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Abstract

We compute perturbative expansions of the self-energy and spin susceptibility func-

tions in real-frequency space for the two-dimensional Hubbard model using a new

solution method. Each term of the expansion, represented by a Feynman diagram, is

translated into its mathematical representation, which includes two types of summa-

tions: momentum-space (spatial) and frequency-space (temporal). We introduce al-

gorithmic Matsubara integration (AMI), a method which utilizes the residue theorem

to perform the Matsubara frequency summations and store the result in a symbolic

form. This method provides the exact result (up to machine precision) at minimal

computational expense. We then combine AMI with the Monte Carlo methods to

sample diagram topologies in the expansion and to perform momenta summations.

To optimize the Monte Carlo integration procedure we group the diagrams according

to the symmetry of their integrands determined by the graph invariant transforma-

tions (GITs). Since the result of AMI (up to momentum sums) is analytic in terms

of the external Matsubara frequency, temperature (T ), chemical potential (µ), and

Hubbard on-site potential (U), the analytic continuation to the real-frequency axis

can be performed symbolically at any point of T − µ−U phase space, even at T = 0

which has been inaccessible in standard methods due to non-ergodicity of the Monte

Carlo sampling in this temperature regime. We compare our results to other numeri-

cal methods in the parameter regimes where the perturbative expansion is convergent,
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and finally, benchmark our results on the real-frequency axis.
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Lay Summary

Condensed matter physics explores materials composed of a huge number of particles

and their collective behavior originating from their interactions. The complexity of

these systems makes condensed matter phenomena a non-trivial field of science, which

requires advanced analytical and numerical tools.

One of the most challenging and interesting problems in condensed matter theory

is to determine the role of the electron-electron interactions in materials. For exam-

ple, such interactions give rise to the metal-insulator transition, where the standard

independent electron models predict the system to be fully metallic. Furthermore,

electron-electron interactions are responsible for the emergence of high-temperature

superconductivity. For these reasons this specific problem has attracted many re-

searchers in theoretical, computational and experimental physics.

In order to theoretically describe electron-electron interactions one needs, as the

first step, to consider a model that mimics realistic crystals. The Hubbard model

is the simplest lattice model that simulates condensed matter systems with electron-

electron interactions. The model assumes that the interaction (or potential) energy

associated with two electrons is zero unless they occupy exactly the same site in the

lattice, i.e., electrons are free to move around in the lattice and they only affect each

other if they are at exactly the same place. Despite the conceptual simplicity of the

model it turns out to be one of the most challenging problems in theoretical physics.
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The model has been studied for decades but it has yet to be fully understood.

The goal of this thesis is to introduce a new methodology, based upon the well-

known residue theorem, to systematically calculate different physical quantities for

the Hubbard model. We use the so-called Feynman diagrammatic expansion, which

is a pictorial version of perturbation theory in the context of quantum field theory.

One might imagine each diagram as a representation of a set of scattering processes

due to electron-electron interactions in the lattice, however, we should remember that

each diagram represents a high-dimensional integral which finally yields to a number.

The significant difference of our approach with other popular methods is that we solve

part of the problem analytically. This enables us to provide the results in real (phys-

ical) frequency, moreover, other methods are based upon fully numerical algorithms

which solve the model in the imaginary (non-physical) domain. As we shall show our

method can be used to compute different physical thermodynamic observables such

as electron densities, however, it is the only existing approach which can be used to

calculate response functions such as charge and magnetic susceptibilities. Further-

more, its simplicity and generality makes it possible to be extended to many other

problems in condensed matter and high-energy physics. We thus believe our method

can potentially be applied to classes of problems which are currently considered to be

intractable.
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Chapter 1

Introduction

A piece of solid material contains of the order of 1023 interacting particles. The the-

oretical treatment of interactions between such a huge number of particles is central

to the field of many-body physics. Due to the large number of ions and electrons in a

solid and the long range Coulomb interaction between them, an exact solution to the

many-body Shrödinger equation is impossible to find. Therefore, various approxima-

tions and model systems have been introduced to describe the physics of interacting

many-body systems [1].

The Hubbard model [2–4] is a cornerstone of correlated electron physics; by as-

suming a constant on-site interaction between electrons it simplifies the long-range

Coulomb interaction in the lattice. Historically, the model has been first seen as a

minimal model to describe the metal-insulator phase transition at half-filling (i.e.,

one particle per site). It was then comprehensively studied as the simplest many-

body model with the potential to describe features of high-temperature superconduc-

tors [5, 6]. In recent years, the model has been of central interest due to its direct

realization with ultra cold atom experiments [7–9]. Today the model is also consid-

ered as a test-bed for developing modern numerical methods in condensed matter
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theory [10].

In order to describe the physics of the Hubbard Hamiltonian on a lattice, different

numerical algorithms have been developed. These methods have a wide range from

non-perturbative approaches such as dynamical mean-field theory (DMFT) and its

extensions [11–13] and dual fermion (DF) techniques [14–18] to perturbation theory

based approaches including diagrammatic Monte Carlo (DiagMC) [19–24], which uses

Monte Carlo simulations to numerically evaluate the diagrammatic expansions of

different physical observables. The approach used in this thesis is also based upon

perturbation theory and uses some elements of DiagMC.

In standard DiagMC a combination of imaginary time (τ) and momentum (k)

spaces as well as diagram topologies (φ) are sampled [19] using the usual Metropolis-

Hastings Monte Carlo simulation [25, 26]. Although DiagMC was initially proposed

to evaluate the perturbative expansion of the polaron problem [27], thanks to the

simplicity of the approach as well as its generality, it was also used to compute the

Green’s function and susceptibility expansions of the Hubbard model [10, 28]. It is

now believed to be one of the most reliable techniques in many-body physics.

Similar to other many-body algorithms DiagMC relies on the so-called Matsubara

formalism [29–31], i.e., the problem is solved in the imaginary time, or equivalently,

imaginary frequency space. This is ideal for calculating thermodynamic quantities

such as particle densities and energies, where the summations are performed over all

of the independent temporal degrees of freedom (times, or equivalently, frequencies).

However, expressing response functions, such as Green’s functions, spectral functions

and susceptibilities in real-time or real-frequency space, is a formidable task. Although

there are numerical analytic continuation procedures to translate the results from the

Matsubara axis to the real axis [32–36] they are all mathematically ill-posed and

the resulting uncertainty in both high and low temperature regimes is high [37–39].
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These uncertainties grow at high temperatures because Matsubara axis data becomes

sparse, while obtaining precise Matsubara axis data at low temperatures becomes

increasingly more challenging due to the compression of the Matsubara scale with

decreased temperature. The main motivation of this work is to provide a perturbation

theory based method to directly evaluate the expansions of the response functions in

real-frequency space without need for any ill-defined numerical analytic continuation

procedures.

As in standard DiagMC we represent each term of the perturbative series as a Feyn-

man diagram [40–42], which is a pictorial representation of high-dimensional temporal-

spatial integrals. We implement algorithms to systematically construct the diagram

topologies. We then use the well-known Feynman rules to translate each unique

topology to its corresponding mathematical expression in the frequency-momentum

space.

Next we propose a new algorithm, based upon the standard residue theorem [43],

which we call algorithmic Matsubara integration (AMI). Our algorithm applies to

{ν,k, φ} space instead of probing {τ,k, φ} as is usually done in standard DiagMC.

We analytically evaluate the temporal integrals of an arbitrary Feynman diagram

arising from perturbative expansion of a physical object composed of bare Green’s

functions with bare vertices, such that, the result of the temporal integrals is exact

(up to machine precision). As a result the sampling phase space in the Monte Carlo

process is reduced from {ν,k, φ} to {k, φ}. In addition, since the solution of the tem-

poral part is analytic in temperature T , chemical potential µ, Hubbard interaction

U , and external frequency, the T − µ− U phase space can be explored with minimal

computational expense. Moreover, analytic continuation can be performed symboli-

cally, which eliminates the need for any numerical analytic continuation procedures.

Furthermore, the method, in principle, enables us to evaluate a truncated perturba-
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tive expansion at any temperature, even in T = 0 limit; this limit is unreachable

in standard DiagMC methods since the set of Matsubara frequencies compresses as

the temperature decreases, i.e., in the zero temperature limit the number of sam-

ples needed to obtain reasonable statistical errors tends to infinity. In this thesis,

we concentrate on the two-dimensional (2D) single-band Hubbard model, however,

AMI is general enough to be applied to any diagrammatic expansion with arbitrary

dimensionality in condensed matter or high-energy physics as long as the analytic

representations of the terms are known.

We then complete our machinery by combining AMI with Monte Carlo methods.

We propose two different Monte Carlo simulations to probe the momentum and topo-

logical spaces. In DiagMC methods, to suppress the sign problem the diagrams are

represented as determinants [22, 44, 45]. In our case, since we evaluate the diagrams

in Matsubara frequency space rather than imaginary time space, such a manipulation

is not feasible. We instead utilize the analytical pole structure of the diagrams to

construct the so-called sign-blessed groups. Doing so we dramatically reduce the sign

problem in the numerical evaluation of the diagrams. We use our algorithm to eval-

uate the self-energy, Green’s function and susceptibility functions on the Matsubara

axis for the 2D Hubbard model; we benchmark our results and compare to other nu-

merical methods to prove the correctness of our method. Lastly, for the first time, we

provide real-frequency results for the spectral function and spin susceptibility without

application of numerical analytic continuation procedures.

The rest of this thesis is organized as follows. In Chapter 2 we review the principles

of quantum field theory, the Hubbard model and perturbation theory in the Green’s

function formalism. At the end of the chapter we present the diagrammatic expan-

sions of the self-energy and susceptibility functions for the Hubbard model, which are

the physical quantities we are mostly interested in. Readers who are already famil-
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iar with Feynman diagrammatic techniques could skip this chapter. We reproduce

our first publication [46] in Chapter 3, which explains the details of AMI and its

implementation. In Chapter 4, we reproduce our second publication [47], where we

describe first our algorithm to generate diagrammatic expansions and translate them

to integrals in the frequency-momentum space. Taking the self-energy function as an

example, we construct optimally sign-blessed groups and evaluate the expansion in

both imaginary and real-frequency space. In Chapter 5 we use our methodology to

evaluate the spin-susceptibility functions for the 2D Hubbard model at half-filling. In

this chapter we reproduce our third publication [48], in which, for the first time, the

transverse spin susceptibility is calculated as a function of real frequency beyond the

common low order approximations. We also investigate the role of diagrams in the

low coupling regime order-by-order. Finally, we summarize the thesis in Chapter 6

and discuss future work.
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Chapter 2

Background material

This chapter is devoted to reviewing the essential theoretical tools used in this work.

We first provide some basics about the Hubbard model. Then we present the finite

temperature Green’s function formalism and mention the diagrammatic expansion of

the Green’s and susceptibility functions.

2.1 Hubbard model

The Hubbard model was originally proposed to model electronic correlations in narrow

energy bands [1]. The model was independently suggested by Gutzwiller [2] and

Kanamori [3] around the same time. The Hamiltonian is given by

H = −t
∑
〈i,j〉σ

(c†iσcjσ + c†jσciσ)− µ
∑
iσ

niσ + U
∑
i

ni↑ni↓. (2.1)

where i and j are two indices which denote the lattice site, 〈i, j〉 implies that only

hopping to the nearest neighbor is allowed without spin flipping, ↑ and ↓ are spin up

and down, respectively, ciσ (c†iσ) annihilates (creates) an electron with spin σ at site i,

niσ = c†iσciσ is the number operator which counts the number of electrons in site i, and

12



µ is the chemical potential. The first and the third terms are kinetic (tight-binding)

and potential (Hubbard) terms of the Hamiltonian, respectively.

2.2 Finite temperature Green’s function

At finite temperature T , the Matsubara Green’s function is defined to be [4]

G(k, τ2 − τ1) = −〈Tτψk(τ2)ψ†k(τ1)〉, (2.2)

where τ is imaginary (Matsubara) time 0 < τ < β = 1/T , Tτ is Matsubara time-

ordering operator, and ψk(τ) (ψ†k(τ)) annihilates (creates) a particle in state k and is

given by

ψk(τ) = eHτψke
−Hτ , (2.3)

where ψk = ψk(0). In addition, for an observable O, 〈O〉 is average over grand

canonical ensemble defined by

〈O〉 = Tr[ρO]
Tr[ρ] , (2.4)

with ρ = e−βH . The finite temperature Green’s function can be expanded in frequency

space using the Fourier expansion

G(k, τ) = 1
β

+∞∑
n=−∞

e−iνnτG(k, iνn), (2.5)

or equivalently

G(k, iνn) = 1
2

∫ +β

−β
dτeiνnτG(k, τ). (2.6)
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Moreover, for fermionic systems Eq. (2.4) implies that

G(k, τ) = −G(k, τ + β). (2.7)

Replacing (2.7) in (2.5) we immediately see that the terms with even n are vanishing

and for fermions we always encounter with odd Matsubara frequencies νn = (2n +

1)π/β. Similar arguments for bosons shows that only even Matsubara frequencies

emerge. Furthermore, the bare Matsubara Green’s function is given by [4]

G0(k, τ) = {θ(τ)[1− f(k)]− θ(−τ)f(k)}e−(ε(k)−µ)τ , (2.8)

where f(k) = [1 + eβ(ε(k)−µ)]−1 is the Fermi distribution function, ε(k) is the energy

dispersion and θ(τ) is the step function. Substituting Eq. (2.8) into Eq. (2.6) we

obtain the bare Matsubara Green’s function in frequency domain:

G0(k, iνn) = 1
iνn − ε(k) + µ

. (2.9)

In order to obtain the real frequency result one finally replaces iνn → ν + i0+.

2.3 Diagrammatic expansion of Green’s function

We aim to find the perturbative expansion of the finite temperature Green’s function

for a general two-body potential. Following the so-called S-matrix approach [5] one
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can easily show:

G(r1, τ, r2, τ
′) =

Tr
{
e−βH0

∑∞
n=0

(−1)n
n!

∫ τ
τ0
dτ1...

∫ τ
τ0
dτnTτVI(τ1)...VI(τn)ψ(r, τ)ψ†(r′, τ ′)

}

Tr
{
e−βH0

∑∞
n=0

(−1)n
n!

∫ τ
τ0
dτ1...

∫ τ
τ0
dτnTτVI(τ1)...VI(τn)

} ,

(2.10)

where H0 is the free Hamiltonian operator ∗, ψ(r, τ)(ψ†(r, τ)) is the annihilation

(creation) operator at position r and imaginary time τ and VI is the two-body potential

in the interaction picture given by

VI(τi) = eH0τi
1
2

∫
drdr′ψ†(r)ψ†(r′)V (r, r′)ψ(r′)ψ(r)e−H0τi , (2.11)

Next we define [5]

v(x− x′) = V (r− r′)δ(τ − τ ′), (2.12)

ψ(xi) = eH0τiψ(r)e−H0τi , (2.13)

For example, we evaluate the first order term in the numerator of Eq. (2.10) (we call

it G1(x, x′)):

G1(x, x′) = 1
2Tr

(
e−βH0

∫
d4x1d

4x2v(x1 − x2)Tτψ†(x1)ψ†(x2)ψ(x2)ψ(x1)ψ(x)ψ†(x′)
)
.

(2.14)
∗For the Hubbard model H0 includes the first and the second terms in Eq. (2.1).
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Figure 2.1: Feynman diagrams of the six first order terms arising from the perturbative
expansion Eq. (2.10) of the numerator of the Green’s function.

Applying Wick’s theorem [5] we get six terms:

G1(x, x′) = 1
2

∫
d4x1d

4x2v(x1 − x2)
[
G0(x, x′)G0(x2, x2)G0(x1, x1)

− G0(x, x′)G0(x2, x1)G0(x1, x2) + G0(x, x1)G0(x1, x2)G0(x2, x
′)

− G0(x, x1)G0(x2, x2)G0(x1, x
′) + G0(x2, x1)G0(x, x2)G0(x1, x

′)

− G0(x, x2)G0(x1, x1)G0(x2, x
′)
]
. (2.15)

Note that by commuting the fermionic operators we get extra minus sign in three

of the terms. We present these six terms pictorially in Fig. 2.1. There are two

types of diagrams: connected and disconnected. While the numerator of Eq. (2.10)

(evaluated to all orders in perturbation theory) is in fact the product of the total

contribution of the disconnected diagrams and total contribution of the connected

diagrams, the denominator of Eq. (2.10) is just the sum of the disconnected diagrams.

Therefore, only the connected diagrams effectively contribute in the final perturbative
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expansion. Considering the first order connected diagrams, we observe that for any

distinct topology there are two identical terms. In general, at the nth order there are

2nn! identical terms for each distinct topology.

In this thesis we work in the momentum-frequency space. Here, we summarize the

so-called Feynman rules in momentum-frequency space for mth order contribution to

Green’s function:

• Draw all topologically distinct diagrams with m interaction lines (wavy lines)

and 2m+ 1 particle lines (solid lines).

• Assign a momentum and Matsubara frequency to each particle line considering

conservation of energy at each vertex.

• Assign a bare Green’s function G0 = 1
iνn−ε(k)+µ to each solid line with frequency

iνn and momentum k.

• Each interaction line should be weighted with v(k).

• Perform summations over all internal (independent) momenta and frequencies.

• Multiply each diagram by (−1)m(−1)F (2s + 1)F Tm

(2π)dm where F is the number

of loops in the diagram, d is the dimensionality of the model and s is the spin.

• Insert convergence factor eiνn0+ for each simple closed fermionic loop, where νn

is the assigned frequency to the line.

2.3.1 Dyson’s equation and self-energy

Since any diagram in the perturbative expansion of Green’s function is in fact a high

dimensional integral in frequency-momentum (or equivalently in time-position) space,

any effort to reduce the diagrammatic space is valuable. To do so Dyson’s equation
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Figure 2.2: An example of a one-particle reducible diagram. The diagram is split into
two connected diagrams by cutting the solid line in the middle.

is usually used. In principle Dyson’s equation enables one to perform a summation

of an infinite sub-series of Green’s function diagrams [4]. In the series expansion of

the Green’s function there exist two classes of diagrams. The first class, which are

called one-particle reducible diagrams, are those that can be split into two diagrams

by cutting one of the fermionic (solid) lines. We show an example of such diagrams

in Fig. 2.2. The second class of diagrams are those which are not reducible and,

therefore, are called one-particle irreducible (1PIR) diagrams. We then define self-

energy (Σ) to be the sum of all the 1PIR Green’s function diagrams dropping the bare

Green’s functions assigned to the external legs. Finally, the full Green’s function is

determined by Dyson’s equation:

G = G0 + G0ΣG. (2.16)

Therefore, in order to approximate Green’s function one could evaluate the self-energy

expansion up to some truncation order and substitute the result in Eq. (2.16).

2.3.2 Hubbard self-energy diagrams

We are mostly interested in the Hubbard model on a two-dimensional square lattice.

We limit ourselves to the nearest neighbor tight-binding dispersion given by ε(k) =

18



−2t
(

cos kx + cos ky
)
− µ, where t is the hopping amplitude and µ is the chemical

potential. Following the Feynman rules, in general, the diagrammatic expansion of

the Hubbard self-energy, truncated at order mc, mathematically corresponds to

Σ(km+1, νm+1) =
mc∑
m=1

{ ∑
{ζm}

(−1)m+FζmUm

(2π)2mβm
∑
{km}

∑
{νm}

2m−1∏
j=1
Gj0(εj, Xj)

}
, (2.17)

where {ζm} is the set of diagram topologies of order m and Fζm is the number of

fermionic loops in the diagram with topology ζm. Note that a self-energy diagram of

orderm has 2m−1 solid lines andm (independent) internal frequencies and momenta.

Here, we define the frequency of each line as the linear combination Xj = ∑m+1
`=1 iαj`ν`,

where ν` are the independent Matsubara frequencies and the allowed values for the

coefficients αj` are zero, plus one, or minus one. Similarly, the free particle energy is

εj = ε(Kj), where Kj = ∑m+1
`=1 αj`k` and k` are the independent momenta. Moreover,

on LHS of Eq. (2.17), νm+1 and km+1 are the external frequency and momentum,

respectively.

We store connected one-particle irreducible diagrams that are Hubbard-type, i.e.,

we store the set of 1PIR diagrams, in which, the interaction lines connect fermionic

lines with different spins. The total number of such diagrams at each order N (m)
init is

given in Table. 2.1. We also use a simple but powerful trick to decrease the number

of diagrams in the diagrammatic expansions by redefining the chemical potential [6]

and neglecting all the diagrams with tadpole insertions (the diagrams which include

fermionic loops attached by a wavy tail):

µ→ µ− Unσ, (2.18)

where nσ is the density of particles with spin σ ∈ {↑, ↓}. Thus, in order to determine

the density and redefined (or effective) chemical potential one should take the following
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steps [7]:

1. For the chemical potential µ find the density of particles by using [6]:

n = 2nσ, (2.19)

with

nσ = 1
(2π)2

∑
k
Gσ(τ = 0−,k), (2.20)

where Gσ is the full Green’s function which can be approximated by using

Dyson’s equation. Note that the self-energy diagrams with tadpole insertions

must be dropped from the expansion. We recall that

Gσ(τ,k) = 1
β

∑
iνn

e−iνnτGσ(iνn,k), (2.21)

where iνn are fermionic Matsubara frequencies. Therefore, to compute nσ one

should perform sums over the external Matsubara frequency and momentum.

2. Calculate the effective chemical potential:

µeff = µ− Un/2. (2.22)

3. Repeat steps 1 and 2 self-consistently to achieve density and effective chemical

potential. For instance, for the half-filled model (n = 1) we have µ = U/2 and

n↑ = n↓ = 1/2 which corresponds to µeff = 0.

In order to complete our discussion we consider the Hubbard self-energy diagrams

at third order shown in Fig. 2.3. Six of the eighth diagrams can be neglected by
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Table 2.1: Diagrammatic space for the Hubbard self-energy expansion up to sixth or-
der. N (m)

init is the total number of mth order Hubbard self-energy diagrams in the orig-
inal expansion. N (m) is the total number of mth order Hubbard self-energy diagrams
neglecting all diagrams with tadpole insertions by applying the chemical potential
shift explained in the text.

m 1 2 3 4 5 6
N

(m)
init 1 2 8 44 296 2312

N (m) 0 1 2 12 70 515

Figure 2.3: The third order terms of the Hubbard self-energy expansion. In this
series expansion we only consider the terms which are non-zero for the on-site Hub-
bard potential between two electrons with different spins. After shifting the chemical
potential only the first two diagrams in the first row remain.
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shifting the chemical potential self-consistently. Therefore, we are left with only two

third order diagrams. Shown in the third row of Table 2.1 are the number of self-

energy diagrams which one needs to evaluate at each order for the Hubbard model.

2.4 Diagrammatic expansion of susceptibility func-

tions

In this section we use the S-matrix approach to construct the perturbative series

expansion of the spin susceptibility functions for the single-band Hubbard model.

We define two types of susceptibility functions: longitudinal spin susceptibility and

transverse spin susceptibility. As we shall see, the diagrammatic representation of the

longitudinal spin susceptibility is closely related to that of the charge susceptibility,

however, the perturbative expansion for the transverse spin susceptibility leads to

different diagram topologies.

2.4.1 Longitudinal spin susceptibility

The longitudinal spin susceptibility χL(x, x′) is defined to be [8]

χL(x, x′) = 〈TτSz(x)Sz(x′)〉, (2.23)

where

Sz(x) = 1
2
∑
σ,σ′

ψ†σ(x)σzσ,σ′ψσ′(x), (2.24)
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and x = (r, τ), σ ∈ {↑, ↓}, ψσ(x) (ψ†σ(x)) annihilates (creates) a particle with spin σ

at x and σz is a Pauli matrix. Eq. (2.24) can be rewritten as

Sz(x) = 1
2

(
ψ†↑(x)ψ↑(x)− ψ†↓(x)ψ↓(x)

)
. (2.25)

We then substitute (2.25) in (2.23) to obtain

χL(x, x′) = 1
4

[
〈T ψ†↑(x)ψ↑(x)ψ†↑(x′)ψ↑(x′)〉 − 〈T ψ

†
↑(x)ψ↑(x)ψ†↓(x′)ψ↓(x′)〉

−〈T ψ†↓(x)ψ↓(x)ψ†↑(x′)ψ↑(x′)〉+ 〈T ψ†↓(x)ψ↓(x)ψ†↓(x′)ψ↓(x′)〉
]

= 1
2

[
〈T ψ†↑(x)ψ↑(x)ψ†↑(x′)ψ↑(x′)〉 − 〈T ψ

†
↑(x)ψ↑(x)ψ†↓(x′)ψ↓(x′)〉

]
, (2.26)

which can be written as

χL(x, x′) = 1
2

[
〈T n↑(x)n↑(x′)〉 − 〈T n↑(x)n↓(x′)〉

]
. (2.27)

We note the similarity of Eq. (2.27) to the charge susceptibility defined by:

χc(x, x′) = 2
[
〈T n↑(x)n↑(x′)〉+ 〈T n↑(x)n↓(x′)〉

]
, (2.28)

We then conclude that the diagrammatic representations of the longitudinal spin sus-

ceptibility and the density-density susceptibility are the same in the sense of diagrams’

topologies (see Fig. 2.4). One can also define reducible and irreducible susceptibility

diagrams similarly to the self-energy diagrams. The reducible susceptibility diagrams

are those which can be split into two connected susceptibility diagrams by cutting

one of the wavy lines.

We emphasize that the sign of terms arising from 〈T n↑(x)n↓(x′)〉 are negative. It

means that to compute χL we should separate the diagrams in the expansion into two
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Figure 2.4: Diagrammatic expansion of the charge susceptibility or longitudinal spin
susceptibility up to second order for the single-band Hubbard model. Each loop has
a well-defined spin and two connected loops should have opposite spins. We do not
show the diagrams with tadpole insertions and reducible second order ones.

groups:

1. g↑↑: The set of diagrams arising from the 〈T n↑(x)n↑(x′)〉 term.

2. g↑↓: The set of diagrams arising from the 〈T n↑(x)n↓(x′)〉 term.

To construct g↑↑ and g↑↓ for the Hubbard interaction one should follow a simple

procedure:

1. Generate the set S of (irreducible and reducible) diagrams considering the Feyn-

man rules for the Hubbard Hamiltonian. Note that in all the diagrams the

principle loop has spin up.

2. For each diagram D of order m in S count the number of spin up and spin down

fermionic lines and call them N↑ and N↓, respectively.

(a) If N↑ = N↓ + 2 = m+ 2 the diagram D belongs to g↑↑.

(b) If N↑ = N↓ = m+ 1 the diagram D belongs to g↑↓.
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Then the longitudinal spin susceptibility is calculated by:

χL = 1
2

(
χ↑↑ − χ↑↓

)
, (2.29)

where χ↑↑ and χ↑↓ are calculated from the diagrams in g↑↑ and g↑↓, respectively.

Similarly the charge susceptibility is

χc = 2
(
χ↑↑ + χ↑↓

)
. (2.30)

2.4.2 Transverse spin susceptibility

By definition the transverse spin susceptibility is given by [9]

χT (x, x′) = 〈TτS+(x)S−(x′)〉, (2.31)

where S+(x) and S−(x′) are spin-raising and spin-lowering operators which are defined

by

S+(x) = ψ†↑(x)ψ↓(x), (2.32)

and

S−(x) = ψ†↓(x)ψ↑(x), (2.33)

where x = (r, τ). We first replace (2.32) and (2.33) in (2.31):

χT (x, x′) = 〈T ψ†↑(x)ψ↓(x)ψ†↓(x′)ψ↑(x′)〉 (2.34)
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Figure 2.5: Diagrammatic expansion of the transverse spin susceptibility up to second
order for the single-band Hubbard model. We do not show the diagrams with tadpole
insertions. In the principle loop the particle line is spin down and the hole line is spin
down.

The last step is to follow the S-matrix approach and apply Wick’s theorem to establish

the perturbative series expansion. The diagrammatic expansion of the transverse spin

susceptibility up to second order is presented in Fig. 2.5, neglecting all the diagrams

with tadpole insertions. We note that the diagrams’ topologies for the transverse spin

susceptibility are different from those of the longitudinal spin susceptibility, however,

the Hubbard Hamiltonian is invariant under spin-rotations [10, 11], therefore, χT =

2χL.

2.5 Random phase and T-matrix approximations

In the random phase approximation (RPA) [12, 13] one considers an infinite sub-

series of diagrams, shown in Figure 2.6, to approximate charge and longitudinal spin

susceptibilities. Thus, in the RPA scheme we have:

χRPA
c (iΩm,q) = 2 Π0(iΩm,q)

1 + UΠ0(iΩm,q) , (2.35)
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Figure 2.6: Diagrammatic expansion of the longitudinal spin and charge susceptibility
functions up to second order for the single-band Hubbard model in the RPA scheme.

Figure 2.7: Diagrammatic expansion of the transverse spin susceptibility up to third
order for the single-band Hubbard model in the TMA scheme.

and

χRPA
L (iΩm,q) = 1

2
Π0(iΩm,q)

1− UΠ0(iΩm,q) , (2.36)

where iΩm is the external (bosonic) Matsubara frequency, q is the external momenta

and

Π0(iΩm,q) = − 1
β

∑
νn

∑
k
G0(iνn,k)G0(iνn + iΩm,k + q) (2.37)

is the first diagram in Fig. 2.6. In order to approximate the transverse spin sus-

ceptibility the T-matrix approximation (TMA) [14, 15] is commonly used. In this

scheme one takes ladder diagrams into account (See Figure 2.7). A straightforward

calculation shows that

χTMA
T (iΩm,q) = Π0(iΩm,q)

1− UΠ0(iΩm,q) . (2.38)
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Chapter 3

Algorithmic Matsubara integration

for Hubbard-like models

We aim to use perturbation theory via the Feynman diagrammatic formalism to eval-

uate the self-energy and susceptibility functions of the Hubbard model in frequency-

momentum space. To do so, one, in principle, needs to take the following steps:

1. Construct the diagrammatic expansion up to some truncation order.

2. Translate each diagram to its corresponding mathematical expression by using

the Feynman rules.

3. Evaluate the frequency and momenta sums of each diagram.

Although it, in principle, is a trivial task, it is in practice an extremely challenging

procedure. For this reason in this chapter we only focus on the analytic evaluation of

the Matsubara sums for a given Feynman diagram.

The Matsubara sums in Matsubara frequency (or equivalently in imaginary time)

space are typically evaluated by using Monte Carlo methods [1–4]. Then, in order

to provide the result in real frequency space numerical methods, which are mathe-
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matically ill-defined, have to be used. We completely resolve this issue introducing

a powerful systematic machinery, which we call algorithmic Matsubara integration

(AMI), based upon the residue theorem, to construct an analytic result for the fre-

quency summations of a given Feynman diagram. In order to clarify the core idea of

the AMI procedure we take the bare bubble as a simple example:

Π0(iΩ,q) = −2T
∫ dk1

(2π)2

∑
ν1

1
iν1 − ε(k1)

1
iν1 + iΩ− ε(k1 + q) , (3.1)

where iν1 and iΩ are (internal) fermionic and (external) bosonic Matsubara frequen-

cies, respectively, T is the temperature, k1 and q represent internal and external

momenta, respectively, and ε(k) is the free particle energy. We rewrite (3.1) as

Π0(iΩ,q) = −2
∫ dk1

(2π)2 I0(iΩ,k1,q), (3.2)

with

I0(iΩ,k1,q) = T
∑
ν1

1
iν1 − ε(k1)

1
iν1 + iΩ− ε(k1 + q) . (3.3)

This summation can be evaluated analytically using the residue theorem. For a func-

tion h(ν), where ν is a fermionic frequency we have

∑
ν

h(iν) = β
∑
{z0}

Res[f(z)h(z)]z0 , (3.4)

where {z0} are the poles of h with respect to iν, f is the Fermi distribution function

and β is the inverse temperature (See Appendix A for proof). In fact, Eq. (3.4)

reduces the infinite summation over the fermionic Matsubara frequencies to a finite

summation with r terms where r is the total numbers of poles with respect to the
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frequency iν. Applying (3.4) and doing straightforward algebra we obtain the full

analytic expression of I0:

I0(iΩ,k1,q) = f [ε(k1)]− f [ε(k1 + q)]
iΩ + ε(k1)− ε(k1 + q) . (3.5)

Note that Eq. (3.5) is model independent and is valid for any time-independent in-

teractive system. The final result for polarization bubble is obtained:

Π0(iΩ,q) = −2
∫ dk1

(2π)2
f [ε(k1)]− f [ε(k1 + q)]
iΩ + ε(k1)− ε(k1 + q) . (3.6)

Therefore, the result of AMI is fully analytic and can be evaluated exactly (up to

machine precision) with no truncation error due to introducing a cut-off frequency,

upon which one can impose a true analytic continuation to the real-frequency axis

(see Appendix B for an instructive example). Our goal in this chapter is to provide an

automated machinery to evaluate the Matsubara sums of a given Feynman diagram

and return a full symbolic result similar to what we showed for the bare bubble.

Since in general we deal with a finite number of sums over independent Matsubara

frequencies, doing so requires an iterated application of the residue theorem which we

shall discuss in detail in the following sections.

In the rest of this chapter we reproduce Ref. [5], Amir Taheridehkordi, Stephanie

H. Curnoe, and James P. F. LeBlanc, doi: 10.1103/PhysRevB.99.035120; License

number: RNP/20/OCT/031576; reproduced with kind permission of the publishers

of Physical Review B. The manuscript is followed by Supplemental Material.
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3.1 Abstract

We present an algorithm to evaluate Matsubara sums for Feynman diagrams com-

prised of bare Green’s functions with single-band dispersions and local U Hubbard in-

teraction vertices. The algorithm provides an exact construction of the analytic result

for the frequency integrals of a diagram that can then be evaluated for all parameters

U , temperature T , chemical potential µ, external frequencies and internal/external

momenta. This method allows for symbolic analytic continuation of results to the real

frequency axis, avoiding any ill-posed numerical procedure. This method can also be

used to simultaneously evaluate diagrams throughout the entire T -U -µ phase space

of Hubbard-like models even in the T = 0 limit at minimal computational expense.

3.2 Introduction

The Hubbard model [6] is a cornerstone of correlated electron physics and plays an

important role as a testbed for the development of numerical algorithms. Among

modern numerical tools, Diagrammatic Monte Carlo (DiagMC) is a powerful tech-

nique which performs integrals arising from perturbative expansions by sampling

classes of connected Feynman diagrams [1–4]. Other algorithms have been devel-

oped from expansions around non-perturbative dynamical mean-field theory, [7–9] as

well as so-called ‘bold’ extensions to DiagMC with a variety of possible of resumma-

tion schemes. [10,11] However, it was recently shown [12,13] that the resummation of

the skeleton Feynman diagrammatic series for systems with the Hubbard interaction

will lead to a false convergence towards an unphysical branch due to the Riemann

series theorem at strong interactions, while the series based on bare Green’s func-

tions always converges to the expected physical result. [12] As a result, expressing the

perturbation series in terms of bare Green’s functions (and bare vertices) might be
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preferable.

In the case of Hubbard-like models, [6] since each bare vertex is unstructured (U)

in principal one needs only to compute the series of integrals over internal spatial

(momentum) and time (frequency, commonly computed as a sum over Matsubara

frequencies) variables for each diagram. Despite the conceptual simplicity of this

proposal, in practice the problem remains a challenge. One difficulty lies in the fac-

torial scaling of the number of diagrams one must sample as the interaction order in-

creases. [4,14,15] Another is the poor convergence of sums over Matsubara frequencies,

since the set of Matsubara frequencies [iνn = iπ
β
(2n+ 1) or iπ

β
(2n) for fermions and

bosons respectively] compresses as the temperature T = 1/β decreases. Worse still

is that numerical results by necessity express external lines of the Feynman diagrams

in terms of Matsubara frequencies. The numerical process of analytic continuation of

Matsubara frequencies to real frequencies is ill-posed, and while procedures such as

maximum entropy inversion or Padé approximants have become standard and codes

to implement these procedures are widely available, [16–19] the problem of analytic

continuation remains a roadblock to providing reliable theoretical results to correlated

many-body problems.

In this paper we propose a method which we call Algorithmic Matsubara Inte-

gration (AMI) in which we utilize the residue theorem to compute summations over

independent Matsubara frequencies. The result of the algorithm is an analytic expres-

sion for the temporal integrals of a diagram of arbitrary order in terms of internal and

external momenta and external Matsubara frequencies, upon which one can impose a

true analytic continuation iωn → ω + i0+. AMI can be applied to any Hubbard-like

model with an arbitrary dimensionality. To demonstrate the utility of this method,

we provide examples of the AMI result which requires a choice of dispersion and di-

mensionality. For simplicity we use a nearest neighbor tight-binding dispersion on a
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square lattice which allows us to comment on the scaling of computational cost with

complexity of the integrand (i.e. expansion order).

Algorithm: DiagMC typically samples the entire space of diagram topologies as

well as sampling over internal variables such as a set of momenta {kn} = k1, k2, ..., kn

and a set of frequencies {νn} = ν1, ν2, ..., νn. [1] Our aim is to reduce the space of

sampling for Monte-Carlo methods from {kn, νn} → {kn} by algorithmic evaluation

of the analytic result of the {νn} integrals. By evaluating the sums over Matsubara

frequencies algorithmically we completely remove the need to probe the frequency

(time) configuration space.

Making no assumptions about the topology of the diagram, the general form of a

diagram can be written as

Unv

βn
∑
{kn}

∑
{νn}

N∏
j=1

Gj(εj, Xj) = Unv
∑
{kn}

I(n), (3.7)

I(n) = 1
βn

∑
{νn}

N∏
j=1

Gj(εj, Xj), (3.8)

where nv is the order (the number of vertices) of the diagram, n is the number of

summations over Matsubara frequencies {νn} and internal momenta {kn}, and N is

the number of internal lines representing bare Green’s functions G(ε,X). The bare

Green’s function of the jth internal line is

Gj(εj, Xj) = 1
Xj − εj

, (3.9)

where Xj is the frequency and εj = εj(kj) is the free particle dispersion. Constraints

derived from energy and momentum conservation at each vertex allow us to express

these quantities as linear combinations of internal {νn, kn} and external {νγ, kγ} fre-

quencies and momenta, where kj = ∑m
`=1 α

j
`k`, Xj = ∑m

`=1 iα
j
`ν`, and γ = m − n is
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the number of unconstrained external frequencies. The coefficients αj` are numbers

which have only three possible values: zero, plus one or minus one. This allows us to

represent Gj as an array of length m+ 1 of the form

Gj(Xj)→ [εj, ~αj], (3.10)

where ~αj = (αj1, ..., αjm). Given our array representation of each Gj, we construct a

nested array to represent the product of Gj which appears in Eq. (3.8),

N∏
j=1

Gj(εj, Xj)→
[
[ε1, ~α1]; [ε2, ~α2]; ...; [εN , ~αN ]

]
. (3.11)

The size of this array is N × (m + 1). As we shall show, this representation carries

all the information we need to compute the summations in Eq. (3.8).

To begin the algorithm, we subdivide the original problem to the summation over

a single frequency νp, and the remaining frequencies νn 6= νp,

I(n) =
∑

{νn},νn 6=νp
Ip, (3.12)

Ip =
∑
νp

N∏
j=1

Gj(εj, Xj
m). (3.13)

Central to computing Eq. (3.13) is the identification of the set of simple poles

of the Green’s functions. The pole of the jth Green’s function with respect to the

frequency νp exists so long as the coefficient αjp is non-zero, and is given by

z(j)
p = −αjp(−εj +

m∑
`=1,` 6=p

iαj`ν`) for αjp 6= 0. (3.14)

The number of simple poles for νp is rp = ∑N
j=i |αip|, which occur in rp of N total

Green’s functions in the product of Eq. (3.13). We label these rp Green’s functions
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as Gi1 , Gi2 , ..., Girp , and the set of simple poles will be denoted by {z(i`)
p }`=1,2,...,rp .

Assuming all z(i`)
p poles to be simple, the residue of each is

αi`p
∏
j 6=i`

Gj(αjpz(i`)
p +

∑
`6=p

iαj`ν`). (3.15)

Note the sign αi`p that is attached to this result.

To calculate the summation over the fermionic frequency νp in Eq. (3.13) we use

the residue theorem,

∑
νp

h(iνp) = β
∑
zp

f(zp)Res[h(z)]zp , (3.16)

where f(z) is the Fermi function and zp are the poles of h(z). Applying (3.16) to the

summation (3.13) and using (3.15), we find the result:

Ip = αi1p βf(z(i1)
p )

∏
j 6=i1

Gj(αjpz(i1)
p +

∑
`6=p

iαj`ν`) + αi2p βf(z(i2)
p )

∏
j 6=i2

Gj(αjpz(i2)
p +

∑
`6=p

iαj`ν`)

+...+ α
irp
p βf(z(irp )

p )
∏
j 6=irp

Gj(αjpz
(irp )
p +

∑
`6=p

iαj`ν`).

(3.17)

The Fermi function is evaluated as

f(z(i`)
p ) = 1

σ exp(−βαi`p εi`) + 1
, (3.18)

where σ is a sign given by

σ(zi`p ) = exp(iβ
∑
` 6=p

αi`` ν`), (3.19)

that is, σ = −1 if there are an odd number of fermionic frequencies in the sum over
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`, otherwise σ = 1. Therefore f(z(i`)
p ) is independent of Matsubara frequencies and

only depends on the real energy dispersion, though its character might switch from

fermionic to bosonic.

We have thus evaluated (3.13), a single frequency summation. There are rp terms

in the result, and each term in this result contains a product ofN−1 Green’s functions,

which may be represented as a (N−1)×(m+1) dimensional array in the form (3.11).

These arrays may be arranged into a single nested array of size rp× (N−1)× (m+1).

We make use of this result to calculate all of the summations in Eq. (3.8) using a

recursive procedure. Without loss of generality we (arbitrarily) label the independent

frequencies in the diagram as ν1, ν2, . . . νn, and perform the summations in this order.

Each step of the procedure corresponds to the evaluation of one frequency summation.

At the beginning of the procedure, the Feynman diagram that is to be evaluated is

represented as a 1 × N × (m + 1) dimensional array from which the poles of ν1 are

extracted. After the first summation is computed using (3.17), the result is stored

in a r1 × (N − 1) × (m + 1) dimensional array, and the poles of ν2 in this result

are extracted. Subsequent steps will reduce the second dimension by one on each

step, but the first dimension will increase according to the number of poles. When

all summations have been completed all that remains are functions defined by the γ

external frequencies.

To implement this procedure computationally we define the following objects:

• the arrays Rp representing the configurations of Green’s functions after the pth

summation (described above),

• the sets of poles Pp for νp in the configuration of Green’s functions represented

by Rp−1,

• the set of signs Sp of the residues for each pole (the αi`p in Eq. (3.15)).

38



The array of poles corresponding to νp has entries

Pp = [P (1)
p , P (2)

p , ..., P
(r(p−1))
p ], (3.20)

with

P (`)
p = [z(i1)

p,` , z
(i2)
p,` , ..., z

(ir` )
p,` ]. (3.21)

We note that P (`)
p is the array of poles for νp in the residue of the `th pole for νp−1

stored in the previous configuration of Green’s functions, Rp−1. Similarly we have an

array of signs with the same dimensions as Pp:

Sp = [S(1)
p , S(2)

p , ..., S
(r(p−1))
p ], (3.22)

with

S(`)
p = [α(i1)

p,` , α
(i2)
p,` , ..., α

(ir` )
p,` ]. (3.23)

where αp,` are the nonzero coefficients of νp of the previous configuration of Green’s

functions, Rp−1.

Using these arrays, the full analytic result for Eq. (3.8) is given by

I(n) = 1
βn

∑
{νn}

N∏
j=1

Gj(εj, Xj
m) = K ·Rn, (3.24)

where

K = (S1 ∗ f(P1))× (S2 ∗ f(P2))× ...× (Sn ∗ f(Pn)).

(3.25)
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In this expression, f(Pp) is the Fermi function of an array with elements given by

[f(Pp)]i` = f(z(i)
p,`), (3.26)

and the operations ‘∗’, ‘×’, and ‘·’ are defined by

(C ∗D)ji = Cj
iD

j
i ≡ Gj

i ,

(G×H)ji = GiH
j
i ,

H · C =
∑
i

HiCi.

Equations (3.24) and (3.25) are primary results of this paper. These equations are

obtained under the presumption that all of the poles are simple poles. Poles with

higher multiplicity are equivalent to multiple simple poles and therefore the result of

Eq. (3.24) holds even when poles with higher multiplicity arise. However, it is not

the ideal representation since upon evaluation one will find cancelling divergent terms

which sum to non-zero values, causing numerical instability. This problem can be

avoided by generalizing for poles with multiplicity M . If h(z) has a pole of order M

at z = z0, then the residue is given by

Res[h(z0)] = 1
(M − 1)! lim

z→z0

dM−1

dzM−1

{
(z − z0)Mh(z)

}
.

(3.27)

In order to analytically evaluate arbitrary order derivatives, we employ the method

of automatic differentiation which requires only knowledge of the first derivative and

repeated application of chain rules. The first derivative with respect to iνp of the
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multiplication of N Green’s function is given via chain rule as

d

d(iνp)
(
N∏
j=1

Gj(εj, Xj
m)) =

N∑
i=1

dGi

d(iνp)
∏
j 6=i

Gj(εj, Xj
m).

(3.28)

The first derivative of one of the Green’s function with respect to iνp in the array

representation can then be performed by returning two Green’s functions,

dGi(εi, X i
m)

d(iνp)
→
[
[εi, X i

m]; [−αipεi, αipX i
m]
]
. (3.29)

The (M−1)th order derivative can be computed by iterating (3.28). We therefore are

able to express the residue for poles of iνp with any multiplicity using our symbolic

representation. The only significant difference is that in the presence of multiple poles

the entries of the S array are ± 1
(M−1)! instead of only ±1. The structures of P and R

arrays remain the same but with additional terms arising from the chain rules, and

Eqs. (3.24) and (3.25) remain valid to construct the final result.

We emphasize that since the result is symbolic in the set of yet-defined external

frequencies {νγ}, at the final step one can replace iνγ → νγ + i0+ just as in a standard

analytic continuation. This eliminates the need for ill-posed numerical methods of

analytic continuation in diagrammatics of Hubbard-like models. The method requires

both the time to construct the solution, tc, and the evaluation time, te, for each set,

γ, of external variables. We therefore expect the scaling will go as γte + tc where tc is

typically larger than te.

Examples: The AMI result for a Feynman diagram is valid for any Hubbard-like

model and is not dependent on the lattice dimensionality. Here, in order to illustrate

the utility of AMI we evaluate the temporal integrals of 3 diagrams of increasing

complexity shown in the left hand column of Fig. 3.1. We assume a 2D square lattice
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Figure 3.1: First column: Feynman diagram; Second column: Imaginary part vs.
Matsubara frequency; Third column Imaginary part vs. real frequency. Data for
βt = 10, and µ/t = 0 (half-filled) for a 2D square lattice tight-binding dispersion. Top
Row: Σ(2) at crystal momenta ~k1 = (0, 0), ~k2 = ~k3 = (π

a
, π3a); Middle Row: Λenv at

crystal momenta ~k1 = (0, 0), ~k2 = ~k3 = ~k4 = ~k5 = ~k6 = (π
a
, π3a) with ν4 = π

β
and ν6 = 0

in Matsubara space (second column) and ν4 = ν6 = 0 on the real frequency axis (third
column); Bottom Row: Y at crystal momenta ~k1 = (0, 0), ~k2 = ~k3 = ~k4 = ~k5 = (π

a
, π3a).

We set δ = 0.1 in the analytic continuation process iνn → ν + iδ.
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with tight-binding dispersion ε~k = −2t(cos(kxa)+cos(kya))−µ where t is the hopping

amplitude, a is the lattice constant and µ = 0 for simplicity. The three diagrams are:

Σ(2), a second-order self energy diagram with a single external line; Λenv a highly

connected fourth-order irreducible diagram [20] with multiple external frequencies

and three independent Matsubara frequencies; Y a fourth-order example including

four independent frequencies. The diagrams are translated, save for factors of Unv , as

Σ(2) = 1
β2

∑
ν1,ν2

G(iν1)G(iν2)G(iν3 + iν2 − iν1), (3.30)

Λenv = 1
β3

∑
ν1,ν2,ν3

G(iν1)G(iν2)G(iν3)G(iω)G(iη)G(iθ), (3.31)

Y = 1
β4

∑
{νi}4

i=1

G(iν1)G(iν2)G(iν3)G(iν4)G(iω)G(iθ)G(iη). (3.32)

The AMI algorithm produces symbolic results in the form of Pp, Sp and Rn (see Sup-

plemental Material [21] for explicit forms) which are used to evaluate each diagram,

Σ(2) → (S1 ∗ f(P1))× (S2 ∗ f(P2)) ·RΣ
2 (3.33)

Λenv → (S1 ∗ f(P1))× (S2 ∗ f(P2))× (S3 ∗ f(P3)) ·RΛ
3

(3.34)

Y → (S1 ∗ f(P1))× (S2 ∗ f(P2))× (S3 ∗ f(P3))×

(S4 ∗ f(P4)) ·RY
4 (3.35)

There are 4, 32, and 82 terms for RΣ
2 , RΛ

3 and RY
4 respectively. These are then

evaluated for a choice of internal and external momenta {kn} and external frequencies

{νγ}, on either the Matsubara axis or on the real axis via iνγ → νγ + iδ for a choice of

small δ. Results are shown in Fig. 3.1 on both the Matsubara and real frequency axes

for specific choices of {kn} (which would be integrated to evaluate the full diagram).
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Computing higher order Feynman graphs using AMI is straightforward. We pro-

vide in the Supplementary Information [21] a particularly complex example of a ninth-

order diagram which contains 337982 terms assuming simple poles, but the number

of terms when treated for poles with multiplicity via Eq. (3.27) increases to the or-

der of 109. We note that in general the times tc and te both scale linearly with the

number of terms, ζ = ∏
p rp, where rp is the number of poles with respect to each

integration variable. This results in ζ increasing exponentially with expansion order

but its details depend on the pole structure of a given diagram.

Concluding Remarks: Our approach has two main features. First, the result of

AMI, once stored, is equivalent to an analytic result, and is therefore evaluated to

machine precision. Furthermore, one can impose analytic continuation symbolically

and move to real frequency space without any ill-defined numerical procedure. Second,

once S, P and Rn are constructed the computational expense for generating the

analytic function is small, and the total evaluation time reflects primarily the direct

evaluation of the analytic function. Once constructed and stored, the function can be

evaluated for any set of external variables ({νγ}, {kn}, {kγ}, U , β, and µ) without

accumulating error, unlike in DiagMC where one would observe a growth in variance

for increasing frequency which worsens for increasing β. In this sense, with AMI

the temporal parts of the Feynman integral are solved not only exactly (to machine

precision), but also with the lowest possible computational expense, i.e. the evaluation

of the analytic result. In addition, because the AMI result is an analytic expression

in terms of the external variables, T -U -µ phase space can be explored, including the

T = 0 limit, which is unreachable in the standard DiagMC methods.

In our three examples we have evaluated each diagram for a particular set of

internal {kn} and external momenta {kγ}. Generally, the evaluation of the remaining

spatial integrals can be performed with continuous momentum-space resolution, as
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in the case for DiagMC. Our results suggest that AMI is able to evaluate diagrams

at an order relevant to other state-of-the-art methods while incurring a competitive

computational cost. In addition, the symbolic result of AMI for each diagram, once

constructed, can be applied to any diagram with the same topology given the initial set

of εj dispersions. This leads to an interesting possibility that each configuration could

be systematically evaluated and stored without need to reconstruct the S, P , and

Rn arrays. Once stored, those arrays can be loaded into memory and systematically

evaluated for an arbitrary Hubbard-like problem of arbitrary spatial dimension and

dispersion.

What remains is to combine AMI with DiagMC (AMI+DiagMC). Such an exten-

sion will open new avenues to DiagMC, especially at T = 0, because AMI reduces

the size of phase space by eliminating the need for probing the internal frequencies

or the internal imaginary times in DiagMC. Consequently, this will reduce computa-

tional uncertainties and might improve convergence properties. However, there exist

some technical hurdles which must be first overcome before AMI+DiagMC will be

competitive. First, developing a general tool to provide the set of {α} values (set

of momentum/energy conserving labels) for an arbitrary Feynman diagram topology

is nontrivial. This can be overcome for restricted topologies such as those diagrams

with only one external leg. Second, the standard DiagMC updates no longer apply,

since the AMI result for a topology is an analytic function, and not an amplitude.

With AMI one has a entirely new opportunity to use the analytic properties of the

AMI result to further improve Monte Carlo importance sampling.

We have presented only the most straightforward algorithm but appreciate that

optimizations likely exist. These might include improved routines for manipulating

and storing the matrices of typically sparse αjp vectors, or approximation schemes

whereby terms with small contributions are identified and never evaluated. While
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in this work we applied the method to single-band systems with constant vertices,

extension to non-constant vertices or multi-band systems should be explored. [22–25]
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3.4 Supplemental material

3.4.1 Algebraic Operations

The objects required to construct the full analytic result for the multi-summation

over Matsubara frequencies of bare Green’s functions are the S, P and Rn arrays.

Knowing these arrays we need only perform three algebraic operations ‘∗’, ‘×’, and

‘·’ to obtain the analytic result of the summation as described in the main text. In

this section we aim to elucidate the definitions of these operations. We consider three

arrays, H, C and D with length ` given by:

H = [h1, h2, ..., h`] (3.36)

C =
[
[c1

1, c
2
1, ..., c

m1
1 ], [c1

2, c
2
2, ..., c

m2
2 ], ..., [c1

` , c
2
` , ..., c

m`
` ]
]

(3.37)
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and

D =
[
[d1

1, d
2
1, ..., d

m1
1 ], [d1

2, d
2
2, ..., d

m2
2 ], ..., [d1

` , d
2
` , ..., d

m`
` ]
]

(3.38)

The lengths of the ith element of C and D are equal to mi.

First, we define the distribution function f operator on an array by its evaluation

of every element of the array, for example:

f(C) =f(
[
[c1

1, c
2
1, ..., c

m1
1 ], [c1

2, c
2
2, ..., c

m2
2 ], ..., [c1

` , c
2
` , ..., c

m`
` ]
]
) (3.39)

=
[
[f(c1

1), f(c2
1), ..., f(cm1

1 )], [f(c1
2), f(c2

2), ..., f(cm2
2 )], ..., [f(c1

`), f(c2
`), ..., f(cm`` )]

]
.

One may write down (3.39) in a compact form:

f(C)ji = f(Cj
i ). (3.40)

The operation ‘∗’ is defined by

C ∗D =
[
[c1

1, c
2
1, ..., c

m1
1 ], [c1

2, c
2
2, ..., c

m2
2 ], ..., [c1

` , c
2
` , ..., c

m`
` ]
]
∗[

[d1
1, d

2
1, ..., d

m1
1 ], [d1

2, d
2
2, ..., d

m2
2 ], ..., [d1

` , d
2
` , ..., d

m`
` ]
]

=
[
[c1

1d
1
1, c

2
1d

2
1, ..., c

m1
1 dm1

1 ], [c1
2d

1
2, c

2
2d

2
2, ..., c

m2
2 dm2

2 ], ..., [c1
`d

1
` , c

2
`d

2
` , ..., c

m`
` dm`` ]

]
,

(3.41)

or

(C ∗D)ji = Cj
iD

j
i . (3.42)
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The operation ‘×’ is also introduced:

H × C =[h1, h2, ..., h`]×
[
[c1

1, c
2
1, ..., c

m1
1 ], [c1

2, c
2
2, ..., c

m2
2 ], ..., [c1

` , c
2
` , ..., c

m`
` ]
]

(3.43)

=[h1c
1
1, h1c

2
1, ..., h1c

m1
1 , h2c

1
2, h2c

2
2, ..., h2c

m2
2 , ..., h`c

1
` , h`c

2
` , ..., h`c

m`
` ],

or

(H × C)ji = HiC
j
i . (3.44)

Lastly, we define the ‘·’ operation:

H · C =[h1, h2, ..., h`] ·
[
[c1

1, c
2
1, ..., c

m1
1 ], [c1

2, c
2
2, ..., c

m2
2 ], ..., [c1

` , c
2
` , ..., c

m`
` ]
]

(3.45)

=h1[c1
1, c

2
1, ..., c

m1
1 ] + h2[c1

2, c
2
2, ..., c

m2
2 ] + ...+ h`[c1

` , c
2
` , ..., c

m`
` ],

or

H · C =
∑
i

HiCi. (3.46)

3.4.2 Examples

In this section we present three examples with explicit results for the arrays S, P ,

and Rn and demonstrate how to construct the full analytic result using AMI. In all

examples, the summations will be performed in the order ν1, ν2,..., νn.
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Figure 3.2: Left: Feynman diagram of Σ(2) corresponding to Eq. (3.30). ν1, and
ν2 are independent fermionic frequencies, and ν3 is a fermionic external frequency.
Right: Imaginary part of Σ(2) as a function of ν3 for crystal momentum point given in
Eq. (3.48). The crosses show the result obtained from Eq. (3.51) while other lines are
calculated using a finite summation with different cut-off numbers, nc. As the cut-off
increases the result of the finite summation converges to the exact curve calculated
using AMI.

Self Energy Σ(2)

We first evaluate a simple object, the second order Feynman diagram shown in Fig.

3.2. It is defined by the summation

Σ(2) = 1
β2

∑
ν1,ν2

G(iν1)G(iν2)G(iν3 + iν2 − iν1) (3.47)

where ν1, ν2, and ν3 are fermionic Matsubara frequencies and G(iν) = 1
iν−εk

where εk

is defined by the tight binding Hamiltonian on a two-dimensional square lattice. We

(arbitrarily) select a point in the crystal momentum at:

~k1 = (0, 0) (3.48)

~k2 = ~k3 = (π
a
,
π

3a).
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Eq. (3.47) can then be written as

Σ(2) = 1
β2

∑
ν1,ν2

1
−4 + iν1

1
1 + iν2

1
−1− iν1 + iν2 + iν3

(3.49)

where we have explicitly evaluated εk1 , εk2 and εk3+k2−k1 in units of the hopping

amplitude, t. In the array representation of Green’s functions this is written as

Σ(2) → 1
β2

∑
ν1,ν2

[
[−4, 1, 0, 0]; [1, 0, 1, 0]; [−1,−1, 1, 1]

]
.

(3.50)

Applying AMI we obtain the final analytic result:

Σ(2) → (S1 ∗ f(P1))× (S2 ∗ f(P2)) ·RΣ
2 (3.51)

with

S1 = [1,−1]

S2 =
[
[1, 1], [1, 1]

]

P1 = [4,−1 + iν2 + iν3] (3.52)

P2 =
[
[−1, 5− iν3], [5− iν3,−1]

]

RΣ
2 =

[
[−6, 0, 0, 1], [6, 0, 0,−1], [6, 0, 0,−1], [−6, 0, 0, 1]

]
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The construction of Eq. (3.51) is equivalent to the full analytic result in the usual

representation:

Σ(2) =f(4)f(−1)
−6 + iν3

+ f(4)f(5− iν3)
6− iν3

+

−f(−1 + iν2 + iν3)f(5− iν3)
6− iν3

+

−f(−1 + iν2 + iν3)f(−1)
−6 + iν3

. (3.53)

In Fig. 3.2 we plot Σ(2) versus external frequency, ν3 at β = 10 and µ = 0 using

AMI and by direct summation of Eq. (3.30) over internal Matsubara frequencies. As

expected, by increasing the cut-off number nc, the finite summation approximation

results converge to the exact result computed by AMI.

Multi-Leg Diagram, Λenv

The second object we investigate is Λenv shown in Fig. 3.3:

Λenv = 1
β3

∑
ν1,ν2,ν3

G(iν1)G(iν2)G(iν3)G(iω)G(iη)G(iθ)

(3.54)

with independent frequencies iν1...iν6 and fully dependent frequency labels

ω = ν1 + ν2 + ν3 − ν4 − ν5 − ν6 (3.55)

η = ν2 + ν3 − ν4 − ν6

θ = ν1 + ν2 − ν4
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Figure 3.3: Top: Feynman diagram of Λenv given by Eq. (3.31). Middle: Imaginary
and real parts of Λenv calculated using AMI (dashed lines) and by finite summation
for various cut-offs evaluated at the momenta in Eq. (3.56). We fix β = 10, µ = 0 and
the external frequencies have been set to ν4 = π

β
, ν5 = 161π

β
, and ν6 = 0. Bottom:

Temperature dependence of the imaginary part of Λenv calculated using AMI, which
approaches zero as β →∞.
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where all the νi Matsubara frequencies are fermionic except for ν6 which is bosonic.

We (arbitrarily) select a point in the crystal momentum at

~k1 = (0, 0) (3.56)

~k2 = ~k3 = ~k4 = ~k5 = ~k6 = (π
a
,
π

3a)

Applying AMI we immediately achieve the full analytic result,

Λenv → (S1 ∗ f(P1))× (S2 ∗ f(P2))× (S3 ∗ f(P3)) ·RΛ
3

(3.57)

where the arrays of signs are given by

S1 = [1, 1, 1] (3.58)

S2 =
[
[1, 1, 1, 1], [−1, 1, 1], [−1, 1, 1]

]

S3 =
[
[1, 1, 1], [−1, 1,−1], [−1, 1,−1], [1, 1, 1], [−1, 1,−1],

[−1, 1, 1,−1], [−1, 1,−1], [1, 1, 1], [1, 1, 1], [1,−1, 1, 1]
]
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and the arrays of poles are

P1 = [4,−1− iν2 − iν3 + iν4 + iν5 + iν6, 4− iν2 + iν4] (3.59)

P2 =
[
[−1,−5− iν3 + iν4 + iν5 + iν6, 4− iν3 + iν4 + iν6, iν4],

[−5− iν3 + iν4 + iν5 + iν6,−1, 4− iν3 + iν4 + iν6], [iν4,−1, 4− iν3 + iν4 + iν6]
]

P3 =
[
[−1,−4 + iν4 + iν5 + iν6, 5 + iν4 + iν6], [−4 + iν4 + iν5 + iν6,−1,−5 + iν5 + iν6],

[5 + iν4 + iν6,−1, 4 + iν6], [−1,−5 + iν5 + iν6, 4 + iν6],

[−4 + iν4 + iν5 + iν6,−1,−5 + iν5 + iν6], [−4 + iν4 + iν5 + iν6,−1, 5 + iν4 + iν6,−5 + iν5 + iν6],

[5 + iν4 + iν6,−1,−5 + iν5 + iν6], [−1,−5 + iν5 + iν6, 4 + iν6], [−1,−5 + iν5 + iν6, 5 + iν4 + iν6],

[4 + iν6, 5 + iν4 + iν6,−1,−5 + iν5 + iν6]
]

We also present the entries of the array RΛ
3 in analytic form:

R1
3 = 1

3− iν4 − iν5 − iν6

1
−6− iν4 − iν6

1
−1− iν4

(3.60)

R2
3 = 1
−3 + iν4 + iν5 + iν6

1
−9 + iν5

1
−1− iν4

R3
3 = 1

6 + iν4 + iν6

1
9− iν5

1
−1− iν4

R4
3 = 1
−3 + iν4 + iν5 + iν6

1
−9 + iν5

1
−1− iν4

R5
3 = 1
−3 + iν4 + iν5 + iν6

1
−9 + iν5

1
−4 + iν5 + iν6

R6
3 = 1

1 + iν4

1
−4 + iν5 + iν6

1
−9 + iν5

R7
3 = 1

6 + iν4 + iν6

1
9− iν5

1
−1− iν4

R8
3 = 1

6 + iν4 + iν6

1
9− iν5

1
5 + iν6
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R9
3 = 1

1 + iν4

1
5 + iν6

1
9− iν5

R10
3 = 1

1 + iν4

1
4− iν5 − iν6

1
−5− iν6

R11
3 = 1

1 + iν4

1
−4 + iν5 + iν6

1
−9 + iν5

R12
3 = 1

1 + iν4

1
5 + iν6

1
9− iν5

R13
3 = 1

−3 + iν4 + iν5 + iν6

1
−9 + iν5

1
−1− iν4

R14
3 = 1

−3 + iν4 + iν5 + iν6

1
−9 + iν5

1
−4 + iν5 + iν6

R15
3 = 1

1 + iν4

1
−4 + iν5 + iν6

1
−9 + iν5

R16
3 = 1

−3 + iν4 + iν5 + iν6

1
−9 + iν5

1
−1− iν4

R17
3 = 1

−3 + iν4 + iν5 + iν6

1
−6− iν4 − iν6

1
−4 + iν5 + iν6

R18
3 = 1

−9 + iν5

1
6 + iν4 + iν6

1
−10− iν4 + iν5

R19
3 = 1

1 + iν4

1
−4 + iν5 + iν6

1
−10− iν4 + iν5

R20
3 = 1

−9 + iν5

1
6 + iν4 + iν6

1
−10− iν4 + iν5

R21
3 = 1

−9 + iν5

1
6 + iν4 + iν6

1
−4 + iν5 + iν6

R22
3 = 1

−9 + iν5

1
10 + iν4 − iν5

1
−4 + iν5 + iν6

R23
3 = 1

1 + iν4

1
4− iν5 − iν6

1
−5− iν6

R24
3 = 1

1 + iν4

1
−4 + iν5 + iν6

1
−9 + iν5

R25
3 = 1

1 + iν4

1
5 + iν6

1
9− iν5

R26
3 = 1

1 + iν4

1
4− iν5 − iν6

1
−6− iν4 − iν6

R27
3 = 1

1 + iν4

1
−4 + iν5 + iν6

1
−10− iν4 + iν5

R28
3 = 1

1 + iν4

1
6 + iν4 + iν6

1
10 + iν4 − iν5
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R29
3 = 1

1 + iν4

1
5 + iν6

1
9− iν5

(3.61)

R30
3 = 1

1 + iν4

1
6 + iν4 + iν6

1
10 + iν4 − iν5

R31
3 = 1

−5− iν6

1
6 + iν4 + iν6

1
4− iν5 − iν6

R32
3 = 1

−9 + iν5

1
10 + iν4 − iν5

1
−4 + iν5 + iν6

Fig. 3.3 compares the convergence of the finite summation procedure to the exact

result calculated by AMI for the real and imaginary parts of Λenv. The temperature

dependence of imaginary part of Λenv is shown in the bottom figure.

We notice that the first element of the last entry of P2 is purely fermionic with

zero energy, and the evaluation of Fermi (bose) distribution function at this pole is

formally divergent. To get around this issue one has to add a small regulator to such

a pole, in this case iν4 → iν4 + Γ where Γ→ 0. In Fig. 3.4 we present the dependence

of Λenv to the regulator Γ. As shown the result is largely independent of Γ (except

when Γ becomes very large) and the result converges to the value obtained by direct

summation.

9th Order Diagram, J

As a final example we consider the high order diagram J shown in Fig. 3.5. [26]

This diagram is chosen to be intentionally complicated, as a test of the AMI method,

and has nine vertices (nine integration variables) with 17 Green’s functions. The
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Figure 3.4: Imaginary and real parts of Λenv vs. the regulator Γ computed using
AMI. We fix β = 10, µ = 0, the momenta are defined by Eq. (3.56) and the external
frequencies have been set to ν4 = π

β
, ν5 = 161π

β
, and ν6 = 0. For small enough values

of Γ both real and imaginary parts of the object do not depend on the choice of the
regulator.
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Figure 3.5: Feynman Diagram of J defined by Eq. (3.62) as a ninth order diagram.

summation is

J = 1
β9

∑
{νi}9

i=1

{
G(iν1)G(iν2)G(iν3)G(iν4)G(iν5)G(iν6)

G(iν7)G(iν8)G(iν9)G(iη1)G(iη2)G(iη3)

G(iη4)G(iη5)G(iη6)G(iη7)G(iη8)
}

(3.62)
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Table 3.1: Number of terms at each stage of the summation for diagram J . Column
Nsp is the result when it is assumed (incorrectly) that all poles are simple poles.
Column Nmp is the correct result, which takes into account the higher multiplicity of
poles.

summation stage Nsp Nmp

ν1 3 3
ν2 16 16
ν3 110 110
ν4 298 538
ν5 1538 11886
ν6 6978 205427
ν7 20224 1944668
ν8 92780 56109709
ν9 337982 ∼ 109

with

η1 = ν1 + ν2 − ν10

η2 = ν1 + ν2 + ν3 − ν4 − ν10

η3 = ν5 + ν8 − ν2

η4 = ν5 + ν3 − ν4 (3.63)

η5 = ν6 + ν7 − ν5 − ν3 + ν4

η6 = ν8 − ν2 + ν10 − ν3 + ν4

η7 = ν9 − ν6 + ν5 + ν3 − ν4

η8 = ν5 + ν8 − ν2 + ν9 − ν6
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which we evaluate at the crystal momenta given by

~k1 = (0, 0) (3.64)

~k2 = ~k3 = ~k4 = ~k5 = ~k6 = ~k7 = ~k8 = ~k9 = (π
a
,
π

3a).

We find from the third stage onwards that non-simple poles with multiplicity

M > 1 emerge. We then construct an appropriate representation for the full analytic

expression by considering the general residues for poles with multiplicity as described

in the main text. As shown in Table 3.1, when poles with M > 1 emerge the number

of terms increases dramatically from the fourth summation stage onward, and by the

end of the procedure the total number of terms is on the order of 109. Table 3.1 implies

that although our approach can be applied to any diagram of arbitrary complexity, in

practice the presence of poles with high multiplicities (especially in the first stages of

the summation) causes the computational cost to grow significantly. In these cases,

identifying where in {kn} space multiplicities arise will be essential to determining if

evaluating a given diagram is tractable using this method.
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Chapter 4

Optimal grouping of arbitrary

diagrammatic expansions via

analytic pole structure

In Chapter 3 we presented a systematic way to evaluate the Matsubara sums of a

given Feynman diagram. However, as mentioned before, to complete the evaluation

of each diagram in the perturbative expansion the momenta sums should be evaluated

as well.

In this chapter we complete our machinery by first providing a general algorithm

to construct the diagram topologies in the expansion. We then present an automatic

procedure which translates each diagram to its corresponding mathematical expres-

sion. Finally, we propose a combination of AMI and Monte Carlo integration routines

to evaluate arbitrary Feynman diagrammatic expansions.

One of the most challenging tasks in Monte Carlo integration is to handle the

’sign problem’, which is the near cancellation of contributions with opposite signs

and the large error which appears as a consequence [2, 3]. In order to suppress the
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Figure 4.1: Left: a Hubbard self-energy diagram. Right: the result of applying a
crossing symmetry operation to this diagram following the procedure described in
Ref. [1]. This transformation results in the non-Hubbard diagram shown in the right
panel.

issue it has been recently proposed to sort the diagrams into so-called sign-blessed

groups by taking advantage of crossing symmetry [1]. Since each sign-blessed group is

assumed to contain (nearly) canceling diagrams, one could suppress the sign problem

and enhance the efficiency of Monte Carlo routines by group-by-group sampling of

diagrams. However, it turns out that such an approach is extremely inefficient for

the Hubbard model since the application of crossing symmetry operations typically

transforms a Hubbard-type diagram to a non-Hubbard-type graph ∗. An example of

such an operation is shown in Fig. 4.1.

Our main goal in this chapter is to invent and develop a systematic procedure

to construct sign-blessed groups for the Hubbard model. Instead of using crossing

symmetry, we present a general grouping procedure based upon the analytic pole

structure of the diagrams. We introduce graph invariant transformations (GITs) to

precisely determine (nearly) canceling and (nearly) equal diagrams. This enables us

to construct optimally sign-blessed groups, and as the result, reduce the sign problem.

Although our method is applicable to any diagrammatic expansion composed of

bare Green’s functions, we take the self-energy function as an example and benchmark

our results on both the Matsubara and real frequency axes.

In the rest of this chapter we reproduce Ref. [4], Amir Taheridehkordi, Stephanie
∗See Chapter 2 for definition of Hubbard-type diagrams.
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H. Curnoe, and James P. F. LeBlanc, doi: 10.1103/PhysRevB.101.125109; License

number: RNP/20/OCT/031577; reproduced with kind permission of the publishers

of Physical Review B. The manuscript is followed by Supplemental Material.

4.1 Abstract

We present a general method to optimize the evaluation of Feynman diagrammatic

expansions which uses an automated symbolic assignment of momentum/energy con-

serving variables to each diagram. With this symbolic representation, we utilize the

pole structure of each diagram to sort the Feynman diagrams into groups that are

likely to contain nearly equal or nearly canceling diagrams, and we show that for some

model parameters this cancellation is exact. This allows for a potentially massive can-

cellation during the numerical integration of internal momenta variables, leading to

an optimal suppression of the ‘sign problem’ and hence reducing the computational

cost. Although we define these groups using a frequency space representation, the

equality or cancellation of diagrams within the group remains valid in other represen-

tations such as imaginary time used in standard diagrammatic Monte Carlo. As an

application of the approach we apply this method, combined with algorithmic Mat-

subara integration (AMI) [A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc,

Phys. Rev. B 99, 035120 (2019)] and Monte Carlo methods, to the Hubbard model

self-energy expansion on a 2D square lattice, which we evaluate and compare with

existing benchmarks.

4.2 Introduction

One of the most challenging problems in condensed matter physics is correctly eval-

uating electronic interactions for free particle or lattice systems with many electrons.
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This problem is of course a subset of a more general problem, that of fermionic par-

ticles interacting through bosonic exchange. In one sense, this problem is addressed

by many-body perturbation theory using the formalism of Feynman diagrammatics,

which allows one to construct in an intuitive manner the contributions at each order in

perturbation theory. [5–7] In practice, however, it is extraordinarily difficult to handle

more than just the lowest order diagrams due to the factorial increase in the number

of diagrams at each order, [8] and this is further exacerbated by the high dimensional

integrals that must be performed in order to evaluate each Feynman diagram.

Diagrammatic Monte Carlo (DiagMC) is a powerful method for numerically eval-

uating such diagrammatic expansions. [9–13] However, there is in general a Monte

Carlo sign problem [2, 3] with multiple origins. The first, warmly referred to as the

‘sign blessing’, is the huge cancellation that must exist between different Feynman

diagrams at each order in order for the series to converge. [14] The second sign prob-

lem occurs during the integration of each individual diagram, since the integrand in

frequency space does not have a definite sign. One can devise methods to mitigate

the second problem, but the first, the cancellation between topologically distinct dia-

grams, is disastrous to standard DiagMC. Recently, a number of proposals to address

this have surfaced, such as grouping diagrams that may partially cancel, [1] or re-

constructing the expansion in the form of a determinant. [13, 15, 16] These methods

rely on the Matsubara formalism in that final results are evaluated for Matsubara

(imaginary) frequencies (iνn) or imaginary times (τ) and not on the real frequency

axis. This has excellent utility for thermodynamic properties, where the temporal

degree of freedom is integrated, but is problematic for direct frequency dependent ob-

servables such as the density of states, since the analytic continuation iνn → ν + i0+

cannot be uniquely performed for numerical data and requires an ill-posed inversion

via methods such as maximum entropy inversion. [17,18] Performing such procedures
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ultimately dominates the uncertainty in the result and undermines any attempt at

precision numerics. [19] Worse still is the compression of Matsubara frequencies in

the low temperature limit where numerical Monte Carlo methods become effectively

non-ergodic, leading to poor convergence.

The entirety of this problem can be sidestepped by simply following standard

many-body perturbation theory and evaluating the internal Matsubara sums analyt-

ically. The only roadblock to doing so is the complexity of the analytic expressions.

This roadblock has recently been overcome by the method of algorithmic Matsubara

integration (AMI) [20] that in principle allows for the symbolic evaluation of the Mat-

subara sums for arbitrarily complex Feynman diagrams with minimal computational

expense. The analytic result of AMI can be evaluated at any temperature and the an-

alytic continuation is trivialized since it can be imposed symbolically: iνn → ν + i0+.

What remains is to sample a factorially growing space of diagram topologies and per-

form the spatial integrals, a problem typically reserved for DiagMC. However, since

AMI is formulated on the frequency axis, standard DiagMC will suffer a severe sign

problem, and cannot be directly implemented.

In this manuscript we take a new approach to the sign problem. By considering

Feynman diagrams in the Matsubara frequency representation we define a general

procedure based on the analytic structure of each integrand that allows us to identify

sets of topologically distinct Feynman graphs that exactly cancel or are exactly equal

and further to identify other diagrams that can be trivially evaluated to be zero. In

systems where the cancellation is not exact our method can identify and pair nearly

canceling diagrams, i.e., we systematically construct optimally sign-blessed groups.

By pairing such diagrams during the numeric evaluation of momenta integrals we

guarantee a huge cancellation, which suppresses the sign problem. Our procedure is

general in that it can be applied to any Feynman diagrammatic expansion with any
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interaction. As proof of principle we evaluate the numerical results for a particular

perturbative expansion, the Hubbard model [21,22] on a two-dimensional square lat-

tice. We construct the self-energy perturbative expansion up to sixth order at and

away from half-filling. We then systematically group diagrams to provide what we

believe to be the optimal set of diagrams to be evaluated using AMI and Monte Carlo

methods and compare low order results to other numerical methods and benchmarks.

4.3 Methods

In this section we outline each step required to group and evaluate diagrammatic

expansions. What we propose is in fact conceptually simple but notationally com-

plicated and for this reason we take a pedantic approach and describe in detail how

to: generate and store diagrams symbolically; automate the evaluation of Matsub-

ara sums analytically via AMI; systematically classify diagrams; and construct the

optimal groups of diagrams for a particular problem.

Central to this method is the pre-generation of diagrams and assignment of sym-

bolic momentum conserving variables, the first step in the standard procedure for

translating Feynman graphs to integrals. This is not typically done in DiagMC, which

instead probes energy/momentum configurations via the propagation of worms. [23]

We will see that while the assignment of momentum conserving variables is not unique,

each diagram has a pole structure that is fundamental and cannot be hidden by any

particular choice of momentum conserving variables. We therefore base our diagram

classification on these fundamental and physical poles. We apply the procedure to

the self-energy expansion, but the same procedures can be applied to other multileg

or bosonic particle expansions.
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k ′− q, σ ′

Figure 4.2: Diagrammatic representation of Left: Fermionic line, Middle: Interaction
line, and Right: Two-body interaction Vσ,σ′(q) between two fermionic lines with spins
σ and σ′. Each line should be assigned with momentum/energy conserving variables.

4.3.1 Constructing Diagrams and Integrands

The building blocks of a Feynman diagram are fermionic (solid) and bosonic (wavy)

lines (see Figure 4.2). If there is a boson mediated two-body interaction Vσ,σ′(q) in

the system one can represent the interaction between two fermionic lines as shown

in Figure 4.2, which additionally contains two factors of the bare vertex. Assuming

one knows the free particle dispersion of each propagator and how they couple (the

bare vertex) then we have all the information required to convert the diagram into

an integral. If one can first draw all possible topologically distinct diagrams up to a

given interaction order (or number of loops) then the problem is essentially reduced

to the evaluation of a set of integrals with known integrands. While stating this is

simple, as already mentioned this is extremely challenging primarily due to the high

dimensionality of the integrals.

In order to systematically produce all terms in an expansion one requires a set

of processes to change the order and topology of the diagrams. The two simplest

processes increase the order of a diagram by one: add an interaction line (AIL); and

add a tadpole (AT) (see Figure 4.3). Without loss of generality, in what follows we

will consider Vσ,σ′(q) to be a Coulomb interaction but note that a general bosonic

propagator D0(iΩm,q) can be similarly treated. Further, we restrict our discussion

to the diagram space with 2-external legs, with the intent of constructing the set of
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AT

AIL

Figure 4.3: Diagrammatic illustration of Top: AIL and Bottom: AT procedures in
generation of the diagrammatic expansion described in the text. In AIL one interac-
tion (wavy) line is added to the diagram while in AT a tadpole (simple fermionic loop
with a wavy tail) is added to the diagram.

self-energy diagrams (the set of one-particle irreducible diagrams) but the procedure

remains unchanged for other diagrammatic series. To generate the series we start with

diagrams of order m and by systematically applying AIL and AT we generate all the

possible diagrams of order m+ 1. Double counting of topologically equivalent graphs

is not allowed and one therefore needs to discard duplicate graphs through explicit

graph-isomorphism comparison. For this, the formal graph representation of diagrams

is essential and the isomorphism checks can be aided by a tree decomposition of the

graph [24]. We then store all of the topologically distinct, non-isomorphic diagrams.

We then iterate the procedure at each order to generate all diagrams in the expansion

up to an arbitrary order.

For each diagram Dζm of order m with topology ζm we follow the Feynman rules

to construct a corresponding mathematical expression. These rules of course are well

known. We emphasize that our goal in this manuscript is not only to apply those

rules, but in fact to automate the entirety of the process. Therefore, we carefully

express here those rules, to orient the reader:
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1. We assign frequency-momenta variables to each line such that conservation at

each vertex is satisfied. We call a set of such variables for a given diagram a

‘label’ and store it as an array. This procedure is outlined in Sec. 4.3.3 and

its result is not unique: there are a number of distinct, but mathematically

equivalent representations of the diagram integrand. The non-uniqueness of

labels is an issue that we will discuss in detail in Sec. 4.3.3.

2. We assign a bare Green’s function Gj0 = 1
Xj−εj to each solid line j with j =

1, 2, ..., N , where N is the number of solid lines, Xj represents the frequency,

and εj the energy (see Sec. 4.3.2).

3. Each interaction line connecting two solid lines with spins σ and σ′ should be

directed and associated with Vσ,σ′(q), where q is determined via conservation

rules at each vertex and is not an independent variable.

4. Each internal Matsubara frequency and momentum is integrated.

5. We note that each fermionic loop has a well-defined spin, which can be any half-

integer number between −s and +s, where s is the total spin. It means that

for a diagram with Fζm loops one should multiply the integrand by (2s+ 1)Fζm .

Thus, the result should be multiplied by (−1)m+Fζm (2s+1)Fζm
(2π)ndβn where m is the order

(number of interaction lines) of the diagram, Fζm is the number of fermionic

loops in the diagram, d is the dimensionality of the system, n is the number of

independent frequencies, and β is the inverse temperature. [25]

6. If the jth solid line closes on itself, i.e., a tadpole occurs, we insert a convergence

factor, eXj0+ .

These rules are applied to each diagram resulting in (up to convergence factors) the

71



Feynman integral of the form

Dζm = 1
(2π)ndβn

∑
{kn}

∑
{νn}

A(m, s, Fζm)
N∏
j=1
Gj0(εj, Xj)

M∏
m=1

Vσ,σ′ (qm), (4.1)

where N and M are the number of fermionic (solid) and bosonic (wavy) lines in the

diagram, respectively, and A(m, s, Fζm) = (−1)m+Fζm (2s+1)Fζm . Finally, an arbitrary

diagrammatic expansion Q can be written as the sum of each distinct diagram at each

order

Q(xext) =
∞∑
m=0

∑
ζm

Dζm , (4.2)

where the sum over ζm is over all unique topologies of order m. The result only

depends on a set of external parameters, xext, which includes external frequencies,

external momenta, chemical potential, and the temperature of the system.

4.3.2 Evaluation of Matsubara Frequency Summations

Each diagram in the perturbative expansion defined by Eq. (4.1) consists of summa-

tions over Matsubara frequencies and over momenta within the first Brillouin zone.

We perform the (unbounded) Matsubara sums using algorithmic Matsubara integra-

tion (AMI) introduced in Ref. [20]. The Matsubara summations of a given Feynman

diagram Dζm are contained in the factor

Iζm = 1
βn

∑
{νn}

N∏
j=1
Gj0(εj, Xj) (4.3)

of Eq. (4.1). Essentially, AMI is a procedure that evaluates the Matsubara sums by

iteratively applying residue theorem to Eq. (4.3). We briefly review AMI here.
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Symbolic Array Representation of the Bare Green’s Functions

The first step in AMI is to represent the bare Green’s functions Gj0(εj, Xj) in a symbolic

array form. We use the self-energy function as an example, which has one external

frequency and one external momentum.

For a given diagram Dζm with n independent (internal) Matsubara frequencies we

define the frequency of each line as the linear combination Xj = ∑n+1
`=1 iα

j
`ν`, where

the allowed values for the coefficients αj` are zero, plus one, or minus one. We store

these coefficients as an array of length n, ~αj = (αj1, ..., αjn) for the j-th solid line of

the diagram. Similarly the free particle energy is εj = ε(kj), where kj = ∑n+1
`=1 α

j
`k`.

In this notation νn+1 and kn+1 are the external frequency and momenta, respectively.

We will also need to express εj in an array form. For a given diagram, the jth

line (out of N total solid lines) has an energy εj, which will be one of r symbolically

different energies e`, where ` ≤ r. This allows us to represent εj as an array ~E` with

length N , where the `th entry takes the value 1 and the rest are zero:

εj = e` → ~E` = (δ`,1, δ`,2, ..., δ`,N), (4.4)

where δ`,j is a Kronecker delta. We are now able to represent each Green’s function,

Gj0, as an array with length N + n: ∗

Gj0(εj, Xj)→ [ ~E`, ~αj]. (4.5)

The array representation (4.5) is equivalent to a full symbolic representation of the

bare Green’s functions in the frequency-momenta space.
∗Note that the this array representation enables us to store both frequency and dispersions

symbolically, while in Ref. [20] only frequency part is stored symbolically.
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AMI Procedure

Eq. (4.5) enables us to represent the product of the bare Green’s functions in Eq. (4.3)

as a nested array of size N × (N + n):

N∏
j=1
Gj0(εj, Xj)→

[
[ ~E`1 , ~α1]; [ ~E`2 , ~α2]; ...; [ ~E`N , ~αN ]

]
. (4.6)

To clarify this, we provide in the Supplemental Material [26] the array representation

of a particular third order self-energy diagram as an example.

Starting with the array representation (4.6) and following the AMI procedure [20]

we construct and store the AMI result. A typical AMI result contains many terms,

which are represented as nested arrays. Each array contains two entries. The first

entry is the energy (momenta) part E, which is represented by an array ~E which is a

linear combination of ~E` arrays defined by Eq. (4.4). The symbolic energy in general

is constructed by E = ∑
` E`e`, where the allowed values for E`, the elements of ~E , are

zero, plus one, or minus one. The second entry of the array is the frequency part,

which is a linear combination of the ~αj arrays. From the AMI result the full symbolic

result for Matsubara sums (Iζm in Eq. (4.3)) is obtained. Thus, for each diagram we

have reduced the original problem of Eq. (4.1) to a sum over momenta:

Dζm = 1
(2π)nd

∑
{kn}

Dζm(iνn+1, {kn+1}, β, µ), (4.7)

where

Dζm = A(m, s, Fζm)Iζm(iνn+1, {kn+1}, β, µ)
M∏
m=1

V (qm).

(4.8)
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In summary, AMI enables us to analytically evaluate the Matsubara sums of all Feyn-

man diagrams.

4.3.3 Classifying Diagrams via Pole Structure

Typical diagrammatic methods evaluate the perturbation expansion on the imagi-

nary time axis, where the diagrams are positive definite, and this makes the Monte

Carlo sign problem more manageable. [14, 15, 27, 28] Evaluation in real time (or real

frequency) will encounter a sign problem that is exacerbated by the existence of the

canceling diagrams. We seek to address this issue in this and the following sections

where we introduce a systematic approach that allows us to identify these cancel-

ing diagrams and remove them from the series. In addition, we find groups of equal

diagrams, which provides us with a further reduction in computational cost.

Our goal is to evaluate Eq. (4.2) truncated at a cutoff order mc. However, as we

shall see, we do not really need in general to evaluate all the diagrams in the expansion;

it turns out that some diagrams are individually vanishing. Furthermore, there exist

diagrams that are exactly canceling or equal. To this end we provide a filtering process

to systematically identify the individually vanishing, as well as canceling and equal

diagrams, without any explicit evaluation of the frequency and momenta summations

in Eq. (4.1). This allows us to substantially reduce the diagrammatic space of the

problem leading to a significant reduction in the computational cost. In addition,

since we eliminate the problematic vanishing and canceling diagrams we markedly

suppress the sign problem.

There exist many expansions where nearly canceling diagrams appear, e.g., Hub-

bard self-energy diagrams away from half-filling. In order to manage the sign problem

in these cases, we provide a general prescription in Sec. 4.4.2 to carefully treat the

nearly canceling pairs.
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Labeling Procedure

As mentioned, the label of a Feynman graph is not unique and we need to carefully

consider the role of labeling in this challenging problem. It is possible to generate the

set of all labels for each diagram in the expansion from which one would construct

the corresponding mathematical expressions using the Feynman rules. In the case

of self-energy diagrams of order m the number of independent (internal) Matsubara

frequencies n = m, and the number of internal fermionic lines is N = 2m− 1. Thus,

knowing the order of a diagram is sufficient to provide a complete accounting of

possible labels.

In order to generate each label, we first assign the n independent frequencies to a

set of internal fermionic lines. We then assign dependent frequencies via conservation

of energy at each vertex. If the conservation law at each vertex is satisfied then a valid

label has been found. We generate all the possible labels by systematically choosing

n independent lines from N possible choices.

Of course the number of energy conserving labels grows very fast with order, for

example, while this number for the fourth order diagrams is of order 10, it is of

order 100 by sixth order diagrams making this process more difficult with increasing

order. However, although expensive this labeling only needs to be performed once.

Furthermore, having a symbolic representation of the labels enables us to analytically

extract the poles in the Matsubara frequency space, which as we shall show, plays a

crucial role in identifying equal and canceling diagrams.

Diagram Classes

We are interested in identifying diagrams that either are exactly equal or exactly

cancel without performing the Matsubara and momenta sums. To begin, we propose

to classify diagrams according to the pole structure of their integrands. One may recall
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that poles of the Green’s functions have a physical manifestation as quasiparticles. If

two diagrams are to be analytically equivalent (up to a sign), then they must contain

the same set of non-removable divergences (virtual quasiparticles) in order to produce

the same integral result. This can only be true if the original integrands have the same

pole structure.

We define the pole configuration of a diagram Dζm to be a set of integers (n1, n2, · ·

·, nmax), where ni is the number of poles with multiplicity i in the Matsubara frequency

space and max is the highest possible multiplicity of poles. Clearly, ∑max
i=1 ni = N , the

number of internal fermionic lines. It is important to note that the pole configuration

does not depend on the choice of label of a diagram. In this way, we partition the set

Sm of diagrams of order m into label-independent subsets Cm
i of diagrams with the

same pole configuration. We refer to these subsets as diagram classes. We illustrate

this schematically in the top part of Figure 4.4.

Since it is not possible for diagrams that belong to different classes to be equivalent

(or cancel) we need only look within classes for equal or canceling diagrams.

Diagram Subclasses

Now that we have grouped diagrams according to their pole configuration into classes

Cm
i , we search for subclasses containing equal or canceling diagrams. To this end, we

now consider the distinct choices of a diagram’s label, since how one chooses to label

a given diagram might obscure its analytic equality or negation to another diagram

in its class. Thus, we need a stronger condition in order to establish subclasses. We

postulate then a necessary condition in order for two diagrams D1 and D2 to be equal

or canceling:

• For any chosen label of D1 there must exist a representation of D2 for which

the integrands of D1 and D2 are equivalent or canceling.
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Figure 4.4: Schematic illustration of classes and subclasses of the set Sm of diagrams
of order m. Diagrams in a class Cm

i have the same pole configuration, which are
divided into subclasses of diagrams with similar characters.

This simple postulate leads to the logical conclusion that the total number of unique

labels of D1 and D2 must be equal, or else the two diagrams cannot be equal or

canceling in general. With this in mind we suggest a label-dependent identifier for

a given integrand, which can be constructed by counting the number of poles with

respect to each internal and external Matsubara frequency, iνi, xi = ∑N
j=1 |α

j
i |. We

then group these numbers into a set (x1, x2, ..., xn+1), in which we then order the

first n entries from highest to lowest as x = (xi, xj, xk, ..., xn+1) where xi ≥ xj ≥ xk.

(As above, we use self-energy diagrams, with one external frequency and n internal

frequencies, as an example). We call this object, x, the pole-ID for a given integrand.

We now define diagram character to be the complete set of pole-IDs generated by

considering all possible labels of a diagram. Thus, the diagram character is label-

independent. We can therefore safely divide each class Cm
i into subclasses Cm

i,j of

diagrams with the same diagram character. The bottom part of Figure 4.4 shows

schematically the division of each class Cm
i into subclasses Cm

i,j.

As an example, we show in Figure 4.5 twelve of the diagrams that contribute to
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Figure 4.5: Four subclasses of fourth order self-energy diagrams. The diagrams in the
top panel belong to class C4

1 with pole configuration (7,0) and the diagrams in the
bottom panel belong to class C4

2 with pole configuration (5,1). Collecting pole-IDs for
all possible labels, one finds out that the diagrams in each row have the same diagram
character, i.e., they belong to the same subclass. Thus, one takes the diagrams in
each row as candidates to be either equal or canceling.

the self-energy expansion at fourth order. These are divided into two classes, C4
1 and

C4
2 . Class C4

1 is further divided into three subclasses. One notes that in each row

we observe a pair of diagrams that are isomorphic when one neglects the direction

of the fermionic lines. We call such (non-isomorphic) diagrams, ‘almost isomorphic’.

However, within each subclass there are also diagrams with wildly different topologies.

Since there can be no equal or canceling diagrams that do not belong to the same

subclass we need only compare diagrams belonging to the same subclass. Thus, the

diagram character acts as a unique barcode or fingerprint that can be used to quickly

group diagrams. When the number of graphs in a subclass is large, further filtering

can be helpful, which we discuss next.
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4.3.4 Diagram Filter

Up to now we have only postulated that diagrams belonging to the same subclass

are likely to be equal or canceling. We can identify those diagrams which are equal

up to a sign by applying transformations to their integration variables such that

their integrands remain equivalent. To this end, we introduce a filter, which we call

graph invariant transformations (GIT). GIT identifies vanishing, canceling and equal

diagrams within the subclasses.

Graph Invariant Transformations (GIT)

We begin the GIT procedure by selecting a pair of diagrams D1 and D2. We then

choose one label for each of D1 and D2 with their integrands stored in the array

representations described in Sec. 4.3.2, which we call L1 and L2. Next we apply

transformations to one of the labeled integrands and look for equality/negation. These

transformations must be such that they change the integrand but not the integral over

internal parameters.

We identify three important transformation types. The set of transformations T1

swaps two of the independent Matsubara frequencies,

T1 : (iνp,kp)↔ (iνp′ ,kp′). (4.9)

We note that T1 is equivalent to a relabeling of the diagram that guarantees a new

momentum conserving label. The second transformation T2 flips the sign of one of

the internal fermionic frequencies and corresponding momentum,

T2 : (iνp,kp)→ (−iνp,−kp). (4.10)
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Finally, for many problems there is another transformation T3 under which the dis-

persion of (at least) one of the solid lines changes sign:

T3 : εj → −εj. (4.11)

We apply the group of all possible transformations (including combinations of

T1, T2 and T3) to the integrand of the diagram, with each result stored as array

representations. Diagram D1 equals or cancels diagram D2 if there is a transformation

T such that T : L1 = ηL2 with η = ±1. In practice, our procedure compares T : L1

with L2 after each transformation and stops when such a transformation is found.

GIT also enables us to identify the vanishing diagrams. To do so we start by

selecting a diagram D with its integrand represented by the array L. Then we apply

GIT to look for a transformation T such that T : L = −L. If such a transformation

is found the diagram D is trivially vanishing.

Application of GIT

In order to identify canceling and equal diagrams one needs to apply GIT to pairs of

diagrams within each subclass. However, some considerations can substantially reduce

the number of pairs to be investigated. For systems with particle-hole symmetry

one can show that almost isomorphic diagrams are always either canceling or equal.

Therefore, one should first apply GIT to almost isomorphic diagrams. As an example,

we show in Figure 4.6 a pair of almost isomorphic third order diagrams which are found

to be canceling by application of GIT. However, application of GIT also finds pairs of

diagrams which are not ‘almost isomorphic’ which nevertheless are found to be equal

or canceling. For example, the fourth order diagrams shown in Figure 4.5 are all equal

to each other within each subclass.
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Figure 4.6: Two topologically distinct third order self-energy diagrams which are
almost isomorphic. Application of GIT reveals that they are precisely canceling at
half-filling.

In practice, to apply the GIT procedure we first select each diagram’s label such

that the number of times the external frequency appears in the label is maximized.

We then investigate these two diagrams using the GIT procedure. This allows us to

identify most (but not all) of the equal and canceling diagrams. We then cycle through

all possible labels until we find a match (equal or canceling) or exhaust all possible

labels, in which case the diagrams are not equal or canceling. In addition, because

the comparison is label dependent it follows that if the pole-IDs of two labeled graphs

are not equivalent then the GIT can not show the equality or negation of the graphs

for these specific labels. Thus, it is sufficient to only apply GIT to pairs of labeled

diagrams with equivalent pole-IDs.

We emphasize that our approach is fundamentally different from what is proposed

in Ref. [1]. In this work we identify canceling/equal diagrams by systematically ap-

plying graph invariant transformations to symbolic representations of the diagrams

while in Ref. [1], diagrams are presumed to cancel via crossing symmetry. Although

some cancellations due to crossing symmetry can occur for special cases, the general

application of that approach is almost guaranteed to pair diagrams with different

pole structures - which precludes the diagrams from canceling in general. As we shall

see in Sec. 4.4.2 identifying the labels and corresponding transformations that map

diagrams to their canceling partners enables one to obtain the optimal cancellation
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during momenta integration. We therefore believe that by applying GIT we construct

the optimally sign-blessed groups for any Feynman diagrammatic expansion composed

of the bare Green’s functions.

4.3.5 Evaluation of Momenta Summations

The final step in evaluating the diagrams in a perturbative expansion is to perform

the momenta integrations. Since these are high-dimensional integrals one typically

uses Monte Carlo integration. This will be efficient if the number of diagrams in

the expansion is not too large. In this approach we sample internal momenta points

uniformly from [−π, π]d following standard Monte Carlo procedure. [29] We generate

y samples in the internal momenta space each denoted by {pn}i and approximate

each diagram Dζm by

Dζm ' D
(y)
ζm

=(2π)nd
y

y∑
i=1

Dζm(iνn+1, {pn}i,kn+1, β, µ), (4.12)

from which the series expansion of Q is calculated:

Q '
∞∑
m=0

∑
{ζm}

D
(y)
ζm

(iνn+1,kn+1, β, µ). (4.13)

For problems with a large diagrammatic space the direct evaluation of all the diagrams

may be impractical and in that case one combines AMI with Metropolis-Hastings

Monte Carlo (MHMC) [30] as in standard DiagMC [10] to numerically evaluate the

momenta sums as well as to probe different topologies in the expansion (4.2). This

approach is similar to standard DiagMC but with three significant differences. First,

we work in the Matsubara frequency space, similar to recent works on the diagram-

matic dual Fermion method, [31, 32] rather than imaginary time space. Second, we
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generate all the diagrams and their corresponding mathematical expressions before

the MC simulation instead of producing the diagrams during the simulation. This, as

we shall see, trivializes the detailed balance equations of a MHMC simulation. Third,

since we analytically compute and store the Matsubara sums before MC simulation

we eliminate the need for probing internal Matsubara frequencies (or, equivalently,

internal imaginary times).

To stochastically sample the diagrams we introduce a set of ergodic update pro-

cedures to probe diagram orders, diagram topologies, and internal momenta, fixing

all other external variables. For each step of the Monte Carlo simulation one of the

updates is randomly chosen and the proposed configuration is accepted or rejected

according to the Metropolis-Hastings scheme. We note that each diagram is identi-

fied by two properties: order (m) and topology (ζm). We assume that at order m we

have γm different topologies in the expansion (4.2). Now we introduce the following

updates:

1. Change momenta: The current momenta {kn}c of the current diagram of order

m are changed to proposed momenta {kn}p where the {kn}p are derived from

the uniform distribution function W (m).

2. Change topology: By this update a diagram topology is changed within a specific

order, i.e., if the current diagram is of orderm with topology ζcm another diagram

of order m with topology ζpm from the stored diagrams is proposed.

3. Change order: The current diagram of order mc and with topology ζcmc is

changed to a diagram of order mp and with topology ζpmp .

Note that the proposed mth order topology is chosen uniformly from γm possible

topologies with probability 1
γm

. Finally, the acceptance probability of these updates
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in the Metropolis-Hastings scheme is expressed as

A = Min
[
1, γmp
γmc

|Dre/im

ζpmp
(iνn+1, {kn+1}p, β, µ)|W (mc)

|Dre/im
ζcmc

(iνn+1, {kn+1}c, β, µ)|W (mp)

]
, (4.14)

where |Dre/im
ζm
| is the absolute value of the real/imaginary part of Dζm and W (m) =

1/(2π)md.

It is typical in MHMC to seek an update criterion that minimizes computational

expense. Unfortunately, here one has no option but to evaluate the entire AMI in-

tegrand Dζm , which becomes expensive at high orders making it difficult to generate

sufficient statistics.

4.4 Example: Self-Energy for the 2D Square Lat-

tice Hubbard Model

As an application of our method, we calculate the self-energy for the Hubbard model

on a two-dimensional square lattice up to sixth order in perturbation theory. We

consider the nearest neighbor tight binding dispersion given by ε(k) = −2t
(

cos kx +

cos ky
)
− µ where t is the hopping amplitude and µ is the chemical potential. In

this model, the potential is the momentum-independent local Hubbard interaction,

Vσ,σ′ (q) = Uδσ,−σ′ . The self-energy is

Σ(kn+1, νn+1) =
mc∑
m=1

{ ∑
{ζm}

(−1)m+FζmUm

(2π)2mβm
∑
{km}

∑
{νm}

2m−1∏
j=1
Gj0(εj, Xj)

}
+O(Umc+1),

(4.15)

evaluated to a cutoff order, mc. Here we remind the reader that a self-energy diagram

of order m has 2m − 1 internal fermion lines and m independent frequencies and
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Table 4.1: Diagrammatic space reduction by shifting the chemical potential for the
Hubbard self-energy expansion up to sixth order. N (m)

init : Total number of mth order
Hubbard self-energy diagrams in the original expansion. N (m): Total number of mth
order Hubbard self-energy diagrams neglecting all one-legged diagrams by applying a
chemical potential shift.

m 1 2 3 4 5 6
N

(m)
init 1 2 8 44 296 2312

N (m) 0 1 2 12 70 515

momenta.

Since the Hubbard interaction only occurs between fermionic lines with opposite

spins, we construct and store only those connected one-particle irreducible diagrams

that satisfy this criterion. The total number of diagrams at each order N (m)
init is given

in the first row of Table 4.1. We then find all the possible labels (as explained in

Sec. 4.3.3) for each stored diagram, which enables us to construct the classes and

subclasses of the self-energy diagrams.

4.4.1 Diagrammatic Space Reduction for the Hubbard Self-

Energy

We first note that the contribution of diagrams with tadpole insertions (one-legged

diagrams) can be neglected because they are equivalent to shifting the chemical po-

tential µ → µ − n̄U/2, where n̄ is the number of electrons per site. [33, 34] In doing

so we in fact redefine the chemical potential and self-energy function such that µ = 0

corresponds to half-filling. [35] As shown in Table 4.1 this standard procedure substan-

tially reduces the number of diagrams from N
(m)
init to N (m). We then find all possible

labels (as explained in Sec. 4.3.3) for each diagram in order to classify the diagrams

into subclasses; then we apply the GIT procedure within each subclass to identify
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Figure 4.7: Schematic illustration of constructing groups of sixth order equal self-
energy diagrams at half-filling. There are 515 diagrams after the chemical potential
shift at sixth order. We first divide the diagrams into classes according to their
pole configurations. Note that C6

1 , C6
2 , C6

3 , and C6
4 are classes of diagrams with

pole configurations (11, 0, 0), (9, 1, 0), (7, 2, 0), and (8, 0, 1), respectively. We then
construct the subclasses for each class considering their diagram characters. Finally,
the application of GIT within each subclass enables us to discard all the canceling
diagrams and find groups of equal diagrams at half-filling.

vanishing, equal, and canceling diagrams at half-filling.

The transformations T1 and T2 are given by (4.9) and (4.10), respectively, and the

transformation T3 is a (π, π) shift of internal momentum,

T3 : kp → kp + (π, π), (4.16)

which flips the sign of εj at half-filling if it depends on kp. Since the potential U is

a constant and the momenta sums are performed over the first Brillouin zone the ex-

pansion (4.15) is invariant under any arbitrary combination of these transformations.

In the third order there are only two diagrams, shown in Figure 4.6. These two

diagrams belong to the same subclass and the GIT procedure finds that they cancel. In

the Supplemental Material [26], we explicitly present the transformations which relate
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these two diagrams. The twelve fourth order diagrams are divided into two classes,

which subdivide into a total of four subclasses containing three diagrams each (see

Figure 4.5). The GIT procedure reveals that the diagrams within each subclass are

precisely equal in agreement with what has been reported previously. [36–38] There

are 70 fifth order diagrams divided into 11 subclasses; GIT reveals that all of the

diagrams within each subclass exactly cancel. At sixth order we have 515 diagrams

divided into four classes and 48 subclasses. Applying GIT, we identify 144 canceling

diagrams at half-filling; the remaining 371 diagrams are collected into 47 sets of equal

diagrams. The details of the diagrammatic space reduction for sixth order diagrams

are illustrated in Figure 4.7. It is important to note that all precise cancellations

found by the GIT procedure occur at half-filling only.

The diagrammatic space reduction for the Hubbard self-energy expansion up to

sixth order is summarized in Table 4.2. There are no odd-order diagrams in the

reduced space, since each diagram has a precisely canceling partner; i.e., at half-filling

odd order diagrams do not contribute to the self-energy. [39] To calculate the self-

energy at half-filling, one needs to evaluate one diagram from each group, multiplied

by the number of diagrams in each group. Altogether this represents a huge reduction:

at sixth order we began with 515 diagrams (not including one-legged diagrams); the

GIT procedure reduces this number to only 47 nonequivalent diagrams.

4.4.2 Sampling Nearly canceling Diagrams Away from Half-

Filling

In practice all diagrams within each subclass should be stored in order to evaluate a

given quantity away from half-filling. Diagrams which cancel at half-filling will nearly

cancel away from half-filling, and the identification of those nearly canceling pairs can

increase the efficiency of Monte Carlo integration.
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Table 4.2: Diagrammatic space reduction of the Hubbard self-energy up to sixth order
at half-filling. In the second row, n(m)

tot is the number of subclasses at each order m,
and (N (m)) is the total number of diagrams (not including one-legged diagrams) at
each order m (see Table 4.1). In the last row, N (m)

r is the number of groups of equal
diagrams at each order m, and (n(m)

d ) is the total number of non-canceling diagrams
at each order m.

m 1 2 3 4 5 6
n

(m)
tot (N (m)) 0(0) 1(1) 1(1) 4(12) 11(70) 48(515)
N (m)
r (n(m)

d ) 0(0) 1(1) 0(0) 4(12) 0(0) 47(371)

The most straightforward way to evaluate diagrams away from half-filling is to

sample the diagrams in each subclass as a whole instead of sampling diagrams one-by-

one. However, to use the full power of the GIT in Monte Carlo integration away from

half-filling one should group each nearly canceling pair as a single integrand during

the stochastic sampling. If a pair of diagrams D1 and D2 are exactly canceling at half-

filling, we essentially have a transformation T found by GIT and the necessary array

representations L1 and L2, such that T : L1 → −L2 for every set of internal variables.

One should then evaluate the pair of diagrams by considering (T : L1)+L2 as a whole

in the Monte Carlo sampling away from half filling. This optimizes the cancellation

between the two diagrams. Thus, instead of sampling the nearly canceling diagrams

one-by-one, we sample them as a pair. This substantially improves the average sign

and the uncertainty due to the huge cancellation.

4.4.3 Numerical Results

In this section we provide proof of concept results to illustrate the applicability of

the method to the difficult problem of the Hubbard interaction. To do this we will

first consider the order-by-order contributions for a point away from half-filling, on

both the Matsubara and real frequency axes, in order to discuss the role of error

89



induced by truncating the series. Subsequently we will compare our AMI calculations

at half-filling to results from dynamical cluster approximation (DCA) [22, 28, 40, 41]

as well as compare the results from AMI on the real-frequency axis to those obtained

via numerical analytic continuation of DCA data. Finally we will compare our results

on the Matsubara axis throughout the Brillouin zone to numerically exact results.

A central issue in truncated diagrammatic expansions for Hubbard interactions is

that for large enough value of U/t the truncated series is not convergent. [42] To avoid

this there are methods to improve convergence that in essence re-weight each diagram

order without changing the sum of the entire series. [15, 43, 44] Here, we would like

to avoid any rescaling or resummation and instead we operate within the range of

explicit convergence of the series. In order to do so, in each case we estimate our

truncation errors (see Supplemental Material [26] for a derivation) by considering the

behavior of coefficients at each order. We can then use this information to evaluate

the series for values of U/t such that the truncation error is small.

As a first example, shown in Figure 4.8, we consider a case without particle-hole

symmetry (i.e., away from half-filling), which means that all diagrams at each order

(including odd orders) must be included. Ignoring one-legged diagrams, this requires

the evaluation of N (m) diagrams at each order m (the last row of Table 4.1) where at

each order the diagrams are grouped into n(m)
tot subclasses (see Table 4.2). The coef-

ficients am in the self-energy expansion Σ = ∑
m amU

m are evaluated for parameters

βt = 5 and µ/t = −1.5 at k = (π/8, π) for U/t = 1 to 4. We normalize each plot by

the absolute value of the second order term. For U/t ≤ 2 we see that the 4th, 5th

and 6th order contributions are negligible; however for U/t = 4, these contributions

are comparable to each other in magnitude. These findings are consistent with the

truncation error, plotted in the inset to Figure 4.8. The fractional truncation error

err(m) is the error estimate for truncating the series at order m, shown for m = 4, 5.
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Figure 4.8: The contribution at each order to ImΣk(iν0) for U/t = 1→ 4 normalized
by the m = 2 contribution. Data are for parameters βt = 5 and µ/t = −1.5 at
k = (π/8, π). The AMI results were obtained with ≈ 106 samples per diagram.

We see that up to U/t = 2 the truncation error is negligible (err(5) < 1%) while at

U/t = 4 the error is ≈ 15% and becomes divergent slightly above U/t = 4. The

fourth order truncation error err(4) has only minor differences compared to err(5).

This suggests that at this temperature (βt = 5) and values of U/t as large as 4, a

diagrammatic series might be reasonably approximated by neglecting terms higher

than 5th order. Actually, it is surprising that, for a wide range of U/t values, 4th or

5th order results should produce truncation errors < 10%. Such behavior has been

observed at strong coupling from ΣDDMC, [13,15] where the results of the diverging

series at higher order oscillate around the result such that the sum of all higher order

terms is only a small contribution for weakly coupled cases, though this ceases to be

the case for large values of U/t.

One should also note that to get reliable error bars for higher order contributions,

grouping the diagrams into subclasses is essential. By measuring each group separately

we effectively reduce the variance of each measurement. This is optimized when the

diagrams in a group are equal and the variance represents sampling from the analytic
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Figure 4.9: Top: Real and imaginary parts of the self-energy at second, third and
fourth order as well as the result up to fourth order vs. real frequency ν, Bottom:
Green’s function up to fourth order vs. real frequency ν. Data are for parameters
U/t = 3, µ/t = −1.5, and βt = 5 at k = (π/8, π). We set Γ/t = 0.05 in the symbolic
analytic continuation iνn → ν + iΓ. The AMI results were obtained with ≈ 4 × 107

samples per diagram.

expression for a single diagram.

We show another example away from half-filling in Figure 4.9 but now evaluated on

the real frequency axis at U/t = 3 for βt = 5 and µ/t = −1.5. Since this parameter

choice is within the convergence criteria mentioned in Figure 4.8 we expect small

truncation errors, and our results up to 4th order illustrate the utility and rather

high accuracy attainable with the method. For completeness we show the real and

imaginary parts of the self-energy and each contribution from mth order (Om) as

well as the sum up to 4th order. At each order the result is evaluated by forming

subclasses and evaluating all diagrams of a subclass together. Of interest is the partial

cancellation between 3rd and 4th order contributions for much of the frequency range.
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As a result, by comparing the O2 result to the entire sum we find a wide range of

frequencies (ν = −1 to 2.5) where both the real and imaginary parts of the 2nd order

diagram are nearly equivalent to the sum up to 4th order. Also shown in the lower

panel are the real and imaginary parts of the Green’s function resulting from the self-

energy sum in the upper panels. One notes a typical form of the Green’s function and

can identify at which frequency ReG changes sign, which corresponds to the energy

ε(k)−ReΣk. The Green’s function is essentially independent of Σ far away from this

boundary. Thus only self-energies near this boundary, here from ν ≈ 0.5 to 2, need

to be evaluated to correctly represent the Green’s function.

Essential in obtaining these results is managing the divergences of the AMI inte-

grands that arise for evaluation on the real frequency axis. While analytically these

divergences always have canceling terms, each individual term might cause numerical

overflow that must be managed. To do so, we use two regulators: an intrinsic scatter-

ing rate Γ for the analytically continued frequency iνn → ν+ iΓ that provides a width

to the imaginary parts of the Green’s functions; and a thermal regulator η which

enters the bosonic distribution functions in the E → 0 limit. The constraint on these

regulators for numerical correctness is that they be much smaller than the dominant

energy scale, Γ � ν and η � kBT . Operating outside this constraint will typically

result in overly smoothed results, or reduced numerical values. Our calculations are

performed with Γ/t = 0.05 and η = 10−5, though somewhat larger values can be used

to improve statistical uncertainty without visible change to the result. In addition

to these regulators, for some diagrams there may exist terms in the AMI integrand

that have no external frequency in the denominator and only a linear combination of

energies. This results in a large number of spurious poles inside the integration space

of size mD for D dimensions that are not regulated by Γ nor by η. One needs only to

avoid the direct evaluation of the integrand at these poles to obtain correct results.
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To do so it is essential that the momentum integrals not be performed on a regular

L × L grid. Doing so virtually guarantees evaluation of the integrand directly on a

pole. Instead, sampling the space via MC methods by choosing random points in the

integration space makes it unlikely to encounter these spurious poles. In addition, this

extends the calculation to be effectively continuous in momentum space and provides

results directly in the thermodynamic limit.

In a recent work, Vučičević and Ferrero [45] have devised an alternate method

of diagram evaluation starting from Eq. (4.1) but they first replace the product of

bare Green’s functions with a summation by employing a generalization of a partial

fractions decomposition. In that work they allude to a number of obstacles that we

do not seem to encounter. We suspect that the process of breaking the integrand into

partial fractions produces many canceling terms resulting in an unnecessary inclusion

of many removable divergences. Avoiding this procedure as well as avoiding the use

of a regular L×L grid, as we have done, has allowed us to use very small regulator in

analytic continuation process (Γ/t ≈ 0.05 to 10−4) without particular difficulty. For

the chosen parameter regimes we investigate the dependence of the results on Γ and

observe that the result has only weak dependence on Γ ≤ 0.05t, i.e., Γ = 0.05t is

effectively in the limit of Γ→ 0.

Moving forward, we restrict our calculations to the half-filled model where we

make use of the full power of the GIT methodology described in Sec. 4.3.4. We

present results truncated again at 4th order and use the sixth order contribution to

estimate the truncation error. According to the last row of Table 4.2, we need to

evaluate only N (m)
r diagrams for each order m. This amounts to only evaluating five

diagrams in total, which can be accomplished extremely quickly. We also provide

comparison to established numerical methods DCA and DDMC. [32,40]

We show in the left-hand frame of Figure 4.10 the imaginary part of the self-
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Figure 4.10: Left: Imaginary part of the self-energy on the Matsubara axis at kAN =
(π, 0) for µ = 0, U/t = 3, and βt = 8.33. Results from DMFT are shown as well as
DCA data for 16 and 64-site clusters. Right: Spectral function A(kAN , ν) on the real
frequency axis. The DCA results were obtained via maximum entropy inversion. [17]
The AMI results assume Γ/t = 0.05. The AMI results were obtained with ≈ 106

samples per diagram.

energy vs. Matsubara frequency iνn obtained by the direct evaluation of the dia-

grams up to 4th order using AMI at the antinodal point kAN = (π, 0) for U/t = 3

and βt = 8.33. The results are in perfect agreement with DCA after only a few

frequencies, (iνn > iν5). This is expected since larger values of iνn strongly sup-

press high order contributions, reducing the truncation error sharply. Comparison

to DCA at low frequency shows that the 4th order truncated series is surprisingly

competitive with 16→64-site DCA. [38,46] In general we expect our truncation error

to grow for decreasing iνn or decreasing temperature, and here the error bars only

reflect statistical uncertainty and do not represent truncation errors.

The power of AMI becomes apparent in the right-hand frame of Figure 4.10 where

we plot the real frequency spectral function at the antinodal point. Recall that for

AMI the analytic continuation involves only a symbolic replacement of iνn → ν + iΓ
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Figure 4.11: Real and imaginary parts of the self-energy at iν0 through high-symmetry
cuts in the kx−ky plane for µ = 0, U/t = 4, and βt = 2. The upper/lower blue squares
are the real/imaginary DDMC results from Ref. [47]. The AMI results were obtained
with ≈ 107 samples per diagram.

for some sufficiently small value of Γ. The resulting AMI spectral density is shown in

red circles. For comparison we perform the numerical analytic continuation [17] for

the DCA Green’s functions at the antinodal point. Surprisingly we see that the DCA

result after numerical analytic continuation has the same broadening as determined

by AMI directly on the real-frequency axis. One notes a slight asymmetry in the AMI

result evaluated at µ = 0. This is due to a small non-zero value of ReΣ(kF , 0). This

truncated expansion is not particle-conserving and therefore this represents a density

that is very close to, but not equal to, half-filling. Moreover, the AMI result as ν → 0

may be underestimated due to the energy and thermal regulators. One would need to

maintain Γ� ν and further that Γ� ImΣ(ν → 0) in order to guarantee correctness.

These considerations have not been addressed in this simple example.

As a further benchmark, we compare to DDMC results at half-filling. [47] In Fig-
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ure 4.11 we show the real and imaginary parts of the self-energy at the first Matsubara

frequency for high-symmetry cuts through the Brillouin zone. For discussion purposes

we plot both the individual 2nd and 4th order AMI results as well as their sums. We

see that the 2nd order contribution to the imaginary part of the self-energy (orange

circles) is much larger than the 4th order contributions (purple crosses). This is not

the case for the real part of the self-energy where the 2nd and 4th order contributions

are nearly equal, suggesting that the convergent behavior of the real and imaginary

parts of the coefficients need not be the same. In both cases the sum of these results

are surprisingly similar to the DDMC results and both the real and imaginary parts

have the correct qualitative momentum dependence. Visually it appears that the

real-part is a better approximation. If we scrutinize the results at the Γ point where

the real part has values (−0.179± 0.002) and (−0.188± 0.004) for AMI and DDMC

respectively we find a ≈ 5% discrepancy. Repeating this for the imaginary part with

values (−0.511 ± 0.002) and (−0.537 ± 0.004) we find again a ≈ 5% discrepancy,

therefore the visual distinction is only a matter of scale, and we find that the relative

truncation error is in practice much less than our numerical estimate. In each case,

it must be true that the sum of terms of order m ≥ 6 results only in these small dif-

ferences. The results are not generally expected to be this accurate for all parameter

choices and indeed at lower temperatures we find that the deviation increases. This

behavior has also been observed in order-by-order expansions from a diagrammatic

treatment of the dual Fermion method. [31,47]

4.5 Conclusion

We have presented a general framework to evaluate Feynman diagrammatic expan-

sions that can be applied to virtually any expansion with any interaction. Specifically,
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our method is applicable to any diagrammatic expansion composed of the bare Green’s

functions with any frequency-independent two-body interaction.

As proof of concept we presented the application of this method to the self-energy

expansion of the Hubbard model on a 2D square lattice with nearest neighbor tight-

binding dispersion at and away from half-filling. The resulting diagram groups are

provided in the Supplemental Material [26] up to 6th order and these groups are also

valid for 1D or 3D systems as well for the imaginary time representation. As evidence

of utility we provided a comparison of the low order expansion to other numerical

methods and found excellent results when within the convergent range of the series.

While the procedure is a major advancement in evaluating diagrammatics on the

real frequency axis, it does not address the factorially growing diagram space, which

remains time consuming to evaluate. Further, it does not address the fundamental

sign problem inherent in the analytic AMI results and in many cases the average sign

remains small after AMI and is not always improved by grouping diagrams. Finally,

while AMI allows for the evaluation of any Feynman diagram at any temperature it

seems that at low temperature the contributions of higher order terms are larger.

Important features of our method can be summarized as follows. The Matsubara

sums are performed analytically using AMI. [20] This allows for the symbolic analytic

continuation iνn → ν + i0+ without any ill-defined numerical procedure. The full

symbolic result of AMI in principle enables us to exactly (up to machine precision)

evaluate Matsubara sums of each diagram in the expansion at any temperature, even

at the T = 0 limit, which is not accessible in DiagMC methods. We also determine

the pole structure of the diagrams, which enables us to divide diagrams into groups

which contain nearly canceling pairs. We therefore sample pairs of nearly canceling

diagrams as a whole in Monte Carlo integration instead of sampling the diagrams one-

by-one, which leads to a substantial suppression to the sign problem. Further, in the
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Figure 4.12: A third order diagram in the perturbative expansion of the Hubbard
self-energy. We assign a frequency-momenta label to the diagram.

special case when there is particle-hole symmetry the cancellations are exact, while

other diagrams within each group are exactly equal. Moreover, despite the factorially

growing cost, the AMI result and diagram groups can be easily stored, i.e., one needs

to solve the problem up to the momenta integrations only once.
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4.7 Supplemental material

4.7.1 Example: Array representation of diagrams

Essential to our method is to represent Feynman diagrams in an array form. In this

section we provide an example to elucidate the array representation of the Hubbard

self-energy diagrams. We consider a third order diagram shown in Figure 4.12. We

first assign a frequency-momenta label to the diagram in order to construct the usual

symbolic representation. We note that there is a double pole with respect to iν1 while

other poles are simple. The temporal part of the diagram is then given by (up to a

convergence factor)

I(3) = 1
β3

∑
ν1,ν2,ν3

I(3) = 1
β3

∑
ν1,ν2,ν3

G1
0(iν1)G2

0(iν1)G3
0(iν2)G4

0(iν3)G5
0(iν4 + iν2 − iν1)

= 1
β3

∑
ν1,ν2,ν3

1
iν1 − e1

1
iν1 − e1

1
iν2 − e2

1
iν3 − e3

1
iν4 + iν2 − iν1 − e4

.

(4.17)

The denominator of each Green’s function in the summand has two terms: energy

and linear combination of the frequencies, which can be extracted from the set of α

values obtained from the labeling. We first represent the energies in the array form:

e1 = ε(k1)→ (1, 0, 0, 0, 0),

e2 = ε(k2)→ (0, 1, 0, 0, 0),

e3 = ε(k3)→ (0, 0, 1, 0, 0),

e4 = ε(k4 + k2 − k1)→ (0, 0, 0, 1, 0). (4.18)
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The second part of the jth entry is the array representation of the frequency part of

the jth Green’s function, which is given by

iν1 → (1, 0, 0, 0),

iν2 → (0, 1, 0, 0),

iν3 → (0, 0, 1, 0),

iν4 + iν2 − iν1 → (−1, 1, 0, 1). (4.19)

We finally achieve the array representation of the summand:

I(3) →
[
[(1, 0, 0, 0, 0), (1, 0, 0, 0)]; [(1, 0, 0, 0, 0), (1, 0, 0, 0)]; [(0, 1, 0, 0, 0), (0, 1, 0, 0)];

[(0, 0, 1, 0, 0), (0, 0, 1, 0)]; [(0, 0, 0, 1, 0), (−1, 1, 0, 1)]
]
. (4.20)

Since there is a double pole the first two entries of the array (4.20) are identical, and

there are four distinct energies and four Matsubara frequencies.

We recall that in the AMI full analytic result the dispersion and frequency parts

in each term are linear combinations of the initial arrays in Eq. (4.18) and Eq. (4.19).

The AMI result can be evaluated exactly (up to machine precision) using numeric

momenta integration procedures.

4.7.2 Example: Application of GIT

In this section we aim to explicitly demonstrate how one can apply the GIT procedure

to determine whether two given diagrams are equal or canceling at half-filling. We

consider two third order diagrams, shown in Figure 4.13, arising from the perturbative

expansion of self-energy function of the Hubbard model. The first step is to assign a

conserving frequency-momenta label to each diagram. Finding the labels enables us
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Figure 4.13: Two topologically distinct third order Hubbard self-energy diagrams,
which we denote by Σ(3)

1 and Σ(3)
2 . Since these two diagrams are almost isomorphic

one expects them to be either equal or canceling at half-filling.

to construct mathematical expressions of the diagrams:

Σ(3)
1 = U3

β3

∑
{k}

∑
{ν}

L
(3)
1 , (4.21)

where

L
(3)
1 = 1

iν1 − ε(k1)
1

iν2 − ε(k2)
1

iν3 − ε(k3)
1

iν4 − iν1 + iν2 − ε(k4 − k1 + k2)×

1
iν4 − iν3 + iν2 − ε(k4 − k3 + k2) , (4.22)

and

Σ(3)
2 = U3

β3

∑
{k}

∑
{ν}

L
(3)
2 , (4.23)

where

L
(3)
2 = 1

iν1 − ε(k1)
1

iν2 − ε(k2)
1

iν3 − ε(k3)
1

iν4 + iν1 − iν2 − ε(k4 + k1 − k2)×

1
iν4 + iν3 − iν2 − ε(k4 − k2 + k3) , (4.24)
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One notes that in this chosen representation diagrams have the same pole-ID. Starting

with L
(3)
1 , our task is to find a combination of GIT transformations T under which

T : L(3)
1 = ±L(3)

2 . As the first transformation, we apply T2 on all the internal variables

of Σ(3)
1 , i.e.:

T2 :(iν1,k1)→ (−iν1,−k1),

(iν2,k2)→ (−iν2,−k2),

(iν3,k3)→ (−iν3,−k3). (4.25)

We then have

T2 : L(3)
1 = 1

−iν1 − ε(k1)
1

−iν2 − ε(k2)
1

−iν3 − ε(k3)
1

iν4 + iν1 − iν2 − ε(k4 + k1 − k2)×

1
iν4 + iν3 − iν2 − ε(k4 + k3 − k2) . (4.26)

Next we impose:

T3 :k1 → k1 + (π, π),

k2 → k2 + (π, π),

k3 → k3 + (π, π), (4.27)

which leads to

T3T2 : L(3)
1 = 1

−iν1 + ε(k1)
1

−iν2 + ε(k2)
1

−iν3 + ε(k3)
1

iν4 + iν1 − iν2 − ε(k4 + k1 − k2)×

1
iν4 + iν3 − iν2 − ε(k4 + k3 − k2) . (4.28)
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i.e.,

T3T2 : L(3)
1 = −L(3)

2 , (4.29)

then

Σ(3)
1 = −Σ(3)

2 . (4.30)

Thus, the two third order diagrams in the diagrammatic expansion of the Hubbard

self-energy with nearest neighbor hopping are canceling at half-filling.

4.7.3 Truncation error

When we truncate the self-energy series expansion at a specific order mc, we need to

estimate the error due to the truncation. For a series∑∞n=1 bn, the absolute truncation

error is given by

e =
∞∑

n=mc+1
bn. (4.31)

Since in practice one could only evaluate finite terms of the expansion we have to

estimate the truncation error under specific circumstances. We consider two different

scenarios and present estimates for the upper bound of the truncation error.

Estimation of Truncation Error for Alternating Sign Series

An alternating sign series is a series where the terms alternate between positive and

negative, i.e., ∑∞n=1 bn is alternating sign if bn+1/bn < 0. An alternating sign series∑∞
n=1 bn is convergent if it satisfies two criteria:
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1. Its nth term converges to zero:

lim
n→∞

bn = 0. (4.32)

2. The absolute values of its terms are decreasing:

|bn+1

bn
| < 1. (4.33)

Under these conditions the upper bound of the absolute truncation error is estimated

by

e ≤ |bmc+1|, (4.34)

where mc is the truncation order.

Estimation of Truncation Error for Non-Alternating Sign Series

We start with Eq. (4.31) to determine an upper bound for the absolute error:

e ≤
∞∑

n=mc+1
|bn| = |bmc+1|

(
1 +

∞∑
n=1

∣∣∣∣∣bmc+n+1

bmc+1

∣∣∣∣∣
)
.

(4.35)

We now assume that the series ∑∞n=1 bn is not alternating sign, however, the sequence

{rn = |bn+1/bn|} is decreasing and rn < 1 for n > mc. We then have

e ≤ |bmc+1|
[
1 +

∞∑
n=1

∣∣∣∣∣bmc+2

bmc+1

∣∣∣∣∣
n]
. (4.36)
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Calculating the power series in the bracket, we finally obtain an upper limit for the

error:

e ≤ |bmc+1|
1− |bmc+2|

|bmc+1|

. (4.37)
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Chapter 5

Algorithmic approach to

diagrammatic expansions for

real-frequency evaluation of

susceptibility functions

In Chapter 4 we used AMI combined with graph invariant transformations (GIT)

and Monte Carlo integration routines to evaluate the truncated series expansion of

the self-energy function in both the Matsubara and real frequency spaces. However,

it is straightforward to use our method to evaluate a wide range of diagrammatic

expansions. In this chapter we use our method to evaluate the spin susceptibility

functions.

Theoretical calculations of the spin susceptibilities on the real-frequency axis have

been limited to coarse approximations such as the T-matrix approximation (TMA)

[1,2], random phase approximations (RPA) [3,4] and low order vertex corrections [5]

for decades. This is because in the absence of a method to systematically generate
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and evaluate higher order terms, these approximations have been the only choices

available to investigate the susceptibility functions in real-frequency space. We apply

our methodology to this challenging problem in order to study, for the first time, the

higher order perturbative corrections beyond the approximations mentioned above.

We prove the correctness of our results on Matsubara axis by comparing to other

numerical methods. Lastly, due to the analyticity of AMI, we provide the results on

real-frequency axis.

In the rest of this chapter we reproduce Ref. [6], Amir Taheridehkordi, Stephanie

H. Curnoe, and James P. F. LeBlanc, doi: 10.1103/PhysRevB.102.045115; License

number: RNP/20/OCT/031578; reproduced with kind permission of the publishers

of Physical Review B. The manuscript is followed by Supplemental Material.

5.1 Abstract

We systematically generate the perturbative expansion for the two-particle spin sus-

ceptibility in the Feynman diagrammatic formalism and apply this expansion to a

model system - the single-band Hubbard model on a square lattice. We make use of

algorithmic Matsubara integration (AMI) [A. Taheridehkordi, S. H. Curnoe, and J.

P. F. LeBlanc, Phys. Rev. B 99, 035120 (2019)] to analytically evaluate Matsubara

frequency summations, allowing us to symbolically impose analytic continuation to

the real frequency axis. We minimize our computational expense by applying graph

invariant transformations [A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc,

Phys. Rev. B 101, 125109 (2020)]. We highlight extensions of the random-phase ap-

proximation and T-matrix methods that, due to AMI, become tractable. We present

results for weak interaction strength where the direct perturbative expansion is conver-

gent, and verify our results on the Matsubara axis by comparison to other numerical
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methods. By examining the spin susceptibility as a function of real-frequency via

an order-by-order expansion we can identify precisely what role higher order correc-

tions play on spin susceptibility and demonstrate the utility and limitations of our

approach.

5.2 Introduction

The Hubbard model [7] has become a laboratory for the development of numerical

tools in correlated electron systems. The single-band model on a two-dimensional

(2D) square lattice is believed to be the minimal model to capture features of high-

temperature superconductivity [8] yet remains a complex numerical problem that has

motivated the development of numerous novel numerical algorithms [9, 10].

The single-particle properties of that model have been investigated by a wide

variety of different methods, from non-perturbative approaches such as dynamical

Mean-field theory [11,12] and dynamical cluster approximation [13,14] to perturbative

methods such as diagrammatic Monte Carlo [15–22]. Understanding the role of two-

particle excitations - for experiments on cuprates [23–27] as well as for numerical

calculations of model systems [28–36] - is of particular importance due to the subtle

connections between spin excitations, antiferromagnetic order, superconductivity and

pseudogap phenomena. Despite the wide range of existing numerical algorithms the

ability for numerical work to make concrete connections to experiment has been largely

hampered by the challenges associated with evaluating the necessary two-particle spin

and charge response functions.

There exists a greater issue that, in addition to the complexity of two parti-

cle response functions, many numerical methods are constructed around the finite-

temperature Matsubara formalism and provide results in an abstract imaginary time/-
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Matsubara frequency space. While results for physically relevant properties on the

so-called ‘real-time/real-frequency’ axis can be obtained but require numerical ana-

lytic continuation procedures for which solutions are not unique [37–41]. As a result,

the numerical analytic continuation process dominates the uncertainty of the result

and compromises any attempt at high-precision numerics [42–44]. In principle, this is-

sue can be avoided through a textbook application of the residue theorem, resulting in

analytical expressions for which analytic continuation can be imposed symbolically.

For low order diagrams this can be done by hand but for higher order corrections

the resulting expressions become incomprehensibly complicated. For that reason this

known solution is discarded for all but the most weakly correlated electron systems.

We have recently overcome this particular road-block with the method of algorithmic

Matsubara integration (AMI) [45], a procedure that automates the construction of

such analytic results and in principle allows for a direct evaluation of arbitrary dia-

grammatic expansions composed of thousands of analytic terms on the real-frequency

axis. In addition, there still remains a general sign problem [46,47] as well as a more

fundamental fermionic sign due to cancellation between diagrams in the expansion.

In order to suppress the second issue, one opportunity lies in the construction of sign-

blessed diagram groups by application of graph invariant transformations (GIT) that

can effectively be combined with AMI [48].

In anticipation of these developments, we present the spin susceptibility of the

2D Hubbard model, beyond random phase approximation (RPA) [3, 4], T-matrix ap-

proximation (TMA) [1, 2] and low-order vertex corrections [5], in the real-frequency

domain without need for any ill-posed numerical analytic continuation procedures.
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5.3 Hubbard model

We consider the single-band Hubbard Hamiltonian [9, 49],

H =
∑
〈ij〉σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ − µ
∑
iσ

niσ, (5.1)

where tij is the hopping amplitude, c(†)
iσ is the annihilation (creation) operator at site i,

σ ∈ {↑, ↓} is the spin, U is the onsite Hubbard interaction, niσ = c†iσciσ is the number

operator, µ is the chemical potential, and 〈ij〉 restricts the sum to nearest neighbors.

For a 2D square lattice we take tij = −t, resulting in the free particle energy

ε(k) = −2t[cos(kx) + cos(ky)]− µ. (5.2)

5.4 Transverse spin susceptibility:

The expansion for the transverse spin susceptibility is straightforwardly represented

in position (r) and imaginary time (τ) space and is defined as [30]

χT (x, x′) = 〈T S+(x)S−(x′)〉, (5.3)

where T is the time-ordering operator, x = (r, τ), and S+/− are spin-ladder operators

which are given by S+(x) = S†−(x) = c†↑(x)c↓(x). One could instead construct the di-

agrammatic series for the longitudinal spin susceptibility χL(x, x′) = 〈T Sz(x)Sz(x′)〉

[36], however, the spin-rotation invariance of the Hubbard Hamiltonian [50, 51] im-

plies that χT = 2χL; we note that the diagrammatic series for the transverse spin

susceptibility is substantially simpler.
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5.4.1 Constructing diagrammatic expansion

We use perturbation theory to evaluate the transverse spin susceptibility defined by

Eq. (5.3). We construct the perturbative expansion and using Wick’s theorem we

represent the result as a series of Feynman diagrams [52–54] that can then be evaluated

in the momentum-frequency space. Each transverse susceptibility diagram in the

series has the property that the particle lines in the principle loop (a unique fermionic

loop that involves the two external vertices) have spin ↑, while anti-particle lines have

spin ↓. Furthermore, since the on-site Hubbard interaction only occurs between solid

lines with different spins we only consider diagrams that satisfy this criterion.

First, we systematically generate all the topologically distinct transverse suscepti-

bility diagrams up to a truncation order mc by following the procedure described in

Ref. [48]. In order to reduce the diagrammatic space we neglect all diagrams with tad-

pole insertions by applying the chemical potential shift µ→ µ− n̄U/2, where n̄ is the

number of electrons per site [55, 56]. Following the method outlined in Refs. [45, 48],

we assign frequency (Xj) and momenta (Kj) variables to each fermionic line, where

Xj and Kj are linear combinations of the independent frequencies and momenta. Ap-

plying the Feynman rules, a diagram Dζm of order m with topology ζm is evaluated

as:

Dζm(iΩ,q, β, µ) = (−1)m+FζmUm

(2π)2m+2βm+1

×
∑
{km+1}

∑
{νm+1}

2m+2∏
j=1
Gj0(εj, Xj). (5.4)

Here, iΩ and q are external frequency and momenta respectively, Fζm is the number

of fermionic loops, β is the inverse temperature, {km+1} and {νm+1} are sets of (in-

dependent) internal momenta and frequencies, respectively, εj = ε(Kj) represents the

free particle energy of the jth line and Gj0(εj, Xj) = (Xj − εj)−1 is the bare Green’s
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Figure 5.1: Top row: Examples of ladder-like diagrams which must be excluded from
the ETM series. Bottom row: Examples of non-ladder-like diagrams which must be
included in the ETM series. The dashed lines identify where the ladder-like diagrams
split into independent parts (there are no common independent frequency-momenta
variables to the left and right). Solid and wavy lines are fermionic and interaction
lines, respectively.

function assigned to the jth solid line.

We first symbolically evaluate the Matsubara sums in Eq. (5.4) by utilizing the

residue theorem. Although conceptually straightforward, the complexity of the result-

ing analytic expressions requires an automated machinery. For this we follow the AMI

procedure, described in Refs. [45,48], to automatically construct and store the analytic

expressions for the Matsubara sums. Finally, we use an integration procedure [48,57]

to evaluate the momenta sums of the diagrams.

The perturbative series of the transverse spin susceptibility is then written as

χ
(mc)
T (iΩ,q, β, µ) =

mc∑
m=0

∑
ζm

Dζm(iΩ,q, β, µ), (5.5)

where the sum over ζm is over all unique topologies of order m, here summed to a

cutoff order mc. The direct evaluation of Eq. (5.5) is a challenging task due to the fac-

torial increase of the number of diagrams with order [58] as well as a factorial increase
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in the number of terms after applying AMI. Therefore, to reduce the diagrammatic

space we propose an alternative procedure, which we call extended T-matrix (ETM),

to approximate the transverse spin susceptibility by only evaluating a subset of sus-

ceptibility diagrams. We categorize diagrams into two types: ladder-like diagrams,

those that can be factored into two (or more) independent integrals, and non-ladder-

like diagrams, which cannot be factored. Examples of such diagrams are shown in

Fig. 5.1. We define χ(mc)
NL to be the sum of all the non-ladder-like diagrams up to a

truncation order mc; then the transverse spin susceptibility is approximated by

χ
(mc)
ETM(iΩ,q, β, µ) = χ

(mc)
NL (iΩ,q, β, µ)

1− Uχ(mc)
NL (iΩ,q, β, µ)

. (5.6)

In a general sense, χ(mc)
NL and U play the same roles in the transverse spin susceptibility

expansion as the bare Green’s function and self-energy do in the diagrammatic expan-

sion of the full Green’s function [59,60]. Eq. (5.6) reduces to the RPA for longitudinal

spin susceptibility and to the TMA for transverse spin susceptibility at mc = 0 (χ(0)
NL

is the bare bubble), while in the mc → ∞ limit it recovers the direct expansion of

Eq. (5.5). This provides a systematic bridge between those coarse approximations

and the exact result and we expect that Eq. (5.6) with mc ≥ 1 will provide more

reliable results when compared to the RPA and TMA approaches.

By taking advantage of the inherent symmetry of the half-filled Hubbard model

on a square lattice the diagrammatic space can be further reduced. We apply the

GIT procedure [48] to identify exactly canceling and exactly equal diagrams at half-

filling. The complete diagrammatic space reduction is shown in Table 5.1. In order

to calculate the transverse spin susceptibility up to third order via Eq. (5.4), we need

to evaluate only 11 diagrams in total. For the ETM approach this number is further

reduced to only six diagrams at third order, and by 4th order the number of non-
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Table 5.1: Diagrammatic space reduction of the transverse spin susceptibility up to
fourth order at half-filling. In the second row, n(m) is the number of diagrams at each
order m (not including diagrams with tadpole insertions), and (n(m)

NL) is the number
of non-ladder-like diagrams at each order m. In the last row, n(m)

g is the number of
groups of equal diagrams at each order m, and (n(m)

g,NL) is the number of groups of
equal non-ladder-like diagrams at each order m.

m 0 1 2 3 4
n(m)(n(m)

NL) 1(1) 1(0) 4(3) 17(10) 101(22)
n(m)
g (n(m)

g,NL) 1(1) 1(0) 3(2) 6(3) 71(16)

ladder-like diagrams drops drastically with ≈ 80% of the diagrams being ladder-like.

5.5 Numerical results and comparisons

We first consider the order-by-order evaluation of χT on the Matsubara axis at

q = (π, π). Results for truncation order mc = 0 to 4 are shown in Fig. 5.2. We

consider a weak coupling parameter regime which has been of interest for algorithm

development due to the long correlation length of the model, a fact that necessitates

very careful finite size scaling for many numerical methods [9, 10]. For comparison

we include high-quality results from functional-Renormalization Group (fRG) from

Ref. [36] and our results from the dual-fermion (DF) technique [35,61, 62], as well as

the evaluation of the TMA. The parameter regime of U/t = 2 at βt = 5 has been

chosen precisely because it is the cusp where Uχ(0)
T ≈ 1 and the TMA breaks down

resulting in a diverging negative value at iΩ = 0 while the result at all other fre-

quencies is overestimated by the TMA. In contrast, the order by order expansion is

exactly equivalent to the reference data at iΩ 6= 0 and shows a systematic tendency

at iΩ = 0 towards the reference fRG and DF data sets. By truncation order mc = 4

the discrepancy of χ(4)
T compared to the fRG and DF results is ≈ 2% and 5% respec-
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Figure 5.2: Transverse spin susceptibility χ(mc)
T for mc = 0, 1, 2 and 3 and χ(3)

ETM vs.
Matsubara frequency iΩ at U/t = 2, βt = 5 and µ/t = 0 for q = (π, π). We also
present χ(4)

T (iΩ = 0), TMA, DF [61], and fRG results from Ref. [36]. Each data point
is obtained with ≈ 107 Monte Carlo samples.

tively. Also shown are results for χ(3)
ETM which is in precise agreement with the fRG

and DF results for iΩ 6= 0. At iΩ = 0 the third-order ETM result does not suffer the

divergence of the TMA although it underestimates the value even in comparison to

the direct second order expansion.

Having now verified the precise convergence at a nominal temperature of βt = 5

we display the order-by-order temperature dependence of the direct expansion, χ(mc)
T

at q = (π, π) for the zeroth bosonic frequency at weak coupling. Results are shown

in Fig. 5.3 for U/t = 1 and 2. We include results of the DF method, which for this

parameter range is essentially exact [63], as well as comparison to the TMA. One

immediately notes the deviation of the TMA result from the DF benchmark even at

U/t = 1 for temperatures above βt = 2, which translates into a severe divergence

for U/t = 2 above βt = 1. In contrast, the order-by-order expansion remains stable,

showing a systematic improvement, and we see that higher orders become more im-
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Figure 5.3: Transverse spin susceptibility vs. inverse temperature at different trun-
cation orders mc = 0, 1, 2 and 3. The TMA and DF results are also shown for
comparison. Data are for Top: U/t = 1, Bottom: U/t = 2 with µ/t = 0 at q = (π, π)
and iΩ = iΩ0 = 0. Each data point is obtained with ≈ 107 Monte Carlo samples.

portant at lower temperatures and larger U/t values. The data point q = (π, π) and

iΩ = iΩ0 is the point where the convergence of the transverse susceptibility series is

slowest. However, for non-zero Matsubara frequencies the convergence of the series

is extremely fast, often by second or third order (see the Supplemental Materials [64]

for a non-zero frequency comparison).

We now turn to one of our main results, the order-by-order contribution of dia-

grams [O(m)] with m = 0, 1, 2, and 3 to the imaginary part of the transverse spin sus-

ceptibility as a function of real frequency (see Supplemental Materials [64] for Re[χT ]

results). The top frame of Fig. 5.9 shows the contribution to χ(3)
T at each separate

order. As the order increases we find that higher order terms contribute significant

corrections only for a range of frequencies near Ω = 0 which adjust the slope of the

ω → 0 limit of χT . Otherwise the contributions are largely unstructured until one

reaches the band edge near ω/t = 4. The reduced contribution at higher frequency is
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Figure 5.4: Top: Imaginary part of the mth order transverse spin susceptibility di-
agrams [O(m)] vs. real frequency Ω. Bottom: The third order transverse spin sus-
ceptibility χ(3)

T ; TMA, χ(2)
ETM as well as χ(2)

NL, are also shown. Data are for βt = 5,
U/t = 2 with µ/t = 0 at q = (π/3, π/2). We set Γ/t = 0.02 in the symbolic analytic
continuation iΩ → Ω + iΓ. Each data point is obtained with ≈ 108 Monte Carlo
samples.

expected and is similar to that seen on the Matsubara axis. We also produce χ(2)
ETM

for real-frequencies using χ(2)
NL and compare this in the lower frame of Fig. 5.4 to the

TMA and the direct expansion up to third order χ(3)
T . We see that, for this value

of U/t, the TMA underestimates both the peak amplitude and low frequency slope

(and performs worse for larger values of U/t - see Supplemental Materials [64]). In

contrast χ(2)
ETM is nearly identical to the third order direct expansion - it captures the

same slope at low frequency, peak location, and high frequency amplitude. This com-

parison is rather impressive given that the third order direct expansion includes 23

diagrams while the ETM at second order includes only 4. One notes that at Ω/t = 4.8

there is a single data point where Im[χ(3)
T ] dips negative. Since Im[χT ] can not change

sign higher order corrections in the direct diagrammatic expansion are necessary to

achieve physically reliable results at this specific point.
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Figure 5.5: Left: third order transverse susceptibility χ(3)
T as a function of real fre-

quency Ω along the momentum cut (0, π) → (2π, π). Right: Frequency cuts along
Ω = 0.5 to 3. Data are for βt = 5, U/t = 2, and µ/t = 0. We set Γ/t = 0.02 in the
symbolic analytic continuation iΩ→ Ω + iΓ. Each data point is obtained with ≈ 106

Monte Carlo samples.

Finally, we show on the left in Fig. 5.5 the dependence of the third order spin

susceptibility on both q and real frequency, Ω, along q = (0, π) to q = (2π, π) in

the first Brillouin zone. On the right we plot the corresponding susceptibility along

several fixed-frequency cuts ranging from Ω/t = 0.5 to 3. One notes two important

features: a set of two dispersive peaks and a broad peak near q = (π, π) that widens

and flattens as frequency is increased. This behavior is reminiscent of inelastic neutron

scattering results on undoped LSCO [65, 66] where low energy cuts exhibit a single

peak near q = (π, π) that splits at higher energies into a set of two dispersive peaks.

Those materials have been understood, however, with linear-spin-wave models that

estimate values of U/t ≈ 8, well beyond the convergence of our series at low orders [24].

Precisely how spin excitations evolve from weak to strong coupling in Hubbard models

has yet to be understood. Our method might be extended to larger values of U/t via

renormalization procedures, but such work has yet to be accomplished.
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5.6 Conclusion

We have computed a direct perturbative diagrammatic expansion of the spin suscep-

tibility evaluated on the real frequency axis facilitated by AMI. We point out that

there is no conceptual hurdle in generating and evaluating higher order diagrams. In

addition, the method can be used for the case of finite next-nearest neighbors hopping

and finite doping. AMI automates this process and provides an analytic result in fre-

quency space that can be expressed on the real frequency axis by simple substitution

without resorting to numerical analytic continuation methods. The standard methods

of numerical analytic continuation (such as MAXENT or Padé-approximants), while

known to be ill-posed, have been central in the theoretical analysis of both single and

two-particle properties of materials. With the advent of AMI, this no longer need be

the case for any problem where direct perturbative expansions are convergent.

This methodology has the advantage that it is conceptually very simple and ap-

pears to be systematically controllable. The analytic expressions generated by AMI

to solve the 2D square lattice with Hubbard interaction remain valid in any dimen-

sionality for any single-band dispersion. Moreover, the AMI procedure is not limited

to Hubbard interactions and can be applied to any frequency independent interac-

tion [45, 48]. The procedures outlined in this work can therefore be applied to the

diagrammatic expansion of the polarization function relevant to screening problems

such as the GW approximation. Moreover, while we applied AMI to the diagram-

matic expansions of the spin susceptibilities it can be used to evaluate charge and

particle-particle susceptibility functions. We anticipate that the application of AMI

to other interactions on lattice systems will open many avenues of advancement in

condensed matter physics.
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5.8 Supplemental material

5.8.1 Results on the Matsubara frequency axis

A higher temperature example

In Fig. 5.6 we plot the transverse spin susceptibility versus Matsubara frequency at

a relatively high temperature βt = 2.5 and a weak coupling U/t = 2 (Fig. 2 in the

main text uses βt = 5). The direct third order approximation is in solid agreement

with the results from self-consistent ladder dual-fermion (DF) calculations.

Temperature dependence for a non-zero Matsubara frequency

As illustrated in Fig. 3 in the main text, upon decreasing temperature, a higher order

truncated series should be considered to obtain numerically reliable results. However,

one should note that convergence away from zero frequency is quite fast and the

third order approximation is typically sufficient. To demonstrate this we present the

transverse susceptibility at the first Matsubara frequency against inverse temperature

order at U/t = 1 and U/t = 2 for mc = 0 to 3. We find that, at these interaction
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Figure 5.7: Transverse spin susceptibility vs. inverse temperature at different trun-
cation orders mc = 0 to 3. The TMA and DF results are also shown for comparison.
Data are for Top: U/t = 1, Bottom: U/t = 2 with µ/t = 0 at q = (π, π) and
iΩ = iΩ1 = 2π/β.

strengths, even at the extremely low temperature βt = 11 the second and third order

approximation are almost identical, i.e., the third order approximation is sufficient to
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µ/t = 0 at q = (π/3, π/2). We set Γ/t = 0.02 in the symbolic analytic continuation
iΩ→ Ω + iΓ.

approximate the susceptibility function. Moreover, in both cases the agreement with

DF is solid.

5.8.2 Results on the real frequency axis

Order-by-order contribution

In Fig. 5.8 we show the order-by-order contribution of diagrams [O(m)] with m = 0

to 3 to the transverse spin susceptibility versus real frequency for βt = 5, U/t = 1,

and µ/t = 0 at q = (π/3, π/2). We find that high order terms mostly contribute

for a range of frequencies near Ω = 0 and also near the band edge above ω = 4.

Furthermore, as one expects the higher order contributions decay very fast increasing

order (Fig. 4 of the main text shows the imaginary part only, for a larger value of

U/t = 2).

We also show in Fig. 5.9 the order-by-order contribution to real part of the sus-
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also shown. Data are for βt = 5, U/t = 2, and µ/t = 0 at q = (π/3, π/2). We set
Γ/t = 0.02 in the symbolic analytic continuation iΩ→ Ω + iΓ.

ceptibility function at U/t = 2 with the same parameters as the main text Fig. 4.

One immediately notes that in this parameter regime, the contribution of the second

and third order diagrams is negligible for 1.5 < Ω < 3 and Ω > 5.

Comparison with TMA

In Fig. 5.10 we compare the second order transverse spin susceptibility, χ(2)
T with

TMA on the real frequency axis for different choices of U/t = 1→ 3. We note that by

increasing U/t the peak in Im[χTMA] moves to lower Ω and the peak becomes rounded,

a behavior not observed in χ
(2)
T where the peak is independent of the choice of U/t

and remains sharp. Moreover, TMA results show a much steeper slope in vicinity of

Ω = 0 compared to the second order approximation.
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Figure 5.10: Imaginary part of the second order and TMA transverse spin suscep-
tibility vs. real frequency Ω for U = 1 → 3. Data are for βt = 5 and µ/t = 0 at
q = (π/3, π/2). We set Γ/t = 0.02 in the symbolic analytic continuation iΩ→ Ω+iΓ.

Analytic continuation: dependence on the regulator

We investigate the dependence of the first order transverse susceptibility function on

the regulator Γ in Fig. 5.11 for βt = 5, U/t = 2, and µ/t = 0 at q = (π/3, π/2)

and Ω/t = 2. We observe that the result has only weak dependence on Γ/t ≤ 0.04.

Therefore, our choice of regulator in this work Γ/t = 0.02 is effectively in the limit of

Γ→ 0.
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Chapter 6

Summary and future work

6.1 Summary

We presented a new method to evaluate the diagrammatic expansions composed of

bare Green’s functions. Our method enables one to directly compute perturbative ex-

pansions in real-frequency space, a task which is inaccessible in other well-established

many body techniques. Although the method was used to calculate the self-energy

and susceptibility expansions for the 2D single-band Hubbard model with nearest

neighbor hopping, it is applicable to any diagrammatic expansion with arbitrary

time-independent potential, dimensionality and dispersion, as long as the analytic

representation of the Green’s functions is known.

Essential to our algorithm is to first produce the Feynman diagrams and translate

them into their corresponding symbolic forms. We introduced an array representation

to express the terms in the perturbative expansion. Algorithmic Matsubara integra-

tion, which is in fact an iterated application of the standard residue theorem, was

implemented to evaluate the Matsubara sums of each diagram. In order to improve

the efficiency of the numerical integrations of the momenta, we utilized the analytic
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pole structure of the diagrams to systematically construct the sign-blessed diagram

groups. Finally, we used Monte Carlo integration procedures to evaluate the momenta

sums of the truncated series.

Important features of our approach can be summarized as follows. First, the

temporal summations are performed symbolically, i.e., the temporal sums can be

evaluated exactly (up to machine precision) and as the result statistical error and

truncation error (due to introducing a cut-off) are absolutely zero. Second, since

the analytic representation of the momenta integrands for each diagram is available,

the analytic continuation is imposed symbolically, which eliminates the need for the

numerical analytic continuation processes. Thus, for the first time, we present reliable

numerical results for the response functions, such as the Green’s functions and spin

susceptibilities, of the 2D Hubbard model. Third, our procedure can be used to

evaluate the diagrams at any temperature since it is fully analytic and does not

suffer from sampling issues in typical Monte Carlo routines. Fourth, the sign problem

was minimized by using graph invariant transformations, which are based upon the

analytic form of the Green’s functions. Altogether we can substantially reduce the

computational cost to obtain reasonable statistical errors.

We therefore believe our methodology opens new avenues of advancement for con-

densed matter and high energy physics without introducing any additional conceptual

complexity. As such we are excited for the prospect of the application of the method

to other lattice systems and interactions.

6.2 Future work

Our method is in principle applicable to any diagrammatic expansion in condensed

matter and high energy physics as long as the analytic representations of the diagrams
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are known. Therefore, our method can be used to deal with a variety of different

classes of problems where the perturbation theory can be used. Examples of such

problems are summarized as follows:

1. Our formalism can be easily applied to study the perturbative expansions of self-

energy and susceptibility functions for multi-band Hubbard-like models [1] with

diagonal hopping matrices. The simplest examples of such systems are mass-

imbalanced Hubbard model [2] and Hubbard model in the presence of a Zeeman

term [3–8]. In cases with non-diagonal hopping matrices one can conceptually

use the method, however, since the expression of the bare Green’s functions are

different from the single-band model, slight modifications should be imposed.

2. The polaron problem was the first problem solved by DiagMC methods in Mat-

subara space [9]. Our method with minor modifications can be applied to this

problem to evaluate the perturbative expansion on the real frequency axis.

3. AMI methodology can be also used to evaluate the perturbative expansions

of multi-orbital (molecular) Hubbard models [10], although the diagrammatic

expansion is different and instead of momenta sums one deals with sums over

orbitals.

4. One of the disadvantages of working in the bare diagrammatic schemes (as we

did in this project) is the poor convergence rate of the expansions, therefore,

evaluating the expansion in high-coupling regimes, i.e., large U and low T , is

a formidable task. For this reason other diagrammatic schemes such as shifted

action DiagMC have been recently proposed [11]. Since in this scheme the ex-

pansions are constructed with respect to renormalised Green’s functions (which

have similar analytic structure as the bare Green’s functions) our approach is
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still applicable and can be utilized to evaluate the self-energy and susceptibility

functions on both the imaginary and real frequency axes.
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Appendix A

Residue theorem

Assume a complex function h(z) defined on the complex plane. The poles of h(z) are

denoted by z0. We first consider the following contour integral:

J =
∮
C

h(z)f(z) dz, (A.1)

where f is Fermi distribution function and C is a circle with infinite radius. If

|h(z)f(z)| decreases faster than |z|−1, Jordan’s lemma [1] implies that J = 0. The

contour C encloses all of the poles of h(z) as well as those of f(z), so residue theorem

leads to

∑
zf

Res[h(z)f(z)]zf +
∑
z0

Res[f(z)h(z)]z0 = 0, (A.2)

where zf = i(2n+ 1)π/β are the poles of Fermi function and

Res[f(z)]zf = lim
z→zf

z − zf
eβz + 1 = lim

z→zf

1
βeβz

= − 1
β
. (A.3)
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Substituting Eq. (A.3) in Eq. (A.2) we obtain

1
β

∑
iνn

h(iνn) =
∑
{z0}

Res[f(z)h(z)]z0 . (A.4)
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Appendix B

Necessity of AMI in evaluation of

Matsubara summations: an

instructive example

We consider the bare bubble as the simplest diagram in the diagrammatic expansion

of the susceptibility functions. The momenta integrand of the diagram is given by

I = 1
β

∑
νn

G0(iνn,k)G0(iνn − iΩm,k− q), (B.1)

where iνn = (2n + 1)π/β is the internal frequency, iΩm = 2mπ/β is the external

frequency, k is the internal momenta and q is the external momenta. We plot the

momenta integrand of polarization function denoted by I in Fig. B.1 and compare

the AMI result with that of naive Matsubara summation. The figure shows that

AMI is probably essential to achieve a reliable result. This simple example suggests

that by choosing a large enough cut-off number nc, a reliable result will be obtained,
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Figure B.1: Left: Imaginary part, and Right: Real part of the momenta integrand
of the bare bubble. We set µ = 0, β = 5, k = (0, 0), and q = (π/3, π, 3). While the
imaginary part of the naive sum approaches to the exact result (obtained by AMI) at
nc = 210, the real part convergence rate is poor.

however, in practice this could be computationally expensive. Therefore, using AMI

is necessary when one works in the frequency representation.
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