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ABSTRACT 

Lifeboat training is normally conducted in calm waters to minimize the risk to trainees and 

equipment.  Practice in anything other than benign conditions is prohibited.   Trainees are given 

little or no opportunity to practice in conditions that are probable in an emergency, including 

moderate sea states and reduced visibility.   Coxswains are also expected to be able to deal with 

hazards and equipment faults although they are not exposed to these conditions in practice.  

Consequently, little is known about how trainees will perform in an actual emergency and the 

modeling of human performance in harsh environments has not been possible due to the scarcity 

of human performance data.  With the advent of lifeboat simulator technology, it is now possible 

for trainees to practice in adverse weather conditions and to apply their skills in realistic emergency 

scenarios.  Data can now be collected to assess how skills are acquired in training and how skills 

transfer to new operating scenarios.  This data can be used to create models to investigate learning 

and to predict performance. The research in this proposal uses data collected from experimental 

studies performed with a simulator to study skill acquisition and retention, to predict human 

performance in emergencies, and to form models of competence that can be used to study this 

problem space.  The thesis also provides insights on human performance and equipment limitation 

and uses numerical simulations to generate data of lifeboat launches into high sea states.   

The thesis comprises of four research papers, presented as chapters. The first paper evaluates how 

the type of training received affects the performance of lifeboat operators based on their ability to 

complete tasks in an emergency scenario.  In the second paper, Bayesian inference is used to 

produce models of human performance to investigate skills acquisition in new trainees transfer of 

skills to new scenarios.  The third paper presents a method to create models of competence using 
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Bayesian Networks which are derived from expert prediction and experimental data. The final 

paper examines the performance of lifeboats in high sea states and the impact of coxswain timing 

on the launch performance, using data collected from numerical simulations.  

The contribution of the research is 1) knowledge on the amount of practice needed to achieve and 

retain competence to launch an lifeboat, 2) an evaluation of how skills acquired in training transfer 

to new scenarios, 3) knowledge on how the type of training received affects performance in an 

emergency scenario, 4) insights on how much practice is needed to learn different lifeboat task 

types, 5) an increased knowledge of equipment performance limitations in weather conditions 

possible in an offshore emergency, and 6) methodologies to create probabilistic models of 

performance that can be used to study learning and adapt training.   The study outcomes have 

relevance to training providers and presents methodologies that can be used to study other problem 

areas. The scope of work is performed in five studies using the outcomes of a human factors 

experiment and numerical simulations.    
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1.0 CHAPTER 1: INTRODUCTION 

1.1 Problem and Purpose Statement 

Lifeboats are essential life-saving equipment for many types of vessels and offshore platforms, 

such as oil rigs.  As the launch of a lifeboat is not a routine event, coxswains are required to practice 

regularly to maintain the requisite skills needed to launch a lifeboat in an emergency (International 

Maritime Organization, 2014).  Lifeboat coxswains are expected to be able to launch and maneuver 

a lifeboat in environmental conditions that prevail in their location of operation. Coxswains are 

also expected to know operating procedures for inspecting and launching a lifeboat, and to be able 

to recognize and deal with waves, wind, reduced visibility, and hazards. 

Although operators may experience challenging conditions in a real emergency, training is 

normally conducted in calm waters to minimize the risk to trainees and equipment. Trainees are 

given limited or no opportunity to practice skills in operational scenarios that represent offshore 

emergencies. For this reason, human performance in emergencies is difficult to predict due to the 

limited data that is available. Forecasts of coxswains’ skill transfer to real-life operational 

scenarios have relied on experts’ opinion.  Industry studies have identified that coxswain skill has 

an impact on a successful lifeboat launch, yet benchmarking of lifeboat coxswain skill is difficult 

to assess based on the limitations in training (Robson, 2007).  There is limited information on how 

much skills learned in lifeboat training transfer to new scenarios and adverse weather conditions. 

Human performance in harsh environments has not been possible to model due to the scarcity of 

data.   The limitations of lifeboat launching equipment in high sea states has also not been fully 

explored.   Field trials and experimental studies have investigated lifeboat performance in regular 
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waves and wave heights as high as 10 m.  The experimental studies used regular waves, which is 

a simplification of real conditions where wave shapes are irregular.  

With the advent of lifeboat simulator technology, it is now possible for trainees to practice in 

weather conditions typical of their location of operation and to apply their skills in realistic 

emergency scenarios.  Simulation provides the possibility to apply knowledge in highly 

contextualized environments that are representative of plausible emergencies.  Data collected from 

a lifeboat simulator allows us to assess performance on tasks that were prohibitive to do in anything 

other than calm water training.  In effect, new data are available to shape knowledge of human 

performance and investigate learning as participants practice tasks in simulator exercises.   

Environmental conditions used in the simulations can also be extended to irregular waves and 

higher wave heights to study the performance of lifeboats in extreme weather conditions.  

The purpose of this research is to use simulators to investigate and predict human performance in 

weather conditions that could not be ethically investigated in field trials or experiments.  Data are 

collected from experiments performed with simulators to investigate how skills are acquired in 

training and how these skills transfer to new scenarios that are representative of offshore 

emergencies.   The data collected in the experiments are novel as practice could not previously be 

performed in the weather conditions that were used in testing.  The experiments studied how the 

type of training received affects performance and identified tasks that require more training to 

achieve competence. The data were also used to create probabilistic models to predict coxswain 

performance in scenarios that included adverse weather and completion of multiple tasks and task 

types.   The models also incorporated expert knowledge to improve the predictive accuracy.  
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An additional purpose of the research was to investigate equipment limitations in adverse weather 

and to study how human actions affected launch performance.  Numerical simulations were used 

to evaluate the performance of lifeboats in extreme sea conditions that have not previously been 

tested. The simulations determined the weather conditions where the lifeboat could not 

successfully launch or clear from the launch platform due to high wave and wind forces. The 

numerical simulations also investigated the impact of timing of human actions on the lifeboat 

launch and evacuation from the launch platform.  

The thesis investigates the following research objectives related to human performance and 

equipment limitations:   

1. How much practice is needed for lifeboat coxswains to reach competence on launching 

tasks? 

2. How does the type of training impact coxswains’ ability to perform in a plausible 

emergency event? 

3. What is the expected performance of new lifeboat coxswains as they apply skills learned 

in initial training to a new scenario?  

4. How much practice is needed to acquire the procedural and psychomotor skills to launch 

and maneuver a lifeboat in plausible weather conditions? 

5. Do specific tasks or task types require more initial training and practice to master?  

6. Can we develop models to predict coxswain performance using experimental data and 

expert knowledge?  

7. What is the impact of timing of human-performed actions on the probability of a successful 

lifeboat launch? 
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8. What are the limitations of human performance and equipment in high sea states?  

The research aligns with current trends to use data and machine learning to investigate and improve 

domain knowledge. The thesis explores the use of Bayesian methods to form probabilistic models 

of human performance using data collected from a simulator experiment.  In performing the 

studies, the thesis demonstrated how data collected from simulator studies are used to investigate 

the research questions by 1) using Bayesian inference to create cumulative distribution functions 

to quantify skill acquisition in trainees; and 2) creating a Bayesian Network model of competency 

using knowledge of task type and available performance measures.  The thesis presents 

methodologies to generate numerical models that can integrate with artificial intelligence (AI) and 

machine learning algorithms.   Data collected through simulator assessments can be used to model 

performance and gain a deeper understanding of how skills are acquired and to explore ways to 

improve training.    

The study is relevant to training providers and researchers who aim to improve training outcomes 

using simulation-based assessments and numerical modeling.  An outcome of the research is 

insight on how to apply the results, methodology, and models to study performance, improve 

expert assumptions, and extend to training applications where new data sets are being created. The 

models can be used to improve training programs, adapt training exercises to individual needs, and 

investigate human performance in other applications.    

Chapter 1 describes the gaps in knowledge that are addressed in this thesis (section 1.2) and 

presents the research objectives and novelty (section 1.3). This chapter also discusses the 

organization of the thesis and how the research objectives were addressed in the subsequent 
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chapters (section 1.4). This chapter also outlines how data were collected (Section 1.5) for each of 

the thesis chapters.   

1.2 Statement of Knowledge and Gaps 

The research investigates several theoretical frameworks and presents methodologies to use data 

collected from simulation studies to investigate learning in lifeboat coxswains.  The literature 

review provides an overview of 1) related research with simulation, 2) background on skill 

acquisition and training techniques, 3) modeling of learning and competencies using probabilistic 

methods, and 4) lifeboat performance in high sea states.  The section also identifies the knowledge 

gaps that are addressed in this thesis.  

1.2.1 Related Research - Simulation Based Assessments  

Simulators have been widely used to assess performance in operational conditions using scenario-

based training exercises. Simulation-based assessment (SBA) has been used to measure cognitive 

and practical skills in adult learning and education (S. de Klerk, et al. 2015). Both high and low 

fidelity simulators have been used to investigate human performance in flight (McClernon et al. 

2011) as well as medical (Stefanidis et al., 2007) and marine operations (Sellberg, 2017, Thistle et 

al. 2019).  Lifeboat training data can now be collected to assess the amount of practice needed to 

acquire skills and to evaluate how skills learned in practice transfer to new scenarios. This thesis 

provides additional cases of how a simulator can be used to collect data and study human 

performance.  The thesis uses data collected from SBAs to formulate probabilistic models to study 

performance of lifeboat operators as they learn and apply skills.  
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Simulators have been used to investigate human performance in lifeboat operations in ice (Power-

MacDonald et al., 2011) and training in calm waters (Magee et al. 2016).  The outcomes of these 

lifeboat studies provide background knowledge on the use of simulation to study specific 

problems, though the research does not include the study of skill retention, transfer of skills to new 

scenarios, or performance in adverse weather conditions.   There are no existing studies to evaluate 

the amount of practice needed to acquire the skills needed to operate a lifeboat in weather 

conditions that are representative of an offshore emergency, as there has been no means to assess 

operator performance in conditions other than calm water.   There are also no studies performed 

to evaluate how the skills acquired in training transfer to operational scenarios involving 

completion of multiple tasks, or in weather conditions that are typical of offshore operations.  The 

research used human factors studies and numerical simulators to acquire data to investigate these 

knowledge gaps.  

1.2.2 Skill Acquisition and Training  

Lifeboat practice is normally conducted in benign weather conditions to minimize risk to trainees.  

Training conventionally included execution of a lifeboat drill that involves the launching of the 

lifeboat into the water, followed by the performance of simple maneuvering tasks (International 

Maritime Organization, 2014).   The same scenario is often used in each practice event.  As a 

result, trainees are given little opportunity to practice in different weather conditions, or to gain 

exposure to hazards or emergency situations. Training with the same scenario can increase comfort 

and decrease stress and cognitive difficulties in completing tasks (i.e. forgetting steps) for the 

scenario being practiced, but these benefits do not generalize to new scenarios (Baumann et al. 

2011).   Research has shown that gaining experience in scenarios that have similar cues and 
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stressors as the operational environment helps trainees to improve decision making and develop 

mental models to improve performance (Klein, 2008).   Studies have indicated that long term 

retention is dependent on the environment in which the actual performance will take place (Driskell 

et al., 1992).  Similarity between the training environment and the operational environment can 

improve retrieval of information from memory (Arthur et al. 1998).  Research has indicated 

variability in training encourages learners to focus on the structure of problems, providing 

beneficial results in training transfer (van Merriënboer et al., 2002). Some research has debated 

that variability in practice scenarios is not as important as the amount of practice performed, or the 

structure of the learning events (Van Rossum, 1990).  For lifeboat training, there is little known 

about how skills transfer to operational scenarios that have not been practiced in training, or how 

learning occurs in operational scenarios that involve multiple tasks.   This research thesis models 

learning and competence in lifeboat operators with data collected using practice events in plausible 

emergency scenarios.    

Previous research has identified that different skill types require different amounts of practice to 

acquire and maintain competence.  Complex tasks involving a variety of tasks, such as a lifeboat 

launch, are of interest as different skill types have different lengths of skill retention. Cognitive 

closed-loop tasks involving discrete responses and fixed sequences (e.g. pre-flight checks) are not 

as easily retained as continuous open-loop tasks involving tracking and problem solving (Arthur 

et al., 1998, Schendel, 1992, Wickens et al., 2013). Some tasks in a lifeboat launch are sequential 

and procedural closed-loop tasks requiring mental checks and recall of information. Other tasks 

are more physical and require application of motor skills to complete the tasks (e.g. opening a hook 

release, applying a throttle, steering).  Retention of cognitive and physical skills is dependent on 
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the type of practice performed and the amount of mental practice between assessment events 

(Arthur et al., 1998). Considering the type of tasks being performed, there is expected to be an 

establishment of both procedural memory and declarative memory as participants practice.  For 

complex tasks involving both procedural and declarative components, it is suggested to train the 

procedural components first (Wickens et al., 2013).  Previous research on lifeboat training has not 

fully identified the type of skills associated with completing lifeboat tasks. This thesis 

characterized lifeboat tasks based on the type of skills required to complete objectives and 

investigated the training needed for different task types.  There has been little investigation on the 

difficulty of different lifeboat tasks or how much practice is needed to reach competence. The 

research in this thesis investigated how skills are acquired and retained for different task types. 

The amount of training needed for lifeboat operators to reach competence has not been fully 

investigated. Research has indicated that multiple practice sessions are needed for lifeboat 

operators to maintain the skills needed to launch a lifeboat (Billard et al. 2018).  Memory decay 

can occur between practice sessions, with additional practice reducing the amount of procedural 

and physical errors made.  There is little known about how different techniques used for practice, 

such as simulators or live boats, affect learning and skill compared with existing training 

alternatives. The thesis researched the effect of using different training approaches on skill 

acquisition and performance on tasks in emergency scenarios.   
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1.2.3 Probabilistic Methods to Model Human Performance 

Probabilistic methods have been used to quantify and study human performance and can combine 

both empirical data and assumptions to form models.  This section discusses two approaches used 

to create probabilistic models:  Bayesian inference and Bayesian Networks (BNs). 

The research in this thesis demonstrates the suitability of Bayesian methods and performance data 

obtained from a simulator to measure learning and predict performance.  Bayesian inference is a 

method of statistical inference which uses Bayes' theorem  to update the probability of a 

hypothesis as more evidence or information becomes available.   Studies have used Bayesian 

inference and data collected from simulators to investigate several problem domains where data 

are scarce (Groth et al., 2014, Musharraf et al. 2019).  Similar to previous research, there is little 

data available on lifeboat coxswain performance.  The thesis used Bayesian inference to develop 

models to study learning and evaluate task difficulty using a data set collected from a simulator 

study.  The thesis researched how the models improved with new data and provide a method to 

improve models as new data is available.   

Bayesian methods can be used to develop competency models that use machine learning to 

improve training outcomes. As discussed by Millán et al. (2002), probability distributions can be 

incorporated in BNs to derive models of student competence to diagnose strengths and weaknesses 

in trainees. Machine learning and intelligent tutoring techniques can be applied using these models 

to improve student assessment and course design. BNs use a graphical structure to represent the 

relationship between several random variables. Research has studied the interaction between tasks 

using Bayesian Networks to derive models of student competence (Millán et al. 2002). These 

https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Evidence
https://en.wikipedia.org/wiki/Information
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models can be used to study the relationship between training factors and to examine how practice 

on related tasks impacts performance.  Training frameworks including Intelligent Tutoring 

Systems (ITS) (Millán et al., 2004) and Evidence Centered Design (ECD) use observable evidence 

and BN models to study skills acquisition and inherent competence (Mislevy et al., 2004).   The 

formation of a student model using BNs offers additional means to apply probabilistic models to 

study relationships between variables that affect performance, including the type and amount of 

practice received.   The probabilistic modeling of the BNs can be integrated with machine learning 

algorithms to build adaptive training applications to customize training material to an individual’s 

strengths and weaknesses based on evidence gathered in training.   The thesis used BNs to model 

competence and predict performance of trainees as they practiced tasks in simulator scenarios.  

The methodology can combine data sets and expert knowledge to create models. The thesis 

evaluated if expert knowledge can be used to improve the predictive accuracy of models that are 

created using small data sets.  Tasks completed in simulator scenarios provided evidence that was 

used to evaluate the model accuracy.  The thesis presents methodologies to generate numerical 

models that can integrate with artificial intelligence (AI) and machine learning algorithms.   Data 

capture with a simulator provides a consistent and instantaneous means to capture performance 

measurements through computer tracking.  Digital records are created as students practice with a 

simulator creating a database that can be accessed to form numerical models.   The data can be 

used to model performance and gain a deeper understanding of how skills are acquired and to 

explore ways to improve training.    
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1.2.4 Lifeboat Performance in Harsh Environments 

Studies performed by Simões Ré, et al. (2002) and Simões Ré and Veitch (2004) evaluated the 

capabilities of evacuation systems using scale model experiments.   These studies assessed the 

launch performance of a lifeboat in a variety of weather conditions with varying wave height, 

wind, and wave steepness.  A key outcome of these studies was the role of wave height on the 

ability to perform a successful lifeboat launch.  The studies indicated that lifeboat setback, or 

backwards displacement of the vessel in a head sea, is a key measure of performance. High setback 

values could result in impact with the launching platform.  The studies also determined that the 

position of launch on the wave affected the observed setback, with setback higher when the boat 

is released on the trough of the wave compared to the crest.   

The studies resulted in several recommendations to improve the probability of a successful launch, 

including training to practice launching on a wave position that reduced lifeboat setback.   The 

scale model experiments included launches in waves emulating sea states up to 10 m, although 

higher waves are possible in offshore oil and gas operations. The experiment also used a regular 

wave shape. The impact of human performance and the ability to perform a timely launch was not 

investigated. 

The thesis builds on the outcomes of these experiments and uses simulations to study lifeboat 

performance in higher sea states and irregular seas.  The research also evaluates the impact on 

human performance on the probability of successful lifeboat launch.  
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1.3 Research Objectives and Novelty 

The objective of the research is to use data collected from simulation studies to shape knowledge 

of human and equipment performance in conditions that have not been previously studied.  

Specifically, the thesis is concerned with investigating performance in plausible emergencies 

involving the launch of a lifeboat.  The research used data collected from simulation studies to 

explore learning in lifeboat operators and skills transfer to scenarios that previously were unable 

to be tested due to risk.  The research also evaluated the performance of lifeboats in extreme 

weather conditions to determine the limits of launch equipment, and to evaluate how human 

actions impact launch performance.  The use of simulation allowed for testing to be performed in 

new scenarios and created new data sets that were used to model skills acquisition and 

performance. As indicated in Figure 1-1, the thesis combines 1) data collected from simulation-

based assessments, 2) human performance modeling techniques, 3) studies of skill acquisition and 

training, and 4) simulated numerical models of lifeboat to explore this problem area.  



13 

 

   

 

Figure 1-1: Research Overview 

The thesis presents both data and methodologies to study a problem area that was previously not 

possible due scarcity of human performance data.  This study presents outcomes specific to lifeboat 

training and launch equipment performance. The methodologies and approaches presented in this 

thesis can be applied to other problem areas where limited data are available. The thesis discusses 

how simulation can be used to collect novel data and how probabilistic methods can be used to 

model human performance and skills acquisition.  
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1.4  Organization of Research  

The thesis includes four studies to investigate learning and model performance of lifeboat 

operators as they apply skills in operational scenarios.  The PhD thesis is written in manuscript 

format and includes the following papers as chapters. 

• Chapter 2 - Billard, R., Smith, J., Veitch B., (2019). Assessing lifeboat coxswain training 

Alternatives using a simulator. The Journal of Navigation. Published online by Cambridge 

University Press: 19 September 2019.  

• Chapter 3 - Billard, R., Smith, J., Veitch B., (2020). Using Bayesian Methods and 

Simulator Data to model lifeboat Coxswain performance. WMU Journal of Maritime 

Affairs. June 2020 10.1007/s13437-020-00204-0. 

• Chapter 4 - Billard, R., Smith, J., Masharraf, M., Veitch B., M. (2020). Using Bayesian 

Networks to Model Competence of Lifeboat Coxswains.  Transnav International Journal of 

Marine Navigation and Safety of Sea Transportation.   Journal Vol. 14., No. 3, September 

2020. 

• Chapter 5 – Billard, R., Rees, R., Veitch, B., Simões Ré, A. (2020). Use of simulations to 

predict lifeboat survivability in extreme waves and the effectiveness of coxswain performed 

actions (Unpublished Manuscript). Submitted to International Journal Maritime 

Engineering. 

Chapter 2 evaluates how the type of training received affects the performance of lifeboat operators 

as demonstrated by their ability to complete tasks in an emergency scenario.  This study 

investigated the performance of trainees who received different types of training over a year long 

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs13437-020-00204-0?_sg%5B0%5D=RAxoglr2ERUqBLJXSrhN8oAWgis0HI0vzY7UzIPmt_jXwLA_fKLtskWATPEq0doH65_-hFXwCAXF0CeoQdz5gIoMjA.XisZPXNd-DsToMgt4z93BIySaXEbkTtG9gD8GEeQmL-5oVjibNJSpEGaDbf_-j7SkwQbmKbnvxLe_5N61gGOlA
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period, representing the alternative training means available to lifeboat coxswains. These 

alternatives are: (1) using a lifeboat, (2) using Computer Based Training (CBT), and (3) using a 

lifeboat simulator. The three alternatives vary in the amount of hands-on practice provided in a 

training session, and the difficulty and variability of the scenarios that are used in training. The 

study investigated how these factors impacted skills acquisition and performance by making 

comparisons between separate groups of individuals trained in one of the three alternative ways. 

Chapter 3 uses simulator data to examine lifeboat coxswain training and skill transfer as trainees 

practice lifeboat tasks for the first time. Bayesian inference is used to produce probabilistic models 

of human performance to study how skills transfer from initial training to a new practice scenario. 

The models are used to investigate the amount of practice needed to become competent and to 

compare the difficulty of different task types using evidence collected in a scenario with calm 

water conditions. An outcome is the creation of sets of cumulative distribution functions (CDFs) 

to quantify skill acquisition in a group of new trainees as they enter a training program designed 

to prepare coxswains for offshore emergencies involving a lifeboat.   

Chapter 4 presents a methodology to evaluate the performance of lifeboat operators as they apply 

their skills in scenarios that are more difficult than scenarios used in initial training and practice.  

A BN is used to define a model of the competence of slow-speed maneuvering (SSM) based on 

tasks performed in adverse weather conditions.  The model is derived from a combination of expert 

prediction and data collected from an experimental study.  The methodology created a student 

model of SSM competence that can be used for the prediction of performance on tasks and the 

diagnostic study of causal relationships between model variables. 
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Chapter 5 investigated the performance of lifeboats in high seas states and the impact of timing of 

coxswain actions on launch performance.  Numerical simulations were performed in extreme wave 

conditions that had not been explored, including irregular wave heights up to 14 m.  Launch 

performance was evaluated based on the amount of setback and the ability to exit the lifeboat 

launch area in a timely manner. The study also investigated how the timing of human actions, 

including the application of throttle and release of hooks, impacted launch performance.  Table 1-

1 outlines the related research objectives and methodologies that are investigated in each chapter. 

Table 1-1: Research Questions and Methodologies 

Chapter  Research Question(Q) or Methodology (M) 

2 • Q - How does the type of training impact coxswains’ ability to perform in a 

plausible emergency event? 

• Q - Do currently utilized training alternatives provide enough practice to 

acquire the skills needed to perform a lifeboat launch in likely weather 

conditions?  

3 • Q - What is the expected performance of new lifeboat coxswains as they apply 

skills learned in initial training to a new scenario?  

• Q - How much practice is needed for lifeboat coxswains to reach competence 

on launching tasks?  

• Q - Do specific tasks or task types require more initial training and practice 

to master? 

• M - Using Bayesian inference to create cumulative distribution functions 

(CDFs) to quantify skill acquisition in trainees 

4 • Q - Can expert prediction and knowledge of task type be combined to model 

trainee competence?  

• M - Creating a Bayesian Network model of competency using knowledge of 

task type and available performance measures 

5 • Q - What is the expected setback of a lifeboat in extreme regular waves and 

irregular waves? 

• Q - How is the time to clear the lifeboat from the launch structure affected by sea 

state?  

• How does delay in lifeboat throttle and hook release affect launch and 

evacuation of a lifeboat?     
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1.5 Study Resources – Simulator Experiment and Numerical Simulations 

The first three studies (Chapters 2 to 4) use data collected from a human factors study performed 

with a live boat and simulator.  The final study (Chapter 5) uses a numerical simulation to study 

performance in high seas. Further details on these studies are provided in the following sections.    

1.5.1 Human Factors Experiment 

The first three studies use outcomes of an experiment designed to evaluate lifeboat training 

programs.  A test program was developed to emulate practice provided to new lifeboat coxswains. 

The test program was approved by the National Research Council of Canada Research Ethics 

Board.  Initial training was provided at a shore-based facility using a live boat and presentation 

materials.  Following initial training, over a one-year period participants received quarterly 

training in one of three ways: using live boats, computer-based training, or a simulator. Trainees 

then applied their skills in a simulator scenario that represented a plausible emergency requiring 

completion of lifeboat launch and on-water maneuvering tasks.   

Data from the experiment is used to study skills retention and to compare different training 

alternatives (Chapter 2), to study skill acquisition and form models of human performance for 

initial training (Chapter 3) and to model competence in adverse weather conditions (Chapter 4).   

Each of the studies use specific data from the human factors experiment to provide insights on 

performance and present methodologies to study the problem space of lifeboat training.  Additional 

details are provided in sections Chapters 2 to 4.   
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1.5.2 Test Equipment 

Participants completed tasks in a simulator with a representative layout and equipment of the real 

lifeboat.  The simulator is equipped with real lifeboat equipment (e.g. steering wheel, throttle, 

brake release, compass) allowing participants to operate the controls needed to launch the lifeboat 

in a simulation environment complete with visuals and sounds.  The simulator is certified by Det 

Norske Veritas Germanischer Lloyd (DNV-GL) and Transport Canada as being capable of 

representing realistic situations needed for training. The simulated lifeboat motion, equipment, and 

layout were modeled to be the same as the real lifeboat.  Components of the training were also 

performed with a real lifeboat. The type of lifeboat used in the study is currently used on offshore 

platforms in the North Atlantic.  The lifeboat can carry up to 72 people and is approximately 9.4 

m long, 3.5 m wide and 6 m high, with a draft of 2.9 m. Its empty weight is approximately 5806 

kg and has a fully loaded weight of approximately 11,500 kg. Figure 1-2 shows the simulator and 

lifeboat used in the human factors experiment.  

 

Figure 1-2: Lifeboat Simulator and Lifeboat used in Experimental Study 
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1.5.3 Numerical Simulation – Virtual Wave Tank 

Chapter 5 uses a numerical simulation to study lifeboat performance in high sea states and the 

impact of human factors on launch success.  The study measures the impact of timing on 

completion of key tasks, including releasing the lifeboat hook and applying throttle.   Numerical 

simulations are performed using a simulator test environment developed by Virtual Marine.   A 

virtual wave tank was adopted from Virtual Marine’s simulator architecture designed to provide 

accurate models of small vessel water entry and maneuvering in waves.   An image of the virtual 

wave tank is provided in Figure 1-3.    

Environmental factors such as wave heights, periods, and wave shape (regular or irregular) can be 

changed in the virtual wave tank.  Fast-time simulations can be performed in the virtual wave tank 

using a programmed driver to perform actions that would be conducted by a human in a lifeboat 

launch, including releasing the hooks and applying throttle.  Timing can be controlled to delay the 

hook release and throttle application.  These controls are used to examine the impact of timing of 

human actions on the successful launch of a lifeboat.  

 

Figure 1-3: Virtual Wave Tank 
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2.0 CHAPTER 2: ASSESSING LIFEBOAT COXSWAIN TRAINING 

ALTERNATIVES USING A SIMULATOR 

Randy Billard1, Jennifer Smith2, and Brian Veitch3 

1 Virtual Marine, 2private consultant, 3Memorial University of Newfoundland 

2.1 Co-authorship Statement 

This manuscript has been published in the Journal of Navigation (2019).  Writing was led by Randy 

Billard, with results verified by author Jennifer Smith who assisted in conducting the experiment.  

Brian Veitch provided guidance in writing, presenting results, and revisions to the paper.  

2.2 Abstract 

Lifeboats are essential life-saving equipment for all types of vessels and offshore platforms.  

Lifeboat simulators have been created specifically for offshore personnel to practice in conditions 

that are normally too risky for live training.   As simulation training is a relatively new alternative, 

there is a need to assess how training performed with a simulator compares to conventional 

training.  A study was performed to evaluate how skills acquired with different training approaches 

transferred to an emergency scenario.  Over a period of one year, participants received quarterly 

training in one of three ways: using live boats, computer-based training, or a simulator.  Following 

training, participants were evaluated on their ability to launch and maneuver a lifeboat in a 

plausible emergency.   The study suggests a benefit to performing training with realistic lifeboat 

controls and practicing using representative emergency scenarios.  Insights are provided on how 

training can be modified to increase competence.  
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2.3 Introduction 

Lifeboat operators are required to have the essential skills needed to launch a lifeboat in an 

emergency.   As the launch of a lifeboat is not a routine event, coxswains are required to practice 

regularly to maintain the requisite skills.  Lifeboat coxswains are expected to be able to launch and 

maneuver a lifeboat in environmental conditions that prevail in their location of operation. 

Coxswains are also expected to know operating procedures for inspecting and launching a lifeboat 

and be able to recognize and deal with waves, wind, reduced visibility, and hazards.    

Although operators may experience challenging weather conditions in an emergency, training is 

normally conducted in calm waters to minimize risk to trainees and equipment. Lifeboat coxswains 

typically complete initial training at an onshore training facility and then perform regular 

recurrency training to maintain their skills.  Recurrency training is normally conducted on the job 

every three months and has traditionally included execution of a lifeboat drill that involves the 

launching of the lifeboat into the water, followed by the performance of simple maneuvering tasks 

(International Maritime Organization, 2014).  An alternative training means is to do onshore 

refresher training annually, or every two years, and to refresh skills quarterly through self-study 

(reading operations manuals or inspecting the launch equipment).  A recent alternative, introduced 

in 2010, is to use immersive digital simulators for training. This alternative uses virtual cues and 

representative lifeboat equipment to perform training scenarios, instead of using a real lifeboat or 

onshore facilities.   
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Training alternatives vary in the amount of physical realism, scenario-based practice, and capacity 

to expose trainees to realistic conditions. With multiple training options available for lifeboat 

coxswains, there is an interest to assess the value and limitations of each alternative.   

This study investigated the performance of trainees who received different types of training over 

a year long period, representing the alternative training means available to lifeboat coxswains. 

These alternatives are: (1) using a lifeboat, (2) using Computer Based Training (CBT), and (3) 

using a lifeboat simulator. The three alternatives vary in the amount of hands-on practice provided 

in a training session, and the difficulty and variability of the scenarios that are used in training. We 

investigated how these factors impacted skills acquisition and performance by making 

comparisons between separate groups of individuals trained in one of the three alternative ways. 

The objectives of the research were to investigate the following:  

1. How does the type of training impact performance in a plausible emergency event?  

2. Do currently utilized training alternatives provide enough practice to acquire the skills 

needed to perform tasks in likely weather conditions?      

The primary objective was to assess how the different training alternatives promoted skill 

development. Performance was assessed by comparing the ability to successfully complete all 

launch and maneuvering tasks in a simulated emergency exercise that included realistic weather 

conditions and a credible hazard.  The performance in the scenario is an indicator of skills acquired 

during training and transferred to a plausible emergency event.   A secondary objective was to 

observe individual task performance and investigate the common errors made by coxswains during 

assessment.   
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We investigated the launch of the lifeboat and on-water maneuvering separately.  Launching the 

lifeboat is the primary duty of the coxswain as they evacuate from the oil and gas platform. Once 

in the water, coxswains may be required to participate in rescue exercises, rendezvous with other 

vessels, or rescue casualties.  The ability to complete on-water tasks is dependent on the 

coxswain’s ability to maneuver the boat in waves.  Analyzing the performance on individual tasks 

allowed us to assess the difficulty of the task type and provided insights that may be used to direct 

training.   

2.4 Background 

Many factors can affect skill acquisition and retention.  These include the similarity of the practice 

environment to the test environment, the variability in the training exercises, and the frequency 

and amount of training that is received.  

Lifeboat practice is normally conducted in benign weather conditions to minimize risk to trainees.  

The same scenario is often used in each practice event.  As a result, trainees are given little 

opportunity to practice in different weather conditions, or to gain exposure to hazards or 

emergency situations. Training with the same scenario increases comfort and decreases stress and 

cognitive difficulties in completing tasks (i.e. forgetting steps) for the scenario being practiced, 

but these benefits do not generalize to new scenarios (Baumann et al. 2011).   Research has shown 

that gaining experience in scenarios that have similar cues and stressors as the operational 

environment helps trainees to improve decision making and develop mental models to improve 

performance (Klein, 2008).   Driskell et al. (1992) also indicate that long term retention is 

dependent on the environment in which the actual performance will take place.  Similarity between 
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the training environment and the operational environment has been shown to improve retrieval of 

information from memory (Arthur et al. 1998). Billard et al. (2018) identified that changing the 

environmental conditions of a lifeboat launch impacted the ability to complete tasks that were 

previously mastered through training.    

Variability in training exercise has been shown to encourage learners to focus on the structure of 

problems, providing improved training transfer to new exercises (van Merriënboer et al., 2002). 

Others have debated that variability in practice scenarios is not as important as the amount of 

practice given to master tasks, or the structure of the learning program (Van Rossum, 1990).  

Stepping up the difficulty of the task over time in training is a common practice that is well 

established in other training domains, such as flight training.  Lim et al. (2009) report that several 

research studies have shown that variability of practice usually results in beneficial effects on 

transfer of training.  

2.5 Methodology 

A test program was developed to emulate practice provided to new lifeboat coxswains.  Initial 

training was provided at a shore-based facility. This was followed by quarterly practice events.   

Participants received initial training (explained in section 3.1) and then received quarterly training 

in one of three ways.   Following three quarterly practice events, an assessment exercise measured 

how skills acquired in the training program transferred to a plausible emergency event that required 

launch of a lifeboat in weather conditions typical of offshore operations.  Figure 2-1 illustrates the 

elements of the study.    
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Figure 2-1: Study Timelines 

In the study, we can examine launch and maneuvering tasks separately based on the skill types 

needed to complete tasks.  The launch of a lifeboat is primarily a procedural cognitive task 

requiring the trainee to recall the steps required to perform a launch, the order of the steps, and the 

recognition of equipment faults.   Maneuvering the lifeboat is primarily a psychomotor task and 

requires application of physical skills to control the lifeboat. Psychomotor tasks are usually less 

easily forgotten and require less frequent rehearsal to be remembered than cognitive tasks, which 

can require frequent practice and rehearsal (Stewart et al. 2008).   

As noted by Arthur et al. (1998) the length of the retention interval, or non-practice period, is 

known to be a significant factor in skills retention.  For the purpose of the study, we kept the 

retention interval consistent between the different training approaches. Training was provided at 

intervals that match industry practice of quarterly training (i.e. every 3 months).  We compared 

differences in performance based on the type of training received.  
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Assessing performance in emergency conditions could only be done using a simulator due to the 

risks associated with live boat operations.   Simulation has been widely used to assess human 

performance in flight (McClernon et al. 2011), as well as medical (Stefandis et al. 2007) and 

marine operations (Sellberg, 2017).  Using a simulator that was representative of a real lifeboat 

provided a means to assess performance in an exercise that would otherwise be prohibitive due to 

risk. 

Participants with no previous lifeboat experience or training were recruited for the study.  Recruits 

were required to be unfamiliar with the lifeboat operation and launch procedure; they were not 

allowed to participate if they had previous lifeboat experience. Fifty-two volunteers between the 

ages of 18 and 65 were recruited. After initial assessment, two groups of 17 and one group of 18 

participants were formed.   Twelve participants dropped out of the study due to time commitment 

and scheduling conflicts, as the experiment was carried out over a year.  Due to uneven attrition, 

two groups finished with 14 participants and the one group finished with 12 participants.  

The training emulated practices used in industry, with controls added to make the training safe for 

the participants and to maintain consistency in training events.   

2.5.1 Phase I – Initial Training and Grouping 

Initial training of all participants consisted of a combination of classroom training from an 

instructor and familiarization exercises with a simulator.   Participants were taught a sequence of 

actions needed to safely launch a lifeboat from davits, and to perform on-water maneuvering tasks 

using training designed to teach competencies identified in the Standards of Training, Certification 

and Watchkeeping for Seafarers (International Maritime Organization, 2010).  The training 
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materials covered basic operation of the lifeboat, coxswain duties, pre-launch inspection 

procedures, clear away procedures, navigation procedures and radio communication.  The training 

course was conducted by an instructor who was experienced in small craft training and was 

proficient in operating the lifeboat used in the study.  

Training also included a guided tour of a real lifeboat to familiarize the participants with the 

appearance and location of lifeboat equipment, thereby providing knowledge needed to inspect the 

lifeboat prior to launch.  After training was completed, participants were given a fifteen-minute 

simulator exercise to become familiar with the lifeboat simulator.   

Following initial training, participants completed a simulator assessment scenario designed to 

evaluate the fundamental skills required to operate a lifeboat, which included the launch and 

control of the lifeboat in calm weather conditions.  To ensure a baseline competence was achieved, 

participants repeated the scenario until they were able to complete all tasks.  The assessment 

scenarios was used to score personnel on their ability to complete launch and maneuvering tasks, 

with the number of trails to criterion used to rank performance. The rankings were used to balance 

the groups as evenly as practicable.   

2.5.2 Phase II – Quarterly Training 

Participants practiced quarterly three times using the training approach assigned to their group.   

Table 2-1 summarizes the type of training received by each group and the tools used for training.  

As outlined in this table, the training received by each group was configured to match the 

conditions used in practice.  



31 

 

Table 2-1: Training received by Group Designation 

Group  Representative  

Training 

Practice 

Launch 

Tasks 

Maneuvering 

Tasks 

Scenario 

Parameters 

Faults and 

Hazards 

Group 1 - 

Drills 

Live offshore 

quarterly 

drills from an 

offshore 

platform 

Practiced in 

simulator 

with real 

lifeboat 

equipment   

Practiced on-

water using 

real boat 

Same 

scenario each 

training 

session, 

limited to 

calm waters, 

None 

Group 2 - 

CBT 

Annual 

refresher 

training with 

skills 

maintained 

quarterly 

through self-

study 

Desktop 

CBT based 

on operating 

manuals 

Desktop CBT 

based on 

operating 

manuals 

N/A – no 

scenario 

practice used 

Covered in 

CBT 

Group 3 - 

Simulator 

Simulation-

based training 

programs in 

use in Oil and 

Gas Training 

Practiced in 

simulator 

with real 

lifeboat 

equipment   

Practiced in 

simulator with 

real lifeboat 

equipment   

Progressive 

with each 

training 

session, calm 

to moderate 

sea state  

Introduced 

as scenarios 

progressed  

Drills training, assigned to Group 1, consisted of practice emulating live offshore quarterly drills, 

which typically include the launch of a lifeboat in calm water and simple maneuvering exercises 

in the water.  To minimize risk to trainees, the launch task was performed using a simulator. 

Maneuvering was performed using a real lifeboat in calm weather conditions. To emulate industry 

practice, the launching conditions for each practice drill was calm water with no equipment faults 

or hazards.   

Group 2 participants were representative of trainees who perform annual refresher training onshore 

and who do not perform regular practice drills or scenarios following initial training.  For this type 

of trainee, skills are maintained through self-study of launch procedures and operating manuals.   
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A Computer Based Training (CBT) program was developed to provide participants with relevant 

training materials delivered via a desktop computer.  Course materials were derived from operation 

manuals of the davit and lifeboat, and included materials to familiarize trainees with the layout 

and operation of lifeboat equipment and the launching procedure.  

Group 3 represented users of lifeboat simulators.  The members of this group were provided with 

quarterly training in scenarios of escalating difficulty.  Launching and maneuvering were practiced 

in the simulator. The difficulty of the scenarios increased every quarter, with initial scenarios 

starting with calm water (low difficulty) and progressing to launches in moderate seas in the final 

quarterly training period. Scenarios were developed by a subject matter expert to increase the 

difficulty of tasks over time and provide exposure to scenarios that are not practiced in the real 

boat due to associated risks.   

For the Drills and Simulator groups, participants practiced in each quarterly training session until 

they achieved the baseline competence, meaning they were able to complete all launch and 

maneuvering tasks successfully in the practice scenarios.  For the CBT group, participants had to 

pass a multiple-choice test based on the training materials to demonstrate that they knew the course 

materials.  

2.5.3 Phase III – Transfer to an Emergency Scenario   

After completion of three quarterly training sessions, and following an additional 3 months without 

practice, participants performed a scenario in weather conditions that were representative of 

common operating conditions in the North Atlantic (C-Core, 2015).  The parameters of the 

scenario were set to night time with clear visibility, 13 knot winds, and a 3-meter wave height. To 
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eliminate risks to the participants, all testing made use of the simulator as the test environment for 

both launch and maneuvering tasks.   

All participants were given the same scenario and scenario briefing.  The briefing indicated that 

an explosion had been heard on the platform, followed by a fire alarm. The Offshore Installation 

Manager (OIM) had ordered an evacuation from the platform and the duty was to launch the 

lifeboat and assist in a search and rescue exercise once in the water.    The evaluation scenario was 

more difficult than the hardest scenario that was provided in any of the training exercises, including 

those given to the simulator group.  Figure 2-2 provides an overview of the emergency scenario.  

This image was provided to trainees in the briefing.  

Participants were required to perform a pre-launch inspection (PLI) of the lifeboat and then launch 

the lifeboat and clear from the oil and gas platform.  As a fire was active, participants had to turn 

on the air and sprinkler system to minimize the chance of harm.  Once in the water, the participant 

had to participate in a rescue exercise that included locating and recovering persons in the water 

(PIWs) and transferring personnel to a fast response craft (FRC).  The weather increased the 

difficulty of some launch tasks practiced in training, including releasing the lifeboat when in the 

water. It also made on-water tasks more difficult.  
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Figure 2-2: Emergency Scenario 

2.5.4 Performance Measurements 

A scoring rubric was established to measure performance for launching and maneuvering tasks in 

the practice sessions and the emergency test scenario.  The criteria for task completion were 

established by a subject matter expert to reflect a standard of proficiency as identified in recognized 

training standards, including the Standards of Training, Certification and Watchkeeping for 

Seafarers (International Maritime Organization, 2010). This standard is commonly used to model 

lifeboat training courses.   Table 2-2 provides a list of tasks and objectives used to measure 

performance. Launch actions are expected to be performed in sequence, except for operating the 

sprinkler system, which can occur any time before entering the water.  The order, type, and number 

of on-water tasks are dependent on the scenario being practiced.  
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For the Drills Group (Group1), quarterly training sessions allowed for practice of 9 of 10 of the 

launch tasks identified in Table 2-2, as there was no training scenario that required the operation 

of the sprinkler and air system.  Training on the operation of the air and sprinkler system was 

provided to all group members during the initial training session. On-water tasks comprised of 

maneuvering a short distance followed by a single task of approaching and stopping next to a 

vessel.  The Simulator Group (Group 2) practiced navigating by compass and PIW pickup in each 

of the quarterly practice sessions, and practiced stopping next to a vessel in one practice scenario.  

The Simulator Group did not practice in environmental conditions as difficult as the emergency 

test scenario.  No launching or maneuvering practice was provided to the CBT Group (Group 3).  

The CBT Group reviewed launch procedures and the equipment manuals.  This allowed for mental 

rehearsal of the launch tasks but did not allow a practice launch in a scenario.    

In the emergency test scenario, a total of 10 launch tasks were required to be completed.  The on-

water tasks included two navigate-by-compass tasks and two PIW pickups, resulting in 10 total 

on-water tasks. All launch tasks were completed in the simulator, except for the PLI, which was 

conducted prior to starting launch.  A PLI normally involves visual examination of the lifeboat’s 

exterior and interior.  In the study, pictures were used instead and the trainee had to determine if a 

given picture represented a correct or incorrect state of equipment.  Identification of correct state 

of equipment was needed to allow for a safe launch (i.e. removal of maintenance pendants, brake 

cable present).    
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Table 2-2: Task Objectives 

 Task Name Task Objective 

L
a
u

n
ch

in
g

 T
a
sk

s 

Pre-Launch Inspection 

(PLI) – Critical Errors 

Perform visual inspection of lifeboat in preparation for launch and 

ensure no equipment is stopping vessel launch.  

Permission to Launch Obtain permission to launch from OIM. 

Inform Crew Prior 

Launch 

Inform crew prior to launch – “Launching, Launching.”  

Lower w/o stopping Pull brake release, lower lifeboat without stopping by keeping 

tension on release. 

Air and Sprinkler  Order the use of air system and sprinkler after being informed of 

gas, smoke or fire. 

Engine Started  Ensure engine is started before lowering/splashdown using engine 

turn key. 

# of re-entries Ensure lifeboat completely enters water and is fully buoyant before 

releasing hooks by looking at hydrostatic indicator on hook release 

or visual cue.  

Splashdown zone Promptly release hooks using hook handle release and apply 

throttle   

Contact with platform Maneuver vessel and do not make contact with platform after 

release of hooks.  

Clear Away Zone Safely leave clear away zone by moving away from platform 

quickly and avoiding hazards. 

O
n

-w
a
te

r 
T

a
sk

s 

Navigate by compass Maintain a compass heading with minimal veer from target 

heading and control heading. 

Approach a Mark Approach a static object accounting for wind and wave direction.  

Use a speed to allow stopping. 

Stop at a Mark Stop close to landmark (2-3 boat lengths) and maintain position.  

Approach a Person in 

the Water (PIW) 

Approach a drifting PIW accounting for wind and waves to 

minimize chance of contact. Use a speed to allow stopping. 

Recover a PIW Stop close enough to PIW to allow pickup and maintain position.  

Navigate to a landmark Maintain a heading in line with a target landmark and control 

heading and veer. 

Approach a vessel Approach a static object accounting for wind and wave direction.  

Use a speed to allow stopping. 

Come alongside a vessel Stop next to vessel close enough and at an angle to allow personnel 

transfer and maintain position. 

For each of the assessments and training sessions performed using a simulator or live boat, an 

instructor evaluated the participants based on the rubric. For practice scenarios requiring voice 

command (e.g. instructing someone to turn on the sprinkler, requesting permission to launch) the 

instructor role-played as a crew member and OIM as circumstances warranted.  If the student 

requested assistance from the instructor to complete any task, the task was considered to be 
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incomplete.    For the CBT group, completing the quiz at the end of the review of materials was 

an indicator the trainee knew the materials that had been presented.  

2.5.5 Simulator and Lifeboat 

The type of lifeboat used in the study is currently used on offshore platforms in the North Atlantic.  

The lifeboat can carry up to 72 people and is approximately 9.4 m long, 3.5 m wide and 6 m high, 

with a draft of 2.9 m. Its empty weight is approximately 5806 kg and has a fully loaded weight of 

approximately 11,500 kg. For the study, the lifeboat was empty except for the participants and an 

operator who monitored student performance and ensured safe operation of the vessel. All testing 

performed with the lifeboat was conducted in a sheltered harbor. Figure 2-3 show the simulator 

and the lifeboat used in the study. 

Participants completed tasks in a simulator with a representative layout and equipment of the real 

lifeboat.  The simulator is equipped with real lifeboat equipment (e.g. steering wheel, throttle, 

brake release, compass) allowing participants to operate the controls needed to launch the lifeboat 

in a simulation environment complete with visuals and sounds.  The simulator is certified by Det 

Norske Veritas Germanischer Lloyd (DNV-GL) and Transport Canada as being capable of 

representing realistic situations needed for training. The simulated lifeboat motion, equipment, and 

layout were modeled to be the same as the real lifeboat. This simulator has been used in previous 

studies to measure skill transfer (Magee et al., 2016) and skill retention (Billard et al., 2018). 
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Figure 2-3: VMT Lifeboat Simulator Interior and Lifeboat 

2.6 Results 

Our principal measure of performance was the ability of participants to complete all tasks 

successfully on their first attempt in the emergency test scenario.   The results of first attempts 

provides an indicator of skills retained from practice and an indicator of skills transferred from 

practice to a new plausible event.  In a real emergency scenario, a successful launch of the lifeboat 

would require all steps to be completed correctly based on the established performance criteria.  

Failure to complete any of the tasks could result in harm to the crew or damage to the lifeboat.  To 

make comparisons between the type of training received, we analyzed the performance on tasks 

on the first attempt at the test scenario launching and maneuvering tasks.   

The frequency of errors made during launching and maneuvering was also investigated.   An 

analysis of individual tasks provides a more granular measure of performance and indicates which 

tasks resulted in the most frequent errors for each of the sub-groups. Launching and maneuvering 

tasks were compared separately as they require different types of skills.   
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The final group sizes create some statistical uncertainty in comparison of performance between 

groups.   Statistical comparisons assume small sample sizes and use appropriate significance levels 

for acceptance of differences.    

2.6.1 Success on First Attempt at an Emergency Launch and Maneuvering Tasks 

The results shown in Table 2-3 summarize the performance of each group on their first attempt to 

launch the lifeboat in the emergency test scenario.   The table shows that six members of the 

Simulator Group and two members of the Drills Group were successful on their first attempt at the 

launch task, and that no one in the CBT Group was successful.  

Table 2-3: Frequency of Success on First Attempt at the Launch task 

 Group  

 Simulator Drills CBT  

Success 6 2 0  

Failure 8 10 14  

 14 12 14  

 

 

As indicated in Figure 2-4, this corresponds to 17% of the Drills Group and 43% of the Simulator 

Group being able to complete all tasks successfully on first attempt.  Overall, 20% of all 

participants were able to successfully launch the lifeboat on first attempt. 

Pair-wise comparisons of the groups were conducted using Fisher Exact Probability Tests (one 

tailed) with p ≤ 0.10 as the critical value for rejecting the hypothesis that the performance of the 

groups is the same.  The Simulator Group did not have reliably more successes than the Drills 
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Group, p > 0.10, but did have reliably more successes than the CBT Group, p ≤ 0.10.  There is no 

reliable difference in the CBT Group and the Drills Group, p > 0.10.    

 

Figure 2-4: Percentage of Success on First Launch Attempt 

No participants in either group could successfully complete all maneuvering tasks on their first 

attempt in the emergency test scenario.  The inability to achieve the minimum standard of 

performance for one or more subtasks accounts for the low success rates for the maneuvering task 

on first attempt, since success depended upon doing all component subtasks.   An analysis of 

frequency of errors for each subtask is made in the next section to compare the performance of the 

groups on maneuvering tasks.    

2.6.2 Frequency of Errors Made on Launching and Maneuvering Tasks 

Figure 2-5 shows the frequency of errors made by each of the groups during the launch and 

maneuvering tasks.  A lower number of errors is an indicator of higher performance.  
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Figure 2-5: Frequency of Errors made during Launching and Maneuvering Tasks 

The Simulator Group averaged the lowest amount of errors during launching, with 1.2 errors made 

on first attempt of tasks (median 1, mode 0). The Drills Group made an average of 1.5 errors on 

first attempt (median 1, mode 1), and the CBT Group made an average of 3.5 errors (median 3, 

mode 3).  A Kruskal-Wallis test of differences among the medians indicated significant differences 

between groups (H = 12.13, p < 0.05).  A one-way ANOVA (95% confidence) on ranked data of 

the three groups indicated a significant difference between the group means. Tukey Comparison 

Tests (95% confidence) determined the CBT Group mean is significantly different than the mean 

of the Drills and Simulator Groups.  No significant difference between the means of Drills and 

Simulator Groups was determined from this analysis. 
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Overall, the participants made more errors in maneuvering tasks than launching tasks. The CBT 

Group had the highest number of errors in maneuvering on first attempt with an average of 4.8 

errors (Median 4.5, mode 3). The Drills Group averaged the lowest number of errors with a mean 

of 3.33 (median 3, mode 5). The Simulator Group averaged 3.6 errors (median 4, mode 5) on first 

attempt on maneuvering tasks.   Kruskal-Wallis tests did not indicate a significant difference 

between medians of the groups and a one-way ANOVA on ranked data did not indicate a 

significant difference in sample means.   This outcome suggests additional testing is needed to 

discern if there is a difference in group performance on maneuvering tasks.  

2.6.3 Analysis of Individual Tasks 

Analysis of individual job tasks provides further insights into the performance of each group.   

Figure 2-6 shows the percentage of successful task completions for each of the groups and the 

overall average of successful task completions for all participants.    

The CBT Group performed worse than the overall group average on 8 of the 10 launch tasks. The 

Drills and Simulator Groups scored as good as or better than the overall group average on 9 of 10 

of the launch tasks. This observation further indicates the CBT Group did not perform as well as 

the Drills or Simulator Groups based on the comparison of performance on individual launch tasks.   
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Figure 2-6: Successful Task Completions - Launching 

The analysis of individual tasks also allows us to discern the tasks that had the highest and lowest 

success rates, thereby providing an indicator of transfer of skills to the emergency test scenario 

and the difficulty of the tasks.  The completion of the Air and Sprinkler and Splashdown zone tasks 

(see Table 2-2) scored lowest for all groups with less than 58% overall success. The Simulator 

Group was the only group that had previous practice in identifying a fire hazard and launching into 
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sea states, and showed the highest success rate for these tasks. All other tasks showed an overall 

success rate of 65% or higher.     

Figure 2-7 shows the percentage of successful maneuvering task completions.    

 

Figure 2-7: Successful Task Completion – Maneuvering 

The CBT Group scored lower than the overall group average on 9 of 10 of the maneuvering tasks.  

The Simulator Group scored higher than the overall group average on 7 of 10 tasks and the Drills 
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Group scored higher than the overall group average on 8 of 10 tasks.   This shows that the CBT 

Group did not perform as well as the Drills and Simulator Groups on maneuvering tasks.  Tasks 

related to stopping the vessel showed the lowest success rate for all groups.  The task Recover a 

PIW was identified as the most difficult, with less than 20% of all participants able to the complete 

the task on first attempt.  Coming alongside a vessel had an overall success rate of 35% on first 

attempt. 

2.7 Discussion of Results 

The results of the study provide evidence regarding skill acquisition and transfer in relation to the 

type of training. There is a benefit to performing training using realistic scenarios and real lifeboat 

equipment. The participants in the Drills Group and the Simulator Group practiced using lifeboat 

equipment during launching and maneuvering training and were able to practice tasks in live 

scenarios. The CBT Group refreshed their knowledge of procedures and skills learned during 

initial training through mental practice.   The Drills and Simulator Groups outperformed the CBT 

Group in launch tasks in all comparisons.    

On the overall task of successfully launching a lifeboat on first attempt, the Drills and Simulation 

Group outperformed the CBT Group. Combining the Drills and Simulation Groups, 31% of 

participants who received hands-on training were able to successfully launch the lifeboat on first 

attempt, compared to 0% of CBT Group participants who did not get hands-on training.  On a task 

by task analysis, we observed that specific tasks that could not be rehearsed in the CBT training 

resulted in inferior performance. These include procedural tasks during launch, including turning 

on the lifeboat engine, informing the crew prior to launch, and timing the release of the lifeboat.  
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While these tasks were identified in the quarterly training material, the CBT Group did not rehearse 

in a scenario, or have the opportunity to practice using real equipment. The CBT Group also 

performed worse than the Simulator Group and Drills Group on psychomotor maneuvering tasks, 

including the more difficult slow maneuvers.   

Practicing in progressive scenarios with exposure to weather conditions and hazards provides an 

incremental improvement in performance during launch tasks. This is evident in the successful 

completion of all tasks during first launch attempt.  Although no significant difference between 

groups was established based on success on first launch, the analysis of individual tasks indicates 

the Simulator Group was able to recognize hazards and deal with weather conditions better than 

the Drills Group, who practiced in calm water conditions without hazards.  These outcomes 

provide further evidence that providing similarity between the test environment and the learning 

environment enhances the retrieval of information (Arthur, 1998, Wickens, 2003) and skill 

retention (Driskell et al., 1992). 

No one was able to successfully complete all maneuvering tasks on first attempt.  This result 

indicates that no group received enough practice to successfully perform these skill-based tasks. 

The study suggests that specific tasks, such as stopping a vessel in waves, are difficult and require 

more practice to master.  The amount of practice received on maneuvering tasks in calm water or 

lower sea states did not provide opportunity to achieve competence for tasks in moderate waves. 

The poor performance of a lifeboat at low speeds could also be a factor contributing to the low 

success rate.  
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An analysis of all groups indicates lifeboat launch training is a task that is susceptible to skill fade.  

For the study, the interval of training was kept constant to match industry practice and to make 

comparisons based on the type of training received.  While some failures were due to hazards that 

were not practiced in training, the analysis suggests that errors were made in tasks that were 

practiced to competence during quarterly training sessions including performing pre-launch 

inspections, starting the lifeboat, and issuing commands to crew members.     

2.8 Conclusions and Recommendations 

The study provides insights on the difficulty of performing tasks in hazard scenarios and 

environmental conditions that are plausible in real-life operations.  Although the participants 

received multiple practice sessions, overall there was low success rate on launching and no 

participants were able to do all the maneuvering tasks. This outcome indicates a need to investigate 

further the acquisition and loss of maneuvering skills over time, and the transition of skills from 

benign conditions to challenging conditions.    These results may be of interest to stakeholders in 

oil and gas, shipping, defense, security, and cruise ship industries who are required to maintain the 

competence of personnel in emergency evacuation tasks or launching procedures.   

The training regime used in the experiment was designed to emulate training practices currently 

utilized in industry. The results of the study suggest that some skills may not be mastered using 

the type, amount, and frequency of training given in practice.  The study of performance on the 

cognitive tasks associated with launching a lifeboat indicate some skill fade, which has been found 

in similar research (Stewart et al., 2008). The low performance on maneuvering tasks suggests 

these skills were not mastered in the training provided, as we would expect higher performance on 



48 

 

these psychomotor tasks if competency was achieved.  The study indicates that current practices 

may not provide enough training time to acquire the needed skills in a year-long training program.  

Subsequent training beyond the one year would provide more training events and may increase 

training performance.  

The study did not measure physiological information on trainee stress, though the context of the 

emergency exercise and increased difficulty was expected to create more mental demand and 

stress. Allowing trainees to practice in stressful environments has been shown to improve 

performance in stressful operations (Mclernon, 2011) and can reduce cognitive difficulties in high-

reliability occupations such as firefighting (Baumann et al. 2011).   Research has shown that 

practice in scenarios with representative events and difficulty helps development of mental models 

to improve decision making (Klein, 2008).  Similar benefits are expected for lifeboat operators if 

they receive training in difficult and complex scenarios.  

Maritime education and training instructors can apply the results to improving training practices 

and outcomes. We see a benefit to performing training using real lifeboat equipment and practicing 

in scenarios of progressive difficulty, collectively creating a training environment that is 

representative of a real emergency. Training in scenarios with stressors and hazard that are possible 

in a real emergency is expected to increase trainee confidence and performance in an actual 

emergency event.  

Psychological principles of learning, such as overtraining, could be employed to improve retention 

between practice sessions and to improve performance in new events. They could also be 

employed to promote training adaptability and to provide training that addresses recognized 
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weakness in skills. More frequent training events, shortened intervals between training, and 

adaptive training can improve skill acquisition and limit skill fade.  Future studies will examine 

the impact of these factors on achieving and maintaining competence in lifeboat coxswains.   
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3.0  CHAPTER 3: USING BAYESIAN METHODS AND SIMULATOR DATA TO 
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This manuscript has been published in the World Maritime University (WMU) Journal of Maritime 

Affairs (2020).  Writing was led by Randy Billard, with assistance on modeling and results 

interpretation provided by Mashrura Musharraf and Jennifer Smith. Brian Veitch and Mashrura 

Musharraf provided guidance in writing and provided revisions to the paper.  

3.2 Abstract 

Lifeboat training is normally performed in controlled conditions to minimize the risk to trainees 

and equipment. Participants are given limited or no opportunity to practice skills in operational 

scenarios that represent offshore emergencies.  For this reason, human performance in plausible 

emergencies is difficult to predict due to the limited data that is available.  Simulation provides a 

means to collect novel data on human performance and learning in situations that are otherwise 

prohibitive due to risk.  In this study, we use simulator data to shape knowledge of the problem 

space of lifeboat coxswain training and skill transfer.  We use Bayesian inference to produce 

human performance probabilities (HPPs) to model the performance of lifeboat coxswains as they 

practice lifeboat tasks for the first time.  Data collected in an experiment are used (1) to generate 
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probability distributions to predict the amount of practice needed for new coxswains to achieve 

competence on lifeboat launching and maneuvering tasks, (2) to study how skills learned in 

training transfer to a new scenario and, (3) to make comparisons between task difficulty.    The 

methodology can be applied to other problems to assess training effectiveness and improve 

instructional design.  Models can be continuously strengthened with additional data to improve 

predictive accuracy.  Probability distributions can be used to assess competence in new scenarios 

and to diagnose strengths and weaknesses using machine learning.   

3.3 Introduction 

Lifeboat operators are required to have the skills to launch and operate a lifeboat in environmental 

conditions that prevail in their location of operation. Although operators may experience 

challenging conditions in a real emergency, initial training is normally conducted in calm waters 

to minimize the risk to trainees and equipment. Training typically includes a combination of 

lectures, demonstrations, and group practice sessions.  Competence is normally assessed based on 

the trainee’s ability to demonstrate completion of tasks trained individually in course curriculum. 

Practice drills following training are performed in calm water and involve launching the lifeboat 

and simple maneuvering tasks to re-familiarize trainees with the operation of the lifeboat 

(International Maritime Organization, 2014).   It is assumed that skills acquired in training can be 

transferred to more difficult scenarios, such as emergencies involving a lifeboat in adverse 

weather.   

Industry studies have identified that benchmarking of lifeboat coxswain skill is difficult to assess 

based on the limitations in training, yet coxswain skill has an impact on a successful lifeboat launch 
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(Robson, 2007).  There is little information available on the amount of practice needed to acquire 

and master specific skills, and how the skills learned in training transfer to operational scenarios.  

Little is known about coxswain performance in sea states other than calm water, or in scenarios 

where coxswains must complete a combination of launch and maneuvering tasks as they would in 

a real emergency. Forecasts of coxswains’ skill transfer to real-life operational scenarios has relied 

on experts’ opinion.  

With the advent of simulator technology, it is now possible for trainees to practice in weather 

conditions typical of their location of operation and to apply their skills in realistic emergency 

scenarios.   Data collected from the simulator provide an opportunity to measure competence in 

lifeboat coxswains as they demonstrate skills in scenarios that previously could not be performed 

including weather conditions that are considered too dangerous for live training.  Using simulation-

based assessment (SBA) to measure cognitive and practical skills is increasing in learning and 

education (S. de Klerk, et al. 2015).   Simulators have been used to investigate human performance 

in marine operations (Sellberg, 2017, Power-MacDonald et al., 2011, Magee et al. 2016, Thistle 

et al. 2019), and specifically to study skill acquisition and transfer for lifeboat coxswain training 

for credible emergencies (Billard et al. 2019).   The paper discusses a method that uses data 

collected from SBAs to formulate probabilistic models to study human performance.  

We define human performance probability (HPP) as the probability that a trainee will successfully 

complete a task in a given scenario. Studies have used Bayesian inference and data collected from 

simulators to estimate performance probabilities for several problem domains to deal with scarcity 

of data (Groth et al., 2014, Musharraf et al. 2019). The Bayesian inference method is used in this 

paper to develop a probabilistic model that updates the prior beliefs about HPPs of lifeboat 
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coxswains using data collected from a simulator experiment. The model provides a quantitative 

look at the problem space of initial skills acquisition in lifeboat coxswains.    

The HPP  cumulative distribution functions (CDFs)  are used to investigate the following research 

questions:  

1. What is the expected performance of new lifeboat coxswains as they apply skills learned 

in initial training to a new scenario?  

2. How much practice is needed to acquire the procedural and psychomotor skills to launch 

and maneuver a lifeboat in plausible weather conditions? 

3. Do specific tasks or task types require more initial training and practice to master? 

An outcome is the creation of sets of CDFs to quantify skill acquisition in a group of new trainees 

as they enter a training program designed to prepare coxswains for offshore emergencies involving 

a lifeboat.  We compare HPP CDFs to evaluate the relative difficulty of tasks and investigate the 

amount of practice needed to acquire skills in initial training.  We compare the statistical measures 

of the CDFs to evaluate the strength of the modeling approach. 

Some lifeboat tasks can be categorized as either procedural or motor-skill based, while others 

require a combination of both physical and cognitive skills.  Studies have shown there are 

differences in the type and amount of practice needed to acquire and retain skills for each task type 

(Sauer et al., 2000).  We investigate performance on individual task types to study the difference 

in skill acquisition for tasks involving combinations of procedural skills and physical motor skills.  
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The paper presents an analysis that has relevance to lifeboat training providers and presents a 

methodology that can be used to study other problem areas. The study outcomes can be used by 

trainers and industry stakeholders to assess competence in new trainees using the HPPs as a 

benchmark of performance.  The methodology can be applied to additional problems including 

those where simulation is extending training to conditions to challenging conditions that could 

previously not be practiced. As additional data is collected on user performance, Bayesian methods 

can be applied to improve the predictive accuracy of probability-based models.  The probability 

distributions created in this study can be used to diagnose competence and adapt training 

curriculum to individual needs. The outcomes can be used to evaluate risk, improve training 

programs, performance, and investigate ways to accelerate time to competence. 

3.4 Methodology 

The study uses Bayesian inference (BI) to generate HPPs for a group of new coxswains as they 

apply their skills in an operational scenario involving completion of multiple tasks.   Similar to 

other studies (Groth et al. 2014, Musharraf et al. 2018), we use experimental data sets from a 

simulator experiment to update prior beliefs about the HPPs and to create a posterior distribution 

that is informed by new data.   

Experimental data was collected for participants who received initial training on the operation of 

a lifeboat and then applied their skills in a new scenario involving completion of lifeboat launch 

and maneuvering tasks.  Seven different tasks had to be completed in the scenario. The scenario 

was repeated multiple times until participants completed all tasks successfully allowing for 

additional learning through practice.   
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Probability distributions for each task were created for each scenario attempt. Sets of HPPs were 

created for each task using the experimental group’s performance outcome for each attempt at task.  

The sets of HPPs were used to evaluate the learning transfer from initial training to a new scenario, 

and to investigate skills acquisition as tasks were repeated.    Tasks were grouped based on the 

type of skill required to complete tasks to make comparisons between task types. We also created 

a distribution model for overall competence, based on successful completion of all tasks in the 

scenario. 

3.5 Bayesian Inference Study Approach  

The BI process uses Bayes Theorem (Equation 1) to update a hypothesis, or belief, H, based on 

new data. D. 

𝑷(𝑯|𝑫) = 𝑷(𝑯)
𝑷(𝑫|𝑯)

𝑷(𝑫)
     (1) 

Bayes theorem is applied to obtain the posterior distribution 𝑃(𝐻|𝐷) given new data is provided. 

𝑃(D) is the marginal probability of the data. This is normalized over all specific hypotheses and 

remains constant, independent of H.  We collected data in a format that can be used to update prior 

distribution 𝑃(𝐻), using a likelihood model to translate observable data into probabilistic 

information. The likelihood model expresses the probability of the data given the truth of the 

hypothesis 𝐻, and is defined as 𝑃(𝐷|𝐻).   We use likelihood functions and prior distributions that 

are conjugate pairs, allowing for a closed form of integration to calculate the continuous 

distribution of  𝑃(D) as discussed in similar studies using BI (Groth et al. 2014, Musharraf et al. 

2019). 
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The BI process used in the study involved the following steps:  

1. Define the likelihood function for the performance distribution: We assume a binomial 

distribution as the probabilistic distribution to identify the number of successful attempts 

on completion of tasks, assuming independence among training events in group. The 

binomial distribution describes uncertainty on the number of successful attempts (x) in a 

number of cases (n), assuming the probability of success.  In our case, x is the number of 

successful demonstrations of completion of a task for a specific attempt and n is the total 

number of participants tested in a scenario. The distribution is as follows, with unknown 

parameter p (i.e. the HPP for event X is p),  

𝐏𝐫(𝑿 = 𝒙) = 𝒇(𝒙|𝒑) =  (
𝒏
𝒙

) 𝒑𝒙(𝟏 − 𝒑)𝒏−𝒙   (2) 

2. Identify sources of information consistent with the distribution model: For data obtained 

in the experimental study, we assume tasks of all types are either demonstrated 

successfully, or else they are a failure, using an established rubric to measure successful 

completion. The study uses groups of participants of total number n for each attempt 

measured, and x defines the number of successful task completions in the group.    

3. Specify the initial prior distribution: The prior distribution of the HPP is defined as po. The 

Beta distribution is a conjugate pair of the binomial distribution and is commonly used as 

the prior distribution to define p.  The probability density function (PDF) for the Beta 

distribution is as follows: 

𝑷𝑫𝑭 = 𝒇(𝒑: 𝜶, 𝜷) =  
𝒑𝜶−𝟏(𝟏−𝒑)𝜷−𝟏 

𝑩(𝜶,𝜷)
     (3) 
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0 ≤ 𝑝 ≤ 1,  standard Beta distribution. 

where 𝐵(𝛼, 𝛽)  =  
Г(𝛼)Г(𝛽)

Г(𝛼+𝛽)
, Г 𝑖𝑠 𝑡ℎ𝑒 𝐺𝑎𝑚𝑚𝑎 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

The CDF is therefore defined as the regularized incomplete beta function 𝐼𝑥(𝛼, 𝛽), and is 

defined as follows:  

𝑪𝑫𝑭 = 𝑷(𝑿 ≤ 𝒕) = ∫  
𝒑𝜶−𝟏(𝟏−𝒑)𝜷−𝟏 

𝑩(𝜶,𝜷)

𝒕

𝟎
 dt     (4) 

Parameters of the beta distribution (α and β) are initially estimated to form a prior 

distribution model. As discussed in Section 2.4, the participants in the study are provided 

with a basic lifeboat training and familiarization, and we assume trainees acquired some 

skill in operation of the vessel and basic maneuvering.  Little also is known about the 

background skill of the participants that could be transferred to the operation of the lifeboat. 

For this reason, we assume a Jeffreys prior, Beta (0.5,0.5) for the first attempt at task, 

assuming an equal chance of successful task completion on first attempt for all tasks in a 

new scenario.   

4. Perform Bayesian updating to create posterior distribution: The prior distribution 

(Beta(𝛼𝑝𝑟𝑖𝑜𝑟 , 𝛽𝑝𝑟𝑖𝑜𝑟)) and the likelihood function (Binomial (n,p)) are conjugates and with 

Bayesian updating, the posterior distribution is also a Beta distribution.  Posterior values 

can be calculated through the updating of the Beta distribution parameters (α and β) using 

available data.  For each set of attempts on tasks, the simulator data records x successes in 

n cases, providing new evidence on the probability model.  Values of updated α and β are 

found using the following equations: 
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𝜶𝒑𝒐𝒔𝒕 = 𝜶𝒑𝒓𝒊𝒐𝒓 + 𝒙      (5) 

𝜷𝒑𝒐𝒔𝒕 = 𝜷𝒑𝒓𝒊𝒐𝒓 + 𝒏 − 𝒙     (6) 

5. Perform BI for additional attempts: The study collected group performance data (successful 

completions) for each attempt (A) made in the simulator assessment scenario. The data 

collected on the first attempt is used to update the prior belief about the HPP (Jeffrey’s 

prior) and generate a posterior Beta distribution based on observed outcomes. The refined 

distribution serves as an indicator of group probability of success on the first attempt at 

tasks. The posterior is assumed to be a more accurate indicator of probability compared to 

a Jeffreys prior. The posterior from the first attempt A1 is used as the prior to the next 

attempt A2. Data collected on A2 is then used to perform the updating using BI.  The same 

methodology is performed to form HPP distributions for 3 attempts at task. Table 3-1 

provides a breakdown of the parameters used for each HPP CDF. 

Table 3-1: Distribution Parameters for Each Task Attempt: 

 Task Attempt (A) 

Parameters A = 1 A = 2 A = 3 

Total participants in Attempt 𝑛1 𝑛2 𝑛3 

Number of successes in Attempt 𝑥1 𝑥2 𝑥3 

𝜶𝒑𝒓𝒊𝒐𝒓 0.5 𝛼𝑝𝑜𝑠𝑡1 𝛼𝑝𝑜𝑠𝑡2 

𝜷𝒑𝒓𝒊𝒐𝒓 0.5 𝛽𝑝𝑜𝑠𝑡1 𝛽𝑝𝑜𝑠𝑡2 

𝜶𝒑𝒐𝒔𝒕𝑨 𝛼𝑝𝑟𝑖𝑜𝑟 + 𝑥1 𝛼𝑝𝑟𝑖𝑜𝑟2 + 𝑥2 𝛼𝑝𝑟𝑖𝑜𝑟3 + 𝑥3 

𝜷𝒑𝒐𝒔𝒕𝑨  𝛽𝑝𝑟𝑖𝑜𝑟 + 𝑛1 − 𝑥1 𝛽𝑝𝑟𝑖𝑜𝑟2 + 𝑛2 − 𝑥2  𝛽𝑝𝑟𝑖𝑜𝑟3 + 𝑛3 − 𝑥3 
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3.5.1 Assessing Transfer and Learning using Human Performance Probability Distributions  

The outcome of this process is sets of HPP distributions. Data collected on completion of tasks in 

the new scenario provides a measure of skills transfer from initial training to a new scenario. 

Subsequent attempts provide data on how additional practice impacts the probability of completion 

of tasks.  With each attempt, learning is expected to occur. Data from each attempt is used to refine 

the probability distribution for the task attempt considering the number of successfully 

completions observed in the group of coxswains. The HPP distributions are presented as CDFs to 

provide a visual comparison of performance for different task types and give insights on the group 

performance after multiple attempts.  As shown in Figure 3-1, for each task type a set of three HPP 

CDFs are generated, one for each of the attempts made for a specific task.   

 

Figure 3-1: HPP Distribution Set 
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3.5.2 Making Comparisons and Assessing Strength of BI Approach for HPP Modeling 

We make comparisons between the task types and attempts at tasks using the mean of the beta 

distributions. The mean of the distribution changes with each task attempt and is calculated based 

on the α and β specific to the task type and attempt performed. The mean of the distribution, E, is 

defined as follows:   

𝑬[𝑿]  = 𝝁𝑨 =  
𝜶𝑨

𝜶𝑨+𝜷𝑨
       (7) 

Where (αA and βA) are the beta parameters for each attempt (A).  The mean of the distribution is 

μA= 0.5 on the CDF, as shown in Figure 3-1.   

We evaluate the strength of the modeling approach used in the study through comparison of the 

standard deviation and credible intervals of the HPP CDF’s calculated parameters.  A reduction in 

these parameters suggests a reduction in uncertainty.  

The standard deviation (SD) of the beta distribution is calculated as follows using the calculated 

beta distribution parameters:  

𝑺𝑫𝑨[𝑿]  =  √
𝜶𝑨𝜷𝑨

(𝜶𝑨+𝜷𝑨)𝟐(𝜶𝑨+𝜷𝑨+𝟏)
    (8) 

A Credible Interval (CI) is commonly used in Bayesian statistics to summarize the uncertainty 

related to calculated parameters (Makowski et al. 2019).  The CI provides a range containing a 

percentage of probable values of the modeled posterior distribution from the Bayesian inference. 

The shorter the CI, the lower the uncertainty.   A 95% credible interval is used, which assumes a 
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central portion of the posterior distribution (upper and lower 2.5% removed) and considers the 

percentile from the lower to upper cumulative distribution function of the beta distribution. 

3.5.3 Experimental Data from Lifeboat Simulator Study 

Experimental data was collected from a group of participants with no prior lifeboat experience.  

The experiment consisted of the following:  

1. Initial training of naïve participants to outline the key equipment and operation of the 

lifeboat, followed by familiarization with the simulator that would be used in the study.  

2. Completion of an assessment scenario in a simulator in a more difficult environment than 

used in initial training.  The scenario involved completion of multiple task types learned in 

initial training.  Participants practiced the scenario until they demonstrated competence on 

all tasks.   

54 participants were recruited for the study.  Participants were between the ages of 18 and 65. 

Initial training of all participants consisted of a combination of classroom training from an 

instructor and familiarization exercises with a simulator.  The training curriculum covered 

competencies identified in the Standards of Training, Certification and Watchkeeping for Seafarers 

(International Maritime Organization, 2010) and emulated a training course provided to coxswains 

in industry.   The training covered basic operation of the lifeboat, coxswain duties, pre-launch 

inspection procedures, clear away procedures, navigation procedures, radio communications, and 

layout of equipment.   After training was completed, participants were given a fifteen-minute 

simulator exercise to become familiar with the lifeboat simulator and boat handling characteristics.  



64 

 

All training on the simulator was performed in calm water, consistent with industry practice, and 

operation of the vessel in higher wind and waves was only covered in classroom materials.  

Approximately 5 days following initial instruction, participants completed a simulator assessment 

scenario designed to evaluate the fundamental skills required to operate a lifeboat, which included 

the launch and control of the lifeboat in weather conditions that required the operator to consider 

the impact of light waves and wind when maneuvering the boat.  The scenario was designed by 

Subject Matter Experts (SMEs) and scored personnel on their ability to complete launch, 

navigation, and slow-speed maneuvering tasks in an exercise that required completion of these 

types of tasks.   The parameters of scenario were set to daytime with clear visibility, 9 knot winds, 

and a Beaufort scale of 3 with large wavelets. Wind and waves did not have a high impact on 

vessel performance but could affect boat during slow-speed maneuvers. Users also had to consider 

the direction of wind when determining the correct direction to approach the target.   The scenario 

diagram is provided in Figure 3-2.  

The scenario consisted of two launch tasks and five on-water tasks. Participants were not permitted 

to move to on-water tasks until they successfully completed all launch tasks. The scenario was 

stopped immediately during the launch and clear away if participants made critical errors that 

could result in damage to the vessel or harm to the crew such that the scenario could not progress 

(i.e., forgetting to ensure launch equipment was operational, making contact with platform). In 

these cases, the launch was restarted.  Tasks 1 and 2 in Figure 3-2 denote the launch and clear 

away tasks. When a successful launch (Task 1 and 2) was achieved, the participant immediately 

proceeded to the maneuvering course (Scenario Event ST, Figure 3-2) and started at this point for 

the following attempts. Multiple attempts at the on-water tasks (Tasks 3-7) were provided as 
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needed until all tasks were completed successfully.  Additional details on the experiment and 

simulator used in the study are discussed in Billard et al. (2019). 

 

Figure 3-2: Assessment Scenario 

3.5.4 Performance Measurements 

A scoring rubric was established to provide a consistent measure performance for launching and 

maneuvering tasks in the assessment scenario.  The criteria for task completion reflect a standard 

of proficiency as identified in recognized training standards (International Maritime Organization, 

2010).  Scoring measures were determined by SMEs with experience in delivering lifeboat 



66 

 

training. Tasks were categorized based on the type of activity that had to be performed in the 

scenario and the type of skill being assessed. Table 3-2 provides a list of tasks and objectives used 

to measure successful completion and identifies the categories used for comparison of task types. 

Each task category contained subtasks.  An attempt at task was considered successful only if all 

subtasks were completed successfully.  Additional information on the task type and rubric is 

provided in Billard et al. 2018.    

Table 3-2: Task Categories 

Task Category Description of Task Scenario 

Task 

Procedural 

launching 

tasks 

A combination of procedural tasks, performed in the correct order, to 

prepare lifeboat for launch and lower lifeboat to the water surface. Tasks 

include inspection of equipment prior to launch, communication with 

Offshore Installation Manger and crew members to ensure situation is safe 

for launch, preparing boat for launch, and lowering to water surface.     

1 

Clear away 

tasks 

Physical task of ensuring lifeboat is buoyant, releasing lifeboat from davit, 

proceeding to a safe zone as quickly as possible, and avoiding contact with 

platform. 

2 

Navigation 

tasks  

Maintaining control while steering a lifeboat to a desired location using 

visual cues to steer to a landmark or using a navigation aid (i.e. compass) 

to steer on a heading. 

3, 4 

Slow-speed 

maneuvering 

tasks 

Skill-based task of maneuvering a lifeboat close to an object and 

maintaining the position of the lifeboat at low speeds while applying 

strategy to deal with environmental forces such as winds and waves. Types 

of tasks include stopping next to a mark (i.e. a life raft), stopping next to 

a PIW for recovery, and stopping next to another vessel (a Fast Response 

Craft) to transfer personnel. 

5,6,7 

 

3.6 Results  

The results of the methodology are sets of HPP CDFs for individual task types that can be analyzed 

to evaluate learning in the experimental participants as they practice tasks. We make comparisons 

within and between sets of CDFs to evaluate transfer and skill acquisition and to assess task 

difficulty.   
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The calculated means of the beta distribution CDFs, as derived from the BI methodology, are used 

to make numerical comparisons between HPP CDFs. Comparisons are made between different 

task types to evaluate relative task difficulty, and within set of tasks HPP CDFs to assess how 

practice on the same task impacted performance. A visual comparison of the CDFs can be used to 

observe differences in group performance.  As probability of success increases, as indicated by an 

increase in the CDF mean, the curve will move to the right.  More movement indicates a bigger 

step in group performance and shows the impact of additional practice on skill acquisition.  

The HPP CDFs are grouped based on the task categories identified in section 2.4.1. A discussion 

is provided for each set of tasks to illustrate how the HPP CDFs are used to investigate the research 

objectives identified in section 1.0.  The impact of practice is examined for each task type and 

insights on the factors impacting task difficulty are provided.  A comparison of all tasks is provided 

to illustrate the relative difficulty of the task types.   A model of overall coxswain competence 

assuming successful completion of all tasks in the simulator scenario is also presented to relate the 

study outcomes to participant preparedness for a plausible emergency event.  The strength of the 

modeling approach is also discussed through comparison of standard deviation and credible 

intervals for the sets of distributions.  The results are presented in detail below. 

3.6.1 Summary of Group Data by Attempt  

Participants attempted tasks until all tasks were completed successfully in the same scenario. As 

discussed in section 2.3, procedural launch and clear away tasks were repeated if critical errors 

were made, after which participants were able to start maneuvering and navigation tasks. As result 

of this setup, there were a different number of participant cases (n) for attempts at task. The number 
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of successful attempts for each case, x, was the number of times the task was successfully 

completed by participants in the group.   Table 3-3 provides a breakdown of the experimental 

outcomes. 

Table 3-3: Successful Task Completions by Attempt 

 First Attempt 

(A1) 

Second Attempt 

(A2) 

Third Attempt 

(A3) 

Case n1 x1 n2 x2 n3 x3 

Procedural Launch 54 14 44 23 24 14 

Clear Away 54 26 41 32 13 10 

Navigate by Landmark 54 48 51 41 46 43 

Navigate by compass 54 33 51 39 46 35 

Stop at Landmark 54 23 51 31 46 31 

PIW Pickup 54 13 51 13 46 20 

Come Alongside a vessel 54 25 51 28 46 34 

The posterior Beta distribution parameters and resultant HPP CDF’s were derived from the 

experimental data using the approach outlined in section 2.  The CDFs are shown in Figures 3-3-

3-5.  

3.6.2 Launching Tasks  

The distributions indicate the initial success rate of the procedural launch tasks and clear away 

tasks to be 26% and 48% respectively. This result indicates initial training did not provide enough 

practice to for trainees to acquire the skills needed to perform these tasks in a new scenario. For 

all the attempts, the group performance was higher in the clear away task than for the procedural 

launch tasks. The mean HPP for the procedural launch tasks increased to 42% and the mean HPP 

for the clear away tasks increased to 63% after three attempts. The procedural launch tasks were 

more difficult to complete than the skill-based launch task. A distribution mean of less than 50% 

on the procedural tasks suggests that initial practice and three practice attempts did not provide 
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enough training for the majority of the group to acquire the skills needed to complete the tasks. An 

explanation for the low success rate is the number of procedural items that had to be performed 

and the requirement to complete the tasks in a specific order resulted in a high task difficulty.  

      

Figure 3-3: Launch Task HPP CDFs 

3.7 Navigation Tasks 

Analysis of the navigation tasks suggests this task type was easier to complete compared to the 

launch tasks.  As shown in Figure 3-4a, the mean of the distribution for the task of navigating by 

landmark was above 80% on for all attempts and did not change substantially with additional 

practice. This result indicates initial training provided sufficient practice to achieve competence 

on the task. With reference to Figure 3-4b, a comparison of the distributions suggests maintaining 

a constant heading when navigating by compass is more difficult than navigating by a landmark. 

Task difficulty is increased when using a compass. The user must maintain control of a boat while 

monitoring a compass heading that has erratic behavior, which takes more skill to maintain a 

heading than navigating to a landmark that is viewed at a distance from the lifeboat. The operation 

requires driving skill to correct changing values shown on the navigation equipment while 
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maintaining control of the vessel.  The results show an increase in performance with practice. The 

mean of the distribution for navigating by compass increased from 61% to 71% after 3 attempts, 

showing additional practice improved performance.  

     

Figure 3-4: Navigation Task HPP CDFs 
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3.7.1 Slow Speed Maneuvering Tasks 

The HPP’s for all the slow speed maneuvering 

tasks show an initial success rate of lower than 

50%, indicating initial training did not enable most 

participants to acquire the skills needed to perform 

this task type.  As shown in Figure 3-5a and 3-5c, 

the overall probability of success increased for the 

tasks of stop at a mark and come alongside a vessel, 

and most group participants were able to complete 

these tasks after three attempts (mean probability of 

success increased to greater than 50%). As shown 

in Figure 5b the task of PIW pickup had a group 

success rate of 25% on first attempt, increasing to 

31% on the third attempt, suggesting that this task 

was the most difficult of the slow-speed 

maneuvering tasks that were practiced.   

The PIW task was most difficult to perform due the 

challenge of losing sight of the small target.   The 

PIW cannot be seen from the coxswain’s point of 

view when close to the lifeboat due to the location 

of the chair and windows which are located high in 

the lifeboat. The participant had to rely on the 
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recommended practice of communicating with an assistant in the boat who provided information 

on distance to the target using voice relays. For the tasks of stopping at a mark, and coming 

alongside a vessel, the target vessels could be more easily seen from the coxswain’s viewpoint and 

less communication was needed to determine distance.  Light contact was also permitted for the 

vessels, but not for the PIW as contact would result in injury to the person.  

Each of the slow-speed maneuvering tasks had a common objective of approaching the target from 

the right direction and stopping the vessel.  Given the similarity of the three slow-speed 

maneuvering tasks and performance measures, it is likely that practice on subsequent tasks 

improved performance on following tasks. Each scenario attempt included three slow-speed 

maneuvering tasks. The difficulty of the PIW pickup task is further emphasized, as a low 

probability of success was evident even with additional practice.  

3.7.2  Comparison of Task Types  

Figure 3-6 shows the HPP CDF means for each of the task types and attempts. This outcome 

indicates the navigation tasks are the easiest to complete given the practice provided, and the slow-

speed maneuvering tasks appear to be the most difficult. The tasks launching the lifeboat and PIW 

pickup both had a probability of success of less than 30% on first attempt and did not increase to 

above 50% after three practice attempts. This result indicates that additional initial training or 

supplemental practice is needed for most of the group to complete these tasks. All other tasks 

resulted in a group performance of greater than 50% after three attempts, though the group only 

achieved a probability of greater than 70% after three attempts on two of the seven tasks.  Most 
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tasks show an increase in probability of success with additional attempts, suggesting that students 

were able to increase skills with practice.  

 

Figure 3-6: Task Distribution Means 

3.7.3 Assessment of Overall Competency 

We can use the methodology to investigate overall 

coxswain competency considering the ability to 

successfully complete all tasks in the scenario in 

one attempt. The overall probability of success is 

influenced by individual task probabilities, with 

incompletion of any tasks resulting in an 

unsuccessful completion of the scenario. As shown 

in Figure 3-7, the HPP for the first attempt was 3% 

and increased to 12% after three attempts. 

Performance increased with each attempt, though the low overall probability of success of the 

group after three attempts suggests that the initial training and additional practice was not enough 

to achieve competence in completing an exercise involving multiple tasks.  
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3.7.4 Uncertainty Measures  

As a measure of uncertainty, SD and CI were investigated for each task attempt. As shown in 

Figure 3-8, the SD of the distributions decreased with each attempt (A) for all tasks, indicating a 

reduction in uncertainty in the HPP CDFs for each additional attempt.   As shown in Figure 3-8, 

the CI for the HPP CDFs also decreased with each attempt, for all tasks.  The uncertainty in the 

CDFs reduced with each attempt, suggesting strengthening of the model as more data was available 

and improvement of the assessment of HPPs in each iteration.  

Choosing Jeffrey’s prior as the prior distribution allowed the model to be structured enough to 

learn, but weak enough to learn from a limited amount of data. In case of a more dominating prior, 

much more data might be required to counterbalance the effect of the prior and observe a learning 

effect demonstrated by a reduction of uncertainty.  

 

Figure 3-8: HPP CDF Standard Deviation and Credible Interval 
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3.8 Discussion  

The goal of this study was to use data obtained from a simulator experiment to create probability 

distributions that can be used to study the skill acquisition of new trainees as they enter a training 

program designed to prepare coxswains for offshore emergencies involving a lifeboat. Using BI 

to form probability distributions allowed us to use available data to measure and compare 

performance of the group as they acquired and applied skills.  We were able to study skills 

acquisition and transfer through the breakdown of competency into specific tasks that could be 

analyzed independently or collectively to compare task type.  The methodology of using HPP CDF 

parameters calculated from previous attempts as estimates for future attempts, combined with new 

available data, results in a reduction in uncertainty of the modeled HPP parameters used for 

performance comparisons.  The study indicated the models were strengthened as new data was 

used in sets of distributions. 

The HPPs generated provide an indicator of the amount of practice needed to achieve competence 

on newly trained tasks, as assessed by the probability of successful completion from a group of 

individuals who had not performed the tasks prior to the study.  Revisiting the research questions 

identified in section 1.0, we were able to use the HPP CDFs to assess the performance of the 

participants as they acquired skills, and to gain insights on the effectiveness of the training and 

practice received. We were also able to make comparisons between tasks to evaluate the relative 

task difficulties.  A summary of the research outcomes is as follows:  

1. The initial training program did not result in a high group performance on their first attempt 

at tasks in a plausible emergency scenario.  The modeled probability of successful 
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completion on most tasks is less than 50%, indicating most participants would not be able 

to complete the launch and maneuvering tasks on their first attempt.   Overall, the 

probability that the coxswains would be able complete all scenario tasks in order, as would 

be required in a real lifeboat evacuation, was very low.  

2. Additional practice resulted in an increase in probability of successful completion for most 

tasks.  After three practice attempts, the modeled probability of successful completion was 

greater than 50% for the tasks of clear-away, stopping at a landmark, and coming 

alongside a vessel. The results indicate improved performance with additional practice 

attempts. Learning was still occurring after three practice attempts. The HPP CDFs 

indicated that three practice attempts did not result in a model mean that was greater than 

50% for the tasks of launching the lifeboat and PIW pickup, indicating these tasks require 

more practice to master compared to other tasks.   

3. The tasks of navigating by compass and navigating by landmark appear to be the least 

difficult to complete, with a modeled probability of success above 50% for first attempt at 

tasks trials and increasing with additional practice.  The procedural task of launching the 

lifeboat and performing a PIW pickup appear to be the most difficult to perform, based on 

the modeled probability of successful completion on first attempt and after additional 

practice attempts.  

We can use the study outcomes to provide insights on the amount of training and practice needed 

to acquire skills to launch and maneuver a lifeboat, and to suggest ways to improve performance. 

The results suggest additional training and practice were needed for trainees to build the mental 

models needed to perform the procedural tasks required to launch a lifeboat, as found in similar 
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research (Stewart et al., 2008). The low performance on the driving tasks of maneuvering the boat 

suggests the skills were not mastered in the initial training and subsequent practice. Studies 

performed to evaluate coxswain training programs (Billard et al., 2019) also found that low speed 

maneuvering tasks require a high amount of training and are difficult to perform in new scenarios, 

including those with more severe weather.  The difference in the practice provided in initial 

training environment and the scenario used in assessment scenarios also needs to be considered.  

The scenario used for assessment was different than scenarios used in initial training.   Research 

has shown that practice in scenarios with representative events and difficulty helps development 

of mental models to improve performance (Klein, 2008).  Similar benefits are expected for lifeboat 

operators if they receive training in scenarios that represent real emergencies.   

Consideration must be given to the size of the data set that was used to estimate the performance 

probabilities.  For attempts with a lower number of group participants, the Beta distribution means 

may not change significantly due to the lower number of cases and the approach, which relied on 

the use of the prior distribution parameters. Additional data collection can be performed to improve 

the accuracy of the distributions.     

3.9 Conclusions 

To summarize, the methodology of using BI to create HPPs to make comparisons based on group 

performance enabled us to study learning in new lifeboat operators.   We were able to discern the 

tasks that required more practice and the relative difficulty of tasks using the probability 

distributions created using the experimental data.  
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HPP CDFs can be developed for other problems to measure the effectiveness of training programs 

with targeted measures of competence and performance.  The methodology can be applied to study 

performance of novice and expert trainees as they apply their skills in new scenarios.  Training 

providers can use HPPs to set performance targets for evaluation of trainee competence at various 

stages of training as skills are learned.  This may be of value to instructors who wish to determine 

if a group or individual’s performance is better or worse than expected, and training and 

instructional approaches can be adjusted accordingly. 

Specific to offshore emergency training, data collected from training and experimental studies can 

be used to improve courses designed for new lifeboat coxswains   As new data is collected on 

performance of new coxswains, HPPs can be updated to improve the predictive and diagnostic 

accuracy of the probability distributions. For cases where little information is known on 

performance, such as launching a lifeboat in severe sea states, data collected on expert and novice 

trainees can be used to gain insight on human performance as coxswains apply skills in more 

challenging conditions.  As training is extended to more severe weather, limitations of the human 

performance and equipment will also become apparent. The methodology used in this paper can 

be used to research these areas. 

The study demonstrates the suitability of Bayesian Methods and performance data obtained from 

a simulator to investigate new problem areas. The methodology can be extended to gain a deeper 

understanding of how skills are acquired and to explore ways to improve training. The distributions 

created using the BI methodology can be incorporated into models to study learning and adapt 

training to individual trainees.  Bayesian methods can be used to develop competency models that 

utilize machine learning to improve training outcomes. As discussed by Millán et al. 2002, 
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probability distributions can be incorporated into Bayesian Networks to derive models of student 

competence to diagnose strengths and weaknesses in trainees. Machine learning and intelligent 

tutoring techniques can be applied and improve student assessment and course design. 
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4.2 Abstract 

The assessment of lifeboat coxswain performance in operational scenarios representing offshore 

emergencies has been prohibitive due to risk. For this reason, human performance in plausible 

emergencies is difficult to predict due to the limited data that is available. The advent of lifeboat 

simulation provides a means to practice in weather conditions representative of an offshore 

emergency.  In this paper, we present a methodology to create probabilistic models to study this 

new problem space using Bayesian Networks (BNs) to formulate a model of competence.  We 

combine expert input and simulator data to create a BN model of the competence of slow-speed 

maneuvering (SSM). We demonstrate how the model is improved using data collected in an 
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experiment designed to measure performance of coxswains in an emergency scenario.  We 

illustrate how this model can be used to predict performance and diagnose background information 

about the student.  The methodology demonstrates the use of simulation and probabilistic methods 

to increase domain awareness where limited data is available. We discuss how the methodology 

can be applied to improve predictions and adapt training using machine learning. 

4.3 Introduction  

Lifeboat training is normally performed in controlled conditions to minimize the risk to trainees 

and equipment. Trainees are given limited or no opportunity to practice skills in operational 

scenarios that represent offshore emergencies. For this reason, human performance in emergencies 

is difficult to predict due to the limited data that is available. Forecasts of coxswains’ skill transfer 

to real-life operational scenarios have relied on experts’ opinion.  Even so, there is limited 

information on how much skills learned in lifeboat training transfer to adverse weather conditions. 

The modeling of human performance in harsh environments has not been possible due to the 

scarcity of human performance data. 

With the advent of lifeboat simulator technology, it is now possible for trainees to practice in 

weather conditions typical of their location of operation and to apply their skills in realistic 

emergency scenarios.  Simulation provides the possibility to apply knowledge in applications in 

highly contextualized environments that are representative of plausible emergencies.  Research 

has shown that practice in realistic scenarios helps development of mental models to improve 

performance (Klein, 2008).   The study of human performance using simulation is evident in other 

operations including flight (McClernon et al. 2011), medical (Stefandis et al. 2007) and marine 
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(Sellberg, 2017) training.  Lifeboat training data can now be collected to assess the amount of 

practice needed to acquire skills and to evaluate how skills learned in practice transfer to new 

scenarios (Billard, 2019).   

Data collected from a lifeboat simulator allow us to assess performance on tasks that were 

prohibitive to do, even in calm water training.  This new data can be used to model learning and 

skill acquisition using probabilistic methods. We can study the interaction between tasks using 

Bayesian Networks (BN) to derive models of student competence (Millán and Pérez De-la-Cruz, 

2002). These models can be used to study the relationship between training factors and to examine 

how practice on related tasks impacts performance.  Due to scarcity of human performance data, 

initial models of competence can be formed with expert input (Groth et al., 2014). Performance 

data collected from simulator studies can provide evidence to inform models of trainee competence 

and validate their predictive accuracy.  Bayesian methods have been used to model performance 

on lifeboat launch and maneuvering tasks in initial training in calm weather conditions (Billard et 

al., 2020).   Similar approaches can be applied to model performance in more adverse weather 

conditions.  

In this paper, we present a methodology to form probabilistic models of human performance that 

can be used to study this new problem space.  We use a BN to define a model of the competence 

of slow-speed maneuvering (SSM) based on tasks performed in adverse weather conditions during 

an offshore emergency.  The model is derived from a combination of expert prediction and data 

collected from an experimental study.   

The methodology is used to investigate the following research goals: 
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- how to formulate a BN model of competency using knowledge of task type and available 

performance measures; and, 

- how to combine expert knowledge and data collected from simulator exercises to improve 

the model’s predictive accuracy.  

We evaluate the model using available data sets from a simulator study on lifeboat coxswain 

performance.  We demonstrate how this model can be used to 1) predict performance as trainees 

practice skills in simulator scenarios, and 2) diagnose background information about the student.  

The paper presents an approach that is relevant to training providers and researchers. We discuss 

how to apply the methodology and resultant models to study performance, improve expert 

assumptions, and extend to training applications where new data sets are being created. The models 

can be used to improve training programs, adapt training exercises to individual needs, and 

investigate human performance in new scenarios.   

4.4 Background 

4.4.1 Competence – Slow-speed Maneuvering   

We demonstrate the methodology of creating a BN model of competence using evidence captured 

in an experiment designed to study lifeboat training.   

We must first frame our definition of competence considering our research goals and the objective 

measures that can be made.   The concept of competence is a diverse topic that has diverse 

definitions.  For our purposes, we consider how competence is normally measured in marine 

training through completion of demonstrable tasks specific to learning objectives (IMO 2014, 
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STCW 2010).  We consider competence the “existence of learnable cognitive abilities and skills 

which are needed for problem solving” as identified in research on skill acquisition (Weinert, 

2001). We assume that completing tasks of a similar cognitive or physical skill form demonstrates 

competence.  

We construct a model of competence for the skill of Slow-speed Maneuvering (SSM), as 

demonstrated by the ability to complete tasks related to stopping a lifeboat next to an object in the 

water. It is expected that trained lifeboat operators have this required competence to perform in an 

emergency.  The completion of tasks in an emergency scenario can include stopping next to a 

number of objects including a life raft, a person in the water (PIW), a small vessel for transfer of 

personnel, or a large vessel for securing the lifeboat for recovery.  All tasks considered under the 

competence of SSM require a similar application of skills and similar performance measures.   

We assume there is a relationship between the SSM tasks based on the type of skill needed to 

perform the task.  The maneuvering and stopping of a lifeboat is primarily a physical task and 

requires application of psychomotor skills to control the lifeboat, including manipulation of 

lifeboat throttle, steering, and making visual observations.  There are also cognitive skills, 

including deciding angles of approach and judging distance from a target object.  Practice on SSM 

tasks within a practice scenario is expected to improve performance on related SSM tasks based 

on the similarity of the tasks and type of skill that is applied. 

4.4.2 Simulator Exercise and Experiment  

We use data collected from a simulator scenario to formulate our model and provide evidence that 

can be used to inform and evaluate our methodology.  
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Data was taken from an experiment that used a lifeboat simulator to study skill acquisition and 

transfer in lifeboat coxswains.  The experiment was designed to evaluate how skills acquired in 

different training programs transferred to a plausible emergency event that required the launch and 

maneuvering of a lifeboat in weather conditions typical of offshore operations.  Participants 

completed training using different approaches over a year long period and then participated in a 

new simulator exercise for assessment purposes.  The assessment scenario included a combination 

of launch tasks and on-water tasks. Details of the scenario are provided in Figure 4-1.  Additional 

details on the experimental test plan and simulator used in the study can be found in Billard et al. 

(2019).  

In real scenarios or in simulator exercises, SSM tasks form a part of the whole training exercise. 

Other tasks may need to be completed, including inspecting the lifeboat, launching the lifeboat, 

and navigating the lifeboat.  These tasks require application of different skills and have different 

measures, as described in previous research (Billard et al. 2018, Billard et al. 2020). As such, these 

tasks are not related to competence of SSM and are excluded from the BN model creation as 

practice on these tasks is predicted to not affect SSM competence.   
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Figure 4-1: Simulator Assessment Scenario with SSM Tasks 

The data collected from the assessment scenario provided evidence to evaluate SSM competence 

modeled in a BN. The scenario contained 4 slow-speed maneuvering tasks including, in order, 

stopping next to a Life Raft for inspection (LR), picking up two persons in the water (PIW1, 

PIW2), and stopping next to a Fast Rescue Craft (FRC) for transfer of personnel. These tasks 

provide evidence for the assessment of the SSM competence.   

All participants completed the scenario at least two times and data was collected for the 

maneuvering tasks for each attempt.  Tasks were completed in the same order with each attempt. 

A total of 39 participants completed the study.  
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4.4.3 Measuring Performance  

The rubric used to define completion of the SSM task was derived from recognized training 

standards and is based on expected performance identified by Subject Matter Experts (SMEs).  

Each task requires approaching an object from a preferred direction, stopping close to the target, 

and maintaining a stopping speed.  The specific parameters used to measure success differed 

slightly for each task (i.e. light contact with a vessel is acceptable for coming alongside a vessel, 

but not allowed for a PIW).  Table 4-1 provides an outline of task objectives and the corresponding 

measures used in the simulator exercise. Completion of tasks was based on several simultaneous 

measures captured by the simulator, each of which had to be performed correctly to be considered 

a successful completion.  Additional details on the scoring measures and rubric has been presented 

previously (Billard et al. 2018).   

Table 4-1: Slow-Speed Maneuvering Competence Tasks 

Task 

Identifier 

Task 

Description 
Task Objective Measures 

LR  Stop at a Life 

Raft 

Approach a static object accounting for wind and 

wave direction.  Use a speed to allow stopping. Stop 

close to Life Raft (2-3 boat lengths) and maintain 

position  

direction of 

approach 

speed at stop 

time stopped   

contact speed 

heading at stop  

number of 

attempts 

 

 

PIW  

 

Recover a 

Person in the 

Water (PIW) 

Approach a drifting PIW accounting for wind and 

waves to minimize chance of contact. Use a speed to 

allow stopping.  Stop close enough to PIW to allow 

pickup and maintain position in waves 

FRC  Come 

Alongside a 

Fast 

Response 

Craft (FRC) 

Approach a FRC accounting for wind and wave 

direction.  Use a speed to allow stopping. Stop close 

to vessel (less than 0.5 meters) and at an angle to 

allow personnel transfer and maintain position 
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4.4.4 Bayesian Network Modeling  

Bayesian Networks (BN) use a graphical structure to represent the relationship between several 

random variables as represented in a directed acyclic graph (DAG). A sample BN DAG is provided 

in Figure 4-2.  Nodes (a,b,c,d,e) represent the variables and arcs (arrows) represent the probabilistic 

relationship between the variables.  Bayesian inference algorithms create a relationship between 

latent variables, which are inferred, based on the state of observed variables.  

 

Figure 4-2: Sample Bayesian Network DAG 

Building a BN includes the following steps: 

1. Defining the variables that are being studied, both latent and observable, creating the nodes 

of the BN.  

2. Defining the relationships between variables using arcs. The arcs represent a causal 

influence between the variables.  Variables in the network that are not graphically 

connected are conditionally independent of each other (i.e. a and b are conditionally 

independent).  
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3. For each of the variables, defining the probability conditions with parent variables through 

Conditional Probability Tables (CPTs). The probabilities can be learned from real data or 

defined by experts.  

Detailed description of BNs and how they are created is provided in other literature (S. de Klerk 

et al., 2013, Millán et al., 2010).   

Creating a BN to use observable evidence to study an inherent competence has applications in 

training frameworks including Intelligent Tutoring Systems (ITS) (Millán and Perez-De-La-Cruz., 

2002, Käser et al. 2017) and Evidence Centered Design (ECD) (Mislevy et al., 2004).  In these 

frameworks, the BN forms a model of the competency that is being investigated (the student 

model) and identifies the relationships to the performance measures (the evidence) in the practice 

scenario (the activity). The relationships form a construct of competence, a latent variable, that can 

be measured through the collection of performance data, an observable variable.  

In our case, we use the observable completion of SSM tasks to quantify the latent variable of SSM 

competence using evidence collected through a simulation study.   

4.5 Methodology  

We use a BN methodology to model competence and predict the performance of lifeboat operators 

as they apply skills learned in training to a new scenario.  We create a BN model using observable 

measures from a simulation scenario designed to evaluate coxswain performance in a plausible 

emergency.  We use a combination of expert prediction and simulator data to create and revise our 

model. The methodology creates a student model of SSM competence that can be used for the 
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prediction of performance on tasks and the diagnostic study of causal relationships between model 

variables. 

The steps in the methodology include the following, as outlined in Figure 4-3: 

1. Defining a generic BN student model of competence - based on completion of tasks that 

are considered similar in the type of skill applied  

2. Characterizing the BN model as a SSM competence student model - based on the evidence 

gathered in a simulator practice exercise 

3. Creating the initial CPTs of the model nodes based on expert estimates  

4. Refining the CPTs based on experimental data - using the simulator experimental data to 

tune the model parameters 

5. Validating the model accuracy for predictive and diagnostic use cases using simulator data  

 

Figure 4-3: Methodology of Creating and Validating a SMM Competence BN 
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We perform two validation cases to show how the BN model can be applied and how the model 

changes with new data or variables. We first demonstrate how the predictive accuracy of the model 

changes as the methodology is applied. We evaluate the predictive accuracy of the model first 

formed with expert estimates and then re-evaluate the predictive accuracy after data have been 

used to refine the CPTs.   We then present an example of how new variables can be added to the 

model and show how the model can be applied to diagnose the relationship between the new 

variable and observable evidence.  The validation of models is discussed in Section 4.  

4.5.1 Step 1 – Defining a Generic BN Student Model of Competence 

We first describe the types of variables and relationship assumptions for the BN student model.  

We assume a latent variable of competence (C) and relate to task evidence nodes (Ei), which can 

be measured or observed in a scenario.   The tasks are related by the type of skills needed to 

complete the tasks successfully.  

To create the DAG, we assume a structure where observable evidence of completing tasks changes 

the probability of the competence, as described in previous research (Millán and Pérez De-la-Cruz, 

2002). The generic model is presented in Figure 4-4.  In the model structure, we assume a causal 

relationship where the latent variable (C) causes the evidence E1, E2, E3, … Ei.  In this relationship, 

evidence about mastering a task changes the probability of the latent parent.  Consequently, 

evidence about mastering C changes the probability of its children (Ei) and evidence about 

mastering a task affects the probability of mastering the rest of the tasks on the same level.  This 

models assumes conditional independence of the Ei given C (for each i = 1,…n).  In this DAG, the 
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CPT parameters that need to be identified are the prior probability of the competence, 𝑃(𝐶), and 

the conditional probabilities of the evidence nodes {𝑃(𝐸𝑖|𝐶), 𝑖 =  1, . . . 𝑛}. 

 

Figure 4-4: Competence Model BN DAG 

4.5.2 Step 2 – Characterizing the BN Competence Model as a SSM Competence Student Model 

We design the BN model to match the activity, in this case the slow-speed maneuvering exercises 

performed in the simulator study. 

Figure 4-5 shows the DAG for the experimental study consisting of two scenarios, each having 4 

evidence nodes.  In the simulator study, the trainee practiced the same scenario twice, creating two 

sets of evidential nodes, as the trainee completed the same tasks with each attempt. As an input of 

evidence in the BN, the task was either considered to be completed (Yes) or not completed (No) 

based on the performance requirements set by SMEs to measure successful completion of task.  



95 

 

 

Figure 4-5: Bayesian network DAG – Simulator Assessment Scenario 

The structure of the model assumes a learning effect with tasks practiced in a training session 

consisting of multiple simulation exercises. We use a dynamic model indicating the trainee’s 

competence can be measured with each simulator exercise attempt.  We define a relationship 

between the measure of competence in the first attempt (SSM1) and the measure of competence on 

the second attempt (SSM2).   The relationship assumes the measure of competence in the first 

attempt impacts the probability of the second attempt through a defined CPT {𝑃(𝑆𝑆𝑀2|𝑆𝑆𝑀1)}. 

Based on the similarity of the task types it is expected that practice on any of the task types can 

improve the performance on other tasks, including future attempts at the same task using the same 

scenario.  
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4.5.3 Step 3 – Creating Initial CPTs Based on Expert Estimates  

The structure of the BN requires the definition of CPTs including the prior probabilities of the 

SSM competence and the conditional probability of completing the evidence nodes (tasks) given 

the competence.   

For each of the tasks, we make predictions on the relationship between having the SSM 

competence and the ability to complete tasks.  As defined in modeling of human performance 

(Millán et al, 2002), we use estimates of slip and guess to define the conditional probabilities.  In 

our context, a slip is the probability of not being able to complete the task successfully despite 

having the competence.  The probability of completing the task successfully when having the 

competence {𝑃(𝑇𝑎𝑠𝑘𝑖|𝑆𝑆𝑀𝑖)} is therefore 1 – s, where s is the slip factor.   A guess (g) is the 

probability of completing the tasks successfully without having the competence.  The CPTs require 

definition of the probability of completing the task whilst having the competence (1 - s) and the 

probability of completing the task while not having the competence (g).   

We estimate the CPT parameters for each of the evidence nodes and the conditional probabilities 

for each of the competence variables.  The probabilities of slip and guess were estimated by SMEs 

and took into the account the following: 

1. The participants in the study had received initial training and refreshed skills over a 

one-year period.  It was expected that some participants had acquired enough skill to 

achieve competence.  

2. The simulator scenario in the study had not been practiced before and had challenging 

weather conditions (moderate sea states).  These factors impact the probability of 
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completing tasks that had been practiced in previous training events in less adverse 

weather.    

3. The task of stopping next to a PIW is more difficult to complete than stopping next to 

a life raft or stopping next to an FRC (Billard et al. 2020). We assume the probability 

of a slip is higher and the probability of a guess is lower for the PIW task.  

4. The performance of tasks in the simulator, either successfully or unsuccessfully, is 

considered practice.  Competence is expected to increase as the scenario is repeated. 

The probability of slip on tasks is expected to reduce and the probability of a guess is 

expected to increase.    

In considering the type of task and the environmental conditions, SMEs estimated that there is a 

reasonable chance of slip given the difficulty of the task and the expectation that people could 

make errors despite having the competence. The irregularity of wind, wave, and propulsion forces 

create some variability in performance. Environmental forces could have a sudden negative impact 

(i.e. causing the vessel to overshoot position) resulting in slip.  The environmental forces can also 

increase the chance of success of an inexperienced driver (e.g. helping slow and stop a vessel that 

is approaching too fast) creating a successful guess.  

Table 4-2 provides a breakdown of the probabilities used in the BN. These are considered an initial 

estimate of the probabilities based on an expert prediction.  The assumed initial probability of 

having the competence of SSM is estimated to be 60%, and increases in probability in the second 

scenario.  For the evidence nodes, the probability of a successful completion of task is assumed to 

be lower for tasks that are more difficult.  The assumed probability of completing LR and FRC 

tasks was assumed to be 70%. The probability of completing the PIW task was estimated as 60% 
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due to the increase in slip factor as the task is more challenging. Similarly, the assumed probability 

of a guess for the tasks of LR and FRC was assumed to be 30% and the estimated probability of a 

guess for the PIW task was estimated as 20%.  To account for the effect of practice, the SSM 

competence is expected to increase for the second scenario.  The assumed probability of a 

successful completion for each task was increased by an increment of 10% and the guess rate for 

each task was also assumed to increase by an increment of 10%.   

These estimates are an initial guess of expected outcomes provided by subject matter experts.  The 

estimates are based on expert prediction as they could not be derived from data. The next step in 

the methodology uses experimental data to refine the CPTs used in the BN.  

Table 4-2: Inputs to BN - Expert Estimates 

Scenario Attempt 1 

 𝑃(𝑆𝑆𝑀1)  

60.0% 

 

𝑺𝑺𝑴𝟏 𝑃(𝐿𝑅1|𝑆𝑆𝑀1) 𝑃(𝑃𝐼𝑊11|𝑆𝑆𝑀1) 𝑃(𝑃𝐼𝑊21|𝑆𝑆𝑀1) 𝑃(𝐹𝑅𝐶1|𝑆𝑆𝑀1) 

Y (1 - s) 70.0% 60.0% 60.0% 70.0% 

N (g) 30.0% 20.0% 20.0% 30.0% 

 

Scenario Attempt 2 

 𝑺𝑺𝑴𝟏 𝑃(𝑆𝑀𝑀2|𝑆𝑆𝑀1)  

Y (1 - s) 70.0% 

N (g) 30.0% 

 

𝑺𝑺𝑴𝟐 𝑃(𝐿𝑅2|𝑆𝑆𝑀2) 𝑃(𝑃𝐼𝑊12|𝑆𝑆𝑀2) 𝑃(𝑃𝐼𝑊22|𝑆𝑆𝑀1) 𝑃(𝐹𝑅𝐶2|𝑆𝑆𝑀2) 

Y (1 - s) 80.0% 70.0% 70.0% 80.0% 

N (g) 40.0% 30.0% 30.0% 40.0% 
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4.5.4 Step 4 – Refine CPTs Based on Experimental Data 

The BN model was created in modeling software, GeNIe, developed by Decision Systems 

Laboratory of the University of Pittsburgh. The DAG was based on the relationship diagram 

provided in Section 3.2, and the probabilities outlined in Section 3.3 were used to create the CPTs 

for each of the nodes.   

Data were collected in a simulator exercise, with evidence collected for each of the 39 participants 

who completed the two scenarios.  The data set was split randomly into two groups: a learning 

data set and a validation data set. One set of the data (19 records) was used to adjust the parameters 

of the BN (the learning data) model and the second data set (20 records) was used to predict the 

accuracy of the model (the validation data).     

Conducting parameter learning in the Bayesian Network is often termed training the BN.  In this 

exercise, the parameters of the BN CPTs are adjusted in an effort to match the BN model 

predictions to the outcomes of the learning data set.  This exercise is performed in the GeNIe 

modeling software, which uses an EM algorithm to learn parameters from data (Dempster, 1977).  

In our use case, we start training the BN with the probabilities set by the experts. As we have a 

small data set, we assume a low level of confidence in the parameters (20%) to allow the 

parameters to be flexible to change.   

We are now able to make comparisons between the original BN model, based on expert 

predictions, and the updated model, trained with experimental data.   
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4.6 Validation Cases  

4.6.1 Validation Case 1 – Evaluating Model Predictive Capability Using Task Evidence  

The validation data set is used measure the predictive accuracy of the BNs.   The initial models 

developed by expert prediction and the trained models are applied to a new data set (the validation 

data) to compare each model’s predicted outcomes with evidence provided in the data set.   

Two validation steps are performed to show how the methodology resulted in an improved BN 

model: 

1. Testing the predictive accuracy of the BN with initial expert predictions of CPT – this step 

evaluates the suitability of the probabilities estimated by the SMEs.  

2. Testing the predictive accuracy of the BN after using the simulation data – this validation 

shows the impact of using additional simulator data to revise the model parameters.  

The validation demonstrates the use of BN for prediction, as the model attempts to identify the 

most likely occurrence of the evidence nodes. For each of the validation exercises we consider the 

model’s ability to predict the outcome of the final two tasks in the simulation exercise (PIW22 and 

FRC22).  These two evidence nodes are selected as they are the last two tasks performed in the 

simulator exercise. Performance on these tasks is expected to be more likely a result of competence 

gained through practice than due to a random slip or guess.    We compare the predicted outcome 

of the evidence nodes from the BN model to the actual outcome from the data set.  

A benchmark comparison is made with a BN that uses a uniform distribution for initial CPT 

parameters for all latent and observable nodes. We use this BN to make a comparison with a model 
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that is formed with no expert input and driven only by available data. This approach disregards the 

expert predictions and assumes an equal probability (50%) for completing or not completing tasks, 

and related slip and guess probabilities. The parameters are adjusted using the same learning data 

and using the same learning algorithm as in the expert prediction.     

Table 4-3 shows the differences in prediction accuracy of the BN models that were investigated.  

The Table indicates the number of times the model and validation set had a common outcome on 

successful completion of task (Yes) or when tasks were not successfully completed (No) for the 

20 records in the set. The predictive accuracy of the BN based on expert guesses was 75%, 

indicating the expert informed probabilities were reasonable. The predictive accuracy of the model 

increased slightly to 78% when trained with experimental data.  The approach of using expert input 

showed a much higher predictive accuracy than a model trained from uniform parameters. This 

outcome suggests that the expert guess was needed to generate a suitable model given the amount 

of available data.  

Table 4-3: BN Model Predictions and Comparisons 

 Initial Expert 

Estimate 

Expert Estimate 

Trained 

Uniform 

Trained 

Overall   75% (30/40) 78% (31/40) 48% (19/40) 

PIW22    

Combined 80% (16/20) 80% (16/20) 50% (10/20) 

   Yes 80% (8/10) 80% (8/10) 0% (0/10) 

    No 80% (8/10) 80% (8/10) 100% (10/10) 

FRC2    

Combined 70% (14/20) 75% (15/20) 45% (9/20) 

  Yes 100% (11/11) 73% (8/11) 0% (0/11) 

  No 33% (3/9) 78% (7/9) 100% (9/9) 

The method also allows us to investigate how the data set changed the BN CPTs from the initial 

expert estimates.  These changes provide insights on the predicted competence and task difficulty, 
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as a refinement to the estimates initially made by the SMEs.  Table 4-4 presents the change in CPT 

from the initial estimates provided in Table 4-2.   The outcomes show the initial probability of 

SSM competence (SSM1) was lowered by 13%, indicating the initial estimate of competence was 

too high.  The outcomes also show that most of the probability parameters for successful PIW 

pickup for each attempt had to be lowered, suggesting this task was more difficult than predicted. 

The probabilities for stopping at a life raft were increased for each attempt.   

Table 4-4: Change in BN Probabilities – Trained model 

Scenario Attempt 1 

 𝑃(𝑆𝑆𝑀1)  

47% (-13%) 

 

𝑺𝑺𝑴𝟏 𝑃(𝐿𝑅1|𝑆𝑆𝑀1) 𝑃(𝑃𝐼𝑊11|𝑆𝑆𝑀1) 𝑃(𝑃𝐼𝑊21|𝑆𝑆𝑀1) 𝑃(𝐹𝑅𝐶1|𝑆𝑆𝑀1) 

Y (s) 76.1% (+ 6.1%) 57.4% (- 2.6%) 50.1% (-9.9%) 63.7% (- 6.3%) 

N (g) 41.5% (+11.5%) 16.6% (- 3.4%) 13.4% (- 6.6%) 23.8% (- 6.2%) 

 

Scenario Attempt 2 

 𝑺𝑺𝑴𝟏 𝑃(𝑆𝑀𝑀2|𝑆𝑆𝑀1)  

Y (1 - s) 67.7% (- 2.3%) 

N (g) 25.6% (- 4.4%) 

 

𝑺𝑺𝑴𝟐 𝑃(𝐿𝑅2|𝑆𝑆𝑀2) 𝑃(𝑃𝐼𝑊12|𝑆𝑆𝑀2) 𝑃(𝑃𝐼𝑊22|𝑆𝑆𝑀1) 𝑃(𝐹𝑅𝐶2|𝑆𝑆𝑀2) 

Y (1 - s) 83.8% (+ 3.8%) 69.3% (- 0.7%) 70.4% (+ 0.4%) 81.2% (+ 1.2%) 

N (g) 48.4% (+ 8.4%) 26.4% (- 3.6%) 28.6% (- 1.4%) 32.1% (+ 2.1%) 

Given the limited amount of data that is available, it is difficult to make conclusive remarks about 

the final probabilities of the BN model. Additional data are expected to further change the CPTs 

and increase the predictive accuracy of the BNs. 

4.6.2 Validation Case 2 – Investigate Diagnostic Causal Relationship of Background Training 

In this section we discuss how the BN can be used as a diagnostic tool and identify causes given a 

set of observations. We incorporate additional information about the test participants and show 
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how the model can be used to associate performance to the new information.   We introduce a new 

evidence node, Background Training (BT), to indicate whether the participants received hands-on 

training during their regular practice prior to performing the simulator exercise. Participants who 

received hands-on training in regular practice sessions were more likely to be able to complete on-

water tasks compared to those who did not (Billard et al. 2019).   This information is known for 

all participants who completed the simulator scenario and the related validation data sets. 26 of 39 

participants received hands-on training; 13 did not.   

The updated BN for this model is provided in Figure 4-6.  The BT node is introduced and forms a 

causal relationship having an influence on the starting competence of the trainee (SSM1).   

 

Figure 4-6: BN with Training Evidence Introduced 

We again define the conditional probabilities for the influence of training on competence using an 

expert estimate as there were no existing data available.  It is assumed that those who received 
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hands-on training had a higher probability of having the competence, but not greater than 60% as 

training had not been received in the weather conditions used in the assessment scenario. It was 

assumed the participants who had not received hands-on training had a lower probability of having 

the competence, having not received any scenario-based practice. The probability of having 

received initial training was set to 50%, making the initial probability random. This allows the 

model to predict the causal affect based on the evidence nodes from the simulator experiments and 

inherent relationships.  Table 4-5 shows the new CPT values defined in the BN.   

Table 4-5: Background Training (BT) Conditional Probabilities 

 P(BT) 

50% 

 

𝑩𝑻 𝑃(𝑆𝑆𝑀1|𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔) 

Y (1-s) 60% 

N (g) 40% 

We perform a similar validation procedure outlined in section 4.1. We compare the BN model 

prediction of BT to the evidence from the validation data set. The evidence in this case is 

knowledge of the trainee’s background in terms of having received hands-on training (Yes) or not 

(No).   

Table 4-6 indicates the model correctly guessed if background training had been received for 65% 

of the records in the data set. This outcome suggests that additional data or a revised estimate is 

needed to refine the model and increase the predictive accuracy for this evidence node.  As 

highlighted in Table 4-7, the conditional probabilities of having the SSM1 competence decreased 

for both cases (with or without having received background training) when data were used to train 
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the model.  These changes in probability can be used to refine the expert estimate or initial CPT 

for new data sets.  

Table 4-6: Diagnostic Accuracy - Background Training 

 Expert Estimate Trained 

BT  

Overall 65% (13/20) 

   Yes 54% (7/13) 

   No 86% (6/7) 

Table 4-7: Change in SSM1 CPTs 

𝑩𝑻 𝑃(𝑆𝑆𝑀1|𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔) 

Y (1-s) 55.4% (-4.6%) 

N (g) 35.3% (-4.7%) 

 

4.7 Discussion 

The methodology in this paper presents an approach to use available information and background 

expert experience to create probabilistic models of human performance in scenarios for which 

there is limited available data.  This approach can be applied to training applications where the 

desire is to investigate how observable measures of performance impact skills acquisition and 

competence.  We chose lifeboat coxswain training as the use of simulation has extended training 

capabilities, and data from new scenarios are available to study this problem area.   

We presented a method to develop a student model of lifeboat competence that integrates expert 

prediction and evidence from a simulator experiment.   We derived the BN model for SSM 

competence using a framework that has been applied in ITS and ECD to use observable evidence 

from a simulation assessment to design the model.    We demonstrated how the BN model can be 
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used to predict performance and diagnose causal relationships, illustrating how the model can be 

applied to investigate relationships between latent and observable variables.   

The validation examples indicate that embedding expertise in the model can result in a high initial 

predictive accuracy, despite using a small data set. The model’s predictive accuracy was further 

increased as simulator data were used to inform the BN probabilities. This outcome indicates that 

domain knowledge is valuable in initializing probabilistic models in cases where there is limited 

data. It is expected that the model’s predictive accuracy would improve further if the CPTs are 

trained with a large data set derived from user performance data.  

The scalability of the BN model is a strength that can be further explored. We presented a model 

of lifeboat coxswain competence that is very narrow (a single competence) and derived from a 

scenario with fixed weather and tasks. For this study, the modeling of competency is specific to 

the environmental conditions used in the scenario.  In a training program involving multiple 

practice exercises, the number and order of task types can be varied, and the level of difficulty can 

change with environmental conditions (i.e. increase in wave height or wind, day or night).  The 

probabilities are expected to be different in scenarios that are easier or more difficult.  Additional 

background information can also be considered, including time between training events and 

student training experience. The relationship between other competencies can also be established 

(e.g. practice in maintaining heading seakeeping exercises may improve control of the vessel in 

SSM).  

Figure 4-7 shows an example of how the BN could be expanded to explore causal relationships 

between variables as more information on the student is known and as evidence is gathered through 
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a training program.  These BNs can become complex as they form a detailed model of student 

competence. These models can be used to investigate factors that affect performance while gaining 

insights on human performance limitations.   

 

Figure 4-7: Sample BN with Expanded Relationships Representing a Lifeboat Training 

Program 

The formation of a student model using BNs offers additional means to apply probabilistic models 

to improve training.   We have presented a model to study performance based solely on assessment 

of task performance (i.e. was the task completed successfully or not).  The model can be expanded 

to investigate the specific behaviours performed by the participant in completing the task to study 

which actions result in the highest probability of success.  This type of model tracing is possible 

given the measures identified in the rubric. The outcomes can be used to model novice and expert 

performance as inputs to ITS (Millán et al, 2011).  The probabilistic modeling of the BN can be 

integrated with machine learning algorithms to build adaptive training applications to customize 
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training material to an individual’s strengths and weaknesses based on evidence gathered in 

training.   

To conclude the discussion, we make four recommendations to researchers who wish to use the 

methodology to study human performance and training for situations that have limited data.  First, 

we advise the student model to be built as early as practicable to allow for the student BN to be 

informed with evidence that will be collected. This approach will allow for alignment between the 

student model with research objectives, and scenarios can be designed to study relationships of 

interest.  Second, we recommend a balance of expert and data-driven input in the probabilistic 

models.   As demonstrated, the modeling of CPTs using expert input can provide a model with 

suitable predictive accuracy.   In cases where data are being collected for scenarios with limited 

initial data, the expert prediction is a guess.  Probabilistic models derived from large data sets are 

expected to have a higher predictive accuracy.   We also suggest that users consider the extended 

uses of relationship modeling of the BN approach. The BN models can be restructured, and new 

variables added (latent or observable) to investigate causal relationships and influence of new 

information.  Finally, we suggest the use of simulation to perform assessments and collect data for 

situations that are normally prohibitive due to risk.  Simulation scenarios extend studies to new 

operating conditions and provide a consistent measure of performance.  Digital measures from a 

simulator exercise can input directly into probabilistic models such as BNs to apply machine 

learning and adapt training in real time.    
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5.2 Summary 

Simulations were used to investigate the performance of lifeboats in high sea states using a virtual 

wave tank. Numerical simulations were performed in regular and irregular waves to study launch 

performance in extreme weather conditions. Limitations in launch equipment and the role of the 

timing of coxswains’ actions were investigated.  The study indicated that the lifeboat may not be 

able to successfully launch when significant wave heights are above 8 m and the lifeboat is 
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launched near the trough of a wave.  High initial setback and continuous wave forces result in the 

vessel being unable to clear away from the launch platform. As wave heights increase, the amount 

of setback and time to exit the launch area increases. Over 35% of launches resulted in the lifeboat 

being unable to clear from the launch area when significant wave heights were 10 m or above. The 

study also identified that delay in completion of actions performed by the coxswain, such as 

releasing the lifeboat hooks and applying throttle, can increase setback and time to exit the launch 

area. 

5.3 Introduction  

The successful launch and clear away of a lifeboat in high sea states is affected by both the 

capabilities of the lifeboat and the actions taken by the coxswains.  The effects of coxswain actions 

on the ability to complete a successful launch and sail away have not been fully investigated, nor 

have the limitations of the launching equipment in high sea states been fully explored. This paper 

investigates both. 

Previous scale model experiments were performed to evaluate the factors affecting a successful 

lifeboat launch and sail away (Simões Ré et al., 2002, Simões Ré & Veitch, 2004, Simões Ré et 

al., 2008). These experiments investigated the limitations in launching considering factors related 

to wave height, launch configuration, and lowering speeds from the davit.  The experimental 

studies used regular waves which is a simplification of real conditions where wave shapes are 

irregular. These studies also did not include the full range of sea states that are possible in offshore 

operations as wave heights were limited to 10 m. Additional studies used numerical simulations to 
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study similar factors and explored the effect of timing of hook release and application of propulsion 

(Gabrielson et al., 2011).   

Industry studies have identified that coxswain skill has an impact on a successful lifeboat launch, 

although benchmarking of skills is difficult due to limitations in training (Robson, 2007).  

Evaluating the impact of human performance and skills on a successful launch in high sea states 

is not practical.   Due to the perilous nature of launching lifeboats in rough conditions, the role of 

the operator (coxswain) is not something that can be ethically investigated in field trials or 

experiments, nor practiced in realistic (rough) wave conditions. Due to the nature of model 

experiments, specifically the scaling of time, it is difficult to use model tests as a means to 

investigate time dependent human factors. 

In this research simulations were used to explore the lifeboat performance in wave heights not 

previously tested in scale model experiments and field trials. The simulator is also used to study 

how the timing of actions performed by the coxswain, including applying the throttle and releasing 

the hooks, affect launch performance.   

Details are first presented on the launch procedure and the performance measures discussed in the 

paper.  

5.4 Background 

5.4.1 Launch Procedure  

As summarized in previous research (Simões Ré et al., 2002, Gabrielson et al., 2011), there are 

multiple phases of a lifeboat launch. They are as follows: 
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• Lowering phase: lowering the lifeboat from the davit system to the water surface. 

• Water entry: starts when the vessel enters the water and the lifeboat becomes buoyant.  

During this phase, water fills the vessel hydrostatic release unit, and hydrostatic pressure 

moves a cable link to allow the hook release handle to open.   

• Release: starts when the hook is released and the vessel is free from the fall wires.   

• Sail away: vessel propulsion (throttle) is applied and the operator maneuvers the vessel to 

a safe area away from the launch platform. 

The launch starts when a brake wire is pulled and the vessel begins lowering from the davit. The 

vessel continues to lower until the vessel is in the water and a time count begins on filling the 

hydrostatic release. The hydrostatic release activates when the vessel remains buoyant for 3 

seconds or longer.  If the wave falls away from the vessel before it is buoyant, the hydrostatic 

release drains and the time restarts. Once the vessel is buoyant for three seconds, the hydrostatic 

release system allows the hook system to operate. A hydrostatic indicator on the hook release 

system moves providing a visual cue to the coxswain. The standard procedure is to release the 

hooks and then apply full throttle as quickly as possible and drive away from the launch platform.  

This paper focuses primarily on the water entry, release, and sail away and considers the 

relationship between the actions performed by the coxswain and the timing of transition between 

the phases. 

5.4.2 Setback 

The experimental studies (Simões Ré et al., 2002, Simões Ré & Veitch, 2004, Simões Ré et al., 

2008), identified that the amount of setback, or backwards trajectory of the vessel, increases in 
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higher sea states when the launch position on the wave is near the trough on the lower part of the 

wave upslope. Wave and wind forces impact the vessel on water entry and can push the vessel 

backwards towards the launch platform if the waves are against the evacuation direction (a head 

sea).  In head seas with wave heights of 6 m and above, setback can result in the vessel being 

pushed back to within critical safety zones of launch platforms. The amount of setback and 

likelihood of occurrence of setback increases with wave height. 

Total setback can be a result of a single wave or multiple wave encounters may cause progressive 

setback before the vessel begins to move forward (Simões Ré et al., 2002). Figure 5-1 shows a 

sample trajectory plot of a launch to illustrate the case where a vessel experiences initial setback 

(SB), progressive setback, and is then able to progress forward.  The vertical position is plotted on 

the Y axis, with vessel lowering to the still water line at y = 0. The horizontal displacement positive 

is the distance in the direction away from the launch platform.  X = 0 is the starting horizontal 

position of the vessel when lowered.  In this sample the vessel is setback (-ve x direction) on the 

first wave encounter, and the second wave encounter results in higher, or progressive wave 

setback. The vessel is then able to progress forward. The subsequent waves create some backwards 

displacement with each wave encounter, but the overall movement is in the +ve x direction away 

from the launch platform.  Initial setback, progressive setback, and forward progress are used to 

describe results in this paper.  
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Figure 5-1: Progressive Setback 

5.4.3 Impact of Launch Position on Wave 

Studies identified the impact of timing of release of the lifeboat at different points on the wave in 

a head sea (Simões Ré et al., 2002, Simões Ré & Veitch, 2004, Simões Ré et al., 2008). Launching 

on the trough of the wave can result in significant setback and launching on the crest of a wave 

results in minimal, or no, setback. The experiments also showed the effect of “wave shadowing,” 

whereby the lowering speed of the vessel and the wave speed resulted in launches on the leeward 

side of the wave.  With reference to Figure 5-2, most launches occurred between -60 and 60 

degrees, on the wave upslope. In effect, it is difficult to launch on downslopes, which are 

favourable to good launches, and launches are more likely to occur on upslopes which result in 

large setbacks.    As wave height or wave steepness increases, the zone of possible launch positions 

tightens.   
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Taken together, these findings indicated that the timing of the launch relative to the wave is very 

important. It should not be left to chance as it is something that is within the operator’s ability to 

control, at least to some extent.  

 

Figure 5-2: Launch Positions for Lifeboat Water Entry 

5.4.4 Performance Measures 

The primary measure of performance in the study is setback. Additional measures are defined for 

this study based on target operational outcomes. These new measures are as follows, with reference 

made to Figure 5-3.    

The first additional measure identifies launches which may result in contact with the launch 

platform and consequently may result in damage to the vessel or harm to the crew. Examination 

of launch platforms and launch configurations indicates that davit systems are placed to provide 

20 to 40 m of clearance from the base of the platform. Setback greater than 20 m may result in 

impact with the launch platform or result in vessel being within a zone of high risk of impact. In 

Figure 5-3, X = 0 is the position directly below the launch area and X = -20 m is the distance 
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travelled towards the platform, opposite the target evacuation direction. To evaluate performance 

for a given set of launches, the percentage of outcomes with greater than 20 m in setback 

(%Setbacks>20m) was calculated. 

Another measure was introduced to evaluate whether the lifeboat is able to evacuate from the 

launch platform quickly. Clearing time is defined as the time required for the vessel to leave the 

splashdown area in the evacuation direction and reach a target distance, which is defined as 20 m 

from the launch position (X = 20 m in Figure 5-3).  Timely clearance of the lifeboat from the 

launch area is desired to escape harm from hazards near the launch platform and to permit the 

launch of other vessels from adjacent davits. The percentage of occurrences with greater than 60 s 

of time needed to reach 20 m is calculated for a set of launches (%Clearance Times>60s).  The 

amount of setback and clearing time to exit the splashdown area are related, as the vessel must 

travel a longer distance to exit the splashdown area if it is setback farther. 

If no measure was recorded for this performance criteria, the vessel was unable to reach the escape 

line at X = 20 m. This outcome is defined as a failed clearance.  A measure of failed clearance 

identifies a performance limit as the vessel is not able to progress forward in the wave environment 

tested.  This limit is further discussed in the results.  
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Figure 5-3: Performance Measures: Setback>20m and Clearance Time>60s 

5.5 Scope 

With the advent of simulator technology, it is now possible to explore lifeboat and operator 

performance in weather conditions typical of their location of operation. Lifeboat simulators are 

designed with accurate numerical behaviour of vessel motions and wave environments.  Trainees 

interact with realistic lifeboat equipment and perform actions as they would in a real vessel.  

Studies performed with a lifeboat simulator have evaluated how skills transfer from simulator 

training to real vessels (Magee et al., 2016) and how skills are acquired in initial training (Billard 

et al. 2019). Recent studies have focused on how training affects coxswain skill acquisition and 
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launch performance in moderate weather environments (Billard et al., 2018, Billard et al., 2020). 

These studies have not investigated the impact of human factors in high sea states.    

Simulators are increasingly used to train lifeboat coxswains. Trainees can practice and improve 

timing of actions, such as releasing the hooks and applying the vessel throttle. There is increased 

knowledge of the times taken to complete tasks in a lifeboat launch via data collected through 

simulator training programs.  The timely or delayed performance of these actions is expected to 

impact the amount of lifeboat setback and the time to clear from the launch area. Evaluating how 

the timing of these actions affects the launch outcomes will help to define training objectives.  

As in other studies, simulators can explore scenarios where data is scarce or difficult to obtain 

(Groth et al. 2014) and can specifically extend knowledge of coxswain and lifeboat performance 

to high sea states. The study of human factors using simulation to evaluate performance is evident 

in other operations including flight (McClernon et al. 2011), medical (Stefandis et al. 2007) and 

marine (Sellberg, 2017) training. This research shows an example of how simulations can be used 

to evaluate how operator actions impact the ability to successfully launch a lifeboat.   

The purpose of the research was to use numerical simulations to 1) assess the performance and 

limitations of lifeboat launch systems in extreme seas and to 2) study the impact of the timing of 

human actions on the launch and sail-away of the lifeboat.   

A numerical simulator, a Virtual Wave Tank (VWT), was designed to emulate the lifeboat and 

wave conditions performed in previous research (Simões Ré et al., 2002, Simões Ré & Veitch, 

2004, Simões Ré et al., 2008). Validation was performed to ensure the measured setback is 

comparable between the numerical simulator and experimental studies performed in a wave tank.  
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Comparisons were made for multiple wave heights and launch positions on the waves. The 

kinematics of the vessel in the VWT were also compared with results from the experimental 

studies.   

After validation, we performed three investigations with the VWT to study the effect of wave 

height and timing of coxswain-performed tasks on launch performance. The first investigation 

built on the outcomes of the experimental tests (Simões Ré et al., 2002) and extended the regular 

wave conditions to waves up to 16 m. Simulations were then performed in irregular sea states with 

significant wave heights of 6 to 12 m to investigate launch performance in irregular waves with 

100-year return period extreme wind speeds based on historical data of weather conditions in the 

North Atlantic (C-Core, 2015). The third investigation studied how the timing of human actions 

affected the likelihood of a successful launch. The time taken to apply propulsion (throttle) is 

varied. The time to release the lifeboat hooks once the vessel is buoyant in the water and able to 

be released is also varied. The impact of delayed response in applying the throttle and hook release 

is studied. Comparison are also made between cases where throttle is applied prior to release of 

the hook to investigate how applying an initial propulsion force influenced the ability to complete 

a successful evacuation.  

Performance is evaluated using the measures identified in the previous section. The investigations 

focused on performance in head seas.   

The following research questions are investigated:  

• What is the expected setback of a lifeboat in extreme regular waves and irregular waves? 

• How is the time to clear the lifeboat from the launch structure affected by sea state?   
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• How does delay in lifeboat throttle and hook release affect launch and evacuation of a 

lifeboat?   

5.5.1 Virtual Wave Tank (VWT) 

The VWT simulation environment used in the study is a 3D physics-based engine that was 

specifically created to model the motion of small crafts in marine environments. Physics models 

were derived from studies of vessel motions in waves, including scale model and full-scale testing 

of the vessels (Simões Ré et al., 2002, Simões Ré & Veitch, 2004, Simões Ré et al., 2008, Magee 

et, al. 2016). Numerical models for all phases discussed in the launch procedure were included in 

the simulation environment.  

Numerical models were implemented to provide physic-based responses and timings during the 

launch phases.  The vessel behaviours at water entry were modeled to include the tension in the 

lowering wires before the hook is released, the dynamic behaviour of the lifeboat as it interacted 

with the water surface, and the release of the vessel.  The propulsion and hydrodynamic behaviours 

of the vessel once in the water were also modeled. Previous studies have validated the maneuvering 

and performance characteristics of the vessel modeled in this study are representative of the 

behavior of the real lifeboat (Billard et al. 2020).  Models are resolved on the computer GPU to 

allow for high-speed and high-resolution wave meshes to calculate hydrostatic and hydrodynamic 

forces. 

The vessel was modeled with dimensions, weight, propulsion and steering to study the lifeboat’s 

ability to maneuver in the environmental conditions considered. The vessel modeled in the 
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simulator was a fully loaded lifeboat with length, weight, and displacement parameters closely 

matched to the vessel used in experiments performed by Simões Ré et al. (2002).  

A twin fall davit was modeled with fall wires attached to the fore and aft hooks of the vessel during 

lowering. The lowering speed of the vessel was kept constant at 1.0 m/s.  The launch height of the 

davit was 35 m. The lowering of the lifeboat is normally controlled by pulling a brake release from 

within the lifeboat to extend the fall wires. In the simulations, the fall wires continued to extend 

until the hook is released. This is a normal procedure to make sure the vessel begins to float, and 

to reduce the likelihood the vessel is only temporarily buoyant if the wave falls away from the 

lifeboat.   

A virtual agent was used to perform the actions of the coxswain in the simulator.  The virtual 

coxswain could be programmed to release the hook, manipulate the throttle and attempt to steer 

the vessel to desired headings.  Timings could be set to perform actions instantaneously or with 

delays, or in different orders (i.e. applying throttle before hook release).  The resultant behaviour 

of the vessel was determined by the physics engine which applies and resolves forces depending 

on the actions taken by the coxswain. As an example, a delay in moving the throttle ahead after 

the hook was released resulted in a delay in the propulsion and the vessel was free to drift until 

propulsion was applied.  When maneuvering, the virtual coxswain attempted to maintain a constant 

heading and used corrective steering to come back to a heading if the vessel veered off course. The 

study assumed steering was maintained to target a heading directly into the waves and away from 

the launch platform.  
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5.6 Study Methodology  

The study included two stages: 1) validation of the simulator measures with data from 

experimental studies, and 2) using the simulator environment to perform new studies. Three 

studies, or investigations, were performed with the VWT to study the lifeboat performance in 

higher sea states and to consider the timing of coxswain actions.  The investigations varied wave 

shape, wind speed, and coxswain timings to study the effect of these variables. Comparisons are 

made between each study to illustrate results.    

5.6.1 Validation – Simulator and Scale Model Experiment 

Comparisons are made between the outcomes of scale model testing performed in previous 

research to validate the simulation.   Data sets were created using the VWT using a stokes regular 

wave, with wave heights from 2 to 10 m, and wind speeds matching the scale model experimental 

tests (Simões Ré et al. 2002).  Validation is performed using the following comparisons between 

the simulator outcomes and the scale model tests: 

1. maximum setback for each wave height;  

2. setback for multiple launch positions on the wave; and,  

3. checking the trajectory of the vessel during water entry and sail away.   

5.6.2 Investigation 1 – Study of Individual Wave Setback in High Sea States, Regular Waves 

The first set of test cases investigated the impact of environmental conditions on lifeboat setback 

with testing extended to higher sea states and wind speeds representing storm and hurricane 

conditions.  Test cases were performed with a stokes regular wave shape with wave heights ranging 
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from 2 m to 16 m.  The approximate wave steepness in each case was 1/20. The simulation used 

wind speeds and wave heights similar to the parameters used in the experimental studies (Simões 

Ré et al. 2002) for wave heights up to 10 m. The wave heights and wind speeds were extended to 

wave heights of 12, 14, and 16 m, using average wind speeds for observed wave conditions (C-

Core, 2015).  The parameters for each wave tested is provided in Table 5-1.  

48 launches were performed for each wave height.  For each launch, the starting time of the launch 

was varied resulting in a different launch position on the wave, with launches covering a full wave 

cycle of one wave period. The maximum time permitted was 240 s (4 minutes). 

Table 5-1: Series 1 - Regular Wave Parameters 

Wave Height 

(Hw) 

Wave Period 

(T) 

Mean Wind speed 

[m] [s] [m/s] 

2 5 10 

4 7 12 

5 8 16 

6 9 17 

7 9 18 

8 10 19 

10 11 22 

12 12 28 

14 13 30 

16 14 33 

5.6.3 Investigation 2 – Study of Lifeboat Performance in Irregular 100 YR Seas 

The second set of simulations investigated the launch and sail away phase of the lifeboat in 

irregular shaped head seas and high wave heights. The lifeboat was lowered and launched into a 

sea state with a defined significant wave height (Hs) and irregular wave pattern. The irregular wave 

shape included dominant waves and lower frequency minor waves. Waves were generated from a 

fast Fourier transform to generate the desired Hs, as measured by the mean wave height of the 
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highest 1/3 of the waves. Individual wave heights could exceed Hs. The maximum wave heights 

in the test cases are presented in Table 2. The peak period (Tp) is the dominant wave with the 

highest energy. Wave heights of 6 m to 12 m were selected to study vessel performance where 

high setback is likely. Wind speeds were taken to be representative of 100-yr occurrences in the 

North Atlantic (C-Core, 2015) and are higher than the winds used in the regular waves.   

For each wave height, simulations were performed with three different wave patterns. Each wave 

shape had the characteristic parameters identified in Table 5-2.  48 launches were performed for 

each wave pattern to cover a full cycle of a dominant wave. The data for each wave pattern was 

combined for analysis, resulting in 144 launches for each combination of wave height and wind 

studied.  

Table 5-2: Series 2 - Irregular Wave Parameters 

Significant 

Wave Height 

(Hs) 

Max 

Wave  

Height 

Peak Wave 

Period 

(Tp) 

Mean 

Wind Speed 

[m] [m] [s] [m/s] 

6.0 8.7 9.0 20 

8.0 11.5 10 25 

10 13.2 11 30 

12 15.8 12 33 

 

5.6.4 Investigation 3 – Study of Human Performance on Evacuation Performance in Irregular 

100 YR Seas 

The third set of simulations varied the time to complete actions performed by the coxswain in the 

lifeboat launch and clear away. The virtual coxswain in the VWT simulation was programmed to 

perform the hook release and to move the throttle from neutral to full propulsion at controlled 
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times.  Data collected from training courses performed by Virtual Marine has indicated that the 

timing of release of hooks can vary from 1 to 5 seconds following an indication that the hydrostatic 

bladder has filled, and the hook release system can be operated. This delay can be caused by a 

combination of human reaction time, difficulty in operating the hook release handle, or time taken 

to perform other tasks.  Training records have also identified the time to apply full throttle can 

vary between coxswains. Delay in application of throttle following hook release means the 

propulsion of the vessel is delayed, and the vessel is free to drift if the hooks have been released.     

The study first investigated the application of throttle and delay in hook release separately. Throttle 

delay cases assumed the hook was immediately released when the hydrostatic bladder had filled, 

and times presented are relative to the time of hook release. The time to throttle (TT) is the amount 

of time the vessel is untethered by the fall walls and free to drift before throttle is applied. For the 

hook release cases, time to hook release (TR) was relative to the instant the hydrostatic bladder 

has filled (t = 0), and the vessel remained tethered until release of the hook. In these cases, throttle 

was applied immediately on hook release.  The timings are summarized in Table 5-3. 

Table 5-3: Delayed Throttle and Hook Release Cases 

Label Hydrostatic 

Ready 

 

Time to 

Throttle 

(TT) 

Time to Hook 

Release 

(TR) 

TT2 t = 0 s t = 2 s t = 0 s 

TT4 t = 0 s t = 4 s t = 0 s 

TR2 t = 0 s t = 2 s t = 2 s 

TR4 t = 0 s t = 4 s t = 4 s 

These initial cases studied the delayed performance of actions normally taken in a launch sequence 

where the typical launch procedure is 1) wait until the vessel is buoyant, 2) release the hook and 

3) apply throttle.  
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An additional series of tests was performed to investigate the impact of early application of throttle, 

prior to release of the hooks. This emulates an operator decision to apply propulsion before the 

lifeboat is released from the fall wires.  This procedure has been suggested by experienced 

operators as a means to give the vessel initial thrust to combat wave forces, albeit not a standard 

operating procedure. 

In these cases, the virtual coxswain applied the throttle fully when the vessel was buoyant (i.e. 

hydrostatic interlock had filled, t = 0), and remained tethered. Four use cases with different 

combinations of time to throttle (TT) and time to hook release (TR) are identified in Table 5-4.  

Early throttle provided a propulsion force before the vessel becomes untethered, and the hook was 

released at a time following the throttle.  

Simulations were performed for the irregular waves identified in Table 5-2, with Hs from 6 to12 

m. Data sets were again acquired for three wave patterns and combined for analysis, resulting in 

144 launches for each case and wave studied.  

Table 5-4: Early Throttle Cases 

Label Hydrostatic 

Ready 

 

Time to 

Throttle 

(TT) 

Time to 

Release 

(TR) 

TT1-TR2 t = 0 s t = 1 s t = 2 s 

TT1-TR3 t = 0 s t = 1 s t = 3 s 

TT2-TR3 t = 0 s t = 2 s t = 3 s 

TT2-TR4 t = 0 s t = 2 s t = 4 s 

5.7 Results 

In this section summarize the outcomes of the investigations are summarized and discussed.  

Comparisons are made between outcomes of the studies to illustrate the effect of the variables 
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studied.  Multiple measures are discussed to provide insights on how the outcomes are related and 

to make comparisons between the individual investigations.    

5.7.1 Results – Validation, Simulator and Scale Model Experiment 

Comparisons were made between the simulator measures and the experimental studies performed 

by Simões Ré et al. (2002) to validate the measures and behaviors observed in the simulator are 

similar to the experimental studies. A sample of the validation cases are discussed.   

Figures 5-4 and 5-5 show the measured setback for various launch positions on a regular wave, 

with 90 degrees being the wave crest and -90 degrees being the wave trough.  The comparisons 

show the observed behavior is the same in the simulator (Simulator) compared to the scale model 

experiment (Experiment), with setback increasing as the vessel is launched closer to the trough of 

the wave.  Of note, the setback in the experiment was limited at approximately 11 m due to the 

experimental setup, with the model impacting the launch structure at this point. The dashed line 

on Figures 5-4 to 5-6 indicates this limit for the experimental trials.  The setback in the simulator 

trials was not limited. Some differences in the setback measures are observed on the upslope near 

the trough of the wave (30 to 60 degrees) when the wave height is 6 m and there is a close match 

with most phase angles when the wave height is 10 m.  As indicated in Figure 5-5, the measured 

setback for the simulator continued to increase above 11 m as the vessel was launched closer to 

the trough (0 to 30 degrees) as the launces were not limited by collisions.  

Figure 5-6 shows the setback vs. wave height (Hw) for specific waves for both the simulator and 

experimental measures.  The solid line indicates the values where setback is double the maximum 

wave height. The experimental outcomes showed maximum setback is approximately double the 
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wave height up to a wave height of 6 m (Simões Ré et al., 2002). At higher sea states this could 

not be confirmed in the experimental results due to the impacts of the evacuation craft with the 

structure.  The increase in setback from the simulator tests followed a similar trend line, with some 

occurrences of setback above the prediction for the 6 m wave height. The trend of increasing 

setback and variability in setback with increased wave height is consistent between the simulator 

and experimental measures.   

 

Figure 5-4: Setback vs. Wave Phase Angle, Hw = 6 m 
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Figure 5-5: Setback vs. Wave Phase Angle, Hw = 10 m 

 

Figure 5-6: Setback vs. Wave Height 

Trajectory comparisons were made between the experimental cases and the simulator to ensure 

vessel kinematics were similar. A key focus was the observed behaviour of the vessel when it was 
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Figure 5-7: Simulator XY Trajectory - Launch near wave crest: Hw = 7m, T = 9m 

 

Figure 5-8: Simulator XY Trajectory – Launch near wave trough Hw = 7 m, T = 9 
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and sail away in the simulator was also representative. Differences between the measures can be 

attributed to differences in scaling, variability in physical observations compared to numerical 

simulations, and differences in limitations between the experimental test setup and the simulator. 

5.7.2 Results: Investigation 1 – Study of Individual Wave Setback in High Sea States, Regular 

Waves 

A summary of the setback measures for each set of launches is provided for each of the regular 

waves studied.  The measured setback for each launch is also related to the launch position on the 

wave (phase angle). In effect, this data set provides an extension to the outcomes presented in the 

scale model experiments, with the outcomes extended to higher wave heights.  

Table 5-5 provides a summary of the setback measures for launches performed for each wave 

height tested, from 2 m to 14 m. Summary data includes the average setback (Avg. SB), the median 

of the measured setback (Med.), and standard Deviation (SD) for each set of 48 launches 

performed for each wave height. The 90th percentile (90th PER.) of measured setback is provided 

to indicate the higher measures in the data set for each sea state.  

The outcomes indicate increasing setback with increase in wave height, with the average setback 

increasing from 3.23 m in a 4 m wave height to over 30 m in a 16 m wave.  The measures indicate 

setback as high as 65.9 m in a 16 m wave. There is also higher variability in the setback as wave 

heights increase, which is consistent with previous studies. For all wave heights, the median was 

lower than the average setback, indicating there were a higher number of low setback measures 

for each set of launches. Figure 5-9 shows a graphical summary of this information in a box plot. 
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Table 5-5: Setback Summary - Regular Waves 

Hw (m) 4 6 8 10 12 14 16 

Avg. SB(m) 3.23 5.82 8.47 10.1 14.1 20.0 30.4 

Med. 2.85 3.75 6.05 6.31 9.11 14.0 28.2 

SD 2.99 4.68 6.83 8.98 13.1 17.0 22.4 

90thPER. 7.23 13.0 17.8 24.3 36.3 45.6 62.4 

Max SB(m) 9.1 14.9 25.1 28.0 42.7 54.5 65.9 

 

 

Figure 5-9: Vessel Setback, Regular Waves 

Figure 5-10 shows the setback values and phase angles for each set of simulated launches in the 

higher wave heights, from 10 m to 16 m. The results indicate that the splashdown occurs most 

frequently between 0 and 90 degrees, with few occurrences of launches outside of this range when 

the wave height is greater than 8 m.  Analysis of the setback and wave angle for higher wave 

heights shows the maximum setback increased significantly when the vessel was launched closer 

to the trough of the wave (0 to 30 degrees). Low setback values are possible when the boat is 

released closer to the crest of the wave (60 to 90 degrees). The results are similar to the outcomes 

of previous research (Simões Ré et al., 2002).   
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Figure 5-10: Setback vs. Phase Angle, Regular Waves 
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Figure 5-11: Setback Occurrences Greater Than 20m, Regular Waves 

The results show that in wave heights of 12 m or above the number of cases where the vessel was 
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5-12. For 50% of the launches performed in a 16 m wave height the vessel was unable to exit the 

evacuation zone.  This outcome indicates a limit of the lifeboat in this high sea state. The outcomes 

again showed an increase of occurrences with increasing wave height.   

 

Figure 5-12: Clearance times Greater Than 60 s and Failed Clearances, Regular Waves 
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wave is the same for each wave height and is near the trough of the wave. In the 12 m wave, the 

vessel was setback initially and was able to progress forward after 2 wave encounters.  In a 14 m 

wave, the initial and progressive setback set the vessel back further and the vessel was still able to 

start moving forward after two wave encounters. For the 16 m wave, the wave and wind forces 

continued to push the vessel backwards, and the lifeboat was unable to move forward. This 

outcome indicates a limit has been reached, and there is not enough propulsion force to overcome 

the wave and wind forces. As noted, there were cases in the data sets for both 12 and 14 m waves 

where the vessel was not able to exit the evacuation zone, indicating that the combination of initial 

setback and continuous wave and wind forces resulted in a limit being reached in these sea states. 

These cases relate to the launches with high setback shown in Figure 5-9, which occurred when 

the vessel was launched near the trough of the wave (0 to 30 degrees). 

 

Figure 5-13: Vessel Trajectory Hw = 12 m, Regular Waves 
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Figure 5-14: Vessel Trajectory Hw = 14 m, Regular Waves 

 

Figure 5-15: Vessel Trajectory Hw = 16 m, Regular Waves 
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5.7.3 Results: Investigation 2 – Study of Lifeboat Performance in Irregular 100 YR Seas 

For irregular seas, setback is again analysed for the sets of launches for each wave height. The 

percentage of occurrences with clearance time greater than 60 s and failed clearances is also 

discussed.  

A summary of the setback measures (Avg. SB, Med., SD, 90th PER.) is provided for each set of 

the 144 launches performed for each wave height. Table 5-6 summarizes the setback measures of 

the lifeboat in the irregular seas tested, with Hs from 6m to 12 m.  The average measured setback 

for each set of launches increases with increasing sea sate. The 90th percentile is again provided to 

indicate the higher measures in the data set.   

The 90th percentile indicates there were occurrences with setback above 20 m for an 8 m wave 

height, with setback values above 37 m and 50 m in 10 m and 12 m waves, respectively. The 

standard deviation of the data increased with wave height indicating higher variability in the 

measured setback as wave height increases.  The median of the measured setback for each sea state 

remained low and below the mean, with a skew towards lower values. This outcome indicates that 

there were still a higher number of low setback values for each set of launches, similar to the tests 

performed in regular seas. 

Table 5-6: Setback Summary - Irregular Seas 

Hs (m) 6 8 10 12 

Avg. SB (m) 6.36 8.94 12.99 17.16 

Med. 4.60 5.80 5.84 7.07 

SD 5.31 8.40 15.35 21.49 

90th PER 6.23 21.85 37.01 51.20 
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Figure 5-16 provides a breakdown showing the percentage of occurrences for measured setback.  

Ranges of setback values are grouped to summarize the data. The figure indicates the over 50% of 

launches resulted in less than 10 m setback for each of the wave heights tested.  Impact with the 

launch structure is unlikely in these cases. The percentage of launches with setback less than 10 m 

decreased from 78% in a 6 m wave height to 59% in a 12 m wave height. Over 74% of all test 

cases resulted in less than 20 m setback. Above 20 m, contact with the launch platform is more 

likely, as discussed in the performance measures. The percentage of launches with greater than 20 

m setback was 16% in a 10 m wave height and 25% in a 12 m wave height.  In 10 m waves, setback 

greater than 40 m occurred in 8% of test cases, increasing to 16% in a 12 m sea. This result 

indicates high setback values are possible in these extreme seas. 

 

Figure 5-16: Setback Occurrences, Irregular Waves 
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5-17. In an 8 m significant wave height, in 13% of the simulations resulted in a failed clearance. 

35% of cases performed in a 10 m sea resulted in a failed clearance, increasing to 41% in a 12 m 

wave.     

 

Figure 5-17: Time to Clearance, Irregular Waves 
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another where the vessel could not overcome the environmental forces. As noted, cases were 

observed in both 10 m and 12 m wave heights where the vessel was unable to exit the escape zone 

due to progressive setback. 

 

Figure 5-18: Vessel Trajectory, Hs = 10 m, Irregular Waves 

 

Figure 5-19: Vessel Trajectory, Hs =12 m, Irregular Waves 
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These outcomes show there is a higher likelihood of encountering a hazard if sea states are higher 

than 10 m. The combination of high setback and progressive setback can result in possible impact 

of the vessel with the launch structure or the inability to exit to a safe area.  In wave heights of 8 

m or less, the setback was reduced but not eliminated.   

The results also indicated that most of the launches resulted in low setback even in higher sea 

states.   For all the wave heights tested the median of the setback measures is less than 7 m and 

most of the launches resulted in setback less than 10 m. For the highest sea state tested (Hs = 12 

m), the time to evacuate was less than 60 s for 48% of the launches. This percentage was higher 

for lower sea states. This result shows that successful launches can occur in the highest waves 

tested if the vessel avoids launching on a wave position that results in high initial setback.    

5.7.4 Results: Investigation 3 – Study of Human Performance on Evacuation Performance in 

Irregular 100 YR Seas 

This section discusses the impact of 1) a delay in throttle, 2) a delay in hook release and 3) cases 

where the throttle is applied prior to hook release.  For each of these cases, 144 launches were 

performed for each wave height tested. A summary of the setback measures for each set of 

launches performed for each wave height is provided. The percentage of occurrences with greater 

than 20 m setback, clearance times greater than 60s, and failed clearances are discussed. 

Comparisons are made to the data from the second investigation where there was no delay in 

throttle or time to hook release.  
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5.7.4.1 Delay in Throttle  

Table 5-7 presents the summary of the setback measures for sets of launches performed with a 2 

second delay (TT2) and a 4 second delay (TT4) in time to applying throttle after hook release.  

Figure 5-20 shows a comparison of average setback measures for each sea state, with comparison 

made to no throttle delay (TT0). 

The results show that there was an increase in average setback of approximately 17% over all wave 

heights when time to throttle is delayed by 2 s, compared to the set of launches when there was no 

throttle delay. There was an average setback increase of 35% when the time to throttle was delayed 

by 4 s.  Similar to the previous investigations, the median of the setback measures was below the 

average setback for each wave height, indicating a high number of low setback cases for each set 

of launches.  The increase in the 90th percentile of measured setback for each of the wave heights 

shows the increased throttle delays resulted in higher setback measures.  

Table 5-7: Setback Summary - Delayed Throttle, Irregular Waves 

Average Setback (m) 

 6 m 8 m 10 m 12 m 

TT0 6.36 8.94 12.99 17.16 

TT2 7.12 10.75 15.37 19.91 

TT4 7.95 15.77 15.94 20.75 

Median (m) 

 6 m 8 m 10 m 12 m 

TT0 4.56 5.73 5.73 7.06 

TT2 4.59 5.91 5.62 7.39 

TT4 4.72 6.03 6.30 8.88 

90th Percentile (m) 

 6 m 8 m 10 m 12 m 

TT0 14.74 21.86 37.01 51.20 

TT2 17.18 25.61 38.64 54.91 

TT4 19.31 27.24 39.77 54.17 
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Figure 5-21 shows the percentage of occurrences of setbacks greater than 20 m increased an 

average of 4% for TT2 and 7% for TT4, compared to no throttle delay.  The percentages increased 

to over 20% in an 8 m wave and to over 30% in a 10 or 12 m wave when throttle was delayed 4s. 

As shown in Figure 5-22, with a delay in throttle of 2 s, the measured occurrences with clearance 

times greater than 60 s increased by 11% in 10 m waves and by 12% in 12 m waves. Related to 

this outcome, the increased throttle delays resulted in more occurrences of the vessel being unable 

to leave the clearance zone, as shown by the Failed Clearances in Figure 5-23.    In a 12 m wave, 

delayed throttle by 2 or 4 s resulted in the vessel not being able to exit the evacuation zone in over 

40% of the launches. 

 

Figure 5-20: Average setback, Delayed throttle, Irregular Waves 
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identified in this study. If during training coxswains are observed to take a long time to apply 

throttle then there is a possibility of a collision or inability to evacuate the launch area.  These 

outcomes can be built into simulator scenarios to provide feedback.   

 

Figure 5-21: Setback Occurrences >20 m, Throttle Delays, Irregular Waves 

 

Figure 5-22: Clearance Times Greater Than 60 s, Delayed throttle, Irregular Waves 
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Figure 5-23: Failed Clearances, Delayed Throttle, Irregular Waves 
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Table 5-8: Setback Summary - Delayed Hook Release, Irregular Waves 

Average Setback (m) 

 6 m 8 m 10 m 12 m 

TT0 6.36 8.94 12.99 17.16 

TR2 5.53 6.39 8.02 8.02 

TR4 9.49 11.05 17.57 17.57 

Median (m) 

 6 m 8 m 10 m 12 m 

TT0 4.56 5.73 5.73 7.06 

TR2 4.84 5.54 6.94 7.06 

TR4 5.58 7.07 9.79 20.1 

90th Percentile (m) 

 6 m 8 m 10 m 12 m 

TT0 14.7 21.9 37.0 51.2 

TR2 8.59 10.3 11.4 27.3 

TR4 23.3 25.4 43.5 57.0 

While these outcomes seem counterintuitive, the behaviour can be explained by considering how 

the delay in hook release affects the position of release on the wave.  Given the wave shape and 

slope, the vessel is likely to land on the upslope of the of the dominant wave (0 to 90 degrees), as 

indicated in previous research (Simões Ré et al., 2002) and Investigation 1 of this paper.  The delay 

in hook release keeps the lifeboat in position, and the fall wires do not extend enough for the vessel 

to drift backwards significantly.  As a result, for a small delay the vessel could release on the top 

or the downslope of the wave where wave forces were more favourable to reduce setback. Too 

long a delay resulted in both the vessel starting to drift backwards and release occurring closer to 

a trough of the wave where wave forces could induce more setback.  In effect, delay in hook release 

provided a short window of benefit and the “wave shadowing” was reduced for a short time.  

This window is expected to be highly dependent on wave shape (height, period, and steepness).  

The results are specific to the wave shapes used in this study. Further investigation is required to 
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determine if similar outcomes are seen in different wave shapes, which is outside of the scope of 

this paper.  

 

Figure 5-24: Average Setback - Delayed Hook Release, Irregular Seas 

 

Figure 5-25: Setback Occurrences > 20 m, Hook Release Delays, Irregular Waves 
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Figure 5-26: Clearance Times Greater Than 60 s, Hook Release Delays, Irregular Waves 

 

Figure 5-27: Failed Clearances, Hook Release Delays, Irregular Waves 
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force was applied before the hook was released. Comparisons are made with the case where throttle 

and hook release were applied immediately (TT0-TR0).   

As indicated in Figures 5-28 to 5-30, there was an improvement in most outcomes when throttle 

was applied early and prior to the hook release. The greatest improvement in all performance 

measures occurred when the throttle was applied 1 s after the vessel could be released and the hook 

was released 1 s later. This series is noted as TT1-TR2.  As indicated in Figure 5-28, Average 

setback was reduced by approximately 50% and there was a reduction of setback occurrences 

greater than 20 m and clearance times greater than 60 s. Similar outcomes were observed for cases 

TT1-TR3 and TT2-TR3. For these cases, the percentage of setback occurrences greater than 20 m 

was reduced to 10% or less in all wave heights tested, as indicated in Figure 5-29.  These results 

indicate that application of throttle before hook release creates enough initial propulsion to 

improve launch performance based on the measures discussed.   

The results indicate that the timing of throttle before hook release must still be performed quickly, 

and hook release cannot be delayed too long.  This is shown in the case where the time to throttle 

was performed 2 seconds after the vessel is able to be launched and time to hook release was 

performed two seconds following (TT2-TT4).   Figure 5-28 indicates a small increase in average 

setback in high sea states for this case. Figure 5-29 shows there were increased occurrences of 

setback greater than 20 m in a 12 m wave height. Figures 5-30 and 5-31 show there was an increase 

of occurrence of clearance times greater than 60s and failed clearances in 10 and 12 m wave 

heights.  This result again suggests that high throttle and hook release delays can result in reduced 

performance.   
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Figure 5-28: Average Setback, Throttle Before Hook Release, Irregular Waves 

 

Figure 5-29: Setback Occurrences Greater Than 20 m, Throttle Before Hook Release, 

Irregular Waves 
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Figure 5-30: Clearance Times Greater Than 60 s, Throttle Before Hook Release, Irregular 

Waves 

 

 

Figure 5-31: Failed Clearances, Throttle Before Hook Release, Irregular Waves 
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5.8 Conclusions 

The goals of the research were to use simulation to extend the knowledge of lifeboat performance 

in high sea states and to evaluate how human performance can affect outcomes.   

The results show a strong relationship between the performance measures and wave conditions. 

Specifically, both setback and time to exit the launch area were both dependent on wave height 

and the wave phase angle at the launch point. These results are the same as found previously in 

experimental work up to about 10 m (Simões Ré et al., 2002), but have extended the wave heights 

up to 16 m in the simulation environment.  

The position on the incoming wave at which the lifeboat was launched (i.e. the wave phase angle) 

was found to be particularly important. When launched at or very near the crest, lifeboats avoided 

large setback and were able to make way relatively quickly to clear the launch zone. Conversely, 

when launched near the trough or the upslope of the incoming wave, the lifeboats were setback 

immediately by the wave. The magnitude of the setback was dependent on wave height in addition 

to wave phase angle. Consequently, the initial setback experienced by the lifeboat during its first 

wave encounter made clearing the launch more difficult for two reasons: first, the lifeboat had to 

overcome the momentum associated with the setback action; second, its effective starting point 

was behind the nominal launch target (directly below the davits) by a distance equal to the setback 

(or progressive setback). 

In practical terms, one consequence of setback is that the lifeboat can collide with the launch 

platform if there is insufficient clearance between the launch target and the platform. While the 

environmental conditions at the time an evacuation are outside the control of evacuees, the timing 
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of the launch is not. Timing a launch requires that the coxswain can see or otherwise sense the 

approaching waves and has enough familiarity with the lifeboat controls (e.g. lowering, releasing 

the hooks, throttling) to perform the launch operation within the narrow time window required for 

a successful launch on a crest. For a typical large wave, the window for a crest launch is only about 

5 to 7 seconds.  

The studies of time of throttle delay and time of hook release timing provide insights on how 

human actions can affect launch performances. Interpreting the outcomes of the third investigation, 

we see a general trend that a quicker performance of actions results in better performance 

outcomes. This result has implications for training. Delays in actions can be due to inability to 

recognize launch cues (i.e. the hydrostatic indicator movement), improper movement of the hook 

release handle, or performing actions out of order. These timings can be further delayed if there 

are faults in the system that require additional time to remedy, such as performing a hydrostatic 

override procedure. The results of this research suggest training goals should target the quick 

performance of these actions and training to provide practice to improve these timings.   

The research also indicates that new operational procedures can improve launch performance.  

Applying the throttle prior to hook release can reduce setback and escape times significantly, as 

long as these actions are performed quickly.  This procedure was suggested by operators with 

marine experience. Operational procedures that result in improved performance can be embedded 

into curriculum to train coxswains.  

Considerations must be given to the specificity of the wave environments and launch configuration 

when interpreting the research outcomes in this paper. As indicated in previous research (Simões 
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Ré & Veitch, 2004), the wave steepness can have a considerable effect on the amount of measured 

setback, although wave steepness was not varied in the current work. The simulations focused only 

on escape from the platform in a head sea where wave direction is directly against the desired 

escape path of the launch vessel. This scenario was considered as a worst case. Scenarios with 

oblique waves and winds would present additional operational challenges (e.g. maintaining a 

desired heading).  
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6.0 CHAPTER 6: CONCLUSIONS 

This research presented a set of studies to use data collected from experimental and numerical 

studies performed with simulators to investigate the problem space of learning and performance 

of lifeboat coxswains.  The work combines experimental data sets, modeling techniques, subject 

matter expertise and numerical simulations to expand the knowledge of human performance and 

equipment limitations.  Simulation is used as a safe means to collect data and to investigate 

scenarios that are not possible to create in real life due to risk.  The thesis demonstrates how data 

collected from simulator studies is used to investigate research questions that were previously 

unable to be studied.  The research focused on the performance of lifeboat coxswains and launch 

equipment, though the methodologies used can be applied to other research areas where data is 

scarce.  

To summarize the outcomes of the thesis, the research questions presented in section 1.4 (Table 1-

1) are revisited and key results are discussed.  

The research from Chapter 2 and 3 indicates the following related to skills acquisition, learning, 

and transfer of skills in lifeboat coxswain training:   

- There is a benefit to receiving hands-on training with a simulator or live boat, compared to 

users who completed only CBT training. This outcome was determined by assessing 

coxswain performance on tasks in a plausible emergency event.   Increased performance 

was seen in both procedural tasks during launch, and psychomotor tasks of maneuvering 

the lifeboat when trainees practiced with real equipment. An incremental benefit was 
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observed when trainees practiced in scenarios that increased in difficulty and included 

representative weather.  

- For all types of training studied (drills in calm water, CBT, simulator) there was an overall 

low success rate on performance of launch and maneuvering tasks in emergency scenarios 

involving adverse weather.  Quarterly training performed in calm water or in less difficult 

scenarios did not provide enough opportunity to achieve competence to complete tasks in 

scenarios with moderate waves and hazards.   

- The research indicates that initial lifeboat training practice does not provide enough 

practice for trainees to build mental models needed to perform procedural tasks required to 

launch a lifeboat, or to master slow-speed maneuvering tasks.   Trainee performance in 

new scenarios involving multiple tasks types, as would be required in a real lifeboat 

evacuation, was very low.    

- Tasks involving the launching of the lifeboat and performing slow-speed maneuvers (e.g. 

stopping next to a person in the water) require more practice to master than other skills 

(e.g. navigating by compass).  

These research outcomes indicate there is a benefit of performing training on real lifeboat 

equipment and practicing in scenarios that are representative of real emergencies.  The research 

also indicates that initial training does not provide practice required to acquire skills needed to 

perform in an emergency.   More frequent training events and shortened training intervals are 

expected to improve skill acquisition and limit skill fade.  Marine education and training instructors 

can utilize overtraining and practice in representative environments to improve trainee 
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performance.  As shown in other research, practicing in realistic scenarios and with increased 

difficulty can increase preparedness for emergencies (Klein, 2008, Mclernon, 2011).  

Chapters 3 and 4 illustrate how probabilistic methods were used to investigate the research 

questions related to human performance.  The research objective was to predict and assess trainee 

performance using available data and expert knowledge. Models were developed to study learning 

and predict competence as trainees practiced tasks in simulator scenarios. Bayesian inference 

allowed for the creation of Human Performance Probability CDFs that were used to study initial 

learning in new lifeboat operators and discern tasks that require more practice to reach competence.  

Bayesian Networks were used to model the competence of slow-speed maneuvering and to 

diagnose causal relationships between practice on similar tasks types and training background.  

These methods used a small data set collected from a simulator study to form models and study 

learning. The research presented how the models could be utilized with a limited data set.  Chapter 

3 indicates the models created with BI were strengthened as new data was used and the models 

can be further improved as new data is available. The research in chapter 4 indicates the predictive 

accuracy of BN models can be increased through expert knowledge and demonstrates how 

available data and domain expertise can be combined to create models to study learning. The 

methodologies provided an effective way to study the problem area of learning in lifeboat and 

lifeboat operators using a combination of available data and expert input.   

Chapter 5 investigated lifeboat and human performance in high sea states using numerical 

simulations. Previous experiments studied lifeboat evacuations in wave heights up to 10 m wave 

heights and used regular waves (Simões Ré et al., 2002). In the thesis, simulations were used to 

create data sets of lifeboat launches for regular waves up to 16 m wave height and irregular waves 
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up to 12 m significant wave height. The results show a strong relationship between the performance 

measures (setback and time to clear the launch area) and the wave conditions.  The study identified 

performance limitations in the lifeboat when significant wave heights were above 8 m and the 

lifeboat is launched near the trough of a wave. The amount of setback and the time to exit the 

launch area increase as wave heights increase.  The numerical simulations also allowed for an 

investigation of how the timing of human actions impact launch success in high sea states. The 

results indicate that a quicker application of throttle and hook release result in better performance 

outcomes.  The numerical studies allowed for the investigation of alternate operating procedures, 

such as applying the throttle before the hook is released. This procedure was suggested by subject 

matter experts with marine experience and subsequently investigated using simulations.  The 

results indicate an increase in launch performance if actions are performed quickly.  The study 

provides evidence of how simulation can be used to test procedures that would not be possible to 

test safely using real equipment.    

The research provides outcomes that are relevant to training providers and researchers.  The studies 

indicate that regular and frequent training is needed to prepare operators for plausible emergency 

events.  The research also indicates that a high level of human performance is needed in adverse 

sea states to achieve a successful lifeboat launch.   The research highlights how simulation can be 

applied to study performance and extend models to training applications where new data sets are 

being created. The outcomes and methodologies can improve training programs through improved 

knowledge of how practice impacts learning, identifying factors that affect performance, and the 

creation of adaptive training programs. 
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6.1 Technical Limitations and Uncertainties 

Several technical challenges and uncertainties arose from the research.  The following describes 

some of the uncertainties and provides suggestions for future studies.  

• The goal of the experimental study was to study learning in trainees with no previous 

experience in launching or maneuvering a lifeboat.  The participants selected for the study 

were naive and were not familiar with the lifeboat or the launch procedure. The study did 

not include personnel who had received regular training and the models and outcomes do 

not represent the performance of experienced lifeboat coxswains. The performance of 

lifeboat operators with a marine background or with several years of practice is expected 

to be higher, but is also unknown as these individuals were not included in the study.   

Future studies could measure the performance of experienced coxswains and make 

comparisons with the outcomes of the research.  

• The experiment used initial training to bring participants to a baseline level of competence 

but was not able to consider all individual differences between trainees.  Studies have 

indicated that individuals learn and acquire skills differently (Joe and Boring, 2014, Arthur 

et al. 1998) and individual differences should be considered when modeling learning in 

virtual environments (Musharraf et al. 2017). Participants had varying levels of marine 

experience, familiarity with technology, and training backgrounds.  While this variability 

could not be controlled, these differences are expected to impact the learning rate and 

performance of trainees in the study.   To mitigate this effect, the experiment was designed 

to sort trainees into groups based on knowledge of their background and initial training 
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performance.  Future work could investigate training background and learning rate as 

performance shaping factors.  

• The virtual environments closely matched the lifeboat equipment and visualizations of a 

marine environment.  The simulator used in the study was certified for marine training 

based on how accurately the simulator matched the vessel and marine environment. 

However, a simulation is not an exact representation of the real world, and there are 

differences in the visual, audible, and motion cues.  The simulator was tested to ensure 

suitable cueing was available to achieve task objectives. The experiment also used a 

controlled environment and common scenarios to make consistent and repeatable 

measures.   Real emergencies would include additional stressors, and training conditions 

could be highly variable.  Future studies could examine the impact of adding stressors (e.g. 

backstory, motion cues) or adding variability in the weather or tasks to make the scenario 

less repeatable.   Similarly, the numerical models used in the virtual wave tank are not exact 

representations of the real world. The differences between the numerical models, 

experimental models and real world could not be quantified as performance data of real 

lifeboats in high waves does not exist.  The simulator measures were compared to the 

outcomes of experimental testing to demonstrate the numerical models provided 

representative characteristic behavior needed for the study.  

• The sample size used in the study was selected based on availability of test participants and 

the logistics of conducting the experiment. While some of the research considered group 

performance, other parts of the research considered individual performance on tasks, or 

sub-groups of the larger group (those trained by drills, CBT, or simulation).   The sample 

size for these sub-groups was small.  A larger sample size would likely have resulted in 
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less uncertainty and would increase the predictive accuracy of the models that were 

developed. 

• Testing performed with the numerical simulations (virtual wave tank) considered specific 

wave shapes and directions. Considerations must be given to the specificity of the wave 

environments and launch configuration used in the research. As indicated in previous 

research (Simões Ré et al., 2002), the wave steepness can have a considerable effect on the 

amount of measured setback, and consequently would impact the performance measures. 

The studies also focused only on escape from the platform in a head sea where wave 

direction is directly against the desired escape path of the launch vessel.   

6.2 Future Work and Recommendations  

The following section describes some guidance on future and related work that can be performed 

with simulations or using the methodologies presented in this thesis.  

• Ongoing training research – the research indicates that the type and amount of training 

received by the experimental participants did not provide enough practice to achieve 

competence on some skill types.  The study also indicated that certain tasks, such as 

stopping next to an object in moderate sea states, are difficult to perform and required more 

practice than provided in the study.  The thesis did not investigate the frequency or type of 

training that resulted in competence or provide enough data to indicate if additional practice 

would have resulted in a higher performance.   As the goal of the training is to prepare 

coxswains for plausible emergencies, further research on the type and amount of training 

that results in competence in emergency scenarios is suggested. Investigating the impacts 
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of overtraining, training in real scenarios, increased training frequency, and alternative 

training techniques are areas of possible future research.   Information learned from 

simulation-based assessments can also be used to improve training programs.  Performance 

data can be used to determine training targets and to evaluate an individual’s performance 

with comparisons made to historic data sets.    

• Continue to explore human and equipment limitations – the research provided insights on 

both trainee readiness for emergencies and the limits of launch equipment in extreme 

weather events. The study indicates that some tasks require a significant amount of training 

to master (slow-speed maneuvering) and the research did not evaluate if training could 

result in a high rate of success in adverse weather. The maneuverability of the lifeboat in 

waves must be considered as the vessel is difficult to control at slow speeds and in high 

wind and wave conditions. Studies of expert performance on tasks in high seas could 

evaluate the probability of errors made (slip) as weather increases and define human 

performance limitations.  The research also indicated that human actions improve launch 

performance if actions are performed quickly. Training to improve timing of actions, to 

practice releasing on a favorable part of a wave, or to evaluate alternate procedures is 

expected to improve launch performance.  Studies performed with expert personnel in high 

sea states could evaluate new procedures to increase the likelihood of a successful launch.   

• Extend data sets to improve models – the research used a small data from an experimental 

study to form models of learning and to assess competence.  Probabilistic models derived 

from large data sets are expected to have a higher predictive accuracy.   The predictive 

accuracy and practicality of the models can be improved with additional or larger data sets.   

Additional data can be collected from experimental studies or training programs that use 
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simulations to collect and track data on task performance.   Data sets collected for trainees 

with different training backgrounds or operational experience can be used to model and 

compare performance for novices and experts and to study the impact of different training 

alternatives.   

• Extend numerical studies and consider different wave characteristics - scenarios with 

oblique waves and winds would present new operational challenges (i.e. maintaining a 

desired heading) and new measures that would again be affected by human factors, and 

would assess if the vessel being studied is seaworthy. The investigation of varying wave 

shape, wind speeds, and wave directions is recommended to assess the change in 

performance across a broader spectrum of weather and launch configurations. 

• Incorporate models into adaptive learning applications – the study demonstrates how data 

collected on human performance can be used to gain insights on skill acquisition and 

development.  Simulator-based assessments can be used to measure performance for 

trainees as they practice in scenarios that evaluate their ability to complete tasks in 

scenarios. Data sets can be created to model novice and expert performance and create 

inputs to ITS (Millán et al, 2011) which are used to tailor the training experience.   The 

probabilistic BI and BN models can be integrated with machine learning algorithms to 

build adaptive training applications to customize training material to an individual’s 

strengths and weaknesses based on evidence gathered in training.  BN models can also be 

expanded to explore learning and the impact of different variables (i.e. time between 

training events, type of training received, background) on performance outcomes.  

• Apply methodologies to new applications – the methodologies and approaches used in this 

thesis can be applied to other problem areas where data is scarce to gain insights on trainee 
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and equipment performance.  Training simulators or numerical simulations can be used to 

perform assessments and collect data for situations that are normally prohibitive due to 

risk.  Simulation based assessments can be used to extend studies to new operating 

conditions and provide measures of performance in scenarios that could not previously be 

tested.  The approach and methodologies of assessing performance and examining learning 

of different skill types can be applied to other research in emergency response and has 

applications in other industries. The probabilistic models derived from BI and BN can be 

applied to new data sets and expanded to study learning in new training applications. 
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