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Abstract  

Crude oil pipelines are a major infrastructure investment for subsea oilfields and for 

platform-to-shore transportation and continue to be the preferred method of transporting crude oil 

over short to medium distances due to low operating costs and high safety record compared to 

other transport methods.  Their remote and often extreme locations limit their access and increases 

risks of human and environmental hazards in the event of failure.  Due to their frequent placement 

in deep water and hostile environments, inspection and identification of faults (such as leaks and 

flow restrictions) are difficult, expensive, and hazardous.  Faults are often only identified in 

accidents or upon routine inspection and after significant material losses and/or environmental 

damage has occurred.  The oil industry would benefit from a low-cost and timely method of fault 

detection. This thesis proposes such a method by augmenting process monitoring with Machine 

Learning (ML). 

This thesis investigates the relationship between pressure change, velocity change, and 

temperature of crude oil through a pipeline.  A representative dataset of crude oil flow is generated 

by computational fluid dynamics (CFD) and used to train a ML algorithm to develop a model of 

fluid behavior under normal pipeline operations over a range of typical flow rates and 

temperatures.  CFD data are then collected under several simulated fault conditions: leaks of 10 

and 20% of the inner cross-sectional area of the pipe, and a restriction to flow of 50% of the cross-

sectional area.  This thesis demonstrates that the ML algorithm can be trained to model the system 

under normal conditions, thereby successfully recognizing a fault condition as non-conforming 

and indicative of a statistically significant change in pipeline operation.  It is further able to identify 

the fault type based on the pattern observed in the new data. 
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This work demonstrates that ML may be a low-risk, low-cost, and accurate method of 

monitoring a subsea crude oil pipeline for optimal performance and fault detection without the 

need to introduce special equipment to a subsea pipeline network, assuming flowmeters and 

temperature probes are employed for process monitoring. This thesis develops the model 

algorithm, and it is hoped that the results of this study provide a basis for the integration of machine 

learning and further “big data” techniques in loss prevention and health and environmental 

protection in the offshore oil industry and elsewhere. 
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CHAPTER 1: INTRODUCTION 

1.1 Background of Subsea Pipelines  

Subsea pipelines are important components in petroleum production and transportation.  

The safe and efficient operation of these pipelines is critical to minimizing risk to personnel, 

structural assets, and the environment.  Petroleum in the form of crude oil continues to be a major 

source of energy and hydrocarbon products and will for the foreseeable future.  The U.S. Energy 

Information Administration estimates that by 2025 global oil consumption will reach 102.4 million 

barrels of oil per day (mn b/d) then peak at approximately 106.3mn b/d by 2040, after which global 

demand is expected to slump as energy alternatives attain greater market share [Lauerman 2019]. 

While this represents an overall decline in the long-term outlook of oil consumption, an estimated 

40mn b/d of new crude oil supply must come from offshore and shale sources to offset the 

depletion of current terrestrial and near-shore wells, necessitating exploitation of deeper and 

further off-shore reserves [McKinsey 2019]. 

In 2015 offshore production accounted for 29% of total global oil production and over the 

2005-2015 period investment in deepwater (125-1500 meter depth) and ultra-deepwater (greater 

than 1500 meters) sources increased from approximately 6.7 to 7.9mn b/d and 0.31 to 1.7mn b/d, 

respectively, and this trend is expected to continue [Manning 2019]. At present, the great majority 

of the volumetric output of subsea oil wells is conveyed through pipelines; either as well-to-shore 

transport systems for near-shore operations, or as piping networks in off-shore and deepwater 

subsea systems. The UK Offshore Operators Association estimates that a total length of about 

25,000 km of subsea pipelines with 1567 subsea pipes, and 542 failure events of these have been 

reported up to the year 2000 [Davis and Brockhurst 2015].  Deepwater systems typically consist 

of multiple structures incorporating pipeline networks: short “jumpers” that connect various 
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structures such as wellheads and manifolds; flowlines that transport oil from the manifolds to a 

riser; and the riser(s), which elevates the oil to the surface [Baker 1998, Palmer et al. 2008].  These 

networks may present an enormous piping infrastructure. As an example, Shell’s Perdido Platform, 

the deepest operating well in the world at 2450 meters, consists of a 22 well network and 44 

kilometers of oil pipelines [Pacella 2009]. 

Operational loss of a subsea pipeline can include flow reduction due to internal restrictions 

and containment failure. Pipeline failure consists of situations in which structural loss results in 

oil leakage into the surrounding sea environment.  These range in severity from minor and barely 

detectable, to catastrophic.  A very notable example of catastrophic loss is the April 2010 

Deepwater Horizon incident in the Gulf of Mexico that resulted from the safety failure of a deep-

water well-head.  The resulting explosion killed 11 workers and the resulting release of oil 

devastated the environment and economic activity of the gulf coast [Levy and Gopalakrishnan 

2010].  The great majority of subsea oil spills are relatively minor. Particularly in the case of 

corrosion failure leaks may take decades to form and many go unnoticed for long periods [Barker 

et al. 2014, Ilman and Kusmono 2008, Yun and Zhijun 2013].  Srivastava et al. (2008) describe a 

30-inch pipeline at a depth of 80 meters that, after 25 years of service life, was found to have a 120 

mm by 1250 mm rupture due to corrosion (approximately 30% of the cross-sectional area). Barker 

et al. (2014) document a case study of a North Sea subsea pipeline found to have sustained uniform 

corrosion and regions of severe localized corrosion leading to leaks that may have persisted 

unnoticed for up to five years. 

As the need for deeper and further offshore development of subsea pipeline systems 

increases, so does the need for improved safety and real-time monitoring to avoid and minimize 

potentially costly and harmful failures of these pipelines.  Process monitoring and routine 
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inspection are currently the primary means of identifying faults in subsea pipeline systems [Baker 

1998, Fu et al. 2020, Lyons 2010, L. Yang et al. 2019, Palmer and King 2008, Sa’aadah et al. 

2014].  Leaks are often identified only by incidental discovery when losses in flow rates are 

extreme, or upon visual discovery by remotely operated vehicle (ROV), diver, or sonar.  Process 

monitoring is in general a system of using real-time data from an industrial, chemical, or 

manufacturing process for analysis and optimization.  Process monitoring of flow parameters (e.g., 

pressure, temperature, volumetric flow rate) during operation aids industry personnel in identifying 

significant disruptions but is limited in its ability to identify small differences in operating 

conditions [Baker 1998, Lyons 2010, Palmer and King 2008].     

1.2 Machine Learning 

Machine learning has become in recent decades an effective tool in solving engineering 

problems and automating complicated data management processes.  As described by Tom 

Mitchell, "A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P if its performance at tasks in T, as measured by P, improves 

with experience E" [Mitchell 1997]. Framed another way, ML is a program that can alter its 

programming (model) based on new information to better fit its data-environment, thus learning 

from experience (Figure 1.1).  Machine learning is divided into three basic subcategories—

supervised learning, unsupervised learning, and semi-supervised learning—and forms the logical 

basis for much of the field of artificial intelligence [Brunton et al. 2020, Mitchell 1997, Shalev-

Shwartz and Ben-David 2014]. 
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Fig. 1.1: Flowchart of a general supervised machine learning training process. 

 

Supervised learning is the subset of machine learning in which a program is provided with 

a training set of real input(s) and output data (quantitative or qualitative) and a mathematical or 

probabilistic model is generated from this training set. This model is tested with a small dataset 

and refinements are made as necessary to limit generalization error, a measure of how capable a 

model is of predicting an outcome using new unseen data. Provided generalization error is 

reasonably low and the bias-variance trade-off is balanced, the final model is presented. The ML 
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program should then, when presented with a previously unseen input datum, be capable of 

predicting the corresponding output within a reasonable margin of error.  When data is 

quantitative, data fitting takes the form of regression modelling and the fitting function through 

recursion identifies the most appropriate order and curve [Brunton et al. 2020, Mitchell 1997, 

Shalev-Shwartz and Ben-David 2014].  The application of machine learning in pattern recognition 

has become broad-reaching as it is useful for most forms of data and has been employed in many 

areas, such as recognizing spam email, price predictions, voice recognition, and manufacturing 

process control.  As this thesis will outline ML has found numerous applications in engineering 

and in the oil and gas industry, but the full potential has not been realized in the field of process 

monitoring and fault detection.  This thesis will seek to bridge that gap by introducing a program 

that employs two supervised regression ML algorithms that can learn the normal flow behaviors 

of a crude oil pipeline and use this learning to accurately identify non-conforming behavior as 

indicative of a fault or change in the fluid properties. 

1.3 Objectives of the Thesis 

This thesis aims to propose a novel method for monitoring a subsea crude oil pipeline for 

faults and changes in flow conditions using a supervised ML regression algorithm program that 

uses real data from a study system.  This thesis achieves this goal in the following ways: 

• A literature review identifies a gap in the current methodology for monitoring the flow 

regimes of subsea pipelines. 

• Governing models in the underlying fluid mechanics are presented. 

• A model pipeline system is simulated under normal operating conditions by computational 

fluid dynamics (CFD) in ANSYS, forming a set of training data. 
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• A ML program is trained under two algorithms (univariate linear and multivariate 

generalized linear regression) using the normal condition flow data generated by the CFD 

and validated through test data. 

• CFD data is obtained under conditions of two types of simulated pipeline faults: leaks at 

10% and 20% of nominal pipeline cross-sectional area, and a restriction to flow at 50% of 

cross-sectional area.  

• The ML algorithm is introduced to this fault flow data and is capable of identifying them 

as abnormal conditions, and uses these data to identify the fault type and provide numerical 

estimates of severity. 

This thesis, being limited in scope to the above conditions of study, serves as a proof of 

concept that a machine learning program could be developed and employed to detect faults in a 

subsea oil pipeline.  This thesis does not explore the full range of defect types or degrees of severity 

that a system might experience. 

1.4 Outline of the Thesis 

 This thesis presents the research in seven chapters and an appendix as briefly described 

below: 

• Chapter 1. A brief introduction of the use of crude oil pipelines in subsea resource 

extraction and a brief overview of the concept of machine learning in data analysis. 

• Chapter 2. A literature review of the current topics of subsea oil pipeline process 

monitoring and the present applications of machine learning there-in. 

• Chapter 3. Background information on the governing equations of fluid mechanics and the 

principles of machine learning. 
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• Chapter 4. An explanation of the methods and assumptions of modeling through 

computational fluid dynamics the study pipeline under normal conditions and the fault 

conditions described. 

• Chapter 5. An explanation of the ML program used in this thesis. 

• Chapter 6. Results and discussion of the training of the ML program using the normal 

pipeline conditions and its ability to identify fault conditions and report these to the user. 

• Chapter 7. The conclusions of this thesis, and recommendations for further research on this 

topic. 

• Appendix A. The ML program coding in full. 
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CHAPTER 2: LITERATURE REVIEW 

Chapter 2 is divided into three primary sections:  Section 2.1 provides a literature review 

of the fault prevention and process monitoring in subsea pipeline systems.  Section 2.2 provides 

a review of ML: a basic overview, its history, and the applications of ML in engineering and the 

petroleum industry.   Section 2.3 provides an explanation of the literature gap and the 

justification for the research performed in this thesis. 

2.1 Pipeline Fault Prevention and Process Monitoring 

The majority of failure prevention on subsea crude oil pipelines is performed in the design 

phase of pipelines and transport systems and involves route planning, material and physical 

parameter selection, and inspections during construction and installation of pipelines in the 

operating environment.  During pipe design parameters such as material selection, wall thickness, 

insulation, and diameter are selected based on operational requirements (e.g., flow rates and 

pressures), the properties of the crude oil (viscosity, temperature, gas fraction, sand entrainment, 

waxing, etc), the subsea environment and depth, and route planning.  Additional considerations 

are given to incidental stresses such as earthquakes, rock and mudslides, seabed erosion, and 

impacts from manmade objects (e.g., anchors and fishing nets) [Palmer and King 2008]. The 

efficacy of design is limited by the knowledge at the time of development and often the actual 

operational conditions or unexpected event-driven occurrences exceed design parameters.  

Approximately 38% of subsea pipeline failures occur due to third-party damage and 36% fail due 

to corrosion in service (Fig. 2.1) [Sa’aadah et al. 2014].  

Risk analysis is a tool employed in identifying risk factors for mitigating risk in the design 

process and incidence response planning.  Numerous authors have used historical data to develop 

probabilistic models in risk analysis. Y. Yang et al. (2017) developed an Object-Oriented Bayesian 
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Network (OOBN) that used historical data of corrosion occurrences to generate a probabilistic 

model of future occurrences and their likely locations in target pipeline systems. Li et al. (2016) 

employed a similar technique to predict the occurrence of leakage in subsea pipelines in general. 

Fuzzy reasoning algorithms have been proposed for employment in the design of thin-walled 

pipelines to predict the safety thresholds in the events of corrosion wear and dents [McDonald and 

Cosham 2005].  The post-failure analysis is another powerful tool employed to identify the root 

cause of failures after they occur and use the lessons learned in future projects. McDonald and 

Cosham (2005) have proposed several methodologies of failure and defect analysis using a 

combined in-lab and in-environment approach.  Ilman and Kusmono (2008) provided a multi-

analysis examination of a leak in a 27-year service life pipeline caused by electro-chemical and 

flow-induced corrosion in an elbow and suggested that attention to flow rates and water-phase 

separation in design could prevent future incidents. 

 

Fig. 2.1: Distribution of failure modes in subsea pipelines [Sa’aadah et al. 2014]. 
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 Process monitoring is in general a system of using real-time data from an industrial, 

chemical, or manufacturing process for analysis and optimization.  It is a field that is interested in 

ensuring the quality and safety of the process of consideration and is a primary tool in fault 

detection or out-of-control (OOC) conditions.  Process monitoring and routine inspection are 

currently the primary means of identifying faults in subsea pipeline systems [Baker 1998, Fu et al. 

2020, Lyons 2010, L. Yang et al. 2019, Palmer and King 2008, Sa’aadah et al. 2014].  Process 

monitoring of flow parameters (e.g., pressure, temperature, volumetric flow rate) during operation 

aids industry personnel in identifying significant disruptions but is limited in its ability to 

distinguish minute differences in operating conditions [Baker 1998, Lyons 2010, Palmer and King 

2008].  Minor (and some major) leaks are often identified only by incidental discovery when losses 

in line pressure or flow rates are extreme, or upon visual discovery of material loss by remotely 

operated vehicle, diver, or sonar, which are only as frequent as resources, expense, and operating 

environment permits [McDonald et al. 2005, Palmer and King 2008, X. Li et al. 2016].   

Prihtiadi et al. (2016) demonstrated experimentally that a distributed system of pressure 

sensors in a water pipe could be used to identify the location of a leak by way of analyzing the 

pressure profiles for hallmark flow disturbances and gradient intersection of the positional 

pressures upstream and downstream of the leak (see Fig. 4.4). Of note, however, is their approach 

assumed relatively stable pressures as a function of time and operational fluid pipelines tend to 

vary considerably.  Fu et al. (2020) proposed a method of leak detection in a fluid pipeline by way 

of monitoring dimensionless pressure drop and dimensionless leakage rate between two positions 

and supported the viability with experimental results. However, this did not include the effects of 

temperature on fluid properties and noted the scaling limitation of the method on real conditions. 

A computational fluid dynamics (CFD) and experimental study published by L. Yang et al. (2019) 
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proposed a similar dimensionless model to detect flow restrictions/blockage in a fluid pipeline. 

The authors of this study note that the predictive power is contingent upon calibration of the CFD 

simulation to the specific conditions of the blockage under study.   

 

2.2 Machine Learning  

2.2.1 Overview 

Machine learning (ML) has become in recent decades an effective tool in solving 

engineering problems and automating complicated data management processes [Mitchell 1997, 

Shalev-Shwartz et al. 2014]. The application of machine learning in pattern recognition has 

become broad-reaching as it is useful for most forms of data and has been employed in many areas, 

including engineering and the petroleum industry.  ML is a broad topic. Tom Mitchell (1997), a 

pioneer in this field, describes ML as such: "A computer program is said to learn from experience 

E with respect to some class of tasks T and performance measure P if its performance at tasks in 

T, as measured by P, improves with experience E." The key feature of ML is in a program’s 

inherent ability to use data, make an interpretation or prediction of the nature or outcome of new 

“unseen” data based on previous experience, be able to measure its performance at interpreting or 

predicting, and learn from the results of that performance measurement.  To put it simply, a ML 

program is capable of identifying how successful its algorithm is at understanding its data-space 

and adjust its algorithm in order to improve its understanding with little or no guidance from human 

programmers. This is in contrast to more conventional programming in which a computer program 

simply follows a set of pre-defined instructions or formulas and the relationship between data in 

and data out is rigid. 

An example of a rigid programming structure related to this thesis would be solving the 

momentum equation (Eq. 3.6) for a uniform straight pipeline and temperature dependence of 
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viscosity for Brent crude oil and defining as many known parameters as possible, such as 

dimensions (length, radius) and fluid density. The resulting mathematical relationship between 

pressure change, velocity (U), and temperature (T) could then be used by a program to assess 

whether or not real pressure, velocity, and temperature data collected through empirical 

measurement conform to the mathematical relationship.  In many cases, this approach is an 

acceptable approximation. It is subject, however, to many limitations: the properties of crude oil 

are highly variable from well to well; interactions between fluid and stationary wall are difficult 

to predict and rarely uniform; heat transfer characteristics of fluid and pipe in application may 

differ from assumptions; and numerous other limitations etc.  A ML approach (and that taken by 

this thesis) would be to remove as many assumptions of the system of study as possible and train 

a program to define the relationship between pressure, velocity and temperature as it receives real 

data and define the mathematical model from the data, improve that model as its understanding of 

the real system grows with experience. This process greatly minimized the effect of errors in 

assumptions. 

 

2.2.2 Historical Context 

 The earliest iterations of what could be considered machine learning date to the early 1940s 

when researchers, notably Alan Turing first proposed the use of electro-mechanical computers 

designed to emulate the human mind toward solving complex problems.  The most notable 

example was the Bombe, an electromechanical computer built to break German naval codes by 

way of a crib (a fragment of plain text).  The Bombe would compare a crib to a potential setting 

of the encryption devices used to encode a message and a logical deduction would determine 

whether the setting contradicted the crib or not. If it did, I would move to the next potential setting.  

If it did not, additional cribs would be compared to the encryption setting [Hodges 2012].  This 
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technique paved the way for similar machines for both war-time and peace-time functions.  The 

term “machine learning” was first coined in 1959 by Arthur Samuel, an IBM developer in the field 

of artificial intelligence and its applications in learning programs, particularly games [Samuel 

1959].  Samuel demonstrated that a computer game of checkers could, with only 8-10 hours of 

play time, learn to perform better than its writer with only a basic set of instructions and parameters 

and a “sense of direction.” This involved the program developing a decision tree of many possible 

moves through a “look-ahead procedure” at each iteration of play and choosing the branch of the 

decision tree with the greatest likelihood of success given the possible interactions with the player.  

 Work into ML developed through the 1950s and 60s into what more broadly come to be 

called artificial intelligence (AI), cybernetic systems designed to mirror human thinking processes. 

In 1958 Rosenblatt (1958) developed the perceptron, a machine (and later a program) that used 

linear classification to determine if an input matched a specific class.  This was the first use of 

single-layer supervised binary classification, and would later be expanded into multilayer 

perceptrons, the forerunners of neural networks [Brunton et al. 2020]. Cybernetics as a field began 

to stagnate by the 1970s, however.  Probabilistic reasoning became plagued by challenges 

stemming from contemporary limitations on data processing and this resulted in a division in the 

field between AI and machine learning, the latter of which began to focus on logical data-based 

approaches relying on passive observation and analysis rather than environmental interaction as 

with the former [Russell and Norvig 2003].  Since then, however, advancements in computing 

power and data management have brought much of these two fields back into overlapping research 

and application space.  

 In 1986 Rumelhart et al. (1986) advanced the field of ML through the development of 

backpropagation, a technique that calculates the gradient of a loss function in fitting a neural 
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network, which greatly increased the efficiency and efficacy of algorithm training over classic 

methods.  The development of more accessible digital computing has spurred a growing interest 

in ML research that continues to this day [Brunton et al. 2020].  

 

2.2.3 Types of Machine Learning Algorithms and Example Applications 

 Machine learning algorithms are divided into three general categories based on the amount 

and nature of the information available to the learner: supervised, unsupervised, and 

semisupervised.  Within each, different algorithms are employed depending on the type of data 

[Brunton et al. 2020, Mitchell 1997, Shalev-Shwartz and Ben-David 2014].  Table 2.1 provides a 

breakdown of the most employed algorithms in each category. 

Supervised Learning 

Supervised machine learning is that in which the inputs and their corresponding outputs 

are known to the algorithm during training and typically involve defining a mathematical 

relationship between inputs and outputs given certain parameters [Shalev-Shwartz and Ben-David 

2014]. Through an iterative process of optimizing a loss function, the most appropriate 

mathematical relationship is established.  In cases in which the inputs and outputs are numerical 

and continuous, regression algorithms such as linear and generalized linear are employed.  An 

algorithm that predicts the price of a house based on the square footage and number of bedrooms 

by learning from historical real estate records might employ a regression algorithm. 
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Table 2.1: Basic categories of ML algorithms commonly used based on the availability 

and type of information [Brunton et al. 2020]. 

 

When the inputs and outputs are limited to classes of information or sets of specific values, 

classification algorithms such as support vector machines (SVM) and artificial neural networks 

(ANN) are used.  ANNs are classification algorithms in which associations between numerous 

factors are weighed and filtered by “hidden layers.” An ANN in the process of learning adjusts the 

weight of factors within the hidden layers through an iterative process of optimizing a loss 

function.  An example of an application is spam filters in which an ANN learns to associate certain 

words in an email (such as “limited time offer” or “pre-approved”) with potential spam activity; 

however, a hidden layer association might give significantly less weight to emails from senders 

with previous engagement with the recipient.  ANNs have found many applications in areas 

involving a large amount of data with complex structures.   

Supervised machine learning has found many applications in engineering.  Teo et al. (1991) 

introduced ANN as a means to analyze particle image velocimetry (PIV) photographs. Using 

particle size, shape, position, and gray scale information as factors, they demonstrated that an ANN 
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could match particles in one frame with particles in another frame, thus enabling a program to 

determine their velocity due to displacement.  Elforjani and Shanbr (2018) developed a method 

for estimating the service life of bearings by analyzing historical acoustic emission through a 

combination of regression, SVM, and ANN machine learning techniques. Regan et al. (2017) 

applied logistic regression and SVM ML to the analysis of vibration of wind turbine blades for 

detection of damage in structural health monitoring.  

Unsupervised Learning 

Unsupervised learning is that in which only inputs are known to the learning algorithm.  

The data is unlabelled, meaning it has not been organized into groups or factors. The objective of 

this type of learning is commonly associated with pattern identification of large amounts of data 

through quantization or clustering, and it typically involves probabilistic methods.  Common 

clustering algorithms are k-means and hierarchical clustering.  In k-means, vector quantization 

attempts to divide observations into k-number of clusters by measuring each observation’s distance 

from a cluster mean (or centroid).  This method is common for image processing applications in 

which a continuous palette of shades is reduced to a finite number of quantized colors for a variety 

of image processing and analysis applications, such as astronomy [Chavolla et al. 2018] and 

geospatial data for tracking land use/resources [Kanberoglu and Frakes 2019]. Hierarchical 

clustering involves dividing data into groups based on a metric (the measure of the distance 

between observations) and a linkage criterion (the dissimilarity between clusters).  

Semi-Supervised Learning 

Semi-supervised learning involves learning under partial supervision.  This typically 

involves cases in which a set amount of data is labelled, but the majority remains unlabelled, and 

often involves human interaction as part of the learning process.  A significant field of semi-
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supervised learning is reinforcement learning in which an agent takes incremental actions, assesses 

the reward for that action, and either continues forward or changes direction as a consequence of 

the reward.  These techniques are a form of human learning emulation, modelling how a person 

learns through trial and error using a limited framework of knowledge, much how a toddler learns 

to balance upright and walk by experiencing movements that work and do not work.   This method 

has been widely applied in game theory and robotics.  Zhou et al. (2021) describe the training of a 

robot to balance and roll on a single ball through deep reinforcement learning. The robot (agent) 

learns to avoid specific actions that lead to instability such as tilt angles and accelerations. Xie et 

al. (2020) describe using reinforcement learning to teach a series of animated bi-pedal characters 

to successfully navigate a course of “stepping stones” in a rough-terrain animated world.  

2.2.4 ML Applications in Petroleum Industry 

The oil and gas industry has seen numerous applications of machine learning. ML 

algorithms have been developed to estimate the physical properties of crude oil.  Creton et al. 

(2019) demonstrated that a supervised ML model employing quantitative property-property 

relationships could predict a live well’s equivalent alkane carbon number (EACN) through its 

chemical properties, such as API gravity, C20- fraction, and its chemical fraction properties.  

Rostami et al. (2013) employed a Gaussian regression supervised ML model to predict the density 

of crude oil at well heads from historical properties, and Sinha et al. (2020) expanded this to 

predicting the viscosity of all oil types through a support vector machine learning process.  In a 

very recent analysis Hadavimoghaddam et al. (2021) compared various machine learning methods 

used to estimate crude oil viscosities at reservoir conditions and determined their performance as 

capable of simulating the true empirical results with accuracy.  
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Anifowose et al. (2016) and Otchere et al. (2020) both demonstrated that new oil well 

characteristics could be successfully predicted by mapping the known well data with their seismic 

characteristics through a mixed-model supervised ML incorporating support and relevance vector 

machines. They found that this approach was more predictive than an artificial neural network 

(ANN).  Wood et al. (2019) employed a transparent open box learning network supervised 

algorithm to predict the oil formation volume factor at bubble point (Bob) by using reservoir 

temperature, gas-oil ratio, and oil gravity and gas specific gravity as predictors from historical well 

data.  Alipour et al. (2020) demonstrated that machine learning could be used to effectively process 

and analyze imagery of nanoindentations for the accurate characterizing of fracture toughness in 

samples of shale formations. An ANN using regression analysis was used by Obanijesu and 

Omidiora (2008) to predict rates of paraffin wax buildup in pipelines in 11 Nigerian oilfields based 

on a well’s viscosity, temperature, and pressure. 

There has been literature published on machine learning applied to crude oil pipelines that 

are within the context of fault detection. Rashid et al. (2015) demonstrated a distributed wireless 

sensor network in a dry environment pipeline system with support vector ML and Gaussian 

statistical modeling performed on negative pressure waves to identify adverse events regarding 

leak detection.  The authors did not discuss, however, the potential of such a system being used in 

a subsea application. Leak detection through ML-integrated acoustic sensing has also been 

proposed by Ahn et al. (2019) in a dry environment. Mandal et al. (2012) described a method of 

enhancing hardware-based leak detection (chemical sensor, acoustic sensor, etc) by reducing false-

positive indications through a support vector ML and artificial bee colony (ABC) approach. Kerf 

et al. (2020) proposed a method of crude oil leak detection by ML-assisted infrared image 

processing.  
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2.3 Research and Literature Gap 

This literature review demonstrates that the application of machine learning to the 

petroleum industry is relatively new and to date has focused primarily on the prediction of crude 

oil and well conditions and properties from historical information.  Very little has been researched 

on the topic of machine learning in the context of process monitoring in crude oil systems in 

general, and even less focus on subsea systems.  Additionally, most ML applications in the 

literature related to pipeline process monitoring are dedicated to the detection of leaks; no 

publications related to other fault types, such as flow restrictions, could be identified in the present 

literature. This presents a gap in the literature and a significant research opportunity.  It has been 

demonstrated that ML can be successfully employed in the topic of crude oil and its operations, 

and this thesis seeks to fill some of the gaps in the current literature.   

This thesis proposes an expansion of the work performed by Fu et al. (2020) and L. Yang 

et al. (2019) by way of the application of a machine learning (ML) algorithm that uses live flow 

velocity, pressure, and temperature data to generate a model of normal operation, and once learned, 

be able to identify leaks and blockages in a pipeline by way of pattern non-conformance 

recognition.  The research of additional authors support the use of flow data monitoring in the 

successful detection of fault conditions in pipelines [Adegboye et al. 2019, Ahn et al. 2019, 

Prihtiadi et al. 2016, Rashid et al. 2015]; however, they do not provide ML as a method of real-

time data analysis and system intelligence. Automated systems or processes that can actively 

monitor flow parameters and, given historical data and fundamental principles, determine atypical 

or “out of control” conditions before or at the point of failure, rather than after the fact, would 

greatly enhance efforts in preventing losses and damage to health, safety, and environment.  



20 
 

CHAPTER 3: PRINCIPLES OF FLUID MECHANICS AND 

MACHINE LEARNING  

Chapter 3 is divided into three primary sections:  Section 3.1 provides an overview of the 

properties of crude oil under investigation in this thesis.  Section 3.2 provides an overview of the 

governing equations in fluid mechanics and the theory of fluid flow through a pipeline under 

normal conditions. This will include the continuity, momentum, and energy equations, which 

describe the fundamental behavior of fluid mechanics in a pipeline.  Assumptions will be employed 

to simplify these equations and the basic properties of crude oil will be considered. Governing 

equations are expressed in cylindrical coordinates unless otherwise noted.   Section 3.3 provides 

an overview of machine learning algorithms and their risk and loss functions. A more detailed 

description of the loss functions employed in supervised regression ML is provided and the method 

of model selection is described. 

 

3.1 Crude Oil Characteristics and Assumptions 

 Crude oil is a heterogenous mixture of hydrocarbon compounds that are highly variable in 

their properties and compositions between sources, and even within the same source, varying over 

time with dependencies on wellhead pressure, temperature, consistency, and depth.  They are 

usually considered Newtonian fluids with viscosities that are heavily dependent on temperature 

[Hansen et al. 2019, Lyons 2010, Palmer and King 2008].  This has a significant impact on 

thermodynamics and flow parameters, especially over significant pipeline distances in which 

temperature changes may be dramatic. Crude oil is frequently found in multiphase as a mixture of 

several states of matter, or a mixture of compounds of the same state: solid (e.g., sand, wax), liquid 

(e.g., hydrocarbon, water), and gas (e.g., methane, carbon dioxide).  However, oils with a 
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negligible to relatively low gas/oil ratio (GOR), or those found at the wellhead to be 

undersaturated, are considered to be single-phase fluids in the analysis [Lyons 2010, Hansen et al. 

2019].  An oil is undersaturated when the gas, if present, is fully dissolved and the pressure is 

sufficiently high to permit more gas to be dissolved if present. As such oil conveyed in subsea 

flowlines under high pressure typically exists in single-phase, with phase separation beginning in 

the riser [Lyons 2010].  To simplify the computation fluid dynamics (CFD) model the current 

study will assume that the fluid under study is single-phase and Newtonian. This is consistent with 

much of the literature to date involving CFD simulation of crude oil through pipelines where the 

multi-phase flow is not under investigation [Rukthong et al. 2015].  

 The model crude oil that will be used in this thesis is Brent crude oil, a light to medium 

gravity oil most associated with the North Seas subsea oil fields. This was chosen as the model 

fluid due to the ready availability of data in the literature. Table 3.1 reports the properties of Brent 

crude used in the CFD simulation and held constant throughout [Rhodes 1995].  Figure 3.1 shows 

the relationships between temperature and viscosity [ITOPF 2011].  

 

Table 3.1: Physical and thermal properties of Brent crude oil. 

 

 

 

Property Value Unit

Density 825 kg/m^3

Thermal capacity 2500 J/(kg-K)

Thermal conductivity 0.130 W/(m-K)
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Fig. 3.1: Logarithmic dependence of viscosity of Brent crude oil on 

temperature. 

 

3.2 Fluid Mechanics 

 This section discusses the continuity, momentum, and energy equations as governing 

equations used in the study of fluid mechanics.  These equations account for the change in mass, 

momentum, and energy experienced by the fluid through time and across geometries. Under the 

understanding that the total mass, momentum, and energy in a system must be conserved, 

accounting mathematically for these three properties permits the researcher to predict the 

behavior of a fluid under a wide variety of conditions.  These equations may be simplified under 

specific conditions when factors are known to be negligible, and this section addressed these 

simplifications under the conditions and assumptions of this thesis. 
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 Throughout the present study a pipe will be considered as a horizontal cylinder of 

uniform radius (Fig. 3.2).  Two points of interest representing locations of flow meters and 

thermocouples, 1 and 2, will be separated by length l, at which their respective pressures, mean 

velocities, and temperatures are represented by p, U, and T. The change in pressure between 

points 1 and 2, Δp, is p1-p2, and the change in mean velocity, ΔU, is U1-U2.  Pipe characteristics, 

such as surface roughness, will be held uniform.   

 

Fig. 3.2: Schematic of a horizontal pipe with a uniform cross section.  

3.2.1 Continuity Equation 

The continuity of mass of a moving fluid is expressed in cylindrical coordinates by the 

continuity equation [Yuan 1967]: 

 
𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑣𝑟)

𝜕𝑟
+

1

𝑟

𝜕(𝜌𝑣𝜃)

𝜕𝜃
+

𝜕(𝜌𝑣𝑧)

𝜕𝑧
+

𝜌𝑣𝑟

𝑟
= 0  (3.1) 

Because the density of the fluid is constant under the assumption that crude oil is an incompressible 

fluid the transient term disappears.  If the pipe is assumed to be uniform in geometry and flow is 

fully developed, the radial and circumferential velocity terms are neglected, leaving only velocity 

in the z-direction.  Eq. 3.1 simplifies significantly to: 
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𝜕𝑣𝑧

𝜕𝑧
= 0  (3.2) 

A simplified equation for conservation of mass can be written as [Munson et al. 2012]: 

 
𝜕

𝜕𝑡
∫ 𝜌𝑑𝑉|𝐶𝑉 = 0  (3.3) 

which is integrated across the control volume to yield: 

 ∑|𝐴𝑈|𝑖𝑛 + ∑|𝐴𝑈|𝑜𝑢𝑡 = 0 (3.4) 

where U is the average velocity across a control surface. 

3.2.2 Momentum Equation 

Flow of a viscous incompressible fluid with a constant density (ρ) through a straight 

horizontal pipe is given in cylindrical coordinates by the continuity of momentum equation 

[Munson et al. 2012]: 
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 (3.5) 

in the z-direction where viscosity (µ) is a function of only temperature (T).  If it is assumed that 

body force in a horizontal pipeline 𝜌𝑔𝑧 is negligible, that flowrates change sufficiently slow as to 

be steady-state and fully developed at any given moment, and that radial angle and radius terms 

are neglected, Eq. 3.5 simplifies to: 
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3.2.3 Energy Equation 

 Because this study intends to model a temperature dependence on viscosity in the CFD, 

the energy equation is employed to model the temperature distribution [Yuan 1967]: 
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where 
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When simplified by the assumptions made in the case of the momentum equation (Eq. 3.5), Eq. 

3.7 is simplified to: 
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where k is the thermal conductivity and Cv is the specific heat capacity of the fluid. 

 

3.2.4 Fluid Flow Model in a Uniform Pipeline 

 Appropriate model selection will be critical to training the ML algorithm, as will be 

discussed in the next section of this chapter.  It is desirable to train the ML algorithm with flow 

parameters that are easily obtained from commonly used industry-standard instruments, such as 

flowmeters and thermocouples. As described in Chapter 2 the parameters of the study will be flow 

velocity, temperature, and pressure. The momentum equation (Eq. 3.6) will therefore be the basis 

for the ML regression pressure model. To obtain a generalized model, scaling analysis is applied 

to Eq. 3.6 to identify the asymptotic behavior of the momentum equation when velocity in the z-

direction approaches zero:  

 𝐴𝑡 𝑣𝑧 → 0:  𝛥𝑝 ~ 0 (3.9) 

and when velocity in the z-direction approaches infinity: 

 𝐴𝑡 𝑣𝑧 →  ∞: 𝛥𝑝 ~ 
𝑧

𝑟2
µ(𝑇)(𝑣𝑧

2 + 𝑣𝑧) (3.10) 

Equation 3.9 indicates that at a near-zero velocity the change in pressure approaches zero.  

Equation 3.10 indicates that as velocity approaches infinity the pressure drop across a span of 
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uniform pipe resembles a second-order parabolic relationship to velocity scaled to the temperature-

dependent viscosity and the geometry.  From published viscosity-temperature values of Brent 

crude in Fig. 3.1 the viscosity can be approximated as a power function of temperature in the 

following form:  

 µ(𝑇) = 𝑖𝑇−𝑗 (3.11) 

where i and j are constants.  Inserting Eq. 3.11 into Eq. 3.10, the expected pressure-velocity-

temperature relationship would be of the form: 

 𝛥𝑝 ~ 
𝑧

𝑟2
𝑖𝑇−𝑗(𝑣𝑧

2 + 𝑣𝑧) (3.12) 

To reduce as many a priori assumptions for the ML algorithm as possible, geometry is incorporated 

into the coefficient and the proportionality of Eq. 3.12 can be expressed as: 

 𝛥𝑝 = 𝑎𝑇𝑏𝑈2 + 𝑐𝑇𝑑𝑈 (3.13) 

where a, b, c, and d are constants for coefficients and powers, and U as the mean velocity of the 

cross-sectional area.   

 

3.3 Supervised Regression Machine Learning 

From Section 2.2.3 the most appropriate ML algorithm for the application in this thesis is 

supervised regression.  Given that the goal of this study is to use the mathematical relationship 

between flow parameters of temperature, velocity, and pressure change between two points in a 

uniform pipeline, the inputs and the outputs will all be known to the algorithms.  These flow 

parameters are continuous numerical data and thus regression fitting will be the methods employed 

to define the relationships between inputs and outputs. 
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3.3.1 Training the Machine Learning Algorithm 

 Before the ML algorithm attempts to train with the data, the initial dataset is randomly 

divided into training set S and test set ST, typically in an 80:20 or 70:30 ratio.  The test set is 

withheld from the training process to serve as a set of known data by which to evaluate the model 

[Cherkassky and Mulier 2007].  To train a ML algorithm, the program receives a training set, S, 

as input that has been taken from an unknown distribution D.  A function f is developed to generate 

a predictor hS from the training set.  The primary focus of the ML algorithm is to define function f 

(the model) to minimize the training error between the predictor hS and the known output y with 

respect to D and f [Shalev-Shwartz and Ben-David 2014].  D may follow a normal, binomial, 

Weibull, or other distribution depending on the nature of the dataset.   

In general, the process of machine learning is one of minimizing a risk function given by:  

 𝑅(𝑤) =  ∫ 𝐿[𝑦, 𝜑(𝑥, 𝑦, 𝑤)]𝑃(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (3.14) 

where the inputs x and outputs y defined by a structure given as φ with parameters w. The loss 

function L depends on the form of φ selected for fitting.  The selection of the loss function will be 

discussed in the following sections.  The inputs and outputs are sampled from a distribution D and 

the probability P that any given x and y are not randomly correlated is assessed [Brunton et al. 

2020, Cherkassky and Mulier 2007].  

3.3.2 Regression Loss Functions 

 A linear regression model can be given by the equation: 

 ℎ𝑤,𝑏(𝑥) = 〈𝑤, 𝑥〉 + 𝑏 (3.15) 

in which hw,b represents the hypothetical output of the function given parameter w and intercept b.  

Let a hypothetical output for a given input value be defined as hi(xi).  The loss function in Eq. 3.14 

for a linear regression model can be determined by the squared-loss function:  
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 𝐿(ℎ𝑖 , 𝜑(𝑥, 𝑦, 𝑤)) = ‖ℎ𝑖(𝑥𝑖) − 𝑦𝑖‖2 (3.16) 

In the case of a nonlinear regression of polynomial predictors of degree n, the model takes 

the form: 

 ℎ(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 (3.17) 

The loss function in the case of nonlinear regression is the least squares: 

 𝑎𝑟𝑔𝑚𝑖𝑛 𝐿(ℎ𝑤) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤
1

𝑚
∑ (〈𝑤, 𝑥𝑖〉 − 𝑦𝑖

𝑚
𝑖=1 )2 (3.18) 

To solve Eq. 3.18 the gradient descent of the objective function is compared to zero [Shalev-

Shwartz and Ben-David 2014]: 

 
2

𝑚
∑ (𝑚

𝑖=1 〈𝑤, 𝑥𝑖〉 − 𝑦𝑖)𝑥𝑖 = 0 (3.19) 

3.3.3 Loss Function Optimization 

 The defining characteristic of a ML algorithm is the ability to improve performance 

through the experience of tasks based on a performance metric (see Chapter 2).  In the case of 

regression learning the loss function is the performance metric and the tasks are incremental 

attempts to fit the training set S to a function f using iterative values of parameters w.  The “success” 

of each attempt is measured by the loss function, which is cataloged, and the parameters w are 

adjusted for a new attempt yielding a new value for the loss function. Following a certain number 

of attempts (determined through a process of backpropagation), the parameters that achieved the 

minimal loss function value are assigned to the model.  An illustrative example is given in Fig. 3.3 

in which a simple linear function (Eq. 3.15) is fitted to a training set S n-number of times, yielding 

n-number of the parameter (w) and intercept (b) sets with their respective L values calculated 

through the squared-loss equation (Eq. 3.15). Following n-number of iterations, the minimal L 

value determines w and b assigned to f.  This process is fundamentally the same regardless of the 

form of function f.  
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Fig. 3.3: Flow diagram of a generalized linear regression machine learning process. 

  

The number of attempts n in the iterative process may be determined by a “brute force” 

method of simply assigning a value of n and dividing the parameters stepwise across a range of 

values and simply pulling those that yield the minimum L.  This may be useful for estimation, but 

the risk of generalization error may be higher than necessary.  A more efficient method employed 

in ML is gradient descent, in which the incremental change(s) in w from each previous value is 

proportional to the gradient of the loss function: 

 𝑤𝑛+1 = 𝑤𝑛 − 𝜂∇𝐿(𝑤𝑛) (3.20) 

where η is a numerical value called the learning rate [Shalev-Shwartz and Ben-David 2014].  

Figure 3.4 illustrates how a minimal loss function and optimal w can be located, through an 

iterative process of indexing w by decreasing amounts as ∇𝐿 decreases.  Because the initial ∇𝐿 is 

negative and large in magnitude the first iterative advancement of w is positive and large.  In the 

example situation ∇𝐿(𝑤2) is positive and smaller in magnitude than ∇𝐿(𝑤1) and thus the next 

iterative step is negative and reduced.  The process continues until ∇𝐿 → 0.  Note that Fig. 3.4 is 

greatly simplified, and gradient descent may involve thousands of iterations. 
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Fig. 3.4: Simplified diagram of the process of minimizing L through 

gradient descent.  

 

3.3.4 Model Selection and Validation 

 As noted previously the primary function of a ML algorithm is to define the appropriate 

function f to serve as the model that minimizes training error.  Success in properly fitting a 

function is measured by the generalization error, defined to be the probability that a model does 

not correctly predict an appropriate output given input(s) x from within the distribution D. The 

error of a prediction h:x→y is given by: 

 𝐿𝐷,𝑓(ℎ) ≝ 𝑃𝑥~𝐷(ℎ(𝑥) ≠ 𝑓(𝑥)) (3.21) 

in which the error is the probability of h(x) not equaling f(x) within the probability distribution D 

for any random value of x [Shalev-Shwartz and Ben-David 2014].  

In many cases simple linear (Eq. 3.15) or polynomial (Eq. 3.17) functions suffice and 

manage to represent the data set S with minimal error.  In regression modeling there are 
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innumerable forms of functions and when the “true” relationship between inputs and outputs are 

unknown, appropriate selection of the function f typically involves an iterative process of 

attempting various functions (such as linear, then polynomial of 1st degree, then 2nd degree, etc) 

and selecting the model that yields the least generalization error [Shalev-Shwartz and Ben-David 

2014].  In some cases, however, it is appropriate to select a specific function for training in those 

cases in which the general relationship is already known. In this thesis, because the training set S 

is expected to follow governing principles of fluid mechanics highlighted above, the pressure and 

velocity algorithms will be trained to the forms of Eqs. 3.4 and 3.13. 

Following the selection of the model that best minimizes the loss function, it is evaluated 

using the test set ST.  This performs several functions: It serves as an evaluation of the model in 

the face of previously unseen data, and it serves to evaluate training bias, also referred to as 

“overfitting.”  This occurs when the model conforms too perfectly to the training set and is poorly 

able to identify real previously unseen data as belonging to the dataset because the ML algorithm 

was trained only to recognize the training data [Shalev-Shwartz and Ben-David 2014].  As an 

example of training bias related to this thesis, consider a situation in which a regression model is 

trained using a dataset that includes velocities ranging from 0 m/s to 0.7 m/s.  However, the real 

operating conditions range from 0 m/s to 1.8 m/s.  If the ML algorithm is only shown the data of 

narrow velocity range, the function f fitted to that dataset will be biased to that range and 

predictions of flow characteristics (such as Δp) based on velocity conditions greater than 0.7 m/s 

will be made based on the forward extrapolation of f, not based on fitting to real data.  This 

increases the risk of predictions using previously unseen data that is not within the ranges of the 

training data poorly fitting to function f.  To limit the risks of training bias it is important that the 

training set be representative of the full range of parameters w expected to be encountered.  In 
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events that new data points are observed that are outside the range of the training data, it is a 

common practice to incorporate them into the training set and re-train the algorithm [Shalev-

Shwartz and Ben-David 2014].  If the model is accurate, the predictors hT, generated from the 

model f from the inputs from the test set, xT, should fall within the distribution of the real outputs 

y to an acceptable level, typically evaluated as a percentage of test set points correctly predicted. 
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CHAPTER 4: COMPUTATIONAL FLUID DYNAMICS 

MODELLING 

Chapter 4 is divided into six primary sections: Section 4.1 explains the setup of the CFD 

models and solvers.  Section 4.2 discusses the setup and results of the CFD simulation of a crude 

oil pipeline under normal operational conditions. Section 4.3 details the CFD modeling and results 

of the same pipeline in the event of a 10% and 20% leak under several environmental pressure 

scenarios. Section 4.4 discusses the CFD modeling and results of the pipeline with a 50% flow 

restriction.  Section 4.5 discusses the CFD modeling and results of an increase in the viscosity 

profile of the crude oil. Section 4.6 provides a review of the modelling work in this chapter. 

 

4.1 CFD Methodology 

Flow parameter data for a horizontal, uniform crude oil pipeline under normal conditions 

were generated using ANSYS Fluent following general practices published by numerous CFD 

researchers employing energy equation analysis in the study of crude oil pipeline flow [Fu et al. 

2020, Kumar et al. 2017, Rukthong et al. 2015, Yang et al. 2019]. 

4.1.1 Model Setup and Material Properties 

A three-dimensional model of a straight uniform cross-section steel pipe of 200m in length 

and 0.300m inner diameter and 0.0125m wall thickness was generated to simulate a simple 

horizontal subsea pipeline of dimensions common in subsea applications [Palmer and King 2008].  

The inner dimension was filled and designated as fluid. Meshing of the fluid elements and pipeline 

incorporated inflation at the wall interface, and fluid meshes were verified to have at least 200,000 
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elements before simulation.  A no-slip boundary condition was set and a constant surrounding 

environmental temperature of 5oC was assumed throughout the analysis. 

The fluid properties were programmed using Brent crude as the model fluid with the 

properties listed in Table 3.1. Temperature-dependent viscosity was programmed into Fluent as 

piecewise-linear using the published values for Brent crude (Fig. 3.1).  The steel pipe material had 

a constant density of 8030 kg/m3, a specific heat of 502.48 J/kgK, and thermal conductivity of 

16.27 W/mK.    

4.1.2 Simulation Solvers 

To model the effect of temperature of the environment on the fluid, the energy equation 

(Eq. 3.7) was turned on and a single-phase, pressure-based solver was selected with an absolute 

velocity formulation. In this thesis, the turbulent flow field was assumed to be steady-state and the 

K-epsilon (K-ε) turbulence model was used as this is the most common in the prediction of 

turbulent energy dissipation under the assumptions used in this thesis [Kays et al. 2018, Fu et al. 

2020].  This model employs two transport equations in simulating turbulent behavior: The kinetic 

energy equation (k) and the dissipation equation (ε). 

Turbulent Energy Equation, k 

 The k equation describes the transfer of energy of fluid elements through turbulent effects 

and is given by [Kays et al. 2018]: 

 
𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜀 − 𝑌𝑚 + 𝑆𝑘  (4.1) 

where k is the turbulence kinetic energy (not to be confused with k as thermal conductivity used 

previously), xi and xj are corresponding locations with ui the velocity in the direction of xi, µt is the 

eddy viscosity, σk is a constant, Gk is the turbulent flow energy from laminar velocity gradient, Gb 
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is the buoyancy flow energy, Ym is the fluctuation caused by turbulent diffusion, ε is the rate of 

kinetic energy dissipation, and Sk is the turbulent kinetic energy source.  

Dissipation Equation ε 

 The ε dissipation equation provides the rate at which turbulent kinetic energy dissipates 

and is given by an equation very similar to Eq. 4.1 [Kays et al. 2018]: 

 
𝜕

𝜕𝑡
(𝜌𝜀) +

𝜕

𝜕𝑥𝑖
(𝜌𝜀𝑢𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜀
)

𝜕𝜀

𝜕𝑥𝑗
] + 𝐶1𝜀

𝜀

𝑘
(𝐺𝑘 + 𝐶3𝜀𝐺𝑏) − 𝐶2𝜀𝜌

𝜀2

𝑘
+ 𝑆𝜀 

  (4.2) 

where 𝐶1𝜀, 𝐶2𝜀, and 𝐶3𝜀 are dissipation parameters, 𝑆𝜀 is dissipation rate source term, and 𝜎𝜀 is a 

constant.  

 In the Fluent solver, the model Prandtl number Prt was set to 0.85, dissipation parameters 

𝐶1𝜀, 𝐶2𝜀, and 𝐶3𝜀 as 1.44, 1.92, and 0.9, respectively, σk as 1.0, and 𝜎𝜀 as 1.3, as consistent with 

previously published works of crude oil modeling in Fluent [Kumar et al. 2017, Rukthong et al. 

2015, Zhu et al. 2014].   

4.1.3 Numerical Method  

 The SIMPLE algorithm was employed in this thesis as the solution method for solving the 

pressure-velocity coupling. Discretization of the governing equations (Eqs. 4.1 and 4.2) is 

accomplished through the finite volume method (FVM) with the spatial discretization of the 

gradient set to least squares cell-based, second-order pressure, second-order upwind momentum, 

first-order upwind turbulent kinetic energy and dissipation rate, and second-order upwind energy 

discretization.  Convergence criterion of 10-6 of the residuals of the control volume was selected 

in all equations.  These numerical methods are commonly selected in CFD for pipeline flow as 

they maximize accuracy while limiting the CPU usage [Fu et al. 2020, Zhu et al. 2014]. 
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4.2 Normal Operational Pipeline Conditions 

A range of inlet velocities were simulated for each of six inlet temperature groups: 11, 12, 

13.5, 22, 37, and 52oC.  This temperature range represents those commonly observed in subsea 

well-head conditions [Barker et al. 2014, Lyons 2010].  To select a range of velocities a set of 

safety criteria were used [Palmer and King 2008].  The first is a semi-empirical formula meant to 

minimize the effects of corrosion on steel pipeline walls:  

 𝑈𝑚𝑎𝑥 =
122

√𝜌
  (4.3) 

where ρ is the density of the crude oil. The second is a rule of thumb used in production engineering 

as a trade-off between capital and operation expenditure: 

 𝑄𝑚𝑎𝑥 =  (
𝑟

0.420
)

2

  (4.4) 

where r is the inner radius of the pipe. The more conservative result from Eq. 4.3 and 4.4 was the 

latter, yielding a Umax of 1.85 m/s.  The flow was simulated under the above conditions and the 

resultant pressures, temperatures, and mean velocities were recorded at z = 50 m (“point 1”) and 

the exit z = 200 m (“point 2”) to represent the locations of flow meters and temperature probes in 

a pipeline that are spaced 150 m apart.  The position of point 1 provides a 50 m entry length to 

ensure the CFD flow is fully developed before this reaches the point of the first sensors at point 1.  

Figure 4.1 shows the velocity, temperature, and pressure along the center-line axis of the 

pipeline from the inlet (z=0 m) to the outlet (z=200 m) of an example observation under normal 

conditions with an inlet velocity of 1.145 m/s and temperature 36oC.  The center-line velocity 

enters the pipe at the inlet velocity and increases linearly and reaches a constant magnitude of 

about 1.295 m/s at approximately 20 m.  Note the velocity graphed in this figure is not the mean 

velocity at the z location but the instantaneous velocity at the center-line.  This period of linear 

incline is consistent with a developing flow in which the cross-sectional profile is approximately 
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flat at entry, and viscous effects begin to elongate the velocity profile until it reaches a fully 

developed profile that remains constant for the rest of the length of the pipe.  This center-line 

profile indicates that the flow is fully developed before reaching point 1 at 50 meters as intended 

by the design. The inlet temperature of 36oC gradually decreases to approximately 24oC as an 

effect of heat transfer to the environment.  The loss in pressure follows a generally linear decrease 

from the inlet at about 6800 Pa to the outlet (gage pressure) with distance along the central z-axis 

(Fig. 4.1c).  Equation 3.13 predicts that for a constant velocity Δp is proportional to the distance 

of travel and these results support that prediction, as well as confirmed by the empirical 

observations of Prihtiadi et al. (2016) in Fig. 4.4, which validates these CFD results.  

The mean velocities for each observation at point 1 and point 2 demonstrated very little 

change in velocity (ΔU ≈ 0) for all observations (Fig. 4.2), with greatest magnitude being about 1 

mm/s and represents merely measurement error.  This observation is consistent with conservation 

of mass per Eq. 3.4 and confirms the assumption that the mean velocity in the pipeline at point 1, 

U1, may be used to represent the mean velocity at any fully developed location greater than z=50 

m under normal operating conditions for all temperatures and velocities.  Figure 4.3 demonstrates 

that temperature had a significant effect on Δp as a function of U1, particularly in higher velocities, 

and greater temperatures tend to lessen the loss in pressure along the pipeline.  Eq. 3.13 suggests 

that Δp is proportional to a second-order parabolic function of the z-velocity and the findings of 

this CFD analysis demonstrate this is true for U1.  Further, the impact of temperature-dependent 

viscosity is not negligible, and that decreasing temperature (increasing viscosity, Fig. 3.1) 

increases the pressure difference between points 1 and 2.  These CFD results support the use of 

Eq. 3.13 as a model for pressure loss between points 1 and 2 as a function of both the temperature 

and velocity at point 1, and may serve as a model for training a ML regression algorithm. 
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(a) 

 
(b) 

 
(c) 

 

Fig. 4.1: Velocity (a), temperature (b), and pressure (c) along the central axis of the model 

pipeline with inlet conditions of velocity 1.145 m/s and temperature 36oC. 
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Fig. 4.2: Effect of temperature on ΔU as a function of Δp between points 1 

and 2 under normal pipeline conditions.  

 
Fig. 4.3: Effect of T1 and U1 on Δp under normal pipeline conditions. 
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Fig. 4. 4: Prihtiadi et al. (2016) experimental results demonstrating the change 

in pressure profile of a pipe before and after a leak, and the intersection of 

two pressure gradients that indicate the location of a leak between positions 

7 and 8. 

 

4.3 Single Localized Leak 

 To simulate the condition of a leak an open outlet was introduced to the pipeline at z = 

125m, equidistant from points 1 and 2, to limit transitional effects at either point of the simulated 

data collection (Fig. 4.5). The hole was modelled to have a diameter of 0.134 m to represent an 

opening of 20% of the inner cross-sectional area of the pipe.  Ten observations of initial inlet 

velocities and temperatures were modelled across the operational range.  Three environmental 

pressure conditions at the hole were simulated at these initial conditions to identify the effect of 

variable external pressure on the internal flow mechanics:  -500 Pa, equal to (0 Pa), and +500 Pa 
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relative to the outlet pressure (point 2).  To examine the effect of leak size on the pipe flow a fourth 

condition was modeled: a 10% leak (diameter 0.0949 m) under external pressure equal to the point 

2 pressure (0 Pa).  Fluid and pipeline properties and geometries, as well as simulation solvers and 

numerical methods, were otherwise unchanged in all leak conditions from simulating the normal 

conditions as in section 4.2. 

 

Fig. 4.5: An opening of 0.134m diameter (20% leak) at z = 125 m. 

The center-line z-axial velocity and pressure profiles of an example observation under a 

20% leak (0 Pa) are given in Fig. 4.6, which demonstrates a significant drop in velocity across the 

leak position (z = 125 m) and a discontinuity in the velocity gradient at the same point mirrors that 

observed by Prihtiadi et al. (2016) and by Fu et al. (2020) (Fig. 4.4) under conditions of a leak, 

which validates the results of this CFD simulation.  The temperature gradient observed in this case 

is not shown, but the gradient resembled that of Fig. 4.1b in general behavior.  Most notably in the 

event of leaks, the pipeline shows a significant divergence in ΔU behavior between points 1 and 2 

compared to normal as a function of Δp (Fig. 4.7).  In all the leak conditions examined, the data 

demonstrates that velocity loss is significant.  In the event of a leak, the continuity equation (Eq. 

3.4) can be adjusted to account for the new outlet: 
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 ∑|𝐴𝑈|𝑖𝑛 + ∑|𝐴𝑈|𝑜𝑢𝑡 = 𝐴𝑈1 − (𝐴𝑈2 + 𝐴𝑙𝑈𝑙) = 0 (4.5) 

 𝐴𝛥𝑈 =  𝑄𝑙 (4.6) 

where Al and Ul are the control volume area and velocity of the leak location, respectively.  In 

cases in which neither may be known directly, 𝐴𝑙𝑈𝑙 =  𝑄𝑙.  Eq. 4.6 shows that the flow rate through 

the leak can be calculated directly as the product of the inner nominal cross-sectional area of the 

pipe and the change in mean velocity between points 1 and 2. 

 

 
(a) 

 
(b) 

Fig. 4.6: Velocity (a) and pressure (b) along the central axis of the model pipeline with inlet 

conditions of velocity 1.02 m/s and temperature 18oC and 0 Pa leak pressure. 
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Fig. 4.7: Divergence of velocity behavior from the normal pipeline conditions in the event of 

several different leak conditions.  

 

Fig. 4.8: Δp as a function of U1 in the event of a 20% leak under variable leak environmental 

pressures, compared to the normal pipeline conditions. Note that the effect of T1 on Δp is present, 

but not given its own axis. 
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Equation 4.5 shows that the magnitude of ΔU is proportional to the volumetric flow rate of 

the leak, and by extension, the area of the leak aperture.  Figure 4.7 shows that the ΔU profile 

increased from 10% to 20% leak condition when considering the 0 Pa and -500 Pa environmental 

conditions.  Eq. 4.5 also suggests that when the expected flow through the leak is positive (into the 

sea environment) and entrainment of sea water into the pipe (negative Ql) would occur in events 

of negative ΔU (U1-U2).  Fig. 4.7 demonstrates that this is dependent upon both the pressure 

gradient in the pipe and the external pressure and suggests that leaks of a more significant flow 

rate than those examined in this study would likely exhibit greater divergence from normal.  This 

claim is further supported by Eq. 4.6.  

Δp as a function of U1 did not change significantly in the event of all leak conditions, 

however, when compared to the normal condition (Fig. 4.8).  Note that this graph of Δp as a 

function of U1 is two-dimensional and does not fully represent the effect of temperature on pressure 

change.  This relative lack of significant change in the pressure loss under different leak conditions 

relative to normal is explained by the upstream loss in pressure potential.  This concurs with the 

empirical observations published by Prihtiadi et al. (2016) (Fig. 4.4).  

4.4 Single Localized Flow Restriction 

 Restrictions to flow may be experienced in a subsea pipeline through one or more 

mechanisms, including the deposition of wax or sand, a stagnation point of water separation, or 

crushing of the pipe due to external third-party damage.  To simulate this, a semi-torus was 

modelled at z = 125 m of a pipe, to limit transitional effects on points 1 and 2, with an inner 

diameter of 0.212 m such that the minimum cross-sectional area is 50% that of the nominal inner 

pipe area (Fig. 4.9). Fluid and pipeline properties, geometries, and simulation conditions were 
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otherwise unchanged from those used under normal conditions as in section 4.2.  Thirteen 

observations spanning the range of velocity and temperature conditions were simulated.  

 

Fig. 4.9: Cross-sectional view of a 50% flow restriction. The wall of the pipe 

(with the restoration) is highlighted in green and the fluid pathway in grey. 

The results of the flow restriction simulation demonstrate in a graph of Δp as a function of 

ΔU that the increase in mean velocity between points 1 and 2 was significant in comparison to the 

behavior observed under normal conditions. Fig. 4.10 shows that with increasing pressure change 

the change in mean velocity decreases in the form of a negative power function. The magnitude of 

Δp is extended in the positive direction with respect to ΔU relative to observations of normal 

behavior. Velocity is observed to increase from point 1 to 2 (U1-U2 < 0); however, these ΔU values 

are very small relative to U1 (less than 2%).  Several authors considering flows through restrictions 

[Sun and Wenquan 2012, L. Yang et al. 2019, Zhang 2017] have noted similar small variances in 

readings likely the result of de-stabilization or flow-reversal effects on the streamline flow in the 

CFD solutions. Compared to the effect of a leak on ΔU (Fig. 4.7), this effect may be considered 

negligible and likely within the standard error of the instrumentation.   
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Fig. 4.10: Divergence of velocity behavior in the event of a 50% flow 

restriction from the normal pipeline conditions.  

Fig. 4.11 shows that the upward shift in pressure difference across the flow restriction is 

also evident as a function of point 1 velocity; however, the magnitude of mean velocity is not 

showing an increasing or decreasing behavior.  The interpretation of these two models (Figs. 4.10 

and 4.11) suggests that the increase in velocity (relative to normal operational conditions) was 

primarily a downstream effect of the restriction, and that the excess pressure loss was permanent.  

Although this thesis did not examine various geometries of restriction or variable sizes, other 

authors examining the shape factors of venturi tubes [Sun and Wenquan 2012, Zhang 2017] and 

sudden channel diameter restrictions [Yang et al. 2019] in pipes have demonstrated that pressure 

loss is approximately proportional to the degree of restriction relative to the nominal pipe diameter.  

By this, it can be assumed that restrictions greater than 50% would yield a greater divergence in 

the pressure curve. 
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Fig. 4.11: Δp as a function of mean velocity at point 1 in the event of a 50% 

flow restriction compared to the normal pipeline conditions. 

4.5 Shift in Crude Oil Viscosity 

 To this point, the viscosity curve of the fluid has been considered constant throughout the 

analysis.  However, when considering the momentum equation, the fluid mechanics are governed 

by the viscosity-temperature relationship, and a change in the viscosity of the crude oil would yield 

an expected proportional shift in the pressure change.  As discussed in Chapter 3, the values of the 

viscosity of a particular well-head may not remain constant for significant periods and do shift 

over time.  To simulate the effect of a change in the viscosity of the crude oil on the fluid mechanics 

the pipeline system in section 4.2 was simulated with the initial conditions used in section 4.3 with 

the only exception that it was simulated under two new temperature-dependent viscosity 

conditions: one in which the curve was shifted upward by a factor of five (“high viscosity”) and a 

second shifted down from normal by a factor of 0.5 (“low viscosity”).  These adjustments are 
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intentionally extreme compared to viscosities typically observed of Brent crude of specific APIs 

[Rhodes 1995]. 

The Δp-ΔU relationship did not diverge from that of normal operating conditions with any 

practical significance in terms of the velocity for either the high or low viscosity condition, as mass 

conservation would suggest.  The U1 - Δp relationship does, however, demonstrate a slight upward 

shift in the parabolic velocity profile as compared to the point 1 velocity in the case of high 

viscosity, and a slight downward shift below the normal behavior in the case of low viscosity (Fig. 

4.12).  These resultant shifts in the Δp behavior with varying viscosity would be expected as the 

momentum equation demonstrates.  However, this proves challenging as a diagnostic tool. Thus 

far neither leaks nor flow restrictions have depressed the pressure curve significantly, as in the 

case of the low viscosity condition, and the observation of this behavior may be diagnostic of a 

decrease in the viscous effects in the pipe flow system.  However, the shape of the curve of the 

high viscosity condition may be indistinguishable in a practical sense from that of a flow restriction 

given the data available (Fig. 4.11).  This presents a limitation on this method: since the intent of 

this thesis is to use commonly employed instrumentation (flow meters, thermocouples) without 

additional diagnostic equipment, the risk of a false-positive flow restriction determination as a 

result of a significant upward shift in the viscosity will need to be taken into account in operational 

considerations when investigating.  
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Fig. 4.12: Δp as a function of U1 under higher viscosity compared to normal. 

 

4.6 Summary of CFD Findings 

 The behavior observed in the fluid flow parameters under conditions of normal operation 

(section 4.2), a leak in the center of the pipeline (section 4.3), a flow restriction in the center of the 

pipeline (section 4.4), and significant shifts in the temperature-dependent viscosity curve of the 

study fluid (section 4.5) demonstrate three primary aspects important to the goals of this study:  1) 

The behavior of crude oil under normal conditions behaves in a pattern consistent with the 

mechanics and governing equations discussed in Chapter 3; 2) Under the two fault conditions 

modelled (leak and flow restriction) there is a demonstrable and significant divergence from the 

behavior observed under normal conditions, suggesting that divergence from this predicted 

behavior can be diagnostic of adverse conditions; and 3)  The Δp-ΔU and U1-Δp behavior 
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identified under these different fault conditions are distinct, suggesting the flow behavior can be 

diagnostic in the identification of the defect type.  In the event of leaks the Δp-ΔU relationship 

diverges greatly from normal conditions. A leak under several conditions presented a relationship 

resembling a positive power curve (Fig. 4.7).  In the case of a flow restriction the Δp-ΔU 

relationship did not change significantly from normal (Fig. 4.10), yet the U1-Δp experienced a 

significant shift upward (Fig. 4.11). 

 Chapters 5 and 6 will demonstrate how these behaviors can be exploited by a machine 

learning program by recognizing that, under the assumptions given in this chapter and Chapter 3, 

the behaviors should follow a mathematical model under normal conditions.  When the system is 

observed to deviate significantly from that model, a new and adverse condition in the system can 

be identified.  The data of the new condition can then be used to infer the most likely situation 

(leak, flow restriction, or fluid property shift) and report this situation to the user.  
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CHAPTER 5: MACHINE LEARNING AND PROCESS 

MONITORING PROGRAM 

 Chapter 5 is divided into four primary sections: Section 5.1 details the coding used to train 

the machine learning algorithms.  Section 5.2 details the program functions of assessing new data 

for conformance to the ML models.  Section 5.3 details the method used by the program to infer 

the probable cause of a fault or non-conformance in new data. Section 5.4 summarizes this 

chapter’s key findings. 

 

5.1 Training the Machine Learning Algorithms 

 Pre-processing of the CFD data was performed prior to importation to the ML program.  

This involved converting temperatures from Kelvin to Celsius and pressure from Pa to kPa.  This 

was done in order to bring the data sets into closer orders of magnitude to improve the fitting (for 

example, 1.5 kPa is within the magnitude of 1.2 m/s while 1500 Pa is not). The ML program 

generated for this thesis was written in Python on a development platform called Jupyter, and these 

include standard libraries and functions for ML programming that is very commonly used in 

academia and industry.  The program coding in full can be found in Appendix A.  To train the 

program on the pipelines flow characteristics under normal conditions, the 120 observations 

acquired in the ANSYS simulations were imported as a dataset in a CSV file.  Rows of the dataset 

were then split randomly into two groups, one for training (dataset S) and one for testing (dataset 

ST), in a 70:30 ratio by a train_test_split function: 

#break the datasets into train/test sets 
vel_train, vel_test, veldiff_train, veldiff_test, temp_train, temp_test, press_train, \    
       press_test = train_test_split(vel1_set, veldiff_set, temp_set, press_set, test_size=0.3) 
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5.1.1 Pressure Model Training 

The training set was fitted to a customized function called “pressureFunc” by the curve_fit 

function included in the SCIPY library.  Curve_fit uses the least squares loss function (Eq. 3.19) 

and a gradient descent methodology to return the best-fitted parameters to a user-designated 

function.  In this project, that function was pressureFunc, which uses Eq. 3.13, with the point 1 

velocities (U1) and temperatures (T1) as inputs and the pressure difference between points 1 and 2 

(Δp) as the output: 

#multivariate fit function with x[0] as point 1 velocity and x[1] as point 1 temperature. 
def pressureFunc(x, a, b, c, d): 
    return a*(x[0]**2)*(x[1]**b) + c*(x[1]**d)*x[0] 

#generate the model using curve_fit function and pressureFunc 
p0 = [2.50, 0.100, 30, -1]   #provide initial parameters to fit function to guide least squares 
param, fitCov = curve_fit(pressureFunc, temp_array_pr, press_train, p0) 

The parameters that minimize the loss function in the curve_fit function are stored as param[ ] 

values in an array.  Param[0], param[1], param[2], and param[3] values correspond to the 

coefficients of Eq. 3.13 a, b, c, and d, respectively. 

The success of the fitting was assessed by calculating the coefficient of determination, or R2 

score, from the predicted outputs (hi) for all observations calculated by their inputs and the real 

outputs (yi).  This coefficient reports the proportion of the variance in the output that is predicted 

from the inputs. If the R2 score is less than 0.80 (that is to say, less than 80% of the variance 

observed in Δp is the result of variance in U1 and temperatures T1) the model is considered to have 

an inadequate fit and this is reported to the user.  The R2 score is related significantly to the loss 

function in that minimizing the loss function should maximize the R2 score for a given set of 

parameters.  However, as the loss function is not by itself a measure of how well the model fits the 

data in an absolute sense, the R2 score is used as an indicator of the “degree of fit.”  If an R2 score 
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is reported less than 0.80, several issues may be the cause. 1) The data are not well correlated to 

the function, resulting in high generalization error.  2) Outliers in the data are skewing the curve 

fitting.  Examination of the graphical output may be diagnostic in determining the cause of a poor 

fit, and either resampling or additional sampling would be at the discretion of the user. If outlying 

data is suspected statistical tools for identifying outliers such as random sample consensus 

(RANSAC) may be used.   

To test the model’s ability to predict unseen data the Δp values of the test set are compared 

to predicted values from the test set inputs.  Because the real values are not expected to fall exactly 

on the predicted, their conformance to the model is assessed by assuming the data follows a normal 

distribution about the model.  Test set data that falls within a 95% confidence interval of the 

predicted are considered to belong to the distribution.  This is achieved in the program by 

calculating the standard deviation of the training set by the sum of errors of each real Δp to the 

hypothetical output given by the model.  The percent of test set points that fall within the 

confidence intervals are calculated and reported as the predictive power of the model.  In the event 

the predictive power is less than 85%, the user is alerted.  The model values are reported to the 

user and the results of the ML fit to the pressure model are shown graphically (see Chapter 6 for 

examples). 

5.1.2 Velocity Model Training 

 The relationship between the change in velocities (ΔU) and the change in pressures (Δp) 

between points 1 and 2 are assumed to follow a linear relationship as per Eq. 3.4 in which ΔU does 

not vary with Δp under normal conditions and is independent of temperature.  As a note, iterations 

of this formula including temperature was tested in this thesis, but it was confirmed that 

temperature was not predictive of the ΔU behavior and was not included in the ML algorithm.  A 
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linear regression model (Eq. 3.15) was trained from the training dataset using the linear_model 

function from the SKLEARN library: 

#generate the velocity model using linear regression function from sklearn 
vel_model = linear_model.LinearRegression() 
vel_model.fit(press_rs, veldiff_rs) 

This function produces a best-fit for the data by minimizing the squared-loss function (Eq. 3.16). 

The parameters that minimize the loss function in the linear_model function are stored as 

vel_model.coef_[0] and vel_model.intercept_ values, which correspond to the slope and intercept 

of a straight line, respectively. 

Because ΔU is not expected to vary significantly with respect to Δp, the use of the R2 score 

to assess the model is not appropriate as it was with the pressure model.  Instead, the success of 

the fit is assessed directly by the predictive power of the model to the test dataset under the normal 

distribution assumption and the 95% confidence interval.  As with the pressure model the threshold 

for predictive power was chosen to be 85%.  The model values are reported to the user and the 

results of the ML fit to the velocity model are shown graphically (see Chapter 6 for examples). 

 

5.2 Monitoring New Data for Non-Conformance  

 In process monitoring, a control limit is used to determine the point at which a process has 

shifted from a previous trend to a new one [Kalpakjian and Schmid 2006, Miller and Freund 1965]. 

In the case of processes that follow a normal distribution with a population size greater than 20, 

an upper limit is commonly placed at plus 3 standard deviations (+3SD) of the model prediction, 

and a lower control limit at minus 3 standard deviations (-3SD) of the model prediction [Kalpakjian 

and Schmid 2006]. A new observation that is greater than +3SD or less than -3SD of the behavior 

predicted by the model is considered “out of control” (OOC) and likely indicative of a significant 
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event.  Repeating OOC values are indicative of a new trend in the behavior.  In the case of the 

pressure model, which is expected to follow a normal distribution, the +/-3SD criterion is used in 

the program.  However, in the example of the velocity model, this is not practical as the distribution 

is so narrow (a SD of approximately 4.7x10-5 m/s from the CFD results) and likely within the 

measurement error of most flowmeters.  In cases in which statistical assignment of control limits 

in process monitoring is not practical, it becomes a matter of practical significance.  Therefore, 

more practical lower and upper control limits for this model were established at -0.05 and 0.05 

m/s, respectively, as the results of the CFD simulations in which mass was conservated (all cases 

except leaks) fell within these limits.  

 When the ML algorithms can demonstrate their ability to predict unseen data under normal 

operating conditions, the program is considered to be trained and can be used to monitor new 

unseen data.  When a new observation of fluid conditions at points 1 and 2 is received, the real Δp 

is compared to the predicted h calculated in the pressure model using the new U1 and T1 values.  If 

the real Δp is within the control limits of the normal distribution about h the new observation is 

considered to conform to the pressure model.  This is repeated for the velocity model: he real ΔU 

observed is checked for whether it falls between the control limits.  Observations for either model 

that are not in control are flagged by the program, either as HIGH or LOW.  Each new observation 

is checked for conformance to the algorithms.  When five OOC flags are counted from new 

observations for each model the program determines that a new trend has been observed.   

5.3 Inferential Analysis of New Trends  

 CFD simulation of several defect conditions found that the fluid parameters between two 

points on either side of a leak will behave differently from that of a flow restriction (see Chapter 

4).  A series of conditional criteria in the program are used to infer the cause of a new trend based 
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on these differences in flow behaviors.  This process of identifying the potential fault condition is 

summarized in Fig. 5.1.  When the new behavior is OOC to the velocity model, a leak is suspected 

as this is the only fault observed to significantly break mass continuity.  Because the ΔU-Δp 

relationship of a leak under all conditions resembled a power function of positive exponent in CFD 

data (Fig. 4.7), the program uses a third curve_fit function: 

#fit function for fault analysis 
def faultFunc(x, a, b, c): 
    return a*(x**b) + c 
#fit the fault data to a power curve in faultFunc 
    f_param, f_fitCov = curve_fit(faultFunc, fault_press, fault_vel_dif) 

The value of the parameters are returned as an array, f_param[ ] and the exponent (as f_param[1]), 

if its sign is greater than zero, a leak is suspected.  This is reported to the user as “LOSS IN 

FLOWRATE FOUND. LEAK SUSPECTED.”  Using Eq. 4.6 the volumetric flow rates of the loss 

based on U1 are estimated from the data and these estimates are reported to the user graphically 

(see Chapter 6).  If the exponent (f_param[1]) is less than zero, indicating that velocity is 

increasing, the program reports that an unknown fault or error has been identified and that 

investigation is required: “UNKNOWN CHANGE IN FLOWRATE. INVESTIGATION 

REQUIRED.” 
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Fig. 5.1: Flow chart of the out-of-control decision-making process of the 

monitoring phase. 

 

Continuing through Fig. 5.1, if there is not a new trend in the velocity model, but there is 

in the pressure model, the logic pathway splits based upon whether the new pressure trend is higher 

or lower than the model.  If high, excess pressure loss between points 1 and 2 is assumed to be the 

result of either a flow restriction or an increase in viscosity of the oil and the message received by 

the operator is “EXCESS PRESSURE LOSS FOUND. FLOW RESTRICTION OR VISCOSITY 

INCREASE SUSPECTED.”  The excess pressure loss is calculated as the difference between the 

observed Δp and the hypothetical h from the model, and these estimated excess losses are reported 

to the user graphically (see Chapter 6).  If low, the decrease in expected pressure loss is assumed 
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to be indicative of a decrease in fluid viscosity and the operator is alerted: “DECREASED 

PRESSURE LOSS FOUND. VISCOSITY DECREASE SUSPECTED.” 

 

5.4 Summary of Machine Learning Program 

 This chapter discussed the programming and coding of the machine learning and the 

process monitoring algorithms developed in this thesis.  It covered the methods by which the two 

ML algorithms (i.e. velocity and pressure) were trained using normal operational data obtained by 

CFD modelling (see Chapter 4).  A mathematical pressure model of the relationship between U1 

and Δp was developed using the curve_fit function and a mathematical velocity model of the 

relationship between Δp and ΔU was developed using the LinearRegression function.  These 

models are validated using the test dataset to assess the fit and limit training bias.  New data points 

are then compared to each of these models to determine if the real output values are statistically in 

control with respect to the models.  If they are not, a series of logic statements are used to determine 

the probable nature of the fault based on inference from the CFD.  An OOC condition will yield 

one of four potential fault conditions: 

1) Leak suspected. 

2) Flow restriction or high viscosity suspected. 

3) Viscosity decrease suspected. 

4) Unknown change in flowrate. 

   Chapter 6 will use this ML program and the CFD-derived data in Chapter 4 to demonstrate 

that this program is capable of accurately learning the normal flow behavior of the pipeline system 

under study.  Then, when introduced to new observations, this program is capable of recognizing 
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data from a fault condition as distinct from the ML models and infer the specific type of fault most 

likely under observation.  
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CHAPTER 6: RESULTS OF MACHINE LEARNING AND 

FAULT IDENTIFICATION  

 Chapter 6 is divided into three primary sections: Section 6.1 details the results of ML 

algorithm training with data of simulated normal operating conditions and discusses the success 

metrics. Section 6.2 details the program’s ability to identify and characterize the different fault 

conditions.  Section 6.3 provides a discussion of the significance of the findings.  A detailed 

description of the background of ML can be found in Section 3.3 and a detailed explanation of the 

ML program methodology in Chapter 5. 

 

Fig. 6.1: Input velocity and temperature of a “real situation” for CFD simulation and ML training. 

 

6.1 Machine Learning Training Under Normal Pipeline Conditions 

 To provide a realistic dataset to train the ML algorithms a time-series of 120 observations 

was generated that represent a progression of readings that a crude oil pipeline system in a subsea 
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environment may report, with velocity and temperature readings within the range of typical 

operations discussed in section 4.2 (Fig. 6.1).  Real data from pipeline systems were not available, 

but these ranges are very similar to what has been published in the literature [Barker et al. 2014].  

Figure 6.1 shows the input velocities and temperatures used to simulate the flow of this 

hypothetical “real situation” in which flow velocities at the input (z = 0 m) range between 0 and 

1.85 m/s and temperatures vary between 11 oC and 51 oC.  This data-series was simulated in Fluent 

under normal conditions described in Chapter 4 and the resultant point 1 and 2 data collected onto 

a CSV for import to the program.  

 
(a) 

 

 
(b) 

 

Fig. 6.2: Regression ML fitting results for the pressure algorithm: reported model (a) 

and the graphical output (b). 
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(a) 

 

 
(b) 

 

Fig. 6.3: Regression ML fitting results for the velocity algorithm: reported 

model (a) and the graphical output (b). 

 

The ML learning algorithm successfully generated pressure and velocity models of the 

pipeline system under normal flow conditions with predictive powers greater than 85% for both 

models, and an R2 score greater than 80% in the case of the pressure model. The pressure model 

results shown in Fig. 6.2 shows the model with the parameters generated from the fitting function 

curve_fit in the form of Eq. 3.13.  In this iteration the R2 score is very high, indicating that the 

model described the training set with very little error.  This result suggests the assumption in this 

thesis that, given the governing equations, the process of model selection could be restricted to the 

form of Eq. 3.13 and fitting additional models (linear, logarithmic, parabolic, etc) was not 

necessary.  A strong fitting result does, however, present the risk of training bias.  That is to say, 
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the model is so well fitted to the training data—and only the training data—that other real values 

will not be recognized. This is why the reserved 30% test data (36 points of the 120 observations) 

is used to assess the predictive power.  The results in Fig. 6.2 demonstrate that the predictive power 

was excellent at 100%.  Training bias is reduced primarily by ensuring the training data is well 

representative of the system under study, and the training-test split is random. Fig. 6.2b displays 

the fitting of the test data (purple) to the model (red) in comparison to the training set (blue).  The 

training data, test data, and model overlap well, providing visual conformation of the quality of 

the fit, and confirmation of the parabolic relationship between U1 and Δp. Note that this figure 

does not include an axis for temperature on the model as its representation is not visually 

significant.   

Figure 6.3 displays the results of the LinearRegression fit to the velocity model.  As noted 

in Chapter 5 an R2 score is not included.  However, the predictive power of 97% is significant, 

suggesting low generalization error and low training bias.  The red model line in the graphical 

representation (Fig. 6.3b) describes the linear nature of the fit, and the training and test data are 

shown to overlap well.  Between the 4 and 6 kPa values of Δp, several data points are shown to 

rise above the upper confidence level (green).  When examining these points it was identified that 

they likely represent a divergence from the velocity model due to extreme effects of temperature 

on turbulent effects in the CFD.  However, this effect is negligible in a practical sense as the ΔU 

in these several data points are not more than about 0.5 mm/s, well below the resolution of a typical 

industrial flowmeter.  

 These results in the fitting process demonstrate that the ML program successfully fit both 

the pressure and velocity models to the training data with minimal generalization error and training 

bias.  
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6.2 Identification of Out of Control Conditions and Fault Characterization 

6.2.1 Leak Condition 

 When presented with new observations from all four conditions of a leak at the 125 m 

position of the pipeline, the ML could identify the observed behaviors as OOC to the learned 

models’ predictions and could identify each as a potential leak from the loss of flowrate between 

points 1 and 2.  When presented with new data generated under the 20% leak condition with a 0 

Pa pressure difference between the outlet and the leak location, the program categorized each new 

observation as being in control (a Boolean “True”) or OOC “HIGH” or “LOW” for the velocity 

and pressure models (Fig. 6.4).  In this case, the majority of the observations were in control of the 

pressure model.  However, as expected from mass conservation, the majority were identified as 

OOC HIGH in the velocity model except for those with very low velocities.  Because more than 

five data points were identified as OOC HIGH in the velocity model the program reports “New 

trend in VELOCITY model” with the divergence of the observations from the velocity model 

indicated graphically in which the power relationship is evident (Fig. 6.5).  Using Eq. 4.6 the loss 

in material to the environment based on velocity is estimated and reported graphically.  

 

Fig. 6.4: Tabular read-out of the new data points under a 20% (0 Pa) leak with 

the OOC determination for each model. Units: velocities (U1, U2) in m/s, 

temperature T1 in oC, and pressure in kPa. 
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Fig. 6.5: Reports of the ML program in a 20% leak condition (0 Pa) indicating the velocity 

model observed a new trend and the suspected cause is a leak of the given magnitude. 
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Under the 20% leak conditions with outlet-leak pressure differences of -500 Pa and +500 

Pa the program was also successful in identifying these as probable leaks based on the OOC 

condition of their respective velocity models and could estimate the volumetric losses in both cases 

(Fig. 6.6).  Consistent with the behavior noted in Fig. 4.7, the volumetric loss under the +500 Pa 

environmental pressure (Fig. 6.6b) dips somewhat significantly into the negative region at 

velocities of about 0.50 m/s and less.  This indicates that in this velocity region the environmental 

pressure at the region of the leak was sufficient to overcome the oil fluid pressure at this point and 

might entrain sea water into the oil flow.  It should be noted, however, that the purpose of this 

thesis is not to predict nor identify seawater entrainment, but that this may be an opportunity for 

further research in this field.   

When considering the 10% leak condition the ML program found that both the velocity 

model and the pressure model were OOC, with the pressure model over-predicting the Δp behavior 

under this condition, suggesting that in this condition the leak slightly decreased the change in 

pressure from normal.  To identify the potential fault condition, the ML program was still 

successful at reporting this as a leak with the estimated volumetric losses characterized.  As shown 

in Chapter 4, minor effects in the pressure profile were observed in all cases of leak conditions 

(Fig. 4.8), and as explained in Chapter 5 (Fig. 5.1) the velocity model is the diagnostic model in 

determining leak condition and estimating the characteristic loss.  This illustrates how sensitive 

this machine learning technique can be in identifying new trends in data.  Even a minor shift in the 

pressure profile was identified as not conforming to the model of normal conditions.  When the 

pressure model control limits were increased from +/-3SD to +/-4SD, the program no longer found 

the 10% leak condition as OOC for the pressure model.   
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(a) 

 
(b) 

Fig. 6.6: Volumetric loss estimates of the 20% leak condition at -500 Pa (a) 

and +500 Pa (b) as reported by the ML program. 
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6.2.2 Identification of an Increase in Pressure Loss 

 Under the conditions of a 50% obstruction at the 125 m position of the pipeline the program 

could determine that the new observations were OOC for the pressure model and that a new trend 

in the data had occurred.  From the tabular read out in Fig. 6.7, all new observations were in control 

of the velocity model while a majority were OOC HIGH for the pressure model.  Those in control 

represent observations of velocities less than 0.4 m/s where the difference in Δp is negligible.  This 

is further visualized in the ML readout of the pressure model displaying the “New HIGH trend in 

PRESSURE model” with the upward shift in the pressure curve relative to the model of normal 

behavior in which the pressure model underpredicted Δp significantly (Fig. 6.8).  Having identified 

the OOC trend in the pressure model the program could quantify the extent of the change as an 

expression of excess pressure loss (the new observed Δp minus the model Δp) as a function of 

velocity and reports this as “EXCESS PRESSURE LOSS FOUND, FLOW RESTRICTION OR 

VISCOSITY INCREASE SUSPECTED.”  The relationship is shown to be roughly parabolic with 

increasing excess pressure loss with increasing pipe flow velocity. 

 

 

Fig. 6.7: Read-out of the new data points under a 50% flow restriction with the OOC determination 

for each model. Units: velocities (U1, U2) in m/s, temperature T1 in oC, and pressure in kPa. 
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Fig. 6.8: Reports of the ML program in a 50% flow restriction indicating the pressure 

model observed a new trend and the suspected cause is a flow restriction or increase in 

fluid viscosity. 
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When the data developed under a five-fold increase in the viscosity of the model fluid is 

presented to the ML program, the results are very similar to that of the 50% flow restriction except 

for a less significant increase in pressure loss in the case of the viscosity shift (Fig. 6.9).  As noted 

previously, this presents a challenge in identifying definitively the cause of an excess pressure loss 

in the pipeline using strictly the flow data available.  This thesis is not exhaustive, however, in the 

examination of the variable conditions, and further work may identify data patterns that may be 

exploited as further diagnostic in this respect.  In a practical sense, the exact nature of an 

unexplained loss in pressure may not be of direct importance to a ML application, but simply the 

ability to identify such a condition.   

 

 
Fig. 6.9: ML program’s estimation of excess pressure loss in the case of a 

five-fold increase in the viscosity of the crude oil. 
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Following the identification of a shift in the pressure profile, investigation of the rheological 

properties or composition of the fluid following the change may indicate if a change of material 

property is a likely cause.  If the properties are found unchanged, or not significantly changed, 

further investigation would be warranted.  If additional points along the pipeline (for example, a 

point 2 to point 3 span) or additional branches carrying the same oil are similarly under monitoring, 

it is expected that a change in pressure profile would similarly be observed if the cause is related 

to the fluid property.  If the change remains localized to only one span this would support the 

suspicion of a localized flow restriction, and additional inspection may be necessary. 

6.2.3 Identification of a Decrease in Pressure Loss 

 The final condition investigated in this thesis is the case of a decrease in the temperature-

dependent viscosity of the crude oil.  When presented with the simulated data of a normal pipeline 

with a viscosity profile reduced by half, the program was capable of identifying this as an OOC 

LOW trend in the pressure model (Fig. 6.10).  The program reports “DECREASED PRESSURE 

LOSS FOUND. VISCOSITY DECREASE SUSPECTED” and the degree of change in the 

pressure loss if displayed graphically in which the trend in the change is negative (Fig. 6.11).  As 

with the case of the high-pressure trend in the previous section, additional investigation into the 

rheological properties, or the behavior of other spans under monitoring, would confirm the 

characterization.  
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Fig. 6.10: Report of the ML program with the viscosity reduced by half indicating 

the pressure model observed a new LOW trend. 

 

 

Fig. 6.11: Report of the ML program with the viscosity reduced by half quantifying 

the extent of the change in pressure loss as a function of U1. 
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6.3 Discussion of Results 

 A distinct benefit for the application of machine learning in analyzing a complex and 

dynamic system is that, in general, they require little or no a priori understanding of the specific 

system under study, but instead identify patterns in the data provided.  This thesis modelled a 

straight pipeline with an inner diameter of 0.3 m with sensors spaced 150 m apart as a 

representative example. The ML algorithm is effectively dimensionless as it incorporates geometry 

into the fitting of parameters during training based on the data, not a priori inputs, the algorithms 

used in this study could be trained using data collected from pipelines of different geometries (and 

different fluids).  The ML models generated from the learning would take this into account and so 

long as the system itself does not significantly change (i.e., constant geometry and fluid) the 

general behavior of the fluid through that pathway should follow the governing equations.   

 

Fig. 6.12: U1 and Δp by observation under normal conditions up to 

observation 120, followed by a 10% leak in observations 121-125 (boxed). 
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This thesis was limited to the use of pressure, temperature, and velocity because these are 

parameters commonly monitored in subsea pipeline systems through flowmeters and 

thermocouples and would not require the installation of special equipment. The ML multivariate 

regression algorithm for the pressure model in this study was instructed to fit training data to the 

form of Eq. 3.13 to simplify model selection to a straight uniform pipe; however, this model may 

apply to curved pipes of moderate radii.  This principle would apply to applications of the velocity 

model as well. This is not exclusive of crude oil as the model fluid either; however, as the 

momentum and energy equations under investigation in this thesis assumed viscous flow, care 

would be required in applying this to inviscid flow.   

 At present, traditional methods of monitoring a subsea pipeline primarily involve 

monitoring oil volume output for significant changes using limits and alarms to warn operation 

management of potential faults, or through direct observation of faults.  These methods have their 

limitations in that they are optimized for normally distributed processes or are not sufficiently 

sensitive to disturbances in dynamic systems. In practice, minor and moderate faults are often not 

found until a routine visual inspection or by the aid of ROVs and sonar sensors.   

Figure 6.12 demonstrates an example situation in which a 10% leak forms immediately 

following observation 120 of the dataset examined in section 6.2.  From the data in this figure it is 

not readily apparent that the five subsequent observations (121-125) occurred under a fault 

condition as the change in the velocity and pressure behavior is minute.  Traditional monitoring is 

unlikely to identify this as a potential fault. The ML algorithm is, however, capable of identifying 

that these five points do not conform to the model established during the learning process and flags 

them very easily as indicative of a suspected leak (Fig. 6.13).  The sensitivity of the algorithms to 

learn from the real data of the system and identify when observations do not conform to the learned 
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behavior/model enables it to be a very powerful tool in detecting adverse conditions.  The example 

in Figs. 6.12 and 6.13 required only five data points to identify the relatively small leak.  The speed 

at which the program is able to make this determination would permit significantly faster responses 

to faults. 

 

 
Fig. 6.13: ML output of the 10% leak example in Fig 6.12: Velocity model  

and estimated volumetric loss. 
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The ML program developed in this thesis does not rely on an understanding of the physical 

principles involved in the flow and it cannot determine the nature of an OOC condition by itself. 

Given the governing equations and the behavior observed in the CFD, however, it can be assisted 

in inferring the cause of OOC situations.  Inferences of the probable nature of a pipeline fault can 

be made given patterns observed in the data of simulated faults. The fluid behavior observed in 

the ANSYS Fluent simulations of a leak exhibited a positive power relationship between Δp and 

ΔU demonstrating a relative decrease in mean velocity between points 1 and 2 compared to the 

continuity of velocity under normal conditions, as would be expected in the case of loss of mass 

to the environment (Eqs. 3.4 and 4.6).  The pressure model found statistically higher Δp as a 

function of U1 compared to the model of normal conditions.  The presence of an obstruction to 

flow presented or an increase in the viscosity of the oil resulted in a rise in Δp in the pressure 

model relative to normal conditions.  A decrease in the fluid viscosity was observed to suppress 

the pressure curve.  These characteristic differences in behavior become diagnostic in defining the 

probable nature of a new trend of non-conforming observations (Fig. 5.1).  

 Figure 6.14 outlines this study’s scheme of ML algorithm training and pipeline process 

monitoring.  To successfully train the ML a sufficient quantity of data points should be collected 

under conditions known to be free of faults and encompasses the range of expected operational 

parameters (flow rates, well-head pressures, temperatures, etc).  Once a representative training 

data set has been collected, the ML algorithm should be trained and evaluated with the test set of 

known data.  Following the successful training of the model new observations should be evaluated 

for conformance to the model and those that do not conform to either the pressure model or the 

velocity model are flagged by the algorithm.  Conforming observations are logged but are not 

incorporated into the trained model.  Once the trained model has been set it should remain static 
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for the remainder of the monitoring phase to prevent model drift over time, as might occur with 

delayed fowling or wax deposition.  In this way, the pipeline system is always compared to the 

initial optimal condition.  

 

Fig. 6.14: Flow chart of the thesis ML program, training and process 

monitoring phases. 
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 Figure 5.1 outlines the process monitoring method of determining if the process is out of 

control and whether this is indicative of a fault.  The program counts flags up to five as random 

outliers and establish a new pattern of behavior. The ML algorithm will alarm operations personnel 

of a potential fault.  The ML algorithm developed for this thesis demonstrates using simulated flow 

data that machine learning could be a powerful tool in monitoring a dynamic process such as the 

flow of crude oil through a pipeline.  This study was not exhaustive in terms of the potential faults 

a pipeline may encounter, or the numerous conditions under which a pipeline may experience a 

leak/rupture or a restriction to flow.  It does, however, present a proof of concept that merits further 

investigation and development. 

This thesis was limited in scope to several theoretical fault conditions of specific extent of 

a pipeline of selected geometry.  This was to serve as a proof of concept: that a machine learning 

program could be developed and employed to detect faults in a subsea oil pipeline.  This thesis 

recognizes that it does not represent a broad-ranging sample of potential fault conditions and 

quantities, nor does it account for minimal detection limits or potential sources of noise.  These 

would be highly dependent upon a specific application: the location and environment of a pipeline; 

the fluid properties; the quality, sensitivity, and accuracy of the instruments; and the operational 

conditions. Additional considerations would be acceptable risk thresholds tolerated by petroleum 

operations engineers and managers.   
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

 This study has proposed a method of monitoring a subsea oil pipeline for fault detection 

by way of a machine learning program that is trained using real data collected from the pipeline 

system under normal operations.  Two supervised ML algorithms were developed that used 

temperature, pressure, and flow velocity data derived from an ANSYS Fluent simulation of a 

uniform pipeline to characterize the fluid mechanics of oil flow under normal conditions as a 

multivariate regression pressure model and a univariate linear regression velocity model. These 

trained models were verified by a test set of known results to demonstrated that the ML algorithm 

could accurately predict outputs.  It was then demonstrated that this algorithm could identify new 

observations under simulated faults as non-conforming to the model, indicating that a ML program 

is capable of distinguishing between normal operating conditions and conditions of a pipeline fault 

by recognising an out of control (OOC) situation using the trained models.  It was further 

demonstrated that inferences of the nature of the OOC data in the velocity and pressure model 

profiles could be used to infer the type of fault and the degree of deviation from normal. 

 This thesis examined four general fault or adverse situations: 

1. Leaks of 10% and 20% of the nominal cross section of the pipeline. 

2. Flow restriction of 50% of the nominal cross section of the pipeline. 

3. Increase of the viscosity of the fluid. 

4. Decrease of the viscosity of the fluid. 

 The use of such a ML program presents several benefits over traditional methods of process 

monitoring: 1) The analysis of data is automatic and in real-time as new observations are recorded 

from the environment.  2) The machine learning program requires no prior assumptions of the 
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system’s geometry or fluid properties. 3) Indications of potential faults are detected early and oil 

well operators are alerted immediately once a new pattern is confirmed. 4) No special equipment 

installation is required apart from meters already common to the industry. 5) The potential fault 

can be isolated between two points, reducing investigation costs and risks. 6) This system is 

scalable and can operate as a network of pipeline segments across oil fields and transport lines.  

 

7.2 Recommendations for Future Work 

 This study provided a proof of concept for the conditions discussed but was not intended 

to be an exhaustive analysis of the potential applications or types of defects, adverse situations, 

and environmental conditions that a crude oil pipeline may experience.  There are several areas of 

further study that may advance this field of research: 

1. Various geometries and operational conditions. 

2. Training and testing of the ML using real-world flow data. 

3. Installation of an ML system into an empirical environment. 

4. Expansion into networks of ML-monitored segments of pipeline and other subsea 

components.   
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APPENDIX A: MACHINE LEARNING PROGRAM CODE 

#Developed by Daniel Eastvedt in support of a master's thesis, Memorial University of Newfoundland 
 
###THIS FIRST SECTION OF CODE TRAINS THE ML ALGORITHMS BASED ON TRAINING DATA AND TESTS 
WITH TEST DATA 
 
#initialize libraries 
import matplotlib.pyplot as plt 
import numpy as np 
import pandas as pd 
#import seaborn as seabornInstance 
from numpy import array, reshape, mean, std, sum, sqrt 
from sklearn.model_selection import train_test_split 
from sklearn import metrics, linear_model 
from scipy.optimize import curve_fit 
%matplotlib inline 
from scipy.stats import sem, t 
from colorama import Fore, Back, Style 
 
 
#global variables here 
predict_thresh = 0.85   #minimum model threshold (in proportion) 
r2_thresh = 0.80        #minimum model R^2 threshold accepted for pressure model 
flag_length = 5         #number of flag points to trigger alert 
confidence = 0.95       #this is the confidence level for models 
xs_area = 0.0706858     #constant cross-section area (m^2) of pipe with diam=0.3m  
 
 
#multivariate fit function with x[0] as point 1 velocity and x[1] as point 1 temperature. 
def pressureFunc(x, a, b, c, d): 
    return a*(x[0]**2)*(x[1]**b) + c*(x[1]**d)*x[0] 
 
 
#import raw data from CSV file, assign datasets, and divide into training/test sets at 70:30 ratio 
dataset = pd.read_csv('MLTrainingDataFile.csv')    #import CSV spreadsheet file with raw data 
vel1_set = dataset['Vel1']                          #assign each column in CSV to a dataset 
vel2_set = dataset['Vel2'] 
veldiff_set = dataset['VelDiff'] 
temp_set = dataset['Temp1'] 
press_set = dataset['Press'] 
 
 
#break the datasets into train/test sets 
vel_train, vel_test, veldiff_train, veldiff_test, temp_train, temp_test, press_train, press_test = \ 
    train_test_split(vel1_set, veldiff_set, temp_set, press_set, test_size=0.3)      
n_test = len(vel_test)                              #find length of test set 
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n_train = len(vel_train)                            #find length of training set 
 
 
###Generate PRESSURE model to predict delta_p using temperature and velocity at point 1  
 
#form datasets into arrays that can be used by the training function 
vel_train_pr = array(vel_train) 
vel_train_pr_flat = vel_train_pr.flatten() 
temp_train_pr = array(temp_train) 
temp_train_pr_flat = temp_train_pr.flatten() 
temp_array_pr = array((vel_train_pr_flat, temp_train_pr_flat)) 
 
 
#generate the model using curve_fit function and pressureFunc 
p0 = [2.50, 0.100, 30, -1]   #provide initial parameters to fit function to guide least squares 
param, fitCov = curve_fit(pressureFunc, temp_array_pr, press_train, p0) 
 
 
#form a set of predictions of output pressures based on the temp/vel inputs from the model 
pr_model_predict =[] 
q = 0 
for items in vel_train_pr: 
    y_hat = (param[0]*(vel_train_pr[q]**2)*(temp_train_pr[q]**param[1])) + \ 
        (param[2]*(temp_train_pr[q]**param[3])*vel_train_pr[q]) 
    pr_model_predict.append(y_hat) 
    q += 1 
 
     
#find the R^2 score of prediction compared to actual pressure from training data 
pr_model_r2score = metrics.r2_score(press_train, pr_model_predict) 
 
 
###Test PRESSURE model against the test set to verify model 
 
#calculate confidence intervals of the training data 
pr_sum_errs = sum((press_train - pr_model_predict)**2)   #sum of errors 
pr_stdev = sqrt(1/(n_train-1) * pr_sum_errs)             #standard deviation 
pr_t = t.ppf((1 + confidence)/2, n_train - 1)            #find t-value from statistical table 
pr_CI = pr_stdev * pr_t                                   #confidence interval 
 
 
#form arrays for test data 
vel_test_pr = array(vel_test) 
temp_test_pr = array(temp_test) 
 
 
#predict pressures for test set velocities and temperatures based on the model 
pr_test_predict = [] 
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j = 0 
for items in vel_test_pr: 
    test_h = (param[0]*(vel_test_pr[j]**2)*(temp_test_pr[j]**param[1])) + \ 
            (param[2]*(temp_test_pr[j]**param[3])*vel_test_pr[j]) 
    pr_test_predict.append(test_h) 
    j += 1 
 
     
#determine how many actual pressures fall within the confidence intervals of the model     
lower_CI_pr = [] 
upper_CI_pr = [] 
i = 0 
p = 0 
pr_y = array(press_test) 
for items in pr_test_predict: 
    pr_lower = pr_test_predict[i] - pr_CI 
    lower_CI_pr.append(pr_lower) 
    pr_upper = pr_test_predict[i] + pr_CI 
    upper_CI_pr.append(pr_upper) 
    if pr_y[i] > upper_CI_pr[i]: 
        p += 1 
    if pr_y[i] < lower_CI_pr[i]: 
        p += 1 
    i += 1 
pr_test_within = (n_test - p) / n_test  
 
 
#test if the pressure model R^2 score meets the threshold 
if pr_model_r2score >= r2_thresh: 
    #Print a message giving the pressure model 
    print('Pressure Model:') 
    print('   delta_p = %0.3f*T1^%0.4f*U1^2 + %0.3f*T1^%0.4f*U1' %(param[0], param[1], param[2], 
param[3]))  
    print('   Model R^2 score: %0.3f' %(pr_model_r2score)) 
    print('   Predictive power: %0.2f' %(pr_test_within)) 
    if pr_test_within < predict_thresh: 
        print('Pressure Model predictive power less than %0.0f percent' %((predict_thresh * 100))) 
elif pr_model_r2score < r2_thresh: 
    print('Pressure model R^2 score below 0.80.') 
print(' ') 
 
 
#make a plot of the pressure data 
plt.scatter(vel_train, press_train, color='blue', linewidth=3, label='training data') 
plt.scatter(vel_train, pr_model_predict, color='red', linewidth=3, label='model') 
plt.scatter(vel_test, press_test, color='purple', linewidth=3, label='test') 
plt.title('Pressure Model: Mean Velocity vs Pressure Diff.')   
plt.xlabel('U1 (m/s)')   
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plt.ylabel('delta_p (kPa)')   
plt.legend(loc='upper left') 
plt.show() 
print(' ') 
 
 
###Generate VELOCITY model to predict delta_U using delta_p  
 
#form datasets into arrays that can be used by the training function 
veldiff_rs = array(veldiff_train) 
veldiff_rs = veldiff_rs.reshape(-1, 1) 
press_rs = array(press_train) 
press_rs = press_rs.reshape(-1, 1) 
 
 
#generate the velocity model using linear regression function from sklearn 
vel_model = linear_model.LinearRegression() 
vel_model.fit(press_rs, veldiff_rs) 
vel_model_predict = vel_model.predict(press_rs) 
 
 
###Test VELOCITY model against the test set to verify model 
 
#calculate confidence intervals of the training data 
vel_model_predict_flat = vel_model_predict.flatten() 
vel_sum_errs = sum((veldiff_train - vel_model_predict_flat)**2) 
vel_stdev = sqrt(1/(n_train-1) * vel_sum_errs) 
vel_t = t.ppf((1 + confidence)/2, n_train - 1) 
vel_CI = vel_stdev * vel_t 
 
 
#form arrays for test data 
press_test_array = array(press_test) 
press_test_rs = press_test_array.reshape(-1, 1) 
 
 
#predict delta_U for test set delta_p based on the model 
vel_test_predict = vel_model.predict(press_test_rs) 
vel_test_predict_flat = vel_test_predict.flatten() 
lower_CI_vel = [] 
upper_CI_vel = [] 
vi = 0 
vp = 0 
vel_y = array(veldiff_test) 
for items in press_test_rs: 
    vel_lower = vel_test_predict_flat[vi] - vel_CI 
    lower_CI_vel.append(vel_lower) 
    vel_upper = vel_test_predict_flat[vi] + vel_CI 
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    upper_CI_vel.append(vel_upper) 
    if vel_y[vi] > upper_CI_vel[vi]: 
        vp += 1 
    if vel_y[vi] < lower_CI_vel[vi]: 
        vp += 1 
    vi += 1 
vel_test_within = (n_test - vp) / n_test  
 
 
#test if the velocity model predictive power meets the threshold 
if vel_test_within >= predict_thresh: 
    #print a message giving the velocity model 
    print('Velocity Model:') 
    print('   delta_U = %0.9f*delta_p + %0.9f' %(vel_model.coef_[0], vel_model.intercept_)) 
    #print('   Model R^2 score: %0.3f' %(vel_model_r2score)) 
    print('   Predictive power: %0.2f' %(vel_test_within)) 
elif vel_test_within < predict_thresh: 
    print('Velocity Model predictive power less than %0.0f percent' %((predict_thresh * 100))) 
 
 
#make a plot of the kinetic data 
low_conf_inter = [] 
up_conf_inter = [] 
m = 0 
for items in press_rs: 
    new_low = vel_model_predict[m] - vel_CI 
    new_high = vel_model_predict[m] + vel_CI 
    low_conf_inter.append(new_low) 
    up_conf_inter.append(new_high) 
    m += 1 
y_lim_low = 0 - (vel_CI * 4) 
y_lim_high = 0 + (vel_CI * 8) 
 
plt.scatter(press_train, veldiff_train, color='blue', linewidth=3, label='training data') 
plt.plot(press_train, vel_model_predict, color='red', linewidth=3, label='model') 
plt.plot(press_train, low_conf_inter, color='green', linewidth=3, label='confidence intervals') 
plt.plot(press_train, up_conf_inter, color='green', linewidth=3) 
plt.scatter(press_test, veldiff_test, color='purple', linewidth=3, label='test') 
plt.title('Velocity Model: Pressure Diff. vs Velocity Diff.')   
plt.xlabel('delta_p (kPa)')   
plt.ylabel('delta_U (m/s)')   
plt.ylim(y_lim_low, y_lim_high) 
plt.legend(loc='upper left') 
plt.show()     
 
 
####THIS SECTION OF CODE TAKES NEW DATA POINTS AFTER TRAINING AND DETERMINES IF THEY 
CONFORM TO THE MODELS. 
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#Control limits for velocity model 
vel_upper_CL = 0.05                     #upper control limit for velocity model in process monitoring 
vel_lower_CL = -0.05                    #lower control limit for velocity model  
pr_upper_control_interval = 3*pr_stdev  #upper control interval for pressure model 
pr_lower_control_interval = 3*pr_stdev  #lower control interval for pressure model 
 
 
#assign the fault type for the purpose of process monitoring 
fault_type = '' 
print('Type a fault/condition option:') 
print('   A for 20% Leak at 0 Pa') 
print('   B for 20% Leak at -500 Pa') 
print('   C for 20% Leak at +500 Pa') 
print('   D for 10% Leak at 0 Pa') 
print('   E for 50% Restriction') 
print('   F for High Viscosity') 
print('   G for Low Viscosity') 
fault_type = input('>').lower() 
if fault_type == 'a': 
    new_dataset = pd.read_csv('FaultData20Leak0Pa.csv')    #import CSV spreadsheet file with 20% leak, 0 
Pa 
elif fault_type == 'b': 
    new_dataset = pd.read_csv('FaultData20Leak-500Pa.csv') #import CSV spreadsheet file with 20% leak, 
-500 Pa 
elif fault_type == 'c': 
    new_dataset = pd.read_csv('FaultData20Leak+500Pa.csv') #import CSV spreadsheet file with 20% 
leak, +500 Pa 
elif fault_type == 'd': 
    new_dataset = pd.read_csv('FaultData10Leak.csv') #import CSV spreadsheet file with 10% Leak 
elif fault_type == 'e': 
    new_dataset = pd.read_csv('FaultData50Restriction.csv') #import CSV spreadsheet file with 50% 
restriction 
elif fault_type == 'f': 
    new_dataset = pd.read_csv('HigherViscosity.csv') #import CSV spreadsheet file with 5x viscosity 
elif fault_type == 'g': 
    new_dataset = pd.read_csv('LowerViscosity.csv') #import CSV spreadsheet file with 0.5x viscosity 
new_vel1 = new_dataset['Vel1']                          
new_vel2 = new_dataset['Vel2'] 
new_veldiff = new_dataset['VelDiff'] 
new_temp1 = new_dataset['Temp1'] 
new_press = new_dataset['Press'] 
pr_model_conform = [] 
vel_model_conform = [] 
 
 
#test each new observation for conformance to the velocity model  
b = 0 
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for items in new_vel1: 
    h_vel_dif = vel_model.coef_[0]*new_press[b] + vel_model.intercept_ 
    if new_veldiff[b] > vel_upper_CL:      
        vel_model_conform.append('HIGH') 
    elif new_veldiff[b] < vel_lower_CL: 
        vel_model_conform.append('LOW') 
    elif h_vel_dif: 
        vel_model_conform.append(True) 
    b += 1 
 
     
#test each new observation for conformance to the pressure model  
k = 0 
for items in new_vel1: 
    h_press_dif = ((param[0])*(new_vel1[k]**2)*(new_temp1[k]**param[1])) + \ 
            ((param[2])*(new_temp1[k]**param[3])*new_vel1[k]) 
    if new_press[k] > (h_press_dif + pr_upper_control_interval): 
        pr_model_conform.append('HIGH') 
    elif new_press[k] < (h_press_dif - pr_lower_control_interval): 
        pr_model_conform.append('LOW') 
    elif h_press_dif: 
        pr_model_conform.append(True) 
    k += 1 
 
 
#prints a list of the new data 
print('Item' + '\t' + 'U1' + '\t' 'T1' + '\t' + 'U2' + '\t' + 'delta_p' + '\t' + '\t' + \ 
      'Vel. Model' + '\t' + 'Press. Model') 
i = 0 
for items in new_vel1: 
    n = i+1 
    print(str(n) + '       %1.3f   %1.1f    %1.3f   %1.4f  ' %(new_vel1[i], new_temp1[i], new_vel2[i], 
new_press[i])  \ 
          + '\t' + str(vel_model_conform[i])  + '            ' + str(pr_model_conform[i])) 
    i += 1 
print(' ') 
 
 
#check for a new trend in the data 
vel_flag_count = 0 
pr_high_flag_count = 0 
pr_low_flag_count = 0 
v = 0 
for items in new_vel1: 
    if pr_model_conform[v] == 'HIGH': 
        pr_high_flag_count += 1 
    if pr_model_conform[v] == 'LOW': 
        pr_low_flag_count += 1 
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    if vel_model_conform[v] != True: 
        vel_flag_count += 1 
    v += 1 
     
#Print a message of the new trend with relevant graphs 
if vel_flag_count >= flag_length: 
    print('New trend in VELOCITY model.') 
    plt.scatter(new_press, new_veldiff, color='black', label='new data') 
    plt.title('Velocity Model: Pressure Diff. vs Velocity Diff.')   
    plt.xlabel('delta_p (kPa)')   
    plt.ylabel('delta_U (m/s)')   
    plt.plot(press_train, vel_model_predict, color='red', linewidth=3, label='model') 
    plt.legend(loc='upper left') 
    plt.show() 
if pr_high_flag_count >= flag_length: 
    print('New HIGH trend in PRESSURE model.') 
    plt.scatter(new_vel1, new_press, color='black', label='new data') 
    plt.title('Pressure Model: Mean Velocity vs Pressure Diff.')   
    plt.xlabel('U1 (m/s)')   
    plt.ylabel('delta_p (kPa)')   
    plt.scatter(vel_train, pr_model_predict, color='red', linewidth=3, label='model') 
    plt.legend(loc='upper left') 
    plt.show() 
if pr_low_flag_count >= flag_length: 
    print('New LOW trend in PRESSURE model.') 
    plt.scatter(new_vel1, new_press, color='black', label='new data') 
    plt.title('Pressure Model: Mean Velocity vs Pressure Diff.')   
    plt.xlabel('U1 (m/s)')   
    plt.ylabel('delta_p (kPa)')   
    plt.scatter(vel_train, pr_model_predict, color='red', linewidth=3, label='model') 
    plt.legend(loc='upper left') 
    plt.show() 
print(' ') 
 
     
####THIS SECTION USES ENGINEERING INFERENCE TO ATTEMPT TO CATEGORIZE THE NON-
CONFORMANCE 
 
#fit function for fault analysis 
def faultFunc(x, a, b, c): 
    return a*(x**b) + c 
 
 
#decision tree for fault characterization 
 
 
#if the velocity model is OOC it may be due to a leak  
if vel_flag_count >= flag_length: 
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    #create arrays of fault data for analysis 
    fault_vel_dif = [] 
    fault_press = [] 
    f = 0 
    for items in new_veldiff: 
        if new_press[f] >= 0 and vel_model_conform[f] == 'HIGH': 
            fault_vel_dif.append(new_veldiff[f]) 
            fault_press.append(new_press[f]) 
        f += 1 
         
         
    #fit the fault data to a power curve in faultFunc 
    f_param, f_fitCov = curve_fit(faultFunc, fault_press, fault_vel_dif) 
     
     
    #if the power function is positive, and the pressure model is in control, suspect a leak 
    if f_param[1] > 0: 
        print('LOSS IN FLOWRATE FOUND') 
        print('LEAK SUSPECTED') 
        vel_loss = [] 
        vfr_loss = [] 
        bph_loss = [] 
        norm_inlet_vel = [] 
        b = 0 
        for items in new_veldiff: 
            #if vel_model_conform[b] == 'HIGH': 
            vel_loss.append(new_veldiff[b]) 
            vfr = new_veldiff[b]*xs_area 
            bph = vfr*22642 
            vfr_loss.append(vfr) 
            bph_loss.append(bph) 
            norm_inlet_vel.append(new_vel1[b]) 
            b += 1 
        plt.scatter(norm_inlet_vel, bph_loss, color='blue', linewidth=3, label='loss') 
        plt.title('Volumetric Loss vs Velocity')   
        plt.xlabel('U1 (m/s)')   
        plt.ylabel('Oil Loss (BPH)')   
        plt.show() 
        u = 0 
        print('Inlet Vel    Barrels lost per hour') 
        for items in bph_loss: 
            print('%1.3f        %3.0f    ' %(norm_inlet_vel[u], bph_loss[u])) 
            u += 1 
    else: 
        print('UNKNOWN CHANGE IN FLOWRATE') 
        print('INVESTIGATION REQUIRED') 
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#if the pressure is OOC but velocity is not, unexpected pressure loss or gain has occured 
elif vel_flag_count < flag_length: 
    if pr_high_flag_count >= flag_length: 
        print('EXCESS PRESSURE LOSS FOUND') 
        print('FLOW RESTRICTION OR VISCOSITY INCREASE SUSPECTED') 
    elif pr_low_flag_count >= flag_length: 
        print('DECREASED PRESSURE LOSS FOUND') 
        print('VISCOSITY DECREASE SUSPECTED') 
    pressure_loss = [] 
    norm_inlet_vel = [] 
    z = 0 
    for items in new_veldiff: 
        #if pr_model_conform[z] != True: 
        norm_inlet_vel.append(new_vel1[z]) 
        expected_press = (param[0]*(new_vel1[z]**2)*(new_temp1[z]**param[1])) + (param[2]*\ 
                (new_temp1[z]**param[3])*new_vel1[z]) 
        excess_press_loss = new_press[z] - expected_press 
        pressure_loss.append(excess_press_loss) 
        z += 1 
    plt.scatter(norm_inlet_vel, pressure_loss, color='blue', linewidth=3, label='loss') 
    plt.title('Change in delta_p vs Velocity')   
    plt.xlabel('U1 (m/s)')   
    plt.ylabel('New_p-Normal_p (kPa)')   
    plt.show() 
    r = 0 
    print('Inlet Vel    Excess Pressure Gain (kPa)') 
    for items in pressure_loss: 
        print('%1.3f        %3.2f    ' %(norm_inlet_vel[r], pressure_loss[r])) 
        r += 1 
 
else: 
    print('Unknown error occured.') 

 

 


