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Abstract

It is shown that the behavior of conflict-free Petri nets
with exponentially distributed firing times can be repre-
sented by labeled directed ”state” graphs in which labels
describe the probabilities of transitions between vertices of
the graph. For bounded Petri nets the corresponding state
graphs are finite, and are isomorphic to finite state Markov
chains, stationary descriptions can thus be obtained by stan-
dard techniques. An immediate application of such a model
is performance analysis of concurrent systems, and in partic-
ular queueing systems with exponentially distributed arrival
and service times. A simple example of an interactive com-
puter system model is used as an illustration of performance
evaluation.

1. INTRODUCTION

A Petri net [1,6,7,8] is known as an abstract, formal model
of communication between asynchronous components of a
system. The properties, concepts, and techniques of Petri
nets are being developed in a search of natural and simple
methods for describing and analyzing systems that may ex-
hibit asynchronous and concurrent activities. The major use
of Petri nets has been the modeling of systems of events in
which it is possible for some events to occur concurrently
but there are constraints on the concurrence, precedence, or
frequency of these occurences. Such a model, however, is not
complete enough for the study of systems performance since
no assumption is made on the duration of systems activities.
The timed Petri nets have been introduced by Ramchan-
dani [8] by assigning firing times to the transitions of Petri
nets. Sifakis [9] introduced another definition of a timed
Petri net by assigning time to places. Merlin and Farber [4]
discussed timed Petri nets where a time threshold and max-
imum delay were assigned to a transition to allow the incor-
poration of timeouts into protocol models. Recently Mol-
loy [5] introduced stochastic Petri nets in which transition
firing times are exponentially distributed random variables,
and the corresponding firing rates are assigned to transitions
of a net. Stochastic Petri nets are isomorphic to homoge-
neous Markov processes, their analysis, however, is based on
reachability sets which are generated without timing con-
siderations. Therefore, to obtain performance measures, an
additional token flow analysis is performed.

The method described in the paper is an extension of the
approach originated by Ramchandani and used to model
the performance of digital systems at the register transfer
level [10,11]. Firing rates of exponentially distributed fir-
ing times are assigned to transitions of a Petri net, and
a new continuous-time discrete-state description is intro-
duced which is isomorphic to continuous-time discrete-state
Markov chains. This directly provides such performance

measures as utilization of systems components, average
queue lengths, average waiting times and turnaround times
or average throughput rates, and at the same time preserves
the simplicity of model specification and offers automatic
generation of the state space.

The paper is organized in 3 main sections. Section 2 con-
tains definitions of basic concepts for marked Petri nets.
Timed Petri nets are introduced in section 3. Application
of timed Petri nets to performance evaluation is discussed in
section 4.

2. MARKED PETRI NETS

A Petri net N is a triple N = (P, T,A) where:

P is a finite, nonempty set of places,

T is a finite, nonempty set of transitions,

n A is a set of directed arcs which connect places with
transitions and transitions with places, and:

∀t ∈ T ) ∃pi, pj ∈ P : (pi, t) ∈ A ∧ (t, pj) ∈ A.

A place p is an input (or an output) place of a transition
t iff there exists an arc (p, t) (or (t, p), respectively) in the
set A. The sets of all input and output places of a transition
t are denoted by Inp(t) and Out(t), respectively. Similarly,
the sets of input and output transitions of a place p are
denoted by Inp(p) and Out(p).

A place p is shared iff it is an input place for more than
one transition. A net is conflict-free iff it does not contain
shared places. Only conflict-free Petri nets are considered
in this paper. Some other classes of Petri nets are discussed
elsewhere.

A marked Petri net M is a pair M = (N,m) where:

N is a Petri net, N = (P, T,A),

m is an initial marking function which assigns a nonnegative
integer number of so called tokens to each place of the
net, m : P → {0, 1, ...}.

Let any function m : P → {0, 1, ...} be called a marking
of a net N = (P, T,A).

A transition t is enabled by a marking m iff every input
place of this transition contains at least one token. The set of
all transitions enabled by a marking m is denoted by E(m).

Every transition enabled by a marking m can fire. When
a transition fires, a token is removed from each of its input
places and a token is added to each of its output places. This
determines a new marking in a net, a new set of enabled
transitions, and so on.

A marking mj is directly reachable from a marking mi in
a net N, mj ← mi, iff there exists a transition t enabled by
the marking mi, t ∈ E(mi), such that
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∀p ∈ P : mj(p) =

{

mi(p)− 1, if p ∈ Inp(t)−Out(t),
mi(p) + 1, if p ∈ Out(t)− Inp(t),
mi(p), otherwise.

A marking mj is (generally) reachable from a marking mi

in a net N, mj
∗
← mi, if there exists a sequence of markings

(mi0mi1mi2 ...mik ) such that mi0 = mi, mik = mj , and each
markingmiℓ is directly reachable from the markingmiℓ−1

for
ℓ = 1, ..., k.

A set M(M) of reachable markings of a marked Petri net
M = (N,m) is the set of all markings which are reach-
able from the initial marking m (including

m
), M(M) =

{m | m
∗
← m}.

A marked net M is bounded if there exists a positive in-
teger K such that each marking in the set M(M) assigns at
most K tokens to each place of the net

∃K > 0 ∀m ∈M(M) ∀p ∈ P : m(p) ≤ K.

If a marked net M is bounded, its reachability set M(M)
is finite. Only bounded Petri nets are considered in this
paper.

An enable function of a marking m in a net N is any
function em : T → {0, 1, ...} such that

∀t ∈ T : min
p∈Inp(t)

(m(p) ∗ em(t)) = 0,

i.e., any function which indicates (by nonzero values) all
those transitions which can fire simultaneously (and some
of the transitions may fire ”several times”). In general case,
when a net contains conflicts, there may be several different
enable functions for the same marking m. For conflict-free
nets, however, for each marking m there exists exactly one
enable function which is determined by

∀t ∈ T : em(t) = min
p∈Inp(t)

(m(p)).

3. TIMED PETRI NETS

In a timed Petri net, each transition tt@ takes a positive
time to fire. When a transition tt@ is enabled, a firing can be
initiated by removing a token from each of t’s input places.
This token remains in the transition t for the ”firing time”,
and then the firing terminates by adding a token to each of
t’s output places (sometimes this is called a three–step firing
as opposed to one–step instantaneous firing of marked nets).
Each of the firings is initiated in the same instant of time in
which it is enabled. If a transition is enabled while it fires,
a new, independent firing can be initiated. For conflict-free
nets all enabled transitions immediately initiate their firings
since each marking of a net uniquely determines the enable
function. If a net contains conflicts, and there are several
different enable functions for the same marking, the selec-
tion of an actual enable function is usually a random process
which can be described by corresponding probabilities.

The operation of a timed Petri net can thus be consid-
ered as taking place in ”real time”, and it is assumed that
it starts at the time τ = 0. At this moment the firings indi-
cated by the enable function e0 are initiated and the tokens
are removed from the corresponding input places. Then, af-
ter the time determined by the smallest ”firing time” of the
transitions which initiated firings, the tokens are deposited

in appropriate output places creating a new marking, a new
set of enabled transitions, and so on.

The firing times of transitions can be described in several
ways. In D-timed Petri nets [3,8,10,11] they are determinis-
tic (or constant), i.e., there is a positive (rational) number
assigned to each transition of a net. In M-timed Petri nets
(or stochastic Petri nets [5]), the firing times are exponen-
tially distributed random variables, and the corresponding
firing rates are assigned to transitions of a net. The memo-
ryless property of exponential distributions is the key factor
in analysis of M-timed Petri nets.

An M-timed Petri net T is a pair T = (M, r) where:

M is a marked Petri net, M = (N,m0), N = (P, T,A),

r is a firing rate function which assigns a positive real num-
ber r(t) to each transition t of the net, r : T → R+, and
R+ denotes the set of positive real numbers; the firing
time of a transition t is a random variable v(t) with the
distribution function

Prob(v(t) > x) = e−r(t)∗x, x > 0.

The memoryless property of exponential distributions
means that if the duration v of a certain activity (e.g., the
firing time) is distributed exponentially with parameter r,
and if that activity is observed at time y after its beginning,
then the remaining duration of the activity is independent
of y and is also distributed exponentially with parameter r:

Prob(v > y + x | v > y) = Prob(v > x) = e−r∗x.

The exponential distribution is the only continuous distri-
bution with that property.

Also, if v and w are the durations of two independent si-
multaneous activities a and b, distributed exponentially with
parameters q and r, respectively, then the time interval u un-
til the first completion of an activity (a or b) is distributed ex-
ponentially with parameter (q+ r), and the probability that
the activity a will complete first is equal to q/(q + r), while
the same probability for the activity b is equal to r/(q + r).
These results can be generalized in an obvious way to any
number of activities.

A state s of an M-timed Petri net T is a pair of functions
s = (m, f) where:

m is a marking function, m : P → {0, 1, ...},

f is a firing function which indicates (for each transition
of the net) the number of active firings, i.e., the num-
ber of firings which have been initiated but are not yet
terminated, f : T → {0, 1, ...}.

The initial state s0 of a conflict-free net T is a pair s0 =
(m0, f0) where f0 is the enable function e0, and the marking
m0 is defined by

∀p ∈ P : m0(p) = m(p)−
∑

t∈Out(p)

f0(t).

A state sj = (mj , fj) is directly tk-reachable from the
state si = (mi, fi), sj ← si, iff the following conditions are
satisfied:

1. fi(tk) > 0,

2. ∀p ∈ P : mij(p) = mi(p) +

{

1, if p ∈ Out(tk),
0, otherwise,

3. ∀p ∈ P : mj(p) = mij(p)x−
∑

t∈Out(p)
eij(t),
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4. ∀t ∈ T : fj(t) = fi(t) + eij(t)−

{

1, if t = tk,
0, otherwise.

The state sj which is directly tk-reachable from the state
si, is thus obtained by the termination of the tk firing (1),
updating the marking of a net (2), and then initiating new
firings (if any) which correspond to the enable function eij
(3 and 4).

Similarly as for marked nets, a state sj is (generally) reach-
able from a state si if there is a sequence of directly reachable
states from the state si to the state sj . Also, a set S(T) of
reachable states is defined as the set of all states of a net T
which are reachable from the initial state s0 (including sO).
For bounded nets the sets of reachable states are finite.

A state graph G of an M-timed Petri net T is a labeled
directed graph G(T) = (V,D, b) where:

V is a set of vertices which is equal to the set of reachable
states of the net T, V = S(T),

D is a set of directed arcs, D ⊂ V × V , such that (si, sj) is
in D iff sj is directly reachable from si,

b is a labeling function which assigns the probability of
transition from si to sj to each arc (si, sj) in the set
D, b : D → [0, 1], in such a way that if sj is directly
tk-reachable from si, then

b(si, sj) = r(tk) ∗ fi(tk)/
∑

t∈T
r(t) ∗ fi(t).

It can be observed that state graphs of bounded M-timed
Petri nets are isomorphic to finite-state Markov chains and
the states of Markov chains directly correspond to the states
of M-timed Petri nets.

Example. For a very simple Petri net shown in Fig.1a (as
usual, places are represented by circles, transitions by bars,
the initial marking by dots inside circles, and the firing rate
function is given as an additional description of transitions),
the state graph is shown in Fig.1b, and the derivation of the
set S(T) of reachable states is shown in Tab.1.

mi fi mij emij

si 1 2 3 1 2 tk 1 2 3 1 2 sj
0 0 0 0 1 1 1 1 0 1 0 1 1

2 0 1 0 0 0 2
1 0 0 1 0 2 2 0 1 1 1 0 0
2 0 1 0 1 0 1 1 1 1 1 1 0

Tab.1. The set of reachable states for m = [1, 1, 1].

For the same net, and for initial marking m = [1, 4, 1], the
state graph is shown in Fig.1c, and the set S(T) of reachable
states is derived in Tab.2.

mi fi mij emij

si 1 2 3 1 2 tk 1 2 3 1 2 sj
0 0 3 0 1 1 1 1 3 1 1 1 1

2 0 4 0 0 0 2
1 0 2 0 1 2 1 1 2 1 1 1 3

2 0 3 0 0 0 0
2 0 4 0 1 0 1 1 4 1 1 1 0
3 0 1 0 1 3 1 1 1 1 1 1 4

2 0 2 0 0 0 1
4 0 0 0 1 4 1 1 0 1 0 1 5

2 0 1 0 0 0 3
5 0 0 1 0 5 2 0 1 1 1 0 4

Tab.2. The set of reachable states for m = [1, 4, 1].

Fig.1. Timed Petri net and its state graphs.

The steady-state probabilities x(s) of the states s ∈ S(T)
are obtained from the state-transition probabilities by solv-
ing a system of simultaneous linear equations

{
∑

(sj ,s−i)∈D
b(sj , si) ∗ x(sj) = x(si); i = 1, ..., K;

∑

0≤i≤k
x(si) = 1

where K + 1 is the number of states in the set S(T).
Moreover, the normalized probabilities y(s) which de-

scribe the probability that at any moment of time the net
T is in the state s, s ∈ S(T), can be obtained from the
steady-state probabilities x(s):

y(s) = x(s) ∗ h(s)/
∑

u∈s(T)

x(u) ∗ h(u),

where h(s) is the average time spent in the state s = (m, f):

h(s) = 1/
∑

t∈T

r(t) ∗ f(t).

For the two initial markings introduced in the previous ex-
ample, the steady-state probabilities x(s) and the normalized
probabilities y(s) are given in Tab.3 and Tab.4, respectively.

si x(si) h(si) y(si)

0 0.500 0.167 0.271
1 0.417 0.500 0.675
2 0.083 0.200 0.054

Tab.3. Steady-state probabilities for m = [1, 1, 1].

si x(si) h(si) y(si)

0 0.046 0.167 0.055
1 0.134 0.143 0.137
2 0.008 0.200 0.011
3 0.255 0.125 0.228
4 0.359 0.111 0.285
5 0.199 0.200 0.285

Tab.4. Steady-state probabilities for m = [1, 4, 1].
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4. PERFORMANCE EVALUATION

The simplest closed-network model of an interactive sys-
tem is shown in Fig.2a. It contains one central server with
a queue of waiting jobs, and n terminals. To simplify the
solution, it is assumed that all jobs are statistically identi-
cal, that the jobs are served by the First-Come-First-Served
discipline, and that the service times and the terminal times
(or ”thinking” times) are exponentially distributed. Under
these assumptions the number of jobs in the system (i.e., in
the waiting queue and in the server) is a finite continuous-
time Markov chain with n+1 states, and its state-transition-
rate diagram is shown in Fig.2b. Using well known formulas
[2] and the average service time equal to 0.2 time unit, the
average terminal time equal to 1 time unit (or the service
rate equal to 5 jobs/time unit and the terminal rate equal to
1 job/time unit), and n equal to 2, the numerical values of
some performance measures are as follows:

the equilibrium probability that the system is idle 0.675
the utilization of the system 0.325
the average throughput rate 1.625
the average turnaround time 1.231
the average time spent in the system 0.231

On the other hand, the same system can be modeled by
the timed Petri net shown in Fig.1a. The transition @t sub
1@ corresponds to the central server (with the service rate
or the firing rate equal to 5), the place p2 models the waiting
queue, the transition @t sub 2@ corresponds to the termi-
nals (with the terminal rate or the firing rate equal to 1),
and the initial number of tokens in the places p1 and p2
represent the number of terminals in the system, n. The
remaining place p3 and its initial number of tokens model
the number of servers, in this case 1. For the initial mark-
ing m = [1, 1, 1] there are 3 states of the net (Tab.1) and 3
states of the Markov chain since n = 2 (Fig.2b). The state
s0 corresponds to the Markov state 1 (no waiting jobs and
busy server), the state s1 to the Markov state 0 (idle server),
and the state s2 to the Markov state 2 (one waiting job and
busy server). Since the server is idle in the state s1 only, the
stationary probability that the system is idle is equal to the
normalized probability y(s1) = 0.675 (Tab.3). Then the uti-
lization of the system is immediately 1− y(s1) = 0.325. The
average throughput rate can be obtained from the server’s
load. Since the average service time is equal to 0.2 time units,
and the server utilization (for 2 terminals) is equal to 0.325,
then the average througput rate is equal to 0.325/0.2=1.625
jobs per time unit. Since there are 2 terminals, the aver-
age turnaround time is equal to 2/1.625=1.231 time unit.
Finally, since the average terminal time is equal to 1 time
unit, the average time spent in the system is equal to 1.231-
1=0.231 time unit which means that the average waiting time
is only 0.231-0.2=0.031 time unit.

Similarly, for n = 5 terminals, the same performance mea-
sures, obtained from Tab.2 and Tab.4, are as follows:

the equilibrium probability that the system is idle 0.285
the utilization of the system 0.715
the average throughput rate 3.575
the average turnaround time 1.399
the average time spent in the system 0.399
the average waiting time 0.199

Some other performance indices can be obtained in a very
similar way.

5. CONCLUDING REMARKS

Even the very simple example of an interactive system
modeling illustrates the characteristic features of timed Petri
nets. Models are usually quite simple, and their parameters
correspond in a very natural way to components or activities
of the modeled systems (e.g., the number of users, the num-
ber of processors). The state space can easily be generated
from model specifications, and since the states of the mod-
eling net directly correspond to the ”states” of the modeled
system, a verification step is provided which is not available
in analytical modeling. .sp0.5 The class of timed Petri nets
discussed in the paper is restricted in several ways (conflict-
free, bounded nets), some of the restrictions, however, can be
removed easily by appropriate extensions of the formalism.
In fact, free-choice nets, and even nets with conflicts, can be
handled in a very similar way provided the probabilities of
conflicting firings are known and included in the state de-
scription. Also, some extensions of the (basic) Petri nets [7]
require only minor modifications of the formalism given in
sections 2 and 3, but can significantly increase the ”modeling
power” of extended timed nets.

REFERENCES

1. T. Agerwala, ”Putting Petri nets to work”; IEEE Com-
puter Magazine 1979(12)12, pp.85-94.

2. D. Ferrari, ”Computer systems performance evaluation”;
Prentice-Hall 1978.

3. J. Magott, ”Performance evaluation of concurrent sys-
tems using Petri nets”; Information Processing Letters
1984(18)1, pp.7-13.

4. P.M. Merlin, D.J. Farber, ”Recoverability of communi-
cation protocols - implications of a theoretical study”;
IEEE Trans. on Communications 1976(24)9, pp.1036-
1049.

5. M.K. Molloy, ”Performance analysis using stochastic
Petri nets”; IEEE Trans. on Computers 1982(31)9,
pp.913-917.

6. J.L. Peterson, ”Petri nets”; ACM Computing Surveys
1977(9)3, pp.223-252.

7. J.L. Peterson, ”Petri net theory and the modeling of
systems”, Prentice-Hall 1981.

8. C. Ramchandani, ”Analysis of asynchronous concurrent
systems by timed Petri nets”; Project MAC Techni-
cal Report MAC-TR-120, Massachussetts Institute of
Technology, Cambridge MA 1974.

9. J. Sifakis, ”Use of Petri nets for performance evaluation”;
in: Measuring, modelling and evaluating computer sys-
tems, North-Holland 1977, pp.75-93.

10. W.M. Zuberek, ”Timed Petri nets and preliminary
performance evaluation”; Proc. IEEE 7-th Annual
Symp. on Computer Architecture, La Baule, France
1980, pp.89-96.

11. W.M. Zuberek, ”Application of timed Petri nets to
analysis of multiprocessor realizations of digital filters”;
Proc. 25 Midwest Symp. on Circuits and Systems,
Houghton MI 1982.


