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ABSTRACT 

Introduced species are known for disrupting ecosystems and affecting endemic species. 

Red squirrels (Tamiasciurus hudsonicus) were introduced to Newfoundland during the 

1960s and by the 1990s the Newfoundland Gray-cheeked Thrush (Catharus minimus 

minimus) had undergone a steep decline. It is hypothesized that nest predation by 

squirrels caused the thrush decline so during 2016 and 2017 I undertook point count 

surveys in the Long Range Mountains of western Newfoundland to compare the 

contemporary distributions and habitat use of these species. Squirrels and thrushes were 

strongly segregated, whereby thrushes were restricted to higher elevations (~340-600 m), 

while squirrels were abundant below 275 m, reaching an upper range limit at ~500 m. 

Gray-cheeked Thrushes were associated with harvested clearcuts, modified cuts, conifer 

forest, and tall scrub at the local scale, with only weak negative habitat associations at the 

landscape scale. Squirrels were associated with second-growth fir/spruce forest and old 

growth fir, while they avoided water, coniferous scrub, and regenerating fir/spruce forest. 

Gray-cheeked Thrushes have been historically abundant down to sea level, so this strong 

altitudinal segregation adds to the growing body of evidence that squirrels played an 

important role in the decline and range contraction of this species on Newfoundland. 
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GENERAL SUMMARY 

Introduced species often impact native species. Red squirrels are predators of eggs and 

young songbirds. They were introduced to Newfoundland in the 1960s and have been 

implicated in the decline of the Newfoundland Gray-cheeked Thrush. I surveyed forests 

in western Newfoundland to compare the distributions of these two species. I found that 

squirrels and thrushes lived at different elevations, with thrushes occupying montane 

forests (~340-600 m), and squirrels being common below 275 m and not found above 

~500 m. Habitat use also differed, with thrushes occupying strip cuts, clearcuts, 

coniferous forest, and tall scrub, and squirrels preferring 30-70 year-old fir/spruce or >70 

year-old fir forests. Squirrels avoided water, scrub forest, and 10-30 year-old fir/spruce 

forest. In the past, the thrushes were common down to sea level, so my findings support 

the hypothesis that squirrels have restricted thrush populations to higher elevations. 
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1 Introduction and overview 

1.1 Introduced species effects on ecosystems 

One of the defining ecological patterns of the Anthropocene has been the 

redistribution of species around the planet, creating the need to study the impacts of these 

newly arrived species on endemic biodiversity. Biological invasion has become 

widespread due to accidental and deliberate species introductions as well as changes in 

species’ ranges in response to human-induced changes in the environment (Simberloff et 

al. 2013). The consequences of species introductions to novel environments are varied 

(Lockwood et al. 2007), but successful invasion can result in changes to the physical 

structure of an ecosystem, alter ecosystem processes and dynamics, and may even lead to 

range contraction, extirpation or extinction of native species and a broader loss of 

endemic biodiversity (Courchamp et al. 2003; Long 2003; Sax and Gaines 2008; 

Simberloff 2009). It can be difficult to assess the full effect of an invasive species on 

declining or extirpated species for many reasons. First among these is that species 

introductions typically cannot or should not be replicated through experimental 

approaches that could otherwise give strong inferential results. Instead, researchers often 

must rely on corroborating or correlative evidence such as: spatial and temporal 

correlations between invasive and endemic species’ population trends; knowledge of the 

behaviour and ecology of the invasive species in other regions; presence of affected 

species in the diet of the new species; and decline of other members of the same prey 

guild (Fritts and Rodda 1998). In areas where much of the local biodiversity has remained 

undocumented, or when there has been an absence of systematic monitoring programs, it 
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is not always simple or possible to fully assess the effects an introduced species has on a 

novel ecosystem. 

Despite analytical challenges, introduced mammalian predators have been 

implicated in 58% of avian, mammalian, and reptilian species extinctions, and have 

played a role in the declines of hundreds of other species (Doherty et al. 2016). Ninety 

percent of bird species that are reported as having been imperiled or extirpated by the 

introduction of a mammalian predator are island endemics (Doherty et al. 2016), though it 

is not clear that endemic insular bird populations are at a higher risk of extinction from 

the introduction of a predatory mammal than mainland bird populations (see Blackburn et 

al. 2004; Medina et al. 2011; Doherty et al. 2016). Regardless, island endemics typically 

exist as relatively small, isolated populations that have evolved in less diverse ecosystems 

with simplified community structure, and so may have reduced competitive and anti-

predator abilities in the face of invaders (Courchamp et al. 2003, Banks and Dickman 

2007; Moser et al. 2018; Russell and Kaiser-Bunbury 2019). This “island tameness” is 

expected since native and endemic species did not co-evolve with the new threat (e.g., 

Fritts and Rodda 1998), and was illustrated by Campbell (1996) who found that an 

introduced species of gecko tended to flee from the threat of predation while a native 

island gecko did not. Additionally, islands are often lacking in whole guilds of species, 

and this reduced community diversity can make invasive species more likely to succeed 

(Simberloff 1995). While this may lead to range-wide declines of endemic populations, it 

may also be expressed in the form of reduced ecological niches, where endemic species 
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become restricted to habitats to which invaders are poorly suited (Scheele et al. 2017; see 

also Parlato et al. 2015).  

1.2 Tree squirrels as introduced species 

Tree squirrels (family Sciuridae) possess biological traits that make the group 

particularly successful invaders of novel areas, including high vagility, high reproductive 

potential, and behavioural plasticity (Palmer et al. 2007; Wood et al. 2007). Species in 

this group also have broader community effects due to their omnivorous diets and 

generalist predatory behaviour, as well as through food hoarding that can modify forest 

dynamics and exacerbate interspecific competition for resources (Martin 1988; Vander 

Wall 2001). Consequently, studies of introduced, invasive populations of species in this 

group are important for understanding their potential ecological impacts and guiding 

management strategies (e.g., Gurnell et al. 2004). Numerous introductions in 14 countries 

have been documented, involving nine species of tree squirrels (Palmer et al. 2007). In 

reviewing these tree squirrel introductions, Palmer et al. (2007) documented consistent 

adverse ecological and economic impacts, including competition with native tree squirrels 

and other fauna, predation on native animals, alteration of forest structure and decreased 

forest regeneration, transmission of disease, and damage to human-made structures. 

Adverse impacts have become so pervasive in certain areas that management through 

hunts with bounties, nest eradications, fertility control, trapping, poisoning, and control 

through encouragement of native predation have all been tested or employed with varying 

success in an effort to curb their spread (Palmer et al. 2007; Sheehy et al. 2018).  
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Within the Sciuridae, North American red squirrels (Tamiasciurus hudsonicus, 

hereafter red squirrels) are notable for their far-reaching effects on boreal ecosystems. 

They can impose selection pressure on conifer cone morphology (e.g., Pinus, Picea; 

Smith 1970; Benkman 1989), limit forest regeneration through seed consumption (West 

1989; English 1998), and are known to compete with seed-eating finches (e.g., Spinus, 

Loxia) and other granivores (e.g., Tamias, Peromyscus) for food (Smith and Balda 1979; 

Wren 2001; Benkman et al. 2009). Despite primarily consuming conifer seeds (Smith 

1968), red squirrels are omnivorous predators and can account for up to 88% of the 

predation on songbird eggs, nestlings, and fledglings (Martin and Joron 2003; Willson et 

al. 2003; Haché et al. 2014), as well as predating the young of mammals including 

snowshoe hares (Lepus americanus) and even conspecifics (Callahan 1993; Steele 1998).  

1.3 Red squirrels on Newfoundland 

The island of Newfoundland has been subjected to numerous species 

introductions, including various amphibians, reptiles, birds, fish, invertebrates, and 13 

species of mammals (e.g., Scott and Crossman 1964; South 1983; Montevecchi and Tuck 

1987; Maunder 1997; Strong and Leroux 2014). The red squirrel is one of the most recent 

mammal introductions and is unique in that it arrived nearly simultaneously at widely 

separated locations through both sanctioned and unsanctioned translocations. During 

1963 red squirrels were released at multiple locations on the Northern Peninsula by 

members of the public, and subsequently released to Camel Island by government 

officials (Payne 1976; Dodds 1983). The aesthetic appeal of red squirrels and their 

potential as a new fur source for trappers motivated these actions, while it was also hoped 
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that red squirrels would augment the diet of the imperiled Newfoundland subspecies of 

American marten (Martes americana atrata; Goudie 1978). Since that time however, 

squirrels have not been found to comprise a substantial portion of the marten’s diet 

(COSEWIC 2007). Through natural dispersal and additional translocations, red squirrels 

had colonized most of Newfoundland by the mid-1990s and are now likely found 

throughout the island in all suitable habitat (Goudie 1978; Minty 1976; Whitaker 2015). 

In other areas of their range across North America, red squirrel populations are thought to 

be naturally regulated by food supply rather than predation (Sullivan 1990; Stuart-Smith 

and Boutin 1995), suggesting that habitat quality may be the most important factor 

limiting any further expansion of the range of this species on Newfoundland.  

Limited information is available on the contemporary distribution and abundance 

of red squirrels on Newfoundland, as well as any effects they may be having on the 

ecosystems they have colonized. Higher densities of red squirrels have been reported in 

central Newfoundland where black spruce (Picea mariana) stands dominate forest cover 

(0.4-5.8 squirrels/ha; West 1989; Reynolds 1997), compared to the balsam fir (Abies 

balsamea) or mixed coniferous stands (1.1-1.4 squirrels/ha; Wren 2001; Lewis 2004) that 

dominate forests in western Newfoundland and the Avalon Peninsula (Damman 1983). 

Benkman (1989) also stated that red squirrel densities in black spruce forests on 

Newfoundland could be twice as high as in comparable forests on the mainland, though 

no data were provided to support this suggestion. Other factors may also be important 

drivers of red squirrel distribution and habitat use on Newfoundland. For example, no red 

squirrels were observed during a three-year live trapping survey carried out in montane 
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balsam fir forest at elevations between 450 m and 550 m (Shawn Gerrow, Parks Canada, 

unpublished report), suggesting that this species may be restricted to lower elevations on 

Newfoundland. However, sampling was not carried out at lower elevations and that study 

was not designed to identify an upper elevation limit on red squirrel occurrence. Thus, the 

limited number of studies, and incomplete knowledge on key factors such as elevation 

make it difficult to assess differences in red squirrel abundance between forest types or 

regions of Newfoundland or to identify key factors affecting red squirrel distribution. 

Though the extent of squirrel effects on Newfoundland ecosystems remains largely 

unstudied, red squirrels have been implicated as potential drivers of the decline of two 

endemic bird subspecies through predation of eggs and young (Newfoundland Gray-

cheeked Thrush, Catharus minimus minimus; Whitaker et al. 2015; Fitzgerald et al. 2017) 

and/or interspecific competition for food (Newfoundland Red Crossbill, Loxia curvirostra 

percna; Benkman 1989; Environment Canada 2012).  

1.4 Gray-cheeked Thrush on Newfoundland 

The Gray-cheeked Thrush is a Neotropical migrant songbird that breeds in the 

northern boreal forest across Canada, Alaska, and into Siberia, and has been infrequently 

studied across their range and on Newfoundland (Whitaker et al. 2020). A limited 

understanding of the breeding biology and ecology of the Gray-cheeked Thrush can be 

attributed to a variety of factors, mostly linked to the remoteness of the habitats which it 

occupies during the breeding season. Understanding of this species was also limited by 

the fact that much of the early research attributed to it was actually carried out on another 

closely related species, the Bicknell’s Thrush (Catharus bicknelli), which has a more 
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southerly range and was only recognized as a distinct species during the 1990s (Ouellet 

1993). It was only after the population on Newfoundland (Catharus minimus minimus; 

recently confirmed to be distinct from the mainland subspecies, C. m. alicea, via genetic 

research; FitzGerald et al. 2017) began to undergo substantial declines (SSAC 2010) that 

more detailed research on this relatively accessible population of the species was 

initiated. From the 1930s to the 1980s, the Newfoundland Gray-cheeked Thrush was 

reported as being a locally common, widespread, and abundant bird species (Peters and 

Burleigh 1951; SSAC 2010). During the 1970s it was the fifth most abundant landbird in 

Gros Morne National Park, being found in both the Long Range Mountains and 

throughout the coastal plains (Lamberton 1976). However, by late in the last century there 

was evidence of a dramatic drop in the number of individuals being detected and this 

subspecies was provincially listed as threatened in 2015 due to an apparent 95% decline 

between 1975 and 2005 (SSAC 2010). This estimate was based primarily on Breeding 

Bird Survey (BBS) data from 1974-2008, which was comprised of 23 routes around the 

island, where the average number of thrushes detected per route fell from 6.2 individuals 

in 1975-1984 to 0.4 individuals from 1999-2008 (SSAC 2010). These routes follow 

established roads, which generally avoid mountainous areas, and so are limited to 

elevations below 400 m ASL. As such, it is indicative only of population trends below 

this elevation. A follow-up survey in Gros Morne National Park in 1993 resampled the 

same plots as those sampled by Lamberton (1976) and found that Gray-cheeked Thrushes 

had completely disappeared from the coastal plains plots (Jacques Whitford Environment 

1993). They did find, however, that the thrushes remained abundant in the Long Range 

Mountains. One BBS route in the park predominately samples coastal scrub habitat, and 
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documented the complete disappearance of these thrushes; though more than 20 thrushes 

per year were observed along this route during the 1970s, none have been recorded since 

1997 (Route 57021; SSAC 2010). Additionally, Fitzgerald et al. (2017) searched across 

areas of the island where Gray-cheeked Thrushes had been historically present, but found 

none in or near Terra Nova National Park in eastern Newfoundland, Grand Falls-Windsor 

in central Newfoundland, or in several areas in southwestern Newfoundland. However, it 

was known that some higher elevation areas of the Long Range Mountains in western 

Newfoundland still supported residual populations of Gray-cheeked Thrush in 2006 and 

2007 (Whitaker et al. 2015). The apparent persistence of residual high elevation 

populations indicates that the 95% decline suggested from BBS data alone may be 

somewhat of an overestimate, and also suggests that montane areas could provide an 

important refuge for Gray-cheeked Thrush in Newfoundland. However, the extent, size, 

and elevational limits of these populations are largely unknown.  

Across the Gray-cheeked Thrush’s range in North America, they are associated 

with tall deciduous or coniferous shrub thickets in riparian, tundra, and treeline areas, as 

well as open canopy forests with a complex understory of woody shrubs (often deciduous 

like alder, Alnus spp. or willow, Salix spp.), montane areas, and also in stunted and 

mature coniferous stands (Di Corrado 2015; Whitaker et al. 2020). On the island of 

Newfoundland, descriptions of habitat use and occurrence have mostly been limited to 

casual observations, notes of presence within general bird surveys, or as part of a larger 

study focused on other topics (e.g., Marshall 2001). Generally, Gray-cheeked Thrushes in 

Newfoundland can be found in stunted conifer thickets, mature spruce (Picea) and fir 
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(Abies) forests (Marshall 2001), and in > 80 year-old, uncut fir forest (Thompson et al. 

1999). The first comprehensive study done specifically relating to the habitat 

requirements of Gray-cheeked Thrush on Newfoundland was by Whitaker et al. (2015). 

They modelled habitat requirements at two different spatial scales and found that the 

occurrence of thrushes was positively related to tall scrub forest at both neighbourhood 

and landscape scales, with intermediate amounts of old growth forest at the landscape 

scale, and with clearcuts at the neighbourhood scale, but was negatively impacted by 

clearcuts at the landscape scale. Whitaker et al. (2015) also found elevation to be an 

important factor explaining Gray-cheeked Thrush distribution. The main difference 

between the Newfoundland Gray-cheeked Thrush and the mainland subspecies’ habitat 

preferences appears to a weaker association with deciduous shrub thickets and stronger 

affinity for conifer scrub and forest on Newfoundland, which is reminiscent of the habitat 

affinities of Bicknell’s Thrush (Marshall 2001). Questions remain surrounding the 

influence of some silvicultural methods including pre-commercial thinning, which 

negatively influence Bicknell’s Thrush (Chisholm and Leonard 2008; McKinnon et al. 

2014; Aubry et al. 2016), and strip cutting, as well as their use of different elevations, as 

the impact of these methods has not been given much consideration across the continental 

range of this species. 

Various hypotheses have been proposed to explain the sudden, widespread decline 

of the Gray-cheeked Thrush on Newfoundland. These include deforestation and habitat 

degradation in their wintering grounds, forest management on their breeding grounds, 

adverse conditions or events during migration, potential competition with Swainson’s 
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Thrushes (Catharus ustulatus), and the introduction of red squirrels to the island (SSAC 

2010; Whitaker et al. 2015, 2018, 2020). Threats during migration and competition with 

Swainson’s Thrushes have been dismissed as neither of these factors underwent striking 

changes during the period of major Gray-cheeked Thrush decline (see SSAC 2010; 

Whitaker et al. 2015). Additionally, Gray-cheeked Thrushes disappeared simultaneously 

from both managed and unmanaged forests on the breeding grounds, indicating that forest 

management was not a likely factor (Whitaker et al. 2015). At present, only habitat 

degradation on their wintering grounds and the introduction of red squirrels are still 

considered likely to have played a strong causal role in the population’s decline. 

1.5 Thesis objectives and outline 

The principal goal of my research was to better understand whether introduced red 

squirrels have impacted the population of Gray-cheeked Thrushes on Newfoundland. I 

did this by collecting co-located survey data for the two species to evaluate Whitaker et 

al.’s (2015) hypothesis that they should now be strongly segregated by elevation. Other 

goals were to better understand the habitat needs of the Gray-cheeked Thrush and to 

improve the understanding of the distribution and ecology of red squirrels on 

Newfoundland. In Chapter 2, I describe the types of landcover which can be used to 

predict red squirrel occupancy in western Newfoundland, investigate their use of the 

landscape across an elevation gradient, and assess potential factors limiting their 

contemporary distribution on the island of Newfoundland. In Chapter 3, I compare the 

distributions of red squirrels and Gray-cheeked Thrushes across an elevation gradient to 

help better understand the likelihood and potential role that red squirrels may have played 



11 
 

in the decline of the Newfoundland Gray-cheeked Thrush. I also endeavour to enhance 

our understanding of Gray-cheeked Thrush habitat use at different spatial scales. In 

Chapter 4, I discuss the potential for further expansion of red squirrels through the island, 

make several management recommendations for both red squirrels and Gray-cheeked 

Thrushes, and discuss future directions that should be taken to advance our understanding 

of both species on the island of Newfoundland, and more generally. 

1.6 Co-authorship statement 

This thesis has been prepared in manuscript style with the intention that Chapters 

2 and 3 are stand-alone scientific articles to be submitted to peer-reviewed journals; as 

such, there is necessary repetition of some introductory material and methods in Chapters 

1 – 3. I published Chapter 2 in the Canadian Journal of Forest Research in 2020 with 

Darroch Whitaker and Ian Warkentin (my graduate supervisors) as co-authors, and so I 

use plural rather than singular first-person pronouns. Copyright remains with me and my 

co-authors; it is available in an Open Access format, and can be referenced as 

“McDermott, J.P.B., Whitaker, D.M., and Warkentin, I.G. 2020. Constraints on range 

expansion of introduced red squirrels (Tamiasicurus hudsonicus) in an island ecosystem. 

Canadian Journal of Forest Research 50(10):1064-1073. doi: 10.1139/cjfr-2019-0369”. 

Additionally, Chapter 3 is intended for submission to a peer-reviewed publication with 

my graduate supervisors as co-authors and is formatted for Biological Conservation, and 

so I again use plural rather than singular first-person pronouns. 

The work presented in this thesis is my own and I conducted this research 

independently, with contributions and collaborations from others, especially my graduate 
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supervisors (Drs. Ian Warkentin and Darroch Whitaker) who provided advice and 

editorial support throughout. Identification of the research topic originated with Darroch 

Whitaker and Ian Warkentin. I was heavily involved with design of the research related to 

my thesis chapters and I planned my field work with the assistance of Darroch Whitaker 

and Ian Warkentin. We hired field technicians as a cohesive hiring committee, and I 

collected my data with the help of these field technicians who were under my supervision 

while in the field (Elora Grahame, Brendan Kelly, Noah Korne, Kathleen Manson, Anna 

Rodgers, Meaghan Tearle, and Benjamin West). I conducted all data analysis, with input 

and advice from Darroch Whitaker, Ian Warkentin, Dan Kehler, and Dave Schneider. I 

wrote the initial and subsequent manuscript drafts for all chapters, incorporating edits and 

suggestions from Ian Warkentin and Darroch Whitaker, and Anne Storey (committee 

member). I also incorporated suggestions and edits in Chapter 2 from April Robin 

Martinig and two anonymous reviewers during the peer-review process for publication in 

the Canadian Journal of Forest Research.  
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2 Constraints on range expansion of introduced red squirrels (Tamiasciurus hudsonicus) 

in an island ecosystem 

2.1 Co-authorship Statement 

I published this chapter in the Canadian Journal of Forest Research in 2020 with 

my graduate supervisors (Ian Warkentin and Darroch Whitaker) as co-authors. As such, I 

use plural rather than singular first-person pronouns throughout, and formatting of the 

references section matches the journal’s requirements. Copyright has remained with me 

and my co-authors; it is available in an Open Access format, and can be referenced as 

“McDermott, J.P.B., Whitaker, D.M., and Warkentin, I.G. 2020. Constraints on range 

expansion of introduced red squirrels (Tamiasicurus hudsonicus) in an island ecosystem. 

Canadian Journal of Forest Research 50(10):1064-1073. doi: 10.1139/cjfr-2019-0369”. 

There are various small changes to the published manuscript that I incorporated based on 

the reviews of my thesis examiners. These include the incorporation of a short statistical 

analysis on the fine-scale vegetation data, for which I added a small paragraph of 

methodology, reported statistical findings in the results section, and minor alterations of 

the discussion; the addition of a map of my study area (Figure 2-1); the indication of 

significant variables in Figures 2-3 and 2-4; and the inclusion of minor wording changes 

to increase clarity. 

Conception of the research idea was by Darroch Whitaker and Ian Warkentin, 

who provided advice and suggestions throughout the research, but the work described in 

this chapter is my own. I planned and executed the data collection with their assistance. I 

conducted data analysis independently, with input and advice from Darroch Whitaker, Ian 
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Warkentin, Dan Kehler, and Dave Schneider. I prepared the manuscript, incorporating 

edits and suggestions from Ian Warkentin and Darroch Whitaker, and Anne Storey 

(committee member). I also incorporated suggestions and edits from April Robin 

Martinig and two anonymous reviewers during reviews for publication.  

2.2 Abstract 

Limitations on range expansion of introduced species can offer insights into their basic 

ecology and inform conservation of associated endemics. North American red squirrels 

(Tamiasciurus hudsonicus) were recently introduced to the island of Newfoundland, 

where they have been implicated in the decline of two endemic bird subspecies. We 

conducted 1960 point count surveys with playback to assess red squirrel distribution and 

habitat use across a 257 km2 montane landscape in western Newfoundland during the 

summers of 2016 (following conifer masting) and 2017 (after non-masting). We used 

Generalized Additive Models with stepwise model selection to assess the annual 

relationship between land cover and red squirrel occurrence. Red squirrels were most 

common at low elevations and not detected above ~ 500 m elevation. They were 

negatively associated with water, coniferous scrub and 10-30 year old fir/spruce, but 

positively associated with 30-70 year old fir/spruce and > 70 year old fir. Red squirrel 

presence was related to more land cover variables in 2016, after a masting year. Absence 

of red squirrels from higher elevation forests apparently resulted from lack of suitable 

habitat rather than incomplete range expansion. Climate or silviculture-induced changes 

in vegetation may alter mid and upper elevation habitat suitability. 
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Key words: North American red squirrel (Tamiasciurus hudsonicus), elevation, habitat, 

introduced species, range expansion 

2.3 Introduction 

Biological invasion is widespread due to accidental and deliberate introductions as 

well as the shifting or expansion of species’ ranges in response to human-induced 

changes in the environment (Simberloff et al. 2013). While the consequences of species 

introductions to novel environments are varied (Lockwood et al. 2007), island ecosystems 

have typically been more vulnerable due to such factors as simplified community 

structure, dispersal barriers, and lower ecosystem diversity, as well as typical traits of 

endemic island species such as small populations and reduced competitive and anti-

predator abilities (e.g., Wood et al. 2017; Russell and Kaiser-Bunbury 2019). Successful 

invasion can result in altered community dynamics and may even lead to the extirpation 

or extinction of native species and a broader loss of endemic biodiversity (Courchamp et 

al. 2003; Sax and Gaines 2008).  

Tree squirrels (family Sciuridae) possess biological traits that make the group 

particularly rapid and successful invaders of novel areas, including high vagility, high 

reproductive potential, and behavioural plasticity (Palmer et al. 2007; Wood et al. 2007). 

Species in this group also have broader community effects due to their omnivorous diets 

and generalist predatory behaviour, as well as through food hoarding that can modify 

forest dynamics and exacerbate interspecific competition for resources (Martin 1988; 

Vander Wall 2001). Consequently, studies of introduced, invasive populations of species 

in this group are valuable for understanding their potential ecological impacts and guiding 
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management strategies (e.g., Siepielski 2006). In reviewing tree squirrel introductions, 

Palmer et al. (2007) documented consistent adverse ecological and economic impacts, 

including competition with native tree squirrels and other fauna, predation on native 

animals, alteration of forest structure and decreased forest regeneration, transmission of 

disease, and damage to human-made structures. Within the Sciuridae, North American 

red squirrels (Tamiasciurus hudsonicus, hereafter red squirrels) are notable for their far-

reaching effects on boreal ecosystems. They can impose selection pressure on conifer 

cone morphology (e.g., Pinus, Picea; Smith 1970; Benkman 1989), limit forest 

regeneration through seed consumption (West 1989; English 1998), and are known to 

compete with seed-eating finches (e.g., Spinus, Loxia) and other granivores (e.g., Tamias, 

Peromyscus) for food (Smith and Balda 1979; Wren 2001; Benkman et al. 2009). Despite 

primarily consuming conifer seeds (Smith 1968), red squirrels are also predators and can 

account for up to 88% of the predation on songbird eggs and fledglings occurring during 

a season (Martin and Joron 2003; Willson et al. 2003; Haché et al. 2014), as well as 

predating the young of mammals including snowshoe hares (Lepus americanus) and even 

conspecifics (Callahan 1993; Steele 1998).  

Red squirrels are a relatively new addition to the fauna of Newfoundland, Canada, 

having been introduced to the island in 1963 and 1964 (Payne 1976; Whitaker 2015). 

Members of the public carried out the initial unsanctioned introductions, though 

government officials followed this with a series of translocations aimed at accelerating 

the spread of the species. The aesthetic appeal of red squirrels and their potential as a new 

fur source for trappers motivated these actions, while it was also hoped that red squirrels 
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would augment the diet of the imperilled Newfoundland subspecies of American marten 

(Martes americana atrata; Goudie 1978). Though Newfoundland is the largest island in 

the circumpolar boreal biome (>108,000 km2), rapid dispersal and translocations resulted 

in red squirrels becoming widespread and abundant across the island by the mid-1990s 

(Minty 1976; Goudie 1978; Whitaker 2015). The extent of their effects on Newfoundland 

ecosystems remains largely unstudied, but red squirrels have been implicated as potential 

drivers of the decline of two endemic bird subspecies through nest predation 

(Newfoundland Gray-cheeked Thrush, Catharus minimus minimus; Whitaker et al. 2015; 

Fitzgerald et al. 2017) and/or interspecific competition for food (Newfoundland Red 

Crossbill, Loxia curvirostra percna; Benkman 1989; Pimm 1990). Red squirrels are also 

known to harvest up to 96% of available black spruce (Picea mariana) cones in poor cone 

years on Newfoundland (West 1989), though it is unlikely this would impact longer-term 

forest growth.  

Despite their successful introduction to various islands off continental North 

America, (Payne 1976; Long 2003; Martin and Joron 2003), there has been little 

quantitative study of red squirrel habitat associations, distribution, or abundance in these 

settings. Balsam fir (Abies balsamea) and black spruce dominated forests of 

Newfoundland provide novel, but lower quality, habitat compared to the white spruce 

(Picea glauca) and lodgepole pine (Pinus contorta) stands in western North America 

where red squirrels have more often been studied (Brink and Dean 1966). To our 

knowledge, few studies have focussed on habitat associations of red squirrels in forests 

with a comparable balsam fir/black spruce composition (e.g., Allard-Duchêne et al. 
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2014); Riege (1991) worked in a forest with only 29% fir and an abundance of seeds and 

nuts available from deciduous forests, while Kemp and Keith (1970) conducted their 

study in a black spruce stand that lacked balsam fir. Likewise, these systems were not 

comparable to Newfoundland where the widespread conifer cover combines a masting 

species of relatively lower lipid content with a species that more consistently offers 

moderate amounts of higher lipid content cones (balsam fir and black spruce, 

respectively; Wren 2001). Conifers on Newfoundland have also evolved in the absence of 

a terrestrial granivore. Consequently, cones on Newfoundland may have thinner scales 

compared to those on the mainland, making them more accessible to red squirrels 

(Benkman 1989). Similarly, limited information is available on the distribution and 

abundance of red squirrels on Newfoundland, especially during periods of high and low 

cone availability. Higher densities of red squirrels have been reported in central 

Newfoundland where black spruce stands dominate forest cover (0.4-5.8 squirrels/ha; 

West 1989; Reynolds 1997), compared to the balsam fir or mixed coniferous stands (1.1-

1.4 squirrels/ha; Wren 2001; Lewis 2004) that dominate forests in western Newfoundland 

and the Avalon Peninsula (Damman 1983). Benkman (1989) also stated that red squirrel 

densities in black spruce forests on Newfoundland could be twice as high as in 

comparable forests on the mainland, though provided no data supporting this suggestion. 

Other factors may also be important drivers of red squirrel distribution and habitat use on 

Newfoundland. For example, no red squirrels were observed during a three-year live 

trapping survey carried out in montane balsam fir forest at elevations between 450 and 

550 m (Shawn Gerrow, Parks Canada, unpublished report), suggesting that this species 

may be restricted to lower elevations on Newfoundland. However, sampling was not 
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carried out at lower elevations and they did not attempt to identify an upper elevation 

limit on red squirrel occurrence. Thus, the limited number of studies, and failure to 

address key factors such as elevation make it difficult to assess differences in red squirrel 

abundance between forest types or regions of Newfoundland or, more importantly, to 

identify key factors affecting red squirrel distribution and abundance.    

We studied the occurrence of introduced red squirrels across an elevation gradient 

in a montane, balsam fir-dominated forest landscape of western Newfoundland. Our 

primary objective was to assess the habitat use and distribution of red squirrels where the 

available conifer species differ from those in other areas where this species has been 

studied. Since black spruce retains cones for multiple years and provides a more reliable 

food source than balsam fir, we expected habitat use to vary between years that did or did 

not follow large balsam fir cone crops (i.e., masting) (Minty 1976; Farrar 1995). 

Newfoundland has only been colonized by red squirrels in the past ~50 years, so we then 

used our findings on factors limiting the species’ distribution to evaluate the potential for 

further range expansion on Newfoundland. This information may be important to 

conservation of endemic biota, as unoccupied habitats may be serving as short- or long-

term refugia for native species that are impacted by introduced red squirrels. 

2.4 Materials and Methods 

2.4.1 Survey area 

We collected our data across a 257 km2 study area in the upper Humber River and 

Main River watersheds (centered at 57° 16´ W, 49° 40´ N) on the eastern slope of the 
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Long Range Mountains of western Newfoundland, Canada (Figure 2-1; see Whitaker et 

al. 2015 for a detailed description of the study area). The study area spanned a 75 m to 

608 m elevation gradient with land cover dominated by wet balsam fir forests (Thompson 

et al. 2003; McCarthy and Weetman 2006). For context, the highest point on 

Newfoundland is 814 m. All mountains exceeding 600 m, which account for just 1% of 

the island (1 010 km2), occur in western Newfoundland and are dominated by Arctic-

alpine barrens and windswept krummholz (Damman 1983). Forests below 450 m 

elevation and in deep valleys are characterized by a matrix of mixed and single-species 

stands of productive forest dominated by balsam fir or black spruce along with bogs, 

heaths, rock barrens, and other natural openings (Damman 1983; McCarthy and Weetman 

2006). Other secondary tree and shrub species in the region include white birch (Betula 

papyrifera), eastern larch (Larix laricina), white spruce (Picea glauca), mountain ash 

(Sorbus sp.), alder (Alnus sp.), and serviceberry (Amelanchier sp.). Above 450 m, open 

areas and non-productive scrub forest become increasingly prevalent due to increased 

wind exposure, deep and late snow cover, low nutrient availability, and saturated soils 

(Damman 1983). Between 1990 and 2004, 19.7% of the landscape in the surveyed area 

was logged in cutblocks ranging from 0.30 ha to 217.7 ha, with a mean size of 21.6 ± 

31.8 ha. Most cutblocks occur between 300 m and 500 m elevation, and two ~100 ha 

experimental strip cuts, which were harvested during 2001 and 2003, span elevations of 

419-564 m (see Whitaker et al. 2015). Harvesting since that time has been limited to the 

creation of a 60 m-wide electricity transmission corridor through a northern section of the 

study area in 2016 and 2017. Periodic stand-killing outbreaks of defoliating insects are 

the primary form of large natural forest disturbance in the region, but are uncommon 
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above ~400 m due to climate severity (McCarthy and Weetman 2006). Red squirrels were 

present in the region by the mid-1980s and have been widespread and common since at 

least the mid-1990s (Whitaker 2015). 

2.4.2 Field methods 

We conducted point count surveys (Buckland et al. 2001; Chavel et al. 2017) from 

8 June to 17 July in 2016 and 2017. Red squirrels are ~ 1.5 times more likely to call in 

response to a broadcast of vocalizations compared to calling rates before the broadcast, 

often approaching the broadcaster (Shonfield 2010), and respond twice as frequently to 

the call of a stranger compared to a neighbour (Price et al. 1990). Consequently, we 

employed an 11-minute point count protocol that consisted of six minutes of silent 

watching and listening followed by a broadcast of two minutes of Gray-cheeked Thrush 

songs and calls (for a related study), one minute of silence, a one-minute broadcast of red 

squirrel vocalizations, and one final minute of silent observation. During each of the time 

blocks in the 11 minutes of the point count, we recorded each red squirrel that was heard 

or seen. The red squirrel broadcast was created from archived recordings of red squirrel 

rattles and chucks from Nova Scotia and Quebec (Macaulay Library of Bioacoustics, 

Cornell Lab of Ornithology; Catalogue numbers: 100916 and 136185), which are known 

to elicit territorial responses from red squirrels (Price et al. 1990; Siracusa et al. 2017). 

The volume of broadcasting units (FoxPro model FX3 or Crossfire game callers; FoxPro 

Incorporated, Lewistown, PA 17044, USA) was set at a constant level for all point counts. 

When measured 1 m from the speaker the average volume of red squirrel vocalizations 

was 53.7 dB, with peak volumes of 73.9 dB.  
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We spaced point count locations 500 m apart in a grid, leading to a systematic 

assessment of red squirrel distribution across our survey landscape each year. During 

2016, which followed a conifer masting year in the region (Robineau-Charette and 

Whitaker 2017), the grid encompassed 991 point count locations, while in 2017 (a non-

masting year; Robineau-Charette and Whitaker 2017) we shifted the grid 250 m north and 

east within the same area and sampled 969 locations. Thus, over the two sampling years 

that followed winters of differing cone availability, we collected point count data during a 

single visit to each of 1 960 point count locations. Surveys were conducted between 05:40 

h and 14:30 h by single observers (4 individuals during 2016, 5 individuals during 2017: 

1 individual common to both years), sampling a series of 5-12 adjacent point count 

locations each day. Sampling alternated between low, mid, and high elevation portions of 

the study area on consecutive days across the season. Observers recorded categorical 

assessments of wind (Beaufort scale), precipitation (none, rain, drizzle, fog), and cloud 

(0-5) during each point count, and surveys were not conducted when high winds 

(Beaufort scale >5: >29 km/h), or persistent precipitation, and/or fog might have impaired 

visual or auditory detections of red squirrels. In 2017, following completion of each point 

count, we tallied the number of >1.3 m tall stems of each tree or shrub species along a 2 

m × 22.6 m transect running North-South and centered on the survey point (total 45.2 

m2), to obtain a measure of stand composition and tree distribution at a point count level 

across the study area.  

2.4.3 Data management and analysis 
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We extracted land cover data in the area surrounding each point count location 

from the provincial forest resource inventory Geographic Information System (GIS) 

database, which was created using high-resolution (sub 10 cm pixel) 3D aerial 

photographs taken in 2007. Land cover types were mapped in accordance with the 

standard forest resource inventory scheme used by the Province of Newfoundland and 

Labrador, with landscape elements assigned to cover types (e.g., forest, bog, barren, 

water) and forest stands classified according to 20-year age classes and dominant tree 

species composition. Stands of scrub forest were classified into eight height classes 

(breaks at 3.5 m, 6.5 m, 9.5 m, 12.5 m, 15.5 m, 18.5 m, and 21.5 m). Using ArcGIS 

10.4.1 (ESRI 2002), we extracted this land cover information within a 52.3 m radius of 

each survey point (i.e., 0.86 ha circular plot). This distance was based on maximum red 

squirrel home range size estimates reported by LaMontagne et al. (2013) from white 

spruce forests in the Yukon under conditions of low cone availability. Broader spatial-

scale habitat cover was not considered because red squirrels are highly territorial and 

vigorously defend their territories (Smith 1968; Price et al. 1990; Reynolds 1997). Red 

squirrels detected at one location could potentially have been the same as those found at 

neighbouring locations, though this seems unlikely because of the distance between 

points and because off-territory forays, while undertaken by both males and females, are 

limited (Benhamou 1996; Lane et al. 2009). Even so, knowing the individual identity of a 

red squirrel at the point count location was not essential for our study; rather we were 

simply interested in knowing whether red squirrels used the area. We then aggregated 

land cover types into categories that would be more relevant based on our understanding 

of red squirrel habitat needs. We grouped the eight deciduous and coniferous scrub 
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categories into two height classes (<6.5 m and >6.5 m) based on previous work in our 

study area (Whitaker et al. 2015), and because this is the approximate height where 

canopy becomes closed (Allard-Duchêne et al. 2014). To account for the time lag 

between the collection of the aerial photographs and this study, we added 10 years to the 

age class for each forest stand, and we then grouped 20-year stand classifications into 

three broader age classes: regenerating stands (10-30 years old), second growth stands 

(30-70 years old), and mature stands (70+ years old). Stands younger than 30 years are 

not yet mature and so produce few, if any, cones, while on average more cones should be 

produced with increasing age (Viereck 1983, Viereck and Johnston 1990, Viglas et al. 

2013). Finally, the elevation of each survey point was extracted from a digital elevation 

model from Natural Resources Canada’s CanVec geospatial database (available under the 

Government of Canada’s Open Government License [https://open.canada.ca/en]). The 

resolution of this data varies from 1:10,000–1:50,000 scale. 

We analysed data (red squirrel presence-absence at a point) for each year 

separately as we expected that red squirrels could be using habitat differently following 

winters of high (2016) and low cone availability (2017). As a first step, we conducted a 

two-sample Kolmogorov-Smirnov test to compare the elevation distribution of red 

squirrels between 2016 and 2017. We then developed a global linear model to explain 

variation in squirrel occurrence, and used backwards stepwise variable selection to 

identify land cover features associated with red squirrel occurrence each year (all data 

analyses completed using R statistical software, version 3.3.1; R Core Team 2016). We 

did not detect any red squirrels above 515 m elevation in either 2016 or 2017, so we 
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excluded survey locations above 515 m elevation from these analyses to lessen 

confounding effects of land cover and elevation, resulting in a total of 844 and 823 point 

count locations in 2016 and 2017, respectively.  

We measured land cover variables as the proportion of area within the 52.3 m 

radius circle they accounted for (range 0-1) and tested for independence with a 

Spearman’s correlation matrix (i.e., r < 0.5; Dormann et al. 2013). To limit variables to 

those having minimally adequate explanatory power, we then eliminated land cover 

variables from further analyses if fewer than 5% of the total points surveyed included that 

cover type. The remaining variables (Table 2-1) included a mixture of land cover types 

which we expected red squirrels would select or avoid. We expected that open habitat, 

water, and scrub habitat would be less used by red squirrels as they provide little or no 

food or cover, while forests, specifically mature fir or fir/spruce stands, would be selected 

by red squirrels. Examination of the distribution of red squirrels across the study area 

suggested that elevation could be correlated with red squirrel occurrence, so elevation 

was also included in our models. To account for factors that might affect detectability of 

red squirrels, we included wind, cloud, and precipitation as fixed categorical variables, 

observer as a random categorical variable, and ordinal date (day of year) and time of day 

as continuous variables in our global model each year. Though these variables were 

included in our analyses and reported in our results to account for some variation that 

could be attributed to differences in detection, we did not discuss them further.  

We fit our global model for each year using a Generalized Additive Model 

(GAM) with red squirrel presence/absence as the response variable (R package mgcv 
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version 1.8-31; Wood 2011). When fitting models, we specified a binomial error 

distribution with a clog-log link function, which performs better for datasets having an 

unequal ratio of absences and presences (Zuur et al. 2009). Each continuous explanatory 

variable was fit as a smoothed nonparametric spline to allow for non-linear relationships. 

All terms except wind and cloud were set to a default number of knots, which are used to 

calculate the maximum degrees of freedom for an individual smoothed term. For wind 

and cloud, we specified a maximum kernel of k=3 to allow the model to run based on 

limitations of degrees of freedom for these terms. We also specified a maximum 

likelihood (ML) smoothness selection criterion, which is recommended when manually 

dropping terms. We then simplified the global model by removing variables in a stepwise 

fashion in order of least significance based on their p-values: if the resulting model had a 

lower Akaike’s Information Criterion (AICc; corrected for small sample sizes) compared 

to the previous model, that factor was considered unimportant and dropped from the 

model. The final model was accepted when dropping any of the remaining terms would 

lead to an increase in model AICc, as the model with the lowest AICc value is presumed 

to be the most parsimonious (Burnham and Anderson 2002). Finally, for ease of 

comprehension and to illustrate the nature and strength of the relationship, we plotted 

each continuous variable in our final model against their predicted fitted values of red 

squirrel probability of presence when all other variables were held constant at their mean.  

To assess the suitability of habitat for red squirrels within different elevation 

zones, we calculated the proportion of land cover across our study area for each of the 

variables that appeared in either of our final annual models. Elevation ranges were 
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determined a posteriori as below 275 m (low), between 275 m and 499 m (mid), and 

above 500 m (high). The zone below 275 m encompasses the area where we detected the 

majority of red squirrels in both 2016 and 2017. The upper elevation threshold is the 

elevation below which 99% of red squirrels were detected in 2016 and 2017.  

We investigated the presence/absence of each vegetation species or grouping 

found in our point count locations (alder [Alnus sp.], serviceberry [Amelanchier sp.], 

balsam fir, black spruce, eastern larch [Larix laricina], no trees/shrubs [open habitat], 

cherry [Prunus sp.], snag, mountain ash [Sorbus sp.], white birch [Betula papyrifera], 

white spruce [Picea glauca]) along a continuous elevation gradient by creating a 

Generalized Linear Model (GLM) for each one. These models had a binomial error 

distribution, used a clog-log link function, and included vegetation presence/absence as 

the response variable using the function “glm” (R package lme4 version 1.1-26; Bates et 

al. 2015). Note though that when plotting differences in the distribution of these fine-

scale (point count location level) vegetation features across elevations we visualized them 

with elevation split into categories that matched those mentioned above, but with the 

upper boundaryset instead at 450 m to match the transition between vegetation zones 

identified by Damman (1983). 

2.5 Results 

During 2016, we saw or heard 241 red squirrels at a total of 184 point count 

locations (18.6% of point counts), whereas during 2017 only 47 red squirrels were 

detected at 46 locations (4.7% of point counts). In both years, the rate of red squirrel 

encounter at a location was inversely related to elevation, with proportion of locations 
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where red squirrels were detected within elevation intervals below 275 m ranging from 

0.60 – 1.00 during 2016 versus 0.10 – 0.30 in 2017; the highest elevations at which we 

detected a red squirrel were 515 m and 513 m during 2016 and 2017, respectively (Figure 

2-2). The proportion of point count locations below 275 m occupied by red squirrels was 

3.8 times higher than above 275 m in 2016, while during 2017 the proportion of occupied 

locations below 275 m was 5.7 times higher than above 275 m (Figure 2-2). However, the 

distribution of red squirrels across the elevation gradient was not significantly different 

between years (Kolmogorov-Smirnov test: D = 0.196, p = 0.11).  

 For 2016, after a masting year, the best model explaining red squirrel 

presence/absence retained nine variables and explained 38.9% of the deviance in the data. 

Variables influencing detection rates that were retained included ordinal date (day of 

year; χ2
1.5,828.4 = 4.83, P = 0.149), precipitation (χ2

1,828.4 = 0, P = 1), and time of day 

(χ2
1,828.4 = 8.09, P = 0.004). Graphical analysis of the model fit for ordinal date indicated 

that in 2016 the probability of a red squirrel being detected remained very similar through 

the first half of our sampling season, and increased slightly in the later half (Figure 2-3A). 

The probability of a red squirrel being detected decreased later in the day (Figure 2-3B). 

The importance of elevation was evident through the strong inverse trend in the 

probability of a red squirrel being present with increasing elevation (χ2
2.6,828.4 = 113.95, P 

< 0.0001; Figure 2-3C). Land cover variables retained in the 2016 model were mature 

balsam fir, regenerating fir/spruce, second growth fir/spruce, water, and low scrub (< 6.5 

m). Mature balsam fir had a positive association with the probability of a red squirrel 

being present, though this relationship was not strong (χ2
1,828.4 = 2.12, P = 0.145; Figure 
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2-3D). Similarly, though regenerating fir/spruce was retained in the best model and had 

an inverse relationship with the probability of red squirrel being present (Figure 2-3E), 

this association was weak (χ2
1, 828.4

 = 2.10, P = 0.148). As such, mature fir and 

regenerating fir/spruce are likely not particularly important predictors of red squirrel 

occurrence. The relationship of red squirrels with second growth fir/spruce was 

curvilinear, where the probability of a red squirrel being present increased up to 

approximately 50% cover of second growth fir/spruce, but decreased at higher amounts of 

this cover type (χ2
2.47,828.4 = 27.83, P < 0.0001; Figure 2-3F). By comparison, water and 

low scrub were inversely related to the probability of a red squirrel being observed 

(water: χ2
1, 828.4 = 7.00, P = 0.008, Figure 2-3G; low scrub: χ2

1, 828.4 = 11.69, P < 0.001, 

Figure 2-3H). 

 For 2017, after a non-mast year with far fewer red squirrel detections, the best 

model only included five variables and explained just 17.7% of the deviance in the data. 

The probability of a red squirrel being detected decreased through the season (χ2
1.95,813.8 = 

7.81, P = 0.035; Figure 2-4A). Observer (χ2
2.23,813.8 = 6.76, P = 0.018) and time of day 

(χ2
2.05,813.8 = 4.15, P = 0.155) were also retained, though the effect of time of day on 

squirrel detections appeared to be limited (Figure 2-4B). The importance of elevation was 

again evident through the negative trend in the probability of a red squirrel being present 

with increasing elevation (χ2
1,813.8 = 14.65, P < 0.001; Figure 2-4C). Low scrub was the 

only land cover variable that was retained for 2017 and increased cover decreased the 

probability of observing a red squirrel (χ2
1,813.8 = 4.33, P = 0.037; Figure 2-4D).  
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We graphed the proportion of total land area in our survey area for each land 

cover variable that was retained in either the 2016 or 2017 model at low (<275 m), mid 

(275-499m), and high elevations (>500 m; Figure 2-5). Short coniferous scrub stands 

(inversely related with red squirrel presence) made up only 4% of cover in low elevations 

but became increasingly dominant at higher elevations, where they accounted for 33% of 

land cover. Second growth balsam fir/black spruce (the only significant positive predictor 

of red squirrel presence) decreased with elevation and was unavailable above 500 m. 

Mature balsam fir had a non-significant positive association with red squirrel presence, 

but increased in availability with increasing elevation. Surface water and regenerating 

fir/spruce peaked at intermediate elevations.  

Our stem counts from the 2017 vegetation surveys revealed that higher elevation 

sites had slightly different tree and shrub species composition than lower elevation sites 

(Figure 2-6). Some deciduous tree and shrub species such as alder, mountain ash, and 

cherry were less common between 275 m and 450 m compared to lower elevations, and 

were not observed above 450 m elevation. This change in occurrence with elevation was 

significant for alders (z1,960 = -6.86, P < 0.001), but not for mountain ash (z1,960 = -1.43, P 

= 0.15) or cherry (z1,960 = -1.11, P = 0.27). Similarly, the incidence of white spruce, white 

birch, and eastern larch declined significantly as elevation increased (white spruce: z1,960 

= -3.01, P < 0.01; white birch: z1,960 = -3.34, P < 0.001; eastern larch: z1,960 = -3.62, P < 

0.001). Conversely, a higher proportion of points above 450 m had snags and open 

habitat, and these positive trends with elevation were significant (snags: z1,960 = 2.89, P < 

0.01; open: z1,960 = 2.37, P = 0.02).   
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2.6 Discussion 

Given the high capacity for invasion among introduced tree squirrel species 

(Wood et al. 2007) and the success of North American red squirrels in colonizing other 

oceanic islands and even isolated continental forests (Long 2003; Martin and Joron 2003; 

Siepielski 2006), documenting their distribution on the island of Newfoundland is an 

important step towards understanding their potential to impact such ecosystems. Despite a 

large difference in number observed between years, the relative abundance of red 

squirrels was consistently higher at low elevations compared to higher elevations, and 

they reached an elevation limit at approximately 500 m in both years. This upper limit to 

their current distribution suggests that red squirrels may not be able to expand further 

upslope on the island without climate or forest management driven changes in high-

elevation vegetation. Within the elevation range they did occupy, in 2016 after a masting 

year red squirrels avoided habitats that provide limited food or shelter, including 

coniferous scrub, 10-30 year old mixed conifer, and where surface water became more 

prevalent in the immediate landscape around a location. Instead, they were associated 

most strongly with 30-70 year old mixed conifer stands. In 2017, after a non-masting 

year, red squirrels were found in much lower numbers but within the same elevation 

range as the year before. We expected that important or more beneficial habitats would be 

strongly selected in 2017, as we presumed that red squirrels occupying the highest quality 

territories would have been more likely to survive through winter following a low mast 

crop. Instead, the model for 2017 contained far fewer land cover predictors of red squirrel 

presence, with only coniferous scrub – an inverse predictor of squirrel presence – 

appearing important. It is possible that this lack of model complexity resulted at least in 
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part from reduced statistical power as a result of having observed fewer red squirrels in 

2017, even though survey effort was similar in both years. This reduced statistical power 

in 2017 could also have accounted for inconsistent patterns in the influence of ordinal 

date and time between years, though it is also possible that daily seasonal patterns in 

squirrel activity or detectability are density dependent and should be taken into 

consideration when implementing survey protocols. 

Red squirrel encounter rate differed considerably between years, being more than 

five times higher in 2016 compared to 2017, which followed high and low cone 

production years, respectively. While some variability between years could be attributed 

to visiting different point count locations in each year, we sampled >950 points each year 

and points sampled in the second year were interspersed midway between those sampled 

the previous year and covered the same study area. In addition, this inter-annual 

difference is consistent with the major fluctuations typical of red squirrel populations 

across the rest of their range, commonly linked to availability of conifer seeds (Wheatley 

et al. 2002; Martin and Joron 2003; Boutin et al. 2006). The magnitude of this inter-

annual population fluctuation was also comparable to nearby Gros Morne National Park, 

where red squirrel encounter rates are on average four times higher during winters that 

follow abundant cone crops than during winters that follow sparse cone crops, and were 

6.5 times higher during winter 2016 than winter 2017 (Robineau-Charette and Whitaker 

2017). Interestingly, while we observed far more red squirrels in 2016, their relative 

distribution across the elevation gradient was similar following both masting and non-

masting years. Direct impacts of red squirrels via predation on native wildlife would be 
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expected to be stronger in high population years, and also at lower elevations where 

squirrels consistently occupy a higher proportion of the landscape (e.g., Martin and Joron 

2003; McFarland et al. 2008). However, competitive impacts via cone predation may be 

higher in non-mast years, when red squirrels can harvest most or all of the limited cone 

crop during fall (West 1989) and preferentially select larger cones that contain a higher 

number of large, viable seeds (COSEWIC 2016). This can leave few viable, nutrient-rich 

seeds available as food for other granivores during winter (e.g., Benkman et al. 2009). 

Large changes in red squirrel population size between years could affect the 

proportion of red squirrels using or occupying different elements of the available habitat. 

Based on the findings of others (Minty 1976; Farrar 1995; Allard-Duchêne et al. 2014), 

we expected that red squirrels would be more abundant in black spruce stands during 

2017, following a year of low balsam fir cone production, as black spruce maintains 

cones on the tree for up to 30 years, whereas balsam fir cones rarely persist from year to 

year. However, in 2017 no habitat factors were found to be positively associated with red 

squirrel presence. This could in part be due to the low number of red squirrel detections, 

and the consequent reduction in statistical power when modeling habitat relationships in 

an area having a mosaic of land cover types. Still, black spruce forest was not included in 

either the 2016 or the 2017 model, indicating that may not be an important predictor of 

red squirrel distribution in western Newfoundland. Instead, we found that red squirrel 

presence was positively associated with the extent of cover of second growth balsam 

fir/black spruce stands in 2016, but that this land cover was not as important in 2017. 

Selection of this stand age is consistent with findings from Thompson and Curran (1995) 
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in Newfoundland, where red squirrels were found significantly more often in fir stands 

40-60 years old compared to other stand age classes. Balsam fir in this age class produces 

large cone crops during masting events but is effectively barren otherwise (Messaoud et 

al. 2007). The presence of black spruce in these mixed species stands would presumably 

buffer the severity of low fir cone crops, creating a more reliable and consistent overall 

food source across years. However, if there was a reliable food supply between years, and 

other drivers of red squirrel population dynamics (predation, migration, etc.) were 

relatively consistent between years, we would expect that red squirrel occurrence would 

be relatively stable, which is not what we observed. The large difference in encounter rate 

of red squirrels across our study area between years could be explained by a difference in 

the number of red squirrels found in fir-dominated stands between years. Similar trends 

have been seen in other systems during years with white spruce (a high-quality masting 

species) cone failure (Wheatley et al. 2002). Red squirrel density in white spruce stands 

that had limited cone production dropped to levels that matched the typically lower 

densities seen in mixed conifer and lodgepole pine stands, whereas red squirrel density 

remained stable in mixed and pine stands (Wheatley et al. 2002).  

The retention of both positive and negative land cover predictors of red squirrel 

occurrence in our models may offer insight into the absence of red squirrels at higher 

elevations. High elevation portions of our study area, particularly above 500 m where 

there is an increased prevalence of coniferous scrub cover and no second growth 

fir/spruce forest (Figure 2-5), appear to be sub-optimal habitat for red squirrels. In cold, 

windswept areas like the upper reaches of the Long Range Mountains, black spruce 
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reproduces asexually through adventitious rooting rather than by seed dispersal 

(Roberston 1993) often resulting in little cone production in these scrub spruce stands. 

Wind also causes high elevation fir and spruce stands to be stunted with extremely dense, 

low canopies, and very little understory vegetation. We did not detect cherries (Prunus 

spp.) or mountain ash (Sorbus spp.) above 450 m, yet seeds and fruit from these species, 

which were present at very low numbers in low elevation areas, might help red squirrels 

persist in years of low cone production (Steele 1998). Additionally, white spruce, though 

also uncommon at lower elevations, was absent at higher elevations. Unfortunately, our 

survey season did not coincide with optimal phenology for mushrooms, an important 

alternate food source (Fletcher et al. 2010), so we cannot comment on the availability of 

mushrooms at higher elevations. Further, snow pack at these higher elevations takes on 

average three weeks longer to melt in the spring (Damman 1983), and is often present 

well into June, delaying leaf-out of shrubs and production of flowers and berries or other 

growing season foods. This may be a critical period for red squirrels, as food stores 

cached the previous autumn could be depleted, especially if they have cached fewer cones 

than required to last the winter (Fletcher et al. 2010), rendering these areas uninhabitable 

or at least sub-optimal. Apart from limited availability of food, scrub forest may also be 

structurally unsuitable, as it has branches that are tightly intertwined, potentially 

impeding movement for squirrels, while narrow trunks would offer few natural cavities 

large enough for nesting (Vahle and Patton 1983). As such, it seems unlikely that red 

squirrels will expand further upslope on the island, barring climate or forest management 

driven changes to mid- and high-elevation forests. Changes in climate could alter the 

intensity and frequency of insect outbreaks, windthrow, or wildfire at these elevations, 



42 
 

thereby altering forest age structure and habitat suitability for red squirrels. Similarly, 

forest management has already altered the age structure of forests at these elevations. 

Logging that occurred between 1990 and 2005 in our study area has created large 

regenerating stands that may become favourable for red squirrels in less than two 

decades. Thus, while significant range expansion of red squirrels above 500 m elevation 

seems unlikely, both changes in the natural disturbance regime as a result of climate 

change and forest harvesting may augment the amount of suitable red squirrel habitat 

between 300 m and 500 m elevation. Consequently, while the upper elevation limit of red 

squirrel distribution may remain relatively stable, we suggest that there is potential for red 

squirrels to become more abundant at intermediate elevations in our study area, and to use 

different age classes of regeneration depending on the cause of disturbance (Allard-

Duchêne et al. 2014).  

In conclusion, red squirrels have recently been introduced into forest ecosystems 

on the island of Newfoundland that are different from those where red squirrels have 

typically been studied across the remainder of their range. White spruce, the most 

important masting species in western North America, is present in low numbers in most 

areas away from human settlement on Newfoundland, and is replaced by balsam fir and 

black spruce, which produce less energy rich cones (Brink and Dean 1966; Wren 2001). 

In our study area, red squirrels were most common after a masting year in 30-70 year old 

mixed coniferous forest stands. If they remained present in these stands from year-to-

year, trees in these mixed stands could provide food more consistently during both balsam 

fir masting and non-masting years than for squirrels present in stands comprised of only 
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balsam fir. They were also most common at low elevations and were absent from 

montane forests above ~500 m in both years, whereas in other portions of their range they 

are frequently present above 2000 m (Hamer 2016). This elevation limit may be vital to 

the persistence of endemic biodiversity on Newfoundland, where just 4% of the island (4 

260 km2) exceeds 500 m in elevation. For example, the Newfoundland Gray-cheeked 

Thrush, which was once common at all elevations on the island, has become largely 

restricted to montane forests above ~450 m since the introduction of red squirrels 

(Whitaker et al. 2015; McDermott, unpublished data). Both thrushes and squirrels are rare 

in the narrow zone of overlap from ~450-500 m, so the two species are now effectively 

allopatric on Newfoundland. Given the diversity of known and suspected impacts of 

introduced red squirrels to the endemic biota of Newfoundland, future research should 

also investigate the mechanism(s) behind their elevation range limit and better document 

the impacts that red squirrels may be having on forest ecosystems. 
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2.9 Tables and Figures 

Table 2-1: Land cover variables included in global models to explain presence of red squirrels (Tamiasciurus hudsonicus) in 

the upper Humber and Main River watersheds, Newfoundland in 2016 and 2017. Elevation was also included in model for 

each year. 

Land cover class Code Description 
Mean cover within 52.3 m 

[range] 

Low scrub cs1 Scrub forest < 6.5 m tall 13.3% [0.0-100%] 

Tall scrub cs2 Scrub forest > 6.5 m tall 12.9% [0.0-100%] 

Open open Bogs and barrens 7.3% [0.0-100%] 

Water water Standing water (rivers, ponds, lakes) 2.4% [0.0-81.6%] 

Regenerating fir bf1 10-30 year old balsam fir forest 4.6% [0.0-100%] 

Mature fir bf3 > 70 year old balsam fir forest 11.1% [0.0-100%] 

Regenerating 

fir/spruce 

bfbs1 10-30 year old forest with ~50% each 

balsam fir and black spruce 

5.2% [0.0-100%] 

Second growth 

fir/spruce 

bfbs2 30-70 year old forest with ~50% each 

balsam fir and black spruce 

6.5% [0.0-100%] 

Mature fir/spruce bfbs3 > 70 year old forest with ~50% each 

balsam fir and black spruce 

17.9% [0.0-100%] 

Mature spruce bs3 > 70 year old black spruce forest 4.2% [0.0-100%] 

Mixed forest mix Forest with both deciduous and coniferous 

trees (all ages) 

5.6% [0.0-100%] 

Harvested forest areaharv Forest harvested between 1990 and 2004 17.4% [0.0-99.8%] 
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Figure 2-1: Study area in the upper Humber River and Main River watersheds of western 

Newfoundland. The location of the study area on Newfoundland is shown with the red 

rectangle on the inset map. 
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Figure 2-2: Elevation distribution of red squirrels (Tamiasciurus hudsonicus) in the Main 

River and upper Humber River watersheds of western Newfoundland in 2016 and 2017. 

The proportion of point count locations are based on 50 m elevation intervals. Data labels 

indicate number of point count locations (total n = 1 960) in each elevation category, with 

values for 2016 indicated above the dotted line and values for 2017 appearing below the 

solid line. 
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Figure 2-3: Predicted probabilities of red squirrel (Tamiasciurus hudsonicus) presence in 

the Main River and upper Humber River watersheds in western Newfoundland in 2016 

for factors retained from the global model after stepwise model reduction. Each variable 

plot was generated from predicted fitted values while holding all other variables constant 

at their means. Dotted lines indicate 95% confidence intervals and individual observations 

(n = 844) are shown as presences and absences (1 or 0). Significant variables are 

indicated with an *. 
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Figure 2-4: Predicted probabilities of red squirrel (Tamiasciurus hudsonicus) presence in 

the Main River and upper Humber River watersheds in western Newfoundland in 2017 

for factors retained from the global model after stepwise model reduction. Each variable 

plot was generated from predicted fitted values while holding all other variables constant 

at their means. Dotted lines indicate 95% confidence intervals, and individual 

observations (n = 823) are shown as presences and absences (1 or 0). Significant variables 

are indicated with an *. 
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Figure 2-5: Proportion of total land within our 257 km2 study area accounted for by land 

cover classes included in our best models predicting red squirrel (Tamiasciurus 

hudsonicus) occurrence in the Main River and upper Humber River watersheds in western 

Newfoundland in 2016 and 2017. Elevations <275 m indicate areas where red squirrels 

were abundant, 275-499 m where red squirrels were present but uncommon, and >500 m 

where red squirrels were absent. 
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Figure 2-6: Proportion of point count locations containing individual tree or shrub species 

within a 2 m × 22.6 m transect running North-South and centered on the survey point 

(total 45.2 m2) at elevations <275 m, 275-450 m, and >450 m in the Main River and 

upper Humber River watersheds in 2017. Note the disappearance of Alnus sp. (alder), 

Sorbus sp. (mountain ash), and Prunus sp. (cherry) as elevation increased. 
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3 Apparent range contraction by Gray-cheeked Thrushes (Catharus minimus mimimus) in 

response to introduced red squirrels (Tamiasciurus hudsonicus) 

3.1 Co-authorship Statement 

This chapter is intended for submission to a peer-reviewed publication with my 

graduate supervisors (Ian Warkentin and Darroch Whitaker) as co-authors, and so I use 

plural rather than singular first-person pronouns throughout. However, the work found in 

this chapter is my own. Conception of the research idea was by Darroch Whitaker and Ian 

Warkentin, who provided advice and suggestions throughout the research. I planned and 

executed the data collection with their assistance. I conducted data analysis 

independently, with input and advice from Darroch Whitaker, Ian Warkentin, Dan 

Kehler, and Dave Schneider. I prepared the manuscript, incorporating edits and 

suggestions from Ian Warkentin and Darroch Whitaker, and Anne Storey (committee 

member).  

3.2 Abstract 

Introduced species are well known for their disruption of ecosystems and impacts on 

endemic species. Red squirrels (Tamiasciurus hudsonicus) were introduced to the island 

of Newfoundland during the 1960s and have been hypothesized as a cause of the 

precipitous decline of the Newfoundland Gray-cheeked Thrush (Catharus minimus 

minimus). We undertook a series of 1960 point count surveys over two years (2016 and 

2017) in the Long Range Mountains of western Newfoundland in order to compare the 

contemporary distributions of red squirrels and Gray-cheeked Thrushes across an 

elevation gradient. We also evaluated local and landscape scale habitat use of thrushes, 
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with particular attention to harvested forest stands, using landcover data from a provincial 

forest resource inventory. Red squirrels and Gray-cheeked Thrushes were strongly 

segregated across the elevation gradient, with thrushes occupying a restricted range at 

higher elevations (~340-600 m), and red squirrels being abundant below 275 m and 

reaching an upper range limit at ~500 m. Gray-cheeked Thrushes were positively 

associated with harvested forest, conifer forest, and tall scrub at the local scale, and 

negatively associated with tall scrub, regenerating forest, and second growth forest at the 

landscape scale. Both clearcuts and modified strip cuts were selected by thrushes. 

Breeding Bird Survey data indicate that Gray-cheeked Thrushes were historically 

abundant down to sea level, so our finding of strong elevational segregation adds to the 

growing body of evidence that red squirrels played an important role in the decline and 

range contraction of the Gray-cheeked Thrush on Newfoundland. 

Keywords: species introduction, invasive species, Newfoundland, elevation, habitat, 

boreal, forest management 

3.3 Introduction 

 Threats such as habitat loss, climate change, harvesting, and alien species 

introductions are affecting endemic populations of species all over the world, often 

resulting in geographic range and niche reductions (Scheele et al. 2017) or even 

extirpation or extinction (Long 2003; Sodhi et al. 2008; Sánchez-Bayo and Wyckhuys 

2019). Introduced mammalian predators have been implicated in 58% of avian, 

mammalian, and reptilian species extinctions, and have played a role in declines of 

hundreds of other species (Doherty et al. 2016). Ninety percent of bird species that are 
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reported as having been imperilled or extirpated by the introduction of a mammalian 

predator are island endemics (Doherty et al. 2016), though it is not clear that insular bird 

populations are at a higher risk of extinction from introduced predatory mammals than 

mainland bird populations (see Blackburn et al. 2004; Medina et al. 2011; Doherty et al. 

2016). Regardless, island endemics typically exist as relatively small, isolated populations 

that have evolved in less diverse ecosystems, and so may have reduced competitive and 

anti-predator abilities in the face of introduced mammals (Courchamp et al. 2003, Banks 

and Dickman 2007; Russell and Kaiser-Bunbury 2019). While this may lead to range-

wide declines of endemic populations, impacts may also be expressed in the form of 

reduced ecological niches, where an endemic species becomes restricted to refugial 

habitats to which invaders are poorly suited (Scheele et al. 2017). 

 While introduced species can affect naturally occurring communities and the 

associated ecosystem processes, native wildlife populations may also suffer additive 

effects from other stressors such as habitat degradation or loss, and climate change. For 

example, boreal forests are often subject to forest harvesting, silviculture (e.g., thinning or 

planting), suppression of natural disturbance agents such as wildfire and outbreaks of 

defoliating insects, and the construction of resource roads (Burton et al. 2003). When 

managed properly, timber harvesting may mimic natural disturbances such as fire, 

windthrow, or insect outbreaks, and result in a mosaic of stands at various stages of 

succession within a larger forested area (Bergeron et al. 2002). However, if sufficient 

attention is not given to maintaining natural age composition and structure of forest 

landscapes, many old growth or disturbance specialist species may lack the attendant 
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landscape elements or mosaic necessary to survive and thrive (Niemelä 1999; Thompson 

et al. 1999; Bergeron et al. 2002). At the same time, climate change may be leading to 

range shifts into more northerly ecosystems or higher elevations for many species 

(Lehikoinen and Virkkala 2016; Kirchman and Van Keuren 2017; Whitaker 2017; 

Rushing et al. 2020). These and other threats can cause synergistic negative effects on a 

species’ ability to persist in an area, and may exacerbate the stresses that introduced 

species place on endemic populations.  

 The island of Newfoundland, Canada is the largest island in the circumpolar 

boreal biome. Due to the contemporary oceanic barrier and the existence of an Atlantic 

shelf refugium during the Pleistocene, the island supports numerous endemic subspecies 

of more widely distributed boreal species (Dodds 1983; Montevecchi and Tuck 1987; 

Pielou 1991; Fitzgerald et al. 2019). For example, the Newfoundland Gray-cheeked 

Thrush (Catharus minimus mimimus), genetically distinct from the Northern Gray-

cheeked Thrush (C. m. alicea) which occurs across the rest of the species’ continental 

distribution, was historically abundant throughout much of the island and occurred in 

suitable habitat at all elevations (Lamberton 1976; SSAC 2010; Fitzgerald et al. 2017, 

2019). However, Breeding Bird Survey data suggest a decline of ~95% between 1975 and 

2005, and the Newfoundland subspecies was listed provincially as threatened in 2015 

(SSAC 2010). Since then, Whitaker et al. (2015) reported that a large residual population 

persists but is restricted to montane forests in western Newfoundland. This limited 

distribution was surprising given that during the 1970s and 1980s the species had been 

abundant at low elevations, and led to their hypothesis that the species had been restricted 
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to higher elevations as a result of the introduction of red squirrels (Tamiasciurus 

hudsonicus) to the island (Whitaker et al. 2015). However, no co-located data were 

available at the time to make a rigorous comparison of the distributions of thrushes and 

squirrels.  

Red squirrels were introduced to Newfoundland in 1963 and 1964 (Payne 1976; 

Dodds 1983) and, aided by a series of translocations, became widespread and pervasive 

by the mid-1980s (Whitaker 2015). Red squirrels are functional granivores but 

opportunistic omnivores (Steele 1998) and so have the potential to negatively impact bird 

populations on the island through both competition for food and predation on eggs and 

young (Willson et al. 2003; Benkman et al. 2009). Indeed, research has shown that red 

squirrels can have pervasive impacts that dramatically alter reproductive success and the 

composition of avian assemblages on islands and in isolated “insular” patches of 

continental forest (Martin and Joron 2003; Siepielski 2006). Predation of eggs and 

nestlings by red squirrels is known to cause near complete nesting failure in populations 

of the closely related Bicknell’s Thrush (Catharus bicknelli; McFarland et al. 2008), and 

since their arrival, red squirrels have become the dominant nest predator on the island of 

Newfoundland (Lewis 2004).  

Gray-cheeked Thrush are reported to use broadly similar habitat across the species 

range, but on Newfoundland most such data were collected before red squirrels became 

widespread, and habitat use may have been altered as thrushes adapted to this novel 

threat. Generally Gray-cheeked Thrushes are found in areas having dense regenerating 

stands of coniferous or deciduous saplings and shrubs, dense willow (Salix spp.) and alder 
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(Alnus spp.) thickets, or old growth coniferous forest having complex understories, 

though there are localized differences (Whitaker et al. 2020). Historically on the island of 

Newfoundland, Gray-cheeked Thrushes were less likely to be found in deciduous shrub 

thickets and instead were more likely to occur in coastal windswept coniferous scrub 

habitat (Marshall 2001) and old growth (> 80 years) balsam fir (Abies balsamea) forest, 

while avoiding second growth (40-80 years) stands (Thompson et al. 1999). Most 

recently, Whitaker et al. (2015) described habitat use by Gray-cheeked Thrushes at 

neighbourhood and landscape scales (respectively within 115 m and 1250 m radius areas) 

in populations above 300 m elevation in western Newfoundland. They found broad 

similarities with previous assessments of habitat requirements but also identified a large 

influence of elevation on the occurrence of Gray-cheeked Thrushes and a curvilinear 

relationship with old growth forest, peaking at intermediate amounts. Forest harvesting 

has been little studied in relation to the Gray-cheeked Thrush habitat use, but for the 

Bicknell’s Thrush provides important regenerating habitat, particularly in 11-13 year old 

harvested stands in New Brunswick (Chisholm and Leonard 2008), and in stands 20 years 

post-harvest or older in Quebec (Aubry et al. 2018). Whitaker et al. (2015) found a 

general increase in Gray-cheeked Thrushes with amount of harvested forest, but the exact 

nature of the relationship was unclear. There has also been no study on the optimal 

harvesting method or age of harvested areas with respect to Gray-cheeked Thrush 

occurrence.   

We evaluated Whitaker et al.’s (2015) hypothesis that introduced red squirrels 

may have excluded Gray-cheeked Thrushes from lower elevation habitats in western 
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Newfoundland. In a related study we assessed the distribution and habitat associations of 

red squirrels (McDermott et al. 2020; Chapter 2), and here we compare the distributions 

of squirrels and thrushes using co-located surveys across an elevation gradient. Due to the 

presumed predation pressure on eggs and young by squirrels, we predicted that red 

squirrels and Gray-cheeked Thrushes would show strong spatial segregation, with 

thrushes occupying a restricted range at higher elevations than squirrels. We also assessed 

habitat use by thrushes to better describe the contemporary pattern of habitat use at local 

and landscape scales and to evaluate the use of harvested stands by this refugial 

population of the thrushes. We predicted that forest harvesting would have a positive 

effect on Gray-cheeked Thrush occurrence, and that this relationship would be strongest 

for stands 11-13 years or > 20 years post-harvest, as this has been reported for Bicknell’s 

Thrush (Chisholm and Leonard 2008; Aubry et al. 2018). 

3.4 Materials and Methods 

3.4.1 Study Location 

We conducted our research across a 257 km2 study area that spans an elevation 

gradient from 75 m to 608 m ASL in the upper Humber River and Main River watersheds 

(57° 16´ W, 49° 40´N) of the Long Range Mountains of western Newfoundland, Canada 

(Figure 3-1). The study area is dominated by wet balsam fir forests, and climatic 

conditions in the region limit the extent of natural disturbances such as large-scale fires or 

outbreaks of defoliating insects, particularly at higher elevations (Thompson et al. 2003; 

McCarthy and Weetman 2006; Arsenault et al. 2016). Locations below 450 m elevation 

and in valleys support mixed and single-species stands of productive forest composed 
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primarily of balsam fir or black spruce (Picea mariana) within a matrix of bogs, barrens, 

and other natural openings (Damman 1983; McCarthy and Weetman 2006). Additional 

tree and shrub species include white birch (Betula papyrifera), tamarack (Larix laricina), 

trembling aspen (Populus tremuloides), pin cherry (Prunus pensylvanica), white spruce 

(Picea glauca), mountain ash (Sorbus sp.), alder (Alnus sp.), and serviceberry 

(Amelanchier sp.). At locations above 450 m elevation, factors such as increased wind 

exposure, deep and late snow cover, low nutrient availability, and saturated soils lead to 

an increasing prevalence of bogs, barrens, and non-productive scrub forest (Damman 

1983). Between 1990 and 2004, 19.7% of the landscape in the surveyed area was logged 

in cutblocks ranging from 0.30 ha to 217.7 ha, with a mean size of 21.6 ± 31.8 ha. In 

addition, two ~100 ha experimental strip cuts were harvested during 2001 and 2003, and 

spanned 419 - 564 m elevation (see Whitaker et al. 2015). Forest clearing since that time 

has largely been limited to the creation of a 60 m-wide high voltage electricity 

transmission corridor during 2016 and 2017 that passes through the northern end of the 

study area. Introduced red squirrels likely colonized the region between ~1985 and 1990 

(Whitaker 2015). 

3.4.2 Data collection and variable creation 

To assess the co-distribution of thrushes and squirrels throughout our study area, we 

conducted surveys from early June to mid-July in 2016 and 2017 across a grid of points 

spaced 500 m apart. During 2016 the grid encompassed 991 survey points; we then 

shifted the grid 250 m north and east during 2017 to enhance coverage of the study area, 

and sampled 969 points. When possible, we alternated surveys between low, medium, and 
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high elevation portions of the study area on consecutive days. Solitary observers (four 

individuals during 2016, five individuals during 2017; one common to both years) each 

typically sampled a series of 5-12 adjacent points per day between 05:40 h and 14:30 h. 

We did not conduct surveys when high winds (> 5 Beaufort scale; 29 km/h), precipitation, 

and/or fog would have impaired visual or auditory detections of thrushes or squirrels. 

During the visit to each point, we followed an 11-minute unlimited distance point 

count protocol. This included the following sequence of time blocks: an initial six 

minutes of silent listening; a two-minute broadcast of a Gray-cheeked Thrush singing and 

calling (same broadcast as used by Whitaker et al. 2015); one minute of silence; a one-

minute broadcast of red squirrel vocalizations (taken from the Macaulay Library, Cornell 

Lab of Ornithology: catalogue numbers ML100916 and ML136185); and one final 

minute of silent observation. We set broadcast units (FoxPro model FX3 or Crossfire 

game callers; FoxPro Incorporated, Lewistown, PA 17044, USA) at a constant volume for 

all surveys; when measured 1 m from the speaker the average volume of vocalizations 

was 57.7 dB, with peak volumes of 82.6 dB, where the intention was to mimic natural 

sound production, and volumes were similar to Whitaker et al. (2015). During each of the 

time blocks within the 11-minute point count, we recorded each bird and red squirrel that 

was seen or heard. 

We obtained land cover data from the Newfoundland and Labrador forest resource 

inventory Geographic Information System (GIS) database, which was developed from 

high resolution (sub 10 cm pixel) 3D aerial photography collected in 2007. Using ArcGIS 

10.4.1 (ESRI 2002), we extracted this land cover data within 132 m and 1250 m of each 
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survey point, which we interpret as representing local and landscape scale habitat for 

Gray-cheeked Thrushes, respectively. We assessed habitat needs at multiple scales, as 

passerines in the boreal forest use the land in different ways within local vs. landscape 

scales. Avian activities at the local or territory level are typically focused on nesting and 

territorial defence, while at the landscape scale they typically include foraging and extra-

pair mate acquisition (sensu Mayr 1935; Leonard et al. 2008; Whitaker and Warkentin 

2010). Gray-cheeked Thrushes have also been shown to select different landcover types 

between these two scales (see Whitaker et al. 2015). Breeding season space use has never 

been studied for Gray-cheeked Thrush, so our local scale (132 m radius or 5.5 ha) 

approximates the maximum female territory size and minimum male territory size of the 

Bicknell’s Thrush (Collins 2007), while 1250 m (490.8 ha) reflects a landscape scale that 

has the potential to influence space use by individuals (Leonard et al. 2008; see also 

Whitaker et al. 2015). At each scale, we aggregated similar cover types into generalized 

categories to enhance the biological relevance of the land cover information and for 

greater consistency with Whitaker et al. (2015). We grouped conifer scrub into two height 

classes (< 6.5 m and > 6.5 m). We accounted for the time between collection of the aerial 

photography data and our field work by adding 10 years to the age class for each forest 

stand, and then grouped the 20-year age classes into three broader successional 

categories: regenerating stands 10-30 years old; second growth stands 30-90 years old; 

and mature stands 90+ years old. These three age classes represent broad forest 

successional stages having distinct, characteristic stand structure and biotic communities 

(Thompson et al. 2003; Table 3-1). Stands were also classified into forest cover types 

based on tree species composition, with classes consisting of ≥ 75% coniferous, ≥ 75% 
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deciduous, or mixed species (25-50% deciduous with coniferous). Composite 

successional stage/composition variables were then created by merging age class with 

forest cover type, resulting in nine composite variables at each scale (Table 3-1). Other 

land cover classes included open habitat (bogs, barrens, and other natural openings), and 

harvested forest (including both clearcuts and modified strip cuts; Table 3-1). All land 

cover variables were quantified as the proportion (0 to 1) of the area they accounted for 

within the 132 m or 1250 m local and landscape radius circles around each survey point. 

We also included length of shoreline within 132 m or 1250 m, which was measured as the 

total length in metres and was rescaled to fall within a range of 0 to 1 relative to the 

length of the largest observed shoreline value. We calculated a squirrel probability of 

occurrence value for each survey point using the predict function in R, based on a red 

squirrel habitat model we developed from our data (see Chapter 2). That habitat model 

was created through an analysis of red squirrel occurrence data for each year of the study, 

using stand age classes which are pertinent to squirrels measured within a 52.3 m radius 

of each survey point (a scale relevant to squirrel space use). The main positive predictors 

included the proportion of 30-70 year old fir/spruce (moderate cone production) and > 70 

year old fir (good cone production), while negative predictors included elevation, water, 

coniferous scrub, and 10-30 year old fir/spruce (poor cone production). Finally, we 

obtained the elevation of each survey point using a digital elevation model from Natural 

Resources Canada’s CanVec geospatial database (available under the Government of 

Canada’s Open Government License [https://open.canada.ca/en]). 

3.4.3 Data analyses 
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a) Comparisons between the occurrence of Gray-cheeked Thrushes and red squirrels 

To broadly address our question regarding the effect of red squirrels on Gray-

cheeked Thrushes, we first assessed whether the occurrence of each species was 

independent of one-another each year using a Chi-square test. We also used Kolmogorov-

Smirnov tests to test for differences between the elevation distributions of Gray-cheeked 

Thrushes and red squirrels each year. This and all other statistical analyses were 

completed using R statistical software (version 3.3.1 and 3.6.2; R Core Team 2019).  

b) Red squirrel and habitat influence on Gray-cheeked Thrush occurrence 

Whitaker et al. (2015) reported that Gray-cheeked Thrushes were associated with 

higher elevations in our study area, and during our surveys thrushes were not detected 

below 317 m. Consequently, we truncated our dataset to include only points above this 

elevation (n = 1670 points) to lessen any confounding effect of correlations with elevation 

on our results. All candidate variables were tested for independence using a Spearman 

correlation matrix (i.e., r < 0.6 indicating independence; Dormann et al. 2013). Elevation 

and red squirrel probability of occurrence were highly correlated (Spearman’s rho = -

0.69, p < 0.001), which is not surprising given that elevation was included in the model 

we used to predict squirrel probability of occurrence (see Chapter 2). To resolve this, we 

eliminated elevation as a candidate variable and retained red squirrel probability of 

occurrence as it was of greater biological interest. Further, we assumed that elevation per 

se does not drive Gray-cheeked Thrush distribution since this species was previously 

common throughout Newfoundland at elevations down to sea level (Lamberton 1976; 
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SSAC 2010; Fitzgerald et al. 2017). Land cover variables were also eliminated if they 

were present at < 5% of survey points.  

We created nine candidate linear models that included year, red squirrel 

probability of occurrence, and various combinations of forest successional stage and 

composition at the local and landscape scales as explanatory variables. These nine 

candidate models (Table 3-2) were developed to evaluate the importance of: 1) red 

squirrels, and forest composition at both the local and landscape scales, 2) red squirrels, 

and forest composition at the local scale and forest successional stage at the landscape 

scale, 3) red squirrels, and forest successional stage at the local scale and forest 

composition at the landscape scale, 4) red squirrels, and forest successional stage at both 

the local and landscape scales, 5) red squirrels, and composite successional 

stage/composition variables at the local scale and forest successional stage at the 

landscape scale, 6) red squirrels, and forest successional stage at the local scale and 

composite successional stage/composition variables at the landscape scale, 7) red 

squirrels, and forest composition at the local scale and composite successional 

stage/composition variables at the landscape scale, 8) red squirrels, and composite 

successional stage/composition variables at the local scale and forest composition at the 

landscape scale, and 9) red squirrels, and composite successional stage/composition 

variables at both the local and landscape scales.   

Before fitting our candidate models, we first fit each land cover variable in a 

univariate Generalized Additive Model (GAM) using the function “gam” (R package 

mgcv version 1.8-33; Wood 2011) with occurrence of thrushes as the response variable. 
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This was done to assess the likely nature (shape) of the relationship between thrush 

occurrence and that variable. In these exploratory models the land cover variables were fit 

as smoothed nonparametric splines to allow for nonlinear relations, and we specified a 

clog-log link function, which typically performs better when the ratio of presence to 

absence is not approximately equal (Zuur et al. 2009). Land cover variables which 

appeared to be non-linear were generally parabolic, and so were also given a second order 

polynomial term in each of the nine candidate models where they were specified. Within 

each candidate model only one variable was included from any pair of correlated 

variables (Booth et al. 1994).  

We then fit each of our nine candidate models using a Generalized Linear Model 

(GLM) having a binomial error distribution, a clog-log link function, and Gray-cheeked 

Thrush presence/absence as the response variable using the function “glm” (R package 

lme4 version 1.1-26; Bates et al. 2015). We then simplified each of these nine models 

through manual backwards step-wise selection to eliminate unimportant variables. At 

each step, the explanatory variable having the lowest explanatory power was assessed, 

and if removing it yielded an improvement in model fit (p < 0.05 or a reduction in 

Akaike’s Information Criterion adjusted for small sample sizes [ΔAICc] > 2), then it was 

dropped from the model. Once all unimportant variables had been eliminated the resulting 

nine best models were compared using AICc (R package MuMIn version 1.43.15; Bartoń 

2020) to decide which of the nine combinations of red squirrel probability of occurrence, 

successional or compositional aspects of the forests, and other land cover variables, had 

the most explanatory power. The model having the lowest AICc was assumed to be the 
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most parsimonious model explaining the distribution of Gray-cheeked Thrushes, and any 

other models having a ΔAICc < 2 were considered competing models (Burnham and 

Anderson 2002; Symonds and Mousalli 2011).  

c) Silviculture analyses: Age and proportion of harvest forest 

We conducted a separate analysis to assess relationships between Gray-cheeked 

Thrush occurrence and the age and proportion of harvested forest within a 132 m radius 

circle. For this analysis, we retained all points at elevations above 317 m which had a 

cutblock present within 132 m (n = 664). Age (years since harvesting) was calculated for 

each of these cutblocks based on the year (2016 or 2017) when we visited that survey 

point. Where multiple cutblocks of different ages were present within 132 m, we took a 

weighted average of the ages of harvested stands to calculate a representative cut age for 

the point. This occurred at 67 of 664 points, and most (72%) of these had cuts that were 

only one or two years apart in age. Proportion of harvested forest within a 132 m radius 

and age of cutblocks were fit as continuous variables. We created five candidate GLMs 

(R package lme4 version 1.1-26; Bates et al. 2015) having all possible univariate, additive 

and multiplicative combinations of cutblock age and proportion harvested, along with a 

null model containing no explanatory variables. Models were fit using a binomial error 

distribution and a clog-log link. Using MuMIn (R package MuMIn version 1.43.15; 

Bartoń 2020), we ranked the models based on AICc, to identify the most parsimonious 

model, and considered all models having a ΔAICc < 2 to be competing models (Burnham 

and Anderson 2002; Symonds and Mousalli 2011).       

d) Silviculture analyses: Harvesting method 
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  We assessed the importance of harvesting method (clear cut or modified [strip] 

cut) on Gray-cheeked Thrush occurrence. Modified cuts were present only between 419 

and 564 m elevation (1039 points), so we restricted the comparison to points in this 

elevation range. We fit four GAMs (R package mgcv version 1.8-33; Wood 2011) 

including a null model and all additive combinations of the proportions of clear cut and 

modified cut within a 132 m radius circle around each point. Models were fit using 

binomial error distributions and clog-log link functions, and continuous variables were fit 

as splined, non-parametric terms. “k” values of each term were specified a posteriori as 

instructed by Wood (2017). Models were then compared using AICc (R package MuMIn 

version 1.43.15; Bartoń 2009), where the model having the lowest AICc value was 

considered the best model and any models having ΔAICc < 2 were considered as 

competing models (Burnham and Anderson 2002; Symonds and Mousalli 2011). 

3.5 Results 

In total, we collected single visit data over two years at 1960 survey points. 

During 2016 we saw or heard a total of 142 Gray-cheeked Thrushes at 117 of the 991 

survey points (11.8% of points), while in 2017 we detected a total of 123 Gray-cheeked 

Thrushes at 100 out of 969 survey points (10.3% of points). During 2016, we saw or 

heard 241 red squirrels at a total of 184 point-count locations (18.6% of point counts), 

whereas during 2017, only 47 red squirrels were detected at 46 locations (4.7% of point 

counts). In 2016 no Gray-cheeked Thrushes were observed at elevations below 340 m 

(representing 18.5% of points), while in 2017 only one thrush was observed below 317 m 

(representing 14.9% of points). The proportion of survey points within 50-m elevation 
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increments where thrushes were observed steadily increased above these elevations and 

peaked at 525-575 m, where thrushes were detected at 29% and 22% of points during 

2016 and 2017, respectively (Figure 3-2). In 2016 we were 13 times more likely to 

observe a thrush at points where squirrels were not seen compared to those where 

squirrels were seen (χ2 = 23.69, p < 0.001), while in 2017 after a large drop in squirrel 

occurrences (see Chapter 2), we were only 1.7 times more likely to see a thrush at points 

without squirrels than with (χ2 = 0.02, p = 0.902). Although the elevation distribution of 

squirrels and thrushes overlapped from 340-515 m in 2016 and 317-513 m in 2017, the 

distributions of red squirrels and Gray-cheeked Thrushes were significantly different in 

both years (2016: D = 0.81, p < 0.001; 2017: D = 0.68, p < 0.001; Figure 3-2). The two 

species were only detected at the same points on six occasions across the two years: two 

in 2016 and four in 2017. These sites of co-occurrence fell between 370 - 470 m 

elevation, near the lower elevation limit of thrushes and the upper limit of squirrels. For 

more detailed information on red squirrel distribution and abundance in our study area, 

see Chapter 2.  

Each of the nine best Gray-cheeked Thrush occurrence models retained red 

squirrel probability of occurrence as a predictor, along with a suite of land cover variables 

at the local and landscape scales (see Table 3-3 for model summaries). When we ranked 

these simplified models according to AICc, Model 2 performed better than the rest (Table 

3-4 and Figure 3-3). This best model indicated that year was important, with lower thrush 

occurrence in 2017 than 2016. Red squirrel probability of occurrence had a strong 

negative association with Gray-cheeked Thrush occurrence, matching our observations of 
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the relative distribution of thrushes and squirrels along the elevation gradient and 

infrequent co-occurrence at point count locations. Predicted probability of thrush 

occurrence fell to zero when the probability of red squirrel occurrence exceeded 40% 

(Figure 3-3A). Proportion of tall scrub was retained at the local scale in the highest-

ranked model, having a weak positive relationship with thrush occurrence (Figure 3-3B). 

At the local scale Gray-cheeked Thrush presence was positively related to the proportion 

of harvested forest (Figure 3-3C). Shoreline length had a quadratic relationship with 

predicted thrush occurrence at the local scale, peaking at the local scale when ~ 495 m of 

shoreline was present within 132 m (Figure 3-3D). At the local scale, Gray-cheeked 

Thrush presence was also positively related to two terms that quantified forest 

composition rather than successional stage: (1) thrush presence was positively associated 

with proportion of coniferous forest (Figure 3-3E); and (2) predicted thrush presence 

increased with up to 30% cover of mixed forest, but was weakly negatively associated 

with higher proportions of mixed forest (Figure 3-3F). At the landscape scale thrush 

presence was negatively associated with tall scrub, regenerating forest, and second 

growth forest (Figure 3-3G-I). 

With respect to the importance of forest harvesting at survey points > 317 m 

elevation that contained a cutblock (n = 664), an additive model including both cutblock 

age and proportion of harvested forest was more informative than univariate models that 

included only cutblock age or proportion of harvested forest, or a model that included an 

interaction between the two (Table 3-5). The multiplicative model was within 2 AICc of 

the best model but had a nearly identical log likelihood and was more complex, so the 
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interaction between cutblock age and proportion of harvested forest is likely 

uninformative (Leroux 2019). In the best model, proportion of harvested forest was 

positively associated with Gray-cheeked Thrush occurrence, as was seen in the more 

general habitat analysis (Figure 3-4B). Gray-cheeked Thrush occurrence was also highest 

in 12 year-old cutblocks (the youngest age in our study area), and decreased steadily with 

increasing cutblock age (Figure 3-4A). However, cutblocks > 19 years old were only 

present below 428 m, an elevation range where thrushes were less common (Figure 3-

4C), raising the concern that the observed negative relation between cutblock age and 

thrush occurrence was an artefact of this non-random distribution of older cutblocks. To 

explore this possibility, we carried out a post hoc analysis using our best model but in 

which we truncated the range of age of cuts to 12 to 18 years-old. This indicated that 

thrush occurrence was not related to age for 12-18 year-old cutblocks (Figure 3-4D). 

For the harvesting method analysis, which was restricted to elevations between 

419 and 564 m, the model including additive effects of both clearcuts and modified strip 

cuts had the most power to explain Gray-cheeked Thrush occurrence, compared to the 

null and univariate models (Table 3-6). Occurrence of thrushes was positively influenced 

by the amount of both clearcuts and modified (strip) cuts in a linear manner (Figure 3-5).  

3.6 Discussion 

Our findings are consistent with the hypothesis that introduced red squirrels may 

be a stressor constraining the contemporary distribution of Gray-cheeked Thrushes on the 

island of Newfoundland. Squirrels appear to now limit these thrushes to higher elevation 

areas of the Long Range Mountains where squirrels have not yet colonized, likely due to 
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ecological limits on their distribution (see Chapter 2). This creates nearly allopatric 

distributions of the two species, with a zone of overlap at intermediate elevations in 

which both species are rare. Although we have no historical data on the distribution of 

thrushes in our study area prior to the arrival of squirrels, Breeding Bird Survey data and 

other historical reports indicate that Gray-cheeked thrushes were common at low 

elevations (i.e., below 400 m ASL) throughout Newfoundland until the 1980s (Lamberton 

1976; Marshall 2001; SSAC 2010). Historical survey data for higher elevation areas on 

the island of Newfoundland are limited, but Lamberton (1976) reported that they were 

abundant in the highlands of the Long Range Mountains in Gros Morne National Park, 

just ~15 km from our study area, and this is consistent with their occurrence in high 

elevation habitats across the southern portion of the species’ range (Whitaker et al. 2020).  

Other aspects of red squirrel population ecology may also have important 

consequences for Gray-cheeked Thrushes. We found no difference between years in the 

elevation range distribution of squirrels but did observe a four-fold change in squirrel 

abundance between 2016 and 2017. This is consistent with squirrel population dynamics 

elsewhere and is largely driven by annual variation in masting of conifer trees (Chapter 

2). Red squirrels are known to negatively impact songbird nesting success throughout 

their range (e.g., Darveau et al. 1997; Martin and Joron 2003; Mahon and Martin 2006), 

and are the most important nest predator on Newfoundland, especially of ground or low-

lying nests (Lewis 2004). Consequently, their substantial annual population fluctuations 

(Wheatley et al. 2002; Martin and Joron 2003; Boutin et al. 2006) mean that the predation 

pressure and potential impact that they have on Gray-cheeked Thrushes and other 



79 
 

songbirds could vary substantially from year-to-year. In agreement with this, the drop in 

Gray-cheeked Thrush detection rate that we observed in 2017 may have reflected poor 

recruitment during 2016, when we recorded higher red squirrel populations. Similar 

population fluctuations caused by cyclical fluctuations in red squirrel abundance and nest 

predation have been reported in Bicknell’s Thrushes (McFarland et al. 2008; Hill et al. 

2019), Brown Creepers (Certhia americana; Poulin et al. 2010), and American Redstarts 

(Setophaga ruticilla; Sherry et al. 2015).  

Our study examined correlations between species distributions but did not assess 

direct fitness consequences of squirrel presence on Gray-cheeked Thrushes. Therefore, 

this study does not provide direct evidence that red squirrels caused the collapse of the 

Newfoundland thrush population over the past four decades (SSAC 2010) or precipitated 

the restriction of thrushes to their contemporary montane range. However, our findings do 

add strong support to a growing body of evidence pointing to this conclusion. There is a 

close temporal correlation between the rapid colonization of Newfoundland by red 

squirrels during the 1970s and 1980s (Whitaker et al. 2015) and the collapse of the Gray-

cheeked Thrush population in the 1980s (SSAC 2010). A lack of monitoring data between 

the mid-1980s when the thrushes were still common in many areas, and the early 2000s 

by which time they had disappeared from much of the island (SSAC 2010), makes it 

difficult to relate local declines to the precise timing of squirrel colonization. However, 

the first squirrel was reported in Gros Morne National Park in 1975 (Minty 1976), when 

Gray-cheeked Thrushes were still extremely common in lowland regions of the park 

(Lamberton 1976). Indeed, in 1974 and 1975 an average of 24 thrushes was counted 
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along a 50-stop Breeding Bird Survey (BBS) route in the park (Route 57021; SSAC 

2010). However average counts on that BBS route dropped by 68% from 1981-1985 

(mean = 7.75 thrushes per year) and the thrushes had virtually disappeared from park 

lowlands by 1992 (Jacques Whitford Environment 1993). An average of just one thrush 

per year was detected along this BBS route from 1992-1997 and no Gray-cheeked 

thrushes have been detected since 1997 (SSAC 2010). Gray-cheeked Thrush nests are 

often on the ground or relatively low in trees (< 2 m; Whitaker et al. 2020), which could 

leave them at high risk of squirrel depredation (Lewis 2004). Another recent study for 

which surveys were conducted widely across Newfoundland indicated that Gray-cheeked 

Thrushes were greater than three times more likely to be detected at sites where no red 

squirrel was detected (Fitzgerald et al. 2017). Additionally, Gray-cheeked Thrushes are 

still apparently common at low elevations on some coastal islands in the Newfoundland 

archipelago that have not been colonized by red squirrels (Fitzgerald et al. 2017; 

Whitaker and Warkentin, unpublished data). The negative relationship between red 

squirrel probability of occurrence and Gray-cheeked Thrush detection that we found is 

strongly consistent with these other observations. The fact that low elevation populations 

disappeared while high elevation ones have remained abundant suggests that not all Gray-

cheeked Thrushes on the island of Newfoundland were affected equally by the stressor(s) 

that caused the population to collapse. Certain populations of these thrushes could also 

have been impacted by changes in climate that have been seen in western Newfoundland, 

such as increased temperature and precipitation (Government of Canada historical data: 

https://climate.weather.gc.ca) which could vary altitudinally. However, the near allopatry 

between squirrels and thrushes provides evidence that squirrels were a contributor to the 
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different fates of high and low elevation populations. Thus, there are multiple lines of 

evidence suggesting that red squirrels contributed to the rapid decline of the Gray-

cheeked Thrush on Newfoundland.  

While range restriction of Gray-cheeked Thrushes is clearly important, a second 

important finding is the use of managed forests by Gray-cheeked Thrushes. This pattern is 

reminiscent of the habitat associations of Bicknell’s Thrush, which make use of 

regenerating stands (Chisholm and Leonard 2008). These findings and past research 

(Whitaker et al. 2015) suggest that the levels of timber harvest and silvicultural 

techniques used on Newfoundland may benefit Gray-cheeked Thrushes. However, while 

increased harvesting at the local scale led to greater likelihood of Gray-cheeked Thrush 

occurrence, at the landscape scale habitat that was regenerating from either harvesting or 

natural disturbances did have negative influences on thrush occurrence. This suggests that 

there is a limit in the extent to which harvesting across the broader landscape benefits 

Gray-cheeked Thrushes. A closer look at harvested forest suggested that Gray-cheeked 

Thrushes were more common in larger, 12-year-old regenerating cutblocks that were 

either clearcut or produced through modified strip cuts, but that the value of harvested 

areas declined linearly with age. However, this latter pattern may have been skewed by 

the non-random distribution of cutblock ages across our study area. The majority of 

harvested areas > 19 years old occurred below 428 m elevation where thrushes were 

generally uncommon, possibly due to the presence of squirrels. Younger cuts (12-18 

years old) spanned a broader elevation range and were common in higher elevation areas, 

where thrushes were also more common and squirrels were rare or absent. Because of 
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this, we ran a post-hoc test on a truncated dataset that only included 12-18 year-old cuts 

to assess whether there was support for the linear decline in use of cuts with age, as 

suggested in our initial analysis. This indicated that cut age was unimportant in the best 

model, suggesting that cuts ranging in age from 12-18 years post-harvest were equally 

important to the thrushes. Further study is needed to assess the value of younger (< 12 

years) and older (> 18 years) cuts for Gray-cheeked Thrush. 

Based on previous findings of Gray-cheeked Thrush habitat use (Lamberton 1976; 

Marshall 2001; Whitaker et al. 2015; Fitzgerald et al. 2017), we would have expected to 

find a strong positive relationship with coniferous scrub. As with Whitaker et al. (2015), 

we found a positive though weaker association between thrush occurrence and the amount 

of tall scrub at the local scale. That study also reported that thrushes were most common 

in areas having intermediate amounts of scrub at the landscape scale, whereas we found 

that thrush occurrence was negatively associated with tall scrub at this scale. Thus, while 

findings are inconsistent regarding landscapes which have low and intermediate amounts 

of tall conifer scrub, both studies suggest that landscapes dominated by this habitat type 

are poorly suited for Gray-cheeked Thrushes. A possible explanation for these findings is 

that, for this reclusive species, tall conifer scrub provides a safe location to nest and 

display because of the tight, dense weave of branches, but at the landscape scale the 

thrushes select different habitats for foraging or other needs. On the other hand, 

coniferous scrub is not a suitable habitat for red squirrels (Chapter 2). Previous 

assessments of habitat use also found Gray-cheeked Thrushes solely in old growth forest 

(Thompson et al. 1999) or using moderate amounts of old growth forest (Whitaker et al. 
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2015). From this, we would have expected a strong positive or curvilinear relationship 

with old-growth forest. However, old-growth forest was not included in our best model. 

As our results are inconclusive, and counter previous knowledge of the species, we 

recommend further study to clarify Gray-cheeked Thrush’s use of old-growth forest.  

Other habitat associations matched those of Whitaker et al. (2015) for the same 

study area and may reflect foraging activity. Gray-cheeked Thrushes feed primarily on 

insects like beetles (Carabidae), ants (Formicidae), and spiders (Aranae), as well as fruit 

particularly during migration (Whitaker et al. 2020). Tall conifer scrub generally grows in 

low productivity areas, which supports few fruiting shrubs and trees and may not provide 

a very productive community of arthropods to feed on. As such, it is perhaps not 

surprising to find that Gray-cheeked Thrushes were less common in landscapes 

dominated by this habitat. The negative relationship with increasing proportion of 

regenerating forest and second growth forest at the landscape scale has also been seen in 

work by Thompson et al. (1999) and Whitaker et al. (2015). This may indicate that a 

landscape containing a mosaic of smaller tracts of many forest ages is preferred, 

especially because a rich and abundant selection of arthropods would likely be associated 

with all successional stages of productive forest (Niemela et al. 1996; Buddle et al. 2006; 

Blanchet et al. 2013). Shoreline length appeared important in predicting thrush 

occurrence at the local scale and it was also found to be important by Whitaker et al. 

(2015) at the landscape scale. It is not entirely clear why shoreline length is important, as 

this thrush species is not widely known to be associated with riparian or aquatic habitats, 

other than a brief mention of this in British Columbia (Di Corrado 2015). However, 
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riparian zones, like many ecotones, may be relatively productive and present more diverse 

foraging opportunities; they have been shown to support higher abundance, richness, and 

diversity of birds than non-riparian areas (LaRue et al. 1995).  

Differences in habitat selection that we saw at the local and landscape scales may 

be explained by differences in the behaviours that Gray-cheeked Thrushes engage in at a 

particular spatial scale. Avian activities at the landscape scale typically include foraging 

and extra-pair mate acquisition, while activity at the local or territory level activity is 

typically focused on nesting and territorial defence (sensu Mayr 1935; Leonard et al. 

2008; Whitaker and Warkentin 2010). However, little is known about the breeding system 

of the Gray-cheeked Thrush, though two closely related Catharus thrushes show evidence 

of polygynandry (Bicknell’s Thrush, Goetz et al. 2003; and Veery [C. fuscescens], Halley 

et al. 2016). If Gray-cheeked Thrushes also employ a polygynandrous mating system, 

their use of space in relation to extra-pair copulations and territory or nest defense may 

differ from that of most Neotropical migrants. This could result in different sizes or 

overlap of territories as a result of conspecific aggregations such as lekking, loose 

colonies, or territory clusters. There have been various reports of larger numbers of Gray-

cheeked Thrushes being present within a small area, which could provide support for this 

idea (Marshall 2001; Whitaker et al. 2020). It could be possible that the Gray-cheeked 

Thrush selects habitat at the landscape scale for food availability, and at the local scale for 

both food availability and, additionally, safety from predation.  

Since we found an increase in probability of thrush occurrence with increasing 

cover of coniferous forest, and with mixed forest up to ~30% cover at the local scale, it 
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seems plausible that thrushes might use hierarchical top-down habitat selection (Kristan 

III 2006). This would involve first selecting for a matrix of smaller tracts of different 

habitats at a landscape scale, and then for continuous forest habitat like coniferous or 

mixed forest at a local scale. Alternatively, we may only see positive landcover 

associations at the local scale because landcover at the landscape scale is likely to be 

similar no matter where they settle, since the landcover in these mountains is a naturally 

complex matrix. It is also possible that our 1250 m radius landscape scale could 

overestimate the space requirements of a Gray-cheeked Thrush. Two studies on spatial 

use by Bicknell’s Thrush (Aubry et al. 2011; Wilson 2020) found that their average home 

range size was 40 ha, which would correspond with a circle of radius 355 m (Wilson 

2020); much smaller than the scale which we used. 

Findings of this study add to the body of evidence suggesting that the introduction 

of red squirrels to Newfoundland was a key stressor that led to the near extirpation of the 

Newfoundland Gray-cheeked Thrush population at lower elevations. Higher elevation 

areas apparently now act as a refugia allowing Gray-cheeked Thrushes to persist free of 

the threat of red squirrels. With this is mind, we believe that any description of Gray-

cheeked Thrush habitat in western Newfoundland should be changed to include “high-

elevation”. Terrain exceeding ~400 m ASL, above which Gray-cheeked Thrush seem to 

regularly occur now, is restricted to western Newfoundland and represents < 14% of the 

island (~15 595 km2). Much of this is also covered by arctic/alpine barrens where Gray-

cheeked Thrushes do not occupy, leaving very little area for the thrushes to persist. 

Within these montane forests of western Newfoundland, regenerating clearcuts and strip 
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cuts that are not affected by browsing of hyper-abundant moose support high numbers of 

thrushes, possibly because they offer a preferred combination of dense cover and high 

productivity. If future circumstances arise which allow squirrels to colonize these 

montane forests, Gray-cheeked Thrush populations could be placed at further risk. This 

could happen as natural regeneration after forest harvesting creates tracts of 30-70 year-

old stands, which are favoured by red squirrels in masting years (Chapter 2), but which 

are currently rare at higher elevations (McCarthy and Wheetman 2006). In much the same 

way, if climate change allows large scale disturbances such as insect outbreaks which are 

currently limited by harsh climate (McCarthy and Wheetman 2006), to occur, we could 

see a short-term benefit to these montane thrushes, but with a longer-term impact if post-

disturbance forests regenerate into stands of an age that red squirrels can expand into and 

occupy.  
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3.8 Tables and Figures 

Table 3-1: Variables included in models to explain presence of Gray-cheeked Thrush in the upper 
Humber and Main River watersheds, Newfoundland in 2016 and 2017. All are present at the 
local (132 m) and landscape (1250 m) scale, except mt3, which is only present at the landscape 
scale. 

 

Variable Code Description 

Probability of red squirrel predictresq Predicted probability of a red squirrel being present 
(range 0-1) 

Year year Year of survey (2016 or 2017) 

Low scrub lowscrub Coniferous scrub forest < 6.5 m tall 

Tall scrub tallscrub Coniferous scrub forest > 6.5 m tall 

Open open Bogs and barrens 

Water shoreline Length of shoreline (m) 

Harvested forest harv Forest harvested between 1990 and 2004 

Conifer forest conifer Forest stands where ≥ 75% of trees are coniferous 

Mixed forest mix Forest stands with 25-50% deciduous trees among the 
coniferous trees 

Regenerating forest regen 10-30 year old forest; very dense, overstocked stands 

with up to 40K stems/ha 

Second growth forest secgf 30-90 year old forest; second growth and mature stands 

having closed canopies and increasingly open 

understories as stands mature 

Mature forest oldgf > 90 year old forest; mature stands having canopy gaps, 

large snags, and relatively complex and biodiverse 

understories 

Regenerating conifer ct1 Regenerating (10-30 years old) coniferous forest 

Second growth conifer ct2 Second growth (30-90 years old) coniferous forest 
Mature conifer ct3 Mature (90+ years old) coniferous forest 
Regenerating mixed forest mt1 Regenerating (10-30 years old) mixed forest 

Mature mixed forest mt3 Mature (90+ years old) mixed forest 
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Table 3-2: A priori habitat models showing composition, successional stage, and composite succession/composition variables used to 
describe the occurrence of Gray-cheeked Thrush in the upper Humber River and Main River watersheds in 2016 and 2017. All nine 
models also included year and predicted probability of red squirrel presence (see Chapter 2). See Table 3-1 for variable name 
descriptions. 

Model 

Local scale (132 m)  Landscape scale (1250 m) 

Composition 
Successional 

stage 

Successional 
stage/ 

Composition 
Other 

 
Composition 

Successional 
stage 

Successional 
stage/ 

Composition 
Other 

1 conifer, mix   open, lowscrub, tallscrub, 
shoreline 

 
conifer, mix   open, lowscrub, harv, 

shoreline 

2 conifer, mix   open, lowscrub, tallscrub, 
shoreline, harv 

 
 regen, secgf, 

oldgf 
 open, lowscrub, 

tallscrub, shoreline 

3  regen, secgf, 
oldgf 

 open, lowscrub, tallscrub, 
shoreline 

 
conifer, mix   open, lowscrub, harv, 

shoreline 

4  secgf  open, lowscrub, tallscrub, 
shoreline, harv 

 
 regen, secgf, 

oldgf 
 open, lowscrub, 

tallscrub, shoreline 

5   ct2, mt1 
open, lowscrub, tallscrub, 
shoreline, harv 

 
 regen, secgf, 

oldgf 
 open, lowscrub, 

tallscrub, shoreline 

6  secgf  open, lowscrub, tallscrub, 
shoreline, harv 

 
  ct1, ct2, ct3, 

mt1, mt3 
open, lowscrub, 
tallscrub, shoreline 

7 conifer, mix   open, lowscrub, tallscrub, 
shoreline, harv 

 
  ct1, ct2, ct3, 

mt1, mt3 
open, lowscrub, 
tallscrub, shoreline 

8   ct1, ct2, ct3, 
mt1, mt2 

open, lowscrub, tallscrub, 
shoreline 

 
mix  ct1, ct2, ct3, 

mt1, mt3 
open, lowscrub, 
tallscrub, shoreline, harv 

9   ct2, mt1 
open, lowscrub, tallscrub, 
shoreline, harv 

 
   open, lowscrub, 

tallscrub, shoreline 
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Table 3-3: Comparison of the best 9 land cover and red squirrel models explaining Gray-cheeked Thrush occurrence in 2016 and 2017 in 
the upper Humber River and Main River watersheds of western Newfoundland (n = 1670). Variables retained in each model have a 
coefficient under the model column, and otherwise were dropped from the model. See Table 3-1 for variable name descriptions. 
   Model 2 Model 7 Model 5 Model 4 Model 9 Model 6 Model 1 Model 8 Model 3 null 

  Intercept -1.74 -2.47 -2.41 -2.41 -1.69 -1.71 -5.03 -5.35 -5.05 -1.9 

  year + + + + + + + + + + 

  predictresq -5.43 -5.01 -4.15 -4.13 -5.89 -6 -6.21 -6.22 -6.14  

Local 
(132 m) 

Land  
Cover 

Composition 

conifer 0.9 0.8         0.89       

mix 5.7 5.73     6.58    
mix^2 -9.63 -9.88     -10.95    

Successional 
stage 

regen           1.63     1.56   

secgf    2.34  2.6     
oldgf      0.89   1.05  

Successional 
stage/ 

Composition 

ct1         1.68     1.67     

ct2   2.51  2.46      
ct3     0.81   1.01   

Other 

harv 1.25 1.24 1.47 1.47     1.15       

shoreline 3.27 3.31 3.48 3.48 3.07 2.99 3.5 3.12 3.08  
shoreline^2 -4.17 -4.22 -4.53 -4.54 -4.12 -3.95 -4.41 -4.15 -4.09  

tallscrub 0.88    0.84 0.85     

Landscape 
(1250 m) 

Land 
Cover 

Composition 

conifer             7.08 7.5 6.8   

conifer^2       -5.73 -6.2 -5.85  
mix       -3.45  -3.73  

Successional 
stage 

regen -1.46                   

secgf -7.56  -9.3 -9.18       
oldgf   1.46 1.46       

Successional 
stage/ 

Composition 

ct1   -1.37                 

ct2  -7.59   -9.09 -10.26     
ct3  3.94         

ct3^2  -4.78         

Other 

harv               3.6 3.94   

harv^2        -7.09 -7.27  
lowscrub   1.3 1.3   3.22 3.42 3.25  
tallscrub -6.32 -5.08 -5.04 -5.04 -5.77 -6.14     

Model 
Comparisons 

 df 13 14 11 11 11 11 13 12 13 2 

 logLik -565.71 -566.5 -572.5 -572.71 -574.23 -574.93 -576.2 -582.39 -581.98 -642.54 

 AICc 1157.65 1161.25 1167.17 1167.57 1170.63 1172.02 1178.63 1188.96 1190.18 1289.09 

 ΔAICc 0 3.6 9.52 9.92 12.98 14.37 20.98 31.32 32.54 131.44 

 weight 0.85 0.14 0.01 0.01 0 0 0 0 0 0 

 Pseudo-R2 0.165 0.163 0.151 0.151 0.147 0.146 0.143 0.131 0.132 0.001 
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Table 3-4: Summary of parameter estimates for the best model explaining Gray-cheeked Thrush 
occurrence based on land cover and red squirrel predicted values in the upper Humber River and 
Main River watersheds of western Newfoundland in 2016 and 2017 (n = 1670; see Table 3-3). 
See Table 3-1 for variable name descriptions. 

     

 Estimate SE z value p value 

Intercept -1.74 0.24 -7.27 3.50E-13 
predictresq -5.43 1.49 -3.63 < 0.0001 
tallscrub.132 0.88 0.58 1.53 0.126 
harv.132 1.25 0.26 4.84 < 0.0001 
shoreline.132 3.27 1.04 3.14 0.002 
shoreline.132^2 -4.17 1.98 -2.11 0.035 
conifer.132 0.90 0.27 3.32 0.001 
mix.132 5.70 2.29 2.49 0.013 
mix.132^2 -9.63 4.71 -2.04 0.041 
tallscrub.1250 -6.32 1.42 -4.45 < 0.0001 
regen.1250 -1.46 0.67 -2.17 0.030 
secgf.1250 -7.56 2.67 -2.83 0.005 
year2017 -0.33 0.14 -2.33 0.020 

 

Table 3-5: Comparison of models assessing the influence of forest harvesting (cutblock age and 
proportion of harvested forest [size]) on Gray-cheeked Thrush occurrence in Main River and 
upper Humber River watersheds in western Newfoundland in 2016 and 2017 (n = 664). 

Model Intercept age size age*size df logLik AICc ΔAICc weight 

age + size -0.609 -0.108 0.966  3 -266.371 538.778 0 0.605 

age*size -1.199 -0.07 2.125 -0.074 4 -266.265 540.59 1.812 0.245 

size -2.275  0.874  2 -269.022 542.063 3.285 0.117 

age -0.414 -0.092   2 -270.601 545.22 6.442 0.024 

null -1.868    1 -272.573 547.152 8.374 0.009 

 

Table 3-6: Comparison of Generalized Additive Models investigating the influence of proportion 
of modified cut (MC) and clearcut (CC) on Gray-cheeked Thrush occurrence in Main River and 
upper Humber River watersheds in western Newfoundland (n = 1039). 

Model Intercept s(CC) s(MC,k=3) df logLik AICc ΔAICc weight 

CC + MC -1.71 + + 3 -464.90 936.43 0 0.98 

CC -1.69 +  2 -470.10 944.21 7.78 0.02 

MC -1.68  + 2 -473.60 951.26 14.83 0.00 

null -1.67   0 -477.40 956.81 20.38 0.00 
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Figure 3-1: Study area in the upper Humber River and Main River watersheds of western 
Newfoundland. The location of the study area on Newfoundland is shown with the red rectangle 
on the inset map. 



100 
 

 

Figure 3-2: Elevation distribution of Gray-cheeked Thrushes and red squirrels in the Main River 

and upper Humber River watersheds in 2016 and 2017. Red squirrels were common at lower 

elevations, decreasing as elevation increased, whereas Gray-cheeked Thrushes were almost 

exclusively detected at elevations higher than 375 m. Data labels above x-axis indicate number 

of point count locations (total n = 1960) in each elevation category.  
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Figure 3-3: Predicted probabilities of Gray-cheeked Thrush presence in the Main River and upper 
Humber River watersheds in western Newfoundland in 2016 and 2017 for factors retained from 
the best model. Each variable plot was generated from predicted fitted values while holding all 
other variables constant at their means. Dotted lines indicate 95% confidence intervals and 
individual observations (n = 1670) are shown as presences and absences (1 or 0). All variables 
except for tall scrub (132 m) are statistically significant. 
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Figure 3-4: A, B, and D show predicted probabilities of Gray-cheeked Thrush presence in the 
Main River and upper Humber River watersheds in western Newfoundland in 2016 and 2017 
based on the age of harvested areas, and proportion that was cut. Data in A and B was limited to 
elevations above 317 m and each variable plot was generated from predicted fitted values while 
holding the other variable constant at its mean. C included data from all elevations, and the plot 
was generated from predicted fitted values. Dotted lines indicate 95% confidence intervals and 
individual observations (A & B: n = 664, D: n = 601) are shown as presences and absences (1 or 
0). C shows the distribution of harvested sites along an elevation gradient (n = 1960). 
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Figure 3-5: Predicted probabilities of Gray-cheeked Thrush presence as a function of the 
proportion of clearcut or modified cut within 132 m. Data includes only elevations between 419-
564 m, in the Main River and upper Humber River watersheds in western Newfoundland in 2016 
and 2017 (n = 1039). Each variable plot was generated from predicted fitted values while holding 
the other variable constant at its mean. Dotted lines indicate 95% confidence intervals and 
individual observations are shown as presences and absences (1 or 0). 
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4 Discussion 

4.1 Overview 

Gray-cheeked Thrushes (Catharus minimus minimus) have historically been 

present and abundant throughout the island of Newfoundland, but disappeared from most 

locations in eastern, central, and especially coastal Newfoundland when they experienced 

a 95% population decline beginning in the 1970s (SSAC 2010; Fitzgerald et al. 2017). 

Following this decline, residual populations remain, unstudied and poorly documented, in 

montane regions of western Newfoundland (Whitaker et al. 2015). The timing of these 

thrush disappearances coincided with the spread of red squirrels (Tamiasciurus 

hudsonicus) which were introduced to the island beginning in the 1960s. Red squirrels, as 

members of the Sciuridae family, are well known for their high level of invasiveness and 

diverse effects on the boreal ecosystem, including their detrimental effects on the 

recruitment of nesting songbirds (Martin and Joron 2003; Palmer et al. 2007). These 

thrush population declines are of conservation concern because the Newfoundland Gray-

cheeked Thrush is a distinct subspecies found only on the island of Newfoundland and in 

south-eastern Labrador (SSAC 2010; Fitzgerald et al. 2017). During my thesis research, I 

found that Gray-cheeked Thrushes and red squirrels occupy nearly allopatric altitudinal 

ranges in my study area. Thrushes occupy high elevations and squirrels occupy low 

elevations, with a narrow range of overlap between ~300-500 m. The two species appear 

to make use of the landscape in different ways. Red squirrels in conifer masting years are 

most likely to occupy locations with moderate amounts of cover by fir/spruce forests 

between 30-70 years of age and avoid coniferous scrub, while Gray-cheeked Thrushes are 

most likely to occupy locations with coniferous forests, coniferous scrub, and stands that 
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have been harvested in the previous 2-3 decades. In this final chapter I provide a series of 

recommendations regarding forest and wildlife management that arise from my thesis 

findings, and discuss ongoing knowledge gaps and future research needs. 

4.2 Future expansion of red squirrels 

Red squirrels were limited in their elevation distribution in western Newfoundland 

to areas below ~500 m ASL, with the majority of individuals occurring at much lower 

elevations. Nevertheless, to support conservation planning, it is important to assess the 

potential for future expansion upslope by squirrels to determine if high elevation areas 

will remain a refuge from this introduced nest predator for Gray-cheeked Thrush and 

other similar songbird species. We assessed the proportion of total area covered by 

landcover types which were selected (positive) or avoided (negative) by red squirrels (see 

Chapter 2) at low (< 275 m), mid (275-499 m), and high elevations (> 500 m). Coniferous 

scrub, which was associated with low squirrel occurrence, made up only 4% of cover in 

low elevation areas of our study area but became increasingly dominant at higher 

elevations, where it accounted for > 30% of landcover (Figure 2-4). Conversely, second 

growth forest was associated with high squirrel occurrence up to ~50% cover around a 

point, but was rare at intermediate elevations and absent above 500 m (Figure 2-4). This 

suggests that squirrels have likely expanded their range to the extent which they are able, 

given contemporary habitat availability.  

Northward or upslope treeline shifts and expansion of shrub vegetation into 

otherwise open habitat as a response to climate change are projected to continue in the 

future (Weijers et al. 2018). Given the response documented for wildlife at the boreal-
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tundra ecotone (Wheeler et al. 2018), these changes may have important implications for 

the altitudinal distribution of red squirrels in Newfoundland and elsewhere on the 

continent. Shrubification has been well documented throughout much of the Arctic (e.g., 

Ju and Masek 2016; Myers-Smith and Hik 2018), but studies across a range of 

environments suggest variability in the extent of treeline shifts altitudinally or 

latitudinally, with only 52% of studies documenting an advance northward or to higher 

elevations (Harsch et al. 2009). This variability in treeline response to climate change is 

likely dependent on several factors including the amount of warming, level of soil 

moisture, and on whether the treeline boundary is diffuse, abrupt, or has a krummholz 

(stunted and windswept) form (Harsch et al. 2009; Myers-Smith et al. 2015; Ackerman et 

al. 2017). In particular, where vegetation changes to a stunted krummholz form, it is less 

likely that conifers will expand upslope due to limitations on their survival associated 

with harsh winter conditions (e.g., high wind or desiccation of exposed stems), rather than 

growing season temperatures (Harsch et al. 2009). In Newfoundland, there is limited 

mountainous terrain higher than 500 m for red squirrels to invade. Though localized 

productive old growth forest occurs in sheltered valleys (Damman 1983, McCarthy and 

Weetman 2006), most of these upper elevation areas are prone to high wind which has led 

to alpine tundra, or the development of this krummholz landcover type. These cover types 

have limited potential to become productive forest even as climate changes, unless the 

impacts of wind on montane vegetation, particularly during winter, are significantly 

reduced (Damman 1983). Consequently, these high elevation areas in Newfoundland 

where wind-driven krummholz forests dominate may remain poorly suited to further 
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expansion by red squirrels, leaving higher areas as refuges for native species in the 

foreseeable future. 

However, alterations to the natural disturbance regime, including natural 

succession after forest harvesting, or changes in climate, could provide other means by 

which red squirrels might expand upslope. Historically, mid-elevation productive forest in 

this region of Newfoundland existed as gap-dynamic old growth stands due to climate 

conditions that limited large-scale forest disturbances such as fire or insect outbreaks 

(McCarthy and Weetman 2006). However, forest harvesting from 1990-2004 created 

clearcuts and modified (strip) cuts at elevations up to 560 m, introducing large-scale 

disturbance to the landscape. Assuming low enough levels of moose browsing, these large 

swathes of harvested areas will mature in the next 10-50 years to become second growth 

forest, increasing the ~5% current second growth forest landcover up to ~25% of the area 

between 275-300 m. These stands may be suitable for red squirrels, possibly allowing 

them to increase in numbers at intermediate elevations and expand into higher elevation 

montane forests that are currently unoccupied. Similarly, second growth forest could also 

be produced at higher elevations if climate change alters the natural disturbance regime 

by increasing the frequency or extent of defoliating insects or wildfire. There is, however, 

considerable uncertainty in model predictions related to future forest pest outbreaks, 

which also produces uncertainty in predicting movement of other wildlife after these 

events (Boulanger et al. 2016). 

4.3 Current determinants of Gray-cheeked Thrush distribution in Newfoundland  
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One of the main findings I report in this thesis is that red squirrels appear to 

constrain the contemporary occurrence of Gray-cheeked Thrushes. The elevation 

distributions of thrushes and squirrels across the study area were nearly mutually 

exclusive in both years, with squirrels occupying lower elevation sites and Gray-cheeked 

Thrushes occupying higher elevation sites. These observations suggest that thrushes and 

squirrels are now largely restricted in elevation range and strongly segregated, to the point 

of near allopatry, in western Newfoundland. Out of 1960 points surveyed in either 2016 

or 2017, we only detected both a red squirrel and a Gray-cheeked Thrush at six locations 

(0.3% of survey sites). There have, however, been reports of a handful of localized 

pockets of Gray-cheeked Thrushes that persist in an approximately 25 km length of 

coastline on the Avalon Peninsula of Newfoundland (from Bay Bulls south to Brigus 

South, with a particularly dense pocket around La Manche; Fitzgerald et al. 2017; also see 

Gray-cheeked Thrush sightings map of that area in eBird)) along with some squirrel-free 

offshore islands in the region (Fitzgerald et al. 2017). This raises questions about whether 

thrushes and squirrels may co-exist at some locations on Newfoundland, or whether 

lowland areas on the Avalon act as a population sink where Gray-cheeked Thrushes only 

persist through immigration by individuals from nearby squirrel-free areas. The 

occurrence of these lowland populations certainly does not nullify the hypothesis that red 

squirrels have strongly influenced the broader distribution of the thrushes on 

Newfoundland. Localized montane populations appear in other areas of the Gray-cheeked 

Thrush’s continental range, where they have co-existed with squirrels for much longer 

periods of time. In western Canada, for example, thrushes are found in high elevation 
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mountains and plateaus, but there is evidence of localized breeding in smaller numbers 

down to sea level (Höhn and Marklevitz 1974; Di Corrado 2015).  

4.4 Future directions and management recommendations 

Since it appears likely that red squirrels will continue to restrict Gray-cheeked 

Thrushes to the upper reaches of the mountain ranges of western Newfoundland, 

management prescriptions should be developed for Gray-cheeked Thrushes in their 

contemporary niche, rather than referring back to their more extensive historical range on 

Newfoundland (Scheele et al. 2017). However, the extent to which Gray-cheeked 

Thrushes persist on squirrel-free offshore islands should be assessed, and conservation 

planning should include an examination of islands within their historical range. A key 

action for managing offshore islands with possible Gray-cheeked Thrush populations 

would be to prevent squirrel introductions, through public education to limit 

translocations, and with a reporting system where the public could report squirrels on 

islands where they had previously been absent. Further, if islands are identified where red 

squirrels have been introduced and have apparently extirpated thrushes, these islands 

could be used as experimental locations to assess if red squirrel eradications at smaller 

scales could be a useful restoration technique. There are numerous examples where this 

type of intensive invasive mammal eradication has been successful in enabling the 

restoration of insular populations of extirpated and imperilled landbirds, among other 

benefits (see review by Jones et al. 2016). At the larger scale of the main island of 

Newfoundland, red squirrels are too numerous and firmly established to eradicate, so 

other management options should be investigated to limit or at least reduce future range 
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expansion into montane forests. Potential management options include updating land 

management strategies to discourage red squirrel success and encourage increased natural 

predation (Doherty et al. 2016), especially in forest types that are needed by at-risk 

endemic species. This could come in the form of supporting greater development of 

predator populations through recovery of the Newfoundland marten (Martes americana 

atrata), or providing supplementary nest locations for squirrel predators like the Great 

Horned Owl (Bubo virginianus) or Northern Goshawk (Accipiter gentilis). Alternatively, 

creating a perceived predation risk for squirrels through broadcasting predator calls and 

establishing a “landscape of fear” (Zanette and Clinchy 2019) could lead to reduced 

predation pressure by squirrels on nesting songbirds. This sort of natural, top-down 

control has promoted/increased success in controlling other invasive squirrel species and 

restoring a more natural ecosystem balance (Twining et al. 2020). However, relying 

solely on a predation-based red squirrel management program should be undertaken with 

some reservations, as red squirrels in other parts of their range have been found to be 

food-limited rather than predation-limited (Sullivan 1990; Stuart-Smith and Boutin 1995). 

If this holds true in Newfoundland, then management in this way would not be as 

effective as expected. However, it is worth investigation, as Sullivan (1990) saw very 

strong population effects of food supplementation but did not study predation, and Stuart-

Smith and Boutin (1995) were not able to study predation effects from marten or avian 

predators, both of which would be present in Newfoundland. 

Likewise, Gray-cheeked Thrush habitat requirements should be considered when 

managing forests. Since thrushes are positively associated with larger cutblocks up to 7 ha 
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in size based on the spatial scale of our assessment (Chapter 3), forest harvesting could be 

used to create either clear cuts or modified strip cuts at elevations above 375 m. These 

forest harvesting methods would provide habitat preferred by Gray-cheeked Thrushes. 

However, this management strategy must be used with caution as forest harvesting could 

reduce the red squirrel predator community (Lõhmus 2005), and red squirrels are likely to 

be found in fir/spruce forests that are 30-70 years old (Chapter 2). Provided future timber 

harvest rotation remains at 50-60 years in Newfoundland (Sturtevant et al. 1997), it is 

likely that red squirrels could have 20 years or so of regenerated stands of an appropriate 

age before they would be cut again. It would thus be advisable for researchers to study the 

potential upslope movement by red squirrels as regenerating stands age and become 

available in these areas. This could be most easily achieved by repeating the red squirrel 

surveys I carried out in high elevation regenerating clearcuts once these stands have 

reached second growth stage (i.e., in ~10-50 years) to see if forest harvesting has enabled 

the up-slope expansion of red squirrels. Another important question would be to assess 

whether clearcuts and modified cuts are equally suitable for red squirrels. The knowledge 

that thrushes appear to benefit from both clearcut and modified strip cuts (Chapter 3) 

could provide greater flexibility in forest management techniques should one be more 

preferred by these upslope-dispersing red squirrels. Additionally, one harvesting 

technique may be more beneficial to another species at risk, or for maintaining the gap-

dynamic old-growth forest structure similar to that found naturally in montane forests of 

western Newfoundland. The current forest management strategy in Newfoundland is 

comprehensive and addresses the benefits of matching silviculture practices (size and age 

maintenance of stands) to natural ecological disturbances like fire, windthrow, and insect 
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outbreaks (Government of Newfoundland and Labrador 2014; see also Bergeron et al. 

2002). However, these management policies are unlikely to come into effect as there is 

currently very little commercial forest harvesting occurring in the montane forests of 

western Newfoundland due to a downturn in market rates for the pulp and paper industry.  

Forest management should also seek to limit further upslope expansion of red 

squirrels by striving to maintain the current small-scale gap dynamics (McCarthy and 

Weetman 2006), even as climate change may encourage larger-scale disturbances. As 

climate changes, defoliating insect outbreaks such as spruce budworm are likely to 

become temporally longer and effect larger areas (Gray 2008). Upon regeneration, these 

larger-scale disturbances could provide more second growth forest in mid-elevations that 

may benefit red squirrel expansion. In order to maintain the current disturbance regime, 

and thus conserve Gray-cheeked Thrushes by limiting large areas of squirrel-friendly 

land, the suppression of large-scale insect outbreaks, or fire, could be considered, with 

full consideration of its effect on other species in the community, and using ecologically-

sound methods that match the historical disturbance regime. 

Pre-commercial thinning is another forest management technique of interest in 

conservation planning for Gray-cheeked Thrushes as it has been found to adversely affect 

the closely related Bicknell’s Thrush (Catharus bicknelli; Chisholm and Leonard 2008; 

Aubry et al. 2016). However, all the forest stands that were pre-commercially thinned in 

our survey area fell at elevations well below the current range of Gray-cheeked Thrushes, 

so we could not evaluate the effects of this silvicultural practice. Additionally, though 

widely applied in the 1980s and 1990s to offset a wood supply shortfall, pre-commercial 
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thinning has been little used in Newfoundland since 1998 and has been almost completely 

phased out since 2014 (Government of Newfoundland and Labrador 2014). 

Consequently, this management technique has little bearing on thrush population 

management on Newfoundland for the foreseeable future, but may be important in other 

parts of the Gray-cheeked Thrush’s range where pre-commercial thinning is a widely 

used silvicultural technique, or if it once again becomes widely applied on 

Newfoundland.  

Studies that compare the distribution of red squirrels and Gray-cheeked Thrushes 

in other regions, including coastal islands, mountains along the southern edge of the 

species’ range, and near the boreal-tundra ecotone throughout North America, would help 

us more fully understand if and how squirrels affect and constrain thrush populations 

more generally. It is also important that studies be undertaken to assess the direct impacts 

of squirrels on the thrushes; these could involve nest predation studies that measure 

impacts of red squirrel predation on Gray-cheeked Thrush recruitment. However, the near 

allopatry we documented between these species may make such research challenging. 

The effect of squirrel introduction on the broader bird community of Newfoundland is 

also unknown. It would be valuable for management efforts directed at this community to 

investigate whether any other species have experienced a decline concurrent with 

colonization by red squirrels, or if their distributions have been altered as a response to 

the arrival of squirrels to the island’s forests. A meta-analysis of the population trends of 

other ground or low-nesting birds could help confirm whether Gray-cheeked Thrushes are 

adversely affected because they do not respond appropriately through anti-predator 
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behaviour or merely because the locations of their nest sites render them more vulnerable. 

Finally, it is important to note that additional stressors may be acting simultaneously on 

the Newfoundland population of Gray-cheeked Thrushes. For example, Whitaker et al. 

(2018) present evidence suggesting that Newfoundland Gray-cheeked Thrushes winter in 

a region in northern South America near the Venezuela/Colombia border that has 

experienced large scale loss and degradation of potential thrush habitat. This highlights 

the importance of taking a full annual cycle approach to research and conservation of this 

and other species (Marra et al. 2015).  
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