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Abstract 

Trace amines are a group of endogenous monoamines which exert their action through a family of 

G protein-coupled receptors known as trace amine-associated receptors (TAARs). TAAR1 has 

been reported to regulate insulin secretion from pancreatic beta cells in vitro and in vivo. This 

study investigates the mechanism(s) by which TAAR1 regulates insulin secretion. The insulin 

secreting rat INS-1E -cell line was used for the study. Cells were pre-starved (30 minutes) and 

then incubated with varying concentrations of glucose (2.5 – 20 mM) or KCl (3.6 – 60 mM) for 2 

hours in the absence or presence of various concentrations of the selective TAAR1 agonist 

RO5256390. Secreted insulin per well was quantified using ELISA and normalized to the total 

protein content of individual cultures. RO5256390 significantly (P < 0.0001) increased glucose-

stimulated insulin secretion in a dose-dependent manner, with no effect on KCl-stimulated insulin 

secretion. Affymetrix-microarray data analysis identified genes (Gnas, Gng7, Gngt1, Gria2, 

Cacna1e, Kcnj8, and Kcnj11) whose expression was associated with changes in TAAR1 in 

response to changes in insulin secretion in pancreatic beta cell function. The identified potential 

links to TAAR1 supports the regulation of glucose-stimulated insulin secretion through KATP ion 

channels. 

 

Keywords: Trace amines; TAAR1; Pancreatic beta cell; Insulin secretion; Bioinformatics  

 

 

 

 

 

 

 

 

 



   

 

 

iii 

Acknowledgements 

Firstly, I would like to thank my supervisor Dr. Mark D. Berry for his continuous support, 

valuable guidance and plethora of learning opportunities being provided through lab meetings, 

departmental and international conferences.  

I would like to thank my committee member Dr. Sukhinder Kaur Cheema for giving me the 

opportunity to study at MUN and guiding me throughout my master’s program.  

I would also like to thank my other committee member Dr. Scott Harding and ex-committee 

member Dr. Ryan Mailloux for their motivation and support. 

I would like to acknowledge Dr. Sherri Christian and  Dr. Lourdes Peña-Castillo 

in providing assistance with the bioinformatics work. I am grateful to Dr. Sherri Christian for 

allowing me to work in her lab for most of my cell-culture studies.  

I would like to thank Dr. Robert Brown for his valuable suggestions throughout my lab meetings 

and departmental seminars. 

I would like to thank Danielle Gardiner for training and helping me with my initial cell-culture 

studies. 

I would like to thank all my past and current lab members for their continuous support.  

I would like to thank the respective funding sources QEII Diamond jubilee Scholarship program, 

SGS, and MUN RDC for helping me to meet my financial needs.  

Finally, I would like to thank my family and friends for their constant support.  

 

 

 

  

mailto:lourdes.pena@mun.ca


   

 

 

iv 

Table of Contents 

Abstract............................................................................................................................................ii 

Acknowledgements........................................................................................................................iii 

Table of Contents............................................................................................................................iv 

List of Figures................................................................................................................................vii 

List of Tables..................................................................................................................................ix 

List of Abbreviations.......................................................................................................................x 

1.0 Literature review........................................................................................................................1 

1.1 Type II diabetes..............................................................................................................1 

1.1.1 Clinical diagnosis............................................................................................2 

1.1.2 Complications.................................................................................................3 

1.1.3 Current management options..........................................................................4 

1.2 Insulin............................................................................................................................8  

1.2.1 Insulin Physiology..........................................................................................9 

1.2.1.1 Secretory mechanism.....................................................................11 

1.3 Trace amines................................................................................................................16 

1.3.1 Endogenous TA Synthesis............................................................................17 

1.3.2 TA Degradation............................................................................................19  

1.4 Trace amine-associated receptors................................................................................21 

1.5 Trace amine-associated receptor1................................................................................26 

1.5.1 Ligands..........................................................................................................26 

1.5.2 Tissue expression..........................................................................................27 

1.5.3 Signal transduction cascades.........................................................................28 



   

 

 

v 

1.5.4 Role in CNS..................................................................................................30   

1.5.5 Role in periphery...........................................................................................34 

1.5.5.1 Role in pancreatic beta cells..........................................................36 

1.6 INS-1E cell line............................................................................................................37 

1.7 Research objective and hypothesis..............................................................................38 

1.7.1 Objective.......................................................................................................38 

1.7.2 Hypothesis.....................................................................................................38 

2.0 Materials and Methods.............................................................................................................39 

2.1 RO5256390 formulations.............................................................................................39 

2.2 INS-1E cell culture......................................................................................................39 

2.2.1 Materials.......................................................................................................39 

2.2.2 Cell culture....................................................................................................40 

2.2.3 INS-1E subculture.........................................................................................41 

2.2.4 Subculture into 24 and 96-well plate............................................................41 

2.3 Insulin secretion measurements in INS1-E cells to evaluate the effect of RO5256390 

on glucose and potassium chloride stimulated signaling pathway....................................42 

2.3.1 Insulin assay..................................................................................................43 

2.3.2 BCA Protein assay........................................................................................45 

2.4 Membrane potential measurement using DiBAC4(3) .................................................47 

2.5 Bioinformatics..............................................................................................................47 

2.5.1 Affymetrix microarray data analysis............................................................49 

2.6 Data analysis................................................................................................................62 

3.0 Results......................................................................................................................................63 



   

 

 

vi 

3.1 RO5256390 effect on glucose-dependent insulin secretion.........................................63 

3.2 RO5256390 effect on potassium-stimulated insulin secretion....................................66 

3.3 Glucose and potassium concentration-response effect on INS-1E membrane 

potential..............................................................................................................................69  

3.4 Identification of TAAR1 correlated transcripts from microarray data analysis..........74 

3.4.1 Physiological conditions...............................................................................74 

3.4.2 Pathological condition..................................................................................80 

4.0 Discussion................................................................................................................................86 

4.1 RO5256390 enhances glucose-dependent insulin secretion........................................86 

4.2 RO5256390 does not alter potassium stimulated insulin secretion.............................87 

4.3 No glucose or KCl concentration-response effect on membrane potential.................88 

4.4 TAAR1 correlated transcripts involved in the regulation of TAAR1-mediated GSIS 

were identified...................................................................................................................88  

4.4.1 TAAR1 correlated genes from the studies examining physiological 

processes................................................................................................................89 

4.4.2 TAAR1 correlated genes from the studies examining pathological 

processes................................................................................................................94 

4.5 Conclusions..................................................................................................................97 

4.6 Future directions........................................................................................................100 

4.7 Limitations.................................................................................................................100 

5.0 References..............................................................................................................................101 

6.0 Appendix................................................................................................................................135  



   

 

 

vii 

List of Figures 

Figure 1.1: Glucose-stimulated insulin secretion mechanism.......................................................12 

Figure 1.2: Biosynthetic pathway of trace amines.........................................................................18  

Figure 1.3: Trace amines and their metabolites.............................................................................20 

Figure 2.1: Sample Insulin ELISA assay standard curve for insulin (µg/L) determination..........44  

Figure 2.2: Representative BSA standard linear regression line for protein (µg/10 µL) 

determination.................................................................................................................................46  

Figure 3.1: Glucose-dependent stimulation of insulin secretion...................................................64 

Figure 3.2: RO5256390 selectively enhanced glucose-dependent insulin secretion at 

concentrations of 10 nM and above...............................................................................................65 

Figure 3.3: Concentration-dependent effect of KCl on insulin secretion......................................67  

Figure 3.4: RO5256390 does not alter potassium-stimulated insulin secretion............................68 

Figure 3.5: No glucose concentration-dependent effect on membrane depolarization at a cell 

density of 20,000 cells/well...........................................................................................................70 

Figure 3.6: No KCl concentration-dependent effect on membrane depolarization at a cell density 

of 20,000 cells/well........................................................................................................................71 

Figure 3.7: No glucose concentration-dependent effect on membrane potential at a cell density of 

50,000 cells/well............................................................................................................................72 

Figure 3.8: No KCl concentration-dependent effect on membrane potential at a cell density of 

50,000 cells/well............................................................................................................................73 

Figure 3.9: Heat map representing hierarchical clustering of TAAR1 gene with genes positively 

(on left) and negatively (on right) correlated to its expression pattern across isolated rat beta cells 

exposed to varying glucose concentrations for 18 hours (GSE12817)..........................................76 



   

 

 

viii 

Figure 3.10: Heat map representing hierarchical clustering of TAAR1 gene with genes positively 

(on left) and negatively (on right) correlated to its expression pattern across pancreatic islet cells 

isolated from different aged rat (GSE47174).................................................................................77 

Figure 3.11: Heat map representing hierarchical clustering of TAAR1 gene with genes positively 

(on left) and negatively (on right) correlated to its expression pattern across beta cells isolated 

from different aged C57Bl/6 mice (GSE72753)............................................................................78 

Figure 3.12: TAAR1 correlated genes under physiological conditions.........................................79 

Figure 3.13: Heat map representing hierarchical clustering of TAAR1 gene with genes positively 

(on top) and negatively (on bottom) correlated to its expression pattern across isolated pancreatic 

beta cells from cadaver pancreases of non-diabetic and type-II diabetic human subjects 

(GSE20966) ..................................................................................................................................81 

Figure 3.14: Heat map representing hierarchical clustering of TAAR1 gene with genes positively 

(on left) and negatively (on right) correlated to its expression pattern across isolated pancreatic 

islets from rats exposed to standard chow and high fat diet for ten and thirty days (GSE4407)...82 

Figure 3.15: Heat map representing hierarchical clustering of TAAR1 gene with genes positively 

(on left) and negatively (on right) correlated to its expression pattern across two independent 

HDL preparations subjected to ß-TC3 cell line under different conditions (GSE17647).............83 

Figure 3.16: Heat map representing hierarchical clustering of TAAR1 gene with genes positively 

(on left) and negatively (on right) correlated to its expression pattern across control and mice 

with intrinsic beta cell NIK activation fed with chow and high fat diet (GSE68317)...................84 

Figure 3.17: TAAR1 correlated genes under pathological conditions..........................................85 

Figure 4.1: Proposed molecular mechanism for TAAR1 regulation of GSIS...............................99  



   

 

 

ix 

List of Tables 

Table 1.1: Functional TAAR genes and pseudogenes in different vertebrate species...................22 

Table 2.1: Potential target genes of TAAR1 regulation of glucose-dependent insulin secretion..50  

Table 2.2: Affymetrix microarray-based studies, pertaining to pancreatic beta cells, obtained 

from NCBI GEO database.............................................................................................................58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



   

 

 

x 

List of Abbreviations 

5-HT Serotonin 

AADC Aromatic L-amino acid decarboxylase 

ADP Adenosine diphosphate 

AKT Protein kinase B 

AMP Adenosine monophosphate 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

AMPAR AMPA receptors 

AMPK Adenosine monophosphate-activated protein kinase 

ANOVA Analysis of variance 

AOC3 Amine oxidase, copper containing 3 

ATCC American Type Culture Collection 

ATP Adenosine triphosphate 

BCA Bicinchoninic acid 

BSA Bovine serum albumin 

CAC Citric acid cycle 

CAMKII Calcium/calmodulin-dependent protein kinase II 

cAMP Cyclic adenosine monophosphate 

CM Complete medium 

CNS Central nervous system 

CoA Coenzyme A 

COMT Catecholamine-O-methyltransferase 

CREB cAMP response element-binding protein 



   

 

 

xi 

D2R Dopamine D2-like receptors 

DAT Dopamine transporter 

DBH Dopamine- ß-hydroxylase 

DiBAC4(3) bis-(1,3-dibutylbarbituric acid) trimethine oxonol 

DMSO Dimethyl sulfoxide 

DPP-4 Dipeptidyl peptidase-4 

EAAT-2 Excitatory amino acid transporter-2 

EDTA Ethylenediaminetetraacetic acid 

ELISA Enzyme-linked immunosorbent assay 

Epac Exchange protein activated by cAMP 

ERK1/2 Extracellular signal-regulated kinase 1/2 

F-actin Filamentous actin 

FMO3 Flavin monooxygenase 3 

GEO Gene Expression Omnibus 

GIP Glucose-dependent insulinotropic peptide 

GirK G-protein-gated potassium ion channels 

GLP-1 Glucagon-like peptide-1 

GLUT Glucose transporter 

GPCR(s) G protein-coupled receptor(s) 

GSE Gene Expression Omnibus Series 

GSIS Glucose-stimulated insulin secretion 

GSK3ß Glycogen synthase kinase-3 beta 

HbA1C Glycated haemoglobin 



   

 

 

xii 

HDL High-density lipoproteins 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HIV Human immunodeficiency virus 

INMT Indolethylamine N-methyltransferase 

IP3 Inositol 1,4,5-trisphosphate 

KATP ATP-sensitive potassium ion channel 

Km Michaelis constant 

KO Knockout 

KRBH Krebs-Ringer bicarbonate-HEPES buffer 

MAO Monoamine oxidase 

MEK1/2 Mitogen-activated protein kinase kinase 1/2 

NCBI National Center for Biotechnology Information 

NFAT Nuclear factor of activated T-cells 

NIK Nuclear factor κB-inducing kinase 

NMDA N-methyl-D-aspartate 

NP-40 Nonidet-P40 

OCT para-octopamine 

PAK1 p21-activated kinase 

PBS Phosphate buffered saline 

PC Prohormone convertase 

PCR Polymerase chain reaction 

PCT Proximal convoluted tubule 

PDE3B Phosphodiesterase-3B 



   

 

 

xiii 

PEA 2-phenylethylamine 

PH Phenylalanine hydroxylase 

PKA Protein kinase A 

PKC Protein kinase C 

PNMT Phenylethanolamine-N-methyl transferase 

PPAR Peroxisome proliferator-activated receptor 

PYY Peptide YY 

Raf Rapidly accelerated fibrosarcoma 

RER Rough endoplasmic reticulum 

RFU Relative fluorescence unit 

RIM Rab3-interacting-molecule 

RMA Robust multi-chip average 

RO5166017 (S)-4-((ethyl(phenyl)amino)methyl)-4,5-dihydrooxazol-2-amine 

RO5203648 (S)-4-(3,4-dichlorophenyl)-4,5-dihydrooxazol-2-amine 

RO5212773 N-(3-ethoxyphenyl)-4-(1-pyrrolidinyl)-3-

(trifluoromethyl)benzamide 

RO5256390 (S)-4-((S)-2-phenylbutyl)-4,5-dihydrooxazol-2-ylamine 

RO5263397 (S)-4-(3-fluoro-2-methylphenyl)-4,5-dihydrooxazol-2-amine 

RP Reserve pool 

RPMI Roswell Park Memorial Institute 

RRP Readily releasable pool 

SEM Standard error of mean 

SGLT-2 Sodium-glucose cotransporter-2 



   

 

 

xiv 

SM Sec1/Munc18-like adaptor protein 

SNAP Soluble N-ethylmaleimide-sensitive factor attachment protein 

SNARE Soluble N-ethylmaleimide-sensitive factor attachment protein 

receptor 

SSAO Semicarbazide-sensitive amine oxidase 

SYN para-synephrine 

Syt Synaptotagmin 

T1AM 3-iodothyronamine 

TA(s) Trace amine(s) 

TAAR(s) Trace amine-associated receptor(s) 

TH Tyrosine hydroxylase 

TMA Trimethylamine 

TMAO Trimethylamine-N-oxide 

TMB 3,3’,5,5’-tetramethylbenzidine 

TRAF Tumor necrosis factor receptor associated factor 

TRP Tryptamine 

TYR para-tyramine 

VAMP2 Vesicle-associated membrane protein 

VAP-1 Vascular adhesion protein-1 

VTA Ventral tegmental area 

 



   

 

 

1 

1.0 Literature review 

1.1 Type II diabetes 

Type II diabetes encompasses more than 90% of all cases of diabetes (Holman, Young, & 

Gadsby, 2015). Type II diabetes is a progressive, complex, and chronic metabolic disorder 

characterized by an elevated blood glucose level due to alterations in insulin secretion, insulin 

resistance, or both (Chatterjee, Khunti, & Davies, 2017). It is a consequence of the complex 

interactions between genetic, environmental, and behavioural factors such as, but not limited to, 

ethnicity, sex, age, epigenetics, genetic predisposition, poor dietary pattern, sedentary lifestyle, 

excess body weight, and heavy alcohol consumption; hence is multifactorial  (Chen, Magliano, 

& Zimmet, 2012). The pathogenesis of type II diabetes involves the development of insulin 

resistance in peripheral tissues such as liver, skeletal muscle and adipose tissue, and the 

deterioration of pancreatic beta-cell mass together to cause impaired glucose tolerance marked 

by elevated blood glucose levels. The vicious cycle of insulin resistance and beta cell 

dysfunction over a period of time lead to the rise of diabetes symptoms and life-threatening 

complications (see section 1.1.2) (Leahy, 2005). The clinical symptoms of type II diabetes may 

vary from asymptomatic for many years during the initial phase, to symptoms like weight 

change, polyuria, polydipsia, tiredness, blurred vision, and numbness in the peripheral limbs 

(American Diabetes Association, 2009). As per the International diabetes federation’s 2017 

datasheet, the estimates pertaining to the risk of developing type II diabetes worldwide has 

increased to 352 million people. In the same report, the prevalence of diabetes of all forms is 

expected to rise more than 48% from 425 million in 2017 to 629 million by 2045. In 2013, 174.8 

million cases of diabetes were found to be undiagnosed globally (Beagley et al., 2014), which by 

2017 had increased to over 212 million (International Diabetes Federation, 2017). The global
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 health expenditure for managing diabetes and its complications has risen from USD 673 billion 

in 2015 to USD 727 billion in 2017 (International Diabetes Federation, 2017). With the 

increasing prevalence of type II diabetes globally and its increased burden on mortality, it is 

considered one of the emerging pandemics of the present century (Zheng et al., 2018). 

 

1.1.1 Clinical diagnosis 

Early diagnosis of type II diabetes is essential to achieve good glycemic control, and prevent the 

risk of irreversible complications (Bailey, 2015). Clinical diagnosis is based on the measurement 

of the plasma glucose level which could be achieved by using any of the four plasma glucose 

criteria (i.e. fasting plasma glucose, oral glucose tolerance test, glycated haemoglobin (HbA1c) 

level, and random glucose test) (Chaudhury et al., 2017). All of the plasma glucose values 

pertaining to diabetes diagnosis in the present thesis are taken from the 2018 Diabetes Canada 

clinical practice guidelines (Punthakee et al., 2018).  

 

Following fasting of at least 8 hours, a plasma glucose level more than, or equal to, 7.0 mmol/L 

is diagnosed as diabetic. In an oral glucose tolerance test, a glucose load of 75 g in solution form 

is orally administered to the patient, followed by the measurement of the plasma glucose level 

after 2 hours. Glucose levels equivalent to, or more than, 11.1 mmol/L is diagnosed as diabetic. 

HbA1c depicts the average plasma glucose level over 2-3 months by measuring the percentage of 

glucose bound to haemoglobin. A glycated haemoglobin percent level more than or equal to 6.5-

7.0% is considered diabetic (Chaudhury et al., 2017). In a random glucose test, the plasma 

glucose level is measured at any time of the day irrespective of any condition of fasting or timed 

interval of intake for the subject's last meal. A level equal or more than 11.1 mmol/L falls under 
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the diabetic range and should be further confirmed using other methods if the individual is 

asymptomatic. HbA1c more efficiently predicts diabetic complications compared to the other 

three diagnostic measures, and helps monitor the effectiveness of any glycemic management 

measures (Stratton, 2000). Diagnosis for individuals with type II diabetic symptoms could be 

confirmed using a single laboratory test, while in the absence of diabetic symptoms, a repetitive 

confirmatory diagnostic test is recommended (Punthakee et al., 2018). 

 

1.1.2 Complications 

If not managed, the elevated level of glucose in the blood over a period of time may result in 

lipotoxicity, glucotoxicity, autoimmune dysfunction, inflammation, endoplasmic reticulum 

stress, oxidative stress, and beta-cell apoptosis, the latter ultimately leading to the progressive 

loss of beta-cell functions and additional vascular complications (Cernea & Dobreanu, 2013). 

Traditionally, vascular complications can be broadly divided into macrovascular and 

microvascular. Microvascular complications are more prevalent among the two and cause 

damage primarily to the small blood vessels of the retina (retinopathy), nephrons in the kidney 

(nephropathy), and peripheral nerves (neuropathy) eventually leading to blindness, kidney 

failure, and sensory loss in the peripheral limbs (Stehouwer, 2018). Macrovascular complications 

narrow the arterial walls of the heart, brain, and peripheral blood vessels, promoting 

atherosclerosis, myocardial infarction, stroke, and peripheral vascular disease (Fowler, 2011). 

Arterial wall damage followed by chronic inflammation builds up plaques, which reduces the 

blood flow primarily to the heart, but also other parts of the body. This results in the 

aforementioned macrovascular complications and is the main pathological mechanism (Boyle, 

2007). Apart from these, other possible complications can include oral health problems like 
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periodontal disease (Leite, Marlow, & Fernandes, 2013), birth complications, increased risk of 

infections like pneumonia and influenza (Deshpande, Harris-Hayes, & Schootman, 2008), mental 

health disorders (Strodl & Kenardy, 2006), and increased risk of cancers of the pancreas, 

endometrium, liver, breast, colon, and rectum (Giovannucci et al., 2010). Cardiovascular 

complications are the primary cause of death in individuals with type II diabetes (Zheng et al., 

2018). The risk of developing cardiovascular disease in type II diabetic individuals is twice that 

of non-diabetic individuals, irrespective of other risk factors such as smoking status, age, body-

mass index, and systolic blood pressure (Sarwar et al., 2010). Diabetic renal complications 

account for around 10% of the deaths caused as a result of type II diabetes (Dieren et al., 2010), 

and are more prevalent in Asian populations (Kong et al., 2013). 

 

1.1.3 Current management options 

To date, no complete cure for type II diabetes has been found (Olokoba, Obateru, & Olokoba, 

2012). Reduction in the percent of glycated haemoglobin is a good indicator of improved 

glycemic control. For initiating an approach to manage hyperglycemia, there is a need to 

establish an HbA1c goal which is recommended to be less than or equal to 6.5-7.0% in most 

cases (Inzucchi et al., 2015). As per recent Canadian clinical guidelines pertaining to type II 

diabetes, if individuals with symptoms are diagnosed with HbA1C levels less than 1.5% above 

target, initial treatment options should be focused on healthy lifestyle interventions (Lipscombe 

et al., 2018). Lifestyle modifications involving nutrition and exercise are effective ways of 

improving blood glucose levels, specifically for the individuals on the borderline of type II 

diabetic classification (Tuomilehto et al., 2001). Benefits in the reduction of the occurrence of 

type II diabetes due to weight loss achieved by exercise, and dietary consumption of low free 
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carbohydrate, saturated and trans fats, and high complex dietary fibres has been well documented 

in the literature (Knowler et al., 2002; Riccardi, Capaldo, & Vaccaro, 2005; Riccardl & 

Wvellese, 1991). If healthy lifestyle modifications alone are not capable of achieving the HbA1c 

target within three months, antihyperglycemic medications should be considered. A patient with 

an HbA1c level of more than 1.5% above target should receive pharmacotherapy (Lipscombe et 

al., 2018). The choice of an antihyperglycemic agent is based on several factors including, 

hypoglycemic risk, the effect on body weight, side effects, cost, associated medical conditions, 

and patient compliance (Chaudhury et al., 2017). The first line antihyperglycemic agent 

recommended for type II diabetes is metformin due to its high efficacy, good safety profile, low 

hypoglycemic, weight gain and cardiovascular risks, and cost-effective potential (Maruthur et al., 

2016). Metformin acts via both adenosine monophosphate-activated protein kinase (EC 

2.7.11.31; AMPK)-dependent and independent mechanisms to exert its glucose-lowering effect 

(Foretz et al., 2014). It exhibits its action by suppressing the gluconeogenesis pathway, causing a 

reduction in hepatic glucose production, and enhancing the insulin sensitivity of peripheral 

tissues, such as skeletal and adipose tissue (Natali & Ferrannini, 2006). The safety profile of 

metformin is better than other developed biguanides, but it is still associated with rare risks of 

lactic acidosis, diarrhoea, abdominal cramps, and vitamin B12 deficiency (Inzucchi et al., 2015), 

and is contraindicated in patients with chronic kidney disease, dehydration, acidosis, or hypoxia 

(Inzucchi et al., 2015). If HbA1c targets are not met after metformin monotherapy, combination 

with other antihyperglycemic agents is recommended (Lipscombe et al., 2018) which has been 

shown to lower the HbA1c levels more than metformin alone (Phung et al., 2014). The second 

line antihyperglycemic agents for type II diabetes which can be used in combination with 

metformin include glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 
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(EC 3.4.14.5; DPP-4) inhibitors, insulin secretagogues, thiazolidinediones targeting the nuclear 

transcription factor peroxisome proliferator-activated receptor gamma (PPAR-), sodium-

glucose cotransporter-2 (SGLT-2) inhibitors, and insulin (Lipscombe et al., 2018).  

 

GLP-1 receptor agonists are injectable, and stimulate insulin secretion in a glucose-dependent 

manner, inhibit glucagon secretion, delay gastric emptying to promote satiety, and aid in weight 

loss to effectively improve glucose homeostasis (Lipscombe et al., 2018). They are efficacious 

compared to other agents with no risk of hypoglycemia or weight gain, but are associated with 

side effects like diarrhoea, nausea, vomiting, pancreatitis, and C-cell hyperplasia of the thyroid 

(Inzucchi et al., 2015).  

 

DPP-4 is a serine protease widely distributed in the body which rapidly metabolizes the incretins 

GLP-1 and glucose-dependent insulinotropic peptide (GIP) (Ahrén & Schmitz, 2004). DPP-4 

inhibitors inhibit DPP-4, thereby raising the level of active incretins (Pratley & Salsali, 2007). 

Adverse reactions associated with the use of DPP-4 inhibitors include headache, upper 

respiratory tract infection, urticaria, dermatological effects, nasopharyngitis, and in some cases, 

acute pancreatitis (Chaudhury et al., 2017).  

 

Insulin secretagogues, like sulfonylureas and meglitinide, increase insulin secretion by binding to 

sulfonylurea receptors in pancreatic beta cells, and blocking adenosine triphosphate (ATP)-

sensitive potassium channels (KATP) (Proks et al., 2002). They are known to have high risks of 

hypoglycemia, with other side effects like weight gain, dizziness, nausea, headache, and 

hypersensitivity reactions (Chaudhury et al., 2017).   
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Thiazolidinedione compounds act as agonists at PPAR- (Thangavel et al., 2017). PPAR-

 activation lowers plasma free fatty acid levels and circulating triglycerides by primarily 

increasing the synthesis of acyl-CoA synthase (EC 2.3.1.86), lipoprotein lipase (EC 3.1.1.34) and 

phosphoenolpyruvate carboxykinase (EC 4.1.1.32) (Bermudez et al., 2010). Activation of PPAR-

 has also been shown to elevate the expression of insulin receptor substrates 1 and 2, 

glucokinase (EC 2.7.1.2) and glucose transporter 4 (GLUT4) (Kim & Ahn, 2004). Taken 

together, PPAR- activation by thiazolidinediones enhances glucose metabolism and insulin 

sensitivity and reduces triglyceride concentrations in the blood (Kahn, Chen, & Cohen, 2000). 

Thiazolidinediones are associated with oedema, heart failure, hepatotoxicity, weight gain, 

increased susceptibility to fractures, diarrhoea, and increased incidence of bladder cancer 

(Davidson et al., 2018).  

 

SGLT-2 is a transport protein primarily expressed in the proximal convoluted tubule (PCT) of 

the kidney, which facilitates the active transport of glucose across the PCT by the sodium 

gradient that is generated by the sodium-potassium ATPase pump (Taylor & Harris, 2013). 

SGLT-2 inhibitors are glucosuric agents which prevent the reabsorption of glucose and facilitate 

its excretion through micturition (Inzucchi et al., 2015). Although they possess low risks of 

hypoglycemia and weight gain, they still come with pronounced side effects such as increased 

urinary tract infections, genital mycotic infections, acute kidney injury, bone fractures, and skin 

reactions (Filippas-Ntekouan, Filippatos, & Elisaf, 2018).  

 

If type II diabetic individuals are not able to meet their HbA1c targets despite the use of 

intensive drug therapy involving the use of two or more antihyperglycemic agents, insulin 
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analogues should be considered as an addition to the treatment (Inzucchi et al., 2015). 

Combination therapy with insulin and other antihyperglycemic agents has been shown to give 

better glycemic control compared to when either is used alone (Lipscombe et al., 2018). Insulin 

therapy however, shows low patient compliance and is associated with the risk of developing 

hypoglycemia and significant weight gain (Lipscombe et al., 2018). 

 

1.2 Insulin  

Insulin is an endocrine hormone secreted by the beta cells of the pancreatic islets of Langerhans. 

Biologically active, secreted insulin consists of two peptide chains, A and B, containing 21 and 

30 amino acids, which are linked together by two disulfide bonds (Fargion et al., 2005). The INS 

gene on chromosome 11 is initially transcribed to preproinsulin mRNA and then translated to the 

peptide preproinsulin. Preproinsulin is processed to proinsulin in the rough endoplasmic 

reticulum (RER) by cleavage of the signal sequence of preproinsulin by signal peptidase (EC 

3.4.21.89) (Patzelt et al., 1978). This removal aids proinsulin to stabilize and acquire its 3D 

structure by linking the A and B chains with the C chain through three disulfide bonds. From 

here, proinsulin transits through the Golgi apparatus where it is packed in immature storage 

vesicles. Proinsulin is further processed by the prohormone convertases (PC1; EC 3.4.21.93 and 

PC2; EC 3.4.21.94), resulting in the cleavage of the C-peptide chain (Steiner et al., 1992). Once 

immature storage vesicles transcend out of the Golgi apparatus, they are transformed to mature 

secretory vesicles now containing biologically active insulin, by the enzyme carboxypeptidase E 

(EC 3.4.17.10) (Hutton, 1994). Within the matured secretory vesicles insulin exists in a 

hexameric crystalline form coupled with a zinc cation. Along with the insulin in the secretory 

vesicles, an equimolar concentration of C-peptide is present, which can be utilized to indirectly 
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measure the endogenous insulin secretion. This process of insulin biosynthesis is both very 

efficient (with only approximately 1-2% of proinsulin left in the matured secretory vesicles) and 

rapid (taking less than 2 hours to complete) (Tokarz, MacDonald, & Klip, 2018). 

 

1.2.1 Insulin Physiology 

Insulin secretory granules, through a series of tightly regulated mechanisms as described in the 

section 1.2.1.1, dock with the plasma membrane to release the insulin outside the beta cells into 

the interstitial space of the pancreas in response to glucose or other secretagogues. From here 

insulin enters the portal circulation where it can undergo hepatic clearance to ensure desired 

blood concentrations are maintained (Tokarz, MacDonald, & Klip, 2018).  

 

One of the major functions of insulin is to increase glucose uptake in the liver by increasing the 

activity of glucokinase and thus phosphorylation of glucose, and in skeletal muscle and adipose 

tissue by stimulating the translocation of glucose transporter (GLUT) 4 to the plasma membrane. 

In liver and skeletal muscle, insulin also promotes glycogenesis, defined as the biochemical 

process for the synthesis of glycogen from glucose. In the same tissues, insulin inhibits 

glycogenolysis, the biochemical process of breakdown of glycogen to glucose, by reducing the 

phosphorylation of glycogen phosphorylase (EC 2.4.1.1) and glycogen synthase (EC 2.4.1.11). 

Insulin also inhibits gluconeogenesis, the biochemical process for the synthesis of glucose from 

the non-carbohydrate precursors such as glycerol, lactate, and amino acids, to promote glucose 

storage. Apart from storing energy, insulin promotes glycolysis with subsequent generation of 

ATP for utilization by the cells (Han et al., 2016). 
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Other than glucose, insulin also promotes the uptake of fatty acids from the bloodstream into 

adipose tissues. Insulin stimulates lipogenesis, defined as the biochemical process of synthesis of 

fatty acid from the carbon precursors of acetyl-CoA, predominantly in the liver and adipose 

tissues. It does so by stimulating the activity of pyruvate dehydrogenase phosphatase (EC 

3.1.3.43), and the rate-limiting enzyme acetyl-CoA carboxylase (EC 6.4.1.2). Insulin in concert 

with -adrenergic stimulation favours the storage of fatty acids and inhibits the rate of lipolysis 

by regulating cyclic adenosine monophosphate (cAMP) levels (Jönsson et al., 2019). It does so 

by inhibiting protein kinase B (EC 2.7.11.11; AKT) phosphorylation at both Ser473 and Thr308, 

with subsequent activation of  phosphodiesterase-3B (EC 3.1.4.17; PDE3B) which hydrolyzes 

cAMP to AMP (Jönsson et al., 2019). Activation of -adrenergic receptors stimulate adenylate 

cyclase (EC 4.6.1.1)-dependent production of cAMP, with subsequent activation of protein 

kinase A (EC 2.7.11.11; PKA). PKA phosphorylates hormone-sensitive lipase (EC 3.1.1.79) and 

perilipin-1, which along with monoacylglycerol lipase (EC 3.1.1.23), hydrolyzes triacylglycerol 

to glycerol and fatty acid in adipose tissues (Nilsson et al., 1980). Hence, insulin-driven 

hydrolysis of cAMP via PDE3B inhibits the lipolytic activity of adipose tissue. Insulin also 

reduces the rate of fatty acid oxidation in liver and skeletal muscle, which along with the insulin-

induced decreased lipolysis in adipose tissue, aids in regulating glucose utilization by these 

tissues (Dimitriadis et al., 2011). In skeletal muscle, insulin promotes the uptake of amino acids 

from the circulation and enhances muscle protein synthesis while inhibiting protein breakdown 

(Wolfe, 2000). 

 

Although the concentration of insulin reaching the central nervous system (CNS) is one-third of 

that in the bloodstream, it evokes several centrally regulated functions by activating insulin 
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receptors present in the CNS. This includes the regulation of appetite by lowering neuropeptide 

Y expression, the regulation of body temperature, and the suppression of gluconeogenesis 

regulated in part by insulin receptors expressed specifically in the agouti-related protein 

expressing neurons (Kleinridders et al., 2014). The regulation of gluconeogenesis by insulin in 

the CNS occurs via ATP-dependent potassium channels and phosphoinositide 3-kinase (EC 

2.7.1.137) mediated pathways (Obici et al., 2002). A recent study has also shown insulin 

modulates memory, cognition, and mood (Lee et al., 2016). The molecular mechanisms for these 

responses are not known and need further study. 

 

1.2.1.1 Secretory mechanism 

Glucose is the primary metabolic stimulus for insulin secretion, although other hormones, 

macronutrients, and inputs from the CNS may alter this response. The molecular mechanism 

involving the relay of the biochemical signal to the electrical signal contributing to insulin 

exocytosis in response to glucose is depicted in Figure 1.1. Briefly, glucose enters the pancreatic 

beta cells through glucose transporter GLUT1 in humans, and GLUT2 in rodents (McCulloch et 

al., 2011). Once inside the cell, it undergoes phosphorylation catalyzed by the glucokinase 

enzyme to form glucose-6-phosphate. Glucose-6-phosphate through the glycolysis cascade 

generates the downstream metabolite pyruvate. Pyruvate feeds the mitochondrial citric acid cycle 

(CAC) ultimately generating ATP through oxidative phosphorylation. Both glucokinase and the 

GLUT2 transporter together act as the glucose-sensors because their Km values are in the range 

(7 mmol/L – 17 mmol/L) of normal changes in the physiological glucose concentrations   
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Figure 1.1: Glucose-stimulated insulin secretion mechanism 

Glucose enters the beta cell via GLUT2 receptor and initiates the signaling cascade via 

glycolysis, and CAC to generate ATP, resulting in an increased cytosolic ATP/ADP ratio. This 

leads to the closure of the KATP ion channels which subsequently depolarize the plasma 

membrane resulting in the opening of the voltage-dependent L-type calcium ion channels. The 

increased influx of Ca+2 triggers the fusion of the insulin granules with the plasma membrane 

causing insulin secretion.    
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contributing to glucose homeostasis (Efrat, Tal, & Lodish, 1994). The resulting increase in the 

cytosolic ATP/ADP ratio results in the closure of KATP ion channels. This depolarizes the plasma 

membrane of the beta-cell. This step marks the transition of the biochemical signal to the 

electrical signal. If the membrane adequately depolarizes to a threshold potential of 

approximately -55 mV to -50 mV, voltage-dependent L-type calcium ion channels are activated 

allowing the influx of calcium into the cell (Rorsman, Braun, & Zhang, 2012). The increased 

influx of calcium ions then couples with the synaptotagmins (Syts) family of proteins, 

particularly Syt7 in pancreatic beta cells (Gustavsson et al., 2008). Subsequent interaction with 

soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) core 

complex formed between the target (t-) SNARE proteins syntaxin 1 and SNAP 25 located on the 

plasma membrane, and vesicle (v-) SNARE protein synaptobrevin 2, also known as vesicle-

associated membrane protein 2 (VAMP2), incorporated into the insulin vesicle membrane has 

been shown to modulate insulin exocytosis (Brewer et al., 2015; Choi et al., 2010).  

 

Synaptotagmins are characterized by the presence of two C-terminal subdomains, C2A and C2B, 

in their structure. Both of them contain calcium-binding motifs allowing binding with calcium 

ions (Sutton et al., 1995). The SNARE complex has been shown to be regulated by 

Sec1/Munc18-like (SM) adaptor protein (Zhu et al., 2015). Munc18 binds to syntaxin 1 (Misura, 

Scheller, & Weis, 2000), followed by the recruitment of SNAP-25 at the plasma membrane 

(Gandasi & Barg, 2014). Rab3A, a small guanine nucleotide triphosphatase (GTPase) from the 

Rab family that is associated with the insulin granule, binds with Rab3-interacting-molecule 

(RIM)2 to then initiate vesicle docking (Yasuda et al., 2010). Rab3A binding with munc18 has 

also been reported and implicated in vesicle docking (Tsuboi & Fukuda, 2006). Another member 
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of the SM protein family, munc13, has been shown to bind with the syntaxin-munc18 complex 

priming the granule for exocytosis (Ma et al., 2011). Binding of Rab3A and RIM2 with 

munc13 has also been shown to facilitate the munc13 priming function (Dulubova et al., 2005). 

The increase in the influx of calcium ions therefore triggers the binding of Syt7 with the SNARE 

core complex resulting in the fusion of insulin granules with the plasma membrane eliciting 

insulin release from the beta cells (Röder et al., 2016).  

 

Glucose-stimulated insulin secretion (GSIS) is bi-phasic in humans, where the first phase is 

marked by the rapid release of the insulin granules from the readily releasable pool (RRP), 

consisting of less than 5% of total insulin granules, that have already docked at the plasma 

membrane. This phase lasts up to 10 minutes (Wang & Thurmond, 2009). The second phase of 

insulin secretion involves insulin granules from the reserve pool (RP), containing 75% - 95% of 

insulin granules, mobilizing to the cell membrane, following actin cytoskeleton remodelling 

regulated by glucose-stimulated Rho family protein members, particularly Rho, Cdc42, and Rac, 

and subsequent docking to the cell membrane (Wilson, Ludowyke, & Biden, 2001). Glucose-

stimulated activation of a small GTPase, Cdc42, triggers phosphorylation of p21-activated kinase 

(EC 2.7.11.1; PAK1) with subsequent activation of Rac1 (Kalwat & Thurmond, 2013). Rac1 in 

its GTP-bound form has been shown (Azuma et al., 1998) to signal through calcium-dependent 

filamentous actin (F-actin) binding protein gelsolin to promote reorganization of the F-actin 

cytoskeletal network. Gelsolin has been shown to interact with the t-SNARE protein syntaxin 4 

at the plasma membrane to stimulate insulin exocytosis (Kalwat et al., 2012). Taken together, the 

second phase of insulin secretion represents the recruitment of the RP insulin granules to the 

plasma membrane through actin reorganization in response to glucose or other stimuli (see 
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below). Overall, insulin secretion encompassing both the phases corresponds to the total dose of 

glucose being administered (Tokarz, MacDonald, & Klip, 2018). Loss of the first phase of 

insulin secretion, and reduced second phase insulin secretion is a characteristic feature of 

impaired glucose tolerance and type II diabetes (Davis et al., 1993).    

 

Apart from glucose, insulin secretion is also modulated by other nutrients, hormones, and 

autonomic inputs which can modify the insulin secretory response by either altering the 

electrical/calcium responses or controlling the efficacy of the exocytotic machinery of beta cells. 

For instance, incretin hormones secreted from the intestinal endocrine cells act on G protein-

coupled receptors (GPCRs), to potentiate insulin secretion in a glucose-dependent manner via the 

Gs protein signalling cascade (Tengholm, 2012), enhancing the cytosolic cAMP levels which 

further downstream phosphorylates the exocytotic machinery of beta cells in PKA-dependent 

manner, and stimulates calcium release in an exchange protein activated by cAMP (Epac)-

dependent fashion (Kolic & Macdonald, 2015).  

 

Considering the data from the international diabetes federation, side effects associated with the 

current management therapies of type II diabetes, and the complications associated with type II 

diabetes, there is a need to develop safe and alternative therapies. Recent studies have focused on 

novel GPCRs and their role in modulating glucose homeostasis. One such GPCR, termed trace 

amine-associated receptor (TAAR)1 is activated by a class of compounds called trace amines. 

Multiple groups (Cripps et al., 2020; Michael et al., 2019; Raab et al., 2016) have recently 

reported TAAR1 as a potential novel target for the treatment of type II diabetes.  
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1.3 Trace amines 

Trace amines (TAs) are a group of endogenous amines which are present in vertebrate tissues at 

very low concentrations, usually below 500 ng/g tissue (Gainetdinov, Hoener, & Berry, 2018) or 

in the range 0.1-100 nM, representing less than 1% of the total biogenic amines (Durden & 

Davis, 1993; Durden & Philips, 1980). TAs include 2-phenylethylamine (PEA), para-tyramine 

(TYR), tryptamine (TRP), para-octopamine (OCT), and para-synephrine (SYN). They are 

structurally analogous to the classical biogenic amines like epinephrine, norepinephrine, 

dopamine, and serotonin (5-HT).  

 

TAs are not thought to be neurotransmitters because they are not released in response to 

potassium-induced depolarization (Dyck, 1989), suggesting they are not stored in synaptic 

vesicles (Juorio, Greenshaw, & Wishart, 1988), readily diffuse across lipid bilayers (Berry, 

2004) and exert no effect alone on neuronal excitability at their physiological concentrations 

(Berry et al., 1994; Jones, 1981). They have a rapid turnover rate compared to classical biogenic 

amines, and a half-life of less than 15 seconds (Durden & Philips, 1980), consistent with not 

being stored in synaptic vesicles (Berry et al., 2013). Despite this, TAs in the CNS interact with 

various neurotransmitter systems, and are suggested to modulate neurotransmitter responses to 

maintain the basal tone of neurons (Henwood, Boulton, & Phillis, 1979; Lundberg, Oreland, & 

Engberg, 1985; Paterson, 1993). Deregulation of trace amine concentrations has been linked to 

several neurological disorders including schizophrenia, depression, mood change, and substance 

abuse disorders (Berry, 2007).  

  



   

 

 

17 

Exogenously TA are found in commonly consumed foods like chocolate, red wine, soy products, 

fermented meats, aged cheese (Berry et al., 2017), and foods produced upon anaerobic 

fermentation (Gardini et al., 2016; Toro-Funes et al., 2015). They can also be produced by the 

intestinal microbiota, through decarboxylation of dietary amino acids (Yang et al., 2016). 

 

1.3.1 Endogenous TA Synthesis 

TAs, specifically PEA, TYR, and TRP, are synthesized by the decarboxylation of the aromatic 

amino acid precursors L-phenylalanine, L-tyrosine, and L-tryptophan by aromatic L-amino acid 

decarboxylase (EC 4.1.1.28; AADC) (Boulton, 1982) (Figure 1.2). Subsequently,  p-octopamine 

and p-synephrine can be synthesized upon action by the enzymes dopamine-ß-hydroxylase (EC 

1.14.17.1; DßH) and phenylethanolamine-N-methyl transferase (EC 2.1.1.28; PNMT) (Boulton 

& Wu, 1972) (Figure 1.2). The latter enzyme further aids in the synthesis of N-methylated 

secondary amines such as N-methylphenylethylamine from PEA, and N-methyltyramine from 

TYR. Similar to this, indolethylamine N-methyltransferase (EC 2.1.1.49; INMT) yields N-

methyltryptamine upon its action on TRP (Lindemann & Hoener, 2005). For TA synthesis, since 

AADC is the only enzyme involved, it is considered as a rate-limiting factor (Berry et al., 1996). 

Not only is the structure of TAs similar to classical monoamine neurotransmitters but also the 

pathway by which they are synthesized is analogous (Figure 1.2).  

 

D-neurons of the CNS have been shown to specifically express AADC, but not the other 

enzymes involved in the synthesis of catecholamines or 5HT, suggesting D-neurons may be a 

dedicated neuronal system for TAs (Berry et al., 2017). AADC has also been found to be 

expressed in non-neuronal cells outside the CNS such as kidney, liver, pancreas, lungs, and   



   

 

 

18 

 

 

 

 

 

Figure 1.2: Biosynthetic pathway of trace amines  

AADC: Aromatic L-amino acid decarboxylase; DBH: Dopamine ß-hydroxylase; PH: 

Phenylalanine hydroxylase; PNMT: Phenylethanolamine N-methyl transferase; TH: Tyrosine 

hydroxylase 
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gastrointestinal tract (Berry et al., 1996) where it can synthesize TAs from the aromatic amino 

acid precursors to elicit TA action peripherally. AADC has been shown to be regulated both at 

the gene expression and enzyme activity level. AADC is regulated in a biphasic manner with the 

initial short-term changes due to altered phosphorylation status of the enzyme, followed by 

delayed long lasting changes in its expression (Berry et al., 1996). AADC activity is decreased in 

response to dopaminergic and adrenergic receptor agonists, with subsequent decreases in TA 

levels (Hadjiconstantinou et al., 1993; Rossetti et al., 1990; Zhu et al., 1993), while activity is 

increased in response to antagonists at these receptors, leading to elevated TA levels (Neff et al., 

2006; Zhu et al., 1992). This suggests that the regulation of AADC activity modulates the TA 

levels in response to monoaminergic neurotransmitter signalling.  

 

1.3.2 TA Degradation  

TAs are primarily metabolized by the oxidation of the aliphatic amino group by the enzyme 

monoamine oxidase (EC 1.4.3.4; MAO) (Philips & Boulton, 1979) (Figure 1.3). MAO has two 

isoforms, MAO-A and MAO-B (Shih & Chen, 2004). Apart from PEA which is a highly 

selective substrate for MAO-B (Yang & Neff, 1973), all other TAs are metabolized by both 

MAO-A and MAO-B (Durden & Philips, 1980; Philips & Boulton, 1979).  Apart from MAO, 

TAs have also been reported to be catabolized by the enzyme semicarbazide-sensitive amine 

oxidase (SSAO; EC 1.4.3.21), also known as amine oxidase, copper containing 3 (AOC3) or 

vascular adhesion protein-1 (VAP-1) (Elliott, Callingham, & Sharman, 1989). Tyramine has also 

been shown to be metabolized by cytochrome P450 isozymes and flavin monooxygenase 3 

(FMO3; EC 1.14.13.8) in isolated human livers (Niwa et al., 2011). 
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Figure 1.3: Trace amines and their metabolites 

MAO-A: Monoamine oxidase A; MAO-B: Monoamine oxidase B 
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1.4 Trace amine-associated receptors 

TAs have been known for 150 years, but not many studies were carried out on this unique class 

of compounds because of the lack of knowledge regarding their receptor targets. This trend 

changed in 2001 when two independent groups of researchers identified a new class of GPCRs  

which are highly selective for TAs, specifically PEA and TYR (Borowsky et al., 2001; Bunzow 

et al., 2001). Later these GPCRs under a standardized system of nomenclature became named as 

trace amine-associated receptors (TAARs) (Lindemann et al., 2005). 

 

The receptors for detecting TAs are evolutionarily distinct in vertebrates and invertebrates 

(Lindemann et al., 2005). This makes TAARs specific to vertebrates, and they have been shown 

to be present in all vertebrate species examined so far (Gainetdinov et al., 2018) except 

bottlenose dolphin (Eyun et al., 2016). Twenty-eight sub-families of vertebrate TAARs have 

been identified (Hussain et al., 2009). Out of these, TAAR1-9 are expressed in terrestrial 

mammals while TAAR10-28 are only found in aquatic vertebrates. Individual TAARs can also 

have multiple isoforms, many of which appear to be species-specific (Eyun et al., 2016; Hussain 

et al., 2009; Vallender et al., 2010). All TAARs are single exon genes with the exception of 

TAAR2 (Lindemann et al., 2005) and are clustered in a single chromosomal location in non-

aquatic vertebrates (Eyun et al., 2016; Lindemann et al., 2005). In humans, TAAR genes are 

localized to chromosomal 6q23.1 (Lindemann et al., 2005).  

 

The existence of different functional TAAR genes and pseudogenes between vertebrate species 

indicates huge species variation (Table 1.1). This difference in the TAAR expression profile 
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Table 1.1: Functional TAAR genes and pseudogenes in different vertebrate species 

Species Functional 

TAAR genes 

TAAR 

Pseudogenes 

References 

Human 6 3 (Lindemann et al., 2005) 

Chimpanzee 3 6 (Lindemann et al., 2005) 

Orangutan 3 5 (Vallender et al., 2010) 

Mouse 15 1 (Hashiguchi & Nishida, 2007; 

Lindemann et al., 2005) 

Rat 17 2 (Eyun et al., 2016; 

Lindemann et al., 2005) 
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between species is evolutionarily dictated by environmental adaptive responses (Churcher et al., 

2015). Out of TAAR1-9, humans express a single functional variant of TAAR1, TAAR2, 

TAAR5, TAAR6, TAAR8, and TAAR9 with three pseudogenes also present, TAAR 3, TAAR4, 

and TAAR7 (Lindemann et al., 2005).  

 

TAARs are expressed throughout the body but due to their low expression levels, and lack of 

selective reagents, knowledge of their roles in any species is sparse except for TAAR1 (Berry et 

al., 2017). TAAR1 tissue distribution and associated role in the body is described in detail in 

later sections (1.5.1, 1.5.4 and 1.5.5).  Except TAAR1, all other TAARs are present in the 

olfactory epithelium and serve chemosensory functions in identifying social and ecologically 

relevant cues (Horowitz et al., 2014; Liberles, 2015; Liberles & Buck, 2006; Santos et al., 2016). 

In the olfactory epithelium, they are co-expressed with Golf to induce cAMP accumulation 

(Liberles & Buck, 2006).  

 

In addition to the olfactory epithelium (Liberles & Buck, 2006), TAAR2 is found in human and 

mouse leukocytes (Babusyte et al., 2013), and in rat heart and testis (Chiellini et al., 2012). 

Although no ligand for TAAR2 has been identified, TAAR2 is required to initiate leukocyte 

migration in response to PEA (Babusyte et al., 2013). This may suggest that TAAR2 is required 

to elicit TAAR1 mediated chemotactic responses through heterodimerization with TAAR1 

(Babusyte et al., 2013). In a study with small sample size, a single nucleotide polymorphism in 

TAAR2 was reported to be linked to schizophrenia (Bly, 2005).  
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TAAR5 is expressed primarily in the olfactory epithelium (Li et al., 2013; Wallrabenstein et al., 

2013), although low levels have also been shown in leukocytes (Babusyte et al., 2013), and 

different brain regions of the mouse (Dinter et al., 2015; Espinoza et al., 2020). A recent study 

(Aleksandrov et al., 2018) using a novel, synthetic and selective TAAR5 agonist, 2-(α-

naphthoyl)ethyltrimethylammonium iodide has suggested a role for TAAR5 in sensory gating in 

rats, possibly indicating a role for TAAR5 in schizophrenia, which is marked by sensory gating 

deficits. Trimethylamine (TMA), a tertiary amine, has been found to be a highly selective agonist 

at human TAAR5 (Liberles & Buck, 2006; Wallrabenstein et al., 2013). Degradation of TMA in 

hepatic tissue via FMO3 generates trimethylamine-N-oxide (TMAO) (Fennema, Phillips, & 

Shephard, 2016), a metabolite positively correlated with an increased risk of developing 

cardiovascular and metabolic disease (Zhang & Davies, 2016). A direct correlation of TMA 

levels with atherosclerosis in HIV patients has also been observed (Srinivasa et al., 2015). Raised 

TMA levels have also been reported to be a biomarker for renal cell carcinoma (Gao et al., 

2008). Elevated levels of TMA in urine, sweat or blood, a pathological condition termed as 

trimethylaminuria, is an indicator of potential kidney damage (Chhibber-Goel et al., 2016). A 

genetic deficiency in FMO3 would also result in trimethylaminuria (Humbert et al., 1970). A 

recent report of loss of function mutation in TAAR5 in some Icelandic populations affecting 

odor perception has been demonstrated (Gisladottir et al., 2020). This suggests human TAAR5 as 

a functional chemosensory receptor. Another tertiary amine N,N-dimethylethylamine has been 

shown to exert a less potent partial agonistic response at human TAAR5 (Zhang et al., 2013). 

The TAAR1 agonist and thyroid hormone metabolite 3-iodothyronamine (T1AM) has been 

reported to be an inverse agonist at human TAAR5 (Dinter et al., 2015).  
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TAAR6 expression beyond the olfactory epithelium has been reported in mouse duodenal cells 

(Ito et al., 2009), rat testis and spinal cord (Chiellini et al., 2012), and in humans is present in 

several brain regions such as basal ganglia, frontal cortex, substantia nigra (Duan et al., 2004), 

hippocampus and amygdala (Borowsky et al., 2001; Duan et al., 2004), kidney (Borowsky et al., 

2001), and leukocytes (Babusyte et al., 2013). No ligand for TAAR6 has been identified. 

Different studies have identified TAAR6 genetic variants (Pae et al., 2010) and single nucleotide 

polymorphisms (Chang et al., 2015) in individuals diagnosed with schizophrenia (Pae et al., 

2008) and mood disorders (Pae et al., 2010). This suggests a potential link between TAAR6 

polymorphisms and schizophrenia (Duan et al., 2004; Pae et al., 2008). TAAR6 polymorphisms 

have also been shown to influence the therapeutic responses to aripiprazole (Serretti et al., 2009), 

an atypical anti-psychotic drug, and responsiveness to corticosterone in asthma patients (Chang 

et al., 2015). 

 

Ligands for human TAAR8 and TAAR9 are also unknown. However, isoforms of rat TAAR8 

and TAAR9 have been shown to be activated by the tertiary amines N-methylpiperidine and 

N,N,-dimethylcyclohexylamine (Ferrero et al., 2012; Liberles & Buck, 2006). One study (Li et 

al., 2015) has also shown the presence of a diamine binding pocket in TAAR8. TAAR8 

transcripts have been reported in the human amygdala (Borowsky et al., 2001) and leukocytes 

(Babusyte et al., 2013). Different isoforms of TAAR8 have been shown to be present in rat 

cerebellum and cortex (Chiellini et al., 2012), spinal cord (Gozal et al., 2014), various mouse 

brain regions (Mühlhaus et al., 2014), kidney, intestines, heart, lung, spleen, stomach and testis 

(Chiellini et al., 2012).   

  



   

 

 

26 

Human TAAR9 mRNA has been reported in leukocytes (Babusyte et al., 2013), skeletal muscle, 

and pituitary gland (Vanti et al., 2003). TAAR9 mRNA has also been found in rat spinal cord 

(Gozal et al., 2014), mouse spleen (Regard et al., 2007) and duodenal mucosal cells (Ito et al., 

2009).  

 

1.5 Trace amine-associated receptor1 

1.5.1 Ligands 

Among TAARs, TAAR1 is the most studied member because of its well-established endogenous 

ligands (Gainetdinov et al., 2018). TAAR1 is activated by primary amines and considered as a 

major target for PEA and TYR (Berry et al., 2017). Along with PEA and TYR other endogenous 

compounds such as TRP, p-octopamine (Bunzow et al., 2001; Lindemann et al., 2005), T1AM 

(Scanlan et al., 2004), and the dopamine metabolite 3-methoxytyramine (Sotnikova et al., 2010) 

are also high-affinity ligands which exert full agonistic responses at TAAR1. Dopamine and 5-

HT also activate TAAR1 as partial agonists (Lindemann et al., 2005). In addition, drugs of abuse 

such as amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine potently 

activate TAAR1 (Simmler et al., 2016). Recently a novel series of synthetic TAAR1 ligands, 

based on a 2-aminooxazoline scaffold, which are highly potent, and selective at human TAAR1 

were generated at Hoffmann-La Roche (Galley et al., 2016). Four ligands from this series 

(RO5166017, RO5203648, RO5263397 and RO5256390) were chosen to further characterize 

TAAR1 mediated functions, RO5166017 and RO5256390 are highly selective full agonists, 

while the remaining two are partial agonists (Galley et al., 2016). Apart from the above ligands 

Hoffmann-La Roche also developed the first TAAR1 antagonist RO5212773 (EPPTB) (Bradaia 
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et al., 2009), which is highly potent at mouse TAAR1, but has limited activity at the rat and 

human receptors (Berry et al., 2017). 

 

1.5.2 TAAR1 Tissue expression 

Due to the low expression profile of TAAR1, and specifically a lack of commercially available 

selective antibodies for the individual TAARs, it is challenging to demonstrate TAAR1 protein 

expression (Berry et al., 2017), although this is better characterized than other members of the 

TAAR family (Berry et al., 2017). Hoffmann-La Roche has recently developed two highly 

selective TAAR1 antibodies directed against human (Raab et al., 2016) and rat (Harmeier et al., 

2015) receptors that are functional in immunohistochemistry protocols (human) and western blot 

analysis (rat). TAAR1 protein has been confirmed to be present throughout the body except the 

olfactory epithelium (Liberles & Buck, 2006), in both the central nervous system (Borowsky et 

al., 2001; Lindemann et al., 2008) as well as in peripheral tissues (Adriaenssens et al., 2015; 

Babusyte et al., 2013; Ito et al., 2009; Pitts et al., 2019; Raab et al., 2016). 

 

In the CNS of both rodents and primates TAAR1 mRNA and protein has been found to be 

heterogeneously expressed in dopaminergic, serotonergic, and glutamatergic neurons and their 

projection areas (Berry et al., 2017). Specific areas in the brain where TAAR1 expression has 

been demonstrated in the dopaminergic system are the ventral tegmental area (VTA) and 

substantia nigra pars compacta; in the serotonergic system the dorsal raphe and VTA; and in the 

glutamatergic system in the amygdala, hippocampus and subiculum. Not only is TAAR1 

expressed at the origin of these monoaminergic neurons but it is also distributed across their 

neuronal projection areas such as the prefrontal cortex, basal ganglia, and limbic regions 
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(Borowsky et al., 2001; Lindemann et al., 2008). TAAR1 expression has also been demonstrated 

in rat spinal cord (Gozal et al., 2014).  

 

In the periphery, TAAR1 is expressed in the somatostatin producing stomach D-cells 

(Adriaenssens et al., 2015), insulin-secreting pancreatic beta cells (Regard et al., 2007; Raab et 

al., 2016), and intestinal endocrine cells involved in nutrient-induced hormone secretion (Ito et 

al., 2009; Raab et al., 2016). Expression of TAAR1 mRNA and protein has also been reported in 

various leukocyte populations (Babusyte et al., 2013; Nelson et al., 2007) and breast cancer cell 

lines (Pitts et al., 2019). Compared to breast cancer cell lines, a higher TAAR1 mRNA 

expression has been reported in normal breast tissue (Pitts et al., 2019).  

 

Unlike most GPCRs, TAAR1 protein has been consistently reported to be intracellular (Bunzow 

et al., 2001; Lindemann & Hoener, 2005; Pitts et al., 2019; Raab et al., 2016) due to lack of N-

glycosylation sites (Barak et al., 2008). However, heterodimerization with other GPCRs may 

promote the translocation of TAAR1 to the plasma membrane (Espinoza et al., 2011; Harmeier 

et al., 2015). 

 

1.5.3 Signal transduction cascades 

TAAR1 is coupled to the Gs protein promoting the activation of adenylyl cyclase with 

subsequent cAMP production (Borowsky et al., 2001; Bunzow et al., 2001). In both 

dopaminergic and serotonergic neuronal projection areas, TAAR1 has been shown to also couple 

with G-protein-gated potassium ion channels (GirK) (Bradaia et al., 2009). TAAR1-mediated 

GirK activation in these neurons induces opening of the inwardly rectifying potassium channels, 
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resulting in membrane hyperpolarization and a reduction in the neuronal firing frequency (Revel 

et al., 2011).  

 

TAAR1 has also been shown to heterodimerize with dopamine D2-like receptors (D2R) both in-

vitro and in-vivo. This interaction results in TAAR1 regulation of both pre- and post-synaptic 

D2R, and vice versa (Espinoza et al., 2011; Harmeier et al., 2015). D2R can signal through the 

G-protein independent ß-arrestin 2 cascade leading to AKT dephosphorylation, and subsequent 

glycogen synthase kinase-3 beta (EC 2.7.11.26; GSK3ß) activation (Beaulieu, Gainetdinov, & 

Caron, 2009). Heterodimerization of TAAR1 with D2R has been reported to increase TAAR1 

interactions with ß-arrestin 2 (Harmeier et al., 2015). This TAAR1-mediated ß-arrestin 2 

recruitment phosphorylates AKT with subsequent inactivation of GSK3ß signalling (Espinoza et 

al., 2015; Harmeier et al., 2015). The AKT/GSK3ß signalling pathway has been suggested to 

have aetiologic relevance in the pathology of neuropsychiatric disorders (Beaulieu, Gainetdinov, 

& Caron, 2009). Considering this TAAR1-D2R mediated negative modulation of GSK3ß 

signaling might have future clinical implications. 

 

In a study based on TAAR1 signalling in rhesus monkey lymphocytes two downstream targets of 

TAAR1 activation, nuclear factor of activated T-cells (NFAT) and cAMP response element-

binding protein (CREB) were identified, and associated with immune activation (Panas et al., 

2012). In the same study, TAAR1 activation by methamphetamine was reported to phosphorylate 

PKA and protein kinase C (EC 2.7.11.13; PKC). Very recently an in-vitro study on TAAR1 

signalling, in pancreatic beta-cell lines, has identified several downstream TAAR1 targets, 

including adenylyl cyclase, cAMP, PKA, Epac, the inositol trisphosphate (IP3) receptor, 
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calcium/calmodulin-dependent protein kinase II (EC 2.7.11.17; CaMKII), rapidly accelerated 

fibrosarcoma (Raf), mitogen-activated protein kinase kinase 1/2 (EC 2.7.12.2; MEK1/2), 

extracellular signal-regulated kinase 1/2 (EC 2.7.11.24; ERK1/2), and CREB, all of which are 

involved in enhanced insulin secretion and beta-cell proliferation upon TAAR1 activation 

(Michael et al., 2019).  

 

1.5.4 Role in CNS   

Several studies in mouse, rat, rhesus monkey, and human CNS have demonstrated the expression 

of TAAR1 in the primary dopaminergic areas such as the VTA and substantia nigra where it 

modulates dopaminergic neurotransmission (Berry et al., 2017; Borowsky et al., 2001; 

Lindemann & Hoener, 2005; Xie et al., 2007). In a study (Bradaia et al., 2009) using TAAR1-

KO mice, the firing frequency of dopaminergic neurons of the VTA, determined through 

electrophysiological measurements, was shown to be significantly enhanced. In the same study 

using wild type mice, the firing rate of these neurons was potently increased by using the 

TAAR1 antagonist RO5212773 and decreased upon using different TAAR1 agonists. Overall 

TAAR1 activation in the dopaminergic system acts to prevent hyperactivity of the neurons 

(Revel et al., 2011). This also suggests the potential role of TAAR1 in modulating dopaminergic 

neurotransmission involved in eliciting locomotor, behavioral and emotional responses 

(Lindemann et al., 2008).  This TAAR1 modulation of dopaminergic neurotransmission can 

occur at both pre-synaptic (Xie & Miller, 2008, 2009) and post-synaptic sites (Espinoza et al., 

2015) by interacting with pre- and post-synaptic D2R (Berry et al., 2017). TAAR1 has also been 

suggested to regulate dopamine transporter (DAT) function (Xie, Westmoreland, & Miller, 

2008). G13 coupled-TAAR1 activation of small GTPase RhoA inside the brain has been shown to 
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stimulate DAT internalization (Underhill et al., 2019). The same study has also shown that Gs 

coupled-TAAR1 signaling through PKA with subsequent RhoA phosphorylation inhibits DAT 

endocytosis. Interestingly, TAAR1 retains its functions even in the absence of DAT (Leo et al., 

2018) supporting the presence of a mechanism of entry of TAAR1 ligands into the cells. It could 

be diffusion across the lipid bilayers (Berry et al., 2013) or probably membrane transporter 

OCT2 as reported earlier (Berry et al., 2016). 

 

The expression of TAAR1 in the serotonergic system suggests its role in the modulation of 

serotonergic neurotransmission. TAAR1 activation in the dorsal raphe neurons of the 

serotonergic system has been shown to reduce the firing rate of these neurons (Revel et al., 

2011). Consistent with this, in the same study, TAAR1-KO mice demonstrated an increased 

firing rate of the serotonergic neurons, with no effect of TAAR1 agonist. In another study, 

TAAR1 partial agonism in the dorsal raphe neurons also augmented the firing rate of the 

serotonergic neurons (Revel et al., 2012). TAs in the serotonergic system have been suggested to 

also modulate serotonin transporter functions through 5HT1A autoreceptors and TAAR1 (Xie et 

al., 2008).  

 

In the glutamatergic system TAAR1 has been shown to regulate transmission by regulating N-

methyl-D-aspartate (NMDA) receptor subunit GluN1, resulting in enhanced excitatory post-

synaptic potentials (Espinoza et al., 2015). TAAR1 agonists in the same system also reverse the 

hyperlocomotion induced by NMDA receptor antagonists, suggesting an additional antipsychotic 

potential of TAAR1 (Revel et al., 2011). Studies (Espinoza et al., 2015) in the prefrontal cortex 

of TAAR1-KO mice have shown a decrease in the total levels of GluN1 and GluN2B NMDA 
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receptor subunits, and an exacerbated phosphorylation of the post-synaptic GluA1 AMPA 

receptor (AMPAR) subunit (Alvarsson et al., 2015). This results in an overall decrease in the 

NMDA/AMPA receptor ratio that was associated with increased preservative and impulsive 

behavioral responses that are associated with cognitive symptoms of schizophrenia (Espinoza et 

al., 2015). TAAR1 agonists have been shown to reduce these behaviors in wild-type mice 

suggesting a potential role in preventing the cognitive deficits associated with decreased NMDA 

receptor function (Revel et al., 2013; Revel et al., 2011). Mapping of TAAR1 to layer V cortical 

neurons (Espinoza et al., 2015), many of which project to the striatum, and alterations in both 

total and phosphorylated levels of GluN1 in the striatum of TAAR1-KO mice, suggests a further 

role for TAAR1 in modulating corticostriatal glutamatergic neurotransmission (Sukhanov et al., 

2016). Methamphetamine-mediated TAAR1 activation in human astrocytes has been shown to 

reduce glutamate clearance by down regulating excitatory amino acid transporter-2 (EAAT-2) 

(Cisneros & Ghorpade, 2014; Ding et al., 2017). Overall TAAR1-mediated selective regulation 

of both glutamate receptors and transporters can prevent hypoactivity of the glutamatergic 

system (Gainetdinov et al., 2018; Revel et al., 2011).              

 

Together, the above studies suggest TAAR1 ligands may be useful in the treatment of 

neuropsychiatric disorders such as schizophrenia, depression, bipolar disorder, drug abuse and 

addiction as well as in neurodegenerative disorders such as Parkinson’s disease (Berry, 2007; 

Berry et al., 2017). That the localization of human TAAR genes overlaps with the schizophrenia 

susceptibility locus SCZD5 particularly suggests a potential role of TAARs in this disorder 

(Duan et al., 2004). The unique ability of TAAR1 agonists to simultaneously prevent the 

hyperactivity of dopaminergic and hypoactivity of glutamatergic neural circuits make them a 
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particularly relevant and unique pharmacotherapeutic agent for treating schizophrenia (Berry et 

al., 2017) and beneficial effects in disease-relevant animal model systems have been observed 

(Revel et al., 2013). Indeed, clinical trials of SEP-363856, a TAAR1-directed agent for 

schizophrenia are in progress and has been reported to have a good safety and efficacy profile in 

schizophrenia patients (Dedic et al., 2019).  

 

Reduced levels of TAs in the CNS were previously correlated with depression-like symptoms 

(Davis & Boulton, 1994; Sandler et al., 1980). In the forced swim stress test, a validated 

paradigm for the assessment of antidepressant-like activity, TAAR1 partial agonists have been 

shown to reduce the time spent immobile in a dose-dependent manner, suggesting an anti-

depressant effect of TAAR1 (Revel et al., 2013; Revel et al., 2012). Along with its anti-psychotic 

potential, the above study indicates a putative role of TAAR1 in the management of bipolar 

disorder (Revel et al., 2013). TAAR1 agonism in the dopaminergic system has also been shown 

to prevent pleasure or reward-seeking effects that are mediated by the dopaminergic system 

indicating a possible role of TAAR1 in the pharmacotherapy of drug abuse and addiction 

disorders (Gainetdinov et al., 2018). Indeed, the ability of TAAR1 to heterodimerize with D2R 

with subsequent recruitment of ß-arrestin 2 cascade has been shown to be the basis of TAAR1 

regulation of cocaine-mediated effects (Asif-Malik et al., 2017). TAAR1 has been shown to be 

beneficial in reducing the addictive/abuse potential of amphetamines (Cotter et al., 2015), 

cocaine (Pei et al., 2014; Thorn et al., 2014a), nicotine (Liu et al., 2018), ethanol (Lynch et al., 

2013), and binge eating of palatable food (Ferragud et al., 2017).  
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Parkinson’s disease is a progressive neurodegenerative disorder resulting in the deficiency of 

dopamine (Beitz, 2014). Therefore, the dopamine precursor levodopa is used to treat Parkinson’s 

symptoms (Katzenschlager & Lees, 2002). However, levodopa is associated with dyskinesia 

(Cenci, Ohlin, & Rylander, 2009), and alternate periods of exacerbated movements and 

immobility (Menza et al., 1990) which make its long term use difficult. The TAAR1 agonists 

RO5166017 (Alvarsson et al., 2015) and 3-methoxytyramine (Sotnikova et al., 2010) have been 

shown to prevent such levodopa-induced dyskinesias. Along with TAAR1 agonists, TAAR1 

antagonists are also suggested to be effective in preventing levodopa-induced dyskinesias 

(Sotnikova et al., 2008). Inhibitors of MAO and catecholamine-O-methyltransferase (COMT; EC 

2.1.1.6), key enzymes involved in the degradation of TAs, have also been clinically used in the 

treatment of Parkinson’s disease (Espinoza et al., 2012). 

 

Taken together, there is convincing evidence that TAAR1 in the CNS regulates reward, 

cognitive, limbic, and mood-related neurocircuitry by modulating dopaminergic, serotonergic, 

and glutamatergic responses (Berry et al., 2017).  

 

1.5.5 Role in the periphery 

Most of the studies of TAAR1 have focused on its CNS effects with much less known about its 

role in the periphery. TAAR1 expression in the periphery has now been ascertained in stomach D 

cells (Adriaenssens et al., 2015), pancreatic beta cells, and intestinal neuroendocrine cells (Raab 

et al., 2016). Somatostatin release from the stomach D cells following TAAR1 activation has 

been demonstrated, which suggests a role of TAAR1 in the control of post-feeding hormone 

secretion and nutrient absorption (Adriaenssens et al., 2015). Immunohistochemical staining 
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using a specific anti-human TAAR1 antibody, identified a co-expression of TAAR1 with GLP-1 

and the gut hormone peptide YY (PYY) in human duodenal sections (Raab et al., 2016). The 

same group has also shown that TAAR1 activation in the intestinal tissues of C57BL/6 mice 

significantly elevates GLP-1 and PYY levels 30 minutes after an oral glucose load. These two 

hormones are involved in improving glucose homeostasis (Baggio & Drucker, 2007), and 

promoting satiety (Manning & Batterham, 2014). TAAR1 activation has also been reported to 

lower food intake, and body weight in C57BL/6 mice resulting in improved insulin sensitivity 

(Raab et al., 2016). 

 

TAAR1 expression has also been identified in different leukocytes populations, including T 

cells, B cells, granulocytes, and natural killer cells (Babusyte et al., 2013; Nelson et al., 2007). 

TAAR1 in leukocytes has been shown to be involved in the regulation of secretion of cytokines 

and immunoglobulins, and in mediating chemotactic responses (Babusyte et al., 2013).  

 

Unlike its low expression profile elsewhere, TAAR1 mRNA in mouse pancreatic islets (Regard 

et al., 2007; Revel et al., 2012) and the rat pancreatic beta cell line INS-1E (Raab et al., 2016) 

have been shown to be among the most enriched and highly expressed. TAAR1 mRNA 

abundance in isolated human islets preparations was also confirmed by independent studies 

(Raab et al., 2016; Regard et al., 2007). This indicates TAAR1 might be involved in the 

regulation of hormones secreted from pancreatic beta cells.  
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1.5.5.1 Role in pancreatic beta cells 

Consistent with the TAAR1 mRNA expression in pancreatic beta cells, immunohistochemical 

staining using a high quality and selective anti-human TAAR1 antibody revealed a co-

localization of TAAR1 protein with insulin, but not with glucagon, in isolated human islets 

(Raab et al., 2016). TAAR1 activation by the physiological ligands TYR, PEA and T1AM in 

different studies using the rat INS-1 cells, MIN6 and INS-1E cell lines has been shown to 

potentiate GSIS (Cripps et al., 2020; Michael et al., 2019; Regard et al., 2007). Similarly, 

TAAR1 activation by a selective TAAR1 agonist RO5166017 in both INS-1E cells and human 

islets has been shown to augment GSIS (Raab et al., 2016). Consistent with this, a recent study 

(Cripps et al., 2020) using the selective TAAR1 antagonist RO5212773 in INS-1 cells has shown 

a TAAR1 antagonism induced reduction in GSIS.  

 

The increase in GSIS following TAAR1 activation has been reported to be observed only at 

elevated, but not at basal, glucose concentrations (Michael et al., 2019; Raab et al., 2016) 

suggesting TAAR1 mediated insulin secretion is glucose-dependent and would have a lower risk 

of inducing hypoglycemia in vivo. An in-vivo study in C57BL/6 mice has also shown an 

enhanced GSIS following TAAR1 activation (Raab et al., 2016) along with a significant 

reduction in the glucose area under the curve following an oral glucose challenge. Such effects 

were not seen in TAAR1 KO littermates, suggesting that the improved oral glucose tolerance 

effects are specifically TAAR1-mediated (Raab et al., 2016). This cAMP-mediated GSIS is 

similar to GLP-1 receptor signalling, suggesting that TAAR1 induces similar effects to the 

endogenous incretin GLP-1 (Michael et al., 2019; Raab et al., 2016). 
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Taken together, the TAAR1 role in potentiating GSIS both in-vitro and in-vivo at higher, but not 

at basal, glucose concentrations suggests that TAAR1 could be a potential therapeutic target for 

type II diabetes treatment (Raab et al., 2016). However, the downstream signalling cascade of 

TAAR1 involved in the regulation of GSIS is not entirely understood and warrants further study. 

Very recently these downstream events have begun to be elucidated. TAAR1-mediated GSIS 

utilizes the Gs-coupled adenylyl cyclase-cAMP dependent signaling pathway (Cripps et al., 

2020; Michael et al., 2019). Epac and PKA, downstream targets of cAMP, together have been 

shown to be sufficient to elicit maximal GSIS response upon TAAR1 activation (Michael et al., 

2019). TAAR1 activation has also been shown to stimulate calcium flux from internal stores via 

the IP3 receptor followed by further cytosolic calcium influx from external sources (Michael et 

al., 2019). However, whether this enhanced calcium flux following TAAR1 activation could 

potentiate GSIS has not been shown. Together, there is a need to validate these results to further 

determine the molecular mechanism of TAAR1 regulation of GSIS.     

 

1.6 INS-1E cell line 

INS-1E cells represent a functional beta cell model which were isolated from the parental INS-1 

cells (Janjic et al., 1999). INS-1 cells were initially isolated from an x-ray-induced rat insulinoma 

(Asfari et al., 1992). To overcome the issue of low stability of INS-1 cells over passages, and its 

non-clonal nature, INS-1E cells with better characteristics were isolated from the parental INS-1 

cells. INS-1E cells are usually stable over a wide range of passages but are recommended to be 

used within the passage range of 40-100 to ensure insulin responsivity to varying glucose 

concentrations (2.5 – 20 mM) (Merglen et al., 2004). A comprehensive study (Merglen et al., 

2004) on INS-1E characterization has shown that INS-1E cells exhibit glucose- and 
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secretagogue-stimulated insulin secretory responses, strong cell to cell communication properties 

and glucose-stimulated electrophysiological properties that mimic native pancreatic beta-cell 

functions, making them a useful tool for studying insulin secretory mechanisms. INS-1E cells 

have also been shown to express abundant TAAR1 mRNA as revealed by quantitative real-time 

PCR analysis and protein (Raab et al., 2016). Overall, these characteristics make INS-1E cell 

lines a favourable in-vitro beta-cell model for my study. 

 

1.7 Research objective and hypothesis 

1.7.1 Objective 

The primary objective of this thesis is to determine the molecular mechanism(s) of TAAR1 

regulation of glucose-dependent insulin secretion. 

 

1.7.2 Hypothesis 

TAAR1 regulates the activity of KATP ion channel component of the glucose-stimulated insulin 

secretion pathway.  

 

 

  

 

 

 

 

  



   

 

 

39 

2.0 Materials and Methods 

2.1 RO5256390 formulations 

RO5256390 ((S)-4-((S)-2-phenylbutyl)-4,5-dihydrooxazol-2-ylamine), chemically a 2-

aminooxazoline, a highly selective ligand of TAAR1 exhibiting full agonistic response (Galley et 

al., 2016), was a generous gift by F. Hoffmann-La Roche Ltd., Basel, Switzerland. RO5256390 

concentrations of 100 nM, 10 nM and 1 nM were used for all the in-vitro experiments in the 

present study. Stock solutions of RO5256390 (10 mM) were prepared in 100% dimethyl 

sulfoxide (DMSO). These were then diluted 100 times using de-ionized water to give 100 µM 

RO5256390 in 1% DMSO. Further working dilutions were prepared using 1% DMSO for in-

vitro cell culture studies. Working dilutions were freshly prepared on the day of the experiment; 

10 mM stock solutions were stored at -20 °C for up to two months. 

 

2.2 INS-1E cell culture 

2.2.1 Materials 

Gibco™ RPMI 1640 powdered medium, Gibco™ fetal bovine serum, Gibco™ sodium pyruvate 

(100mM), Gibco™ HEPES (1 M), Gibco™ penicillin-streptomycin (10,000 U/mL), Gibco™ 2-

mercaptoethanol, Gibco™ trypan blue solution (0.4%), Corning™ T-25 and T-75 culture flasks, 

Falcon™ 24-well polystyrene microplates, and Thermo Scientific™ Nunc™ microwell™ 96-

well optical-bottom plates with coverglass base were obtained from Fisher Scientific (Ottawa, 

Ontario); trypsin-EDTA solution (0.25%), poly-L-ornithine solution (0.01%), and phosphate 

buffered saline tablets were obtained from Sigma-Aldrich, (Oakville, Ontario); the INS-1E cell 

line was obtained from ATCC having an initial passage number of 30. 
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2.2.2 Cell culture 

INS-1E cells were cultured using a protocol previously described (Sebokova et al., 2010). RPMI 

1640 medium was prepared by mixing RPMI 1640 powder with deionized water, followed by 

the addition of analytical grade sodium bicarbonate (2 g/L) and adjusting the pH to 7.20. 

Complete INS-1E growth medium was prepared by adding 10% fetal bovine serum, 1 mM 

sodium pyruvate, 10 mM HEPES, 100 U/mL penicillin-streptomycin and 50 µM 2-

mercaptoethanol to filter sterilized RPMI 1640 medium under aseptic conditions in a level 2 

biosafety cabinet.  

 

All culture flasks and plates were coated with poly-L-ornithine. For coating, 0.01% poly-L-

ornithine (T-75 flask – 5 mL, T-25 flask – 2.5 mL, 24-well plate – 0.5 mL/well, and 96-well 

plate – 50 µL/well) was added to the cell culture vessel and placed into a CO2 incubator at 37°C 

for 24 hours. The poly-L-ornithine solution was then aspirated, and the culture vessel was rinsed 

three times with pyrogen free water. The coated culture vessels were allowed to dry at room 

temperature in the biosafety cabinet and then stored in the cooler at 2-8°C for further 

experiments.  

 

Prior to handling INS-1E frozen cells, a T-25 culture flask coated with poly-L-ornithine was 

filled with 5 mL complete INS-1E medium and placed into the incubator at 37 °C for at least 15 

minutes. A frozen vial containing INS-1E cells was thawed quickly in a 37 °C water bath and 

cells were transferred to a centrifuge tube containing 5 mL complete INS-1E medium. The tube 

was then centrifuged at 400 x g for 5 minutes and the cell pellet resuspended into fresh 10 mL of 

complete INS-1E medium. INS-1E cells were plated into T-25 culture flasks at a density of 1 x 
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105 viable cells determined by trypan blue exclusion using a hemocytometer. To determine the 

number of cells per mL, the average cell count was multiplied by 10 (dilution factor) x 10,000 

(hemocytometer factor). Cells were grown at 37 °C in a 5% CO2 atmosphere until > 80% 

confluency was attained. The medium was changed every 2 days and upon reaching > 80% 

confluency, the cells were sub-cultured as per the protocol described below. 

 

2.2.3 INS-1E sub-culture 

After the cells reached > 80% confluency, the medium was removed from the T-25 flask and 

cells were rinsed once with 5 mL phosphate buffered saline (PBS) solution, which contained 0.01 

M phosphate buffer, 0.0027 M KCl, and 0.137 M NaCl, pH 7.4 at 25ºC. After rinsing, 2 mL of 

trypsin-EDTA (0.25%) solution was added to the cells, and incubated at 37 °C for 5 minutes. 

The flask was tapped 2-3 times to detach INS-1E cells from the surface of the flask. The cell 

suspension in the flask was then transferred to a centrifuge tube containing 5 mL of complete 

INS-1E medium and centrifuged at 400 x g for 5 minutes. After discarding the supernatant, the 

pellet was resuspended in fresh 10 mL of complete INS-1E medium by trituration. To a poly-L-

ornithine coated T-75 flask filled with 20 mL of complete INS-1E medium, 1mL of the prepared 

cell suspension was added and placed in the incubator. The medium for the cells in T-75 flasks 

was changed every 2 days. Once cells reached > 80% confluency, they were harvested for 

seeding into culture plates, as per the protocol described below. 

 

2.2.4 Sub-culture into 24 and 96-well plates 

INS-1E cells for all the experiments in the current study were used within passages 33 - 67. Once 

cells grown in T-75 flasks reached > 80% confluency they were harvested as previously 
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described (Merglen et al., 2004). The total number of viable cells was determined by trypan blue 

exclusion using a hemocytometer. For all the experiments, each well of a 24-well plate was filled 

with 1 mL of cell suspension containing  2 x 105 INS-1E cells, whereas for  96-well plates, 100 

µL of a cell suspension, prepared using complete INS-1E growth medium, containing either 2 x 

104 or 5 x 104 INS-1E cells was used per well (Merglen et al., 2004). Seeded plates were 

incubated at 37 °C and 5% CO2 for 72 hours to achieve > 80% confluency of INS-1E cells prior 

to use.  

 

2.3 Insulin secretion measurements in INS1-E cells  

This study was conducted in 24-well plates. INS-1E cells, seeded at 2 x 105 cells per well, were 

allowed to reach more than 80% confluency as described above. All subsequent steps were 

performed in Krebs-Ringer-bicarbonate-HEPES (KRBH) buffer (pH 7.4) containing 140 mM 

NaCl, 3.6 mM KCl, 0.5 mM of NaH2PO4, 0.5 mM MgSO4, 2 mM NaHCO3, 10 mM of HEPES, 

1.5 mM CaCl2 and 0.1% bovine serum albumin (BSA). Growth medium from the cells was 

aspirated and cells were rinsed three times with the KRBH buffer. Cells were starved by 

incubating in 1 mL of KRBH buffer for 30 minutes at 37 °C and 5% CO2. The buffer was 

aspirated, and cells were rinsed once with KRBH buffer. Cells were then incubated with KRBH 

supplemented to give varying concentrations of glucose (2.5 , 5 , 10 , 15  and 20 mM) or KCl 

(3.6 , 15, 30 and 60 mM) in the absence or presence of various concentrations of RO5256390 (1, 

10 and 100 nM) at 37 °C and 5% CO2 for 2 hours. Following incubation, the KRBH buffer was 

collected for secreted insulin quantification, and cells were collected in Nonidet-P40 (NP-40) 

cell lysis buffer for the determination of total protein per well as per the protocol described 

below. 
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2.3.1 Insulin assay 

Secreted insulin was determined using a Mercodia High Range Rat Insulin ELISA kit (Mercodia, 

Uppsala, Sweden). The insulin concentration was determined by reference to a calibration curve 

generated with the standard calibrators of the kit having rat insulin in the concentration range 3 – 

150 µg/L (Fig. 2.1). For insulin quantification, 10 µL each of calibrator or cell samples was 

pipetted to the supplied 96-well microplate pre-coated with mouse monoclonal anti-insulin 

antibodies. To each well 50 µL of the enzyme conjugate 1X solution, containing peroxidase-

conjugated mouse monoclonal anti-insulin antibodies was added and the plate was incubated on 

a plate shaker at 400 rpm for two hours at room temperature. Each well of the plate was washed 

with 350 µL of 1X wash buffer to remove unbound antibodies. Following washing, 200 µL of 

3,3’,5,5’-tetramethylbenzidine (TMB), a substrate for the peroxidase-conjugated antibody, was 

added to each well and the plate was incubated for 15 minutes at room temperature. The reaction 

was stopped by adding 50 µL of stop solution containing 0.5 M H2SO4. The absorbance of each 

well was measured at 450 nm using a Biotek Powerwave XS UV/Vis microplate 

spectrophotometer (Winooski, VT, USA) within 30 minutes of the reaction being stopped. A 

standard curve was plotted using GraphPad Prism 6.0e software (La Jolla California, USA) by 

cubic spline fit of absorbance values at each insulin concentration (µg/L) of the standard 

calibrators (Figure 2.1). Absorbance values of the experimental samples were interpolated from 

the standard curve for the determination of insulin concentration (µg/L). Secreted insulin was 

then normalized to the total cellular protein of each well as described below.    
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Figure 2.1: Sample Insulin ELISA assay standard curve for insulin (µg/L) determination  

Baseline absorbance was corrected using a blank. The unknown insulin concentration was 

determined by interpolation of the absorbance values measured at 450 nm into the standard cubic 

spline regression curve determined using GraphPad Prism 6.0e. 
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2.3.2 BCA Protein assay 

INS-1E cells in each well of the 24-well plate were collected by incubation with 50 µL NP-40 

cell lysis buffer (20 mM Tris, 137 mM NaCl, 2 mM EDTA, 10% (v/v) glycerol, and 1% (v/v) 

NP-40), pH 8 at 37 °C and 5% CO2 for 1 hour. Protein content per well was measured using a 

Thermo Scientific™ Pierce™ BCA Protein Assay Kit. Protein concentration (µg/10 µL) was 

determined by using a standard curve generated with BSA solutions in the concentration range 0 

– 20 µg/10 µL (Figure 2.2). For protein quantification 10 µL each of BSA standard, or lysed cell 

samples were pipetted to Corning™ Clear Polystyrene 96-well microplates in duplicate. To each 

well of the plate, 200 µL of BCA working reagent was added and thoroughly mixed on a plate 

shaker at 400 rpm for 30 seconds. The plate was then incubated at 37 °C for 30 minutes. The 

absorbance of each well was measured at 562 nm using a Biotek Powerwave XS UV/Vis 

microplate spectrophotometer (Winooski, VT, USA). The protein concentration (µg/10 µL) was 

determined by computerized interpolation of absorbance values from a BSA standard linear 

regression curve (Figure 2.2) plotted using GraphPad Prism 6.0e software and corrected from 

µg/10 µL to total protein per well. 
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Figure 2.2: Representative BSA standard linear regression line for protein (µg/10 µL) 

determination  

 

The absorbance measured at 562 nm versus increasing BSA standard concentrations yielded a 

linear regression line, from which the sample protein concentrations were determined.  
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2.4 Membrane potential measurement using DiBAC4(3) 

Invitrogen™ (bis-(1,3-dibutylbarbituric acid)trimethine oxonol) DiBAC4(3), obtained from 

Thermo Fisher Scientific (Ottawa, Ontario), is a slow-responsive voltage sensitive anionic dye 

that measures depolarization-induced change in plasma membrane potential by exhibiting 

fluorescence. The study was conducted in Thermo Scientific™ Nunc™ Microwell™ black 

walled, clear bottom 96-well plates at 20,000 and 50,000 cells/well. From the preliminary 

studies, DiBAC4(3) concentration (in KRBH buffer) that exhibits maximum fluorescence with > 

80% confluent INS-1E cell culture was found to be 25 µM and was used for all subsequent 

experiments. Medium from the confluent cells in the 96-well plate was aspirated, and cells were 

rinsed three times with KRBH buffer.  Cells were starved for 30 minutes using KRBH buffer 

containing DiBAC4(3) at 37 °C for 30 minutes in a SpectraMax M5e plate reader (Molecular 

devices, San Jose, California, USA). Baseline fluorescence was measured every 10 seconds of 

the last 5 minutes of the starvation period, at excitation and emission wavelengths of 490 nm and 

516 nm respectively. Immediately following starvation, cells were incubated with KRBH buffer 

containing DiBAC4(3) and varying concentrations of glucose (2.5 , 5, 10, and 15 mM) or KCl 

(3.6, 15, 30 and 60 mM). Fluorescence was then measured at every 2 minutes over a period of 

two hours.  

 

2.5 Bioinformatics  

Bioinformatics is a multidisciplinary field of science that helps to analyze, and understand 

biological data by the application of computational tools (Luscombe, Greenbaum, & Gerstein, 

2001). One of its main goals is to understand different biological pathways and processes 

through transcriptomics, which is the study of the whole set of RNA transcripts in a particular 
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cell under a specific condition (Raghavachari & Garcia-Reyero, 2018). Affymetrix DNA 

microarray-based gene chips, available commercially, contain different DNA sequences which 

upon hybridization with cDNA obtained from reverse-transcribed RNA isolated from a specific 

cell under defined conditions reveals differentially expressed genes (Bumgarner, 2013). A huge 

volume of such unique gene expression data has been submitted by the research community to 

several publicly available databases. One such database is GenBank at the National Center for 

Biotechnology Information (NCBI) which is the most accessed public database (Diniz & 

Canduri, 2017). Within different NCBI databases, the Gene Expression Omnibus (GEO) 

database provides microarray-based gene expression data pertaining to specific cells or 

experiments. GEO records provide a focal point to studies of a similar kind, linked altogether, 

and stored as GEO series (GSE), each identified with a unique accession number (Edgar, 2002). 

By applying clustering algorithms to the gene expression data from different GEO series 

pertaining to similar experiments, related gene expression profiles can be determined (Oyelade et 

al., 2016). One of the commonly used gene clustering algorithms is agglomerative average 

linkage hierarchical clustering, in which genes with similar expression patterns form clusters 

based on the minimal average distance between all pairs of cases within a cluster, such that genes 

with similar or opposite expression patterns would cluster together (Yim & Ramdeen, 2015). 

This expression pattern can be displayed by colour image plots termed heat maps (Sturn & 

Quackenbush, 2002). To assess the correlation between the expression pattern of genes, the 

distance between the clusters can be analyzed based on the type of data,  e.g. Pearson correlation 

for a linear relationships, and Spearman correlation for monotonic relationships within the data 

(Jaskowiak, Campello, & Costa, 2014). Spearman rank correlation provides a rank-based 

similarity to the desired gene expression pattern and is more robust in its handling of outliers 
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compared to other distance measures (Timofeeva, 2019). Here I have used such techniques to 

identify genes whose expression correlates to that of TAAR1 across different microarray-based 

studies on insulin-secreting pancreatic beta cells in order to gain insight into the potential 

downstream networks of TAAR1 in pancreatic beta cells. 

 

2.5.1 Affymetrix microarray data analysis 

To gain insights into the potential regulatory networks of TAAR1 relevant to modulation of 

glucose-dependent insulin secretion, TAAR1 correlated transcripts in pancreatic beta-cells were 

identified using bioinformatic screening of publically available DNA microarray analysis 

datasets. Prior to analysis, based on the previous literature (see Introduction), a list of 149 genes 

with known relevance to either TAAR1 (marked with ‘A’) or glucose-stimulated insulin 

secretion (marked with ‘B’)  or which were already known to be implicated in both (marked with 

‘C’) was developed (Table 2.1). A total of seven Affymetrix microarray-based gene expression 

studies from humans, rats and mice, having at least three biological replicates, and specific to 

pancreatic beta cells were identified and downloaded from the publicly available genomic 

database NCBI GEO (Edgar, 2002). Based on the conditions the beta cells were exposed to, 

these studies were divided into two groups: beta cells under physiological conditions (three 

studies); and beta cells under pathological conditions (four studies) (Table 2.2). Affymetrix 

microarray data composed of CEL files was imported from the GEO database to R (version 

3.5.1). The microarray expression data was then corrected for the background noise and 

normalized to all the genes in the Affymetrix gene chip using the Bioconductor (version 3.7) 

package “oligo” in R. The same package generated robust multi-chip average (RMA) normalized 

data. 
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Table 2.1: Potential target genes of TAAR1 regulation of glucose-dependent insulin 

secretion  

 

Gene 

symbol 

Gene name Relevance to 

TAAR1 (A) or 

GSIS (B) or 

both the 

pathways (C) 

Taar1 trace amine associated receptor 1 C 

Gnas GNAS complex locus A 

Gnb1 G protein subunit beta 1 A 

Gnb2 G protein subunit beta 2 A 

Gnb3 G protein subunit beta 3 A 

Gnb4 G protein subunit beta 4 A 

Gnb5 G protein subunit beta 5 A 

Gngt1 G protein subunit gamma transducin 1 A 

Gngt2 G protein subunit gamma transducin 2 A 

Gng2 G protein subunit gamma 2 A 

Gng3 G protein subunit gamma 3 A 

Gng4 G protein subunit gamma 4 A 

Gng5 G protein subunit gamma 5 A 

Gng7 G protein subunit gamma 7 A 

Gng8 G protein subunit gamma 8 A 

Gng10 G protein subunit gamma 10 A 
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Gng11 G protein subunit gamma 11 A 

Gng12 G protein subunit gamma 12 A 

Gng13 G protein subunit gamma 13 A 

Gng14 G protein subunit gamma 14 A 

Adcy1 adenylate cyclase 1 A 

Adcy2 adenylate cyclase 2 A 

Adcy3 adenylate cyclase 3 A 

Adcy4 adenylate cyclase 4 A 

Adcy5 adenylate cyclase 5 A 

Adcy6 adenylate cyclase 6 A 

Adcy7 adenylate cyclase 7 A 

Adcy8 adenylate cyclase 8 A 

Adcy9 adenylate cyclase 9 A 

Adcy10 adenylate cyclase 10 A 

 Prkaca protein kinase cAMP-activated catalytic subunit alpha A 

 Prkacb protein kinase cAMP-activated catalytic subunit beta A 

Prkacg protein kinase cAMP-activated catalytic subunit gamma A 

 Prkar1A protein kinase cAMP-dependent type I regulatory subunit 

alpha 

A 

 Prkar1B protein kinase cAMP-dependent type I regulatory subunit 

beta 

A 

 Prkar2A protein kinase cAMP-dependent type II regulatory subunit 

alpha 

A 
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 Prkar2B protein kinase cAMP-dependent type II regulatory subunit 

beta 

A 

Prkca protein kinase C, alpha A 

Prkcb protein kinase C, beta A 

Prkcg protein kinase C, gamma A 

Creb1 cAMP responsive element binding protein 1 C 

Kcnj3 potassium inwardly-rectifying channel, subfamily J, 

member 3 

A 

Kcnj6 potassium inwardly-rectifying channel, subfamily J, 

member 6 

A 

Kcnj9 potassium inwardly-rectifying channel, subfamily J, 

member 9 

A 

Arrb2 arrestin, beta 2 A 

Gsk3B glycogen synthase kinase 3 beta A 

Ctnnb1 catenin beta 1 A 

Drd2 dopamine receptor D2 A 

Htr1A 5-hydroxytryptamine receptor 1A A 

Rhoa ras homolog family member A A 

Akt2 AKT serine/threonine kinase 2 A 

Grin1 glutamate ionotropic receptor NMDA type subunit 1 A 

Grin2A glutamate ionotropic receptor NMDA type subunit 2A A 

Grin2B glutamate ionotropic receptor NMDA type subunit 2B A 

Grin2C glutamate ionotropic receptor NMDA type subunit 2C A 
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Grin2D glutamate ionotropic receptor NMDA type subunit 2D A 

Nfatc1 nuclear factor of activated T-cells 1 A 

Nfatc2 nuclear factor of activated T-cells 2 A 

Nfkb1 nuclear factor kappa B subunit 1 A 

Nfkb2 nuclear factor kappa B subunit 2 A 

Gria1 glutamate ionotropic receptor AMPA type subunit 1 A 

Gria2 glutamate ionotropic receptor AMPA type subunit 2 A 

Gria3 glutamate ionotropic receptor AMPA type subunit 3 A 

Gria4 glutamate ionotropic receptor AMPA type subunit 4 A 

Slc1A2 solute carrier family 1 member 2 A 

Erbb2 erb-b2 receptor tyrosine kinase 2 A 

Ppp1R1B protein phosphatase 1, regulatory inhibitor subunit 1B A 

Adra2A adrenoceptor alpha 2A A 

Mapk1 mitogen-activated protein kinase 1 A 

Mapk3 mitogen-activated protein kinase 3 A 

Sstr3 somatostatin receptor 3 A 

Gcg glucagon A 

 Pyy peptide YY A 

Cftr CF transmembrane conductance regulator A 

Ins2 insulin 2 B 

Slc2A2 solute carrier family 2 member 2 B 

Gck glucokinase B 
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Kcnj8 potassium inwardly-rectifying channel, subfamily J, 

member 8 

B 

Kcnj11 potassium inwardly-rectifying channel, subfamily J, 

member 11 

B 

Abcc8 ATP binding cassette subfamily C member 8 B 

Abcc9 ATP binding cassette subfamily C member 9 B 

 Cacna1s calcium voltage-gated channel subunit alpha1 S B 

Cacna1c calcium voltage-gated channel subunit alpha1 C B 

Cacna1d calcium voltage-gated channel subunit alpha1 D B 

Cacna1f calcium voltage-gated channel subunit alpha1 F B 

Cacna1e calcium voltage-gated channel subunit alpha1 E B 

Adora1 adenosine A1 receptor  B 

Adora2A adenosine A2a receptor B 

Adora2B adenosine A2b receptor B 

Adora3 adenosine A3 receptor B 

Adra1A adrenoceptor alpha 1A B 

Adra1B adrenoceptor alpha 1B B 

Pde3B phosphodiesterase 3B B 

Pde4A phosphodiesterase 4A B 

Pde4B phosphodiesterase 4B B 

Pde4C phosphodiesterase 4C B 

Pde4D phosphodiesterase 4D B 

Stc2 stanniocalcin 2 B 
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Dlk-1 delta like non-canonical Notch ligand 1 B 

Ryr2 ryanodine receptor 2 B 

Fam105a family with sequence similarity 105, member A B 

Plcxd3 phosphatidylinositol specific phospholipase C, X domain 

containing 3 

B 

Eno2 enolase 2 B 

Pdx1  pancreatic and duodenal homeobox 1 B 

Prkaa1 protein kinase AMP-activated catalytic subunit alpha 1 B 

Prkaa2 protein kinase AMP-activated catalytic subunit alpha 2 B 

Prkab1 protein kinase AMP-activated non-catalytic subunit beta 1 B 

Prkab2 protein kinase AMP-activated non-catalytic subunit beta 2 B 

Prkag1 protein kinase AMP-activated non-catalytic subunit gamma 

1 

B 

Prkag2 protein kinase AMP-activated non-catalytic subunit gamma 

2 

B 

Prkag3 protein kinase AMP-activated non-catalytic subunit gamma 

3 

B 

Syt7 synaptotagmin 7 B 

Syt11 synaptotagmin 11 B 

Syt13 synaptotagmin 13 B 

Unc13A unc-13 homolog A B 

Rab3A RAB3A, member RAS oncogene family B 

Rab3B RAB3B, member RAS oncogene family B 
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Rab3C RAB3C, member RAS oncogene family B 

Stx1A syntaxin 1A B 

Rims2 regulating synaptic membrane exocytosis 2 B 

Pclo piccolo (presynaptic cytomatrix protein) B 

Bsn bassoon (presynaptic cytomatrix protein) B 

Ptbp1 polypyrimidine tract binding protein 1 B 

Mafa MAF bZIP transcription factor A B 

Nnat neuronatin B 

Wfs1 wolframin ER transmembrane glycoprotein B 

Pax6 paired box 6  B 

Xbp1 X-box binding protein 1 B 

Rapgef4 Rap guanine nucleotide exchange factor 4 C 

 Ip6K1 inositol hexakisphosphate kinase 1 B 

Eif2A eukaryotic translation initiation factor 2A B 

Eif2Ak3 eukaryotic translation initiation factor 2 alpha kinase 3 B 

Glp1R glucagon-like peptide 1 receptor C 

Gipr gastric inhibitory polypeptide receptor B 

Ffar1 free fatty acid receptor 1 B 

Crtc2 CREB regulated transcription coactivator 2 B 

Mark2  microtubule affinity regulating kinase 2 B 

Gpr119 G protein-coupled receptor 119 B 

Gpr142 G protein-coupled receptor 142 B 

Gpr39 G protein-coupled receptor 39 B 
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Cebpb CCAAT/enhancer binding protein beta B 

Ffar3 free fatty acid receptor 3 B 

Il6 interleukin 6 B 

Camk2A calcium/calmodulin-dependent protein kinase II alpha C 

Camk2B calcium/calmodulin-dependent protein kinase II beta C 

Camk2D calcium/calmodulin-dependent protein kinase II delta C 

Camk2G calcium/calmodulin-dependent protein kinase II gamma C 

Chrm3 cholinergic receptor, muscarinic 3 B 

Mlxip MLX interacting protein B 
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Table 2.2: Affymetrix microarray-based studies, pertaining to pancreatic beta cells, obtained from NCBI GEO database 

Physiological condition 

Study Organism Samples 

 

Replicates GEO Series 

Accession number 

Glucose dose-response effect on  gene 

expression levels of pancreatic islets 

cultured in vitro in varying glucose 

concentrations for 18hours (Bensellam et 

al., 2009). 

Rattus 

norvegicus 

• 2 mM glucose  

• 5 mM glucose  

• 10 mM glucose  

• 30 mM glucose  

4 

4 

4 

4 

GSE12817 

 

Effect of postnatal maturation (neonates 

to adult) on the transcriptome of isolated 

rat pancreatic beta cells (Martens et al., 

2013). 

Rattus 

norvegicus 

• Beta cells of 2-3 days old neonates  

• Non-endocrine islet cells of 2-3 

days old neonates  

• Beta cells of 10 weeks old adults 

3 

3 

 

5 

GSE47174 

Gene expression profile of pancreatic 

beta cells isolated from different aged 

Mus 

musculus 

• Beta cells of 3.5-9 weeks old mice 

• Beta cells of 1-year old mice 

• Beta cells of 2-year old mice 

3 

4 

4 

GSE72753 
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C57Bl/6 mice (Aguayo-Mazzucato et al., 

2017). 

Pathological condition 

Gene expression profile of beta cells 

acquired from non-diabetic and type II-

diabetic cadaver pancreases (Marselli et 

al., 2010). 

Homo 

sapiens 

• Beta cells of non-diabetic subjects 

• Beta cells of type II-diabetic 

subjects 

10 

10 

GSE20966 

Effect of obesity on the gene expression 

profile of isolated rat pancreatic islets 

(Rebuffat et al., 2013). 

Rattus 

norvegicus 

• Standard chow diet fed for 10 days  

• High fat diet fed for 10 days 

• Standard chow diet fed for 30days  

• High fat diet fed for 30 days 

5 

5 

4 

5 

GSE44047 

Effect of two different preparations of 

high-density lipoproteins (HDL) i.e. 

GSK3 and GSK4 on the transcriptome of 

pancreatic beta cells using insulin-

Mus 

musculus 

• Complete medium (CM) + 

vehicle_GSK3 

• CM + HDL_GSK3 

• Starved medium (SM) + 

vehicle_GSK3 

3 

 

3 

3 

 

GSE17647 
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secreting mouse beta-cell line ß-TC3 

(Pétremand et al., 2009). 

 

• SM + HDL_GSK3 

• CM + vehicle_GSK4 

• CM + HDL_GSK4 

• SM + vehicle_GSK4 

• SM + HDL_GSK4 

3 

3 

3 

3 

3 

Transcriptomic analysis to determine the 

genes regulated by nuclear factor κB-

inducing kinase (NIK) activation in mice 

pancreatic beta cells in the context of its 

link to beta cell failure in obesity (Malle 

et al., 2015). NIK activation was 

achieved by generating beta cell specific 

TRAF2 and TRAF3 knockout mice.   

Mus 

musculus 

• Chow fed TRAF2 KO mice   

• High fat fed TRAF2 KO mice 

• Chow fed TRAF3 KO mice   

• High fat fed TRAF3 KO mice 

• Chow fed floxed littermates 

• High fat fed floxed littermates 

 

3 

3 

3 

3 

3 

3 

GSE68317 
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The Limma package of R was then used to calculate the expression values of all the genes across 

all the samples of a dataset. All target genes with their expression values were annotated in 

Microsoft® Excel (version 16.16.1) and averaged across all the replicates. This data was 

exported to Genesis software (Oracle Corporation)(version 1.8.1) for the generation of heat 

maps. Averaged gene expression data was again normalized to all the target genes in Genesis 

software and then analyzed by Spearman rank correlation, as a measure of clustering distance, 

and average linkage hierarchical clustering algorithm. The number of genes qualified to be a part 

of a cluster was manually determined based on the minimum (7) and maximum (51) genes that 

could possibly form a cluster in the Genesis software across all the studies. The analysis yielded 

clusters of genes (7-51) in a rank-wise manner based on similarity with the TAAR1 gene 

expression pattern. The target genes expression values, across the study groups within a study, 

were represented by the heat map corresponding to the expression values within the range -3 

(least expression) to +3 (maximal expression). Genes within a cluster with similar TAAR1 gene 

expression pattern, as represented by the color plot in the heat map, were designated as positively 

correlated to TAAR1 gene expression pattern. However, genes in a cluster having exactly 

opposite expression pattern or color plot in the heat map, were designated as negatively 

correlated to TAAR1 gene expression pattern. Each of the seven studies yielded a positively and 

a negatively correlated cluster to the TAAR1 gene expression pattern based on the clustering 

distance measure; Spearman rank correlation; and average linkage hierarchical clustering 

agglomeration algorithm applied to all the target gene expression values. TAAR1 correlated 

genes, consistent across all the studies under a given condition, were identified using Venn 

diagrams through a web-based tool InteractiVenn as described (Heberle et al., 2015). 
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2.6 Data analysis 

All data are expressed as mean +/- standard error of mean (SEM) and were statistically analyzed 

using one-way or two-way analysis of variance (ANOVA) with Dunnett’s multiple comparisons 

post-hoc test as appropriate. For membrane potential studies area under curve which includes 

positive and negative peaks are compared across varying concentrations of glucose and KCl. 

Bioinformatic data was analyzed as described above. GraphPad Prism 6.0e software was used for 

all data analysis with the exception of bioinformatics analyses. Statistical significance was taken 

at P < 0.05; *P<0.05, **P<0.01, ***P<0.001. 
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3.0 Results 

3.1 RO5256390 effect on glucose-dependent insulin secretion  

Glucose-dependent stimulation of insulin secretion was first confirmed with INS-1E cells. A 

significant (P=0.0018) effect of glucose on secreted insulin at varying glucose concentrations 

(2.5 mM – 20 mM) was observed (Figure 3.1). Dunnett’s multiple comparisons post-hoc test 

showed significant differences between the secreted insulin at individual glucose concentrations 

(5, 10, 15 and 20 mM) and the basal glucose concentration 2.5 mM (Figure 3.1). With 

RO5256390 treatment, significant effects of glucose concentrations (P<0.0001) and R05256390 

concentrations (P<0.0001), with no significant interaction (P=0.4984) between the two, were 

observed (Figure 3.2). Post-hoc test revealed that at concentrations of 10 nM and above, 

RO5256390 selectively enhanced glucose-dependent insulin secretion (Figure 3.2).   
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Figure 3.1: Glucose-dependent stimulation of insulin secretion 

Secreted insulin (ng/µg of protein) in response to varying glucose concentrations (2.5 mM – 20 

mM) was measured. Data are mean ± SEM, n=14, one-way ANOVA with Dunnett’s multiple 

comparisons post-hoc test , *P <0.05, **P <0.01, ***P<0.001 with respect to 2.5 mM glucose.  
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Figure 3.2: RO5256390 selectively enhanced glucose-dependent insulin secretion at 

concentrations of 10 nM and above 

 

Secreted insulin (ng/µg of protein) in response to varying RO5256390 (1 nM – 100 nM) 

concentrations, induced by glucose (2.5 mM – 20 mM), was measured. Data are mean ± SEM, 

n=7-14, two-way ANOVA with Dunnett’s multiple comparisons post-hoc test , *P <0.05 with 

respect to control at the same glucose concentration. 
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3.2 RO5256390 effect on potassium-stimulated insulin secretion 

INS-1E plasma membranes were then depolarized using varying KCl concentrations to stimulate 

insulin secretion and see if RO5256390 concentrations would have similar effect as with 

glucose-stimulated insulin secretion. KCl significantly (P = 0.0006) enhanced insulin secretion 

in a concentration-dependent manner (Figure 3.3). A significant effect of KCl concentrations 

(P<0.0001) was still observed; however, RO5256390 concentrations had no further effect (P = 

0.3358) on KCl-stimulated insulin secretion. No significant interaction (P=0.9866) was found 

between the two factors; KCl and RO5256390 concentrations (Figure 3.4). 
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Figure 3.3: Concentration-dependent effect of KCl on insulin secretion  

Secreted insulin (ng/µg of protein) in response to varying KCl concentrations (3.6 mM – 60 mM) 

was measured. Data are mean ± SEM, n=14, one-way ANOVA with Dunnett’s multiple 

comparisons post-hoc test , ***P<0.001 with respect to secreted insulin response at 3.6 mM 

KCl. 
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Figure 3.4: RO5256390 does not alter potassium-stimulated insulin secretion 

Secreted insulin (ng/µg of protein) in response to varying RO5256390 (1 nM – 100 nM) 

concentrations, induced by KCl (3.6 mM – 60 mM), was measured. Data are mean ± SEM, n=7-

14, two-way ANOVA with Dunnett’s multiple comparisons post-hoc test.  
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3.3 Glucose and potassium concentration-response effect on INS-1E membrane potential  

The effect of varying concentrations of glucose (2.5 mM – 15 mM) and KCl (3.6 mM – 60 mM) 

on INS-1E plasma membrane potential were measured by using DiBAC4(3). At 20,000 

cells/well, a small initial increment in fluorescence was observed upon addition of glucose 

(Figure 3.5) or KCl (Figure 3.6), however there was no clear concentration-dependent effect of 

either treatment. When the cell density was increased to 50,000 cells/well, although there was a 

more pronounced increase in the fluorescence immediately after addition of either glucose or 

KCl, there was still no clear concentration-dependent effect (Figure 3.7 and 3.8).  
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Figure 3.5: No glucose concentration-dependent effect on membrane depolarization at a 

cell density of 20,000 cells/well 

 

Changes in the fluorescence, representing membrane depolarization, in response to varying 

concentrations of glucose (2.5 mM – 15 mM) was tracked in INS-1E cells seeded at 20,000 

cells/well using excitation and emission wavelengths of  490 nm and 516 nm (n=4).  
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Figure 3.6: No KCl concentration-dependent effect on membrane depolarization at a cell 

density of 20,000 cells/well 

 

Changes in the fluorescence, representing membrane depolarization, in response to varying 

concentrations of KCl (3.6 mM – 60 mM) was tracked in INS-1E cells seeded at 20,000 

cells/well using excitation and emission wavelengths of  490 nm and 516 nm (n=4).  
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Figure 3.7: No glucose concentration-dependent effect on membrane potential at a cell 

density of 50,000 cells/well 

 

Changes in the fluorescence, representing membrane depolarization, in response to varying 

concentrations of glucose (2.5 mM – 15 mM) was tracked in INS-1E cells seeded at 50,000 

cells/well using excitation and emission wavelengths of  490 nm and 516 nm (n=5).  
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Figure 3.8: No KCl concentration-dependent effect on membrane potential at a cell density 

of 50,000 cells/well 

 

Changes in the fluorescence, representing membrane depolarization, in response to varying 

concentrations of KCl (3.6 mM – 60 mM) was tracked in INS-1E cells seeded at 50,000 

cells/well using excitation and emission wavelengths of  490 nm and 516 nm (n=5).  
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3.4 Identification of TAAR1 correlated transcripts from microarray data analysis 

A total of seven Affymetrix microarray-based gene expression studies on humans, rats and mice, 

having at least three biological replicates, and specific to pancreatic beta cells were identified 

and subdivided into those examining physiological processes, and those studying pathological 

processes. Each study upon analysis (see section 2.5.1) yielded a positively and a negatively 

correlated cluster (7-51 gene products) to the TAAR1 gene expression pattern and the genes that 

consistently changed with the TAAR1 gene expression pattern were identified using Venn 

diagrams.   

 

3.4.1 Physiological conditions 

Three studies examining the physiological processes associated with pancreatic beta cells were 

identified and analyzed. Heat maps of the TAAR1 gene expression pattern from each of them 

were generated (Figure 3.9 – 3.11). 

 

Venn diagrams identified three genes (Cacna1e, Gng7, and Gria2) that were consistently 

positively correlated to TAAR1 expression levels across these three studies (Figure 3.12 (A)). 

Apart from these, genes encoding different GirK protein subtypes GirK1 (Kcnj3), GirK2 

(Kcnj6), GirK3 (Kcnj9) and pore forming subunits Kir6.1 (Kcnj8) and Kir6.2 (Kcnj11) of inward 

rectifier KATP channel protein, were found to be positively correlated with TAAR1 across the 

three studies, although none of the individual subunits were identified in all three studies. 

 

Similarly, three genes (Fam105a, Gnb2, and Nfatc1) that were most negatively correlated to 

TAAR1 expression levels were identified (Figure 3.12 (B)). Apart from these, genes encoding 
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different subunits of AMP-activated protein kinase such as 1 (Prkaa1), 2 (Prkaa2), ß1 

(Prkab1), ß2 (Prkab2), γ1 (Prkag1), γ2 (Prkag2), and γ3 (Prkag3) were found to be negatively 

correlated with TAAR1 in all three studies, although none of the individual subunits were 

identified in all three studies. 
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Figure 3.9: Heat map representing hierarchical clustering of TAAR1 gene with genes 

positively (on left) and negatively (on right) correlated to its expression pattern across 

isolated rat beta cells exposed to varying glucose concentrations for 18 hours (GSE12817) 

 

Rat beta cells were subjected to different glucose concentrations (2 mM – 30 mM) as indicated at 

the top of the heat map while genes correlated with TAAR1 expression pattern are towards right 

hand side of the heat map. TAAR1 is highlighted in pink. Color bar at the bottom indicates the 

intensity of expression; Green denotes lower expression while red denotes higher expression. 
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Figure 3.10: Heat map representing hierarchical clustering of TAAR1 gene with genes 

positively (on left) and negatively (on right) correlated to its expression pattern across 

pancreatic islet cells isolated from different aged rat (GSE47174) 

 

Pancreatic islet cells isolated from neonate and adult rats are indicated at the top of the heat map 

while genes correlated with TAAR1 expression pattern are towards right hand side of the heat 

map. TAAR1 is highlighted in pink. Color bar at the bottom indicates the intensity of expression; 

Green denotes lower expression while red denotes higher expression. 
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Figure 3.11: Heat map representing hierarchical clustering of TAAR1 gene with genes 

positively (on left) and negatively (on right) correlated to its expression pattern across beta 

cells isolated from different aged C57Bl/6 mice (GSE72753) 

 

Pancreatic beta cells isolated from different aged mice are indicated at the top of the heat map 

while genes correlated with TAAR1 expression pattern are towards right hand side of the heat 

map. TAAR1 is highlighted in pink. Color bar at the bottom indicates the intensity of expression; 

Green denotes lower expression while red denotes higher expression.    
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A.        B

            

Figure 3.12: TAAR1 correlated genes under physiological conditions 

Hierarchical clustering analysis followed by Venn diagram identified the following genes that 

were consistently changed with TAAR1 gene expression pattern across all the three studies:  

A) Cacna1e, Ggng7, and Gria2 were consistently positively correlated to TAAR1 gene 

expression pattern.  

B) Fam105a, Gnb2, and Nfatc1 were consistently negatively correlated to TAAR1 gene 

expression pattern.  

 

 

 

 

 

 

 

 

 

 

  



   

 

 

80 

3.4.2 Pathological condition 

Four studies examining pathological processes associated with pancreatic beta cells were 

identified and analyzed. Heat maps of the TAAR1 gene expression pattern from each of them 

were generated (Figure 3.13 – 3.16). 

 

Venn diagrams were generated, and no common gene was identified to be consistently changed 

with TAAR1 expression levels across all four studies (Figure 3.17). However, in three out of 

four studies Adora1, Gnas and Gngt1 were found to be consistently positively correlated to 

TAAR1 expression levels (Figure 3.17 (A)). Apart from these, genes encoding different subunits 

of the glutamate ionotropic AMPAR receptor; GluA1 (Gria1), GluA2 (Gria2), GluA3 (Gria3) 

and GluA4 (Gria4) were found to be positively correlated to TAAR1 across the four studies, 

although none of the individual subunits were identified in all four studies. 

 

Similarly, in three out of four studies Gng5 and Mapk1 were found to be most negatively 

correlated to TAAR1 expression levels (Figure 3.17 (B)). Apart from these, genes encoding 

different isoforms of Ca+2/calmodulin-activated protein kinase II;  (Camk2a), γ (Camk2g), and 

 (Camk2d) were found to be negatively correlated to TAAR1 across the four studies, although 

none of the individual subunits were identified in all four studies. 
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Figure 3.13: Heat map representing hierarchical clustering of TAAR1 gene with genes 

positively (on top) and negatively (on bottom) correlated to its expression pattern across 

isolated pancreatic beta cells from cadaver pancreases of non-diabetic and type-II diabetic 

human subjects (GSE20966) 

 

Pancreatic beta cells isolated from non-diabetic and type-II diabetic cadaver pancreases are 

indicated at the top of the heat map while genes correlated with TAAR1 expression pattern are 

towards right hand side of the heat map. TAAR1 is highlighted in pink. Color bar at the bottom 

indicates the intensity of expression; Green denotes lower expression while red denotes higher 

expression.    
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Figure 3.14: Heat map representing hierarchical clustering of TAAR1 gene with genes 

positively (on left) and negatively (on right) correlated to its expression pattern across 

isolated pancreatic islets from rats exposed to standard chow and high fat diet for ten and 

thirty days (GSE4407) 

 

Pancreatic islets isolated from rats exposed to high fat diet for ten and thirty days compared to 

chow diet are indicated at the top of the heat map while genes correlated with TAAR1 expression 

pattern are towards right hand side of the heat map. TAAR1 is highlighted in pink. Color bar at 

the bottom indicates the intensity of expression; Green denotes lower expression while red 

denotes higher expression.    
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Figure 3.15: Heat map representing hierarchical clustering of TAAR1 gene with genes 

positively (on left) and negatively (on right) correlated to its expression pattern across two 

independent HDL preparations subjected to ß-TC3 cell line under different conditions 

(GSE17647) 

 

Two independent HDL preparations (GSK3 and GSK4) subjected to mouse beta-TC3 cells for 

six hours in the presence of complete and starved media with controls are indicated at the top of 

the heat map while genes correlated with TAAR1 expression pattern are towards right hand side 

of the heat map. TAAR1 is highlighted in pink. Color bar at the bottom indicates the intensity of 

expression; Green denotes lower expression while red denotes higher expression.    
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Figure 3.16: Heat map representing hierarchical clustering of TAAR1 gene with genes 

positively (on left) and negatively (on right) correlated to its expression pattern across 

control and mice with intrinsic beta cell NIK activation fed with chow and high fat diet 

(GSE68317) 

 

TRAF3 and TRAF2 KO mice fed with chow and high fat diet compared to controls are indicated 

at the top of the heat map while genes correlated with TAAR1 expression pattern are towards 

right hand side of the heat map. TAAR1 is highlighted in pink. Color bar at the bottom indicates 

the intensity of expression; Green denotes lower expression while red denotes higher expression.    
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A.        B      

            

Figure 3.17: TAAR1 correlated genes under pathological conditions 

Hierarchical clustering analysis followed by Venn diagram yielded no common gene which 

consistently changed with TAAR1 gene expression pattern across all the four studies. However, 

following genes were found to be consistently changed with TAAR1 expression levels in three 

out of four studies:  

A) Adora1, Gnas and Ggnt1 were consistently positively correlated to TAAR1 gene expression 

pattern.  

B) Gng5 and Mapk1 were consistently negatively correlated to TAAR1 gene expression pattern.  
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4.0 Discussion 

4.1 RO5256390 enhances glucose-dependent insulin secretion 

An in-vitro study using the highly selective TAAR1 ligand RO5256390 in the rat pancreatic beta 

cell line INS-1E, which has a higher TAAR1 expression (Raab et al., 2016), would aid in better 

understanding the role of TAAR1 in modulating GSIS. Previous in vitro studies (Michael et al., 

2019; Raab et al., 2016; Regard et al., 2007) in pancreatic beta cells with varying TAAR1 

ligands have shown they potentiate GSIS. Adding to that, a recent study (Cripps et al., 2020) 

with INS-1 cells, when subjected to p-tyramine and 2-phenylethylamine , has shown a significant 

increase in glucose-induced insulin secretion. To validate these results, I incubated INS-1E cells 

with varying concentrations of glucose (2.5 , 5 , 10 , 15  and 20 mM) in the absence or presence 

of various concentrations of RO5256390 (1, 10 and 100 nM). In the absence of RO5256390, 

insulin secretion (ng/µg of INS-1E cells) in response to varying concentration of glucose (2.5 , 5 

, 10 , 15  and 20 mM) was increased as expected (P=0.0018) (Figure 3.1), confirming the 

responsiveness of INS-1E cells towards glucose.  

 

Having confirmed glucose responsiveness of the INS1E cells the effect of RO5256390 on GSIS 

was then determined. Significant main effects of glucose concentration (P<0.0001) and 

RO5256390 (P<0.0001) were observed with no significant interaction between the two 

(P=0.4984). Post-hoc Dunnett’s multiple comparisons revealed that RO5256390 selectively 

enhanced GSIS at higher concentrations (Figure 3.2). This is generally consistent with previous 

studies (Michael et al., 2019; Raab et al., 2016) and confirms the ability of TAAR1 to enhance 

GSIS. Given that this primarily is seen at higher and not lower glucose concentrations, this 
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further supports previous reports (Raab et al., 2016) that TAAR1 agonists would not be expected 

to cause hypoglycemic adverse effects in vivo.   

 

Having confirmed TAAR1-dependent enhancment of GSIS I sought to further clarify the 

associated downstream signalling pathway involved in this effect. Initially I sought to do this by 

determining the effect of RO5256390 on potassium-stimulated insulin secretion. As the resting 

membrane potential of the beta cells sets at nearly -70 mV and is maintained by the flux of 

potassium ions via the activity of KATP channel (Ashcroft & Rorsman, 1989) I aimed to by-pass 

the glucose-stimulated pathway to membrane depolarization step (Figure 1.1) by using varying 

KCl concentrations.  

 

4.2 RO5256390 does not alter potassium stimulated insulin secretion 

A significant (P=0.0006) concentration-dependent effect of KCl (3.6 mM – 60 mM) on secreted 

insulin was observed (Figure 3.3) indicating that the electrical circuitry of the INS-1E cells was 

also responsive. Having this confirmed, the effect of RO5256390 on potassium-stimulated 

insulin secretion was determined. A significant main effect of KCl (P<0.0001) but no effect of 

RO5256390 (P = 0.3358) or interaction between the two (P=0.9866) was found (Figure 3.4). 

Considering, this study has never been done before potential reasons why the experiment didn’t 

work couldn’t be established. However, a significant effect of RO5256390 on glucose- but not 

on potassium-stimulated insulin secretion indicates that TAAR1 is most likely interacting with a 

component of the glucose-stimulated pathway upstream of KATP channel closure and membrane 

depolarization.  
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4.3 No glucose or KCl concentration-response effect on membrane potential 

I planned to next examine the effect of RO5256390 on plasma membrane depolarization and the 

activity of the KATP channel by measuring membrane potential using DiBAC4(3) and a K-

channel selective fluorescent sensor. Although an initial increase in the fluorescence was 

observed with DiBAC4(3), indicating membrane depolarization, no concentration-dependent 

effect of either glucose or K+ was seen at any cell density (Figures 3.5 – 3.8). As such the effect 

of RO5256390 on glucose-dependent membrane depolarization could not be studied. A similar 

lack of glucose concentration-dependent effects on membrane depolarization in INS1E cells has 

previously been reported (Merglen et al., 2004). These effects have been attributed to 

mitochondrial electron transport becoming fully saturated at lower glucose or KCl concentrations 

compared to the concentrations eliciting elevated secretory responses (Antinozzi et al., 2002; 

Merglen et al., 2004). Attempts to measure the KATP channel actively directly using the 

commercial FluxOR Potassium Ion Channel Assay kit were unsuccessful in establishing baseline 

responses (data not shown) and therefore were not utilized further. 

 

4.4 TAAR1 correlated transcripts involved in the regulation of TAAR1-mediated GSIS 

were identified  

Affymetrix-based microarray data analysis of seven studies associated with pancreatic beta cells, 

downloaded from NCBI GEO database, generated TAAR1 correlated transcripts which could be 

the potential downstream targets of the TAAR1-mediated GSIS pathway. These seven studies 

were subdivided into two groups as mentioned before (section 2.5.1 and 3.4). Identified TAAR1 

correlated transcripts pertaining to each group, with their relevance to TAAR1-mediated GSIS 

pathway are discussed below separately (section 4.4.1 and 4.4.2).  
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4.4.1 TAAR1 correlated genes from the studies examining physiological processes 

Three microarray-based studies (Table 2.2) on pancreatic beta cells under varying physiological 

conditions were individually analyzed by average linkage hierarchical clustering to yield a 

positively and negatively correlated clusters to the TAAR1 gene expression pattern (Figure 3.9 – 

3.11). Three genes (Cacna1e, Gng7, and Gria2 ) were found to be positively correlated with 

TAAR1 gene expression and consistently changed across all the three studies (Figure 3.12 (A)).  

 

Cacna1e encodes for R-type Cav2.3 calcium channels. These channels play a crucial role in the 

second phase of insulin secretion, with very little role in first phase. Functioning of R-type 

Cav2.3 calcium channels are critical for insulin granule recruitment, mobilization and priming 

during the second phase of insulin release (Jing et al., 2005). Inhibition of these channels has 

been shown to reduce the second phase of insulin secretion by 80% (Jing et al., 2005). In 

humans, the Cacna1e gene is located on chromosome 1q25-31 a region with demonstrated 

linkage to type 2 diabetes (Hanson et al., 1998) and elevated blood glucose levels (Jun et al., 

2014), suggesting a potential role of Cacna1e in type-2 diabetes pathophysiology. A recent study 

(Michael et al., 2019) has also demonstrated a role of TAAR1 activation in stimulating calcium 

flux, however a putative direct role of TAAR1 on regulation of the calcium channel has not been 

previously studied. Since calcium channels are downstream of KATP channels, and TAAR1 does 

not regulate K-induced insulin secretion, this suggests that the positive correlation between 

TAAR1 and calcium channels is not due to them being a direct target of TAAR1.  

 

Gng7 encodes for G protein subunit gamma 7. GPCR activation causes the dissociation of the 

GDP bound inactive heterotrimer Gαβγ into activated GTP bound Gα subunit and Gβγ dimers, 
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both of which can interact with several downstream effector proteins and regulate the level of 

secondary messengers to regulate physiological responses. Although a specific role for the Gng7 

subunit in GSIS has not previously been suggested, specific Gβγ dimers have been shown to 

activate several effector proteins such as adenylyl cyclase (Boran, Chen, & Iyengar, 2011), 

membrane bound phospholipase C β (Park et al., 1993), and ion channels particularly GirK 

(Wickman et al., 1994) which provides a mechanism by which Gng7 as a part of  βγ dimers 

might play a role in downstream TAAR1 signaling. However, it is too early to infer anything 

about Gng7 and further study is needed to better determine any potential relevance to the 

putative link to TAAR1 expression identified here.  

 

Gria2 encodes for the glutamate ionotropic receptor AMPA type subunit 2. As stated earlier 

(section 1.5.4), TAAR1 has been shown to regulate glutamatergic NMDA receptor subunits 

GluN1 and GluN2B (Espinoza et al., 2015) as well as the AMPAR subunit GluA1 (Alvarsson et 

al., 2015) in the CNS. TAAR1 activation in CNS has been shown to attenuate the 

phosphorylation status of the AMPAR in response to L-DOPA (Alvarsson et al., 2015). Similar 

to NMDA receptors, AMPAR are ionotropic glutamate receptors which function by forming 

tetrameric complexes of their subunits (Takahashi, Yokoi, & Seino, 2019). AMPAR subunits, 

particularly Gria2, have been shown to be expressed in mouse beta cells (Wu et al., 2012). 

Activation of AMPAR at higher glucose concentrations in beta cells has been shown to increase 

the extracellular, as well as intracellular, calcium flux, promoting docking of insulin granules 

from RRP at the plasma membrane. AMPAR activation has also been shown to promote the 

closure of the KATP channels by increasing cytosolic cGMP levels, thereby inducing 

depolarization of the plasma membrane and promoting GSIS (Wu et al., 2012). Considering 
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these previous results and our data showing effects of TAAR1 activation on GSIS but not K+-

induced insulin secretion, I propose Gria2 as the most likely downstream target of TAAR1 for 

the selective regulation of GSIS.  

 

In addition to the genes discussed above, several genes encoding different subunits of GirK and 

KATP proteins were consistently found to be positively correlated to TAAR1 expression across 

the three studies. However, no individual sub-unit was consistently identified in all three studies. 

Different GirK subunits (Girk1, Girk2 and Girk3) have been shown to be expressed in rat and 

human islets (Smith, Sellers, & Humphrey, 2001). The pore forming component of KATP 

channels are composed of four subunits of either Kir6.1 or Kir6.2. Closure of K+-channels results 

in an increased membrane depolarization, calcium influx through the voltage gated calcium ion 

channel, and subsequently increased insulin secretion. Although studies on TAAR1 effects on 

GirK and KATP channel activity in modulating GSIS is lacking, a previous study (Bradaia et al., 

2009) has shown TAAR1 activation in VTA dopaminergic neurons in CNS regulates GirK 

channel activity, making this another good possibility for the downstream target of TAAR1 

signalling in beta cells.  

 

Similarly, three genes (Fam105a, Gnb2, and Nfatc1) negatively correlated and consistently 

changed with TAAR1 across all the three studies were identified (Figure 3.12 (B)). Fam105a 

encodes for the family with sequence similarity 105, member A protein. In a study (Taneera et 

al., 2014) utilizing microarray-based gene expression data isolated from pancreatic islets of 

cadaver donors, Fam105a gene was found to be positively correlated with insulin secretion and 

negatively correlated to HbA1C levels. In the same study, Fam105a was shown to be down-



   

 

 

92 

regulated in the hyperglycemic state. In contrast, acute exposure of high glucose had no effect on 

the expression of the gene. In INS-1 cells, silencing of Fam105a results in a significant reduction 

in the insulin secretion (Taneera et al., 2014). This indicates a role of Fam105a in the control of 

insulin secretion and potentially the pathogenesis of diabetes, however, surprisingly no further 

studies have validated these results or further clarified how Fam105a interacts with the insulin 

secretion machinery. The negative correlation identified here contrasts both with my in-vitro 

study results and the previous studies of Fam105a relationship to insulin secretion and suggests 

it is not a relevant downstream TAAR1 target in the regulation of GSIS. Considering only one 

such study has been done so far using Fam105a, further studies using validated cell culture and 

animal models are warranted to validate and ascertain effects of Fam105a on insulin secretion.  

 

Gnb2 encodes for the G protein subunit beta 2. TAAR1-induced adenylyl cyclase-cAMP 

signaling pathway to promote GSIS employs activated Gαs protein (Cripps et al., 2020; Michael 

et al., 2019). As previously indicated, studies pertaining to the role of Gβ subunits or Gβγ dimers 

in TAAR1 signaling are absent. However, as discussed above in the same section, Gβ subunits in 

association with Gγ have been shown to activate several effector proteins to mediate different 

functions relevant to insulin secretion (Milligan & Kostenis, 2006). Indeed a role of G protein 

subunit beta 2 in the regulation of the insulin secretion pathway has been ascertained by the 

Reactome biological pathway database (Lennikov et al., 2018) but how it may modulate insulin 

secretion is not clear. Together the results suggest that TAAR1 may regulate GSIS by promoting 

particular Gβγ combinations, and thereby inducing a form of signalling bias into the insulin 

secretome.  
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Nfatc1 encodes for the nuclear factor of activated T-cells 1 protein. TAAR1 activation in 

lymphocytes has been shown to activate NFAT signaling to mediate the immune responses of B 

cells and T cells (Panas et al., 2012). This activation of NFAT signaling has been found to be 

associated with the release of intracellular calcium stores. Nfatc1 has also been shown to be 

expressed in both mouse and human pancreatic islets where it promotes β-cell development and 

proliferation (Heit et al., 2006; Keller et al., 2016). Nfatc1 has been shown to promote insulin 

secretion in response to high glucose and KCl concentrations in mouse islets, but not in human 

islets, by regulating several genes involved in the insulin secretory cascade such as Munc13-1 

and Tcf7l2, and voltage gated ion channels (Keller et al., 2016). A negative correlation of Nfatc1 

with TAAR1 indicates a reduced glucose and potassium stimulated-insulin secretion upon 

TAAR1 activation.  As with Fam105a, this contradicts both with my in-vitro data and previous 

studies, indicating it is likely of limited relevance to the TAAR1 regulation of GSIS.   

 

Apart from the three genes, negatively correlated with TAAR1 gene expression discussed above, 

several genes encoding different subunits of the protein AMP-activated protein kinase (AMPK) 

were found to be negatively correlated with TAAR1 across the three studies. However, none of 

the individual sub-units consistently changed with TAAR1 gene expression pattern in all three 

studies. AMPK is a heterotrimeric protein complex composed of  ß and γ subunits. Different 

isoforms of all these subunits, such as 1, 2, ß1, ß2, γ1, γ2 and γ3, have been identified 

(Carling, 2004). AMPK is a metabolic master enzyme complex that is involved in maintaining 

metabolic homeostasis (Viollet et al., 2003). Increases in the cellular AMP/ATP ratio activates 

AMPK (Gowans et al., 2013) to boost mitochondrial ATP synthesis while limiting the synthesis 

of glucose, protein and lipid to maintain energy homeostasis (Hardie et al., 2003). In beta cells 
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pharmacological activation of AMPK has been shown to potentiate insulin secretion (Düfer et 

al., 2010). However, during physiological conditions when oxidative phosphorylation is curtailed 

AMPK activation does not enhance insulin secretion (Düfer et al., 2010). In a recent study 

(Yang, Munhall, & Johnson, 2020) on rat midbrain slices, it was found that AMPK can inhibit 

TAAR1 activation in dopaminergic neurons by suppressing dopamine intake via an unknown 

low-affinity, high capacity uptake mechanism. As such, the potential correlation identified here 

is unlikely to be relevant to downstream TAAR1 signalling, and is more likely to represent an 

up-stream regulator of TAAR1 functioning.  

 

4.4.2 TAAR1 correlated genes from the studies examining pathological processes 

Four microarray-based studies (Table 2.2) on pancreatic beta cells under varying pathological 

conditions were individually analyzed by average linkage hierarchical clustering algorithm 

(Figure 3.13 – 3.16). Although Venn diagram analysis revealed no genes which were 

consistently correlated with TAAR1 across the four studies, a number of genes were correlated 

in at least three out of four studies. 

 

Adora1, Gnas and Gngt1 were found to be positively correlated with TAAR1 gene expression 

pattern in three out of four studies. Gnas encodes for stimulatory Gα-protein a well-known 

component of the TAAR1 signal transduction cascade (Borowsky et al., 2001; Bunzow et al., 

2001; Cripps et al., 2020 ) resulting in the subsequent activation of both PKA and Epac (Michael 

et al., 2019). Consistent with these studies, a positive correlation of TAAR1 with Gnas here 

further validates the Gαs-protein as a downstream TAAR1 target in modulating GSIS. 
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Adora1 encodes for the adenosine A1 receptor which belongs to the GPCR family, and mediates 

its actions by coupling with Gi/o proteins, inhibiting adenylyl cyclase with subsequent activation 

of phospholipase-C (Ballesteros-Yáñez et al., 2018). A1 receptor activation has been shown to 

modulate glucose and insulin homeostasis by inhibiting insulin and promoting glucagon 

secretion (Burnstock & Novak, 2012; Yang et al., 2015), an effect opposite to that of TAAR1. 

The putative correlation identified here is therefore unlikely to be relevant to the signal 

transduction initiated by TAAR1.  

 

Gngt1 encodes for G protein subunit gamma 1. As previously described Gβγ heterodimers do 

regulate downstream effector proteins and secondary messengers and an ability of TAAR1 

signalling to bias the individual G protein isoforms present could be functionally important and 

relevant to downstream TAAR1 signaling. 

 

In addition to the above three, genes encoding different AMPAR subunits positively correlated to 

TAAR1 gene expression in all four studies under pathological conditions. However, none of the 

individual sub-units consistently changed across these studies. This is particularly interesting 

given that Gria2 was also identified as a highly likely downstream target of TAAR1 signaling in 

the studies examining physiological processes. A consistent positive correlation of AMPAR 

subunits with TAAR1 gene expression pattern across all the physiological and pathological 

studies strengthens the suggestion that AMPAR are a promising TAAR1 target in modulating 

GSIS, possibly secondary to changes in cytosolic calcium influx from extracellular as well as 

intracellular calcium stores as previously reported by (Michael et al., 2019). In such a situation 

TAAR1 would be predicted to be particularly relevant to the second phase of insulin secretion, 
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ultimately promoting insulin granule docking at the plasma membrane from the RRP. Further 

studies are warranted to determine the putative molecular relationships between AMPA and 

TAAR1 receptors. 

 

Two genes (Gng5 and Mapk1) were negatively correlated with TAAR1 gene expression pattern 

in three out of four studies. Gng5 encodes for G protein subunit gamma 5, which has previously 

been negatively correlated to insulin secretion and positively with HbA1C (Taneera et al., 2014). 

Further, Gng5 expression was found to be upregulated in islets isolated from diabetic subjects 

compared to non-diabetic islets and when pancreatic islets were subjected to higher glucose 

concentrations (Taneera et al., 2014). As such, the ability of TAAR1 activation to negatively 

regulate Gng5 expression should be systematically investigated, and further adds to the 

possibility of G protein sub-unit bias in TAAR1 signalling. 

 

Mapk1 encodes for mitogen-activated protein kinase 1. MAPK isozymes are serine-threonine 

protein kinases which upon activation by extracellular stimuli phosphorylate several downstream 

transcription factors and kinases to induce cellular responses (Sidarala & Kowluru, 2016). In a 

recent study (Michael et al., 2019), TAAR1 has been shown to activate a different member of the 

MAPK family (ERK1/2) via PKA and Epac-dependent activation of upstream mediators of 

ERK1/2, Raf and MEK1/2. This TAAR1-mediated activation of ERK1/2 promoted beta cell 

proliferation. MAPK activation has been shown to be associated with the beta cell proliferation 

and not with insulin secretion (Khoo & Cobb, 1997). As such, although the role of Mapk1 in 

insulin secretion is unclear, further investigation of whether this is a relevant downstream 
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effector of TAAR1 signaling in beta-cells in vivo where effects on proliferation could be more 

relevant, is warranted. 

 

Apart from these two genes, genes encoding different subunits of Ca+2/calmodulin-activated 

protein kinase II (CAMKII) were found to be negatively correlated with TAAR1 across the four 

studies under pathological condition, although none of the individual subunits were identified in 

all four studies. CAMKII, is a serine-threonine protein kinase, whose activation is initially 

dependent on Ca+2/calmodulin binding (Swulius & Waxham, 2008). Four isoforms of CAMKII 

(α, β, γ and δ) have been identified in mammals (Swulius & Waxham, 2008). CAMKII has been 

shown to phosphorylate different proteins such as synapsin I, SNAP, and synaptobrevin which 

are involved in insulin granule exocytosis to promote insulin secretion (Tabuchi et al., 2000). 

Given this promotes insulin secretion, the negative correlation identified here is not likely to be 

relevant to TAAR1 signalling of GSIS.   

 

4.5 Conclusions 

The goal of this thesis was to determine the downstream molecular targets of TAAR1 in 

regulating GSIS. I first confirmed that TAAR1 activation selectively elevates GSIS. By short 

circuiting the glucose-stimulated pathway to membrane depolarization using KCl, it was found 

that TAAR1 activation does not alter potassium stimulated-insulin secretion. From this it was 

deduced that TAAR1 interacts with insulin secretion components upstream of membrane 

depolarization. Analysis of Affymetrix-microarray based studies under physiological and 

pathological conditions, identified specific genes that are most likely to be involved in the 
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downstream TAAR1 signalling of GSIS. Based on this I propose the following molecular 

mechanism for TAAR1 regulation of GSIS (Figure 4.1):  

TAAR1 has been confirmed to be linked with Gαs-protein (Gnas) and Gβγ dimers (Gng7 and 

Gngt1). TAAR1-mediated GSIS has been shown to utilize Gαs dependent signaling pathway 

(Cripps et al., 2020; Michael et al., 2019).  Activated G protein subunits can interact downstream 

to the most likely identified TAAR1 target i.e. AMPA receptor (Gria2), shown to be consistently 

positively correlated with the TAAR1 gene expression levels under both physiological and 

pathological conditions. AMPAR activation stimulates the closure of the KATP channels by 

increasing cytosolic cGMP promoting GSIS. Activation of these receptors also potentiates the 

influx of Ca+2 from both extracellular as well as intracellular calcium stores to promote further 

GSIS. Another likely TAAR1 target identified was voltage-gated calcium ion channel (Cacna1e) 

which are downstream of KATP channels supporting KATP channels as the probable TAAR1 target 

in the regulation of GSIS. Different pore forming subunits of KATP channels i.e. Kir6.1 (Kcnj8) 

and Kir6.2 (Kcnj11) have also been found to be positively correlated to TAAR1 expression 

levels. Confirming these proposed links between the identified targets and TAAR1 should be the 

basis for future work.   
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Figure 4.1: Proposed molecular mechanism for TAAR1 regulation of GSIS 

TAAR1 activation coupled to Gαs-protein activates AMPAR which elevates cytosolic cGMP 

levels resulting in the inhibition of KATP channels. Changes in the membrane depolarization 

stimulates the opening of calcium channel promoting Ca+2 influx for insulin exocytosis.  
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4.6 Future directions 

Based on the above future in-vitro studies should specifically examine:  

1. The effect of varying glutamate concentrations with or without TAAR1 agonist on insulin 

secretion. 

2. The ability of TAAR1 activation to modify AMPAR function, particularly with respect to its 

role in GSIS. 

3. Assay levels of GTP and ATP in beta cells in response to TAAR1 agonist.   

4. Investigating TAAR1-mediated bias in G protein sub-unit composition. 

5. Screening of beta-cell inward rectifier potassium channels (GirK and KATP) for potential 

modulation by TAAR1. 

6. Investigating the effect of TAAR1 activation on calcium flux using a fluorescent dye. 

 

4.7 Limitations 

1. TAAR1 effect on insulin secretion was only analyzed in vitro. Studies confirming the in vivo 

relevance of responses would strengthen the conclusions made. 

2. My bioinformatics study provides a series of correlations between TAAR1 gene expression 

and that of various other genes. Correlation, however, does not necessarily translate to causation 

and a functional relationship. Further, especially with receptors and enzymes, gene expression is 

not necessarily reflective of protein levels, and more especially, protein activity. The effects of 

TAAR1 activation on protein activity needs to be investigated in order to validate the putative 

relationships identified here. 

3. The Affymetrix-microarray data analysis included a relatively small sample size. More robust 

conclusions could be made with the inclusion of a greater sample size.  
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6.0 Appendix 

Supplemental R source code for the generation of RMA normalized data (oligo package) and list 

of differentially expressed genes (Limma package):  

>setwd("C:/Datasets") # Sets folder from which R will retrieve .CEL files pertaining to an 

Affymetrix-microarray study. 

>source("http://bioconductor.org/biocLite.R") 

>biocLite() # Install Bioconductor packages like Affy, affydata, affyPLM, affyQCReport, 

annaffy, annotate, Biobase, biomaRt, Biostrings, DynDoc, gcrma, genefilter, geneplotter, 

GenomicRanges, hgu95av2.db, limma, marray, multtest, vsn, and xtable. 

>biocLite("oligo") # Install oligo package 

>library(oligo) # Load oligo package in the workspace 

>biocLite("Annotation file") # Install array package/annotation file like pd.hugene.1.0.st.v1, 

mouse4302cdf, rat2302.db etc. It can also be installed from: 

www.bioconductor.org/packages/release/data/annotation/.  

>library(Annotation file) # Load array package in the workspace. 

>celfiles <- list.celfiles() # Lists all CEL files in folder. 

>celfiles 

>data<-read.celfiles(celfiles) # Automatically selects the installed array package/annotation file, 

and generates gene feature set. 

>data 

>hist(data) # Analyze raw data prior to rma normalization. 

>boxplot(data) 

#Normalization and background correction  

http://www.bioconductor.org/packages/release/data/annotation/
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>genes <- rma(data)  # Generates expression set, target=core analyzes at the whole gene level for 

gene chips. 

>genes 

>hist(genes) # Analyze data post rma normalization 

>boxplot(genes) 

>write.exprs(genes.file="rma_normalized_data.txt") # Write rma normalized genes expression 

values to a text file. 

#Limma 

>biocLite("limma") # Install Limma package. 

>library(limma) # Load Limma package in the workspace. 

>getwd() # Check if working directory is set to the right folder. 

>design<-model.matrix(~0+factor(c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4))) # Example of four 

treatments, three replicates for each treatment. 

>colnames(design)<-c("two","five","ten","thirty") 

>design 

>contrast.matrix <- makeContrasts(five-two, ten-two, thirty-two, levels=design) # Indicates the 

comparison between the treatments. 

>contrast.matrix # Check the comparison. Order is important for read-out. 

>fit<-lmFit(genes,design) 

>fit2 <- contrasts.fit(fit, contrast.matrix) 

>fit3 <- eBayes(fit2) 

>results <- decideTests(fit3, p.value=0.01) 

>vennDiagram(results, include="up")  
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>vennDiagram(results, include="down") 

>vennDiagram(results, include="both") 

>write.csv(fit3, file="control") # Get data from all contrasts for all the genes across the gene 

chip. 

#To get list of differentially expressed genes 

>tt <- topTable(fit3, coef=1, n=10000, adjust="fdr", sort.by="logFC", p.value=0.01) 

>tt 

>write.csv(tt, file="Top table probe IDs.csv") # Write differentially expressed genes expression 

values to a text file. 

  

 

 

 


