
ACM Annual Computer Science Conference (CSC’88), Atlanta GA, 23–25 February 1988, pp.239–248.

Copyright c© 1988 ACM (DOI 10.1145/322609.322648).

ON GENERATION OF STATE SPACE FOR TIMED PETRI NETS

W.M. Zuberek

Department of Computer Science

Memorial University of Newfoundland

St. John’s, Canada A1C–5S7

A b s t r a c t

It is shown that the behavior of timed Petri nets with
deterministic firing times (M–timed nets) can be described
within one uniform formalism. Moreover, for both classes
of nets the state spaces are homogeneous semi-Markov
chains, the stationary probabilities of states and many per-
formance measures can thus be obtained by standard tech-
niques developed for analysis of Markov processes. Be-
cause of sparsity of nets as well as corresponding systems
of equilibrium equations, list structure representations are
proposed, and a general procedure for generation of the
state space is outlined to show the required processing of
list structures.

1. INTRODUCTION

The major application of Petri nets [1,3,17] is model-
ing of systems of events in which it is possible for some
events to occur concurrently but there are constraints on
the precedence, concurrence or frequency of these occur-
rences [3,13,18]. Multiprocessor and distributed systems,
communication networks and data flow architectures are
just a few examples of such systems. It appears the tradi-
tional methods developed for analysis of sequential systems
are inadequate for analysis of systems exhibiting concur-
rency and synchronization of independent, asynchronous
activities. A basic Petri net, however, is not complete
enough for the study of systems performance since no as-
sumption is made on the duration of systems activities.
Several concepts of timed Petri nets have been proposed
by assigning firing times to the transitions and/or places
of Petri nets [2,7,10,11,14,15,19].
This paper is a continuation of the approach originated

by Ramchandani [14]; the firing times are thus associ-
ated with transitions of a net, and tokens are removed
from the transitions’ input places at the beginning of
firings. It is shown that the behavior of two very different
classes of timed Petri nets, D–timed and M–timed nets, can
be described within one, uniform formalism with only a few

Note: This version of the paper is derived from the original
text by using a different text processing system. A few
minor corrections have been made during the reformatting.

class-dependent details. In D–timed Petri nets [7,14,15,19]
the firing times are deterministic (or constant), i.e., there
is a positive (rational) number assigned to each transition
of a net which determines the “duration” of its firings. In
M–timed Petri nets (or stochastic Petri nets) [2,11,21] the
firing times are exponentially distributed random variables,
and the corresponding firing rates are assigned to transi-
tions of a net.
The paper also shows that the set of reachable states

(or the state space) of timed Petri nets can be derived
automatically from net specifications, and it outlines an
algorithm that performs such a derivation. There are sev-
eral possible approaches to generation of the state space.
The classical approach uses matrix computations which di-
rectly implement the required steps of derivations. This
approach is particularly attractive for stochastic nets since
their analysis is based on the set of reachable markings
which can be generated in a rather simple way. Razouk and
Hirschberg [16] used bit vectors (for analysis of safe nets) to
obtain very efficient implementation of their Reachability
Graph Builder. In some cases [5,6,12,20] the net is evalu-
ated through simulation rather than generation of the state
space, then, however, the transient behavior may distort
the stationary results, and there is no guarantee that the
events with small or very small probabilities will occur even
in very long runs. The approach presented in this paper is
based on the observation that the nets as well as their state
graphs are usually very sparse; in nets with tens or hun-
dreds of places and transitions, at each moment of time
there are only a few “active” places and transitions, i.e.,
only a few elements that “need attention”; the remaining
part of the net remains inactive and its description does
not change. List structures are proposed to take advan-
tage of this sparsity. It may seem that operations on such
structures are much more complex than similar operations
performed on vectors. This is certainly true, it should be
observed, however, that these more complex operations are
performed on selected elements only, and that the sparsity
of processed elements usually more than compensates for
the increased complexity of operations.
This paper is organized in 6 main sections. Section 2

recalls the basic concepts for marked Petri nets. Formal
descriptions of D–timed nets and M–timed nets are given
in sections 3 and 4, respectively. Section 5 presents the list
structure representation of nets in the TPNEV package for
evaluation of timed Petri nets, and section 6 contains an
outline of list processing routines that are used for gener-
ation of set of reachable states. Some simple examples of
D–timed and M–timed nets are given in section 7.

On generation of state space for timed Petri nets 240

2. MARKED PETRI NETS

A (generalized) Petri net N is a 6-tuple N = (P, T,
A,w,B,C) where:

P is a finite, nonempty set of places,

T is a finite, nonempty set of transitions,

A is a set of directed arcs which connect places with tran-
sitions and transitions with places, A ⊆ P ×T ∪T ×P ,

w is a weight function which assigns a positive integer
“weight” to each arc of the net, w : A→ {1, 2, ...},

B is a (possibly empty) set of inhibitor arcs, B ⊂ P × T ,
and A and B are disjoint sets,

C is a (possibly empty) set of interrupt arcs, C ⊆ B.

medskip It should be noted that the distinction between
interrupt and inhibitor arcs becomes important for times
nets, however, it is convenient to introduce these two types
of arcs from the very beginning. For ordinary nets (i.e.,
nets without time), interrupt arcs are just inhibitor arcs.
As usual, Inp(p), Out(p), Inp(t), Out(t), Inh(t) and

Int(t) denote the sets of input and output transitions of
a place p, the sets of input and output places of a transi-
tion t, and the sets of inhibiting and interrupting places of
t, respectively. The notation is extended in the usual way
to sets of places and transitions.
A place p is shared iff it is an input place for more than

one transition. A shared place p is guarded iff for each two
different transitions sharing p there exists another place
p ⊂ k which is in the input set of one and in the inhibitor
set of the other of these two transitions. A place p is free-
choice iff the input sets of transitions sharing p are identical
and the weights of corresponding arcs are equal. A net is
free-choice iff each shared place is either guarded or free-
choice.
The relation of “sharing a free-choice place” is in fact

an equivalence relation in the set of transitions T , hence it
determines a partition of T into a set of free-choice equiv-
alence classes denoted by Free(T) = {T1, T2, ..., Tk}.

A marked generalized Petri net M is a pair M = (N,m0)
where:

N is a generalized Petri net, N = (P, T,A,w,B,C),

m0 is the initial marking function, m0 : P → {0, 1, ...}.

Let any function m : P → {0, 1, ...} be called a marking
of a net N = (P, T,A,w,B,C).
A transition t is enabled by a marking m iff every t’s

input place p ∈ Inp(t) contains at least w(p, t) tokens, i.e.,
m(p) ≥ w(p, t), and every t’s inhibiting place p ∈ Inh(t)
contains zero tokens. The set of all transitions enabled by
m is denoted by En(m).
Every transition enabled by a marking m can fire. When

an enabled transition t fires, tokens are removed from t’s
input places in numbers corresponding to the weights of
input arcs, and similarly, the weights of t’s output arcs
determine the numbers of tokens added to output places.
A firing of an enabled transitions is thus a transformation of

marking functions. A marking mj is directly reachable (or
tk–reachable) from a markingmi iff there exists a transition
tk ∈ En(mi), such that

∀(p ∈ P)mj(p) =



















mi(p)− w(p, tk), if p ∈ Inp(tk)−Out(tk),
mi(p) + w(p, tk), if p ∈ Out(tk)− Inp(tk),
mi(p)− w(p, tk) + w(tk, p),

if p ∈ Inp(tk) ∩Out(tk),
mi(p), otherwise.

Since the firings in free–choice equivalence classes are
selected in a random way, it is convenient to describe all
possibilities of different firings as a function of the marking
m.
A selection function of a marking m in a net N is any

function g : T → {0, 1, ...} such that:

(1) there exists a sequence of transitions u =
(ti1 , ti2 , ..., tik) in which tij ∈ En(mij−1

) for j = 1, ...k
and for mi0 = m, where

∀(p ∈ P)mij (p) = mij−1
(p) −

{

w(p, tij), if p ∈ Inp(tij),
0, otherwise,

(2) the set of transitions enabled by mik , En(mik), is
empty,

(3) for each t ∈ T the number of occurrences of t in the
sequence u is equal to g(t).

The set of all selection functions of a marking m is de-
noted by Sel(m).

3. D–TIMED PETRI NETS

In timed Petri nets, each transition t takes a positive
time to fire. When a transition t is enabled, a firing can
be initiated by removing tokens from t’s input places. The
tokens remain in the transition t for the “firing time”, and
then the firing terminates by adding tokens to each of t’s
output places. Each of the firings is initiated in the same
instant of time in which it is enabled; timed nets correspond
thus to “maximally concurrent evolutions” in nets [8]. If
a transition is enabled while it fires, a new, independent
firing can be initiated.
It should be observed that the mechanism of firing in

timed Petri nets is quite different from that in stochastic
nets [2,11]; consequently these two classes of Petri nets have
rather different properties.
In timed Petri nets with interrupt arcs, a firing of a tran-

sition can be discontinued. If, during a firing period of a
transition t, at least one of t’s interrupting places becomes
nonempty (i.e., it receives a token as a result of a termina-
tion of another firing), the firing of t ceases and the tokens
removed from t’s input places at the beginning of firing,
are returned to their original places.
A net N = (P, T,A,w,B,C) is simple if input sets of

transitions with nonempty interrupting sets do not contain
interrupting places

∀(t ∈ T) Int(t) = Φ ∨ Int(Inp(t)) = Φ

On generation of state space for timed Petri nets 241

where Φ denotes the empty set. Simple nets do not al-
low “propagation” of interrupts when an interrupted tran-
sition, through its input places, interrupts another transi-
tion. Only simple timed Petri nets are considered in this
paper since in most practical cases this is sufficient; non-
simple nets can be described in a very similar way, with a
minor modification of state–transition formulas.
In D–timed Petri nets [22] the firing times of transitions

are deterministic (or constant), i.e., there is a nonnegative
number assigned to each transition of a net which deter-
mines the duration of transition’s firings. Since the mem-
oryless property does not apply to such nets, the state de-
scription must explicitly include the “history” of firings.
A D–timed Petri net T is a triple T = (M, c, f) where:

M is a free–choice marked Petri net, M = (N,m0), N =
(P, T,A,w,B,C),

c is a choice function which assigns a “free–choice” prob-
ability to each transition of a net in such a way that

∀(Ti ∈ Free(T))
∑

t∈Ti

c(t) = 1,

f is a firing time function which assigns a nonnegative
real number f(t) to each transition t of the net, f :
T → R⊕ and R⊕ denotes the set of nonnegative real
numbers.

Since in timed nets tokens are distributed in places as
well as in (firing) transitions, the “state” of a timed net is
defined as a triple of functions, one describes the distribu-
tion of tokens in places, the second distribution of tokens in
(firing) transitions, and the third one provides a “history”
of transition’s firings.
A state s of a D–timed Petri netT is a triple s = (m,n, r)

where:

m is a marking function, m : P → {0, 1, ...},

n is a firing–rank function, n : T → {0, 1, ...},

r is a remaining–firing–time function which assigns the re-
maining firing time to each independent firing (if any)
of a transition, i.e., if the firing rank of a transition
t is equal to k, n(t) = k, the remaining–firing–time
function r(t) is a vector of k nonnegative nondecreas-
ing real numbers denoted by r(t)[1], r(t)[2], ..., r(t)[k];
r is a partial function and it is undefined for all those
transitions t for which n(t) = 0.

An initial state si of a net T is a triple si = (mi, ni, ri)
where ni is a selection function from the set Sel(m0), ni ∈
Sel(m0), the remaining–firing–time function is equal to the
firing times f(t) for all those transitions t for which ni > 0

∀(t ∈ T) ri(t)[k] =

{

f(t), if ni(t) > 0 ∧ 1 ≤ k ≤ ni(t),
undefined, otherwise;

and the marking mi is defined as

∀(p ∈ P) mi(p) = m0(p)
∑

t∈Out(p)

w(p, t) ∗ ni(t).

A free-choice net T may have several different initial
states.
A state sj = (mj , nj , rj) is directly reachable (or gk–

reachable) from the state si = (mi, ni, ri), iff:

(1) gk ∈ Sel(mioj),

(2) ∀(p ∈ P) mj(p) = mioj(p)−
∑

t∈Out(p)

gk(t) ∗ w(p, t),

(3) ∀(t ∈ T) nj(t) = ni(t)− ei(t)− dij(t) + gk(t),

(4) ∀(t ∈ T) rj(t)[l] =















ri(t)[l + ei(t) + dij(t)]− hi, if
1 ≤ l ≤ ni(t)− ei(t)− dij(t),

f(t), if gk(t) > 0 ∧ ni(t)−
ei(t)− dij(t) < l ≤ nj(t),

where:

(5) ∀(p ∈ P) mioj(p) = mio(p) +
∑

t∈Out(p)

dij(t) ∗ w(p, t),

(6) ∀(p ∈ P) mio(p) = mi(p) +
∑

t∈Inp(p)

ei(t) ∗ w(p, t),

(7) ∀(t ∈ T) dij(t) = min(ni(t)− ei(t),
∑

p∈Int(t)

mio(p)),

(8) ∀(t ∈ T) ei(t) =















l, if ni(t) ≤ l ∧ ri(t)[1] = ...
... = ri(t)[l] = hi ∧ (ni(t) = l∨

ri(t)[l + 1] > hi),
0, otherwise;

(9) hi = mint∈T∧ni(t)>0(ri(t)[1]).

A state sj is (generally) reachable from a state si if there
is a sequence of directly reachable states from the state si
to the state sj . A set S(T) of reachable states is defined
as the set of all states of a net T which are reachable from
the initial states of the net T.
A state graph G of a D–timed Petri net T is a labeled

directed graph G(T) = (V,D, h, q) where:

V is a set of vertices which is equal to the set of reachable
states of the net T, V = S(T),

D is a set of directed arcs, D ⊂ V × V , such that (si, sj)
is in D iff sj is directly reachable from si,

h is a node labeling function which assigns the holding
time of a state s to each vertex s ∈ V , h : V → R⊕,
in such a way that if s = (m,n, r) then

h(s) = mint∈T∧n(t)>0(r(t)[1]),

q is an arc labeling function which assigns the probability
of transition from si to sj to each arc (si, sj) in the
set D, q : D → [0, 1], in such a way that if sj is gk–
reachable from si, then

q(si, sj) =
∏

Tz∈Free(T)

a(Tz, gk)
∏

t∈Tz

c(t)gk(t),

where the coefficient a(Tz, gk) describes the number of
ways in which the selection function gk can be realized
in a free–choice class Tz ∈ Free(T). It can be deter-
mined as follows. Let an n–argument function ψ be
defined recursively:

(1) ψ(0, 0, ..., 0) = 1,

On generation of state space for timed Petri nets 242

(2) ψ(k1, k2, ..., kn) =
∑

1≤i≤n







ψ(k1, ..., ki − 1, ..., kn),
if ki > 0,

0, if ki = 0.

Then, for the class Tz = {tz1 , tz2 , ..., tzn}:

a(Tz, g) = ψ(g(tz1), g(tz2), ..., g(tzn)),

and, for any marking m

∑

g∈Sel(m)

∏

Tz∈Free(T)

a(Tz, g)
∏

t∈Tz

c(t)g(t) = 1.

It should be observed that state graphs of free–choice
Petri nets are discrete–time homogeneous semi–Markov
processes, the stationary probabilities of the states can thus
be obtained in the standard way [9], and then operational
analysis [4] can be used to evaluate the performance of a
modeled system.

4. M–TIMED PETRI NETS

In M–timed Petri nets [21] the firing times of transi-
tions are exponentially distributed random variables, and
their corresponding rates are assigned to transitions of a
net. Because of the memoryless property of the exponen-
tial distribution, the “history” of firings is immaterial, and
this simplifies the description of states and state transi-
tions.
An M–timed Petri net T is a triple T = (M, c, f) where:

M is a free–choice marked Petri net, M = (N,m0), N =
(P, T,A,w,B,C),

c is a choice function which assigns a “free–choice” prob-
ability to each transition of a net in such a way that

∀(Ti ∈ Free(T))
∑

t∈Ti

c(t) = 1,

f is a firing rate function which assigns the rate of firing
f(t) to each transition t of the net, f : T → R+, and
R+ denotes the set of positive real numbers; the firing
time of a transition t is a random variable x(t) with
the distribution function

Prob[x(t) > y] = e−f(t)∗y, y > 0.

A state s of an M–timed Petri net T is a pair s = (m,n)
where:

m is a marking function, m : P → {0, 1, ...},

n is a firing–rank function which indicates (for each tran-
sition of the net) the number of active firings, i.e., the
number of firings which have been initiated but are
not yet terminated, n : T → {0, 1, ...}.

An initial state si of a free–choice net T is a pair
si = (mi, ni) where ni is a selection function from the set
Sel(m0), ni ∈ Sel(m0), and the marking mi is defined by

∀(p ∈ P) mi(p) = m0(p)
∑

t∈Out(p)

ni(T) ∗ w(p, t).

A free–choice net T may have several different initial
states.
A state sj = (mj , nj) is directly reachable (or (tk, gl)–

reachable) from the state si = (mi, ni) iff:

(1) ni(tk) > 0,
(2) gl ∈ Sel(mikj),

(3) ∀(p ∈ P) mj(p) = mikj(p)−
∑

t∈Out(p)

gl(t) ∗ w(p, t),

(4) ∀(t ∈ T) nj(t) = ni(t)− ei(t)− dij(t) + gl(t),

where

(5) ∀(p ∈ P) mikj(p) = mik(p) +
∑

t∈Out(p)

dij(t) ∗ w(p, t),

(6) ∀(p ∈ P) mik(p) = mi(p) +
∑

t∈Inp(p)

ei(t) ∗ w(t, p),

(7) ∀(t ∈ T) dij(t) = min(ni(t)− ei(t),
∑

p∈Int(t)

mik(p)),

(8) ∀(t ∈ T) ei(t) =

{

1, if t = tk,
0, otherwise.

Similarly as for D–timed nets, a state sj is (generally)
reachable from a state si if there is a sequence of directly
reachable states from the state si to the state sj . Also, a
set S(T) of reachable states is defined as the set of all those
states which are reachable from the initial states of the net
T.
A state graph G of an M–timed Petri net T is a labeled

directed graph G(T) = (V,D, h, q) where:

V is a set of vertices which is equal to the set of reachable
states of the net T, V = S(T),

D is a set of directed arcs, D ⊆ V × V , such that (si, sj)
is in D iff sj is directly reachable from si in T,

h is a node labeling function which assigns the average
holding time of a state s to each vertex s ∈ V , h :
V → R⊕, in such a way that if s = (m,n) then

h(s) = 1/
∑

t∈T

f(t) ∗ n(t),

q is an arc labeling function which assigns the probability
of transitions from si to sj to each arc (si, sj) in the
set D, q : D → [0, 1], in such a way that if sj is tk, gl–
reachable from si, then

q(si, sj) =

h(si) ∗ f(tk) ∗ ni(tk)
∏

Tz∈Free(T)

a(Tz, gl)
∏

t∈Tz

c(t)gl(t).

Since for M–timed nets the holding times are exponen-
tially distributed, state graphs of free-choice M–timed Petri
nets are continuous-time homogeneous Markov chains.

On generation of state space for timed Petri nets 243

input
output

next

input
output

next

input
output

next

input
output

next

input
output

next

input
output

nextnet

t1 t2 t4 t5 t6t3

next

p4
next /

next /next
p1

/
p2

next /
p3

/

next /
p3

next /

next /

next

/

p3

next
p5

/
next

next
p5

/

next

next
p5

/

p4

p1

p4

p1

/

p2

Fig.2. List representation of T1.

5. NET REPRESENTATION

Existing programs that perform analysis and evaluation
of timed (and stochastic) Petri nets use quite different ex-
ternal specifications of nets [12,15,20]. Net description as-
sumed in the TPNEV program [23] is ‘transition oriented’,
i.e., Petri nets are specified as lists of transitions, and each
transition contains all parameters associated with it. The
syntax of net specifications in BNF notation is as follows:

<net> ::= Mnet (<transitions>)

| Dnet (<transitions>)

<transitions> ::= <transition>

| <transition> ; <transitions>

<transition> ::= <t-header> = <input-output-list>

<input-output-list> ::= <input-list>

| <input-list> / <output-list>

<input-list> ::= <arc> | <arc> , <input-list>

<output-list> ::= <arc> | <arc> , <output-list>

<arc> ::= <place> | <place> : <weight> | <place> -

<place> ::= <integer> | <name>

<weight> ::= <integer>

<t-header> ::= <t-ident> <t-time> <t-prob>

<t-ident> ::= # <integer> | # <name>

<t-time> ::= * <rational> | <empty>

<t-prob> ::= , <rational> | , <integer> / <integer>

| <empty>

<rational> ::= <integer> | <integer> . <integer>

Similarly, the initial marking function is specified as a
list of marked places:

<imarking> ::= mark (<marking list>)

<marking list> ::= <marked place>

| <marked place> , <marking list>

<marked place> ::= <place> | <place> : <count>

<count> ::= <integer>

Example: TPNEV description of the D–timed net
shown in Fig.1 (as usual, places are represented by circles,
transitions by bars, inhibitor and interrupt arcs by small
circles and dots instead of arrowheads, respectively, the ini-
tial marking function is represented by dots inside circles,
and the firing as well as the choice functions are given as
additional descriptions of transitions) is as follows:

Dnet (#1*0=1/2,4;
#2*10=2/3;
#3*0,0.1=3;
#4*5,0.9=3/1,5;

p1

p2

p3

p4

p5

t1

t2

t3

t4

t5 t6
0.1

0.9

10

0

0

20

0

5

Fig.1. D–timed Petri net T1.

#5*20=4,5-/1;
#6*0=4,5)

mark (1)

The internal list structure created by TPNEV during
processing of this description is sketched in Fig.2, and Fig.3
shows internal representation of a single transition with a
few more details. The weights of arcs are used to indicate
generalized (or multiple) arcs. Inhibitor arcs are indicated
by nonpositive weights, with interrupt arcs represented by
negative weights, and inhibitor non-interrupting arcs by
zeros.

next
t_id = 5
t_time = 20
t_prob = 1.0
input
output

next
p_id = 4
weight = 1

next

next
p_id = 1

p_id = 5
weight = −1

weight = 1

\

\

Fig.3. Internal representation of t5.

6. STATE SPACE GENERATION

In the following descriptions, a Pascal–like programming
notation is used, however, control structures are slightly
modified by explicit delimiters:

if <condition> then <statement list> fi

if <condition> then <statement list>
else <statement list> fi

while <condition> do <statement list> od

On generation of state space for timed Petri nets 244

Moreover, type consistency rules are assumed to be quite
flexible, and in many cases generic procedures are given in
order to simplify the description. Also, structured objects
enclosed by braces “{” and “}” are used more freely than
in (existing) Pascal-like languages.

States of a timed net are pairs of functions “mlist,flist”
where “mlist” represents the marking function and “flist”
describes the firing transitions; for M–timed nets, “flist”
represents the firing–rank function, while for D–timed nets
it also describes the remaining–firing–time (or shortly,
“rft”) function.

The graph of reachable states is generated by the follow-
ing procedure “stategraph(net,imark,sgraph)” where “net”
points to a list of transitions, “imark” points to a list of
marked places representing the initial marking function,
and “graph” returns the list of reachable states:

procedure stategraph (net,imark,sgraph);
begin selectset(net,imark,nil,sgraph);
nlist := sgraph;
while nlist 6= nil do
endfiring(nlist↑.mlist,nlist↑.flist,elist);
while elist 6= nil do
interrupt(elist↑.mlist,elist↑.flist,mlist,flist);
selectset(net,mlist,flist,slist);
while slist 6= nil do
search(sgraph,slist↑.mlist,slist↑.flist,node);
createarc(nlist↑.link,node);
slist := slist↑.next od;

elist := elist↑.next od;
nlist := nlist↑.next od

end;

in which “endfiring” creates a list “elist” of intermediate
states that correspond to terminations of the “next” firings,
“interrupt” performs all interruptions of firing transitions
and creates an updated state “mlist,flist”, the invocation
of “selectset” determines the set of states “slist” which cor-
respond to different selection functions applied to the state
“mlist,flist” in the net “net”, “search(list,elem,point)”
checks if the element “elem” is in the list “list”, and ap-
pends it to the list if it is a new element while “point” re-
turns a pointer to (appended or existing) element, and “cre-
atearc(node1,node2)” creates a labeled arc from “node1”
to “node2” (each node “node” contains a list of arcs
“node↑.link”).

The procedure “selectset” determines the set of selection
functions and creates a set “slist” of (intermediate) states
which are obtained by applications of selection functions to
the state “mlist,flist” in the net “net”:

procedure selectset (net,mlist,flist,slist);
begin slist := nil;
nlist := nil;
append(mlist,flist,nlist);
while nlist 6= nil do
enabled(net,nlist↑.mlist,tlist);
if tlist=nil then
append(nlist↑.mlist,nlist↑.flist,slist)

else while tlist 6= nil do
initiate(tlist↑.trans,nlist↑.mlist,nlist↑.flist,ml,fl);

search(nlist,ml,fl,point);
tlist := tlist↑.next od fi;

nlist := nlist↑.next od;
release(nlist)

end;

where a generic procedure “append(elem,list)” appends the
element “elem” to a list “list”.
The procedure “enabled” creates a list “tlist” of transi-

tions enabled by the marking function “mlist” in the net
“net”:

procedure enabled (net,mlist,tlist);
begin tlist := nil;
t := net;
while t 6= nil do
plist := t↑.input;
b := true;
while b and (plist 6= nil) do
val := plist↑.weight;
if (val > 0 and marked(mlist,plist↑.id,val)) or
(val ≤ 0 and not marked(mlist,plist↑ .id,0))

then plist := plist↑.next else b := false fi od;
if b then include(t↑.trans↑.id,1,tlist) fi;
t :=t↑.next od

end;

where the boolean procedure “marked” is true if the mark-
ing “mlist” assigns at least “val” tokens to the place
“plist↑.id” is false otherwise, and the generic procedure “in-
clude(elem,val,list)” checks if the element “elem” exists in
the list ”list” and either increases its count by “val” or
appends it to this list with count set to “val”.
The procedure “initiate” performs initiating of a new

firing of the transition “trans” converting “m1list” and
“f1list” into “m2list” and “f2list”:

procedure initiate (trans,m1list,f1list,m2list,f2list);
begin copy(m1list,m2list);
copy(f1list,f2list);
plist := trans↑.input;
while plist 6= nil do
if plist↑.weight > 0 then

reduce(plist↑.id,plist↑.weight,m2list) fi;
plist := plist↑.next od;

include(trans↑.id,1,f2list)
end;

The procedure “reduce(elem,val,list)” deletes the ele-
ment “elem” from a list “list” if the corresponding count is
equal to “val”, otherwise it subtracts “val” from the count
associated with “elem“ in “list”.
The procedure “endfiring” creates a list of (intermediate)

states which correspond to the termination of the “next”
firings in the state “mlist,flist”; this procedure depends
upon the type of timed nets; for D–timed nets it always
returns a one-element list which contains a state obtained
by termination of all those firings for which the remain-
ing firing time is equal to the smallests remaining firing
time, while for M–timed nets it returns a list of states that
correspond to all firing transitions (since for exponentially
distributed firing times, each of the firing transition can
terminate its firing as the “next” one with a corresponding
probability):

On generation of state space for timed Petri nets 245

procedure endfiring (mlist,flist,slist);
begin slist := nil;
if netclass = ’M’ then
while flist 6= nil do
copy(mlist,ml);
copy(flist,fl);
terminate(flist↑.trans,ml,fl);
append(ml,fl,slist);
flist := flist↑.next od

else if netclass=’D’ then
findmintime(flist,x);
copy(mlist,ml);
copy(flist,fl);
while flist 6= nil do
if flist↑.rft=x then

terminate(flist↑.trans,ml,fl) fi;
flist := flist↑.next od;

f := fl;
while f 6= nil do
f↑.rft := f↑.rft-x;
f := f↑.next od;

append(ml,fl,slist) fi fi

end;

where “findmintime” returns in “x” the smallest remaining
firing time “rft” from the list “list”, and the procedure “ter-
minate” terminates a single firing of the transition “trans”
modifying the marking function “mlist” and the list of fir-
ing transitions “flist” accordingly:

procedure terminate (trans,mlist,flist);
begin reduce(trans↑.id,1,flist);
plist := trans↑.output;
while plist 6= nil do
include(plist↑.id,plist↑.weight,mlist);
plist := plist↑.next od

end;

Finally, the procedure “interrupt” performs all interrupts
(of firing transitions) and updates the marking and firing
functions “m1list” and “f1list” into “m2list” and “f2list”,
respectively; the processing is performed in two steps, first
step determines the numbers of interrupted firings (as a list
“ilist”), and the second step updates “m2list” and “f2list”
accordingly:

procedure interrupt (m1list,f1list,m2list,f2list);
begin ilist := nil;
f := flist;
while f 6= nil do
plist := f↑.trans↑.input;
num := 0;
while plist 6= nil do
if plist↑.weight < 0 then

add(num,mlist,plist↑.id) fi;
plist := plist↑.next od;

num := min(num,f↑.count);
append(num,f↑a.trans,ilist);
f := f↑.next od;

copy(m1list,m2list);
copy(f1list,f2list);

while ilist 6= nil do
reduce(ilist↑.trans↑.id,ilist↑.num,f2list);
plist := ilist↑.trans↑.input;
while plist 6= nil do
if plist↑.weight > 0 then

include(plist↑.id,ilist↑.num∗plist↑.weight,m2list) fi;
plist := plist↑.next od;

ilist := ilist↑.next od;
release(ilist)

end;

where the procedure “add(num,mlist,place)” increases
“num” by the count associated with the place “place” in
the list “mlist”; for each transition of a net, “num” deter-
mines the number of firings to be interrupted.

7. EXAMPLES

Since state graphs of timed Petri nets are (discrete or
continuous time) homogeneous semi–Markov processes, the
stationary probabilities x(s) of states s ∈ S(T) can be
obtained by solving the following system of simultaneous
equations:























∑

1≤j≤K

h(sj) ∗ q(sj , si) ∗ x(sj) = h(si) ∗ x(si);

i = 1, ...,K − 1
∑

1≤i≤N

x(si) = 1

where K is the number of states in the (finite) set S(T).
Stationary probabilities of states are used in derivations

of many performance measures [4,9], for example utilization
factors, throughput rates, response and waiting times, etc.

The D–timed net shown in Fig.1 is a model of a very sim-
ple protocol in which messages sent from the sender (place
p1) to the receiver (place p3) are confirmed by acknowl-
edgements sent back to sender (in the loop p1, t1, p2, t2,
p3 and t4). There is nonzero probability that the system
can lose a message or an acknowledgement; the place p3
is a free–choice place and the transition t3 models a mes-
sage/acknowledgement “sink”; the probability associated
with t3, c(t3), represents thus the probability of incorrect
transfer, i.e., the probability of losing a message or an ac-
knowledgement in the system. A “timeout” is used to re-
cover from incorrect transfers. It works in the following
way. An event of “sending a message” is modeled by t1.
When it fires, single tokens are deposited in p2 (a “mes-
sage”) and p4 (a “timeout”). A token in p4 immediately
starts a firing of the “timeout” transition t5 (since p5 is
“empty”). The firing time of t5 is large enough to allow the
transfer of a message and an acknowledgement. If there is
no loss of tokens (i.e., if t4 is selected for firing according
to its probability), the transition t4 will finish its firing be-
fore t5, and then a token in p6 interrupts t5 and “cancels”
the timeout by firing t6 (t6 is another token “sink”). If,
however, a message or an acknowledgement gets lost (i.e.,
if t3 is selected for firing instead of t4), the timeout t5 ter-
minates its firing without interruption, and “regenerates”
the lost token in p1 which is retransmitted to the receiver.

On generation of state space for timed Petri nets 246

p4
p5

t4

1

2

t5

t1

t2

t3

0.25

0.75
0.1

1

5

p1

p2 p3

Fig.4. M–timed Petri net T2.

Tab.2. The set of reachable states for T2.

mi ni gl
si x(si) 1 2 3 4 5 1 2 3 4 5 h(si) tk 1 2 3 4 5 sj q(si, sj)

1 0.0108 0 0 0 1 0 0 0 1 1 0 0.143 3 0 1 0 1 0 2 0.536
1 0 0 1 0 3 0.179

4 0 0 0 1 0 4 0.286
2 0.0326 0 0 0 0 0 0 1 0 2 0 0.200 2 0 0 1 1 0 1 0.200

4 0 0 0 0 0 5 0.800
3 0.1041 0 0 0 0 0 1 0 0 2 0 0.244 1 0 0 1 1 0 1 0.024

4 0 0 0 0 0 6 0.976
4 0.0149 0 0 0 0 1 0 0 1 1 0 0.143 3 0 1 0 0 0 5 0.536

1 0 0 0 0 6 0.179
4 0 0 0 0 1 7 0.286

5 0.0621 1 0 0 0 1 0 1 0 1 0 0.333 2 0 0 1 1 0 4 0.333
4 0 0 0 0 1 8 0.667

6 0.2072 1 0 0 0 1 1 0 0 1 0 0.476 1 0 0 1 1 0 4 0.048
4 0 0 0 0 1 9 0.952

7 0.0323 1 0 0 0 0 0 0 1 0 1 0.167 3 0 1 0 0 0 8 0.625
1 0 0 0 0 9 0.208

5 0 0 0 1 0 1 0.167
8 0.1227 2 0 0 0 0 0 1 0 0 1 0.500 2 0 0 1 0 0 7 0.500

5 0 0 0 2 0 2 0.500
9 0.4134 2 0 0 0 0 1 0 0 0 1 0.909 1 0 0 1 0 0 7 0.091

5 0 0 0 2 0 3 0.909

The derivation of the state space for T1 is shown in
Tab.1, which also shows the stationary probabilities of
states x(s), s ∈ S(T1). Since some of the firing times
are equal to zero (e.g., f(t1) = 0 which means that t1 fires
instantaneously), the holding times of states in which such
transitions fire are equal to zero, and consequently, the sta-
tionary probabilities of such states are also equal to zero.
The stationary probabilities can be used for evaluation of
the performance of the system modeled by T1. For ex-
ample, the throughput rate (i.e., the average number of
correct message transfers in a time unit) can be obtained
from the utilization of t4 (t4 models transfer of an acknowl-
edgement, which is required for each correct transfer); this
utilization is equal to x(s3) = 0.290 (since ni(t4) > 0 only
in state s3 (see Tab.1). The throughput rate is equal to
0.290/f(t4) = 0.059 messages per time unit (or 58 mes-
sages per 1000 time units).

Tab.1. The set of reachable states for T1.

mi ni

si x(si) 1 2 3 4 5 1 2 3 4 5 6 h(si) sj q(si, sj)

1 0.000 0 0 0 0 0 1 0 0 0 0 0 0.0 2 1.00
2 0.645 0 0 0 0 0 0 1 0 0 1 0 10.0 3 0.90

4 0.10
3 0.290 0 0 0 0 0 0 0 0 1 1 0 5.0 5 1.00
4 0.000 0 0 0 0 0 0 0 1 0 1 0 0.0 6 1.00
5 0.000 0 0 0 0 0 1 0 0 0 0 1 0.0 2 1.00
6 0.065 0 0 0 0 0 0 0 0 0 1 0 10.0 1 1.00

The M–timed Petri net shown in Fig.4 is a model of
an interactive system with two classes of users (and jobs)
and preemptive scheduling policy. The system consists of
a (multiprocessor) central server with a queue of waiting
jobs, n1 terminals in class–1 and n2 class–2 terminals. The
class–1 terminals submit one job at a time, while class–
2 terminals submitt two jobs at each arrival instant, and
processing of both jobs must be completed before another
“thinking” (or terminal) phase. Thinking times for class–2

terminals are exponentially distributed with the average of
1 time unit, while thinking times of class–1 terminals are
hyperexponentially distributed, and the average is equal
to 10 time units with probability 0.25, and 1 time unit
with probability 0.75. All service times are exponentially
distributed. Moreover, the class–1 jobs have higher prior-
ity to use the processors, so if a class–1 job arrives when
there in no processor available, processing of one of class–2
jobs is interrupted and the processor is preempted to start
processing of the new class–1 job. The central server is
modeled by p1, t3 and t4; the transitions t3 and t4 corre-
spond to the central server processing class–1 and class–2
jobs, respectively, with service rates (or the firing rates)
equal to 5 and 2, respectively. The place p1 with it initial
number of tokens represents the number of (available) pro-
cessors, in this case 2. The places p2 and p4 model queues
of waiting jobs (for class–1 and class–2, respectively). The
interrupt arc (p2, t4) interrupts t4 whenever a class–1 job
arrives to its waiting queue (i.e., p2). The transitions t1, t2
and t5 models the class–1 and class–2 terminal times. The
initial number of tokens in places p2 and p3 represents the
number of terminals in class–1, n1, and the initial number
of tokens assigned to p4 and p5 determines the number of
class–2 terminals, n2.
For n1 = 1 and n2 = 2, the derivation of the set

S(T2) is given in Tab.2. As before, many performance
measures can be derived from stationary probabilities of
the states. For example, since the server is idle only
in the states s8 and s9 (m8(p1) = m9(p1) = 2), the
stationary probability that the system is idle is equal
to the sum x(s8) + x(s9) = 0.536 (see Tab.2). More-
over, the average utilization of each processor is equal to
0.5*(0.302+2*0.162)=0.313 (only one processor is “busy”
in states s5, s6 and s7, and both processors in states si,
i = 1, 2, 3, 4). The average turnaround time of class–2 jobs
can be determined from the utilization of class–2 terminals
which is equal to 0.568 (x(s7) + x(s8) + x(s9)), and since
the average terminal time is 1 time unit, the throughput

On generation of state space for timed Petri nets 247

rate is 0.568/1=0.568 job pairs per time unit, and then
the average turnaround time is simply 1/0.568=1.761 time
units per pair of jobs.
A similar approach is used for models in which the num-

ber of states is infinite (state space of open queueing net-
work models is usually infinite), but the “structure” of the
state space exhibits a regularity that can be used for “fold-
ing” this infinite space into a finite reduced representation.
For many unbounded timed nets such a regularity (and, in
fact, a condition for timed unboundedness of a net) can be
detected during the generation of the state space (actually
this is performed in the procedure “search”).
The unbounded M–timed net T3 shown in Fig.5 is a sim-

ple open network model in which a “source” with exponen-
tially distributed interarrival times is represented by p1 and
t1 (the arrival rate f(t1) is equal to 1 arrival per time unit),
and the remaining part of the net models a (single chan-
nel) server composed of two consecutive stages. The first
stage (t2 and t3) provides service with a hyperexponential
distribution; the service rate is equal to 2 with probabil-
ity 0.25 (t2) and 5 with probability 0.75 (3); the place p2
is a free-choice place, and the subset t2, t3 is a free–choice
equivalence class. Service times of the second stage (t4) are
exponentially distributed with the rate equal to 4. The to-
tal service time is thus hypoexponentially distributed with
corresponding parameters.

p1

p2

p3 p4

t1

t2

t3
1

2

5
0.75

0.25

t4

4

Fig.5. Unbounded M–timed Petri net T3.

The derivation of the (reduced) state space for T3 is
shown in Tab.3, in which the second “layer” of the folded
graph is indicated by star symbols (the states “*7(4)”,
“9(6)” and “10(8)”) with the corresponding “basic” states
of the graph given in parentheses; similarly, the states
“*11”, “*12” and “*13” form the third “layer”, etc. The
regular structure of this infinite graph is sketched in Fig.6
which clearly shows consecutive “layers” of folding.

1

2

3

4

5

6

7

8

9

10

Fig.6. State graph for T3.

The infinite set of states S(T3) can be subdivided into
four disjoint classes of states, S0 that contains all “irregu-
lar” states of T3 (i.e., s1, s2, s3 and s5), S1 that represents
the “bottom” layer of folding (s4, s6 and s8), S2 that rep-
resents the “second” layer of folding (s7, s9 and s10), and
all remaining states. Since the stationary probabilities of

Tab.3. The set of reachable states for T3.

mi ni

si 1 2 3 4 1 2 3 4 h(si) tk sj q(si, sj)

1 0 0 1 0 1 0 0 0 1.000 1 2 0.750
3 0.250

2 0 0 0 0 1 0 1 0 0.167 1 4 0.167
3 5 0.833

3 0 0 0 0 1 1 0 0 0.333 1 6 0.333
2 5 0.667

4 0 1 0 0 1 0 1 0 0.167 1 ∗7 0.167
3 8 0.833

5 0 0 0 0 1 0 0 1 0.200 1 8 0.200
4 1 0.800

6 0 1 0 0 1 1 0 0 0.333 1 ∗9 0.333
2 8 0.667

8 0 1 0 0 1 0 0 1 0.200 1 ∗10 0.200
4 2 0.600

3 0.200
∗7(4) 0 2 0 0 1 0 1 0 0.167 1 ∗11 0.167

3 ∗10 0.833
∗9(6) 0 2 0 0 1 1 0 0 0.333 1 ∗12 0.333

2 ∗10 0.667
∗10(8) 0 2 0 0 1 0 0 1 0.200 1 ∗13 0.200

4 4 0.600
6 0.200

folded states in consecutive layers (i.e., x(s4), x(s7), x(s11),
..., x(s6), x(s9), x(s12), ..., and x(s8), x(s10), x(s13), ...) are
geometrically distributed, the infinite sum of probabilities
can be replaced be the sums of corresponding geometrical
series with the quotient of these series (denoted by ρ) as
a new unknown. This leads to a system of simultaneous
nonlinear (and for single unbounded place nets, quadratic)
equilibrium equations:


















































∑

sj∈S0∪S1

h(sj) ∗ q(sj , si) ∗ x(sj) = h(si) ∗ x(si); si ∈ S0

∑

sj∈S0∪S1

h(sj) ∗ q(sj , si) ∗ x(sj) +

ρ
∑

sj∈S2

h(sj) ∗ q(sj , si) ∗ x(sjk) = h(si) ∗ x(si); si ∈ S1

(1− ρ)
∑

si∈S0

x(si) +
∑

sj∈S1

x(sj) = 1− ρ

For T3 this system contains 8 equations (4 for S0, 3
for S1 and the ‘normalizing’ equation), and the solution is
ρ = 0.483, x(s1) = 0.472, x(s2) = 0.093, x(s3) = 0.062,
x(s4) = 0.032, x(s5) = 0.118, x(s6) = 0.032 and x(s7) =
0.068. The remaining probabilities can be obtained from
recursive formulas, e.g., x(s7) = ρ ∗ x(s4), etc. Since the
server is idle only in the state s1 (see mi(p3) = 1 in Tab.3),
the utilization of the server is equal to 1 − x(s1) = 0.528,
and so on.

8. CONCLUDING REMARKS

It has been shown that two different classes of timed
Petri nets, D–timed nets with deterministic firing times,
and M–timed Petri nets with exponentially distributed ran-
dom firing times, can be described by a uniform formalism
and represented in a very similar way. This similarity can

On generation of state space for timed Petri nets 248

be used for derivation of other classes of timed nets, for
example nets with exponentially distributed as well as de-
terministic firing times. Recently Ajmone Marsan et al. de-
rived some results for stochastic nets in which there is only
one firing transition with a deterministic firing time; this
strong restriction in not really surprising since the stochas-
tic approach is based on the set reachable markings, and
does not provide “memory” which is necessary for nets with
non-Markovian firing times. Timed Petri nets should be
much more flexible for such generalizations; the difficulty
is expected rather in efficient evaluations of transition prob-
abilities and holding times than in new representations of
the states.
The stationary probabilities of the states are obtained by

solving a system of simultaneous linear equations. There-
fore it may seem that the proposed approach is feasible only
for analysis of rather small systems. It should be noted,
however, that the state graphs generated by timed Petri
nets have a regular structure implied by (usually) small
number of firing transitions. This regularity can be used
for “folding” isomorphic subgraphs into reduced represen-
tations that can be solved efficiently. The same regularity
can be used for finite representations of infinite state space
which correspond to unbounded timed nets.
Timed Petri nets discussed in this paper are restricted in

a number of ways (free–choice simple nets), some of these
restrictions, however, can be removed easily by appropriate
modifications of the formalism. In fact, nets with more gen-
eral conflicts can be handled in a very similar way if the
probabilities of conflicting transitions are known and in-
cluded in the state description (e.g., state–dependent prob-
abilities, as proposed in [7] or random switches from [2]).
Also, nonsimple nets, i.e., nets with several levels of inter-
rupts, can be taken into account by a rather simple modi-
fication of state transition definitions. Moreover, some ad-
ditional flexibility is offered by enhanced nets [21] in which
the set of transitions is partitioned into two classes of tran-
sitions, timed and immediate transitions, with firing times
assigned to timed transitions only (immediate transitions
fire instantaneously). This provides not only a possibility
to model arbitrarily complex conditions, but also reduces
many intermediate states which are insignificant for per-
formance analysis; e.g., all states with zero holding times
in Tab.1.

Acknowledgement

The Natural Sciences and Engineering Research Council
of Canada partially supported this research through Oper-
ating Grant A8222.

References

1. T. Agerwala, “Putting Petri nets to work”; IEEE Com-
puter, vol.12, no.12, pp.85–94, 1979.

2. M. Ajmone Marsan, G. Conte, G. Balbo, “A class of
generalized stochastic Petri nets for the performance
evaluation of multiprocessor systems”; ACM Trans.
on Computer Systems, vol.2, no.2, pp.93–122, 1984.

3. W. Brauer, W. Reisig, G. Rozenberg (eds.), “Advances
in Petri Nets 1986”; Lecture Notes in Computer Sci-
ence 254 and 255, Springer Verlag 1987.

4. J.P. Buzen, “Fundamental operational laws of com-
puter system performance”; Acta Informatica, vol.7,
no.2, pp.167–182, 1976.

5. J.B. Dugan, K.S. Trivedi, R.M. Geist, V.F. Nicola,
“Extended stochastic Petri nets - applications and
analysis”; Performance’84, E. Gelenbe (ed.), pp.507–
519, Elsevier 1984.

6. J.B. Dugan, A. Bobbio, G. Ciardo, K. Trivedi, “The
design of a unified package for the solution of stochas-
tic Petri net models”; Proc. Int. Workshop on Timed
Petri Nets, Torino, Italy, pp.6–13, 1985.

7. M.A. Holliday, M.K. Vernon, “A generalized timed
Petri net model for performance evaluation”; Proc.
Int. Workshop on Timed Petri Nets, Torino, Italy,
pp.181-190, 1985.

8. R. Janicki, P.E. Lauer, M. Koutny, R. Devillers, “Con-
current and maximally concurrent evolution of non-
sequential systems”; Theoretical Computer Science,
vol.43, pp.213–238, 1986.

9. L. Kleinrock, “Queueing systems”; J. Wiley & Sons
1975, 1976.

10. P.M. Merlin, D.J. Farber, “Recoverability of com-
munication protocols - implications of a theoretical
study”; IEEE Trans. on Communications, vol.24,
no.9, pp.1036–1049, 1976.

11. M.K. Molloy, “Performance analysis using stochastic
Petri nets”; IEEE Trans. on Computers, vol.31, no.9,
pp.913-917, 1982.

12. M.T. Ozsu, “Modeling and analysis of distributed
database concurrency control algorithms using an ex-
tended Petri net formalism”; IEEE Trans. Software
Engineering, vol.11, no.10, pp.1225–1240, 1985.

13. J.L. Peterson, “Petri net theory and the modeling of
systems”; Prentice–Hall 1981.

14. C. Ramchandani, “Analysis of asynchronous concur-
rent systems by timed Petri nets”; Project MAC Tech-
nical Report MAC–TR–120, Massachusetts Institute
of Technology, Cambridge MA, 1974.

15. R.R. Razouk, “The derivation of performance expres-
sions for communication protocols from timed Petri
nets”; Computer Communication Review, vol.14, no.2,
pp.210-217, 1984.

16. R.R. Razouk, D.S. Hirschberg, “Tools for effi-
cient analysis of concurrent software systems”; Proc.
SOFTFAIR II - Second Conf. on Software Develop-
ment Tools, Techniques and Alternatives, San Fran-
cisco CA, pp.192–198, 1985.

17. W. Reisig, “Petri nets - an introduction”; Springer
Verlag 1985.

18. G. Rozenberg (ed.), ”Advances in Petri Nets 1987”
(Lecture Notes in Computer Science 266); Springer
Verlag 1987.

19. J. Sifakis, “Use of Petri nets for performance evalua-
tion”; in: “Measuring, modeling and evaluating com-
puter systems”, pp.75–93, North-Holland 1977.

20. A.A. Torn, “Simulation nets, a simulation, modeling
and validation tool”; Simulation Journal, vol.45, no.2,
pp.71–75, 1985.

21. W.M. Zuberek, “M–timed Petri nets, priorities, pre-
emptions, and performance evaluation of systems”; in:
“Advances in Petri Nets 1985” (Lecture Notes in Com-
puter Science 222), G. Rozenberg (ed.), pp.478–498,
Springer Verlag 1986.

22. W.M. Zuberek, “Inhibitor D–timed Petri nets and
performance analysis of communication protocols”;
INFOR Journal, vol.24, no.3, pp.231–249, 1986.

23. W.M. Zuberek, “TPNEV, an interactive program for
evaluation of timed Petri nets”; Department of Com-
puter Science, MUN, St. John’s, Canada A1C 5S7.

