 0.290 (0.063) 0.191 (0.029) 0.184 (0.017) 0.153 (0.009) 0.153 (0.006)
¯̂
β∆=0.05 0.269 (0.606) 0.358 (0.281) 0.266 (0.245) 0.285 (0.168) 0.216 (0.123) 0.233 (0.092)

Data generated with φ = 2, β = 0 and γ = 0.095
¯̂α 0.838 (0.149) 0.860 (0.109) 0.825 (0.114) 0.826 (0.074) 0.620 (0.068) 0.616 (0.046)
¯̂γ 0.284 (0.085) 0.251 (0.058) 0.197 (0.019) 0.194 (0.010) 0.180 (0.008) 0.180 (0.005)
¯̂
β∆=0.05 0.380 (0.422) 0.465 (0.283) 0.256 (0.217) 0.278 (0.148) 0.290 (0.128) 0.301 (0.092)

Another issue is that the parameter γ representing the trend due to the number of

previous events is significantly overestimated when τ and/or φ increases. For example,

when the model (3.44) was fitted to the data generated withm = 200, β = 0, γ = 0.095

and τ = 5, the empirical means of estimates of γ (= 0.122 and 0.180 when φ = 0.1

and 2, respectively) increases as φ increases. The results given in Table 3.1, therefore,

indicate that when the unexplained heterogeneity in dynamic models for event counts

is ignored, significant bias in the estimates of dynamic covariates may occur in some

settings. As a consequence, we recommend conducting a detailed analysis for the

presence of excess heterogeneity if there is an interest in modelling dynamic covariates.
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We next present the design and results of our second simulation study conducted

to check whether carryover effects are confounded with trends due to N(t−). If the

term N(t−) is of interest along with carryover effects, then carryover effects may

confound with an increasing trend due to N(t−) as well. This issue can be explained

as follows. As the observation period increases, models with an increasing trend due

to N(t−) eventually start generating events in which the expectation of gap times

will be shorter than a given carryover effect period. In such cases, models based on

modulated Poisson processes may spuriously reveal the presence of carryover effects.

This is also an issue for the gap time models discussed in Chapter 4 because carryover

effects may become unidentifiable in such cases. Our simulation study presented here

also shows some insight when such a case could happen. We explore this phenomenon

through simulation studies in two settings; (i) identical processes, and (ii) nonidentical

processes. To prevent explosion in the number of events, instead of using Ni(t
−), we

used the termN∗
i (t

−) as defined in (3.5), where we fixed the value of c at 20 throughout

this section. We considered three models to generate the data. These models define

the scenarios explained below.

In the first scenario, we simulated 2,000 runs of the model

λi[t|Hi(t)] = α, t > 0, (3.45)

for each combination of m (= 10, 50, 100 and 250) and τ (= 1, 2 and 5). We took

α = 2 in the model (3.45). Thus, the data generated did not include carryover effects

or trend. As discussed in Section 3.2, we used optimx package in R to fit the following

four models with the same generated data for each of 2,000 simulation runs.

M1: Model 1 is a homogeneous Poisson model with the intensity function

λi[t|Hi(t)] = α, i = 1, . . ., m,

M2: Model 2 is a carryover effects model with the intensity function

λi[t|Hi(t)] = α exp [β Zi(t)], i = 1, . . ., m,

M3: Model 3 is a trend model with the intensity function

λi[t|Hi(t)] = α exp [γ N∗
i (t

−)], i = 1, . . ., m, and

M4: Model 4 is a hybrid model with the intensity function

λi[t|Hi(t)] = α exp [γ N∗
i (t

−) + β Zi(t)], i = 1, . . ., m.
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We fixed ∆ at 0.02 in the models M2 and M4. Note that, in this scenario, the first

model (M1) is the correctly specified model and other models (M2, M3 and M4)

are misspecified. The empirical means of the parameter estimates based on 2,000

simulation runs and their empirical standard errors are reported for the four fitted

models.

Table 3.2: Empirical means and standard deviations (within parenthesis) of parameter
estimates of 4 different models when the data generated from a model with α = 2, β =
0 and γ = 0 in (3.44) with 2,000 simulations.

Fitted Simulation
τ = 1 τ = 2 τ = 5

m=10 m=50 m=100 m=250 m=10 m=50 m=100 m=250 m=10 m=50 m=100 m=250
M1 ¯̂α 2.001 2.002 1.998 1.999 1.997 1.999 1.999 1.998 1.998 2.000 1.998 2.000

(0.444) (0.199) (0.144) (0.089) (0.309) (0.141) (0.098) (0.063) (0.200) (0.092) (0.064) (0.040)

M2 ¯̂α 2.003 2.003 1.999 1.999 1.998 2.000 2.000 1.998 1.999 2.000 1.999 2.000
(0.454) (0.204) (0.148) (0.090) (0.314) (0.143) (0.100) (0.065) (0.204) (0.094) (0.065) (0.041)

¯̂
β -9.665 -0.531 -0.079 -0.024 -4.517 -0.078 -0.041 -0.016 -0.594 -0.028 -0.013 -0.005

(10.795) (2.990) (0.414) (0.239) (8.732) (0.413) (0.276) (0.167) (3.196) (0.235) (0.169) (0.106)

M3 ¯̂α 2.208 2.045 2.020 2.006 2.156 2.037 2.018 2.004 2.091 2.015 2.006 2.003
(0.680) (0.279) (0.191) (0.117) (0.520) (0.221) (0.151) (0.094) (0.359) (0.158) (0.109) (0.070)

¯̂γ -0.101 -0.019 -0.010 -0.003 -0.034 -0.008 -0.004 -0.001 -0.007 -0.001 -0.001 0.000
(0.250) (0.092) (0.062) (0.038) (0.102) (0.040) (0.028) (0.017) (0.028) (0.013) (0.009) (0.006)

M4 ¯̂α 2.205 2.044 2.020 2.006 2.154 2.037 2.018 2.004 2.091 2.015 2.007 2.003
(0.680) (0.280) (0.192) (0.117) (0.518) (0.221) (0.151) (0.094) (0.361) (0.159) (0.109) (0.070)

¯̂γ -0.101 -0.019 -0.010 -0.003 -0.034 -0.008 -0.004 -0.001 -0.007 -0.001 -0.001 0.000
(0.255) (0.093) (0.063) (0.039) (0.103) (0.041) (0.028) (0.017) (0.028) (0.013) (0.009) (0.006)

¯̂
β -9.653 -0.521 -0.074 -0.023 -4.491 -0.075 -0.040 -0.016 -0.551 -0.029 -0.013 -0.005

(10.834) (2.988) (0.422) (0.242) (8.713) (0.415) (0.278) (0.168) (2.949) (0.235) (0.169) (0.106)

Table 3.2 contains the results of the simulation study from the first scenario. When

the sample size and/or the follow-up period increase, the bias in the empirical mean

is decreasing in any fitted model. For example, when the model M4 fitted to the data

generated in first scenario with α = 2 and τ = 1, the empirical means of estimates

of α (= 2.205, 2.044, 2.020 and 2.006 when m = 10, 50, 100 and 250, respectively)

gets closer to the true value of α as m increases. Also, when the model M4 fitted to

the data generated in first scenario with α = 2 and m = 10, the empirical means of

estimates of α (= 2.205, 2.154 and 2.091 when τ = 1, 2 and 5, respectively) gets closer

to the true value of α as τ increases. The empirical standard deviations of parameter

estimates are decreasing as sample size m and/or the follow-up period τ increase in

any fitted model. For example, when the model M4 fitted to the data generated in

first scenario with α = 2 and τ = 1, the empirical standard deviations of estimates

of α (= 0.680, 0.280, 0.192 and 0.117 when m = 10, 50, 100 and 250, respectively)



65

decreases α as m increases. Also when the model M4 fitted to the data generated

in first scenario with α = 2 and m = 10, the empirical means of estimates of α (=

0.680, 0.518 and 0.361 when τ = 1, 2 and 5, respectively) decreases as τ increases.

These results indicate that the parameter estimates are consistent as m increases and

also τ increases. In general, parameter estimates and their standard errors of α in all

models are within two standard errors of the correct values. All models considered in

Table 3.2 revealed the correct conclusion that there is no carryover effect or trend in

the data.

In the second scenario, we generated data from the model

λi[t|Hi(t)] = α exp [β Zi(t)] , t > 0, (3.46)

where α = 1 and β = 0.693. We fixed the duration of the carryover effect (i.e.

∆) at 0.02. Note that in this scenario, the generated data included carryover effect

but there was no trend due to the number of previous events. Other than the data

generation process, the simulation design of the second scenario was the same with

that of the first scenario. We present the results of simulations for the second scenario

in Table 3.3. Note that in this case, the fitted model M2 is the correctly specified

model whereas other fitted models (M1, M3 and M4) are misspecified.

Table 3.3: Empirical means and standard deviations (within parenthesis) of parameter
estimates of 4 different models when the data generated from a model with α = 1, β =
0.693, γ = 0 and ∆ = 0.02 in (3.44) with 2,000 simulations.

Fitted Simulation
τ = 1 τ = 2 τ = 5

m=10 m=50 m=100 m=250 m=10 m=50 m=100 m=250 m=10 m=50 m=100 m=250
M1 ¯̂α 1.018 1.022 1.019 1.018 1.020 1.020 1.019 1.019 1.018 1.020 1.019 1.019

(0.331) (0.144) (0.102) (0.064) (0.230) (0.099) (0.073) (0.046) (0.145) (0.064) (0.046) (0.030)

M2 ¯̂α 0.999 1.003 1.000 0.998 1.000 1.001 1.000 0.999 0.998 1.001 0.999 0.999
(0.325) (0.141) (0.100) (0.063) (0.225) (0.097) (0.072) (0.045) (0.142) (0.063) (0.045) (0.029)

¯̂
β -12.360 -2.198 0.138 0.640 -8.170 0.234 0.617 0.670 -2.186 0.632 0.666 0.684

(9.664) (6.990) (2.949) (0.355) (10.121) (2.658) (0.402) (0.233) (7.017) (0.344) (0.233) (0.147)

M3 ¯̂α 1.116 1.034 1.015 1.005 1.116 1.027 1.016 1.008 1.077 1.023 1.014 1.012
(0.433) (0.172) (0.122) (0.076) (0.350) (0.135) (0.094) (0.059) (0.236) (0.101) (0.069) (0.044)

¯̂γ -1.137 -0.029 0.005 0.023 -0.089 -0.005 0.004 0.011 -0.018 0.000 0.002 0.003
(4.411) (0.187) (0.130) (0.078) (0.245) (0.087) (0.058) (0.037) (0.072) (0.030) (0.021) (0.013)

M4 ¯̂α 1.110 1.030 1.012 1.002 1.109 1.022 1.010 1.003 1.066 1.013 1.005 1.002
(0.431) (0.171) (0.122) (0.076) (0.347) (0.135) (0.093) (0.059) (0.232) (0.099) (0.068) (0.044)

¯̂γ -1.328 -0.060 -0.027 -0.008 -0.105 -0.020 -0.010 -0.003 -0.022 -0.004 -0.002 -0.001
(4.760) (0.193) (0.135) (0.081) (0.249) (0.088) (0.059) (0.038) (0.072) (0.029) (0.020) (0.013)

¯̂
β -11.286 -2.159 0.154 0.644 -8.075 0.241 0.623 0.672 -2.191 0.632 0.666 0.684

(10.347) (6.996) (2.959) (0.366) (10.077) (2.679) (0.408) (0.235) (7.194) (0.345) (0.234) (0.148)
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In this scenario, our conclusions are similar to those given in the previous scenario

for all the models and cases considered. The simulation results for the models M3

and M4 show that trend due to number of previous events is not significant in these

models. Therefore, we conclude that, when the data generated from a model with

carryover effects but without the dynamic trend covariate N∗(t−), carryover effects

and effects of N∗(t−) do not confound.

In the last scenario, we used the model

λi[t|Hi(t)] = α exp
[
γ N∗

i (t
−)
]
, t > 0, (3.47)

where α = 1 and γ = 0.223, to generate data. Other than the data generation process

we used the same simulation design given in the first scenario. Thus, the correct

model in this scenario is the model M3, which does not include carryover effects.

Table 3.4: Empirical means and standard deviations (within parenthesis) of parameter
estimates of 4 different models when the data generated from a model with α = 1, β =
0 and γ = 0.223 in (3.44) with 2,000 simulations.

Fitted Simulation
τ = 1 τ = 2 τ = 5

m=10 m=50 m=100 m=250 m=10 m=50 m=100 m=250 m=10 m=50 m=100 m=250
M1 ¯̂α 1.153 1.157 1.155 1.156 1.521 1.525 1.526 1.530 14.730 14.726 14.665 14.642

(0.393) (0.183) (0.128) (0.081) (0.664) (0.298) (0.211) (0.131) (4.918) (2.158) (1.521) (0.965)

M2 ¯̂α 1.146 1.149 1.147 1.147 1.427 1.430 1.431 1.431 5.278 5.193 5.160 5.155
(0.392) (0.180) (0.128) (0.080) (0.438) (0.196) (0.139) (0.087) (1.561) (0.672) (0.472) (0.300)

¯̂
β -13.479 -3.762 -0.593 0.211 -6.226 0.628 0.925 1.104 2.506 2.519 2.524 2.522

(9.277) (8.012) (3.851) (0.604) (9.766) (1.696) (0.658) (0.450) (0.228) (0.104) (0.074) (0.047)

M3 ¯̂α 1.115 1.030 1.013 1.007 1.094 1.028 1.014 1.004 1.008 1.003 1.001 1.000
(0.405) (0.164) (0.116) (0.073) (0.291) (0.110) (0.074) (0.045) (0.130) (0.058) (0.041) (0.026)

¯̂γ -0.491 0.171 0.200 0.211 0.156 0.206 0.215 0.220 0.223 0.223 0.223 0.223
(3.268) (0.138) (0.090) (0.055) (0.146) (0.036) (0.021) (0.011) (0.007) (0.003) (0.002) (0.001)

M4 ¯̂α 1.112 1.029 1.012 1.007 1.091 1.026 1.013 1.004 1.007 1.003 1.001 1.000
(0.405) (0.164) (0.116) (0.074) (0.292) (0.111) (0.075) (0.045) (0.131) (0.058) (0.041) (0.026)

¯̂γ -0.520 0.172 0.200 0.212 0.158 0.208 0.216 0.221 0.223 0.223 0.223 0.223
(3.365) (0.142) (0.092) (0.056) (0.148) (0.038) (0.023) (0.012) (0.009) (0.004) (0.003) (0.002)

¯̂
β -13.198 -4.021 -0.869 -0.076 -6.725 -0.206 -0.056 -0.019 -0.008 0.000 0.000 0.000

(9.598) (8.017) (3.841) (0.601) (9.596) (1.529) (0.294) (0.166) (0.106) (0.045) (0.032) (0.020)

Table 3.4 contains the results of the simulation studies in the third scenario. For

models M1, M3 and M4, our conclusions from Table 3.4 are similar to those presented

in Table 3.2. However, the results from the misspecified models (M1 and M2) indicate

significant carryover effects when τ increases. For example, when the model M2 fitted

to the data generated in third scenario with α = 1, γ = 0.223 and m = 250, the
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empirical means of estimates of β (= 1.104 and 2.522 when τ = 2 and 5, respectively)

are significantly biased and the bias increases as τ increases. These results show that,

when the data include trend but not carryover effects and if the trend is ignored in the

model, there might be wrong conclusions about the presence of carryover effects. The

expanded model M4 includes both trend due to N(t−) and carryover effects. In this

model, carryover effects are not significant in the cases considered in the simulation

study. Therefore, it indicates that the model M4 does not suffer from confounding

issues between carryover effects and trends due to the previous number of events.

In the second setting of this simulation study, we investigated the issue of

confounding between carryover effects and trend due to number of previous events

in heterogeneous processes. We considered three models to generate the data. These

models define the scenarios explained below. In the first scenario, we simulated 1,000

runs of the model

λi[t|Hi(t), νi] = ανi, t > 0, (3.48)

where the νi are i.i.d. gamma random variables with mean 1 and variance φ, for each

combination of m (= 50, 100 and 250), τ (= 1 and 2) and φ (= 0.1 and 2). We took

α = 2 in the model (3.48). Thus, the data generated did not include carryover effects

or trend. We then fitted four models in each scenario;

M1*: Model 1 is a heterogeneous null model with the intensity function

λi[t|Hi(t), νi] = ανi, i = 1, . . ., m,

M2*: Model 2 is a heterogeneous carryover effects model with the intensity function

λi[t|Hi(t), νi] = ανi exp [β Zi(t)], i = 1, . . ., m,

M3*: Model 3 is a heterogeneous trend model with the intensity function

λi[t|Hi(t), νi] = ανi exp [γ Ni(t
−)], i = 1, . . ., m, and

M4*: Model 4 is a heterogeneous hybrid model with the intensity function

λi[t|Hi(t), νi] = ανi exp [γ Ni(t
−) + β Zi(t)], i = 1, . . ., m.

Table 3.5 contains the results of the simulation study from the first scenario for

nonidentical processes. In general, empirical estimates and their standard errors of

α in all models are within two standard errors of the correct values. All models

considered in Table 3.5 reveal the correct conclusion that there is no carryover effect

or trend in the data.
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Table 3.5: Empirical means and standard deviations (within parenthesis) of parameter
estimates of 4 different models when the data generated from a model with α = 2 and
φ = (0.1, 2) in (3.48) with 1,000 simulations.

Fitted

Simulation
φ = 0.1 φ = 2

τ = 1 τ = 2 τ = 1 τ = 2
m=50 m=100 m=250 m=50 m=100 m=250 m=50 m=100 m=250 m=50 m=100 m=250

M1* ¯̂α 1.995 2.000 1.997 1.998 2.003 1.995 1.987 2.007 1.998 2.004 2.008 1.997
(0.218) (0.156) (0.096) (0.166) (0.123) (0.075) (0.443) (0.331) (0.205) (0.421) (0.307) (0.189)

¯̂
φ 0.102 0.101 0.098 0.096 0.097 0.099 2.008 1.978 2.005 1.989 2.028 2.007

(0.109) (0.080) (0.055) (0.070) (0.050) (0.031) (0.691) (0.430) (0.275) (0.528) (0.370) (0.227)

M2* ¯̂α 1.997 2.002 1.997 1.997 2.004 1.995 1.991 2.013 1.998 2.008 2.011 1.997
(0.221) (0.160) (0.098) (0.168) (0.125) (0.076) (0.451) (0.335) (0.208) (0.424) (0.310) (0.190)

¯̂
φ 0.104 0.103 0.098 0.096 0.097 0.099 2.012 1.985 2.006 1.992 2.031 2.008

(0.112) (0.082) (0.056) (0.070) (0.050) (0.031) (0.704) (0.434) (0.277) (0.530) (0.373) (0.227)
¯̂
β -0.497 -0.127 -0.018 -0.049 -0.041 -0.003 -0.145 -0.050 -0.009 -0.046 -0.024 -0.007

(2.746) (1.015) (0.234) (0.390) (0.264) (0.157) (1.408) (0.249) (0.155) (0.271) (0.170) (0.108)

M3* ¯̂α 2.100 2.062 2.022 2.034 2.017 2.007 2.096 2.044 2.017 2.045 2.031 2.002
(0.377) (0.267) (0.166) (0.277) (0.214) (0.128) (0.542) (0.376) (0.236) (0.476) (0.346) (0.213)

¯̂
φ 0.149 0.133 0.113 0.106 0.101 0.103 2.114 2.013 2.025 2.014 2.043 2.010

(0.195) (0.145) (0.092) (0.095) (0.071) (0.047) (0.795) (0.489) (0.311) (0.564) (0.390) (0.241)
¯̂γ -0.032 -0.019 -0.007 -0.004 0.000 -0.002 -0.016 -0.005 -0.003 -0.003 -0.002 0.000

(0.118) (0.092) (0.059) (0.048) (0.037) (0.024) (0.063) (0.034) (0.021) (0.022) (0.014) (0.009)

M4* ¯̂α 2.101 2.064 2.022 2.034 2.018 2.007 2.102 2.048 2.018 2.050 2.035 2.003
(0.380) (0.267) (0.167) (0.278) (0.216) (0.129) (0.552) (0.379) (0.238) (0.480) (0.350) (0.213)

¯̂
φ 0.150 0.134 0.113 0.106 0.101 0.102 2.118 2.018 2.025 2.019 2.046 2.010

(0.196) (0.146) (0.093) (0.095) (0.071) (0.048) (0.805) (0.492) (0.312) (0.568) (0.393) (0.240)
¯̂γ -0.032 -0.019 -0.007 -0.004 0.000 -0.002 -0.016 -0.005 -0.003 -0.003 -0.002 0.000

(0.119) (0.093) (0.059) (0.048) (0.037) (0.024) (0.063) (0.035) (0.021) (0.022) (0.014) (0.009)
¯̂
β -0.447 -0.129 -0.019 -0.054 -0.044 -0.003 -0.157 -0.056 -0.012 -0.053 -0.027 -0.008

(2.449) (1.014) (0.234) (0.391) (0.264) (0.157) (1.406) (0.250) (0.155) (0.271) (0.170) (0.108)

In the second scenario, we generated data from the model

λi[t|Hi(t), νi] = ανi exp [β Zi(t)] , t > 0, (3.49)

where α = 1 and β = 0.693. We fixed the duration of the carryover effect (i.e.

∆) at 0.02. Note that in this scenario, the generated data included carryover effect

but there was no trend due to the number of previous events. Other than the data

generation process, the simulation design of the second scenario was the same with

that of the first scenario. We present the results of simulations for the second scenario

in Table 3.6. Note that in this case, the fitted model M2* is the correctly specified

model whereas other fitted models (M1*, M3* and M4*) are misspecified.
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Table 3.6: Empirical means and standard deviations (within parenthesis) of parameter
estimates of 4 different models when the data generated from a model with α = 1, β =
0.693, φ = (0.1, 2) and ∆ = 0.02 in (3.49) with 1,000 simulations.

Fitted

Simulation
φ = 0.1 φ = 2

τ = 1 τ = 2 τ = 1 τ = 2
m=50 m=100 m=250 m=50 m=100 m=250 m=50 m=100 m=250 m=50 m=100 m=250

M1* ¯̂α 1.019 1.020 1.023 1.021 1.021 1.021 1.055 1.051 1.060 1.053 1.064 1.057
(0.153) (0.109) (0.068) (0.112) (0.080) (0.050) (0.271) (0.200) (0.122) (0.248) (0.180) (0.113)

¯̂
φ 0.164 0.155 0.148 0.124 0.124 0.122 2.175 2.188 2.207 2.138 2.141 2.142

(0.194) (0.148) (0.101) (0.117) (0.088) (0.059) (0.968) (0.625) (0.379) (0.705) (0.478) (0.287)

M2* ¯̂α 1.000 0.999 1.000 1.000 1.000 0.999 0.999 0.995 1.002 0.996 1.006 0.998
(0.150) (0.106) (0.067) (0.110) (0.079) (0.048) (0.248) (0.182) (0.111) (0.225) (0.164) (0.102)

¯̂
φ 0.136 0.120 0.106 0.104 0.102 0.098 1.987 1.996 2.006 2.007 2.006 2.000

(0.179) (0.137) (0.091) (0.107) (0.082) (0.055) (0.913) (0.583) (0.358) (0.670) (0.452) (0.271)
¯̂
β -1.015 0.368 0.668 0.398 0.590 0.677 0.076 0.609 0.679 0.614 0.653 0.690

(5.178) (1.956) (0.339) (1.767) (0.747) (0.223) (3.282) (0.721) (0.208) (0.723) (0.242) (0.145)

M3* ¯̂α 1.136 1.069 1.043 1.067 1.048 1.029 1.123 1.087 1.065 1.096 1.075 1.054
(0.277) (0.175) (0.112) (0.193) (0.132) (0.085) (0.352) (0.238) (0.141) (0.290) (0.206) (0.127)

¯̂
φ 0.344 0.238 0.187 0.163 0.155 0.131 2.340 2.283 2.212 2.219 2.157 2.128

(0.452) (0.294) (0.196) (0.195) (0.151) (0.095) (1.218) (0.790) (0.472) (0.807) (0.553) (0.319)
¯̂γ -0.133 -0.054 -0.019 -0.025 -0.015 -0.003 -0.025 -0.016 -0.001 -0.012 -0.002 0.001

(0.263) (0.195) (0.131) (0.117) (0.089) (0.057) (0.154) (0.094) (0.046) (0.056) (0.033) (0.019)

M4* ¯̂α 1.124 1.056 1.029 1.051 1.031 1.010 1.077 1.044 1.022 1.047 1.028 1.007
(0.272) (0.170) (0.108) (0.188) (0.128) (0.082) (0.320) (0.219) (0.129) (0.263) (0.187) (0.115)

¯̂
φ 0.324 0.216 0.160 0.148 0.137 0.111 2.208 2.146 2.071 2.114 2.052 2.018

(0.444) (0.284) (0.187) (0.187) (0.146) (0.090) (1.167) (0.747) (0.447) (0.768) (0.523) (0.303)
¯̂γ -0.155 -0.073 -0.036 -0.031 -0.020 -0.006 -0.036 -0.026 -0.011 -0.016 -0.006 -0.002

(0.265) (0.195) (0.130) (0.116) (0.088) (0.056) (0.151) (0.092) (0.045) (0.054) (0.031) (0.018)
¯̂
β -1.080 0.432 0.669 0.393 0.584 0.676 0.055 0.602 0.676 0.604 0.647 0.688

(5.286) (1.520) (0.341) (1.774) (0.771) (0.223) (3.347) (0.725) (0.210) (0.724) (0.243) (0.145)

In this simulation scenario, we observed similar outcomes to those given in the

previous scenario for all the models and cases. The simulation results for the models

M3* and M4* show that trend due to number of previous events is not significant in

these models model. This result suggests that when the data generated from a model

with carryover effects but without the dynamic covariate N∗(t−), carryover effects

and effects of N∗(t−) do not confound.

In the last scenario, we generated data from the model

λi[t|Hi(t), νi] = ανi exp
[
γ N∗

i (t
−)
]
, t > 0, (3.50)

where α = 1 and γ = 0.095. Other than the data generation process we used the

same simulation design given in the first scenario for nonidentical processes. Thus,

the correct model in this scenario is the model M3*, which does not include carryover

effects.
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Table 3.7: Empirical means and standard deviations (within parenthesis) of parameter
estimates of 4 different models when the data generated from a model with α = 1, γ =
0.095 and φ = (0.1, 2) in (3.50) with 1,000 simulations.

Fitted

Simulation
φ = 0.1 φ = 2

τ = 1 τ = 2 τ = 1 τ = 2
m=50 m=100 m=250 m=50 m=100 m=250 m=50 m=100 m=250 m=50 m=100 m=250

M1* ¯̂α 1.058 1.058 1.060 1.131 1.131 1.133 1.254 1.254 1.265 1.701 1.703 1.710
(0.164) (0.116) (0.074) (0.134) (0.098) (0.060) (0.415) (0.302) (0.202) (0.623) (0.427) (0.266)

¯̂
φ 0.231 0.231 0.228 0.244 0.246 0.257 2.759 2.818 2.865 3.185 3.292 3.330

(0.232) (0.178) (0.115) (0.148) (0.110) (0.070) (1.286) (0.902) (0.561) (1.025) (0.714) (0.458)

M2* ¯̂α 1.059 1.058 1.060 1.130 1.131 1.133 1.225 1.222 1.230 1.590 1.586 1.593
(0.167) (0.116) (0.075) (0.134) (0.099) (0.060) (0.381) (0.269) (0.179) (0.538) (0.368) (0.227)

¯̂
φ 0.233 0.232 0.227 0.243 0.247 0.256 2.697 2.741 2.773 3.045 3.128 3.159

(0.235) (0.182) (0.117) (0.149) (0.111) (0.071) (1.224) (0.835) (0.507) (0.953) (0.662) (0.423)
¯̂
β -4.388 -1.291 -0.070 -0.843 -0.129 -0.017 -0.899 0.009 0.172 0.168 0.340 0.357

(8.000) (4.615) (0.743) (3.814) (0.975) (0.272) (4.315) (1.330) (0.255) (1.444) (0.198) (0.113)

M3* ¯̂α 1.115 1.054 1.027 1.042 1.023 1.007 1.068 1.026 1.015 1.014 0.992 0.992
(0.257) (0.164) (0.104) (0.166) (0.113) (0.075) (0.285) (0.192) (0.120) (0.233) (0.161) (0.101)

¯̂
φ 0.316 0.220 0.159 0.144 0.124 0.109 2.222 2.109 2.066 1.992 1.973 1.971

(0.427) (0.280) (0.182) (0.168) (0.123) (0.083) (1.076) (0.685) (0.397) (0.675) (0.452) (0.289)
¯̂γ -0.044 0.024 0.063 0.070 0.080 0.092 0.061 0.079 0.087 0.088 0.093 0.094

(0.246) (0.175) (0.118) (0.090) (0.066) (0.044) (0.120) (0.061) (0.030) (0.028) (0.015) (0.008)

M4* ¯̂α 1.116 1.055 1.027 1.042 1.024 1.007 1.068 1.026 1.015 1.013 0.991 0.992
(0.258) (0.165) (0.104) (0.167) (0.114) (0.075) (0.287) (0.192) (0.120) (0.233) (0.161) (0.101)

¯̂
φ 0.316 0.220 0.159 0.144 0.125 0.109 2.221 2.109 2.065 1.991 1.972 1.971

(0.428) (0.281) (0.181) (0.169) (0.124) (0.083) (1.085) (0.689) (0.398) (0.676) (0.452) (0.290)
¯̂γ -0.044 0.025 0.062 0.070 0.081 0.092 0.063 0.080 0.087 0.088 0.094 0.094

(0.247) (0.176) (0.119) (0.090) (0.066) (0.044) (0.121) (0.063) (0.031) (0.029) (0.016) (0.009)
¯̂
β -3.934 -1.017 -0.068 -0.662 -0.149 -0.033 -1.005 -0.167 -0.029 -0.152 -0.017 -0.012

(7.317) (3.818) (0.477) (3.120) (0.964) (0.272) (4.185) (1.306) (0.226) (1.413) (0.181) (0.101)

Table 3.7 contains the results of the simulation studies for the third scenario for

nonidentical processes. For models M1*, M3* and M4*, our conclusions from Table 3.7

are similar to those presented in Table 3.5. However, the results from the misspecified

models (M1*, M2* and M4*) indicate significant carryover effects when τ increases.

For example, when the model M2* fitted to the data generated in third scenario with

α = 1, γ = 0.095 and m = 250, the empirical means of estimates of β (= 0.172 and

0.357 when τ = 1 and 2, respectively) are biased and the bias increases as τ increases.

Note that in this specific example, the empirical means of estimates of φ (= 2.773 and

3.159 when τ = 1 and 2, respectively) are biased and the bias increases as τ increases.

These results show that when the data includes trend but not carryover effects and

if the trend is ignored in the model, there might be wrong conclusions about the

presence of carryover effects. The expanded model M4* includes both trend due to

number of previous events and carryover effects. In this model, carryover effects are

not significant. Therefore, the simulation results indicate that the model M4* does
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not suffer from confounding issues between carryover effects and trends due to the

previous number of events.

Briefly, simulations for the nonidentical processes revealed that if the population

is heterogeneous, similar to the conclusion of the first setting, model misspecification

may result in wrong conclusions about carryover effects when the trend is present.

The correctly specified model does not suffer from such an issue.

3.4 Application: Recurrent Asthma Attacks in

Children

We analyze the data from a prevention trial in infants with a high risk of asthma

(Duchateau et al., 2003). A brief introduction of this data is available in Section 1.2.2.

We examine the data with some simple graphical illustrations to understand the

asthma data before we fit the models which are developed in this chapter. For this

purpose, we choose the plots of the cumulative mean function and the cumulative

variance function (Cook and Lawless, 2007, p. 2). These plots require all the processes

to be observed in a fixed time interval. But in asthma data, the individuals have

different lengths of observation periods. Therefore, we consider the individuals with

at least 420 days observation period. Consequently, we select only 101 individuals

from 113 individuals in the treatment group and 108 individuals from 119 individuals

in the control group. We plot cumulative mean functions and the cumulative variance

functions for each group separately and also for the full data using those chosen

individuals for the period of 420 days (1.286 years).

When the data does not have excess heterogeneity, the cumulative mean and

variance functions are close together. The plots in Figure 3.2 show that the cumulative

variance functions increase more exponentially than the cumulative mean functions

in each group, as well as in the full data. This result indicates that there is excess

heterogeneity among the individuals in the asthma data.
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Figure 3.2: Cumulative mean and variance functions of the asthma data.

We consider two different modeling procedures based on the modulated Poisson

process model (3.1) (MPP) and the random effects model (3.38) (REM). In each

procedure we fit four different models; (1) the null model, which has neither trend nor

carryover effects, (2) the carryover effects model, which does not consider the trend

effect, (3) the trend model, which does not consider the carryover effects effect, and (4)

the hybrid model, which consider both carryover effects and trend due to the number

of previous events. Parameter estimates of the models for the group–wise data are

presented in Table 3.8 with their corresponding Akaike information criterion (AIC)

values (Akaike, 1974). As suggested in Cook and Lawless (2013), we pick carryover

effect period as two months, i.e., ∆ = 56 days = 0.1533 year.
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Table 3.8: Parameter estimates and standard errors (within parenthesis) from
count-based models for the asthma data.

Models
Treatment group Control group

α̂ φ̂ γ̂ β̂ ℓ(θ̂) AIC α̂ φ̂ γ̂ β̂ ℓ(θ̂) AIC

Null
MPP

2.1219
-83.2183 170.4366

2.8832
28.4411 -52.8821

(0.1158) (0.1312)

REM
2.3061 0.5428

-35.8561 77.7122
3.0966 0.5881

116.2783 -226.5565
(0.2089) (0.1080) (0.2656) (0.1021)

Carryover
MPP

1.3732 1.3162
-16.2204 38.4408

1.8265 1.1421
104.8940 -203.7880

(0.1041) (0.1092) (0.1223) (0.0913)

REM
1.5188 0.2515 1.0450

-3.1817 14.3635
2.1528 0.3420 0.7544

141.0022 -274.0044
(0.1416) (0.0775) (0.1258) (0.1950) (0.0796) (0.1070)

Trend
MPP

1.4682 0.2012
-27.6926 61.3851

2.1822 0.1044
98.1608 -190.3217

(0.1010) (0.0158) (0.1146) (0.0065)

REM
1.6628 0.2069 0.1357

-23.5912 55.1825
2.6568 0.4170 0.0380

120.6328 -233.2655
(0.1570) (0.0931) (0.0274) (0.2410) (0.1002) (0.0128)

Hybrid
MPP

1.2124 0.1276 0.9820
1.4679 5.0641

1.6409 0.0774 0.8837
137.4363 -266.8726

(0.0958) (0.0196) (0.1252) (0.1116) (0.0078) (0.0983)

REM
1.2822 0.0751 0.0997 0.9569

2.2849 5.4301
1.9361 0.2180 0.0329 0.7439

143.7813 -277.5626
(0.1230) (0.0708) (0.0300) (0.1287) (0.1824) (0.0826) (0.0140) (0.1087)

Note that the hybrid versions of MPP and REM models give the largest maximum

log-likelihood values with smallest AIC values for both groups. This result indicates

that the model with both the carryover effects and trends, due to the number of

previous events, adequately fits both groups in the asthma data. For the hybrid

model, we fixed the carryover effects period as ∆ = 56 days = 0.1533 year and it

needs to be justified. For this purpose, we choose a wide range of plausible values

for ∆ and fit the hybrid MPP and hybrid REM models. The summaries of the fitted

models are given in Table 3.9. We compare the maximum values of the log-likelihood

for each model and see that the value of ∆ (among those shown) best supported by the

data is ∆ = 56 days in both the treatment and control groups. A similar conclusion

was also given by Cigsar and Lawless (2012).
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Table 3.9: Parameter estimates and standard errors (within parenthesis) from
count-based hybrid models for the asthma data with different values of carryover
effects period.

∆ (in days) Model
Treatment group Control group

α̂ φ̂ γ̂ β̂ ℓ(θ̂) α̂ φ̂ γ̂ β̂ ℓ(θ̂)

7
MPP

1.4604 0.1799 0.6590
-22.0818

2.1467 0.0908 0.6202
105.8516

(0.1001) (0.0171) (0.1846) (0.1137) (0.0074) (0.1490)

REM
1.6251 0.1751 0.1248 0.5681

-19.4512
2.5689 0.3809 0.0332 0.4466

124.9639
(0.1511) (0.0917) (0.0283) (0.1874) (0.2279) (0.0963) (0.0128) (0.1458)

14
MPP

1.4117 0.1573 0.9091
-10.8721

2.0363 0.0819 0.8093
118.6873

(0.0985) (0.0178) (0.1467) (0.1123) (0.0074) (0.1179)

REM
1.5214 0.1139 0.1190 0.8403

-9.8184
2.4122 0.3284 0.0308 0.6157

132.7901
(0.1398) (0.0873) (0.0300) (0.1525) (0.2106) (0.0916) (0.0128) (0.1201)

28
MPP

1.3177 0.1385 1.0025
-0.6171

1.8670 0.0784 0.8500
129.1304

(0.0966) (0.0187) (0.1298) (0.1114) (0.0076) (0.1028)

REM
1.3791 0.0617 0.1156 0.9682

-0.1940
2.2062 0.2700 0.0316 0.6695

138.3192
(0.1273) (0.0761) (0.0310) (0.1360) (0.1955) (0.0875) (0.0133) (0.1103)

42
MPP

1.2612 0.1328 0.9807
0.4972

1.7468 0.0781 0.8558
133.3978

(0.0961) (0.0192) (0.1261) (0.1115) (0.0077) (0.0989)

REM
1.3266 0.0677 0.1076 0.9518

1.1102
2.0655 0.2401 0.0327 0.6953

140.7412
(0.1243) (0.0721) (0.0302) (0.1305) (0.1886) (0.0851) (0.0137) (0.1085)

56

MPP
1.2124 0.1276 0.9820

1.4679
1.6409 0.0774 0.8837

137.4363
(0.0958) (0.0196) (0.1252) (0.1116) (0.0078) (0.0983)

REM
1.2822 0.0751 0.0997 0.9569

2.2849
1.9361 0.2180 0.0329 0.7439

143.7813
(0.1230) (0.0708) (0.0300) (0.1287) (0.1824) (0.0826) (0.0140) (0.1087)

70
MPP

1.2063 0.1320 0.8853
-3.9601

1.6542 0.0813 0.7689
128.1531

(0.0970) (0.0197) (0.1259) (0.1153) (0.0077) (0.0987)

REM
1.2932 0.0947 0.0978 0.8584

-2.7309
2.0020 0.2500 0.0328 0.6150

136.2797
(0.1274) (0.0743) (0.0300) (0.1293) (0.1959) (0.0864) (0.0137) (0.1095)

84
MPP

1.2207 0.1405 0.7578
-10.4106

1.5809 0.0810 0.7936
130.0665

(0.0991) (0.0197) (0.1268) (0.1160) (0.0078) (0.0998)

REM
1.3278 0.1160 0.0996 0.7289

-8.7034
1.9144 0.2427 0.0321 0.6551

138.0973
(0.1337) (0.0784) (0.0300) (0.1306) (0.1927) (0.0850) (0.0139) (0.1106)

In the next chapter, we introduce some gap times based dynamic models for the

recurrent event data. We fit those models for the asthma data and review how the

count-based and gap times based models are useful in grabbing information in the

data.



Chapter 4

Analysis of Recurrent Events Using

Copula Models with Dynamic

Covariates

There is often an interest in making inferences on some features of recurrent event

processes over a specific inter-arrival time of a recurrent event process. Models and

methods based on event counts may become inadequate and lead to wrong conclusions

in such cases, in particular when there is a significant correlation between inter-arrival

times in a process. In this chapter, we consider the estimation of carryover effects and

trends due to the number of previous events in recurrent event processes through gap

time models. For this purpose, we use copula models to determine the association

between gap times. To lessen the complexity of modelling caused by the dependent

gap times, we start our discussion with the first two gap times in this chapter, and

we consider possible extensions for subsequent gap times later in Section 4.5.

We introduce copula based approach in Section 4.1, and formulate that approach

for the first two gap times in Section 4.2. We then discuss the drawbacks in

the count-based models when the consecutive gap times are dependent, through

simulation study in Section 4.3. The Section 4.4 consists of real data analysis with

the model introduced in Section 4.2. Next, we introduce copula models for more

than two gap times in Section 4.5. We extended the models in Section 4.6 to deal

with non-identical processes. Section 4.7 includes a summary of a simulation study to

emphasize that our approach performs well under various settings. In the last section
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of this chapter, we analyze a real data set with models introduced in Section 4.5.

4.1 A Copula Based Analysis of the Dynamic

Models for Recurrent Events

Inference for carryover effects and trends due to number of previous events in a

counting process can be based on models for event counts as described in the previous

chapter. Even though such models can be very useful in some situations, they have

important limitations. First of all, event count models are not effective in the analysis

of dynamic features of recurrent event processes when there are small number of events

experienced by the most of the individuals in a study. This issue has been discussed by

Cigsar and Lawless (2012) in the context of hypothesis testing. Another limitation of

the count models is that the estimates of the dynamic features can be used for specific

gap times only under special circumstances. In particular, these circumstances require

the gap times of a process to be independent. This is an important drawback because

the independence assumption rarely holds in many applied settings. In such settings,

models based on event counts may result in a substantial bias in the estimation of

dynamic covariates, and lead to misleading conclusions. We also discussed issues

related to heterogeneity of dynamic covariates in the previous chapter. To address

these limitations of the models based on event counts, we focus on gap time models in

this chapter. The use of gap time models to model carryover effects has been briefly

mentioned by Cigsar and Lawless (2012), but it has not investigated. There is a vast

literature on the use of gap time models for the analysis of recurrent events. Most of

the previous research has concentrated on renewal processes or some ramification of

them. In this study, we introduce a copula based method to model the association

between inter-arrival times within a recurrent event process. An extension of this

approach can address the issues related to the dependency among gap times within

individuals, as well as handle the unexplained heterogeneity across individuals, and

does not suffer from the issues related to confounding as discussed in the previous

chapter.

Carryover effects and trends related to N(t−) can also be modeled through mixture

type of distributions of the gap times Wk, k = 2, 3, . . . , in which a substantial mass

is given over the risk window ∆ after each event occurrence. Let {N(t); t ≥ 0} be a
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counting process of a recurrent event process and define the corresponding intensity

function as

λ[t|H(t)] = α exp
[
γ N(t−) + β Z(t)

]
, t > 0, (4.1)

where α is the positive constant baseline intensity, γ is the trend effect due to the

number of previous events, β is the effect of carryover effects, and N(t−) and Z(t)

are the number of previous events at time t and the backward recurrent time at time

t, respectively. In this case, the model (4.1) can be equivalently represented by the

hazard functions of the gap times Wk, k = 1, 2, . . . , as follows. Let hk(w) = lims→0

Pr(Wk < w + s|Wk ≥ w)/s, w > 0, be the hazard function of the kth gap time Wk,

k = 1, 2, . . .. Then, for w > 0,

hk(w) =

{
α, k = 1,

αe[(k−1)γ+β] I(w ≤ ∆) + αe[(k−1)γ] I(w > ∆), k = 2, 3, . . . ,
(4.2)

can be considered as the marginal hazard function of the kth gap timeWk. The hazard

function (4.2) constitutes neither a renewal process nor a delayed renewal process. For

k = 2, 3, . . ., the discrete mixture form of the hazard function (4.2) imposes a mass of

magnitude α exp[(k− 1)γ + β] for the hazard of a new event over the carryover effect

period ∆ after each event occurrence. Note that the mass after the carryover effect

period is α exp[(k − 1)γ]. For positive values of β, this specification of the hazard

function results in serial clustering of events due to carryover effects. Whereas for

negative values of β, the hazard function results in an intermittent sparsity of events

within a process. The model (4.2) can also incorporate monotonic trends related to

the number of previous events. Note that, depending on the value of γ, the hazard

function (4.2) monotonically increases or decreases as k increases, which results in a

monotonic trend due to N(t−) in gap times. The effects of these dynamic covariates

can be investigated through the model (4.2). For example, an estimation procedure or

a test, by considering the hypothesis H0 : β = 0, for carryover effects can be developed

when there is a need for dependence on the number of previous events in the model.

An important issue with the development of inference procedures based on gap

time models is the induced dependent censoring, which is often overlooked in the

analysis of gap times in recurrent event studies. This issue arises when the gap

times are not independent. For example, suppose that in a study including m

independent individuals, the ith individual is under observation over the interval
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[0, τi], i = 1, . . . ,m. The potential censoring time for this individual is then τ ∗i =

τi −min(Wi1, τi), which is induced for the second gap time Wi2. Now note that if Wi1

and Wi2 are not independent, τ
∗
i and Wi2 are not independent too, even if τi is a fixed

value. In this case, ignoring the dependence between Wi1 and Wi2 may lead to wrong

conclusions in the marginal analysis of the second gap time Wi2. Induced dependent

censoring can similarly arise for the subsequent gap times Wij, j = 3, 4, . . . , as well.

Another important challenge is the non-identifiability of the marginal distributions of

the second or subsequent gap times. This issue arises because the second or subsequent

gap times are observable only if the preceding gap times of an individual are not

censored. We use copula models in this study to address these issues, which cannot

be readily handled by the models for event counts.

Copula functions are useful to model the joint distribution of dependent gap

times. An alternative method to deal with the dependent gap times is to use

individual-specific random effects to address associations among gap times (Duchateau

et al., 2003). However, this method is not useful in our study because, random

effects may confound with carryover effects, especially when the observation periods

of individuals are not long enough. Also, random effects models do not always provide

marginal distributions for gap times in simple forms. A major advantage of using

copula based approach is that specific types of distributions can be used to model

the marginal distributions of gap times, which can be specified according to modeling

needs.

4.2 Bivariate Copula Models for the First and

Second Gap Times

In this section, for simplicity we first introduce our copula based model and

methodology for the first two gap times of recurrent event processes. We consider

the third and subsequent gap times situation in Section 4.5. It should be noted

that even though it is easier to deal with the first two gap times, there are many

applications in which the second gap time is of direct interest.

Suppose that there arem independent individuals in a study. For i = 1, . . . ,m and

j = 1, 2, . . ., let the positive valued random variable Wij be the j
th gap time from the
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ith individual and let another positive valued random variable Ci be the independent

right censoring time for the ith individual. We focus on a sequence of first and second

gap times (Wi1,Wi2), i = 1, . . . ,m. Let (wi1, wi2) = (min(Wi1, Ci),min(Wi2, Ci−wi1))

and (δi1, δi2) = (I[Wi1 ≤ Ci], I[Wi1 +Wi2 ≤ Ci]), respectively, be the observed gap

times and their event indicators for the ith individual, i = 1, . . . ,m, where I is an

indicator function. The bivariate distribution function of W1 and W2 is denoted by

F (w1, w2), where w1 > 0 and w2 > 0. The marginal distribution functions of W1 and

W2 are given by F1(w1) = F (w1,∞) and F2(w2) = F (∞, w2), respectively. With this

setup, the likelihood function of the observed data {(wi1, wi2, δi1, δi2) : i = 1, . . . ,m}
can be written as

L =
m∏

i=1

[
∂2F (wi1, wi2)

∂wi1∂wi2

]δi1δi2 [∂F1(wi1)

∂wi1

− ∂F (wi1, wi2)

∂wi1

]δi1(1−δi2)

[1− F1(wi1)]
(1−δi1) .

(4.3)

As discussed in Section 2.4.1, a copula model for the random pair (W1,W2) is

defined as the joint distribution function P (W1 ≤ w1,W2 ≤ w2) = C(F1(w1), F2(w2)),

where C(u1, u2) is a bivariate copula function specifying a bivariate distribution

function on the unit square having uniform marginal distributions. The likelihood

function (4.3) can be rewritten in terms of C(F1(w1), F2(w2)) by replacing F (wi1, wi2)

with C(F1(w1), F2(w2)) in the likelihood function (4.3).

Our primary goal in this chapter is to develop models for some dynamic behaviours

of recurrent event processes through gap times, in which we allow dependency. For

this purpose, we use the model (4.2) for the first two gap times and combine the

likelihood function (4.3) to relax the independent assumption between the first two

gap times. From the hazard function (4.2), we can show that the corresponding

cumulative distribution function of the kth gap time Wk is of the form

Fk(wk) = 1− exp
[
−αe(k−1)γ

{
wk + I(k > 1)min(wk,∆)

(
eβ − 1

)}]
, wk > 0.

(4.4)
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The likelihood function (4.3) is then given by

L =
m∏

i=1

[
∂2Cα∗(F1(wi1), F2(wi2))

∂wi1∂wi2

]δi1δi2

[
∂F1(wi1)

∂wi1

− ∂Cα∗(F1(wi1), F2(wi2))

∂wi1

]δi1(1−δi2)

[1− F1(wi1)]
(1−δi1) ,

(4.5)

where α∗ is the copula parameter, F1(wi1) = 1− exp [−αwi1], wi1 > 0 and F2(wi2) =

1 − exp
[
−αeγ

{
wi2 +min(wi2,∆)

(
eβ − 1

)}]
, wi2 > 0. For an Archimedean copula,

defined in Section 2.4.1, the likelihood function (4.5) can be rewritten in terms of its

generator function as

L =
m∏

i=1

[
− ϕ̈α∗

(
ϕ−1
α∗ [ϕα∗(Fi1) + ϕα∗(Fi2)]

)

ϕ̇α∗

(
ϕ−1
α∗ [ϕα∗(Fi1) + ϕα∗(Fi2)]

)3 ϕ̇α∗(Fi1)ϕ̇α∗(Fi2)fi1fi2

]δi1δi2

[
fi1 −

ϕ̇α∗(Fi1)fi1

ϕ̇α∗

(
ϕ−1
α∗ [ϕα∗(Fi1) + ϕα∗(Fi2)]

)
]δi1(1−δi2)

[1− Fi1]
1−δi1 ,

(4.6)

where ϕ̇α∗ = ∂ϕα∗ (t)
∂t

, ϕ̈α∗ = ∂2ϕα∗ (t)
∂t2

, fij and Fij are fj(wij) and Fj(wij), respectively.

Then, the log-likelihood function ℓ = logL is given by

m∑

i=1

δi1δi2 log
[
ϕ̈α∗

(
ϕ−1
α∗ [ϕα∗(Fi1) + ϕα∗(Fi2)]

)]

−
m∑

i=1

3δi1δi2 log
[
−ϕ̇α∗

(
ϕ−1
α∗ [ϕα∗(Fi1) + ϕα∗(Fi2)]

)]

+
m∑

i=1

δi1δi2 log [−ϕ̇α∗(Fi1)] +
m∑

i=1

δi1δi2 log [−ϕ̇α∗(Fi2)]

+
m∑

i=1

δi1 log [fi1] +
m∑

i=1

δi1δi2 log [fi2]

+
m∑

i=1

δi1(1− δi2) log

[
1− ϕ̇α∗(Fi1)

ϕ̇α∗

(
ϕ−1
α∗ [ϕα∗(Fi1) + ϕα∗(Fi2)]

)
]

+
m∑

i=1

(1− δi1) log [1− Fi1] .

(4.7)
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Let θ be the vector of parameters such that θ = (α, β, γ, α∗)′ and let Uα(θ),

Uβ(θ), Uγ(θ) and Uα∗(θ) be the first derivatives of the log-likelihood function ℓ(θ)

with respect to α, β, γ and α∗, respectively. We can obtain the maximum likelihood

estimates θ̂ of θ by solving the system of score equations U (θ̂) = 0, where U (θ) =

(Uα(θ), Uβ(θ), Uγ(θ), Uα∗(θ))′ and 0 is a 4×1 vector of zeros. Let θ0 = (α0, β0, γ0, α
∗
0)

′

denote the vector of the true values of the parameters in θ. Under the regularity

conditions (see Cox and Hinkley, 1974, p. 281), we can show that, asm→ ∞,m1/2(θ̂−
θ0) is asymptotically N4(0,I(θ0)), where the (l, r)

th entry of the 4×4 matrix I(θ0) is

given by m−1E [−∂2ℓ(θ0)/∂θl∂θr], l, r = 1, 2, 3, 4, and (θ1, θ2, θ3, θ4)
′ = (α, β, γ, α∗)′.

This result follows from the standard large sample maximum likelihood theory, and

discussed by Lawless and Yilmaz (2011) for sequentially observed data. Under mild

regularity conditions, since the vector θ̂ = (α̂, β̂, γ̂, α̂∗)′ includes consistent estimators

of the parameters in θ, the matrix I(θ0) can be consistently estimated by I(θ̂), where

the (l, r)th entry of the 4 × 4 matrix I(θ̂) is given by m−1[−∂2ℓ(θ̂)/∂θl∂θr], l, r =

1, 2, 3, 4. We maximize the log-likelihood function (4.7) with the nlminb function in

optimx R package to obtain the estimates of the parameters α, β, γ and α∗, and their

standard errors. In the next section, we present the results of a simulation study

which provides some insights on the assessment of these asymptotic results for finite

sample sizes.

4.3 Simulation Studies

In this section, we present the results of two simulation studies conducted to

investigate the effect of dependence, an issue related to the model developed in

Section 3.1, and to evaluate the finite-sample performance of the model developed

in Section 4.2. The count-based model, which is developed in Section 3.1 has an

important restriction; that is, it assumes that the gap times between recurrent events

are independent of each other. But in real data, this independent assumption between

gap times within a process may be invalid. In such a case, the performance of the

count-based model developed in Section 3.1 is questionable. To investigate this issue,

we conducted a simulation study and the results are provided below. In the later

part of this section, we provide a simulation study which evaluates the finite-sample

performance of the copula model with dynamic covariates for the first two gap times

which is developed in Section 4.2.
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In the first simulation study, we generate recurrent event processes, where the

consecutive gap times are dependent within processes. For the data generation

process, we use the algorithm given in Section 2.5.2. The Clayton copula is chosen in

this algorithm to generate serially dependent data. In simulations, we assumed that

everyone is observed over [0, τ ], and we took two values of τ (τ = 2 and 5). For each

τ , we generated 1,000 realizations of m (m = 50 and 100) processes with the hazard

function (4.2), where we considered two values of β (β = 0.693 and 1.609), two values

of γ (γ = 0.095 and 0.223) and a single value for α (α = 1). We fixed the duration

of the carryover effect (i.e. ∆) at 0.0513. We specified two values for Clayton copula

parameter φc (φc = 1.3333 and 4.6667) so that the Kendall’s tau τK was equal to 0.4

and 0.6, respectively. We then fit the count-based modulated Poison process model

(3.44) to the generated serially dependent data. The intensity function of this model

is

λi[t|Hi(t)] = α exp
[
γ Ni(t

−) + βI(Ni(t
−) > 0)I(Bi(t) ≤ ∆)

]
, i = 1, . . . ,m, t > 0.

For each realization, we obtained estimates of the parameters in the above model

by maximizing the corresponding log-likelihood function with the optimx package in

R. The averages of the estimates over 1,000 simulation runs and their corresponding

empirical standard deviations (within parenthesis) and averages of standard errors

(within square brackets) are presented in Table 4.1. We also report the corresponding

empirical means and standard deviations of estimated cumulative probabilities of

second gap time for 20th, 40th, 60th and 80th percentile points in Table 4.2.
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Table 4.1: Empirical means (and standard deviations) [and means of standard errors] of
parameter estimates when the modulated Poisson process model fitted to the dependent
gap times data with B=1,000 number of simulation.

Data Generated Fitted Simulation
τK = 0.4 τK = 0.7

τ = 2 τ = 5 τ = 2 τ = 5
m=50 m=100 m=50 m=100 m=50 m=100 m=50 m=100

α = 1 ¯̂α 1.2020 1.2023 1.0720 1.0687 1.5231 1.5063 1.2046 1.1922
(0.1535) (0.1058) (0.1064) (0.0744) (0.2287) (0.1604) (0.1627) (0.1136)
[0.1155] [0.0806] [0.0715] [0.0503] [0.1250] [0.0876] [0.0764] [0.0536]

γ = 0.095 ¯̂γ 0.0991 0.0972 0.0938 0.0936 0.1065 0.1064 0.0969 0.0970
(0.0238) (0.0144) (0.0097) (0.0066) (0.0162) (0.0116) (0.0103) (0.0073)
[0.0157] [0.0097] [0.0062] [0.0043] [0.0060] [0.0042] [0.0042] [0.0030]

β = 0.693
¯̂
β 1.0423 1.0926 0.8265 0.8451 1.2948 1.3398 1.1296 1.1500

(0.3364) (0.2242) (0.1742) (0.1156) (0.3262) (0.2119) (0.2082) (0.1502)
[0.1844] [0.1249] [0.1002] [0.0697] [0.1058] [0.0728] [0.0646] [0.0453]

α = 1 ¯̂α 1.1793 1.1725 1.0586 1.0566 1.4554 1.4408 1.2062 1.2008
(0.1380) (0.0981) (0.0944) (0.0660) (0.1958) (0.1410) (0.1482) (0.1044)
[0.1097] [0.0769] [0.0672] [0.0474] [0.1225] [0.0860] [0.0755] [0.0532]

γ = 0.095 ¯̂γ 0.0817 0.0823 0.0918 0.0915 0.0817 0.0821 0.0872 0.0869
(0.0145) (0.0098) (0.0071) (0.0050) (0.0125) (0.0094) (0.0087) (0.0062)
[0.0095] [0.0062] [0.0045] [0.0032] [0.0050] [0.0035] [0.0038] [0.0027]

β = 1.609
¯̂
β 1.8766 1.8912 1.6697 1.6749 2.1043 2.1171 1.8258 1.8353

(0.1990) (0.1372) (0.0964) (0.0694) (0.1943) (0.1376) (0.1182) (0.0870)
[0.1385] [0.0965] [0.0710] [0.0500] [0.0975] [0.0684] [0.0574] [0.0403]

α = 1 ¯̂α 1.2034 1.2028 0.7029 0.6955 1.5809 1.5757 0.5106 0.5125
(0.1321) (0.0922) (0.0633) (0.0462) (0.2194) (0.1558) (0.0569) (0.0407)
[0.1029] [0.0727] [0.0467] [0.0328] [0.1331] [0.0938] [0.0377] [0.0267]

γ = 0.223 ¯̂γ 0.2005 0.2001 0.1673 0.1661 0.1720 0.1711 0.1437 0.1438
(0.0147) (0.0103) (0.0099) (0.0069) (0.0174) (0.0116) (0.0086) (0.0061)
[0.0079] [0.0055] [0.0035] [0.0024] [0.0059] [0.0041] [0.0033] [0.0023]

β = 0.693
¯̂
β 0.9731 0.9781 2.1385 2.1695 1.3448 1.3622 2.9417 2.9306

(0.2653) (0.1841) (0.2638) (0.1872) (0.3702) (0.2529) (0.2569) (0.1818)
[0.1573] [0.1103] [0.0630] [0.0443] [0.1336] [0.0932] [0.0618] [0.0434]

α = 1 ¯̂α 0.6542 0.6448 0.1103 0.1099 0.4580 0.4512 0.0883 0.0875
(0.1108) (0.0720) (0.0141) (0.0100) (0.0725) (0.0513) (0.0112) (0.0075)
[0.0664] [0.0463] [0.0095] [0.0067] [0.0504] [0.0352] [0.0080] [0.0056]

γ = 0.223 ¯̂γ 0.1843 0.1833 0.1739 0.1738 0.1586 0.1581 0.1669 0.1669
(0.0107) (0.0069) (0.0042) (0.0029) (0.0099) (0.0069) (0.0068) (0.0046)
[0.0043] [0.0030] [0.0030] [0.0021] [0.0037] [0.0026] [0.0031] [0.0022]

β = 1.609
¯̂
β 2.7852 2.8111 4.7474 4.7498 3.6660 3.6862 5.1163 5.1207

(0.3432) (0.2246) (0.1733) (0.1216) (0.3055) (0.2182) (0.2062) (0.1386)
[0.1040] [0.0723] [0.0671] [0.0474] [0.1013] [0.0714] [0.0714] [0.0504]

The estimates of modulated Poisson process model are completely biased when

the gap times between recurrent events are dependent even for the small value of

Kendall’s τK(= 0.4). For example, when the modulated Poisson process model (3.44)

fitted to the data generated with m = 100, τK = 0.4, α = 1, β = 1.609, γ = 0.223 and

τ = 2, the empirical means of estimates of α, β and γ are 0.6448, 2.8111 and 0.1833,

respectively.
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Table 4.2: Empirical means (and standard deviations) of estimated cumulative probabilities
for the quantiles of W2 when the modulated Poisson process model fitted to the dependent
gap times data with B=1,000 number of simulation.

Data Generated True Value Simulation
τK = 0.4 τK = 0.7

τ = 2 τ = 5 τ = 2 τ = 5
m=50 m=100 m=50 m=100 m=50 m=100 m=50 m=100

α = 1 F2(0.15) = 0.2 0.2834 0.2874 0.2271 0.2278 0.3892 0.3925 0.2920 0.2921
(0.0506) (0.0349) (0.0264) (0.0183) (0.0606) (0.0413) (0.0379) (0.0277)

γ = 0.095 F2(0.41) = 0.4 0.4922 0.4955 0.4312 0.4316 0.6061 0.6072 0.4983 0.4973
(0.0490) (0.0335) (0.0329) (0.0229) (0.0526) (0.0366) (0.0437) (0.0315)

β = 0.693 F2(0.78) = 0.6 0.6867 0.6896 0.6304 0.6307 0.7864 0.7868 0.6903 0.6892
(0.0451) (0.0309) (0.0352) (0.0246) (0.0435) (0.0307) (0.0441) (0.0316)

F2(1.41) = 0.8 0.8618 0.8642 0.8224 0.8229 0.9237 0.9244 0.8631 0.8628
(0.0323) (0.0221) (0.0285) (0.0200) (0.0259) (0.0183) (0.0329) (0.0236)

α = 1 F2(0.04) = 0.2 0.2894 0.2909 0.2218 0.2222 0.4092 0.4100 0.2826 0.2836
(0.0485) (0.0350) (0.0251) (0.0177) (0.0618) (0.0438) (0.0381) (0.0277)

γ = 0.095 F2(0.26) = 0.4 0.5013 0.5025 0.4273 0.4276 0.6279 0.6282 0.4989 0.4998
(0.0497) (0.0362) (0.0322) (0.0225) (0.0563) (0.0402) (0.0455) (0.0328)

β = 1.609 F2(0.63) = 0.6 0.6874 0.6881 0.6257 0.6261 0.7901 0.7901 0.6896 0.6904
(0.0425) (0.0310) (0.0330) (0.0230) (0.0422) (0.0304) (0.0432) (0.0310)

F2(1.26) = 0.8 0.8585 0.8592 0.8186 0.8191 0.9202 0.9205 0.8622 0.8632
(0.0300) (0.0217) (0.0265) (0.0184) (0.0244) (0.0177) (0.0312) (0.0224)

α = 1 F2(0.13) = 0.2 0.2706 0.2696 0.3479 0.3511 0.4060 0.4057 0.4609 0.4587
(0.0421) (0.0299) (0.0402) (0.0287) (0.0706) (0.0484) (0.0486) (0.0346)

γ = 0.223 F2(0.36) = 0.4 0.4792 0.4787 0.4618 0.4631 0.6136 0.6131 0.5297 0.5278
(0.0413) (0.0295) (0.0277) (0.0197) (0.0526) (0.0361) (0.0383) (0.0273)

β = 0.693 F2(0.68) = 0.6 0.6754 0.6756 0.5891 0.5887 0.7880 0.7881 0.6118 0.6105
(0.0393) (0.0280) (0.0192) (0.0137) (0.0403) (0.0282) (0.0285) (0.0203)

F2(1.24) = 0.8 0.8545 0.8554 0.7406 0.7391 0.9228 0.9237 0.7201 0.7194
(0.0293) (0.0207) (0.0174) (0.0127) (0.0241) (0.0170) (0.0209) (0.0149)

α = 1 F2(0.04) = 0.2 0.3648 0.3683 0.4155 0.4161 0.5247 0.5276 0.4612 0.4603
(0.0547) (0.0365) (0.0246) (0.0173) (0.0648) (0.0459) (0.0422) (0.0287)

γ = 0.223 F2(0.20) = 0.4 0.5375 0.5404 0.5464 0.5472 0.6819 0.6850 0.5943 0.5937
(0.0503) (0.0339) (0.0269) (0.0190) (0.0592) (0.0422) (0.0450) (0.0307)

β = 1.609 F2(0.53) = 0.6 0.6425 0.6429 0.5654 0.5660 0.7334 0.7350 0.6079 0.6071
(0.0316) (0.0217) (0.0251) (0.0178) (0.0464) (0.0330) (0.0430) (0.0294)

F2(1.08) = 0.8 0.7687 0.7675 0.5959 0.5964 0.8025 0.8025 0.6300 0.6290
(0.0237) (0.0158) (0.0226) (0.0162) (0.0323) (0.0229) (0.0400) (0.0274)

The estimates of cumulative probabilities for the quantiles from modulated Poisson

process models are also biased when the the gap times between recurrent events are

dependent. We can see that the true values of the cumulative probabilities are not

within two standard deviations interval from the empirical mean of the estimates of

cumulative probabilities. For example, when the modulated Poisson process model

(3.44) fitted to the data generated with m = 100, τK = 0.4, α = 1, β = 1.609,

γ = 0.223 and τ = 5, the empirical means of estimates of cumulative probabilities

of second gap time for 20th, 40th, 60th and 80th percentile points are 0.4161, 0.5472,

0.5660 and 0.5964, respectively, and the empirical standard deviations of estimates
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are 0.0173, 0.0190, 0.0178 and 0.0162, respectively. These results reveal that the

dependency among the gap times is a serious problem for the estimation of dynamic

covariates effects through models for event counts. In particular, the modulated

Poisson process model discussed in Chapter 3 is not adequate to fit the data when

there is a dependency between gap times. Therefore, we next considered the copula

based approach to handle this issue.

Similarly, in the second simulation study, we generated recurrent event processes

where the consecutive gap times are dependent within processes. We used the

same values as in the first simulation study for the parameters to generate 1,000

realizations for each combination of parameters. We then fit the gap time-based

model developed in Section 4.2 only to the first two gap times. For each realization, we

obtained estimates of the parameters in the model by maximizing the corresponding

log-likelihood function (4.7) with the optimx package in R. The averages of the

estimates over 1,000 simulation runs and their corresponding empirical standard

deviations (within parenthesis) and averages of standard errors (within square

brackets) are presented in Table 4.3. We also report the corresponding empirical

means and standard deviations of the estimated cumulative probabilities of second

gap time for 20th, 40th, 60th and 80th percentile points in Table 4.4.

The estimated bias in the estimates of copula based models are not significant

when the gap times between recurrent events are dependent. We observed that the

true values of the parameters are within two standard deviations interval from the

empirical mean of the parameter estimates. For example, when the copula model

fitted to the data generated with m = 100, τK = 0.4, α = 1, β = 1.609, γ = 0.223 and

τ = 2, the empirical means of estimates of α, β and γ are 1.0068, 1.6104 and 0.2175,

respectively, and the empirical standard deviations of the estimates are 0.1082, 0.2311

and 0.1765, respectively. Through this simulation study, we can conclude that the

asymptotic properties are still valid for finite samples.
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Table 4.3: Empirical means (and standard deviations) [and means of standard errors] of
parameter estimates when the Copula based model fitted to the dependent gap times data
with B=1,000 number of simulation and the model uses only first two gap times.

Data Generated Fitted Simulation
τK = 0.4 ⇒ φC = 1.3333 τK = 0.7 ⇒ φC = 4.6667

τ = 2 τ = 5 τ = 2 τ = 5
m=50 m=100 m=50 m=100 m=50 m=100 m=50 m=100

α = 1 ¯̂α 1.0204 1.0076 1.0244 1.0120 1.0192 1.0076 1.0235 1.0143
(0.1571) (0.1101) (0.1472) (0.0970) (0.1564) (0.1063) (0.1427) (0.0986)
[0.1532] [0.1072] [0.1417] [0.0990] [0.1532] [0.1073] [0.1371] [0.0960]

γ = 0.095 ¯̂γ 0.0818 0.0908 0.0958 0.0934 0.0899 0.0920 0.0963 0.0948
(0.2196) (0.1558) (0.1731) (0.1190) (0.1197) (0.0845) (0.0994) (0.0728)
[0.2157] [0.1526] [0.1701] [0.1204] [0.1203] [0.0852] [0.1004] [0.0712]

β = 0.693
¯̂
β 0.6195 0.6753 0.6364 0.6682 0.6730 0.6932 0.6824 0.6899

(0.8185) (0.2948) (0.5617) (0.2625) (0.5305) (0.1425) (0.1939) (0.1323)
[0.8921] [0.2845] [0.5457] [0.2579] [0.2048] [0.1430] [0.1848] [0.1288]

¯̂
φC 1.4293 1.3853 1.4078 1.3803 4.9338 4.8117 4.9069 4.8078

(0.4138) (0.2759) (0.3653) (0.2463) (0.8720) (0.5912) (0.8168) (0.5412)
[0.3838] [0.2631] [0.3478] [0.2405] [0.8406] [0.5785] [0.7791] [0.5381]

α = 1 ¯̂α 1.0184 1.0063 1.0254 1.0135 1.0183 1.0076 1.0220 1.0130
(0.1521) (0.1071) (0.1457) (0.1001) (0.1553) (0.1082) (0.1424) (0.0989)
[0.1530] [0.1071] [0.1426] [0.0997] [0.1528] [0.1071] [0.1382] [0.0968]

γ = 0.095 ¯̂γ 0.0846 0.0898 0.0970 0.0906 0.0824 0.0927 0.0987 0.0955
(0.2575) (0.1784) (0.1902) (0.1349) (0.1832) (0.1250) (0.1396) (0.0947)
[0.2515] [0.1778] [0.1925] [0.1363] [0.1762] [0.1248] [0.1342] [0.0952]

β = 1.609
¯̂
β 1.5926 1.6102 1.5828 1.6057 1.6144 1.6086 1.5990 1.6077

(0.3444) (0.2351) (0.2834) (0.2046) (0.2278) (0.1531) (0.1885) (0.1256)
[0.3367] [0.2357] [0.2877] [0.2012] [0.2191] [0.1551] [0.1787] [0.1259]

¯̂
φC 1.4057 1.3820 1.3976 1.3812 4.9511 4.7978 4.8804 4.7959

(0.3802) (0.2660) (0.3576) (0.2467) (0.9011) (0.5997) (0.7961) (0.5353)
[0.3695] [0.2561] [0.3415] [0.2375] [0.8492] [0.5822] [0.7822] [0.5421]

α = 1 ¯̂α 1.0186 1.0076 1.0251 1.0151 1.0182 1.0080 1.0264 1.0141
(0.1535) (0.1079) (0.1415) (0.0992) (0.1557) (0.1087) (0.1408) (0.0997)
[0.1529] [0.1071] [0.1418] [0.0993] [0.1530] [0.1073] [0.1372] [0.0958]

γ = 0.223 ¯̂γ 0.2117 0.2199 0.2212 0.2160 0.2176 0.2195 0.2206 0.2217
(0.2202) (0.1522) (0.1722) (0.1222) (0.1255) (0.0903) (0.1051) (0.0744)
[0.2156] [0.1525] [0.1719] [0.1219] [0.1236] [0.0877] [0.1034] [0.0733]

β = 0.693
¯̂
β 0.6205 0.6767 0.6521 0.6835 0.6843 0.6944 0.6854 0.6925

(0.9045) (0.2794) (0.3764) (0.2561) (0.2104) (0.1430) (0.1927) (0.1272)
[0.6362] [0.2722] [0.3577] [0.2465] [0.2015] [0.1410] [0.1808] [0.1265]

¯̂
φC 1.4219 1.3859 1.4083 1.3794 4.9457 4.8081 4.9095 4.8154

(0.4025) (0.2716) (0.3606) (0.2402) (0.8697) (0.5880) (0.8071) (0.5572)
[0.3812] [0.2622] [0.3478] [0.2403] [0.8389] [0.5759] [0.7793] [0.5397]

α = 1 ¯̂α 1.0199 1.0068 1.0241 1.0145 1.0185 1.0088 1.0244 1.0119
(0.1540) (0.1082) (0.1426) (0.1011) (0.1529) (0.1092) (0.1417) (0.0958)
[0.1530] [0.1070] [0.1423] [0.0997] [0.1526] [0.1070] [0.1384] [0.0966]

γ = 0.223 ¯̂γ 0.2114 0.2175 0.2244 0.2208 0.2097 0.2244 0.2237 0.2210
(0.2517) (0.1765) (0.1921) (0.1404) (0.1919) (0.1309) (0.1438) (0.0996)
[0.2529] [0.1787] [0.1961] [0.1388] [0.1854] [0.1315] [0.1408] [0.0997]

β = 1.609
¯̂
β 1.5926 1.6104 1.5849 1.6020 1.6145 1.6054 1.6017 1.6096

(0.3305) (0.2311) (0.2788) (0.1988) (0.2320) (0.1579) (0.1858) (0.1276)
[0.3284] [0.2299] [0.2805] [0.1966] [0.2239] [0.1588] [0.1809] [0.1274]

¯̂
φC 1.3978 1.3770 1.3957 1.3700 4.9357 4.7808 4.8737 4.7919

(0.3784) (0.2583) (0.3487) (0.2342) (0.8758) (0.5936) (0.8170) (0.5371)
[0.3660] [0.2538] [0.3405] [0.2353] [0.8436] [0.5789] [0.7815] [0.5426]

The estimated bias in the estimates of cumulative probabilities for the quantiles

from copula based models is also not significant in the cases considered in Table 4.4.
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For example, when the copula model fitted to the data generated with m = 100,

τK = 0.4, α = 1, β = 1.609, γ = 0.223 and τ = 5, the empirical means of estimates

of cumulative probabilities of second gap time for 20th, 40th, 60th and 80th percentile

points are 0.2018, 0.4032, 0.6035 and 0.8019, respectively, with empirical standard

deviations 0.0284, 0.0336, 0.0352 and 0.0322, respectively, while true values of those

are 0.2, 0.4, 0.6 and 0.8, respectively. These results reveal that the problem due to

dependency among the gap times is correctly handled by the copula based models.

Table 4.4: Empirical means (and standard deviations) of estimated cumulative probabilities
for the quantiles of W2 when the Copula based model fitted to the dependent gap times
data with B=1,000 number of simulation and the model uses only first two gap times.

Data Generated True Value Simulation
τK = 0.4 τK = 0.7

τ = 2 τ = 5 τ = 2 τ = 5
m=50 m=100 m=50 m=100 m=50 m=100 m=50 m=100

α = 1 F2(0.15) = 0.2 0.2022 0.2014 0.2041 0.2015 0.2023 0.2012 0.2040 0.2025
(0.0366) (0.0265) (0.0341) (0.0236) (0.0291) (0.0204) (0.0265) (0.0181)

γ = 0.095 F2(0.41) = 0.4 0.4028 0.4016 0.4065 0.4026 0.4032 0.4012 0.4062 0.4038
(0.0560) (0.0405) (0.0446) (0.0307) (0.0510) (0.0357) (0.0425) (0.0292)

β = 0.693 F2(0.78) = 0.6 0.6004 0.6002 0.6062 0.6025 0.6017 0.6002 0.6059 0.6037
(0.0696) (0.0502) (0.0523) (0.0363) (0.0627) (0.0439) (0.0508) (0.0351)

F2(1.41) = 0.8 0.7956 0.7977 0.8029 0.8010 0.7979 0.7984 0.8029 0.8021
(0.0643) (0.0460) (0.0463) (0.0323) (0.0565) (0.0395) (0.0447) (0.0311)

α = 1 F2(0.04) = 0.2 0.2007 0.2015 0.2023 0.2021 0.2020 0.2009 0.2030 0.2023
(0.0429) (0.0312) (0.0421) (0.0302) (0.0311) (0.0224) (0.0302) (0.0211)

γ = 0.095 F2(0.26) = 0.4 0.4031 0.4021 0.4057 0.4032 0.4030 0.4017 0.4059 0.4037
(0.0550) (0.0393) (0.0475) (0.0331) (0.0500) (0.0363) (0.0419) (0.0293)

β = 1.609 F2(0.63) = 0.6 0.6020 0.6009 0.6067 0.6029 0.6010 0.6010 0.6063 0.6038
(0.0697) (0.0490) (0.0514) (0.0356) (0.0659) (0.0475) (0.0504) (0.0350)

F2(1.26) = 0.8 0.7964 0.7978 0.8037 0.8011 0.7959 0.7985 0.8032 0.8021
(0.0672) (0.0473) (0.0460) (0.0324) (0.0632) (0.0450) (0.0459) (0.0318)

α = 1 F2(0.13) = 0.2 0.2020 0.2015 0.2040 0.2023 0.2021 0.2013 0.2041 0.2025
(0.0374) (0.0276) (0.0347) (0.0245) (0.0292) (0.0211) (0.0266) (0.0186)

γ = 0.223 F2(0.36) = 0.4 0.4029 0.4019 0.4064 0.4028 0.4030 0.4014 0.4063 0.4035
(0.0561) (0.0404) (0.0433) (0.0301) (0.0509) (0.0370) (0.0418) (0.0296)

β = 0.693 F2(0.68) = 0.6 0.6005 0.6007 0.6061 0.6023 0.6013 0.6003 0.6059 0.6034
(0.0697) (0.0499) (0.0509) (0.0354) (0.0631) (0.0460) (0.0501) (0.0357)

F2(1.24) = 0.8 0.7957 0.7981 0.8028 0.8006 0.7975 0.7982 0.8029 0.8017
(0.0641) (0.0456) (0.0453) (0.0318) (0.0573) (0.0416) (0.0442) (0.0316)

α = 1 F2(0.04) = 0.2 0.2004 0.2015 0.2020 0.2018 0.2019 0.2012 0.2033 0.2019
(0.0415) (0.0308) (0.0401) (0.0284) (0.0307) (0.0223) (0.0292) (0.0203)

γ = 0.223 F2(0.20) = 0.4 0.4022 0.4021 0.4048 0.4032 0.4030 0.4025 0.4059 0.4030
(0.0550) (0.0401) (0.0483) (0.0336) (0.0486) (0.0360) (0.0415) (0.0289)

β = 1.609 F2(0.53) = 0.6 0.6017 0.6010 0.6061 0.6035 0.6011 0.6024 0.6064 0.6028
(0.0673) (0.0477) (0.0510) (0.0352) (0.0644) (0.0474) (0.0494) (0.0344)

F2(1.08) = 0.8 0.7966 0.7980 0.8032 0.8019 0.7961 0.7998 0.8032 0.8012
(0.0652) (0.0458) (0.0460) (0.0322) (0.0623) (0.0452) (0.0452) (0.0317)
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4.4 Application: Recurrent Asthma Attacks in

Children

We introduced the recurrent asthma attacks data set in Section 1.2.2 and analyzed it

in Section 3.4 to provide estimates of carryover effects and trend due to the number

of previous events. In the previous analysis, we utilize the dynamic models for event

counts. In this section, we discuss the presence of carryover effects in the marginal

distribution of the second gap time. The main purpose of this section is to illustrate

the method introduced in Section 4.2, as well as compare our results with those found

in Section 3.4. We would like to note that even though we use the asthma data

set to illustrate the methods, there are recurrent event studies in which the main

goal is to dynamically model the second gap time. For example, Gruneir et al. (2018)

analyzed on observational administrative data set to identify the risk factors for repeat

emergency department visits from nursing homes in Ontario. In such studies, there

is a special interest in the analysis of the marginal distribution of second gap times.

Unfortunately, we could not use this data set here because of privacy issues, but our

methods can be applied to analyze such data sets.

It is worth underlying that our analysis in Section 3.4 was based on the models for

event counts. With that approach, we detected a significant unexplained heterogeneity

in the number of events across subjects in both control and treatment groups. To

deal with such an unexplained heterogeneity, we apply a random effects model

by assigning a subject specific random effect to every individual process under

observation. We discuss issues with modeling dynamic covariates arising from this

approach in Section 3.2. The analysis in this section focuses on the second gap time.

Every subject has either one or two events. Therefore, the approach in this section

does not suffer from the aforementioned type of unexplained heterogeneity regarding

the observed number of event counts per process.

The recurrent asthma data set, given by Duchateau et al. (2003), is obtained

from a prevention trial in infants with a high risk of having asthma attacks. More

information and some descriptive statistics about the data can be found in Section 3.4.

Subjects are randomly assigned either to an active drug group (treatment group) or to

a placebo group (control group). Here we present our results separately for each group.

An asthma attack experienced by subjects is defined as an event. The occurrence time
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of events were recorded in days after the start of follow-up, which was the day zero.

As discussed in Section 3.4, the resolution of an asthma attack may last longer than a

day. During their asthma attacks, subjects are considered as “risk-free”. We therefore

discard the risk-free periods from the data so that second and subsequent gap times

start after the resolution of asthma attacks. We do not assess the effects of risk-free

periods on the distribution of the second gap time here, but this can be done by

including the duration of risk-free periods as a covariate in the model and then a test

for its significance can be applied.

There are m = 232 subjects included in the data set. Among them, m1 = 119 are

in the control group and m2 = 113 are in the treatment group. The data set used to

fit models includes the values of {(wi1, wi2, δi, xi, τi); i = 1, . . . ,m}, where wi1 is the

first gap time, wi2 is either the second gap time or censored gap time; that is, τi−wi1,

δi takes the value of 1 if wi2 is a complete gap time; otherwise, it is equal to 0, xi is

a treatment indicator (xi = 1, if the ith subject is in the treatment group; otherwise,

xi = 0), and τi is the end of follow-up time. For this specific data set, all of the wi1

are complete observations. There are 37 and 50 incomplete wi2 values in the control

and treatment groups, respectively. We model the dependency between the first two

gap times with the Clayton copula (CLY), the Gumbel-Hougaard copula (G H) and

the 2-parameter copula (2PR) models. These models are explained in Section 2.4.1.

We also fit a model in which the first two gap times are assumed independent (IND).

Following the discussion in Section 4.1, the marginal hazard function of the first

gap time W1 is h1(w) = α, w > 0. The marginal hazard function of the second gap

time W2 is given by

h2(w) = αeγ+βI(w ≤ ∆) + αeγI(w > ∆), w > 0. (4.8)

We consider four cases of the hazard function (4.8) to fit the data. The first one is

the “Null” model, in which we take γ = 0 and β = 0 in the model (4.8). The second

model is a “Carryover” effects model. In this model, the value of the parameter γ

in (4.8) is zero. The third model is the “Trend” model, which is the model (4.8)

with β = 0. The last model is the “Hybrid” model, which includes both carryover

effects and trend with the hazard function (4.8). We obtain the estimates of the

parameters and their standard errors by maximizing the log-likelihood function (4.7)

with the nlminb function in optimx R package. As suggested in our analysis presented
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in Section 3.4, we fixed the value of ∆ in the model (4.8) at 56 days (≈ 0.1533 years).

We respectively present the results for the control and treatment groups in

Tables 4.5 and 4.6, which show the maximum likelihood estimates of the model

parameters θ = (α, γ, β∆=0.1533, φC1,2 , θG1,2)
′, and their standard errors in parenthesis,

estimated Kendall’s tau τ̂K1,2 and the value of the maximum log-likelihood calculated

at θ̂ = (α̂, γ̂, β̂∆=0.1533, φ̂C1,2 , θ̂G1,2)
′. Note that the Clayton and Gumbel-Hougaard

copulas require the estimation of a single copula parameter (φC1,2 for CLY and θG1,2

for G H), which represents the dependence level between the first two gap times,

whereas the 2-parameter copula requires the estimation of both parameters φC1,2 and

θG1,2 simultaneously.

In the control group 53 asthma attacks (out of 82) occurred within 56 days after

the resolution of the first asthma attacks. Under the null model with no dependence

(Null-IND), the expected number of asthma attack over that time period is 25.97

(= 2.0656/365.25×56×82). Under the standard normal approximations, all estimates

of carryover effects presented in Table 4.5 are significant. For example, in the hybrid

model with Gumbel-Hougaard (Hybrid-G H) copula, β̂∆=0.1533 = 1.5093, which gives

95% confidence interval (c.i.) with limits 1.0477 and 1.9709, and a Wald type test of

H0 : β = 0 gives a p−value close to 0 (< 0.005).

We next consider the presence of dependency between the first two gap times in

the control group. To do this, we use the hybrid model with the Gumbel-Hougaard

(Hybrid-G H) copula because it has the smallest Akaike information criterion (AIC)

value. In the hybrid model, independence can be tested by comparing the estimated

log-likelihood values of Hybrid-G H and Hybrid-IND copula models. A likelihood

ratio statistic Λ(θG1,2 = 1) = 2(ℓG H − ℓIND) = 2(−31.0958 + 35.9767) = 9.7618 can

be used for testing H0 : θG1,2 = 1. It should be noted that the value of the parameter

θG1,2 under the null hypothesis is a boundary point, and standard asymptotic theory

cannot be applied (Self and Liang, 1987). However, a p−value can be calculated by

using the limiting distribution Pr(Λ(θG1,2 = 1) ≤ q) = 0.5 + 0.5Pr(χ2
(1) ≤ q), which

gives a p−value as 0.5Pr(χ2
(1) ≥ 9.7618) = 0.0009 so that we reject H0 : θG1,2 = 1

in favor of H1 : θG1,2 > 1. Therefore, we conclude that there is a small level of

statistically significant dependence between the first two gap times.
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Table 4.5: Parameter estimates and standard errors (within parenthesis) from gap
times models which consider only first two gap times for the control group in asthma
data.

Models
Estimates

ℓ(θ̂)
α̂ γ̂ β̂∆=0.1533 φ̂C1,2

θ̂G1,2
τ̂K1,2

Null

IND
2.0656

−55.1941
(0.1457)

CLY
1.9818 0.2676 0.1180

−49.2286
(0.1504) (0.0906) (0.0353)

G H
1.9984 1.1373 0.1208

−53.0727
(0.1568) (0.0740) (0.0572)

2PR
1.9818 0.2676 ≈ 1 0.1180

−49.2286
(0.1504) (0.0906) (≈ 0) (0.0353)

Carryover

IND
1.7561 0.8398

−43.3101
(0.1444) (0.1601)

CLY
1.7545 0.7459 0.2561 0.1135

−39.2825
(0.1452) (0.1577) (0.1028) (0.0404)

G H
1.7366 0.8029 1.1416 0.1241

−41.4453
(0.1485) (0.1536) (0.0805) (0.0618)

2PR
1.7545 0.7459 0.2561 ≈ 1 0.1135

−39.2825
(0.1452) (0.1577) (0.1028) (≈ 0) (0.0404)

Trend

IND
2.1333 −0.0773

−55.0484
(0.1956) (0.1435)

CLY
2.0224 −0.0486 0.2644 0.1168

−49.1662
(0.1917) (0.1377) (0.0905) (0.0353)

G H
2.0844 −0.1052 1.1426 0.1248

−52.7629
(0.1965) (0.1339) (0.0742) (0.0568)

2PR
2.0224 −0.0486 0.2644 ≈ 1 0.1168

−49.1662
(0.1917) (0.1377) (0.0905) (≈ 0) (0.0353)

Hybrid

IND
2.1333 −0.7401 1.3853

−35.9767
(0.1956) (0.2071) (0.2310)

CLY
2.1169 −0.7382 1.3306 0.2724 0.1199

−31.9031
(0.1939) (0.2063) (0.2331) (0.1084) (0.0420)

G H
2.1098 −0.8495 1.5093 1.2489 0.1993

−31.0958
(0.1938) (0.2003) (0.2355) (0.0942) (0.0604)

2PR
2.1139 −0.8332 1.4787 0.0521 1.2060 0.1919

−31.0517
(0.1944) (0.2092) (0.2574) (0.1795) (0.1690) (0.0659)

In the Hybrid-G H model, the carryover effect is significant (β̂∆=0.1533 = 1.5093,

95% c.i. (1.0477,1.9709), p−value ≈ 0), and it gives a relative risk (RR) of 4.52. The

trend component in the Hybrid-G H model is also significant (γ̂ = −0.8495, 95% c.i.

(-1.2421,-0.4569), p−value ≈ 0). Note that the term N(t−) in model (4.8) results in a

change in the baseline hazard α to αeγ for the second gap time. A comparison between

the Hybrid-G H model and the Carryover-G H model also reveals that γ is significant

(a likelihood ratio test with p−value ≈ 0). Furthermore, the estimate of the carryover

effect β found under the event counts model (Hybrid-REM model) in Section 3.4 was

0.7439, which is quite smaller than the one found under the Hybrid-G H model. Also,

the parameter γ was not significant in the Hybrid-REM model of Section 3.4 (p−value

= 0.0184 with a LR test). We therefore conclude that the analysis based on the gap

time model gives different results from the analysis based on the event counts model
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for the control group.

Table 4.6: Parameter estimates and standard errors (within parenthesis) from gap
times models which consider only first two gap times for the treatment group in
asthma data.

Models
Estimates

ℓ(θ̂)
α̂ γ̂ β̂∆=0.1533 φ̂C1,2

θ̂G1,2
τ̂K1,2

Null

IND
1.5084

−103.6580
(0.1137)

CLY
1.5047 0.0172 0.0085

−103.6342
(0.1152) (0.0800) (0.0393)

G H
1.5084 ≈ 1 ≈ 0

−103.6580
(0.1137) (≈ 0) (≈ 0)

2PR
1.5047 0.0172 ≈ 1 0.0085

−103.6342
(0.1152) (0.0800) (≈ 0) (0.0393)

Carryover

IND
1.3095 0.8677

−93.8326
(0.1123) (0.1799)

CLY
1.3095 0.8672 0.0026 0.0013

−93.8323
(0.1123) (0.1808) (0.1003) (0.0500)

G H
1.3095 0.8677 ≈ 1 ≈ 0

−93.8326
(0.1123) (0.1799) (≈ 0) (≈ 0)

2PR
1.3095 0.8676 0.0004 ≈ 1 0.0002

−93.8326
(0.1123) (0.1797) (≈ 0) (0.0004) (≈ 0)

Trend

IND
1.6988 −0.3020

−101.7659
(0.1598) (0.1572)

CLY
1.6982 −0.3017 0.0013 0.0007

−101.7657
(0.1630) (0.1583) (0.0749) (0.0374)

G H
1.6988 −0.3020 ≈ 1 ≈ 0

−101.7659
(0.1598) (0.1572) (≈ 0) (≈ 0)

2PR
1.6988 −0.3020 ≈ 0 ≈ 1 ≈ 0

−101.7659
(0.1597) (0.1572) (≈ 0) (0.0003) (≈ 0)

Hybrid

IND
1.6988 −1.0144 1.6218

−81.7701
(0.1598) (0.2288) (0.2617)

CLY
1.6980 −1.0150 1.6235 0.0177 0.0088

−81.7579
(0.1598) (0.2288) (0.2621) (0.1148) (0.0564)

G H
1.6987 −1.0430 1.6499 1.0502 0.0478

−81.6101
(0.1599) (0.2320) (0.2669) (0.0913) (0.0828)

2PR
1.6986 −1.0430 1.6499 ≈ 0 1.0502 0.0478

−81.6101
(0.1599) (0.2319) (0.2669) (0.0001) (0.0913) (0.0828)

We conducted a similar analysis for the treatment group. The results are presented

in Table 4.6. In this case, the Hybrid-IND model gives the smallest AIC value

(169.5402). Also, none of the copula parameters are significant in the models

considered in Table 4.6. We therefore use the Hybrid-IND model to make inference

on the covariates. Note that this model assumes independence between the first two

gap times, and uses only the first two gap times to fit the data. In the Hybrid-MPP

model used in Section 3.4, the results are based on all gap times. The parameter β

in the Hybrid-IND model is significant (β̂∆=0.1533 = 1.6218, 95% c.i. (1.1089,2.1347),

p−value ≈ 0, and RR=5.06). The estimate of β in the Hybrid-MPP was 0.9820

(RR=2.67). We also observe in the Hybrid-IND model in Table 4.6 that the parameter

γ is significant (γ̂ = −1.0144, 95% c.i. (-1.4628,-0.5659), p−value ≈ 0). The estimate
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of γ in the Hybrid-MPP model was 0.1276, which is in the opposite direction of the

estimate found in the Hybrid-IND model. Our analysis here and Section 3.4 show

that the results should be carefully interpreted if the gap times are of interest, and

we recommend to use a specific gap time model in such applications.

In the final part of our analysis, we discuss the adequacy of the models considered

in Table 4.5 and 4.6 to fit the data. For this purpose, we compare the estimates of

the marginal survival functions of the second gap times with their corresponding step

function estimates. To do this, we use a two-stage semi-parametric method, proposed

by Lawless and Yilmaz (2011), for estimation of the marginal survival function of the

second gap time. In this estimation method the marginal distributions are estimated

with step functions, and combined with a parametric copula model so that a step

function estimate, similar to the Kaplan-Meier estimate, of the marginal survival

function of the second gap time (i.e. S2(t) = 1 − F2(t), t > 0) can be obtained.

We present the results in Figure 4.1 as estimated survival functions Ŝ2(t). For the

comparison, we use all the models considered in Table 4.5 and 4.6 as well as in

Table 3.8. For these models, we estimate S2(t) by plugging-in the corresponding

estimates of the parameters.
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Figure 4.1: Modulated Poisson process (MPP) model based maximum likelihood, random effects model (REM)
based maximum likelihood, copula-based maximum likelihood (2PR: 2 parameter copula, CLY: Clayton copula, G H:
Gumbel-Hougaard copula, IND: independent copula) and the corresponding two-stage semiparametric estimates of
S2(t) = 1 − F2(t) for the treatment and the control groups. The curves are from maximum likelihood estimates and
the step functions are from two-stage semiparametric estimates.
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It is clear by comparing the step function estimates of S2(t) with the parametric

estimates of S2(t) that the hybrid models fit the data the best, suggesting that the two

existing dynamic features in the data are correctly captured by the models introduced

in this section. Among the models under the group of hybrid models, the copula based

models (CLY, G H, 2PR) seem better fit than the models for event counts (MPP,

REM) for both the control and treatment groups.

A final note here is that the two-stage semiparametric estimation of S2(t) can be

used to get a rough idea about the value for the duration of the carryover effect. For

example, in the plots given in Figure 4.1, a choice of ∆ = 0.1533 years (=56 days)

seems appropriate for the asthma data in both control and treatment groups.

4.5 Copula Models for Series of Gap Times

Our goal in this section is to extend the discussion of Section 4.2 to the third and

subsequent gap times. We will follow a similar setup given in Section 4.2.

Suppose that there are m independent individuals in a study. Let Wij be the

jth gap time from the ith individual and let Ci be the independent right censoring

time for the ith individual, where i = 1, . . . ,m and j = 1, 2, . . .. We focus on the

whole sequence of the gap times (Wi1,Wi2, . . . ,Wini
), i = 1, . . . ,m with the joint

distribution function

Pr(Wi1 ≤ w1,Wi2 ≤ w2, . . . ,Wini
≤ wni

), (4.9)

defined for every set of positive real numbers w1, w2, . . . , wni
. To deal with the

censoring, we let wij = min(Wij, Ci − Ti,j−1) and δij = I[Tij ≤ Ci] respectively

be the observed gap time and its event indicator obtained from the ith individual,

where Tij =
∑j

l=1Wil is the j
th event time of the ith individual, and I is a 0−1 valued

indicator function.

To model serial dependency, we need to assume a structure for the dependency

between the gap times within a subject. We first start with a dependent structure,

which is useful in many applications and mathematically tractable. In this section, we

therefore consider the case in which only the two consecutive gap times are dependent.

That is, the kth gap time depends only on the (k−1)st gap time and does not depend on
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any other previous ((k−2)nd,. . .,1st) gap times. We refer to this dependence structure

as the Markov dependence structure, a term sometimes used in time series analysis

to describe similar type of dependency (Joe, 1997, Chapter 8). Note that the Markov

dependence structure is a special case of the D-Vine copula. A brief introduction of

the D-Vine copula is available in Section 2.4.2.

We denote the bivariate distribution function of random variables Wij ≥ 0

and Wi,j+1 ≥ 0 as Fj,j+1(wij, wi,j+1), the conditional distribution function of

Wi,j+1 ≥ 0 given Wij = wij as Fj+1|j(wi,j+1|wij) and the marginal distribution

function of Wij as Fj(wij) = Fj−1,j(∞, w2). The corresponding bivariate joint

density, conditional density and the marginal density functions are denoted by

fj,j+1(wij, wi,j+1), fj+1|j(wi,j+1|wij) and fj(wij), respectively. Then, the likelihood of

the observed data {(wi1, . . . , wi,ni+1, δi1, . . . , δi,ni+1) : i = 1, . . . ,m} for m independent

processes is

L =
m∏

i=1

Li, (4.10)

where ni is the number of events observed during the observation period for the ith

individual and

Li = f1(wi1)
δi1 [1− F1(wi1)]

1−δi1

×



{

ni∏

j=2

fj|j−1(wij|wi,j−1)

}δi2 [
1− Fni+1|ni

(wi,ni+1|wini
)
]1−δi,ni+1



δi1

.
(4.11)

Following the discussion in Section 4.1, we focus on the discrete mixture model

(4.2), where the marginal hazard function of the kth gap time is given by

hk(w) =

{
α, k = 1,

αe[(k−1)γ+β] I(w ≤ ∆) + αe[(k−1)γ] I(w > ∆), k = 2, 3, . . . ,
(4.12)

for any w > 0. For k = 1, 2, . . . , the corresponding marginal cumulative distribution

function and density function of kth gap time are given by

Fk(w) = 1− exp
[
−αe(k−1)γ

{
w + I(k > 1)min(w,∆)

(
eβ − 1

)}]
, w > 0, (4.13)
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and

fk(w) =

{
α exp

[
(k − 1)γ + βI(k > 1)− αe(k−1)γ

{
weβI(k>1)

}]
, w ≤ ∆,

α exp
[
(k − 1)γ − αe(k−1)γ

{
w +∆

(
eβI(k>1) − 1

)}]
, w > ∆,

(4.14)

respectively. According to Sklar’s Theorem (Nelsen, 2006, p. 21), for any w1, w2 > 0,

there exists a unique copula function such that

F (w1, w2) = Cα∗(F1(w1), F2(w2)), (4.15)

where the subscript α∗ represents the copula parameter to be estimated. As discussed

in Section 2.4.1, there are many parametric copula functions available to use in (4.15).

We choose the Clayton copula

Cα∗(u1, u2) =
(
u−α∗

1 + u−α∗

2 − 1
)−1/α∗

, u1, u2 ∈ [0, 1] (4.16)

where α∗ ∈ [−1,∞)\{0}. This is because it is an excellent candidate to investigate

lower tail dependency (Embrechts et al., 2003), and a popular choice in survival

studies (Lawless and Yilmaz, 2011). Clayton copula can handle both positive and

negative associations without any rotation, whereas most of the other copulas have

to be rotated to capture the negative association. We would like to note that copula

assumption is testable. Other choices include Gumbel-Hougaard copula, Frank copula

and Joe copula.

Since we pick the copula function to model the joint distribution, the conditional

density and distribution functions in (4.10) can be replaced by their corresponding

copula versions. The full likelihood function which contains all the available gap times

is then

L =
m∏

i=1

f1(wi1)
δi1 [1− F1(wi1)]

1−δi1

×



{

ni∏

j=2

∂2Cα∗(Fj(wij), Fj−1(wi,j−1))

∂Fj(wij)∂Fj−1(wi,j−1)
fj(wij)

}δi2

×
[
1− ∂Cα∗(Fni+1(wi,ni+1), Fni

(wini
))

∂Fni
(wini

)

]1−δi,ni+1

]δi1
.

(4.17)
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The Archimedean copulas including the Clayton copula (4.16) can be too restrictive

when k ≥ 3 because it assigns a single parameter α∗ to explain all the consecutive

dependency between the gap times. An alternative is to assign separate parameters

α∗
j , j = 1, . . . , n∗, where n∗ = max(n1, . . . , nm), for each consecutive dependencies. In

this case, the parameter α∗
j corresponds to the copula parameter which captures the

dependency between the jth and (j−1)st gap times. An important remark is, however,

that an estimability issue may arise. For example, if there exists only one individual

with the highest number of events, then the copula parameter α∗
n∗ corresponding to the

last two gap times may arise estimable issue due to lack of information. Therefore,

we modify the likelihood function (4.17) to include only the first fixed number of

consecutive gap times in a way that the parameters in (4.17) can be estimated from

the data. To do this, we need to specify a value for k in the hazard function (4.12).

Suppose that k is fixed at such a value. Then, the likelihood function for first k(> 2)

gap times for m independent individuals can be written as

L =
m∏

i=1

f1(wi1)
δi1 [1− F1(wi1)]

1−δi1

×




min(ni+1,k)∏

j=2

{
∂2Cα∗

j−1
(Fj(wij), Fj−1(wi,j−1))

∂Fj(wij)∂Fj−1(wi,j−1)
fj(wij)

}δij

×
{
1−

∂Cα∗
j−1

(Fj(wij), Fj−1(wi,j−1))

∂Fj−1(wi,j−1)

}1−δij


δi1

.

(4.18)

For an Archimedean copula, the likelihood function (4.18) can be rewritten in

terms of its generator function as,

L =
m∏

i=1

f δi1
i1 [1− Fi1]

1−δi1

×



min(ni+1,k)∏

j=2




−
ϕ̈α∗

j−1

(
ϕ−1
α∗
j−1

[ϕα∗
j−1

(Fi,j−1) + ϕα∗
j−1

(Fij)]
)

ϕ̇α∗
j−1

(
ϕ−1
α∗
j−1

[ϕα∗
j−1

(Fi,j−1) + ϕα∗
j−1

(Fij)]
)3 ϕ̇α∗

j−1
(Fi,j−1)ϕ̇α∗

j−1
(Fij)fij





δij

×



1−

ϕ̇α∗
j−1

(Fi,j−1)

ϕ̇α∗
j−1

(
ϕ−1
α∗
j−1

[ϕα∗
j−1

(Fi,j−1) + ϕα∗
j−1

(Fij)]
)





1−δij



δi1

,

(4.19)

where ϕ̇α∗ = ∂ϕα∗ (t)
∂t

, ϕ̈α∗ = ∂2ϕα∗ (t)
∂t2

, fij and Fij are fj(wij) and Fj(wij), respectively.
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In case there are external covariates of interest in a study, the probabilistic

characteristics of gap times including appropriate functions fij and Fij are defined

conditionally on the value of covariates. As discussed in Section 2.2.3, the model

(4.12) can be extended to incorporate external covariates. Assuming there is enough

information about covariates available in data for each gap time, the likelihood

function (4.19) can be used to make inference about covariates.

4.6 Extensions of the Model for the Heterogeneous

Data

The issue of excess heterogeneity in the rate functions of event count models has been

discussed in Section 3.2. In this section, we investigate the impacts of such a scenario

on the estimation of dynamic covariates with gap time models.

As discussed in Section 3.2, a useful random effects model is given with the

following intensity function

λi[t|Hi(t), νi] = ανi exp
[
γ Ni(t

−) + β Zi(t)
]
, i = 1, . . . ,m, t > 0, (4.20)

where ν1, ν2, . . . , νm are positive-valued i.i.d. random effects from a gamma

distribution with mean 1 and variance φ, where φ > 0. External covariates can

be included in (4.20).

The model (4.20) can be expressed with the conditional hazard function of Wik,

given the value of νi as follows. For i = 1, . . . ,m and w > 0,

hk(w|νi) =
{
ανi, k = 1,

ανie
[(k−1)γ+β] I(w ≤ ∆) + ανie

[(k−1)γ] I(w > ∆), k = 2, 3, . . . ,

(4.21)

where ν1, ν2, . . . , νm are independent and identically distributed unobservable random
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variables. Then, the conditional likelihood contribution by the ith individual is

Li(θ|νi) =f1(wi1|νi)δi1 [1− F1(wi1|νi)]1−δi1



min(ni+1,k)∏

j=2

{
∂2Cα∗

j−1
(Fj(wij|νi), Fj−1(wi,j−1|νi))

∂Fj(wij|νi)∂Fj−1(wi,j−1|νi)
fj(wij|νi)

}δij

×
{
1−

∂Cα∗
j−1

(Fj(wij|νi), Fj−1(wi,j−1|νi))
∂Fj−1(wi,j−1|νi)

}1−δij



δi1

.

(4.22)

where θ = (α, β, γ, φ,α∗′)′.

From the conditional hazard function (4.21), we can respectively obtain the

conditional marginal c.d.f. and p.d.f. of Wik given νi as follows. For i = 1, . . . ,m,

k = 2, 3, . . . and w > 0,

Fk(w|νi) = 1− exp
[
−ανie(k−1)γ

{
w + I(k > 1)min(w,∆)

(
eβ − 1

)}]
, w > 0,

(4.23)

and

fk(w|νi) =
{
ανi exp

[
(k − 1)γ + βI(k > 1)− ανie

(k−1)γ
{
weβI(k>1)

}]
, w ≤ ∆,

ανi exp
[
(k − 1)γ − ανie

(k−1)γ
{
w +∆

(
eβI(k>1) − 1

)}]
, w > ∆.

(4.24)

In model (4.21), we assume that νi are i.i.d. gamma random variables with mean

1 and variance φ. In this case the p.d.f. of νi, i = 1, . . . ,m, is given by

g(νi;φ) =
νφ

−1−1
i exp(−νi/φ)
φφ−1Γ(φ−1)

, 0 < νi <∞. (4.25)

Estimation in the random effects models can be carried out after integrating out

random effects from the conditional likelihood function given the value of random

effects. In this case, the marginal likelihood function is

L(θ) =
m∏

i=1

Li(θ) =
m∏

i=1

∫ ∞

0

Li(θ|νi)g(νi;φ)dνi. (4.26)

However, the integration in the marginal likelihood function (4.26) is quite messy.

Therefore, it requires a software package to calculate numerical values.
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We encountered issues with the R software during the optimization and

calculation of the maximum likelihood estimates. The integration function returned

with non-numerical values. To deal with this issue, we used the Gaussian

quadrature method to obtain an approximation of the likelihood function (4.26).

A similar application can be seen in Selvaratnam et al. (2017). In our case,

Gauss–Laguerre quadrature approximation is appropriate. This procedure is given

by the approximation

∫ ∞

0

f(ν∗) exp(−ν∗)dν∗ ≈
r∑

l=1

ωlf(ν
∗
l ), (4.27)

where the nodes ν∗l are the solutions of the rth order Laguerre polynomial and the

ωl are suitably corresponding weights. The rth order Laguerre polynomial Lr(x) is
ex

r!

dr

dxr
(exxr) and the ωl is

ν∗l
(r + 1)2 [Lr+1(ν∗l )]

2 . By Theorem 5.1.9 of Brass and Petras

(2011), the Gauss–Laguerre approximation converges to the exact integral as r → ∞.

In our case, for the ith individual, f(ν∗i ) in left hand side of (4.27) can be expressed

as

f(ν∗i ;θ, φ) = Li(θ|φν∗i )
(ν∗i )

φ−1−1

Γ(φ−1)
, (4.28)

following the substitution of φν∗i in place of νi in (4.26). Then the resulting

approximate likelihood function can be written as

L(θ, φ) ≈
m∏

i=1

r∑

l=1

ωlf(ν
∗
il;θ, φ). (4.29)

We use nlminb method in optimx package in R to obtain the estimates of the

parameters and their standard errors by maximizing the log of the L(θ, φ) in (4.29).

As discussed in the next section through simulations, this method works fine in our

case.

4.7 Simulation Results

In this section, we present the results of simulation studies conducted to investigate

the bias and precision in the estimation of parameters in the dynamic gap times

models discussed in Section 4.5 and 4.6. We first consider the identical processes case
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and then the nonidentical case. In each case, to generate data, we assume that the

successive gap times have a Markov type of dependency; that is, the kth gap time

only depends on the immediately previous (k − 1)th gap time for k = 2, 3, . . . . We

formulate such dependency in two ways. First, we assign a common copula parameter

for the successive dependency. Second, we assign separate copula parameters for

the successive dependency. Since our primary interest is in the investigation of

two dynamic features of recurrent event processes, it is important to check which

dependency formulation gives better results in terms of estimation of them. While

doing this, we also fit the best model with less number of parameters for the

dependency to facilitate the estimation procedure.

4.7.1 Identical Processes

In the identical processes case, we generated 2,000 realizations of serially dependent

recurrent event processes using the algorithm given in Section 2.5.2 with the model

hk(w) =

{
α, k = 1,

αe[(k−1)γ+β] I(w ≤ ∆) + αe[(k−1)γ] I(w > ∆), k = 2, 3, . . . ,
(4.30)

where hk(w), w > 0, is the hazard function of the kth gap time Wk. We generated the

data from the model (4.30) with α, γ (α = 1, γ = 0.223 and β = 1.609) so that both

trend and carryover effects are involved in the data generation process. We fixed ∆ at

0.05 and used (m, τ) combinations, where m = 50, 100, 250, 500 and τ = 1 and 5. We

fitted models for only up to the first five gap times. Since we fixed the follow-up period

τ , a process is type 2 censored when the fifth event occurred before τ . Otherwise the

process is censored at time τ . As discussed in Section 2.2.5, the likelihood function

(4.18) is still valid in such cases. Also, see Cook and Lawless (2007, Section 2.6).

We generated the gap times so that they were serially dependent. The series of

dependence parameters is denoted by φc = (φc1, φc2, φc3, φc4), and the corresponding

vector of Kendall’s tau values are denoted by τφc
= (τφc1 , τφc2 , τφc3 , τφc4). The first

value τφc1 in τφc
corresponds to the dependency between the first gap time W1

and the second gap time W2, the second value τφc2 corresponds to the dependency

between the second gap time W2 and the third gap time W3 and so on. We

picked three sets of values for τφc
so that the dependency was increasing, decreasing
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and constant. In this way, we checked whether the trend effect and dependency

parameters confounded each other. For the increasing serial dependence parameters,

we assigned φc = (1.33, 2, 3, 4.67), and the corresponding Kendall’s tau values

were τφc
= (0.4, 0.5, 0.6, 0.7). For the decreasing and constant serial dependence

parameters, respectively, we assigned φc = (4.67, 3, 2, 1.33) and φc = (2, 2, 2, 2).

Based on the model (4.30), we fitted the following hybrid gap time model with

Clayton copula dependency. The hybrid model:

hk(wi) =

{
α, k = 1,

αe[(k−1)γ+β] I(wi ≤ ∆) + αe[(k−1)γ] I(wi > ∆), k = 2, 3, . . . ,
(4.31)

for i = 1, . . . ,m and wi > 0.

We used the following abbreviations for two different parameterizations of

dependence structure. The acronym DDP stands for difference dependence

parameters, which defines the Markov type dependent structured model with different

parameters for the dependence series, and SDP stands for single dependence

parameter, which defines the same dependent structured model with only a single

parameter for the dependence series. To compare DDP and SDP models with the

classical approach, we also fitted the model with independent gap times assumption

and denoted by IND. The estimates of the parameters in the models SDP and DDP

estimates were obtained by maximizing the log of likelihood functions in (4.17) and

(4.18), respectively. Estimates in the IND model were obtained by maximizing the

log of the likelihood function in (4.17), where the copula function Cα∗ is replaced with

the independent copula function CI . The independent copula has the form

CI(u1, u2) = u1u2, 0 ≤ u1, u2 ≤ 1, (4.32)

where the subscript I denotes the independent. We used the optimx package in R to

obtain the estimates of the parameters by maximizing the log-likelihood function.
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Table 4.7: Empirical means (standard deviations) [means of standard errors] of
parameter estimates from the hybrid model (4.31) under three different structures
(DDP, SDP and IND). The data were generated from the model (4.30), where α = 1,
γ = 0.223, β = 1.609, ∆ = 0.05 and serial dependence copula parameters were
φc = (1.33, 2, 3, 4.67) with 2,000 simulations.

τ Parameter
DDP SDP IND

m = 50 m = 100 m = 250 m = 500 m = 50 m = 100 m = 250 m = 500 m = 50 m = 100 m = 250 m = 500
¯̂α 1.016398 1.008957 1.004273 1.001837 1.051388 1.042954 1.037665 1.035646 1.001024 0.993567 0.989303 0.987159

5 (0.118120) (0.079490) (0.050192) (0.035139) (0.127742) (0.086036) (0.054443) (0.037859) (0.127374) (0.085629) (0.054127) (0.038137)
[0.114362] [0.080214] [0.050496] [0.035620] [0.127373] [0.089407] [0.056300] [0.039740] [0.112408] [0.078820] [0.049625] [0.035015]

¯̂γ 0.220168 0.220924 0.222019 0.222417 0.208616 0.209088 0.210137 0.210196 0.247133 0.247175 0.247853 0.247750
(0.044311) (0.030855) (0.019559) (0.013861) (0.047315) (0.033295) (0.021007) (0.014718) (0.056182) (0.039443) (0.024831) (0.017159)
[0.042722] [0.030161] [0.019073] [0.013480] [0.047725] [0.033693] [0.021311] [0.015066] [0.050596] [0.035687] [0.022548] [0.015944]

¯̂
β 1.597803 1.600798 1.598042 1.600188 1.553954 1.557927 1.556069 1.558709 1.598985 1.608732 1.612159 1.617607

(0.158339) (0.108950) (0.068291) (0.047806) (0.172596) (0.119695) (0.076567) (0.053288) (0.219142) (0.155818) (0.100749) (0.070604)
[0.154357] [0.108480] [0.068405] [0.048286] [0.142762] [0.100478] [0.063467] [0.044812] [0.155089] [0.109148] [0.068861] [0.048626]

¯̂
φc1 1.384899 1.360880 1.346778 1.340187

(0.341383) (0.233049) (0.146115) (0.100029)
[0.332050] [0.230464] [0.144137] [0.101478]

¯̂
φc2 2.057964 2.036171 2.014858 2.007926

(0.444063) (0.306353) (0.193676) (0.134532)
[0.430645] [0.300794] [0.188203] [0.132662]

¯̂
φc3 3.090353 3.040231 3.012476 3.006001

(0.586488) (0.402132) (0.248510) (0.176787)
[0.573210] [0.398695] [0.249726] [0.176084]

¯̂
φc4 4.793780 4.727589 4.687248 4.675602

(0.832738) (0.561755) (0.352407) (0.242824)
[0.820700] [0.570011] [0.356476] [0.251102]

¯̂
φc 2.331883 2.318773 2.307897 2.304723

(0.288948) (0.198903) (0.125509) (0.084936)
[0.255345] [0.178882] [0.112343] [0.079224]

¯̂α 1.009573 1.003833 1.000659 1.001855 1.017354 1.010616 1.006742 1.007758 1.042573 1.039442 1.036838 1.038456
1 (0.175283) (0.121710) (0.076973) (0.054138) (0.178636) (0.124461) (0.078921) (0.055057) (0.172448) (0.119892) (0.075226) (0.053251)

[0.173159] [0.122218] [0.077197] [0.054641] [0.176725] [0.124530] [0.078616] [0.055637] [0.159731] [0.112658] [0.071102] [0.050316]
¯̂γ 0.214991 0.217162 0.220955 0.222402 0.232543 0.234741 0.238355 0.240144 0.473643 0.466745 0.464624 0.464186

(0.085182) (0.055444) (0.033951) (0.024128) (0.091928) (0.062437) (0.038937) (0.027504) (0.092449) (0.063506) (0.039793) (0.028110)
[0.075572] [0.053432] [0.033744] [0.023837] [0.100685] [0.070278] [0.044220] [0.031204] [0.093307] [0.064971] [0.040751] [0.028704]

¯̂
β 1.597507 1.600452 1.600043 1.598884 1.546709 1.552694 1.551837 1.550830 1.780111 1.802601 1.812257 1.811690

(0.225180) (0.156243) (0.095840) (0.066891) (0.224176) (0.156449) (0.097076) (0.067765) (0.329083) (0.231594) (0.142700) (0.098756)
[0.214434] [0.149863] [0.094324] [0.066589] [0.196542] [0.137361] [0.086501] [0.061069] [0.271329] [0.188810] [0.118352] [0.083385]

¯̂
φc1 1.407304 1.373672 1.345869 1.334240

(0.408090) (0.275842) (0.168504) (0.118980)
[0.387812] [0.267126] [0.165813] [0.116405]

¯̂
φc2 2.092604 2.048931 2.017373 2.010217

(0.574602) (0.378923) (0.230980) (0.164282)
[0.551762] [0.378281] [0.234796] [0.165165]

¯̂
φc3 3.218671 3.089031 3.037123 3.024201

(0.913893) (0.572300) (0.338770) (0.240197)
[0.817548] [0.547861] [0.338509] [0.237694]

¯̂
φc4 5.085861 4.860941 4.755834 4.718583

(1.472392) (0.881007) (0.540230) (0.368912)
[1.276935] [0.846859] [0.518953] [0.362481]

¯̂
φc 2.177989 2.161402 2.145689 2.139835

(0.340550) (0.233430) (0.144598) (0.102050)
[0.303648] [0.210722] [0.131663] [0.092735]

Table 4.7 contains the results of the simulation study when the hybrid models

without external covariates fitted to the data generated from the model (4.30). When

the follow-up time τ is 5, the estimates in IND and SDP are slightly biased, but

within 95% c.i. based on standard normal approximation. The estimate of the copula

parameter in SDP is close to the value of the Clayton copula parameter corresponding

to the average of the sequence of Kendall’s tau values. The average of the sequence

of Kendall’s tau values is 0.55 and the corresponding Clayton copula parameter is



105

2.444. Even though the sequence of gap times has strong dependency within each

other, the model with independent assumption (IND) gives slightly biased estimates

for the parameters when the follow-up period τ is 5. We also notice that the variance

estimates are larger than the corresponding DDP and SDPmodels. However, when the

follow-up time reduces from 5 to 1, the estimates from the IND model are drastically

biased. In particular, the model overestimates the effects of the internal covariates.

It should be noted that, when the follow-up time is 5, on the average the observed

percentage of the fifth gap times is 84.1%. When the follow-up period reduces to 1, the

observed percentages of the first, second and up to fifth gap times are 63.2%, 42.5%,

33.8%, 29.6% and 27.5%, respectively. Follow-up time reduction does not affect much

on the estimates of the parameters in the SDP model. Overall, the results in Table 4.7

indicate censoring rate affects the bias in the estimates of the parameters when the

fitted model assumes the gap times are independent. In both follow-up time cases,

DDP performs better and is not affected too much by the increased censoring.

We next present the results of a simulation study conducted to investigate the

effects of time fixed external covariates on the estimates of the dynamic covariates.

For this purpose, we include two time fixed covariates x = (x1, x2)
′ into the model

(4.30) and define the hazard function of the kth gap time Wk as

hk(w) =

{
αeξ

′x, k = 1,

αe[(k−1)γ+β+ξ′x] I(w ≤ ∆) + αe[(k−1)γ+ξ′x] I(w > ∆), k = 2, 3, . . . ,

(4.33)

where ξ′ = (ξ1, ξ2) is a vector of parameters. Following the steps of the previous four

simulation scenarios explained above, we included two binary external covariates with

1 and 0 as possible values, and their corresponding effect values are ξ = (0.5, 1).

Table 4.8 includes the simulation results when the hybrid model (4.33) fitted to

the data generated with external covariate effects. The IND model underestimates the

effects of external covariates, while it overestimates the effects of internal covariates

when the follow-up time is small. For example, when the hybrid IND model fitted

to the data generated with m = 500, τK = (0.4, 0.5, 0.6, 0.7), α = 1, β = 1.609,

γ = 0.223, ξ1 = 0.5, ξ2 = 1 and τ = 1, the empirical means of estimates of ξ1 and

ξ2 are 0.3535 and 0.6523, respectively, and the empirical standard deviations of the

estimates are 0.0721 and 0.0751, respectively. However, when the follow-up time is

large, the estimates in the IND model are not significantly different from the actual
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values. For example, when the hybrid IND model fitted to the data generated with

m = 500, τK = (0.4, 0.5, 0.6, 0.7), α = 1, β = 1.609, γ = 0.223, ξ1 = 0.5, ξ2 = 1

and τ = 5, the empirical means of estimates of ξ1 and ξ2 are 0.4836 and 0.9809,

respectively, and the empirical standard deviations of the estimates are 0.0625 and

0.0657, respectively. It should be noted that, when τ = 5, on the average 95.7% of

the fifth gap times were uncensored in this setting. When τ = 1, this average was

84.1% for the first gap time, 71.7% for the second gap time, 64.9% for the third gap

time, 60.9% for the fourth gap time and 58.6% for the fifth gap time. We also note

that the estimates of the DDP model given in Table 4.7 and Table 4.8 are consistent.

In other words, when the sample size increases the estimates converges to the correct

parameter values, as well as the simulation standard deviations and the simulation

means of standard errors decrease.
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Table 4.8: Empirical means (standard deviations) [means of standard errors] of
parameter estimates from the hybrid model (4.33) under three different structures
(DDP, SDP and IND). The data were generated from the model (4.33), where α = 1,
γ = 0.223, β = 1.609, ∆ = 0.05, ξ = (0.5, 1) and serial dependence copula parameters
were φc = (1.33, 2, 3, 4.67) with 2,000 simulations.

τ Parameter
DDP SDP IND

m = 50 m = 100 m = 250 m = 500 m = 50 m = 100 m = 250 m = 500 m = 50 m = 100 m = 250 m = 500
¯̂α 1.033482 1.012987 1.004552 1.002741 1.079978 1.057678 1.048814 1.047102 1.043512 1.024211 1.019325 1.018036

5 (0.184445) (0.124584) (0.076203) (0.053531) (0.194081) (0.131575) (0.080980) (0.057293) (0.210484) (0.139445) (0.086436) (0.061191)
[0.175350] [0.120168] [0.075030] [0.052797] [0.190689] [0.130620] [0.081589] [0.057445] [0.151397] [0.104087] [0.065258] [0.045987]

¯̂γ 0.223138 0.222892 0.223091 0.222917 0.202316 0.202316 0.202191 0.201775 0.235635 0.232724 0.230915 0.229812
(0.045928) (0.029436) (0.018347) (0.012931) (0.044899) (0.030998) (0.019577) (0.013834) (0.053902) (0.038581) (0.024591) (0.017304)
[0.041276] [0.029150] [0.018395] [0.012991] [0.046783] [0.032958] [0.020784] [0.014679] [0.051847] [0.036503] [0.023017] [0.016259]

¯̂
β 1.588864 1.594845 1.596294 1.598787 1.581618 1.587449 1.589511 1.592302 1.560753 1.581001 1.591471 1.598136

(0.138350) (0.096715) (0.060591) (0.042878) (0.145550) (0.102396) (0.064444) (0.045555) (0.189632) (0.131957) (0.085594) (0.060202)
[0.136579] [0.096288] [0.060687] [0.042884] [0.124917] [0.087988] [0.055506] [0.039214] [0.153178] [0.107712] [0.067856] [0.047925]

¯̂
ξ1 0.508108 0.505828 0.502859 0.501269 0.505637 0.503809 0.500764 0.499119 0.489835 0.489067 0.485242 0.483639

(0.178280) (0.121675) (0.075277) (0.052027) (0.180884) (0.123326) (0.076172) (0.053128) (0.210572) (0.142232) (0.088279) (0.062511)
[0.175740] [0.121792] [0.076099] [0.053597] [0.177635] [0.123088] [0.076903] [0.054173] [0.133003] [0.092638] [0.058061] [0.040934]

¯̂
ξ2 1.007976 1.005128 1.002442 1.000950 1.004700 1.002307 1.000248 0.998918 0.992851 0.988669 0.982456 0.980946

(0.177128) (0.125343) (0.075739) (0.054524) (0.180139) (0.127605) (0.077432) (0.055598) (0.216038) (0.148006) (0.092519) (0.065691)
[0.177556] [0.122961] [0.076819] [0.054104] [0.179476] [0.124287] [0.077660] [0.054705] [0.137477] [0.095763] [0.060038] [0.042338]

¯̂
φc1 1.384459 1.357495 1.346019 1.339904

(0.341769) (0.230727) (0.142516) (0.099597)
[0.329760] [0.228720] [0.143046] [0.100681]

¯̂
φc2 2.043043 2.029948 2.009272 2.004073

(0.427591) (0.295502) (0.184440) (0.130121)
[0.414308] [0.289463] [0.181093] [0.127580]

¯̂
φc3 3.046319 3.015407 2.998815 2.997469

(0.545054) (0.377134) (0.236244) (0.169317)
[0.540406] [0.376408] [0.236160] [0.166677]

¯̂
φc4 4.818300 4.722108 4.680673 4.669938

(0.811274) (0.541259) (0.333593) (0.233084)
[0.773522] [0.533473] [0.333424] [0.234919]

¯̂
φc 2.372334 2.361016 2.353287 2.351222

(0.265585) (0.178726) (0.113521) (0.079381)
[0.240862] [0.168155] [0.105521] [0.074402]

¯̂α 1.013568 1.008940 1.005213 1.003941 1.038670 1.032371 1.027728 1.026008 1.324479 1.324291 1.322669 1.321626
1 (0.274901) (0.185530) (0.114802) (0.079122) (0.289720) (0.194752) (0.120334) (0.082989) (0.318916) (0.211936) (0.133504) (0.091849)

[0.260087] [0.182205] [0.114602] [0.080837] [0.271175] [0.189827] [0.119282] [0.084116] [0.236473] [0.165763] [0.104217] [0.073501]
¯̂γ 0.220117 0.220183 0.221553 0.222117 0.206816 0.208968 0.210797 0.211331 0.302136 0.299822 0.298572 0.298087

(0.069951) (0.040212) (0.023758) (0.016458) (0.062193) (0.041735) (0.025459) (0.017880) (0.070545) (0.047918) (0.029992) (0.021146)
[0.052578] [0.037045] [0.023400] [0.016538] [0.062693] [0.043996] [0.027716] [0.019576] [0.069914] [0.048874] [0.030742] [0.021696]

¯̂
β 1.595266 1.598562 1.600247 1.600537 1.592532 1.593768 1.594751 1.595090 1.668462 1.685422 1.698019 1.700927

(0.167498) (0.116975) (0.072101) (0.049175) (0.168032) (0.119828) (0.074174) (0.051334) (0.225918) (0.161489) (0.098970) (0.069781)
[0.161545] [0.114055] [0.071968] [0.050877] [0.145880] [0.102782] [0.064825] [0.045826] [0.205402] [0.143653] [0.090408] [0.063816]

¯̂
ξ1 0.526527 0.515386 0.505815 0.501451 0.523452 0.512168 0.501914 0.498185 0.376593 0.365035 0.356000 0.353522

(0.255733) (0.169251) (0.103943) (0.073314) (0.259299) (0.171202) (0.105600) (0.074734) (0.247087) (0.163806) (0.101894) (0.072062)
[0.239452] [0.166013] [0.103844] [0.073141] [0.243947] [0.169113] [0.105730] [0.074487] [0.161897] [0.112280] [0.070261] [0.049499]

¯̂
ξ2 1.031310 1.009756 1.003025 1.000636 1.031810 1.008522 1.001799 0.998969 0.687758 0.662842 0.654994 0.652252

(0.272013) (0.184692) (0.113979) (0.080743) (0.280124) (0.190155) (0.117847) (0.083945) (0.259544) (0.172502) (0.108612) (0.075090)
[0.263312] [0.183114] [0.114815] [0.081008] [0.269874] [0.188029] [0.117953] [0.083240] [0.172347] [0.119189] [0.074508] [0.052503]

¯̂
φc1 1.389403 1.352328 1.343838 1.337987

(0.363924) (0.242188) (0.150466) (0.106302)
[0.351716] [0.242258] [0.151469] [0.106621]

¯̂
φc2 2.056228 2.030771 2.012084 2.005054

(0.472847) (0.323770) (0.198097) (0.140487)
[0.459045] [0.318714] [0.199129] [0.140285]

¯̂
φc3 3.088357 3.047526 3.022438 3.015654

(0.651132) (0.428378) (0.269883) (0.192775)
[0.625616] [0.432833] [0.270399] [0.190565]

¯̂
φc4 4.890080 4.774926 4.704582 4.681975

(1.003051) (0.643403) (0.385173) (0.272675)
[0.925029] [0.632410] [0.392329] [0.275761]

¯̂
φc 2.298837 2.282561 2.276733 2.273001

(0.277854) (0.194048) (0.120077) (0.085586)
[0.256835] [0.178901] [0.112166] [0.079076]

Overall, the simulation results show that, when the data includes trend but

not carryover effects and if the trend component is ignored, there might be wrong

conclusions about the presence of carryover effects as a result of the fact that the effects

of trend and carryover effects may confound in such cases. The same phenomenon
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is observed in count-based models discussed in Chapter 3. Consequently, the hybrid

model is recommended to overcome this issue. Based on the results given in Tables 4.7

and 4.8, we do not recommend to fit a model based on independent gap times when

the assumption of independence of the serial gap times is in question. We also do

not recommend the use of independent gap time models when the data has too many

censored gap times. Hybrid DDP model is the ideal approach to make valid inferences

about dynamic features because it can handle the aforementioned issues related to

confounding and censoring. In the next subsection, we investigate the similar scenarios

with nonidentical processes.

We would like to note that we also used three more versions of the model (4.30)

to generate data. These models were the null model with only α, the carryover

effects model with α and γ. We then fitted each generated data, including the data

generated from the model (4.30) with α, β and γ, with four models; which include a

null model with the hazard function hk(wi) = α, k = 1, 2, . . . ,, the trend only model

with the hazard function hk(wi) = αe[(k−1)γ], k = 1, 2, . . . , the carryover effects model

hk(wi) = I(k = 1)α+ I(k > 1)
[
αeβI(wi ≤ ∆) + αI(wi > ∆)

]
, k = 1, 2, . . . , as well as

the hybrid model (4.31). Since the hybrid model performed better in all scenarios, and

presenting the results require extensive number of tables, we only presented the results

here when the hybrid model was used to fit the data generated from model (4.30). For

other cases, we obtained similar results to those obtained with models for event counts

discussed in Chapter 3. That is, the parameter estimates in null, carryover effects and

trend models were biased when the model was misspecified. Also, we noticed that

the trend effect and the dependency parameters do not confound each other. That

is, serially increasing or decreasing the dependency among gap times within a process

does not cause any problem in estimating the trend effect. Therefore, we present

only the results where the hybrid model fitted to the data generated with increasing

dependency for brevity.

4.7.2 Nonidentical Processes

For the nonidentical processes case, we generated 2,000 realizations of serially

dependent recurrent event processes. We used the extended version of the algorithm

presented in Section 2.5.2 to generate heterogeneity across individual processes. In
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the data generation process, we used the model

hk(w|νi) =
{
ανi, k = 1,

ανie
[(k−1)γ+β] I(w ≤ ∆) + ανie

[(k−1)γ] I(w > ∆), k = 2, 3, . . . ,

(4.34)

where hk(w|νi) is the conditional hazard function for the kth gap time Wk given the

value of the random effect νi. We generated the νi from Gamma(1, φ = 0.3), i =

1, . . . ,m, distribution. For the data generation process, we considered the same

scenarios given in Section 4.7.1. For brevity, we present the results in this section

only for the model (4.34), where α = 1, γ = 0.223, β = 1.609, and ∆ = 0.05. The

value of V ar(νi) = φ fixed at 0.3, which generates a moderate level of heterogeneity in

the data. Such amount of heterogeneity is frequently seen in epidemiology studies. We

denote DDP RE, SDP RE and IND RE as extended versions of DDP, SDP and IND

with random effects, respectively. DDP RE, SDP RE and IND RE models include

heterogeneity parameter φ in addition to the parameters in DDP, SDP and IND

models, respectively. Parameter estimates for DDP RE and SDP RE models are

obtained by maximizing the log of the likelihood function in (4.29).

Table 4.9 contains the results of our simulation study when the hybrid model (4.34)

fitted under three different dependence structures to the same data generated by using

the model (4.34). As explained in the previous section, we used the vector of serial

dependent copula parameters φc = (1.33, 2, 3, 4.67) during data generation process.

The results from DDP, SDP and IND models, which ignore the heterogeneity, are

provided in the Appendix E (Table E.1). Due to heavy censoring, we fixed the value

of τ at 2 instead of 1 for the scenarios with short follow-up time. On the average,

the percentage of the uncensored fifth gap times is 73.2% when the follow-up period

τ was 5, while the averages of that from the first to the fifth gap times were 79.2%,

61.9%, 52.2%, 46.7% and 43.5%, respectively, when τ = 2.
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Table 4.9: Empirical means (standard deviations) [means of standard errors] of
parameter estimates from the hybrid model (4.34) under six different structures
(DDP RE, SDP RE, IND RE, DDP, SDP and IND). The data were generated from
the model (4.34), where α = 1, φ = 0.3, γ = 0.223, β = 1.609, ∆ = 0.05 and serial
dependence copula parameters were φc = (1.33, 2, 3, 4.67) with 2,000 simulations.

τ Parameter
DDP RE SDP RE IND RE

m = 50 m = 100 m = 250 m = 50 m = 100 m = 250 m = 50 m = 100 m = 250
¯̂α 1.016196 1.006865 1.003352 1.035117 1.023924 1.021792 2.147346 2.109496 2.041331

5 (0.211288) (0.151369) (0.101765) (0.233214) (0.164702) (0.118068) (0.796276) (0.615468) (0.453428)
[0.197529] [0.134752] [0.076967] [0.210522] [0.144745] [0.081501] [0.415447] [0.298755] [0.187050]

¯̂
φ 0.289380 0.288900 0.297002 0.286234 0.286143 0.296764 1.123655 1.133023 1.118198

(0.183554) (0.131766) (0.089583) (0.195182) (0.140300) (0.100351) (0.296526) (0.255090) (0.208501)
[0.175930] [0.126017] [0.078908] [0.176158] [0.129328] [0.079584] [0.198531] [0.146108] [0.094734]

¯̂γ 0.226499 0.227365 0.223719 0.223902 0.225145 0.221237 0.338703 0.335241 0.332029
(0.060008) (0.048622) (0.032579) (0.067345) (0.054487) (0.043659) (0.068122) (0.052672) (0.036354)
[0.048729] [0.034254] [0.021390] [0.056884] [0.040033] [0.024966] [0.060847] [0.043182] [0.027329]

¯̂
β 1.596184 1.597120 1.603849 1.548465 1.552174 1.563223 1.004439 1.015720 1.035354

(0.180504) (0.131367) (0.086322) (0.196571) (0.141042) (0.098939) (0.214203) (0.161153) (0.110708)
[0.166973] [0.116683] [0.073272] [0.154615] [0.108729] [0.068620] [0.186392] [0.131447] [0.082817]

¯̂
φc1 1.396087 1.379472 1.366681

(0.364335) (0.260167) (0.165274)
[0.346372] [0.240288] [0.150460]

¯̂
φc2 2.077308 2.047919 2.027988

(0.476862) (0.334494) (0.218193)
[0.455414] [0.315989] [0.198118]

¯̂
φc3 3.116177 3.063067 3.044875

(0.664491) (0.464517) (0.298078)
[0.616010] [0.426120] [0.266773]

¯̂
φc4 4.837381 4.764811 4.739905

(0.940617) (0.661821) (0.451328)
[0.893513] [0.616494] [0.386306]

¯̂
φc 2.275622 2.244922 2.190441

(0.348199) (0.299015) (0.303837)
[0.266008] [0.185634] [0.116167]

¯̂α 1.045828 1.025911 1.010925 1.045722 1.024650 1.006087 1.995725 1.944900 1.931458
2 (0.256094) (0.179759) (0.115526) (0.257162) (0.187091) (0.122215) (0.706824) (0.433764) (0.251850)

[0.232232] [0.161871] [0.103093] [0.235410] [0.169190] [0.107637] [0.459655] [0.319486] [0.200326]
¯̂
φ 0.326706 0.313417 0.305562 0.310966 0.293223 0.284726 1.185120 1.201628 1.218666

(0.291358) (0.237289) (0.158283) (0.296248) (0.243066) (0.168500) (0.235305) (0.154450) (0.085444)
[0.261840] [0.208278] [0.144476] [0.251916] [0.206518] [0.147766] [0.256397] [0.180535] [0.113067]

¯̂γ 0.230768 0.229122 0.227789 0.243426 0.241703 0.241822 0.351379 0.348667 0.347796
(0.092195) (0.065949) (0.047071) (0.105087) (0.078690) (0.056463) (0.083533) (0.058405) (0.036929)
[0.064383] [0.046122] [0.029412] [0.081534] [0.059073] [0.037928] [0.082368] [0.057793] [0.036460]

¯̂
β 1.589455 1.588256 1.592205 1.553707 1.558300 1.560068 1.155654 1.155504 1.159704

(0.211752) (0.150681) (0.096632) (0.227059) (0.158980) (0.106723) (0.251471) (0.172864) (0.106817)
[0.187930] [0.132669] [0.083742] [0.173776] [0.123071] [0.077190] [0.233072] [0.163092] [0.102614]

¯̂
φc1 1.386633 1.347352 1.327292

(0.397376) (0.271715) (0.179115)
[0.376233] [0.255931] [0.159375]

¯̂
φc2 2.090678 2.035831 2.013329

(0.540584) (0.365441) (0.226207)
[0.511321] [0.351799] [0.219529]

¯̂
φc3 3.146723 3.055447 3.025653

(0.799983) (0.515133) (0.310251)
[0.714914] [0.488998] [0.304903]

¯̂
φc4 4.990405 4.815447 4.742978

(1.244310) (0.827772) (0.519966)
[1.089966] [0.735825] [0.456914]

¯̂
φc 2.206292 2.177059 2.162604

(0.403840) (0.335884) (0.287609)
[0.293439] [0.205985] [0.127940]
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The results in Table 4.9 show that the empirical estimates of β from SDP RE

models are slightly biased, but the corresponding 95% normal approximation based

confidence intervals cover the true value of the parameter. For example, when the

hybrid SDP RE model fitted to the data generated with m = 250, α = 1, φ = 0.3,

β = 1.609, ∆ = 0.05, γ = 0.223 and τK = (0.4, 0.5, 0.6, 0.7), the empirical means of

estimates of β (= 1.5632 and 1.5601 when τ = 5 and 2) are slightly biased. However,

assuming the normality properties hold for the estimates, the corresponding 95%

empirical confidence intervals ((1.369, 1.757) and (1.351, 1.769) when τ = 5 and 2)

cover the true value of the parameter β. We also notice that the empirical means of

the trend effect estimates from SDP RE models are slightly biased when the follow-up

period is short; however, the corresponding 95% confidence intervals cover the true

value of the parameter. For example, when the hybrid SDP RE model fitted to the

data generated with m = 250, α = 1, φ = 0.3, β = 1.609, ∆ = 0.05, γ = 0.223

and τK = (0.4, 0.5, 0.6, 0.7), the empirical means of estimates of γ (= 0.221 and 0.242

when τ = 5 and 2) are slightly biased when the follow-up period is short. However,

using the normality assumption, the constructed 95% empirical confidence intervals

((0.136, 0.307) and (0.131, 0.352) when τ = 5 and 2) cover the true value of the

parameter γ.

Overall, the model (4.34) with independent gap time assumption overestimates the

baseline constant intensity function α, heterogeneity parameter and trend effect due

to the number of previous events, as well as underestimates the carryover effect. For

example, when the hybrid IND RE model fitted to the data generated with m = 250,

α = 1, φ = 0.3, β = 1.609, ∆ = 0.05, γ = 0.223, τK = (0.4, 0.5, 0.6, 0.7) and

τ = 5, the empirical means of estimates of α, φ, β and γ are 2.041, 1.008, 0.332

and 1.035, respectively, and the empirical standard deviations of the estimates are

0.453, 0.209, 0.036 and 0.111, respectively. The corresponding empirical biases of

estimates of α, φ, β and γ are 1.041, 0.708, 0.109 and 0.565, respectively, and the

corresponding 95% normal approximation based confidence intervals do not include

the true values of the parameters.

The results presented in Table E.1 in Appendix E reveal that the models

(DDP, SDP and IND), which do not consider the heterogeneity among individuals,

underestimate the baseline constant intensity function α, and overestimate the trend

effect γ. For example, when the hybrid DDP model fitted to the data generated with

m = 250, α = 1, φ = 0.3, β = 1.609, ∆ = 0.05, γ = 0.223, τK = (0.4, 0.5, 0.6, 0.7) and
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τ = 5, the empirical mean of the estimate of α is 0.7566 with the empirical standard

deviation 0.0477 and the empirical mean of the estimates of γ is 0.2527 with the

empirical standard deviation 0.0221. The models DDP and IND slightly overestimate

the carryover effect, while SDP slightly underestimates it. For example, when the

hybrid DDP, SDP and IND models fitted to the data generated with m = 250, α = 1,

φ = 0.3, β = 1.609, ∆ = 0.05, γ = 0.223, τK = (0.4, 0.5, 0.6, 0.7) and τ = 5, the

carryover effect β is slightly overestimated (= 1.6362 and 1.7597) for DDP and IND

models, but it is slightly underestimated (= 1.5631) under the SDP model. To sum up,

the results obtained by fitting the model IND show that the assumption of independent

gap times in the same recurrent event process or ignoring the heterogeneity across the

processes may lead to the wrong conclusions about the dynamic features of recurrent

event processes in the scenarios considered in Table E.1.

Our next simulation study was conducted to investigate the bias and precision of

the estimates of dynamic covariates when models include external covariates. For this

purpose, we define the conditional hazard function of the kth gap time Wk given the

random effect νi as

hk(w|νi) =
{
ανie

ξ′xi , k = 1,

ανie
[(k−1)γ+β+ξ′xi] I(w ≤ ∆) + ανie

[(k−1)γ+ξ′xi] I(w > ∆), k = 2, 3, . . . ,

(4.35)

for i = 1, . . . ,m and w > 0. Following the settings in the identical process case, we

include two binary external covariates with 0 and 1 as possible values. The values

of the covariates xi = (xi1, xi2)
′ are generated from a Bernoulli distribution with a

success probability 0.5. Their corresponding effect values are ξ = (0.5, 1). Table 4.10

includes the simulation results when the hybrid models with heterogeneity parameter

and external covariates fitted to the data generated with model (4.35) and dependence

parameter values φc = (1.33, 2, 3, 4.67). The results from DDP, SDP and IND models

are provided in the Appendix E (Table E.2). On the average, the percentage of the

observed fifth gap times was 89.1% under the model (4.35) with dependence parameter

values φc = (1.33, 2, 3, 4.67) when τ = 5. When τ = 1 ,the percentages of the observed

gap times from the first one to the fifth one were 78.1%, 65.5%, 59.1%, 55.5% and

53.4%, respectively.
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Table 4.10: Empirical means (standard deviations) [means of standard errors] of
parameter estimates from the hybrid model (4.35) under six different structures
(DDP RE, SDP RE, IND RE, DDP, SDP and IND). The data were generated from
the model (4.35), where α = 1, φ = 0.3, γ = 0.223, β = 1.609, ∆ = 0.05,
ξ = (0.5, 1) and serial dependence copula parameters were φc = (1.33, 2, 3, 4.67)
with 2,000 simulations.

τ Parameter
DDP RE SDP RE IND RE

m = 50 m = 100 m = 250 m = 50 m = 100 m = 250 m = 50 m = 100 m = 250
¯̂α 1.030876 1.014960 1.002261 1.063573 1.042943 1.028418 2.076028 1.971891 1.892719

5 (0.302089) (0.205850) (0.132553) (0.319591) (0.215387) (0.136999) (1.175115) (0.803525) (0.511012)
[0.271428] [0.184191] [0.103649] [0.288791] [0.195097] [0.109629] [0.570495] [0.402130] [0.255093]

¯̂
φ 0.256684 0.278750 0.286444 0.256273 0.279680 0.288064 0.935005 0.960168 0.969267

(0.153813) (0.107808) (0.067071) (0.155924) (0.109623) (0.068486) (0.275099) (0.225405) (0.168302)
[0.123645] [0.095277] [0.060720] [0.126194] [0.096307] [0.061684] [0.150753] [0.114396] [0.079929]

¯̂γ 0.222137 0.223382 0.223032 0.210161 0.211401 0.211750 0.340436 0.340311 0.339039
(0.044886) (0.032026) (0.020900) (0.047853) (0.034207) (0.022742) (0.061387) (0.045597) (0.029179)
[0.043980] [0.030948] [0.019585] [0.050783] [0.035720] [0.022539] [0.058348] [0.041509] [0.026500]

¯̂
β 1.605100 1.605225 1.613074 1.588268 1.588365 1.595506 1.102886 1.106954 1.112526

(0.144105) (0.102876) (0.070502) (0.152883) (0.108372) (0.072938) (0.191500) (0.141959) (0.094983)
[0.144207] [0.101809] [0.064353] [0.131736] [0.092856] [0.059299] [0.175262] [0.124616] [0.080067]

¯̂
ξ1 0.500889 0.499067 0.498197 0.501521 0.500874 0.500106 0.537038 0.531303 0.529876

(0.300572) (0.208926) (0.134411) (0.307383) (0.212112) (0.135095) (0.494181) (0.372798) (0.243647)
[0.275446] [0.194775] [0.120046] [0.280368] [0.198159] [0.122628] [0.281643] [0.210984] [0.142991]

¯̂
ξ2 0.988740 0.997231 0.998506 0.984789 0.996856 0.996111 1.047171 1.055822 1.062450

(0.293991) (0.207802) (0.137210) (0.299154) (0.211384) (0.137392) (0.485764) (0.372945) (0.254795)
[0.277271] [0.196827] [0.121634] [0.282859] [0.199901] [0.124025] [0.284951] [0.213765] [0.143979]

¯̂
φc1 1.400922 1.366854 1.356257

(0.349069) (0.238258) (0.147617)
[0.337075] [0.233487] [0.144739]

¯̂
φc2 2.081750 2.039112 2.015195

(0.439551) (0.311581) (0.186065)
[0.429945] [0.298958] [0.186568]

¯̂
φc3 3.090370 3.045809 3.004955

(0.567789) (0.390532) (0.246617)
[0.566137] [0.394728] [0.247088]

¯̂
φc4 4.789192 4.721390 4.654737

(0.809323) (0.558339) (0.358821)
[0.807625] [0.561893] [0.351561]

¯̂
φc 2.378212 2.355100 2.339323

(0.270528) (0.190153) (0.120610)
[0.249747] [0.172512] [0.109727]

¯̂α 1.033036 1.017533 1.004788 1.046996 1.033676 1.015623 2.059858 1.934480 1.874837
1 (0.388520) (0.251082) (0.154592) (0.398750) (0.259576) (0.160152) (1.300778) (0.713480) (0.409195)

[0.333230] [0.227737] [0.135403] [0.345406] [0.235021] [0.141161] [0.719821] [0.484065] [0.294979]
¯̂
φ 0.286509 0.297062 0.296726 0.279964 0.291264 0.292402 1.081102 1.113471 1.122785

(0.262158) (0.202543) (0.132384) (0.265816) (0.206197) (0.136172) (0.257841) (0.174573) (0.103976)
[0.217140] [0.179715] [0.120268] [0.215734] [0.179374] [0.121961] [0.225477] [0.164224] [0.106108]

¯̂γ 0.224563 0.223548 0.223426 0.220668 0.220468 0.221461 0.321815 0.319482 0.317119
(0.065070) (0.042966) (0.029382) (0.071324) (0.046123) (0.031640) (0.075043) (0.051706) (0.032392)
[0.057622] [0.040939] [0.025816] [0.071100] [0.050429] [0.031854] [0.080890] [0.057003] [0.035988]

¯̂
β 1.603634 1.604690 1.603859 1.591152 1.591652 1.591040 1.323123 1.319620 1.322257

(0.177843) (0.123274) (0.076939) (0.180033) (0.123984) (0.077454) (0.242470) (0.169152) (0.104335)
[0.172768] [0.121926] [0.076901] [0.153827] [0.108316] [0.068300] [0.240621] [0.169042] [0.106582]

¯̂
ξ1 0.521898 0.510730 0.507021 0.516564 0.506087 0.503463 0.523978 0.513414 0.507529

(0.363108) (0.243812) (0.152308) (0.368579) (0.248473) (0.155935) (0.559334) (0.389862) (0.235281)
[0.330631] [0.230077] [0.141435] [0.333280] [0.231890] [0.143845] [0.350883] [0.256396] [0.164353]

¯̂
ξ2 1.023761 1.008724 1.004916 1.022385 1.000012 1.001846 1.026333 1.026240 1.021231

(0.370772) (0.249418) (0.158340) (0.374276) (0.250097) (0.162293) (0.552395) (0.384383) (0.238230)
[0.341567] [0.238999] [0.148310] [0.346411] [0.242283] [0.151380] [0.357476] [0.258303] [0.165245]

¯̂
φc1 1.403351 1.372622 1.353575

(0.377582) (0.258441) (0.154038)
[0.368126] [0.254351] [0.158468]

¯̂
φc2 2.072585 2.022296 2.000367

(0.518116) (0.333927) (0.208708)
[0.489770] [0.334789] [0.208758]

¯̂
φc3 3.126600 3.056077 3.007607

(0.709540) (0.479093) (0.289544)
[0.671157] [0.461621] [0.286216]

¯̂
φc4 4.882913 4.760599 4.687949

(1.065824) (0.711608) (0.430816)
[0.994533] [0.681860] [0.422507]

¯̂
φc 2.297185 2.274592 2.261772

(0.304402) (0.206649) (0.131334)
[0.272013] [0.188598] [0.117909]
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The hybrid model under DDP RE and SDP RE dependence structures

consistently estimate both external and internal covariate effects. The estimated bias

of the external covariate effects ξ from IND RE model is not significant in each case,

but internal covariate effects γ and β are significantly biased. For example, when the

hybrid IND RE model fitted to the data generated with m = 250, α = 1, φ = 0.3,

β = 1.609, ∆ = 0.05, γ = 0.223, ξ = (0.5, 1), τK = (0.4, 0.5, 0.6, 0.7) and τ = 5, the

empirical means of estimates of α, φ, β, γ, ξ1 and ξ2 are 1.893, 0.969, 0.339, 1.113, 0.530

and 1.062, respectively, and the empirical standard deviations of the estimates are

0.511, 0.168, 0.029, 0.095, 0.244 and 0.255, respectively.

Similar to the previous simulation results presented in Table E.2, the estimated

bias in the parameter estimates from the models (DDP, SDP and IND) ignoring

heterogeneity across individuals is significant in each case. For example, when the

hybrid DDP model fitted to the data generated with m = 250, α = 1, φ = 0.3,

β = 1.609, ∆ = 0.05, γ = 0.223, ξ = (0.5, 1), τK = (0.4, 0.5, 0.6, 0.7) and τ = 5, the

empirical means of the estimates of α, β, γ, ξ1 and ξ2 are 0.768, 0.231, 1.677, 0.416

and 0.819 with the empirical standard deviations 0.086, 0.030, 0.067, 0.132 and 0.131.

Similar to what we observe for the IND model in Table E.2, the results from the

model IND in Table E.2 also show that the assumption of independent gap times

coming from the same individual or ignoring the heterogeneity across individuals may

lead to the wrong conclusions about the dynamic features and external effects in

recurrent event processes.

4.8 Application: Recurrent Asthma Attacks in

Children

Following the analysis presented in Section 4.4, we use the data from a prevention

trial in infants with a high risk of asthma to illustrate the methods considered in

Sections 4.5 and 4.6. The data set is discussed in Section 1.2.2. The study started

after random allocation of six months old subjects to a placebo control group or an

active drug treatment group. There were 483 asthma attacks among 119 children

in the control group and 336 asthma attacks among 113 children in the treatment

group, during 18 months of follow-up. Our main aim here is to check whether the
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occurrence of an asthma attack triggers subsequent asthma attacks, and to investigate

whether there is a persistent effects of the number of previous events on the future

event occurrences. We, therefore, consider the hybrid gap time models (4.12) and

(4.20) under DDP RE, SDP RE, IND RE, DDP, SDP, and IND dependence models

for each group separately. We would like to remind that RE means, that the model

includes random effects to deal with unexplained heterogeneity across individuals. The

acronym DDP stands for difference dependence parameters, which defines the Markov

type dependent structured model with different parameters for the dependence series,

SDP stands for single dependence parameter, which defines the same dependent

structured model with only a single parameter for the dependence series and IND

stands for a model with independent gap times. We use a Clayton copula to model

the dependency between consecutive gap times of asthma attacks. Our analysis

includes only the first five gap times of each individual. The percentages of complete

first to fifth gap times are respectively, 100%, 68.9%, 52.1%, 37.8%, 31.1% in the

treatment group and 100%, 55.7%, 33.6%, 23.9%, 17.7% in the control group. The

model parameter estimates and standard errors are provided in Table 4.11. To obtain

the maximum likelihood estimates of the parameters, we minimize the corresponding

negative log of likelihood functions with respect to the parameters with the nlminb

function in optimx R package. The R package returns the Hessian matrix at the

minimum point. We inverted that matrix to obtain the corresponding standard errors

for the parameter estimates.

Table 4.11, shows that the heterogeneity parameter φ is not significant in control

and treatment groups. Therefore, we conclude that both groups share the same

characteristics within the groups. This result suggests that the marginal hazard

model (4.12) given in Section 4.5 is more adequate to model the gap times than the

hazard function with random effects model introduced in Section 4.6. Especially,

in the treatment group, the maximum likelihood estimates of the parameters in

DDP RE, SDP RE and IND RE are respectively very similar to those obtained from

the DDP, SDP, and IND models. Overall, the maximum likelihood estimates of the

heterogeneity parameter φ in the control group models are higher than those obtained

from the treatment group models, but they are not significant. We therefore, consider

the DDP, SDP, and IND models in each group. Based on the AIC, we base our

analysis on the DDP model in the treatment group and on SDP model in the control

group.
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Table 4.11: Parameter estimates (and standard errors) of the models which are fitted
to the asthma data.

Parameter
Treatment Group Control Group

DDP RE SDP RE IND RE DDP SDP IND DDP RE SDP RE IND RE DDP SDP IND
α̂ 1.3485 1.3055 1.3521 1.3374 1.2944 1.2362 1.9749 1.9637 2.1310 1.7622 1.7626 1.7426

(0.1286) (0.1263) (0.1540) (0.1264) (0.1240) (0.1138) (0.2483) (0.2430) (0.2531) (0.1528) (0.1525) (0.1461)

φ̂ 0.0156 0.0158 0.1236 0.1233 0.1188 0.2174
(0.0079) (0.0110) (0.0911) (0.1003) (0.0990) (0.0956)

γ̂ -0.1192 -0.0184 -0.0110 -0.1173 -0.0155 0.0410 -0.0538 -0.0474 -0.0673 -0.0059 -0.0041 0.0156
(0.0909) (0.0772) (0.0736) (0.0913) (0.0776) (0.0650) (0.0655) (0.0620) (0.0570) (0.0542) (0.0524) (0.0479)

β̂ 1.1375 1.1263 1.1508 1.1372 1.1261 1.1776 0.7692 0.7687 0.7879 0.7943 0.7957 0.8727
(0.1581) (0.1501) (0.1495) (0.1580) (0.1500) (0.1457) (0.1297) (0.1288) (0.1277) (0.1274) (0.1266) (0.1218)

φ̂c1 -0.0187 -0.0084 0.2072 0.2513
(0.1062) (0.1059) (0.1083) (0.1028)

φ̂c2 0.2790 0.2879 0.1866 0.2121
(0.1798) (0.1786) (0.1703) (0.1664)

φ̂c3 0.7470 0.7553 0.3764 0.4060
(0.2371) (0.2357) (0.2179) (0.2135)

φ̂c4 0.7325 0.7426 0.3030 0.3044
(0.2998) (0.2971) (0.2034) (0.1983)

φ̂c 0.1990 0.2104 0.2386 0.2708
(0.0988) (0.0976) (0.0819) (0.0771)

ℓ(θ̂) -61.2769 -67.0163 -68.5027 -61.2065 -66.9872 -69.6988 -13.7098 -14.0632 -18.9350 -14.6078 -14.9126 -22.7457
AIC 138.5538 144.0327 145.0055 136.4129 141.9743 145.3976 43.4197 38.1264 45.8700 43.2157 37.8252 51.4914

In the treatment group with the DDP model, the trend effect γ is not significant

(γ̂ = −0.1173, 95% c.i. (-0.2962, 0.0616), p−value = 0.1989). The carryover effect

β is significant (β̂ = 1.1372, 95% c.i. (0.8275, 1.4469), p−value ≈ 0). Comparing

these results, with the results given in Table 4.6, we observe that the trend is not

significant in the model but it is significant in Table 4.6, and the carryover effect is

still significant but it is higher in Table 4.6 when we consider only first two gap times.

In the control group, we consider the results under the SDP model presented in

Table 4.11. The trend effect is not significant in this model (γ̂ = −0.0041, 95%

c.i. (-0.1068, 0.0986), p−value = 0.9376). The carryover effect β is significant (β̂ =

0.7943, 95% c.i. (0.5462, 1.0424), p−value ≈ 0). Comparing with the results given

in Table 4.5, the estimate of the trend is not significant in the SDP model but it is

significant in Table 4.5, and the estimate of the carryover effects is smaller in the SDP

model.

Comparison of the results between the treatment and control groups in Table 4.11

reveals that the baseline intensity of the treatment group is smaller than that of the

control group. That is, the overall rate of the asthma attack is smaller in the treatment

group. In both groups, the trend due to previous number of events is not significant.

However, the carryover effect in the treatment group is larger than that in the control

group. After every asthma attack, the intensity is increased multiplicatively by 3.119

and 2.216 for 56 days in treatment and control groups, respectively. Since in both
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groups the trend effects due to the number of previous events are insignificant, after

56 days from each attack the intensities reset to the corresponding baseline intensity

values.

A final note in this section is that the estimates of the carryover effect β in

Table 4.11 reflect on average effect obtained by using the first five gap times. The

model can be easily extend to obtain estimates of such effects in each gap times by

considering a separate carryover effects parameter βk, k = 2, . . . , 5, so that, if there is

an interest, more detailed analysis of the carryover effects can be developed.



Chapter 5

Summary and Future Work

This chapter includes a summary of the thesis and possible extensions of the research

carried out in the previous chapters. The future work section consists of a lengthy

discussion of some prominent goodness-of-fit tests for the adequacy of the models

discussed in Chapter 4.

5.1 Summary and Conclusions

Dynamic models are instrumental to make inferences on features of recurrent event

processes when dependence on the past in a process is not ignorable. Comparing with

models ignoring the past developments, dynamic models provide deeper insight into

underlying event-generating processes. Dynamic models include dynamic covariates,

which are time varying functions of the history of a process. The inherent nature

of such covariates creates complex inter-relationships. Furthermore, dependent gap

times, censoring, and heterogeneity make modeling and inference challenging issues

when dynamic covariates are of interest. Thus, elaborate intensity modeling is

required for making valid inferences.

In this study, we explored two crucial features of the recurrent event processes

through dynamic models. These features are serial clustering of events over time

and monotonic trends. Carryover effects define a situation, where the occurrence of

an event causes a temporary increase, or in some cases decrease, in event intensity

functions of recurrent event processes. Therefore, presence of carryover effects may
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result in event clustering or, in some cases, sparsity of events. Trends may depend on

calendar time or the number of previous events in recurrent event processes. Former

type of trends has been much discussed in the literature. In this thesis, we focused

on monotonic trends due to the number of previous events, which is a dynamic

covariate. Recurrent event data can be analyzed under two broad classes of modeling

approaches. The first approach is through count-based models, in which the event

counts of recurrent processes are modeled through rate or intensity functions. In the

second approach, gap times between sequential event occurrence times are modeled

by using hazard functions specified for gap times. An important outcome of our

study is that these two modeling approaches do not necessarily produce same results.

In particular, if the interest is to make inference on gap times, the inference based

on count models may result in wrong conclusions, especially when there is significant

dependency between gap times. As detailed below, we first considered the count-based

modeling approach to make inferences on the dynamic covariates in Chapter 3. We

then examined the gap time modeling approach, which allows us to estimate the

effects of those dynamic covariates for specific gap times. Since the independent gap

times assumption is not realistic in most practical situations, we modeled the joint

distribution of gap times with copulas in Chapter 4. We analyzed a data set from an

asthma prevention trial in young children to illustrate the methods developed in this

thesis.

Our focus in Chapter 3 was on the simultaneous modeling of carryover effects and

number of previous events as dynamic covariates through count-based models. To this

end, we introduced a parametric multiplicative intensity model. We first discussed

the technical issue of dishonest processes, which may arise in some settings because

of the trend component in our model. We presented the results of a simulation study

showing that our model may suffer from this issue. We, therefore, replaced the trend

component with its trimmed version, which resolves the dishonest process issue and

does not affect the estimation of model parameters in most applied settings. The

estimation of the model parameters was then carried out by using the maximum

likelihood method. We analytically investigated the large sample properties of the

maximum likelihood estimators by validating the regularity conditions stated by

Andersen et al. (1993). As showed in Section 3.1.1, the maximum likelihood estimators

are consistent, and have the usual asymptotic normal distribution under the regularity

conditions stated in Appendix C. We next introduced a random effects model to deal
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with unexplained excess heterogeneity. With the count-based modeling approach,

the random effect models create an issue of confounding between carryover effects

and heterogeneity in some settings. The results of a simulation study presented in

Section 3.3 revealed that, if there is excess heterogeneity across the baseline intensity

functions of individuals in a study, it is important to address the heterogeneity

in the dynamic count-based models. This issue is more pronounced in the early

stages of follow-up of individuals when there are not too many events experienced by

individuals. It should be noted that, in most of the epidemiology studies, individuals

experience a small number of events during their follow-ups. Section 3.3 also includes

the results of simulation studies conducted to investigate the issue of confounding of

the carryover effects and trends due to previous number of events in homogeneous and

heterogeneous processes. Simulations for both identical and nonidentical processes

revealed that some model misspecifications might result in wrong conclusions about

carryover effects when the trend is present. The hybrid versions of the models do not

suffer from such an issue. Finally, in the last section of this chapter, we analyzed the

asthma data with dynamic count-based models.

Because of the above-mentioned shortcomings of the dynamic models based on

count data, we considered models for gap times of recurrent event processes in

Chapter 4. In Section 4.1, we introduced the hazard functions of gap times to

capture the carryover effects and monotonic trends due to previous number of events.

These marginal hazard models create a discrete mixture distribution for the second

and subsequent gap times. They are equivalent to the distribution of gap times

obtained from the dynamic model (3.1) introduced in Section 3.1 only when the

baseline intensity function is constant and gap times are independent. To extend our

approach, we used copulas to model the dependence between successive gap times.

Copulas have the important advantage of modeling dependence over other methods

that marginal distributions of gap times and dependence structures can be separately

specified. This allows us to estimate the effects of dynamic covariates over a specific

gap time, which cannot be obtained by the models based on event counts unless

the gap times are assumed to be independent. In Section 4.2, we introduced the

maximum likelihood estimation method based on the first two-gap times. In this

section our goal is to estimate the carryover effects in the marginal distribution of

the second gap time. In this specific case, the trend component was considered as

an adjustment for the baseline intensity function after the first event time. Since the
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method is based on the maximization of the likelihood function, the standard large

sample properties follow under the Cramér-type regularity conditions (see Cox and

Hinkley, 1974, p. 281). In Section 4.3, we presented the results of a simulation study

conducted to investigate the aforementioned issues arising from event count models.

We observed that, when the gap times within processes are dependent to each other,

the count-based approach provides significantly biased results for the estimation of the

model parameters, while the gap time based approach provides valid inference results.

Therefore, we recommend using the copula-based method introduced in Section 4.2

to assess the effects of the dynamic features in the marginal distribution of the second

gap times. An illustrative example was given in Section 4.4.

In Section 4.5, we extended the model introduced in Section 4.2 to incorporate

third and subsequent gap times. We assumed a Markov type dependence structure

among gap times within a recurrent event process for the models with more than three

gap times. In Section 4.6, we further extended the model in Section 4.5, and defined as

random effects model to deal with heterogeneity among the individual processes. We

encountered some computational issues while maximizing the log likelihood function

for the random effects models. Therefore, we used the Gauss–Laguerre quadrature

approximation method to obtain an approximation of the corresponding likelihood

function. We noticed that this approximation provides valid estimations for the

parameters through many simulation studies. Based on the simulation results given

in Section 4.7, we observed that the hybrid models are the ideal approach to make

valid conclusions about dynamic features because it can handle the issues related to

confounding and censoring. In Section 4.8, we illustrated the methods discussed in

Sections 4.5 and 4.6 by analyzing the asthma data.

5.2 Future Work

In this section, we introduce some research topics to be investigated in the future.

5.2.1 Separate Carryover Effects for the Gap Times

In this thesis, we assumed that carryover effects are the same for the serial gap times in

a recurrent event process. In other words, the estimate of carryover effects parameter
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β represented an overall average of carryover effects among the gap times within a

process. Thus, the estimate of the effect was the same for each gap time. The reason

why we assumed this parameterization was to facilitate the comparison of the results

obtained from count-based models in Chapter 3 with those obtained from gap time

models in Chapter 4. The models for the gap times can be easily extended to include

carryover effects separately for each gap time. To do this, we can assign different

carryover effects parameters βk for each gap time Wk, k = 2, 3, . . . . Then, the hazard

function of the kth gap time can be defined as

hk(w) =

{
α, k = 1,

αe[(k−1)γ+βk] I(w ≤ ∆) + αe[(k−1)γ] I(w > ∆), k = 2, 3, . . . .
(5.1)

A similar estimation method as explained in Chapter 4 can be then applied.

5.2.2 Choice of the Risk Window

Either for external or internal carryover effects, methods proposed in the literature,

including ours, need the specification of a value for the length of the risk window ∆. An

important issue, which may lead to biased estimates of β in models (3.1) and (3.38),

is related to the misspecification of ∆. For a given data set, a sensitivity analysis can

be conducted to identify an appropriate ∆ value. However, this approach requires

model fitting for various values of ∆. A scan test for identifying optimal risk windows

was proposed by Xu et al. (2013) for external carryover effects. This test depends

on the Poisson model assumption, and departures from this assumption may lead to

wrong conclusions. The copula method discussed in our study allows us to obtain a

nonparametric estimator of the distributions of the marginal gap times. Therefore,

a formal procedure for identification of optimal risk windows can be developed. We

will investigate this issue as a future work.

5.2.3 Terminating Events

In some studies, the observation of a process is terminated by the occurrence of an

event, called the terminating event. A typical example is the death of an individual
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during the follow-up for recurrent events. This situation should not be confused with

the censoring concept discussed in Chapter 2. If terminating events are not addressed

correctly, the methods may lead to wrong conclusions about dynamic features of

recurrent event processes. Terminating events are usually modeled as an absolute

state in stochastic processes, and models are extended accordingly (Cook and Lawless,

1997; Andersen et al., 2019). As a future work, we will extend our study by developing

the proposed models to incorporate terminating events.

5.2.4 Goodness-of-fit Procedures

In Chapter 4, we introduced gap time based models for capturing dynamic features in

the recurrent event processes. Here, we discuss some possible methods to check model

adequacy for such gap time models. We first discuss adequacy for the models using

the first two gap times. We next extend our discussion to deal with more than two gap

times. The models in Chapter 4 are defined by two sets of parameters. One set, called

marginal parameters, defines the marginal characteristics of gap times. The other set,

called copula parameters, specifies the dependency between gap times. Marginal

parameters are the main objective of the entire thesis. Therefore, they are the

parameters of interest in this chapter. The parameters for dependency specification

are considered as nuisance parameters.

Let’s consider the copula model for the first two gap times in a recurrent event

process. Following the likelihood function (4.5), the likelihood function for the data

{(wi1, wi2, δi1, δi2) : 1 = 1, . . . ,m} is given by

L(β∗,α∗) =
m∏

i=1

[
∂2C(F1(wi1;β

∗

1), F2(wi2;β
∗

2);α
∗)

∂wi1∂wi2

]δi1δi2

[
∂F1(wi1;β

∗

1)

∂wi1

− ∂C(F1(wi1;β
∗

1), F2(wi2;β
∗

2);α
∗)

∂wi1

]δi1(1−δi2)

[1− F1(wi1;β
∗

1)]
(1−δi1) ,

(5.2)

where β∗

1 and β∗

2 are the vectors of parameters of marginal distributions of gap times

W1 and W2, respectively, and α
∗ is the vector of copula parameters. For the first and

second gap times, β∗

1 and β∗

2 can be specified as α and (α, β, γ)′, respectively.
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According to the choice of copula, the vector α∗ includes the parameters from

copula families, which are introduced in Section 2.4. In Sections 5.2.4.1 and 5.2.4.2,

we provide two procedures for checking adequacy of the models with first two gap

times. For models with more than two gap times, a testing procedure is provided in

Section 5.2.4.3 to check whether the Markov type dependency structure in the serial

gap times is adequate or not. We want to note that we give some introductions to the

model adequacy checks and leave the study of large sample properties of those tests

as a future work. As suggested by Stute et al. (1993), we use bootstrap procedures

for the tests presented in Sections 5.2.4.1 and 5.2.4.2. In particular, we apply the

bootstrap procedure given in Appendix D to calculate the corresponding p−values of

the tests.

5.2.4.1 Two-Stage Test Procedure

In this section, we introduce a two-stage goodness-of-fit procedure. In the first stage,

the adequacy of copula choice is examined. In the second stage, the adequacy of

the fitted marginal distribution of second gap time W2 is examined. Lawless and

Yilmaz (2011) have introduced semiparametric estimation of copula models for the

first two gap times. They model the joint distribution of the successive gap times

by using copula functions, and provide two semi-parametric estimation procedures,

in which copula parameters are estimated without parametric assumptions on the

marginal distributions. Their marginal distributions are specified by using discrete

hazard parametrization method, which provides robust estimates of the marginal

distributions. Lawless and Yilmaz (2011) define discrete hazard parametrization

λ∗

k = (λ∗1k, . . . , λ
∗
rk) for the k

th gap time Wk as λ∗1k = Fk(w
∗
(l)k) and λ

∗
lk = (Fk(w

∗
(l)k)−

Fk(w
∗
(l−1)k))/(1 − Fk(w

∗
(l−1)k)) for l = 2, . . . , r, where w∗

(1)k < w∗
(2)k < · · · < w∗

(r)k are

the distinct observed wik’s with δik = 1, for i = 1, . . . ,m, where r ≤ m. Consequently,

the marginal distribution function of the kth gap timeWk can be defined as a function

of λ∗lk’s where Fk(wik) = 1−
∏

l:w∗
(l)k

≤wik
(1−λ∗lk) and Fk(w

−
ik) = 1−

∏
l:w∗

(l)k
<wik

(1−λ∗lk).
The non-parametric estimates of the marginal distributions of the gap times can be

obtained by plugging in the discretized versions of the c.d.f.’s into the likelihood

function (5.2) and maximizing the log likelihood function (5.2) with respect to λ∗

1, λ
∗

2

and α∗.

The above-mentioned nonparametric estimates of marginal distributions can be



125

used to check the performance of our models. Lawless and Yilmaz (2011) consider

two estimation procedures. In the first procedure, the Kaplan-Meier method is used

to estimate the distribution of the first gap time, whereas in the second procedure,

a discrete hazard parameterization is used. Due to computational efficiency, we pick

the former procedure, which is a two-stage estimation procedure, to develop model

checks in this section.

Stage 1: Testing for the Copula Choice

We implement a two-stage procedure to develop goodness-of-fit tests. In the first

stage, we check the adequacy of the specification of the copula model by applying a

model expansion technique (Lawless, 2003, Section 10.2.2). The alternative hypothesis

includes an expanded family of the copula models, which contains the copula model

in the null hypothesis as a special case. For example, suppose a copula model has

the vector of parameters α∗ = (α∗

1 ,α
∗

2) and a model of special interest is obtained

when α∗

1 = α∗

10. A test for the composite null hypothesis H0 : α∗

1 = α∗

10 against

the composite alternative hypothesis H1 : α∗

1 6= α∗

10 can be then developed for the

adequacy of the copula model based on the value of α∗

1 under the null hypothesis.

We propose to test such hypotheses with the likelihood ratio statistic

Λstage1(α
∗

10) = −2 log
L(λ̂∗

2(α
∗

10),α
∗

10, α̂
∗

2(α
∗

10))

L(λ̂∗

2, α̂
∗)

, (5.3)

where λ̂∗

2(α
∗

10) and α̂
∗

2(α
∗

10) are obtained by maximizing L(λ∗

2,α
∗) in (5.2) with α∗

1 =

α∗

10. As suggested by Lawless and Yilmaz (2011), we use the bootstrap method

provided in Appendix D to calculate the p−values for the test statistics.

Since the Clayton (2.55) and the Gumbel-Hougaard (2.58) copula functions are

special cases of two parameter copula function (2.64), we consider the copula based

likelihood function (5.2) with (2.64) to develop test for the choice of copula. That is,

the alternative hypothesis includes the two parameter copula model

Cα∗
2,α

∗
1
(u1, u2) =

{[(
u
−α∗

2
1 − 1

)α∗
1

+
(
u
−α∗

2
2 − 1

)α∗
1

]1/α∗
1

+ 1

}−1/α∗
2

, α∗
1 ≥ 1 and α∗

2 > 0, (5.4)

where α∗
1 and α∗

2 are copula parameters. To test whether the dependency among
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first two gap times is Clayton, the null and alternative hypotheses can be specified as

H0 : α∗
1 = 1 & α∗

2 ∈ (0,∞) and H1 : α∗
1 6= 1 & α∗

2 ∈ (0,∞), respectively. Based on

(5.3), we can use the likelihood test statistic

Λ
(1)
stage1(α

∗
10 = 1) = −2 log

L(λ̂∗

2(α
∗
10), α

∗
10, α̂

∗
2(α

∗
10))

L(λ̂∗

2, α̂
∗
1, α̂

∗
2)

, (5.5)

to test the null hypothesis. Similarly, for the Gumbel-Hougaard dependency, the

null and alternative hypotheses can be specified as H0 : α∗
2 = 0 & α∗

1 ∈ (1,∞) and

H1 : α∗
2 6= 0 & α∗

1 ∈ (1,∞), respectively. For testing this hypothesis, we propose the

likelihood ratio test statistic

Λ
(2)
stage1(α

∗
20 = 0) = −2 log

L(λ̂∗

2(α
∗
20), α

∗
20, α̂

∗
1(α

∗
20))

L(λ̂∗

2, α̂
∗
1, α̂

∗
2)

. (5.6)

To test whether the first two gap times are independent, the null and alternative

hypotheses can be specified as H0 : α∗ = (α∗
1, α

∗
2) = (1, 0) and H1 : α∗ = (α∗

1, α
∗
2) 6=

(1, 0), respectively. In this case, we use the following likelihood ratio statistic for

testing the null hypothesis.

Λ
(3)
stage1(α

∗
10 = 1, α∗

20 = 0) = −2 log
L(λ̂∗

2(α
∗
10, α

∗
20), α

∗
10, α

∗
20)

L(λ̂∗

2, α̂
∗
1, α̂

∗
2)

. (5.7)

It should be noted that, in all three tests considered above, the parameters in λ∗

2

are nuisance. The consistency of the estimation method has been discussed with

simulations by Lawless and Yilmaz (2011). In Step 3 of the bootstrap method given

in Appendix D, the estimates of marginal distribution functions for the first and second

gap times are the Kaplan-Meier estimate and F2(wi2; λ̂
∗

2) = 1 −∏l:w∗
(l)2

≤wi2
(1 − λ̂∗l2),

respectively.

For the illustrative purpose, we apply this procedure for the asthma data. The

estimated p−values for the test statistic Λ
(i)
stage1, i = 1, 2 and 3, under three null

hypotheses are presented in Table 5.1.
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Table 5.1: The estimated p−values in Stage 1 for the asthma data.

H0 Test Statistics Treatment Group Control Group

Clayton Λ
(1)
stage1 0.3795 0.2425

Gumbel-Hougaard Λ
(2)
stage1 0.1981 0.1423

Independent Λ
(3)
stage1 0.2405 0.0220

Each p−value in Table 5.1 is obtained by generating 2,000 bootstrap samples.

There is no enough evidence against the independent assumption for the treatment

group, with an estimated p−value 0.2405 for the likelihood ratio statistic Λ
(3)
stage1 given

in (5.7). There is strong evidence against the independent assumption for the control

group, with estimated p−values 0.0220 for the likelihood ratio statistic (5.7). There

is no evidence against both Clayton and Gumbel-Hougaard models, with estimated

p−values 0.2425 and 0.1423 for the test statistics (5.5) and (5.6), respectively.

Stage 2: Testing for the Specification of the Marginal Model for Gap Times

In the second stage, we consider the adequacy of the marginal model specification

for the gap times. Since the model is based on the first two gap times, our focus

here is on the adequacy of the model for the second gap time. We use several test

statistics to measure the discrepancy between the fitted marginal c.d.f. of the second

gap time and its corresponding nonparametric counterpart obtained from a procedure

developed in Lawless and Yilmaz (2011). To construct a test in the second stage, we

define the null and alternative hypotheses as

H0 : F2 ∈ {F2 (·;β∗) ;β∗ ∈ Θ0} vs. H1 : F2 /∈ {F2 (·;β∗) ;β∗ ∈ Θ0} .

By restricting the parameter space Θ0 in the null hypothesis, we can test whether the

estimated c.d.f. of the second gap time has a particular form or not.

For the asthma data, we assume exponential distribution with a constant rate α

for the first gap time W1. By recalling our model in (4.12), we can derive the desired

c.d.f. of the second gap time W2 as

F2(w;β
∗) = 1− exp

[
−αeγ

{
w +min(w,∆)

(
eβ − 1

)}]
, w > 0, (5.8)
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where β∗ = (α, β, γ)′. We assume four different marginal models for the second gap

time W2; (i) a null model with c.d.f.

F2(w;β
∗) = 1− exp [−αw] , w > 0, (5.9)

(ii) a trend model with

F2(w;β
∗) = 1− exp [−αeγw] , w > 0, (5.10)

(iii) a carryover effects model with

F2(w;β
∗) = 1− exp

[
−α
{
w +min(w,∆)

(
eβ − 1

)}]
, w > 0, (5.11)

and (iv) a hybrid model with

F2(w;β
∗) = 1− exp

[
−αeγ

{
w +min(w,∆)

(
eβ − 1

)}]
, w > 0. (5.12)

Let F2(w; β̂∗) be the estimated c.d.f. of the second gap time from our model and

F̂m2(w) be the corresponding nonparametric counterpart obtained from a procedure

developed by Lawless and Yilmaz (2011). We propose to use the following test

statistics to measure the discrepancy between the fitted and nonparametric estimates

of the distribution functions in the second stage for the marginal model adequacy

check.

1. The Kolmogorov-Smirnov (KS) test statistic

D∗
m =

√
m sup

w

∣∣∣F̂m2(w)− F2(w; β̂∗)
∣∣∣ . (5.13)

2. The Cramér-Von Mises (CM) test statistic

C∗
m = m

∫ ∞

0

[F̂m2(w)− F2(w; β̂∗)]2dF2(w; β̂∗). (5.14)

3. The Anderson-Darling (AD) test statistic

A∗
m = m

∫ ∞

0

[F̂m2(w)− F2(w; β̂∗)]2

F2(w; β̂∗)(1− F2(w; β̂∗))
dF2(w; β̂∗). (5.15)
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4. The Pearson’s chi-squared (CS) test statistic

χ2∗
m =

L∑

l=1

[
O(w(l−1)2 − w(l)2)− E(w(l−1)2 − w(l)2)

]2

E(w(l−1)2 − w(l)2)
, (5.16)

where

O(w(l−1)2 − w(l)2) = m
[
F̂m2(w(l)2)− F̂m2(w(l−1)2)

]
, (5.17)

E(w(l−1)2 − w(l)2) = m
[
F2(w(l)2; β̂∗)− F2(w(l−1)2; β̂∗)

]
(5.18)

and 0 = w(0)2 < w(1)2 < · · · < w(L)2 = max(C −W1) be the boundaries of L

number of partitions of the second gap time W2. For the illustrative purpose,

we choose eight partitions.

To calculate the p−values, we can use the bootstrap method provided in

Appendix D. In Step 2 of the bootstrap procedure, we need to specify α̃∗ according

to the conclusion obtained from the first stage.

5.2.4.2 Model Adequacy Tests Based on Conditional Marginal

Distribution of Gap Times

Lin et al. (1999) introduced a consistent nonparametric estimator for the joint

distribution function of times between successive events when the follow-up time is

subject to right censoring. Let’s denote a bivariate semi-survival function of W1 and

W2 by H(w1, w2) = Pr(W1 ≤ w1,W2 > w2) for w1, w2 > 0. A simple nonparametric

estimator (Lin et al., 1999) for H(w1, w2) can be written as

H̃(w1, w2) =
1

m

m∑

i=1

I[Wi1 ≤ w1,Wi2 > w2, Ci > Wi1 + w2]

G(Wi1 + w2)
,

0 < w1 ≤ Cmax,

0 < w2 ≤ Cmax − w1,

(5.19)

where G(c) is the survival function of the censoring time C and Cmax is the maximum

follow-up time. The survival function G in the denominator of (5.19) can be

estimated by the Kaplan-Meier method based on the data {(wi1, 1− δi1), i = 1, . . . ,m}
or {(min(wi1 + wi2, ci), 1− δi2), i = 1, . . . ,m}. The corresponding estimator for the
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joint distribution function of W1 and W2 is then

F̃ (w1, w2) = H̃(w1, 0)− H̃(w1, w2), (5.20)

where H̃(w1, 0) is an estimator of F1(w1). Now, let’s denote the conditional

distribution of the second gap time W2 given that the first gap time W1 is less than

a fixed point w1 by

F2|1(w2|w1) = Pr(W2 ≤ w2|W1 ≤ w1) = F12(w1, w2)/F1(w1), w1 > 0, w2 > 0,

(5.21)

where F12(w1, w2) is the joint c.d.f. of W1 and W2, and F1(w1) is the c.d.f. of W1 and

we assume F1(w1) > 0. From (5.20), a nonparametric estimator of F2|1(w2|w1) can

be written as 1 −
[
H̃(w1, w2)/H̃(w1, 0)

]
, for all H̃(w1, 0) > 0. We construct tests by

comparing the estimated model F2|1(w2|w1) with its nonparametric counterpart.

A goodness-of-fit test can be developed for the following null and alternative

hypotheses.

H0 : F2|1 ∈
{
F2|1 (·|w1;α

∗,β∗) ;α∗ ∈ Θ01,β
∗ ∈ Θ02

}

vs. H1 : F2|1 /∈
{
F2|1 (·|w1;α

∗,β∗) ;α∗ ∈ Θ01,β
∗ ∈ Θ02

}
. (5.22)

The nonparametric counterpart of conditional distribution of the second gap time in

our model can be obtained with the method given by Lin et al. (1999). We, therefore,

consider the tests based on the following modified test statistics, which measure

the discrepancy between estimated conditional distribution F2|1(w|w1; β̂∗) and its

nonparametric counterpart F̂m2|1(w|w1). Note that the nonparametric estimator

F2|1(w2|w1) is valid only for w1 + w2 ≤ C, where C is the censoring time (Lin et al.,

1999). Therefore, the results of the tests are based only on the conditional distribution

of W2 within the interval (0, Cmax − w1). We can use the following modified test

statistics for the goodness-of-fit testing procedures.

1. The modified Kolmogorov-Smirnov (KS*) test statistic

D∗
m(w1) =

√
m

F̂m2|1(Cmax − w1|w1)
sup
w

∣∣∣F̂m2|1(w|w1)− F2|1(w|w1; β̂∗)
∣∣∣ . (5.23)
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2. The modified Cramér-Von Mises (CM*) test statistic

C∗
m(w1) =

m

F̂m2|1(Cmax − w1|w1)

∫ Cmax−w1

0

[F̂m2|1(w|w1)− F2|1(w|w1; β̂∗)]2dF2|1(w|w1; β̂∗).

(5.24)

3. The modified Anderson-Darling (AD*) test statistic

A∗
m(w1) =

m

F̂m2|1(Cmax − w1|w1)

∫ Cmax−w1

0

[F̂m2|1(w|w1)− F2|1(w|w1; β̂∗)]2

F2|1(w|w1; β̂∗)[1− F2|1(w|w1; β̂∗)]
dF2|1(w|w1; β̂∗).

(5.25)

4. The modified Pearson’s chi-squared (CS*) test statistic

χ2∗
m(w1) =

1

F̂m2|1(Cmax − w1|w1)

L∑

l=1

[
O(w(l−1)2 − w(l)2)− E(w(l−1)2 − w(l)2)

]2

E(w(l−1)2 − w(l)2)
,

(5.26)

where

O(w(l−1)2 − w(l)2) = m
[
F̂m2|1(w(l)2|w1)− F̂m2|1(w(l−1)2|w1)

]
, (5.27)

E(w(l−1)2 − w(l)2) = m
[
F2|1(w(l)2|w1; β̂∗)− F2|1(w(l−1)2|w1; β̂∗)

]
(5.28)

and 0 = w(0)2 < w(1)2 < · · · < w(L)2 = Cmax−w1 be the boundaries of L number

of partitions of the second gap time W2.

By restricting the parameter space Θ01 and Θ02 in the null hypothesis given in (5.22),

similar to the test developed in Section 5.2.4.1, we can test the adequacy of the

assumed specification of the conditional c.d.f. of the second gap time by comparing

the estimated conditional c.d.f. of the second gap time with its nonparametric

counterpart. An advantage of this procedure over the procedure developed in

Section 5.2.4.1 is that this procedure simultaneously check the adequacy of the copula

specification and the marginal model specification. On the other hand, this test

requires the specification of a value, say w1, for the first gap time W1. It may give

different conclusions for different choices of w1.
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5.2.4.3 Testing for Markov Dependence

In Chapter 4, we assumed Markov type dependence structure to deal with situations,

in which more than two gap times are serially observed. This assumption

requires a justification. We noticed that the Markov dependence structure is a

special case of the D-vine dependence structure. D-vine copulas are discussed

in Section 2.4.2. The assumption of Markov dependency can be tested by using

a model expansion technique as follows. The likelihood of the observed data

{(wi1, . . . , wi,ni+1, δi1, . . . , δi,ni+1) : i = 1, . . . ,m} under a D-vine dependence structure

is given by

LD =
m∏

i=1

f(wi,1:ni
)F (wi,ni+1|wi,1:ni

)(1−δi,ni+1), (5.29)

where wij is the jth gap time of the ith process, δij is the censoring indicator for wij

and for k = 2, . . . , ni,

f(w1:k) =
k∏

l=1

fl(wl)
k−1∏

q=1

k−q∏

p=1

cp,(p+q)|p+1:p+q−1 [F (wp|wp+1:p+q−1), F (wp+q|wp+1:p+q−1)] .

(5.30)

In the joint p.d.f. (5.30), the function cp,(p+q)|p+1:p+q−1 is defined in Section 2.4.2 and

F (wp|wp+1:p+q−1) =
∂Cp,p+q|p+1:p+q−1 [F (wp|wp+1:p+q−1), F (wp+q|wp+1:p+q−1)]

∂F (wp+q|wp+1:p+q−1)
,

(5.31)

and

F (wp+q|wp+1:p+q−1) =
∂Cp,p+q|p+1:p+q−1 [F (wp|wp+1:p+q−1), F (wp+q|wp+1:p+q−1)]

∂F (wp|wp+1:p+q−1)
.

(5.32)

To illustrate this procedure, let’s consider the first three gap times. By assuming

the D-vine dependence structure among serially observed gap times, the likelihood

contribution from the first three gap times from m independent individuals can be

written as

LD3 =
m∏

i=1

f(wi,1:min(ni,3))F (wi,min(ni+1,3)|wi,1:min(ni,2))
(1−δi,min(ni+1,3)). (5.33)
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With the Markov dependence assumption, using the observed data {(wi1, . . . ,

wmin(ni,3), δi1, . . . , δi,min(ni+1,3)) : i = 1, . . . ,m
}
, the likelihood function from the first

three gap times from m independent individuals is given by

LM3 =
m∏

i=1

f1(wi1)
δi1 [1− F1(wi1)]

1−δi1

×



min(ni+1,3)∏

j=2

{
∂2Cα∗

j−1
(Fj(wij), Fj−1(wi,j−1))

∂Fj(wij)∂Fj−1(wi,j−1)
fj(wij)

}δij

×
{
1−

∂Cα∗
j−1

(Fj(wij), Fj−1(wi,j−1))

∂Fj−1(wi,j−1)

}1−δij



δi1

.

(5.34)

M3 in (5.34) stands for the model with only the first three gap times, which assumes

the Markov dependency among the gap times, whereas D3 in (5.33) represents the

same model under the D-vine dependency. In its simple form, we then consider testing

H0 : Markov dependency against H1 : D-vine dependency. To do this, we propose a

likelihood ratio test statistic, which is given by

ΛMD = −2 log

(
LM3

LD3

)
. (5.35)

When the interest is on the first three gap times, the null and alternative hypotheses

can be defined as H0 : φ31 = 0 vs. H1 : φ31 > 0. Note that in this case, D3 includes

φ31 and all the parameters included in M3. We fitted D3 and M3 for the first three

gap times obtained in the asthma study. The maximum likelihood estimates of model

parameters are presented in Table 5.2.

For the treatment group, the likelihood ratio statistic is ΛMD(φ31 = 0) = 2(ℓD3 −
ℓM3) = 2(−88.5560 + 88.8107) = 0.5094. A p−value can be calculated by using the

limiting distribution Pr(ΛMD(φ31 = 0) ≤ q) = 0.5 + 0.5Pr(χ2
(1) ≤ q) (Self and Liang,

1987), which gives a p−value as 0.5Pr(χ2
(1) ≥ 0.5094) = 0.2377, so that we do not

reject H0 : φ31 = 0 in favor of H1 : φ31 > 0. Therefore, we conclude that M3 is

adequate for the treatment group in asthma data. Similarly for the control group, the

likelihood ratio statistic is ΛMD(φ31 = 0) = 2(ℓD3 − ℓM3) = 2(−42.4963 + 42.5704) =

0.1482, which gives a p−value as 0.5Pr(χ2
(1) ≥ 0.1482) = 0.3501. We, therefore, do

not reject H0 : φ31 = 0 in favor of H1 : φ31 > 0. Therefore, we conclude that M3 is
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also adequate for the control group in asthma data.

Table 5.2: Parameter estimates (and standard errors) of the models for
the first three gap times from the asthma data.

Parameter
Treatment Group Control Group
D3 M3 D3 M3

α̂ 1.5187 1.5268 1.9970 1.9995
(0.1423) (0.1434) (0.1794) (0.1790)

γ̂ -0.4829 -0.4760 -0.2841 -0.2890
(0.1227) (0.1233) (0.1013) (0.1004)

β̂ 1.3329 1.3276 0.9139 0.9134
(0.1854) (0.1848) (0.1591) (0.1594)

φ̂21 0.0082 0.2617
(0.1135) (0.1056)

φ̂31 0.0802 -0.0284
(0.1231) (0.0700)

φ̂32 0.4070 0.3814
(0.1760) (0.1819)

φ̂c1 0.0074 0.2653
(0.1125) (0.1053)

φ̂c2 0.3963 0.3864
(0.1770) (0.1820)

ℓ(θ̂) -88.5560 -88.8107 -42.4963 -42.5704

This test can be extended to check the adequacy of the Markov dependency among

serial gap times for more than three gap times. In that case, under the alternative

hypothesis, the model has more than one excess parameters than that of under the

null hypothesis. Consequently, the asymptotic distribution of the test statistic (5.35)

may be complicated. We will investigate such tests in the future.
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Appendix A

Derivation of Marginal Intensity

Function in Random Effects

Models

In this appendix, we derive the marginal density function λi [t | Hi(t)] when it is

assumed that the i.i.d. random effects νi in the conditional intensity function

λi [t | Hi(t), νi] follow a gamma distribution with mean 1 and variance φ.

Suppose that {Ni(t), t ≥ 0} is a continuous time counting process with the

intensity function λi [t | Hi(t)], where Hi(t) = {Ni(s), 0 ≤ s < t}, i = 1, . . . ,m, is the

history of the counting process. Let ∆Ni(t) denote the number of events in [t, t+∆t)

for the counting process {Ni(t), t ≥ 0}. Then, as ∆t→ 0,

λi [t | Hi(t)] ∆t = Pr {∆Ni(t) = 1 | Hi(t)} =
Pr {∆Ni(t) = 1,Hi(t)}

Pr {Hi(t)}
,

=

∫∞

0
Pr {∆Ni(t) = 1 | Hi(t), νi}Pr {Hi(t)|νi} g(νi) dνi∫∞

0
Pr {Hi(t)|νi} g(νi) dνi

,

(A.1)

where g(νi) is the gamma density function of the random effect νi. Note that any

probability notation withHi(t) denotes the probability of observing a given realization

of {Ni(t), t ≥ 0} over [0, t). Thus, if we let Ni(t
−) = ni, we observe ni events at times

ti1 < . . . < tini
over [0, t).

Let λi [t | Hi(t), νi] = νiηi(t), where ηi(t) = exp[ψ′W ∗

i (t)],W
∗(t) is a q× 1 vector
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of processes that is allowed to contain functions of the event history Hi(t) as well

as external covariates, and ψ is a q × 1 vector of parameters. The integrand in the

denominator of (A.1) can be written as

Pr {Hi(t)|νi} g(νi) =





Ni(t
−)∏

j=1

νiηi(tij) exp


−νi

t∫

0

ηi(u)du






νφ

−1−1
i exp(−νi/φ)
φφ−1Γ(φ−1)

,

=



ν

[Ni(t
−)+φ−1−1]

i exp


−νi




t∫

0

ηi(u)du+
1

φ









Ni(t
−)∏

j=1

ηi(tij)

φφ−1Γ(φ−1)
.

(A.2)

By taking the integral of (A.2) with respect to νi, we find that the denominator of

(A.1) can be written as

∫ ∞

0

Pr {Hi(t)|νi} g(νi)dνi =

Ni(t
−)∏

j=1

ηi(tij)

φφ−1Γ(φ−1)
× Γ(Ni(t

−) + φ−1)
[

t∫
0

ηi(u)du+
1

φ

](Ni(t−)+φ−1)
. (A.3)

Similarly, from (A.2), the numerator of (A.1) is equal to

∫ ∞

0

νiηi(t)∆tPr {Hi(t)|νi} g(νi)dνi =
ηi(t)∆t

Ni(t
−)∏

j=1

ηi(tij)

φφ−1Γ(φ−1)
× Γ(Ni(t

−) + φ−1 + 1)
[

t∫
0

ηi(u)du+
1

φ

](Ni(t−)+φ−1+1)
.

(A.4)

From the results given in (A.3) and (A.4) the marginal intensity function for the

process {Ni(t), t ≥ 0}, i = 1, . . . ,m, can be written as

λi [t | Hi(t)] =
(1 + φNi(t

−))[
1 + φ

t∫
0

ηi(u)du

]ηi(t), t ≥ 0. (A.5)



Appendix B

Explosion of Dynamic Recurrent

Event Processes

In this appendix, we present details and results of a simulation study conducted to

investigate the issue of dishonest process {N(t); t ≥ 0} with the intensity function

(3.1). For the data generation, we considered the intensity function (3.1) with λ0(t)

fixed at a constant value α (α = 1) and without external covariates x(t). We

generated data under 36 scenarios with various values of γ, β, ∆ and τ as denoted in

Table B.1. With every combination of (γ, β,∆, τ), we simulated 10,000 realizations

under four different models. In the first model, we used the aforementioned dishonest

process with the intensity function λ[t|H(t)] = exp [γ N(t−) + β Z(t)]. We replaced

the dynamic covariate N(t−) with its trimmed version N∗(t−) given in (3.5) with

cutoff points c = 100, 50 and 20 in the second, third and fourth models, respectively,

so that we were able to compare the results in an empirical setting. Note that when

c = ∞ in the model (3.5), N∗(t−) = N(t−). In this empirical setting, once the process

reached 1,000 events it was considered as an event explosion, and simulation algorithm

stopped generating further events. Number of explosions and the maximum number

of events in 10,000 realizations for each scenario are reported in Table B.1.
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Table B.1: Number of exploded processes and the maximum number of events in
10,000 realization.

γ β ∆ τ
Model 1; c = ∞ Model 2; c = 100 Model 3; c = 50 Model 4; c = 20

Exploded Maximum Exploded Maximum Exploded Maximum Exploded Maximum

0.000

0.693

0.05
1 0 8 0 7 0 7 0 7
2 0 10 0 9 0 10 0 11
5 0 16 0 19 0 16 0 18

0.10
1 0 9 0 8 0 8 0 8
2 0 11 0 11 0 12 0 11
5 0 16 0 19 0 20 0 20

1.609

0.05
1 0 11 0 9 0 9 0 10
2 0 14 0 14 0 14 0 13
5 0 24 0 21 0 20 0 19

0.10
1 0 14 0 12 0 12 0 12
2 0 19 0 22 0 18 0 17
5 0 27 0 26 0 29 0 27

0.095

0.693

0.05
1 0 9 0 9 0 8 0 11
2 0 15 0 16 0 16 0 14
5 95 1,000 91 1,000 0 395 0 46

0.10
1 0 10 0 11 0 11 0 10
2 0 29 0 25 0 17 0 21
5 279 1,000 265 1,000 0 564 0 62

1.609

0.05
1 0 19 0 22 0 20 0 25
2 16 1,000 14 1,000 0 354 0 41
5 2,063 1,000 2,028 1,000 368 1,000 0 121

0.10
1 3 1,000 3 1,000 0 153 0 35
2 203 1,000 218 1,000 0 684 0 66
5 5,118 1,000 5,126 1,000 1,906 1,000 0 183

0.223

0.693

0.05
1 8 1,000 6 1,000 3 1,000 0 73
2 407 1,000 400 1,000 393 1,000 0 248
5 6,970 1,000 6,938 1,000 6,982 1,000 0 799

0.10
1 31 1,000 34 1,000 16 1,000 0 73
2 730 1,000 722 1,000 725 1,000 0 315
5 7,636 1,000 7,724 1,000 7,669 1,000 0 773

1.609

0.05
1 344 1,000 362 1,000 342 1,000 0 320
2 2,334 1,000 2,424 1,000 2,433 1,000 0 806
5 8,724 1,000 8,724 1,000 8,770 1,000 4,501 1,000

0.10
1 1,344 1,000 1,369 1,000 1,408 1,000 0 366
2 4,655 1,000 4,632 1,000 4,538 1,000 0 790
5 9,403 1,000 9,425 1,000 9,379 1,000 6,612 1,000

It is clear that when γ = 0, processes in the first 12 scenarios in Table B.1 do not

explode even when the follow-up time τ increases. The processes with γ > 0 start

to explode when the follow-up time τ increases. It is also noted that while γ > 0,

an increment in carryover effects β and/or carryover effects period ∆ also results in

an increase in the number of explosions. When γ > 0, the number of explosions

reduces while the cutoff value c decreases for a given γ, β,∆, τ combination. Some

other suggestions, by modifying N(t−) with time t, to handle such explosions due to

N(t−) are available in Aalen et al., (2008, Section 8.6.3). The coefficients of those

modified N(t−) may not be easily interpretable. Therefore, for our purpose, N∗(t−)

given in (3.5) is the best option to handle dishonest processes.
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Regularity Conditions

In this appendix, we state the regularity conditions discussed in Section 3.1.1. This

appendix is excerpt directly taken from Andersen et al. (1993, pp. 420–421). We

only present it here for the completeness of the thesis.

Consider a counting process {N(t); t ≥ 0} with intensity process λ∗[t|H(t);θ]

specified by a q-dimensional parameter θ = (θ1, . . . , θq) ∈ Θ, an open subset of the

q-dimensional Euclidean space. The true value of the vector of parameter θ is denoted

by θ0 = (θ10, . . . , θq0). Let the sequence of counting processes N (m) = (N1, . . . , Nm),

have the associated intensity processes λ(m) = (λ1, . . . , λm) of the parametric form

λh(t;θ0) = Yh(t)λ
∗
h[t|H(t);θ0], h = 1, 2, . . . ,m, where Yh(t) is the at-risk indicator

function of the hth process and θ0 is assumed to be the same for all m.

(A) There exists a neighborhood Θ0 of θ0 such that for all m, h and θ0 ∈ Θ0,

and almost all t ∈ T , the partial derivatives of λh(t;θ) and log λh(t;θ) of the

first, second, and third order with respect to θ exist and are continuous in θ for

θ ∈ Θ0. Moreover, the log-likelihood function

ℓ(θ) =

∫ ∞

0

m∑

h=1

log λh(t;θ)dNh(t)−
∫ ∞

0

m∑

h=1

λh(t;θ)dt

may be differentiated three times with respect to θ ∈ Θ0 by interchanging the

order of integration and differentiation.

(B) There exist a sequence {am} of non-negative constants increasing to infinity as
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m→ ∞ and finite functions σjl(θ) defined on Θ0 such that for all j, l

a−2
m

∫ ∞

0

m∑

h=1

{
∂

∂θj
log λh(t;θ0)

}{
∂

∂θl
log λh(t;θ0)

}
λh(t;θ0)dt

P→ σjl(θ)

as m→ ∞.

(C) For all h, j and all ǫ > 0, we have that

a−2
m

∫ ∞

0

m∑

h=1

{
∂

∂θj
log λh(t;θ0)

}2

I

(∣∣∣∣a
−1
m

∂

∂θj
log λh(t;θ0)

∣∣∣∣ > ǫ

)
λh(t;θ0)dt

P→ 0

as n→ ∞.

(D) The matrix Σ = {σjl(θ0)} with σjl(θ0) defined in Condition B is positive

definite.

(E) For any m and each h = 1, 2, ..., k there exist predictable processes Ghm and

Hhm not depending on θ such that for all t ∈ T

sup
θ∈Θ0

∣∣∣∣
∂3

∂θj∂θl∂θr
λh(t,θ)

∣∣∣∣ ≤ Ghm(t),

and

sup
θ∈Θ0

∣∣∣∣
∂3

∂θj∂θl∂θr
log λh(t,θ)

∣∣∣∣ ≤ Hhm(t),

for all j, l, r. Moreover

a−2
m

∫ ∞

0

m∑

h=1

Ghm(t)dt, a−2
m

∫ ∞

0

m∑

h=1

Hhm(t)λh(t;θ0)dt

as well as (for all j, l)

a−2
m

∫ ∞

0

m∑

h=1

{
∂2

∂θj∂θl
log λh(t;θ0)

}2

λh(t;θ0)dt

all converge in probability to finite quantities as m→ ∞, and, for all ǫ > 0,

a−2
m

∫ ∞

0

m∑

h=1

Hhm(t)I
(
a−1
m Hhm(t)

1/2 > ǫ
)
λh(t;θ0)dt

P→ 0.
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Bootstrap Algorithm to Calculate

p−value of Goodness-of-fit Test

We use following steps to calculate the bootstrap p−values for goodness-of-fit tests,

which are introduced in Section 5.2.4.

Step 1 : Generate {Ui1; i = 1, . . . ,m} from standard uniform distribution.

Step 2 : Generate {U∗
i2; i = 1, . . . ,m} from standard uniform distribution and calculate

{Ui2; i = 1, . . . ,m} by plugging in the value U∗
i2 into the function c−1

i1 (·), where
ci1(Ui2) = ∂C(U1,Ui2;α̃∗)

∂U1

∣∣∣
U1=Ui1

, for i = 1, . . . ,m, and C(·, ·; α̃∗) is the assumed

copula model under null hypothesis and α̃∗ = (α∗

10, α̂
∗

2(α
∗

10)). We denote α∗

10

as the vector of copula parameters under null hypothesis and α̂∗

2 as the vector

of second set of copula parameters which is estimated from data.

Step 3 : Obtain W ∗
i1 = F̂−1

1 (Ui1) and W
∗
i2 = F̂−1

2 (Ui2).

Step 4 : From the Kaplan-Meier estimate based on the data

{(min(Wi1 +Wi2, Ci), 1− δi2), i = 1, . . . ,m}, generate censoring times

{C∗
i ; i = 1, . . . ,m}.

Step 5 : Compute w∗
i1 = min(W ∗

i1, C
∗
i ), w

∗
i2 = min(W ∗

i2, C
∗
i ), δ

∗
i1 = I(W ∗

i1 = w∗
i1) and

δ∗i2 = I(W ∗
i2 = w∗

i2).

Step 6 : Obtain the test statistic Λ∗ for the bootstrap sample

{(w∗
i1, w

∗
i2, δ

∗
i1, δ

∗
i2) , i = 1, . . . ,m} according to the given estimation procedure.
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Step 7 : Steps 1 to 6 are repeated B times and the p−value is estimated as the proportion

of times that Λ∗ ≥ Λobs, where Λobs is the observed value of the test statistics

with the original sample.



Appendix E

Simulation Results

Table E.1: Table 4.9 continued.

τ Parameter
DDP SDP IND

m = 50 m = 100 m = 250 m = 50 m = 100 m = 250 m = 50 m = 100 m = 250
¯̂α 0.766524 0.761530 0.756559 0.772814 0.767190 0.761467 0.773402 0.769724 0.764681

5 (0.108115) (0.076525) (0.047761) (0.114899) (0.081221) (0.050934) (0.112847) (0.079807) (0.049301)
[0.092860] [0.065319] [0.041046] [0.099818] [0.070207] [0.044126] [0.089090] [0.062678] [0.039388]

¯̂
φ

¯̂γ 0.253810 0.252671 0.252706 0.261812 0.260370 0.260573 0.319079 0.316764 0.316576
(0.052973) (0.034988) (0.022098) (0.056482) (0.038847) (0.024560) (0.062898) (0.044073) (0.028240)
[0.047723] [0.033692] [0.021298] [0.053499] [0.037698] [0.023836] [0.053779] [0.037915] [0.023959]

¯̂
β 1.628480 1.632454 1.636216 1.552996 1.558489 1.563107 1.732822 1.748336 1.759707

(0.172938) (0.119920) (0.073887) (0.185656) (0.129294) (0.079898) (0.246961) (0.171412) (0.107711)
[0.163924] [0.114939] [0.072437] [0.151522] [0.106347] [0.067083] [0.165165] [0.116047] [0.073153]

¯̂
φc1 1.433288 1.411751 1.393854

(0.335946) (0.226792) (0.137519)
[0.322937] [0.224157] [0.140050]

¯̂
φc2 2.064704 2.038810 2.014926

(0.447509) (0.306447) (0.187461)
[0.428529] [0.298536] [0.186567]

¯̂
φc3 3.024794 2.972593 2.951333

(0.609829) (0.410777) (0.249327)
[0.572276] [0.396560] [0.248478]

¯̂
φc4 4.611030 4.529512 4.492233

(0.858628) (0.573166) (0.356109)
[0.814574] [0.562437] [0.351851]

¯̂
φc 2.263331 2.252328 2.241646

(0.283761) (0.194502) (0.117205)
[0.246669] [0.172377] [0.108211]

¯̂α 0.865173 0.861891 0.857989 0.865732 0.861253 0.856557 0.878929 0.876945 0.873888
2 (0.142063) (0.098776) (0.061187) (0.145190) (0.100805) (0.062661) (0.136679) (0.093838) (0.058548)

[0.126720] [0.089487] [0.056467] [0.130759] [0.092173] [0.058095] [0.114858] [0.080990] [0.051078]
¯̂
φ

¯̂γ 0.251832 0.252861 0.252970 0.275641 0.276789 0.277271 0.424235 0.420823 0.418549
(0.067807) (0.047439) (0.028524) (0.071737) (0.049489) (0.031033) (0.074516) (0.051606) (0.033056)
[0.062953] [0.044585] [0.028176] [0.076002] [0.053447] [0.033659] [0.070263] [0.049212] [0.030994]

¯̂
β 1.620165 1.619229 1.621338 1.555182 1.556224 1.558706 1.729927 1.736729 1.750290

(0.199771) (0.135614) (0.083999) (0.208895) (0.142781) (0.089681) (0.282201) (0.195083) (0.120312)
[0.187760] [0.131739] [0.082911] [0.174677] [0.122666] [0.077176] [0.207799] [0.145324] [0.091394]

¯̂
φc1 1.416096 1.381588 1.364130

(0.368686) (0.246260) (0.150476)
[0.351680] [0.243178] [0.151804]

¯̂
φc2 2.072396 2.031061 2.009863

(0.506729) (0.337134) (0.210580)
[0.484846] [0.335087] [0.209170]

¯̂
φc3 3.050009 2.975801 2.947966

(0.718185) (0.475090) (0.282158)
[0.667385] [0.458018] [0.285609]

¯̂
φc4 4.742540 4.595521 4.527523

(1.075324) (0.715245) (0.439167)
[0.991397] [0.673768] [0.417564]

¯̂
φc 2.191437 2.171123 2.163040

(0.310299) (0.212406) (0.130763)
[0.273024] [0.190448] [0.119350]
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Table E.2: Table 4.10 continued.

τ Parameter
DDP SDP IND

m = 50 m = 100 m = 250 m = 50 m = 100 m = 250 m = 50 m = 100 m = 250
¯̂α 0.797294 0.777530 0.768584 0.823132 0.801033 0.792169 0.866317 0.848265 0.840443

5 (0.202746) (0.135535) (0.085828) (0.216007) (0.143864) (0.091044) (0.196919) (0.130878) (0.083795)
[0.151455] [0.103670] [0.064430] [0.160817] [0.109901] [0.068371] [0.127718] [0.087607] [0.054571]

¯̂
φ

¯̂γ 0.228785 0.230406 0.231220 0.220116 0.222052 0.222529 0.237667 0.234281 0.231902
(0.048155) (0.035812) (0.030022) (0.050880) (0.037016) (0.023234) (0.062206) (0.044570) (0.027808)
[0.043228] [0.030471] [0.019237] [0.049127] [0.034615] [0.021840] [0.053198] [0.037410] [0.023574]

¯̂
β 1.661556 1.670755 1.676655 1.628881 1.635319 1.641358 1.841433 1.875344 1.893743

(0.145988) (0.100738) (0.066746) (0.149401) (0.105840) (0.068406) (0.216196) (0.154294) (0.096742)
[0.139511] [0.098381] [0.062049] [0.126692] [0.089351] [0.056389] [0.153589] [0.107708] [0.067747]

¯̂
ξ1 0.439306 0.421204 0.415707 0.437014 0.418556 0.412342 0.405559 0.392309 0.389156

(0.311991) (0.213357) (0.131608) (0.317065) (0.217393) (0.133993) (0.256200) (0.175617) (0.109307)
[0.202203] [0.139778] [0.087233] [0.205133] [0.141660] [0.088411] [0.136720] [0.094854] [0.059348]

¯̂
ξ2 0.850691 0.835170 0.818941 0.842124 0.827080 0.808947 0.792789 0.784531 0.773147

(0.301957) (0.210512) (0.130891) (0.307271) (0.214208) (0.133045) (0.252935) (0.178368) (0.111166)
[0.203551] [0.140606] [0.087812] [0.206437] [0.142420] [0.088922] [0.138902] [0.096411] [0.060315]

¯̂
φc1 1.456949 1.426108 1.410890

(0.326006) (0.221832) (0.138180)
[0.313435] [0.216471] [0.135083]

¯̂
φc2 2.096348 2.065368 2.042895

(0.412597) (0.291688) (0.179977)
[0.400031] [0.277631] [0.173419]

¯̂
φc3 3.026396 2.986202 2.952597

(0.528662) (0.360264) (0.236917)
[0.519827] [0.361047] [0.225377]

¯̂
φc4 4.573162 4.508235 4.459524

(0.755398) (0.519093) (0.341714)
[0.727055] [0.503293] [0.313820]

¯̂
φc 2.361555 2.340167 2.327183

(0.246748) (0.170715) (0.107077)
[0.225219] [0.156306] [0.097800]

¯̂α 0.937958 0.930842 0.926231 0.952784 0.943226 0.937400 1.207596 1.205703 1.201127
1 (0.297249) (0.196154) (0.122391) (0.305443) (0.202684) (0.126055) (0.315396) (0.210328) (0.128674)

[0.257181] [0.180519] [0.113297] [0.265791] [0.185653] [0.116348] [0.225145] [0.157386] [0.098608]
¯̂
φ

¯̂γ 0.245864 0.244454 0.245041 0.247558 0.249923 0.250689 0.341514 0.336377 0.333246
(0.074904) (0.041232) (0.027339) (0.064087) (0.044470) (0.028898) (0.075344) (0.050472) (0.031259)
[0.056518] [0.039894] [0.025197] [0.068077] [0.047678] [0.030037] [0.074038] [0.051580] [0.032388]

¯̂
β 1.636317 1.639947 1.640113 1.599821 1.600288 1.601079 1.819124 1.834027 1.842796

(0.179541) (0.122295) (0.076629) (0.177576) (0.122997) (0.077079) (0.251761) (0.174703) (0.107617)
[0.170354] [0.120132] [0.075884] [0.153392] [0.107884] [0.068124] [0.219331] [0.152897] [0.095992]

¯̂
ξ1 0.447882 0.433607 0.427004 0.444877 0.429600 0.422870 0.311890 0.298199 0.294031

(0.316825) (0.212596) (0.130643) (0.321575) (0.215390) (0.132681) (0.272196) (0.180656) (0.110035)
[0.270557] [0.187730] [0.117197] [0.276462] [0.191380] [0.119424] [0.169911] [0.117283] [0.073272]

¯̂
ξ2 0.900230 0.883786 0.876240 0.896114 0.878384 0.871224 0.587467 0.572492 0.566612

(0.324548) (0.216547) (0.136885) (0.329307) (0.220550) (0.140723) (0.271569) (0.180986) (0.112552)
[0.286269] [0.199963] [0.125346] [0.293232] [0.204664] [0.128404] [0.177308] [0.122580] [0.076566]

¯̂
φc1 1.421767 1.391892 1.372936

(0.357832) (0.246312) (0.147385)
[0.350409] [0.242011] [0.150982]

¯̂
φc2 2.059850 2.014979 1.995279

(0.496211) (0.317018) (0.199251)
[0.461451] [0.317650] [0.198335]

¯̂
φc3 3.040611 2.987921 2.943371

(0.667062) (0.449053) (0.273538)
[0.627335] [0.431591] [0.268247]

¯̂
φc4 4.692080 4.578988 4.515403

(1.009182) (0.657609) (0.397317)
[0.912366] [0.623064] [0.386734]

¯̂
φc 2.260792 2.241922 2.229871

(0.282315) (0.195006) (0.121473)
[0.254695] [0.176763] [0.110707]


	Title page
	Abstract
	Lay summary
	Acknowledgements
	Statement of contribution
	Table of contents
	List of tables
	List of figures
	Chapter 1 Introduction
	Chapter 2 Theoretical Background
	Chapter 3 Analysis of Recurrent Events Using Dynamic Models for Event Counts
	Chapter 4 Analysis of Recurrent Events Using Copula Models with Dynamic Covariates
	Chapter 5 Summary and Future Work
	Bibliography
	Appendix A Derivation of Marginal Intensity Function in Random Effects Models
	Appendix B Explosion of Dynamic Recurrent Event Processes
	Appendix C Regularity Conditions
	Appendix D Bootstrap Algorithm to Calculate $ p- $value of Goodness-of-fit Test 
	Appendix E Simulation Results
	Title page
	Abstract
	Lay summary
	Acknowledgements
	Statement of contribution
	Table of contents
	List of tables
	List of figures
	Introduction
	Introduction
	Data Types and Motivating Examples
	Simulated Data
	Asthma Prevention Trial

	Literature Review
	The Goal and Summary of the Thesis

	Theoretical Background
	Terminology and Notation
	Recurrent Event Processes
	Some Fundamental Features of Recurrent Event Processes
	Poisson Processes
	Renewal Processes
	Other Stochastic Processes
	Likelihood Based Procedures

	Heterogeneity in Recurrent Event Processes
	Dependence Concepts
	Copula Models
	Pair-Copula Constructions

	Simulation Procedures
	Simulation of a Serially Independent Event Process
	Simulation of a Serially Dependent Event Process


	Analysis of Recurrent Events Using Dynamic Models for Event Counts
	A Dynamic Model for Carryover Effects and Number of Previous Events
	Large Sample Properties

	Extensions of the Model to Deal with Unexplained Heterogeneity
	Simulation Studies
	Application: Recurrent Asthma Attacks in Children

	Analysis of Recurrent Events Using Copula Models with Dynamic Covariates
	A Copula Based Analysis of the Dynamic Models for Recurrent Events
	Bivariate Copula Models for the First and Second Gap Times
	Simulation Studies
	Application: Recurrent Asthma Attacks in Children
	Copula Models for Series of Gap Times
	Extensions of the Model for the Heterogeneous Data
	Simulation Results
	Identical Processes
	Nonidentical Processes

	Application: Recurrent Asthma Attacks in Children

	Summary and Future Work
	Summary and Conclusions
	Future Work
	Separate Carryover Effects for the Gap Times
	Choice of the Risk Window
	Terminating Events
	Goodness-of-fit Procedures


	Bibliography
	Derivation of Marginal Intensity Function in Random Effects Models
	Explosion of Dynamic Recurrent Event Processes
	Regularity Conditions
	Bootstrap Algorithm to Calculate  p- value of Goodness-of-fit Test 
	Simulation Results

