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Abstract

Online social networks (OSNs) have become a massive repository of data con-

structed from individuals’ inputs: posts, photos, feedbacks, locations, etc. By

analyzing such data, meaningful knowledge is generated that can affect individuals’

beliefs, desires, happiness and choices — a data circulation started from individuals

and ended in individuals! The OSN owners, as the one authority having full control

over the stored data, make the data available for research, advertisement and other

purposes. However, the individuals are missed in this circle while they generate

the data and shape the OSN structure.

In this thesis, we started by introducing approximation algorithms for finding

the most influential individuals in a social graph and modeling the spread of

information. To do so, we considered the communities of individuals that are

shaped in a social graph. The social graph is extracted from the data stored and

controlled centrally, which can cause privacy breaches and lead to individuals’

concerns. Therefore, we introduced UPSS: the user-centric private sharing system, in

which the individuals are considered as the real data owners and provides secure

and private data sharing on untrusted servers.

The UPSS’s public API allows the application developers to implement appli-

cations as diverse as OSNs, document redaction systems with integrity properties,

censorship-resistant systems, health care auditing systems, distributed version con-

trol systems with flexible access controls and a filesystem in userspace. Accessing

users’ data is possible only with explicit user consent. We implemented the two

later cases to show the applicability of UPSS.

Supporting different storage models by UPSS enables us to have a local, remote

and global filesystem in userspace with one unique core filesystem implementation

and having it mounted with different block stores.

By designing and implementing UPSS, we show that security and privacy

can be addressed at the same time in the systems that need selective, secure and
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collaborative information sharing without requiring complete trust.
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Chapter 1

Introduction and Overview

Starting from 70000 years ago, social networks and living in groups are one of the

principal reasons for human survival, claimed Y. N. Harari [Har14]. N. A. Christakis

and J. H. Fowler have shown that the relationship between people in social networks

not only affects the weight and happiness of them but also someone can have an

influence on another’s taste, health, wealth and beliefs [CF09, FC08, CF07]. All

these studies show the tendency of human beings to live as groups and be affected

by other members of the group. The number of people that each person can have a

strong tie with in a group is defined as the Dunbar number, which is around 150

[Dun98].

Online social networks (OSNs) are platforms that attempt to simulate this social

life in a digital world by connecting people from different languages, beliefs and

cultures. They provide people with a new kind of socializing that is not limited to

real-life conditions, such as geographical distances and even the Dunbar number.

We can have more than 150 friends on those platforms and be sure that the platform

reminds us of them from time to time by showing us their life updates, thoughts, or

birthdays. However, these are not the only features of OSNs. They also enable us

to spread our ideas and thoughts very rapidly without worrying about not being

heard. There are examples of this kind, such as an Iranian movement started from a
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Facebook page [Ali18], that one single person started a revolutionary movement by

just using social media. On the other hand, there is evidence that the spread of fake

news on social media can affect the election results [BM19, AG17]. Therefore OSNs

can be as a double-edged sword: they can be very beneficial in our lives, or they can

cause some concerns, such as privacy concerns that OSN users facing these days.

In this thesis we have demonstrated that we can design a secure and private

sharing and collaboration system such as an online social network in which the

users are considered as the main data owners with full control over their data, by

combining the research from distributed systems, cryptography and filesystems.

UPSS, as our solution, protects the users from the adversaries that need to be trusted

in the existing systems. More specifically, UPSS stores users’ data on untrusted block

stores and achieve confidentiality, integrity and availability without sacrificing the

performance and users’ privacy.

1.1 Definitions

The terms that are used frequently in this thesis are described in this section to give

a clear understanding of them.

Online Social Network (OSN) Online social networks serve as a medium for

modeling interactions between individuals, groups and organizations. A social

network can be modelled as a directed or undirected graph G = (V, E) where V

and E are the set of nodes and edges of G. Individuals are modelled as the set of

nodes V and the relationships between them are modelled as the set of edges E.

The relationships between individuals are established based on the friendships in

their real life, being co-tagged in a photo, being co-authored in a book, etc.

Trust We use the definition of trust that is presented in [CH96] that says if “A

trusts B” means that “B can act in such a way as to put things into A’s set of trust
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assumptions without A’s explicit consent”.

Privacy The term privacy is a multifaceted and complex concept that can be

viewed from different perspectives. Based on the research which was done by

Gürses [DG10], privacy can be classified into three paradigms: privacy as control,

privacy as confidentiality and privacy as practice.

Privacy as control discusses the users’ ability to have control their data col-

lection, use and processing. Therefore the trusted organizations should provide

a mechanism for the users to address such needs. In privacy as confidentiality,

cryptography is used to minimize information disclosure and the organizations are

not trusted. However, in privacy as practice, the information flow is as transparent

as possible.

In this thesis, we consider the second definition of privacy that is privacy as con-

fidentiality and in some places, we use privacy and confidentiality interchangeably.

Storage A medium for storing individuals’ data that can be a hard drive on user’s

PC, a hard drive on a server, a usb stick, or a cloud storage account such as Google

Drive, Box, Dropbox or Amazon S3.

Distributed vs. central server These terms are more about the defined policies

about data storage/retrieval on the server and who controls it rather than the

physical location of the server. As an example, user data is stored on central servers

of a company such as Facebook and there could be data replication for availability

and locality, but all the servers are controlled and monitored by the company.

1.2 From social influence to influence maximization

As previously stated, individuals are influenced by their social connections in real

life. One example is our tendency to buy a product that is accepted by the majority
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of our friends. Marketing companies use the word-of-mouth effect to gain a large

number of adoptions in selling their products. Richardson et al. [RD02] defined this

effect as a fundamental algorithmic problem in the OSN context: what is the best

subset of individuals being selected and convinced to adopt a new product to gain

a larger cascade of future adoptions? Kempe et al. [KKT03] defined this problem

as an optimization problem called influence maximization and they proved its

NP-hardness. The problem is defined as

INFLUENCE MAXIMIZATION IN OSN

Input: A graph G = (V, E) and a positive integer k > 0.

Output: A subset S ⊆ V containing k nodes, such that, as the spread

of influence starts from S, the set of nodes that get activated, will be

maximized.

Then they modelled the spread of ideas and innovations through OSNs using two

basic models: Linear Threshold (LT) and Independent Cascade (IC). They proved

that the spread computation function f , that calculates the spread value of a node

in a social graph, is submodular for both LT and IC models. Submodularity means

that the marginal gain from adding an element to a set S is at least as high as the

marginal gain from adding the same element to a superset of S [KKT03].

f (S ∪ v)− f (S) ≥ f (T ∪ v)− f (T),

for all elements v and all pairs of sets S ⊆ T. Spread value of a node v is a

probabilistic measure to show how many other nodes can be affected by node v if

the spread of information starts from node v.

The other outcome of their work was a greedy hill-climbing algorithm that

approximates the optimum solution to within a factor of (1− 1/e). The main idea

of their algorithm was starting from an empty set, repeatedly adding an element
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to the set that gives the maximum marginal gain. However, their approach was

impractical for large networks.

Having the influence maximization problem defined formally, researchers began

to present approximation algorithms for finding the top k influential nodes more

efficiently and accurately. The authors of the CELF (Cost-Effective Lazy Forward)

algorithm [LKG+07] improved the running time of the greedy algorithm. They

calculated the spread value of all nodes in the first iteration of the algorithm, and

in the further iterations, the spread value of some — not all — nodes is calculated.

However, the time complexity bottleneck of CELF is the first iteration. There are

some other approaches that construct a data structure for each node and localize

the search spaces of computing the influence spread to smaller subsets of nodes to

improve the performance of the greedy algorithm. Constructing a DAG (Directed

Acyclic Graph) [CYZ10], extract the vertex cover set [GLL11] and clustering the

input graph into communities [KLPL13, BHZR16] are in this category.

The other category of research for influence maximization problem is defining

propagation models that mostly are the extensions of LT and IC models. In com-

petitive influence maximization (CIM), two or more competitors try to gain more

influence spread in a network by choosing fewer nodes. In [CNWVZ07, SBV+12],

the CIM problem is looked from the follower’s perspective: there are two competi-

tors trying to find some influential nodes. The second competitor starts the process

with knowledge of the seed nodes selected by the first competitor and tries to find

some new seed nodes other than the ones selected by the first competitor to achieve

more influence spread. In [CCC+11, HSCJ12], the two competitors start spreading

the information and one competitor tries to block the effect of the second one. From

the host’s perspective, the owner of the OSN is responsible for allocating some

nodes to each competitor in a fair way, discussed in [LBGL13]. We defined a more

realistic scenario for CIM problem [BSKW17] in which the individuals have the

ability to think about the incoming influence spread for some time steps and then
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be adopted by the spread which is accepted by the majority of their neighbours.

1.3 Private online social network

For solving the influence maximization problem that is reviewed in Section 1.2, we

need to have a graph consisting of nodes as the individuals and the edges as the

relations between them. Such a graph structure is generated by OSN providers from

data and metadata authorized by them. Upon request, the providers can also share

more information about individuals to the requesters, which can be advertisement

companies, researchers, or governments. This is due to the centralized nature of

user data, which is stored on the company’s storages and is controlled by one single

authority. Users’ concerns about their private data increases in Healthcare Social

Networks (HSNs) as their personal health data are stored on OSN storage and are

vulnerable to any kind of breaches. These concerns go even beyond users’. The

Canadian Internet Policy and Public Interest Clinic’s (CIPPIC) letter to Facebook

[Den09] about default privacy settings, collection and use of users’ personal in-

formation for advertising purposes, disclosure of users’ personal information to

third-party application developers, and collection and use of non-users’ personal

information is an example of this kind.

Violating users’ privacy in existing OSNs encourages us to find the answer

to this question: how can we protect user data in a practical way in the systems

with sharing, collaboration and interaction mechanisms so that the data can be

accessed by third parties only if the user – as the real data owner – is willing to?

We started by investigating the existing approaches that try to address the privacy

concerns of OSNs (see Chapter 4). These approaches are categorized into three

main groups based on the architecture of OSNs: centralized, decentralized and

hybrid. Centralized approaches put their trust in OSN servers and try to preserve

users’ privacy by sending encrypted data directly or an indirect reference to the data

6



to OSN servers. Lockr [TGS+08], FlyByNight [LB08], NOYB [GTF08], Facecloak

[LXH09], Persona [BBS+09], EASiER [JMB11] and CP2 [RMJ13] are examples of the

works in this category.

In decentralized approaches, user data is stored on untrusted servers, users’

trusted storages, or friends’ storage. Most of these approaches build their decentral-

ized or peer-to-peer (P2P) network on public Distributed Hash Tables (DHTs) and

use the DHT nodes for storage, such as PeerSoN [BSVD09], DECENT [JNM+12], Ca-

chet [NJM+12] and PESCA [RJM15]. In some approaches such as Safebook [Str09],

Soup [KLF14], Didusonet [GADS+16] and Narendula et al.’s works [NPA10, Nar12],

user data is stored on their trusted friends’ storages by applying some limitations

in the space usage. Among these, just a few of them can provide searching and

indexing in the P2P environment [NPA10], which is a critical requirement fo OSNs.

In hybrid approaches, user data or parts of it is stored based on users’ choices, that

can be on personal or untrusted servers, such as Vis-a-vis [SLC+11], Confidant

[LSC+11], Raji et al.’s [RMJM11] and Wilson et al.’s [WSW+11] works.

1.4 Private filesystem

None of the proposed approaches discussed in Section 1.3 can guarantee confiden-

tiality, availability and integrity, and some are sacrificed for the others. However,

we believe that by providing these properties not in the application level, but in

lower levels like a filesystem, we can create a functional system that can be the

backbone for higher-level applications as diverse as OSNs, redaction systems and

censor-resistant systems. In the filesystem level, we can control the data storage/re-

trieval and define suitable policies. Moreover, we have the flexibility to decouple

the storage from access control to provide confidentiality, availability and integrity,

as discussed in Chapters 5 and 6. Having such a filesystem, the existing applications

can have all the required properties just by interacting with it without applying

7



substantial modifications to their code.

The main concerns of traditional filesystems are efficient read and write op-

erations and high availability, which are well-addressed in copy-on-write ZFS

[BAH+03] and Coda [SKK+90] filesystems. But privacy remains untouched. Ivy

[MMGC02] tries to embed privacy in its design, but sacrifices confidentiality. Ori

[MBHM13] could address most of the stated requirements with some extra features

such as synchronization, failures handling and data recovery. Another successful

modern filesystem is IPFS [Ben14] that synthesizes the key successful ideas behind

systems such as DHTs [SMK+01], BitTorrent [Coh03], Git [LM12], and SFS [MK98].

Studying these filesystems inspired us to design and implement UPSS: the

user-centric private sharing system that can provide secure and selective sharing in

collaborative environments (Chapters 5 and 6). Also, UPSS provides a conventional

filesystem API using copy-on-write operations around immutable DAGs; this API is

accessible directly as an embedded library or proxied via a FUSE interface. Storing

everything as fixed-size encrypted blocks on block stores, which are untrusted

content-addressable storages, without leaving any footprint about the data struc-

tures, guarantees the confidentiality and privacy of blocks’ content. In Section 6.5.5,

we show that the access patterns can be exposed to an adversary in the current im-

plementation of UPSS; however they can be protected in the next versions of UPSS.

The block stores can be individuals’ local storages, remote servers, or in scenarios

that availability is a strong need, cloud accounts. Using convergent encryption

[DAB+02], naming the blocks by the cryptographic hashes of their ciphertext, and

embedding the key and the block hash in block pointers, we avoid any central key

server. Our extensive evaluation (Section 6.3) shows that UPSS is comparable and

in some cases superior to heavily-optimized local, network and global filesystems

such as ZFS, NFS and Google’s Perkeep. Interacting with UPSS using the public

API enables us to build a version control systems with fine-grained access controls

(Section 6.3.5).
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1.5 Contributions

In this thesis, I started by studying how information can be propagated in OSNs.

The outcome of my studies is published in two papers [BHZR16, BSKW17], which

are presented in Chapters 2 and 3, respectively. I co-authored these two papers with

other people, whose names are listed in the papers, and I was the principal author.

In the paper that is included in Chapter 2, I have the following contributions:

• Designing a new framework to incorporate the community structure of online

social networks for solving the influence maximization problem

• Developing and evaluating an scalable approximation algorithm called IN-

CIM (Influential Nodes using Community structure for solving Influence

Maximization problem) for finding the top-k influential nodes efficiently with

low memory usage

The contributions for the paper that is appeared in Chapter 3 are:

• Introduce a new propagation model called DCM (Decidable Competitive

Model) for competitive influence maximization problem that gives the decision-

making ability to the users

• Develop and evaluate an efficient approximation algorithm called CI2 to find

the influential nodes for competitive influence maximization, based on the

DCM model

• Prove the NP-Hardness of CI2 by considering the DCM as the propagation

model

The content of Chapter 4 explains my investigations about privacy-preserving

online social networks and comparing existing approaches from different points of

view. This paper is ready to be submitted and all the content is written by me and

is edited by Dr. Saeed Samet and Dr. Antonina Kolokolova.
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Our cryptographic and distributed filesystem, UPSS: the user-centric private

sharing system, is described and evaluated in Chapters 5 and 6. The contents of

these chapters are published and submitted respectively, as two papers, which I

co-authored as the principal author. The contributions of these two chapters are as

follows:

• Design and implement UPSS: the user-centric private sharing system as a

mechanism for sharing information securely and selectively without having

complete trust in central servers

• Implement a cryptographic hybrid (local, network, global) filesystem called

upss-fuse on top of UPSS

• Design and implement a novel and confidential version control system called

UVC: UPSS Version Control System with flexible and fine-grained access

controls

• Design and implement a benchmark framework for filesystem evaluation,

that can record a filesystem’s behaviour during time
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[DG12] Claudia Diaz and Seda Gürses. Understanding the landscape of

privacy technologies. Extended abstract of invited talk in proceedings of

the Information Security Summit, pages 58–63, 2012.

[Dun98] Robin IM Dunbar. The social brain hypothesis. Evolutionary Anthropol-

ogy: Issues, News, and Reviews: Issues, News, and Reviews, 6(5):178–190,

1998.

[FC08] James H Fowler and Nicholas A Christakis. Dynamic spread of

happiness in a large social network: longitudinal analysis over 20

years in the framingham heart study. Bmj, 337:a2338, 2008.

[GADS+16] Barbara Guidi, Tobias Amft, Andrea De Salve, Kalman Graffi, and

Laura Ricci. Didusonet: A p2p architecture for distributed dunbar-

based social networks. Peer-to-Peer Networking and Applications,

9(6):1177–1194, 2016.

[GLL11] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. Simpath: An effi-

cient algorithm for influence maximization under the linear threshold

model. In Proceedings of ICDM, pages 211–220. IEEE, 2011.

[GTF08] Saikat Guha, Kevin Tang, and Paul Francis. Noyb: Privacy in online

social networks. In Proceedings of the first workshop on Online social

networks, pages 49–54. ACM, 2008.

13



[Har14] Yuval Noah Harari. Sapiens: A brief history of humankind. Random

House, 2014.

[HSCJ12] Xinran He, Guojie Song, Wei Chen, and Qingye Jiang. Influence

blocking maximization in social networks under the competitive

linear threshold model. In Proceedings of ICDM, pages 463–474. SIAM,

2012.

[JMB11] Sonia Jahid, Prateek Mittal, and Nikita Borisov. Easier: Encryption-

based access control in social networks with efficient revocation. In

Proceedings of the 6th ACM Symposium on Information, Computer and

Communications Security, pages 411–415. ACM, 2011.

[JNM+12] Sonia Jahid, Shirin Nilizadeh, Prateek Mittal, Nikita Borisov, and Apu

Kapadia. Decent: A decentralized architecture for enforcing privacy

in online social networks. In Pervasive Computing and Communications

Workshops (PERCOM Workshops), 2012 IEEE International Conference

on, pages 326–332. IEEE, 2012.

[KKT03] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread
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Chapter 2

INCIM: A community-based

algorithm for influence maximization

problem under the linear threshold

model
(This chapter is based on a paper published in Information Processing & Manage-

ment, 2016 [BHZR16])

A social network is modeled as a graph G = (V, E) where V and E are the set of

nodes and edges of G. In a real world social network, people are modelled as the set

of nodes V and the relationship between them, e.g., friendship or being co-tagged

in a photo is modelled as the set of edges E of the graph. Information can propagate

via links between people which leads to word-of-mouth advertising and its famous

application, viral marketing. In viral marketing, the owner of a product, gives free

or discounted samples of a product to a group of people to gain a large number of

adoptions through the word-of-mouth effect. The influence maximization problem

is motivated by the idea of viral marketing. Kempe et al. [KKT03] defined the

influence maximization problem in a graph G = (V, E) as finding a subset of S ⊆ V
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containing of k nodes, such that, as the spread of influence starts from S, the set of

nodes that get activated, will be maximized.

Two propagation models are defined in [KKT03] by Kempe et. al., namely, the

Linear Threshold (LT) and Independent Cascade (IC) models. Also, different algo-

rithms have been proposed based on the IC model[CWW10], [CSH+14], [GZZ+13],

[KLPL13] and LT model[CYZ10], [GLL11b], [GLL11a]. Our proposed algorithm in

this paper is based on the Linear Threshold model.

The greedy algorithm [KKT03] needs to calculate the influence of every node

in the graph which is very time consuming for large graphs. In recent years,

several attempts have been made to solve the influence maximization problem

more efficiently. In CELF [LKG+07], first, the spread of each node is calculated

and in the next iterations, based on the sub-modularity of spread function, only

the spread of some nodes needs to be updated that causes CELF algorithm to run

faster than the greedy algorithm. However, the time complexity bottleneck of CELF

[LKG+07] is the first iteration.

In some approaches, the authors try to compute the spread of nodes in smaller

subgraphs to have a faster first iteration than CELF algorithm [LKG+07] and also,

improve the overall running time of their algorithms [GLL11b, YKK13, KLPL13].

In IPA [YKK13], the influence paths starting from each node v to other nodes are

found and each influence path is considered as an influence evaluation unit and the

node with maximum influence propagation probability over influence paths is a

candidate for a seed node. However, the results of our experiments in Section 2.4

show that the quality of seeds in IPA is not satisfying.

In SIMPATH [GLL11b], to avoid calculating the spread of every node in the

graph, the vertex cover of the graph is computed and the spread of each node

in the vertex cover is calculated. In this paper, we improve the running time of

the SIMPATH algorithm [GLL11b] by using the community structure of the input

graph.
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Despite useful and meaningful characteristics of communities in social networks,

very little attention has been made to incorporate the role of communities in in-

fluence maximization problem. In real social networks, people live in a cluster

with whom they have strong relations. Information circulates at a high velocity

within these clusters and each person tends to know what the other people know.

Therefore, the spread of information on new ideas and opportunities must come

through the weak ties that connect people in separate clusters. The weak ties so of-

ten ignored by social scientists are in fact a critical element of social structure. Weak

ties are essential to the flow of information that integrates otherwise disconnected

social clusters into a broader society [Gra73]. Furthermore, some communities in

social networks play a significant role, as they are central and other communities

monitor them to get the updates. Moreover, real networks contain a huge number

of nodes, and computing the influence of each node is very expensive. Calculating

the spread of each node locally inside its community can be done very quickly

which improves the running time.

Kim et al. [KLPL13] approached the influence maximization problem from a

community based perspective and their main reason is to limit the search space

to some nodes inside communities and decrease the running time. In [KLPL13],

first the graph is clustered into a set of communities, and then the most influential

node in each community is considered as the seed candidate for the influence

maximization problem. Finally, only k nodes from candidate nodes are chosen as

final seed nodes. In this model, the role of communities is ignored. For example, if

some communities are very small and have no influence on other communities, the

quality of seeds in that communities is expected to be lower.

Contribution. Our major contribution in this research is summarized as follows:

• We design a new framework to incorporate community structure in the influ-

ence maximization problem.

• We devise an efficient algorithm for finding the top-k influential nodes in a
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social network based on communities in the graph.

Methodology. In this paper, we incorporate the role of communities of the social

network in a meaningful manner and propose an algorithm under Linear Threshold

model. In our algorithm, first we find the local spread of each node inside its com-

munity. Then we construct the graph of communities, where each community is a

vertex and there is an edge between two vertices if there is at least one edge between

the corresponding communities in the actual graph. After that, we compute the

global influence that is the spread of each community in the graph of communities

and finally calculate the final spread of each node as a combination of its local

spread and its global spread. So, a particular node that belongs to a community

with higher spread, has more chance to be chosen as a seed node candidate.

We conduct the empirical studies on large real graphs. Extensive performance

studies demonstrate that the proposed algorithm significantly outperforms the

state-of-the-art algorithms in term of the quality of outputted seeds while still has

an acceptable running time and memory usage.

Organization. The rest of this paper is organized as follows. In Section 2.1, we

summarize the related works, and in Section 2.3, we devise a new algorithm for

finding the top influential nodes in the graph called INCIM. Section 2.4 introduces

the datasets which are used to examine our algorithm and presenting the experi-

mental results. The last section is devoted to conclusions and some directions for

future work.

2.1 Related Work

In the previous section, we mentioned some works closer to ours and in this section,

these works and other related works are reviewed in a more detailed way. The

greedy algorithm presented by Kempe et al. [KKT03] can guarantee a good quality

of seeds, but it is very time consuming for large graphs. Therefore, efficiently and
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accurately finding the influential nodes in social networks, under the LT and IC

models, has recently drawn a great deal of attention.

CELF algorithm presented in [LKG+07] owes to the fact that the influence spread

function is a sub-modular function, which means the marginal gain from adding

an element to a set S is at least as high as the marginal gain from adding the same

element to a superset of S [KKT03]. Therefore, CELF reduces the number of calls to

the spread estimation function (because only the spread of some nodes needs to be

updated in each iteration) and improves the running time of the greedy algorithm.

However, the time complexity bottleneck of CELF is the first iteration, where the

spread of every node is calculated and thus the CELF’s first iteration is the same as

the greedy’s first iteration.

In the heuristic approach in [CYZ10], for each node v, a DAG (Directed Acyclic

Graph) is constructed and the spread of nodes is computed locally within the

resulting DAGs and the seed nodes are selected based on the greedy algorithm.

This algorithm has a reasonable running time, but it takes a lot of memory to store

a DAG for each node in the graph. The main idea of the algorithm presented

in [CWW10] is making local trees with edges starting or ending at each node

called MIA; then the probability of activating a node by other nodes in each tree is

computed locally. Finally a node with maximum probability is chosen as seed node.

In SIMPATH [GLL11b], to reduce the number of calls to the influence estimation

function, first the vertex cover of G is computed, and only the spreads of nodes

within the vertex cover are calculated. Having the spread values, the seed nodes

are found in k iterations. In IMRank [CSH+14], an initial rank is assigned to every

node in the graph which is computed from a known heuristic; then, based on these

initial ranks, the spreads of nodes are estimated, while in the greedy algorithm

the spreads are computed exactly in each iteration. In IPA [YKK13], for each node

v in the graph, the algorithm finds the influence paths starting from v to other

nodes and computes an influence propagation probability for each node. The nodes
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with maximum influence propagation probability are selected as seed nodes. IPA

algorithm runs very fast and also is parallelizable to run faster in multicore systems,

but it achieves seed nodes with low quality over different datasets comparing to

other algorithms.

In [GZZ+13], the influence maximization problem is viewed from a new per-

spective. More specifically, k nodes are chosen as seed sets that have maximum

influence over a set of target nodes to obtain a personalized set of influential nodes.

The personalized influence is specific to its own applications where the seeds are

selected from a general social network for a specific type of product.

Very closely related to our work is [KLPL13], where communities of the graph

are constructed by Markov Clustering algorithm. Then, in each community, a node

with maximum spread is chosen as the seed node candidate. Finally, k nodes with

bigger influence spread are chosen from candidate nodes. The main problem with

this algorithm is that, it does not consider the role of each community as a unit to

spread the influence and the size of each community.

2.2 Preliminaries

In this part, we introduce fundamental concepts of influence calculation which are

needed for better understanding of the paper.

Community detection. Communities are subsets of nodes in the graph, with

more edges between them and fewer edges between nodes in different communities

[LP49]. Community detection is formulated as a clustering problem. That is, given

the full graph G = (V, E), partition the vertex set into k subsets S1, S2, · · · , Sk, such

that
⋂k

i=1Si = ∅ and
⋃k

i=1Si = V. A quality metric Q(S1, · · · , Sk) is defined over

the partitions and a community detection algorithm will try to find a partitioning

that maximize or minimize Q depending on its nature. This is for non-overlapping

community detection and one can simply remove the constraint
⋂k

i=1Si = ∅ to get
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the overlapping version [HCL14].

Linear Threshold model. In this model which is defined in [KKT03], activation

probability of a node depends on a uniform function of its neighbors that are

activated before. More specifically, a weight function fv maps the neighbors of

v to [0, 1], then assigns a threshold value θv ∈ [0, 1] to each node v uniformly at

random. Node v would be activated in time t if fv(S) > θv, where S is the subset of

neighbors v that have been activated in time t− 1. Based on [KKT03], the value of

fv is initialized as Equation (2.1):

fv(S) = ∑
u∈S

bv,u (2.1)

where bv,u is the weight of edge (v, u) and sum of all edges between v and its

neighbors should be less than 1 as Equation (2.2).

∑
u neighbors o f v

bv,u ≤ 1 (2.2)

In some cases, the weight of the edges are not set in the input graph and they

should be computed. To do so, the number of edges from node i to node j is defined

as wij (in this chapter, we have one edge between each two nodes, therefore wij = 1).

Also, the number of input edges to node j is defined as dj. Finally the weight of

edge (i, j) in LT model is as follows:

wij

dj
. (2.3)

2.3 INCIM algorithm

In this section, we devise a new algorithm, called INCIM (Influential Nodes using

Community structure for solving Influence Maximization problem) for the influence

maximization problem from a community-based perspective. First, we present a

general overview of the algorithm and then we explain each part in more details.
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2.3.1 Algorithm overview

Given a set of communities C = {C1, C2, · · · , Cl} in a graph G = (V, E), such that

C1 ∪ C2 ∪ · · · ∪ Cl = V, the intuition of INCIM can be explained using the charac-

teristics of community structure in G. Our algorithm proceeds in two phases. In

the first phase (preprocessing), we find the communities of the main graph by a

partition algorithm. In the second phase, we first find the influence of each commu-

nity among other communities based on the links between their nodes and then

find the degree to which each node spreads the influence inside its own community.

We determine the final spread of each node in the graph as a combination of its

community influence and its influence inside its community.

Our innovations (which will be explained in Section 2.3.2 in more detail) to

decrease the running time and increase the efficiency of our algorithm are as follows:

• Computing the spread of nodes locally in the communities which causes

a decrease in overall running time of the algorithm. Also, by determining

those communities whose nodes spread should be updated, we decrease the

number of calls to the SIMPATH algorithm which again results in decreasing

the running time.

• By using the idea of local and global spreads of nodes and their combination,

we track the role of communities and also, the influence of a node in its own

community.

• Using a combination of the SIMPATH [GLL11b] and CELF [LKG+07] algo-

rithms; more precisely, using the SIMPATH algorithm to compute the spread

of nodes and storing and updating these spread values by the idea of the

CELF algorithm cause our algorithm to find the seed nodes which have the

most influence spread in the graph in a reasonable time and less memory

usage.
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2.3.2 Algorithm description

INCIM contains the following steps:

1. Preprocessing: In this step, we partition the input graph into its communities.

The partition algorithm we have used is SLPA [XSL11].

2. Computing spread of nodes: In this step, we create the graph of communities

whose nodes are the communities of the graph and then we calculate the

spread values. We use the manner of the SIMPATH algorithm [GLL11b] to

compute the spread of nodes which is done in 3 steps as follows:

(a) Computing global spread which is the spread value of each node in the

graph of communities, i.e., the spread values of the communities.

(b) Computing local spread which is the spread value of the nodes inside

their communities.

(c) Computing final spread which is a combination of local and global

spreads per each node.

3. Making CELF lists: We store the resulting spread values of the nodes by the

idea of the CELF [LKG+07] algorithm. For each community, we have a list

which the number of its elements is equal to the number of nodes in that

community.

4. Determining communities to be updated: We determine which communities

should be updated based on the nodes in the seed set.

5. Selecting seed nodes: In this step, INCIM iterates k times to finds the k most

influential nodes.

Now, we can describe INCIM algorithm by explaining the details of each step.
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2.3.2.1 Preprocessing step

To partition the input graph into communities, we use the SLPA algorithm as the

partition algorithm which is proposed in [XSL11]. The SLPA is categorized as a

dynamic and agent-based algorithm and is an extension of the Label Propagation

Algorithm (LPA). Both SLPA and LPA algorithms tries to maximize the modularity

measure Q. Modularity measure Q is defined as the difference between the observed

density of edges within communities and the expected density of edges within the

same communities but with random connections [NG04]. In SLPA, each node can be

a listener or a speaker. The roles are switched depending on whether a node serves

as an information provider or information consumer. A node can hold as many

labels as needed to decide which label to accept. The more a node observes a label,

the more likely it will spread that label to the other nodes. The input of the SLPA

algorithm is the input graph containing the id of the nodes and the edge weights

in the LT model. The weight of the edges are considered when a listener wants to

accept a label from its neighbors. For example, a listener x, has three neighbors y1,

y2 and y3, with edge weights 0.1, 0.2 and 0.3 respectively. When node x consider the

labels from its neighbors, it will weight each label as 0.1/(0.1 + 0.2 + 0.3) for node

y1, 0.2/(0.1 + 0.2 + 0.3) for node y2 and 0.3/(0.1 + 0.2 + 0.3) for node y3. Then,

the listener accepts one label from the collection of labels received from neighbors

following certain listening rule, such as selecting the most popular label from what

it observed in the current step.

The main reasons to choose this algorithm are its less time consuming than the

other ones in finding communities and its high quality in finding communities of

the graph; the experiments done in [XSL11] confirm such specifications of SLPA.

2.3.2.2 Computing spread of nodes

In our framework, we use the approach of the SIMPATH algorithm [GLL11b] to

compute the spread of a node in the input graph. As mentioned in [GLL11b], the
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spread of a node v is computed by summing the weights of all simple paths starting

from v. The weight of a simple path is calculated as the products of the edge weights

on the path:

W[P] = ∏
(vi,vj)∈P

bvi,vj (2.4)

In Equation (2.4), P is a path and bvi,vj is the weight on edge (vi, vj).

Also the spread of a seed set S, that includes the influential nodes, is the sum of

that of nodes u ∈ S in subgraphs induced by V − S + u (considering just one node

u a time in S and removing the other nodes and their connections in S other than u).

So, by considering simple paths starting from nodes of set S, we can compute the

spread of set S in different subgraphs. To find simple paths in the graph, SIMPATH

uses BACKTRACK algorithm that is presented in [Kro67, Joh75]. As the problem

of enumerating all simple paths is #P-hard [Val79], in the SIMPATH algorithm, only

the paths are considered which their weights increase rapidly as the length of the

path increases. Thus, the influence can be captured by exploring the paths within

a small neighborhood, where the size of the neighborhood can be controlled by a

threshold value. The BACKTRACK algorithm gets a node u, a threshold value η

and a subgraph as input, find all the simple paths from node u by considering the

threshold value and output the spread of the node, which is the sum of the simple

path weights. In out algorithm, we use the SIMPATH default value for η, which is

10−3.

The SIMPATH algorithm is shown in Algorithm 2.1. In Algorithm 2.1, S is the

seed set, η is the threshold value to control the size of the neighborhood, U is the

set of nodes of the input graph and δ(S) is the spread value of S.
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Algorithm 2.1 SIMPATH

Input: S, η, U, V

Output: δ(S)

1: δ(S)← 0

2: for each u ∈ S do

3: δ(S)← δ(S) + BACKTRACK(u, η, V − S + u, U)

4: return δ(S)

Algorithm 2.1 shows how the SIMPATH algorithm computes the spread value

of a seed set. In an iterative manner in line 3 of the algorithm, all the nodes of S are

given to the BACKTRACK algorithm and their spreads are computed. The final

value returned by Algorithm 2.1 is the sum of the spread values of all nodes in set

S.

As we mentioned in section 2, CELF algorithm [LKG+07] uses the sub-modularity

of the influence spread function. In our algorithm, we take the advantages of CELF

algorithm to reduce the number of calls to the SIMPATH algorithm. To achieve

this goal, in our approach the spread values of nodes computed by SIMPATH are

stored in a list sorted in decreasing order, as shown in Algorithm 2.3. Then, in

each iteration of CELF algorithm, only the marginal gain of the top node of the list

is re-computed and if needed, the list is resorted. If a node remains at the top, it

is picked as the next seed [LKG+07]. As we compute the spread of nodes in the

communities of the input graph, we have lists separated per each community. By

using the CELF idea to store the spread values and update the lists, we improve the

running time of our algorithm.

Next, we formalize the notions of local spread and global spread of each node and

describe the way we determine them in more details.

Global spread Once we identify the communities, we can determine which com-

munities are the central ones since they are monitored by individuals and other
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communities that look for ideas, news and innovations. For instance, consider a

big community of researchers working on social networks; it can play a central role

in spreading ideas and topics for other researchers as they follow this community

to monitor the recent trends. Therefore, it makes sense to consider the position of

each community inside these research groups and find the degree to which each

community can influence other communities. In this way, we can determine central

communities and find the influential nodes in these communities.

To determine central communities, we build the graph Gc = (Vc, Ec) of commu-

nities and compute the spread of each of its nodes. Each community Ci is a node of

Gc and if there is a directed edge from node u ∈ Ci to node v ∈ Cj in graph G, then

there is a directed edge from the corresponding node Ci to Cj in Gc. We define Wij as

the maximum weight of the edges from community Ci to Cj. We consider only the

maximum edge weight between the nodes of the graph of communities as the max-

imum influence spread that we can achieve can flow on the edge with maximum

weight. We also count the number of input edges to community Ci shown by dCi as

the degree of this community. Similar to LT model, the weight of edge (Ci, Cj) in Gc

is considered as
Wij
dCj

. At the beginning of the algorithm, a random threshold value is

assigned to each node Ci in Gc. As we mentioned before, the model of information

propagation which is used for the main graph is LT model, so we should also have

the same information spread model for the graph of communities. That is why we

use the LT edge weight computation manner for graph of communities.

The spread of nodes in graph Gc = (Vc, Ec) is computed by the SIMPATH

algorithm which takes Gc = (Vc, Ec) graph as its input. We call this spread as δ̄.

Local spread Suppose that there is a social network in which communities are

constructed based on research interests in the academia. An influential node in

a community has more influence on the nodes of its community than it does on

the nodes of other communities with different research interests; so, in INCIM
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algorithm, each node has a local spread which is its influence inside its commu-

nity. By computing the spread of nodes locally in the communities, we have an

improvement in running time and also, we choose the most influential nodes in

their own communities which results in choosing the most influential nodes as the

algorithm’s final output when combining the local spread with the global spread as

will be explained below. The results of our experiments in Section 2.4 confirm this

improvements.

In the first iteration of the algorithm, the spread of each node v in a community

is computed as δl(v) and stored in list δi based on CELF optimization. For each

community i, we have a list δi whose size is equal to the number of nodes in that

community. In other words, the input nodes of the SIMPATH algorithm are the ones

inside the communities separately for each community, and SIMPATH finds simple

paths in the communities locally. As Equation (2.5), the total number of elements of

all δi is equal to the number of all nodes in graph G, so the total memory needed by

INCIM is the same as CELF algorithm.

n

∑
i=1
|δi| = |V| (2.5)

In Equation (2.5), n is the number of communities, |δi| is the size of δi and |V| is

the number of nodes in graph G.

Since the communities in a network are not necessarily well separated, there are

some edges between them. Therefore, individuals in the same community can have

different influence on the neighbor communities. To tackle this issue, we consider

the notion of border nodes in the graph. A border node in a community has at least

one edge that connects it to another community in the network and influence can

enter or leave a community through border nodes. So, it is important to compute

the spread of border nodes over the graph. We call SIMPATH with graph G as its

input to compute the border node’s spread and store the spread values in a vector

called α with an element per each border node. These values will be combined with
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local and global spreads to track border node’s influence above nodes from their

linked communities. In Figure 2.1, node v is a border node as it has a link to another

node from another community.

v

C1

C2

C3

C4

Figure 2.1: A sample network with its communities

Final spread, combination of local spread and global spread Final spread of a

node is a combination of its local spread and spread of its community. By final

spread, we determine which nodes are the most influential nodes over the graph.

Definition 1. Given a social network G = (V, E) and a set of communities {C1, C2, . . . , Cl},
where δl(v) is the local spread of node v in community Ci and δ̄(v) is the global spread of

community Ci which v belongs to, along with α(v) which is the spread values of border

nodes, the final Spread of node v is defined as follows:

δ(v) = δl(v) + α(v).δ̄(v) (2.6)

In Equation (2.6), α(v) is equal to 1 if v is a non-border node; if v is a border

node, α(v) is equal to the influence spread from v to the nodes inside its linked

communities. As Goyal et al. showed in [GLL11b], the majority of the influence to

a node flows in from a small neighborhood and can be captured by enumerating
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paths within that neighborhood. Also, Wang et. al. discussed in their community-

based greedy approach [WCSX10] that the difference between the node’s influence

degree in its community and its influence degree in the whole network is small.

In INCIM, we compute the spread of nodes locally in their own communities, too.

But as we discussed earlier, the communities can also influence each other by the

links which exist between them and we can not ignore the influence which flows

between the nodes belong to different communities. Such influence is considered

by combining the global spread with the local spread of each node. The global

spread of a community is computed by summing up the edge weights of all simple

paths starting from the community. Also, the local spread of a node is computed in

the same way. So to combine the local spread and the weighted global spread of a

node, we should sum up them together, as we did in Equation (2.6). In Section 2.4.3,

we will show that by using Equation (2.6), we can achieve a good approximation

for spread computation near to the approximation achieved by simple greedy

algorithm [KKT03] which is (1− 1/e− ε), or of 63% of the optimized solution.

2.3.2.3 Seed nodes selection

After finishing the first iteration of the algorithm, the node with maximum spread in

community i takes the first place of δi, and the node with maximum spread between

all first elements of all δi is chosen as the first seed node.

After choosing the first seed node in the first iteration, the algorithm will be

executed k − 1 times to find the k − 1 remaining seed nodes. In each iteration,

the SIMPATH algorithm is called and the δi lists would be updated based on the

new marginal gains achieved by new nodes. Since the seed nodes are chosen from

different communities, the spread of nodes in graph of communities Gc = (Vc, Ec)

should be also updated. So, in the beginning of each iteration, SIMPATH is called

to compute the spread of nodes of graph Gc = (Vc, Ec).

Suppose that Figure 2.1 is a part of a network whose node v is chosen as a seed
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node at time t. As node v belongs to community C1, the spread of other nodes in

community C1 should be updated for the next iteration. Since there is a simple

path from node v to a node in community C2, so the spread of nodes in community

C2 should be updated, too. But for communities C3 and C4, such updates are not

required because there is no simple path from v to C3 and C4.

The INCIM algorithm calls SIMPATH to compute the spread of nodes in only

those communities determined by the getCommunitiesToUpdate subroutine; in this

way, the number of calls to the SIMPATH algorithm will be decreased remarkably

in each iteration. This is one of the contributions for decreasing the running time

of the algorithm for the graphs with connected communities structure, rather than

separated communities that are not reachable from each other. For the later case, our

algorithm should check all the disconnected communities in each iteration, which

increases the running time. The getCommunitiesToUpdate subroutine is shown in

Algorithm 2.2. In Algorithm 2.2, S is the seed set and Gc(Vc, Ec) is the graph of

communities.

Algorithm 2.2 getCommunitiesToUpdate

Input: S, Gc(Vc, Ec), G(V, E)

Output: UpdLst

1: UpdLst← ∅

2: Neighbours← ∅

3: for each v ∈ S do

4: Ci = the community containing v

5: UpdLst = UpdLst ∪ Ci

6: Neighbours = every u that there is a simple path from v to u

7: for each u ∈ Neighbours do

8: Cj = the community containing u

9: UpdLst = UpdLst ∪ Cj

10: return UpdLst
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The UpdLst is the list of communities which should be updated and returned

by Algorithm 2.2. In the loop of line 3, the nodes which there is a simple path

starting from nodes of set S to them are considered. Then the communities of such

nodes and the communities of the nodes of set S are considered as the output of the

algorithm.

In the framework proposed in this paper, we consider the role of each community

by its global spread. Also, we track the influence spread achieved by each node in

its community as local spread. By combining global and local spreads, we choose

nodes as seed nodes that have most influence spread in their community and this

influence can spread as much as possible to other communities. This is why we

claim that our algorithm chooses the most influential nodes with higher quality

comparing to other state-of-the-art algorithms. Also, by computing the spread of

nodes locally in the communities and using the idea of CELF algorithm [LKG+07],

we have improvements in running time and memory usage. The experimental

results of Section 2.4 confirm our claims.

INCIM algorithm is shown in Algorithm 2.3. In Algorithm 2.3, G(V, E) is the

input graph and S is the set of size k containing seed nodes returned by INCIM

algorithm.

In lines 3 and 4 of Algorithm 2.3, the graph of communities is constructed based

on the communities discovered by the SLPA algorithm. Then in lines 5–7, the spread

values of the nodes in the graph of communities are computed. The influence spread

of border nodes is computed in lines 9–11. In line 11, where δ̄(v) is the global spread

of v’s community, we multiply the spread value of each border node with the global

spread value of its community. In the beginning of each iteration starting from line

12, we call Algorithm 2.2 to determine which communities should be updated in

line 14 and store them in list CP. In the first iteration, after calling Algorithm 2.2,

CP contains all the communities of the graph because there is no seed node in the

beginning of the algorithm. In lines 15–29, for all nodes of the communities which
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Algorithm 2.3 INCIM

Input: G(V, E), k, η

Output: S
1: S← ∅
2: CommunitiesSet← ∅
3: call SLPA algorithm to find the communities of G and store them in

CommunitiesSet
4: make graph of communities Gc(Vc, Ec) such that each community is a graph

node
5: for each u ∈ Gc do
6: call Algorithm 2.1 to compute δ̄(u)
7: add δ̄(u) to δ̄ which is ordered decreasingly
8: find border nodes and store them in BorderNodesSet
9: for each v ∈ BorderNodesSet do

10: call Algorithm 2.1 to compute δ(v)
11: δ(v) = δ(v) ∗ δ̄(v) that v belongs to
12: while |S| < k do
13: CP← ∅
14: call Algorithm 2.2 to determine the communities which should be updated

and store them in CP
15: maxSpread = 0
16: maxNode = ∅
17: for each c ∈ CP do
18: ∀x ∈ δc call SIMPATH(S, η, V − x, V) to compute δV−x(S)
19: for each x ∈ δc do
20: call SIMPATH(S, η, V − S, V) to compute δV−S(x)
21: if x /∈ BorderNodesSet then
22: α(x) = 1
23: δ(x) = δ(x) + α(x) ∗ δ̄ that x belongs to
24: update δc based on the new spread value of x
25: u = top node of δc

26: if δ(u) > maxSpread then
27: maxSpread← δ(u)
28: maxNode← u
29: S = S ∪maxNode
30: return S
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should be updated, we compute their spread values by the SIMPATH algorithm,

and the node with the maximum spread is chosen as the seed node. In line 18,

δV−x(S) is the spread value of seed set S in the graph containing nodes in set V

except node x and its edges.

2.4 Evaluation

To compare our algorithm with other approaches, we have done our experiments on

four real datasets and compared the algorithms based on running time, the quality

of seed nodes and memory usage. The code is written in C++ and all experiments

are run on a Linux (Ubuntu 10.04) machine with 3.2GHz Intel Xeon CPU and 128GB

memory.

2.4.1 Datasets

We have used four real-world datasets to run our experiments on; their speci-

fications are shown in Table 2.1 and available on the SNAP library of Stanford

University website1.Using SLPA algorithm, we find the communities of the datasets

to be used by INCIM algorithm. The specifications of the found communities of the

datasets are shown in Table 2.2. In both Tables 2.1 and 2.2, the # sign indicates the

number of elements.

2.4.2 Algorithms to compare

INCIM: The algorithm presented in this paper.

LDAG: The approach proposed in [CYZ10]. We set the parameter θ = 1/320 as

recommended by authors.

SIMPATH: The algorithm in [GLL11b] running with parameters η = 10−3 and l = 4

as recommended by authors.

1http://snap.stanford.edu/
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Table 2.1: Specifications of real standard datasets

NetHEPT Slashdot Amazon DBLP

#Nodes 15K 82K 262K 914k
#Edges 62K 948K 1.2M 6.6M
Average out-degree 4.12 9.8 9.4 7.2
Maximum out-degree 64 1527 425 950
#Connected components 1781 1 1 41.5K
Largest component size 6794 82K 262K 789K

Table 2.2: Specification of communities of the datasets

NetHEPT Slashdot Amazon DBLP

#Communities 2901 12K 32674 73489
#Nodes in the biggest community 407 6050 2852 771
#Edges in the biggest community 2938 16294 7169 3193

IPA: The proposed algorithm in [YKK13] running with threshold = 0.005 as recom-

mended by authors.

PageRank: The algorithm proposed in [BP98]. In this paper, nodes with maximum

ranking are chosen as seed nodes. The algorithm stops when the score vectors from

two consecutive iterations differ by at most 10−6 as per L1− norm.

HighDegree: This algorithm [KKT03] chooses the nodes with maximum out-degree

as seed nodes.

Our reasons to compare INCIM with the aforementioned algorithms are as

follows: PageRank and HighDegree are two well-known and basic algorithms

which are compared with most of the other works. SIMPATH is an algorithm with

good results in running time, memory usage and quality of seed nodes. Also, LDAG

has good results in quality of seed nodes and reasonable response time. At last, IPA

uses the idea of communities to find the most influential nodes.
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2.4.3 Experimental results

Comparison of memory usage The memory usage of HighDegree and the PageR-

ank algorithms is almost zero because they do not need to store any structures

when they are running, but LDAG has the most memory usage among compared

algorithms because this algorithm makes a DAG for each node in the graph. INCIM

uses higher amount of memory than SIMPATH but lower than LDAG. The results

are shown in Figure 2.2 for 50 seed sets.
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Figure 2.2: Comparison based on memory usage in different algorithms

Comparison of seed set quality An algorithm with higher quality is the algorithm

that has higher influence spread. Based on the experimental results shown in

Figure 2.3, the INCIM algorithm has the highest quality seed set among other

algorithms, except in the Slashdot dataset where the IPA algorithm achieves the

best results. While INCIM uses the SIMPATH algorithm to compute the spread of

nodes, its spread of seed set is a little better than SIMPATH in most of the cases
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because INCIM uses a combination of local and global spreads and thus tracks both

the effect of each node in its community and the effect of each community.
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Figure 2.3: Influence spread achieved by various algorithms

The IPA algorithm has lower quality of seed sets than other algorithms in

all datasets, except the slashdot dataset. In netHept and Amazon, IPA has the

lowest quality of seed set and in DBLP, its quality is higher than the PageRank and

HighDegree algorithms but lower than INCIM, SIMPATH and LDAG. As we can

see, IPA has an uncertain behavior because for some datasets, the quality of its

seed nodes is higher than other algorithms while for most others, it results in lower

quality; hence, the IPA algorithm is not so reliable.
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Comparison of running times Figure 2.5 shows the results of comparisons based

on running times. In the NetHept dataset, the running time of PageRank and

HighDegree are considerably low, so the plots for these algorithms in NetHept

dataset are omitted. IPA has better running time than INCIM, SIMPATH and

LDAG and runs in a time close to that of PageRank and HighDegree. The INCIM

algorithm has the best running time among other algorithms, except IPA, PageRank

and HighDegree. These three algorithms have better running times, however

they fail in finding the seed nodes with high quality, which is the main target

of influence maximization problem. They trade off the quality of seed nodes for

running time. We plotted the running time versus the influence spread achieved

by different algorithms for seed set of size 50, which is the seed size used in our

other comparisons and also used by other approaches [GLL11b, CYZ10, YKK13],

in Figure 2.4.

As we see in Figures 2.5(a) and 2.5(d), INCIM performs slower than SIMPATH at

the beginning of its running time. For instance, in Figure 2.5(a), the time needed to

find seed nodes until the number of seed nodes reaches 15, is higher than the time

needed in the SIMPATH algorithm. The reason is that, the INCIM algorithm finds

the communities of the graphs in the preprocessing step. Also, in the first iteration,

INCIM computes the spread of the nodes of all communities, but in other iterations,

only the communities which are considered by Algorithm 2.2, should be updated.

Table 2.3 shows the running time improvement of our proposed algorithm for

choosing 50 seed nodes comparing with SIMPATH, which we used for calculating

the spread values. As we can see, our approach has an improvement in running

time between 27% - 68% based on different datasets.

The effect of communities As we mentioned in this paper, in the INCIM al-

gorithm, seed nodes are chosen using communities of the input graph. In each

iteration of the algorithm, computing the spread of each node is done locally in
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(a) slashDot (b) netHept

(c) Amazon (d) DBLP

Figure 2.4: Spread of influence vs. running time for seed sets of size 50

its community. Also, when node v is chosen from community Ci, the spread of

other nodes of community Ci along with the spread of nodes in communities with a

simple path from Ci, should be updated. Thus, the spread of only a limited number

of nodes would be updated in each iteration, instead of updating all of the nodes

in the graph. By this contribution, the algorithm runs faster in other iterations.

Figure 2.6 shows the number of communities that are updated in each iteration.

INCIM in its first iteration, computes the spread of all nodes in all communities,

but in other iterations, the number of communities to be updated is decreased, and

the number of spread computation calls is decreased, too. As the number of seed

nodes is increased, there are more simple paths from seed nodes to other nodes in

other communities. So, after some iterations, the number of communities which

should be updated, is increased in comparison to the second iteration where there

43



Table 2.3: Speed up in different datasets

Algorithms Datasets
compared DBLP Amazon Slashdot NetHept
Simpath 29% 27% 68% 43%

is only one seed node; but the number of communities in later iterations is anyway

less than that of the first iteration.

The efficiency of final spread computation To study how efficiently we compute

the spread of nodes in our approach, we run INCIM and simple greedy algorithm

[KKT03] which uses Monte Carlo simulations (MC) on two moderate and two larger

datasets (Amazon and DBLP respectively) and compare the spread achieved by

them. We choose 5 different randomly selected set of nodes as seed sets of size 10,

20, 30, 40 and 50 and run INCIM and MC simulations 10000 times to compute the

spread of the seed sets. The results are shown in Figure 2.7.

As we can see in Figure 2.7, the values which are computed by INCIM are very

close to the values computed by Monte Carlo simulations for different sets of nodes.

For Amazon dataset, the differences between the values computed by INCIM and

MC are 0.68%, 0.5%, 0.8%, 0.62% and 0.85% for sets of size 10, 20, 30, 40 and 50

respectively. Also, For DBLP dataset, the differences between the values are 0.8%,

0.69%, 0.73%, 0.32% and 0.47% for sets of size 10, 20, 30, 40 and 50 respectively.

Kempe. et al. showed that their approximation algorithm [KKT03], that we refer

as the Monte Carlo simulations, can achieve at most (1− 1/e− ε) of the optimal

solution and the other algorithms that can achieve near results are considered as

practical algorithms. By the experiments in this section, we showed that the INCIM

algorithm can calculate the spread values, which is a combination of local and

global spreads, with an approximation very close to the MC results.
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Figure 7. Comparison of running time of different algorithms
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Figure 2.5: Comparison of running time of different algorithms

2.5 Conclusion and future work

We can categorize the recent works in influence maximization problem in three

groups. Some papers such as [LCL12, SBV+12, CCC+11, HSCJ12] study the influ-

ence maximization problem by considering competitors. In such papers, a com-

petitive model is described which is in most cases an extension of linear threshold

or independent cascade model. Some papers such as [CLZ12] study the influence

maximization problem with temporal constraints. The main goal of such works

is that influence propagation will be done in a limited time. Other works try to

propose an algorithm to solve the influence maximization problem in a reason-

able time with lower memory usage and higher quality of seed sets. INCIM, our
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Figure 2.7: The spread achieved by different randomly selected seed sets

proposed algorithm, finds the influential nodes in communities of the graph. In

this algorithm, spread computation of nodes is done locally in communities of the

graph which causes a reasonable decrease in running time. Also, in each iteration

of the algorithm, the marginal gain of only a limited number of nodes is computed,

based on the communities they belong to, which causes the number of calls to the

subroutine computing the spread of nodes, to be decreased, and thus the running

time is also decreased.

For future work, we are interested in studying the competitive influence maxi-
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mization problem in which there is more than one influence spread from different

competitors. Considering the graph content and choosing the influential nodes

based on the topic given as input, is the other path for our future work.
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Chapter 3

Community-based influence
maximization in social networks
under a competitive linear threshold
model
(This chapter is based on a paper published in Knowledge-Based Systems, 2017

[BSKW17])

The effect of online social networks (OSNs) in our daily life is undeniable as they

have introduced new ways of communication and serve as a medium for propa-

gating news, ideas, thoughts and any type of information. Such information can

propagate via links between people, which leads to word-of-mouth advertising

and its famous application, viral marketing. In viral marketing, the owner of a

product gives free or discounted samples of a product to a group of people to

gain a large number of adoptions through the word-of-mouth effect. The influ-

ence maximization problem, which is motivated by the idea of viral marketing,

was introduced by Kempe et al. [KKT03] as finding a subset S ⊆ V contain-

ing of k nodes in a graph G = (V, E), such that the spread of influence from S

will be maximized. There exists a huge amount of work on solving the influ-

ence maximization problem [KKT03, LKG+07, YKK13, GLL11, CYZ10a]. Most of
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these works assume that there is only one party trying to find influential users

in the social network. However, in the real world, multiple parties typically com-

pete simultaneously with similar products. This is called competitive influence

maximization (CIM). Recently, several works have tried to solve the CIM prob-

lem [HSCJ12, CCC+11, LBGL13, BKS07, BAEA11, LYW+16, KAAB17, WLY+16] by

proposing new propagation models which are extensions of Linear Threshold and

Independent Cascade models [KKT03] or the Distance-based and Wave-propagation

models [SBV+12].

In this paper, we examine the CIM problem from the follower’s perspective

and propose a new propagation model called DCM (Decidable Competitive Model)

which is an extension of the Linear Threshold model. In DCM, each node has

the ability to think about the incoming influence spreads from its neighbors for d

timesteps and then decide to be activated by the neighbour with the majority of

adoption.

In real social networks, people interact with each other based on common

interests and strong ties between themselves. Such strong ties between individuals

create community structures in social networks, which in turn allow information to

circulate within these networks at a high velocity. We propose an algorithm called

Competitive Influence Improvement (CI2) which finds the minimum number of

influential nodes within their respective communities. Closely related to our work

are [BHZR16, KLPL13, WCSX10, HPZNN17, ZLJ16] which also exploit community

structure within social networks to find influential nodes.

Contribution. Our major contributions in this research are summarized as follows:

• We propose the DCM propagation model, the primary intent of this work,

which gives decision-making power to nodes based on incoming influence in

a competitive version of the LT propagation model.

• We prove the NP-hardness of competitive influence improvement under the

DCM model.
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• We propose the CI2 algorithm to find the minimum number of the most

influential nodes for a competitor C2. This algorithm uses knowledge of

the nodes selected by a competitor C1 so that C2 can achieve more influence

spread by spending less budget. Computing the spread of seed nodes is done

locally inside communities of the input graph, which results in a substantial

decrease in running time.

• We conduct experiments using three real and three synthetic datasets to show

that CI2 can find influential nodes in an acceptable running time. Synthetic

datasets are generated with the same number of nodes and edges but different

community structures in order to track the effect of community structure

of networks on our approach. Also, we consider the effect of the algorithm

which finds the seed nodes for the first competitor on the seed nodes which

will be selected by the second competitor by conducting different experiments

which use well-known algorithms [BHZR16, KKY13, CYZ10b] to extract the

first competitor’s seed set.

Organization. In Section 3.1, we review some background knowledge to enable

a better understanding of the upcoming concepts. In Section 3.2, we describe our

Linear-Threshold-based propagation model, prove that competitive influence im-

provement under this model is NP-hard, and propose our CI2 algorithm. Section 3.3

describes the experiments performed with real and synthetic data to evaluate the

proposed approach. Finally, in Section 3.4, we give our conclusions and directions

for future work.

3.1 Background and Related Work

In [KKT03], Kempe et al. introduced two propagation models to address the influ-

ence maximization problem, the Linear Threshold (LT) and Independent Cascade

(IC) models. In both models, a threshold value θ ∈ [0, 1] is assigned to each node

53



and each node can be active or inactive. Also, each edge from node u to node v has

an influence weight pu,v ∈ (0,1]. At first, all nodes are inactive except the nodes in

set S which have been activated before as seed nodes and the propagation process is

started from them. In LT, an inactive node v can be activated at time t if fv(S) > θv,

where S stands for v’s neighbors which are activated at time t− 1. As Kempe et al.

mentioned in [KKT03], the value of fv is initialized as

fv(S) = ∑
u∈S

pv,u

where pv,u is the weight of edge (v, u). In the LT model, the sum of all edge weights

between v and its neighbors should be less than or equal to 1 [KKT03].

In IC, the activation process is the same as that in LT except that in IC, an acti-

vated node u has only one chance to activate its inactive neighbor v with probability

pu,v.

Community structure. In a graph, the communities are subsets of nodes with more

connections between them and fewer ones to the nodes in different communities

[LP49]. In community detection, a graph G = (V, E) is given and the target is to

partition the graph nodes into k subsets S1, S2, · · · , Sk, such that
⋂k

i=1Si = ∅ and⋃k
i=1Si = V. This condition is for none-overlapping community detection and for

the overlapping version, we can remove the
⋂k

i=1Si = ∅ constraint [HCL14].

Competitive influence maximization. Recently, several works have tried to solve

the competitive influence maximization by introducing new propagation models to

simulate the competitive manner of the competitors which are mostly an extension

of the LT or IC models. Some efforts such as the ones introduced in [CNWVZ07,

SBV+12] look to this problem from the follower’s perspective, i.e. they assume

that there are two competitors trying to find some influential nodes and the second

competitor starts his process with knowledge of the seed nodes selected by the first

competitor and tries to find some new seed nodes other than the ones selected by

the first competitor to achieve more influence spread. In some other works such as
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the ones presented in [HSCJ12, CCC+11] one competitor tries to block the effect of

the other competitor. In K-LT [LBGL13] and WPCLT [BFO10] models, the authors

solve the competitive influence maximization problem from the host’s perspective,

i.e. the owner of the social network is responsible for fairly allocating some specific

number of seed nodes to the competitors. In the next section, we explain K-LT and

WPCLT models in more details as they are more related to our work.

3.2 Propagation model and algorithm

In this section, we introduce the DCM propagation model (which is an extension of

the LT model), compare DCM with the Weighted-proportional (WPCLT) [BFO10]

and K-LT [LBGL13] models, and prove the NP-hardness of competitive influence

improvement under DCM. Finally, we introduce the CI2 algorithm to find the

influential nodes in a social network under our competitive propagation model.

3.2.1 DCM propagation model

In the DCM propagation model, each node can be in one of the following states:

inactive, thinking, active+ or active−. Suppose there are two competitors who try

to advertise for their products over a social network. We denote the first competitor

with the + sign and the second competitor with the − sign and each node v, picks

a threshold value θv uniformly at random from [0,1]. Let S1 be the seed set selected

by the first competitor and S2 be the seed set selected by the second one. At first all

nodes except those in the seed set are inactive. The activation process of node v is as

follows: at time t > 1 if the total incoming influence weight from the in-neighbors

of v which are active (Nin
active(v)) reaches the threshold value of v, its state changes

to thinking, which means the state of node v would be changed if

∑
u∈Nin

active(v)

pu,v ≥ θv (3.1)
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Node v remains in thinking state after this state change for d timesteps and after

that, it decides to become active+ or active− based on the maximum total incoming

influence weight from its in-neighbors. Let A+
t+d be the set of in-neighbor nodes

of v with state active+, A−t+d be the set of in-neighbor nodes of v with state active−,

and At+d be the set of all in-neighbor nodes of v that are active at time t + d. The

state of node v changes from thinking to active+ or active− as follows:

vstate =

active+, if ∑u∈A+
t+d

pu,v > ∑u∈A−t+d
pu,v

active−, otherwise
(3.2)

In the WPCLT model, which was proposed by Allan Borodin et al. [BFO10],

the state of a node v changes to active+ with probability ∑u∈A+
t−1

pu,v/ ∑u∈At−1
pu,v.

This means that a node v would be activated as active+ (active−) at time t with

probability equal to the ratio between the total weight from the in-neighbors with

state active+ (active−) and that from all active in-neighbors. Wei Lu et al [LBGL13]

noted that in the WPCLT model, when a node is about to activate, the neighbors

which have been activated in all previous timesteps are considered; this, however,

does not assure recency, which is when the customer’s choice among competing

products relies more on recent than old information [PM11, HS09]. Hence, Wei Lu

et al proposed the K-LT model [LBGL13] in which the activation probability of node

v at time t relies on its in-neighbors which have just been activated at time t− 1

rather than all past exposures such that the state of a node v changes to active+ with

probability ∑u∈A+
t−1\A+

t−2
pu,v/ ∑u∈At−1

pu,v.

In both the WPCLT and K-LT models, a node cannot decide whether it would be

activated or not, while in the real world when people decide to whether to purchase

or consume a product, they are influenced by the decisions made by others. Even

when individuals seem to be making decisions separately, they are likely to be

mindful of the preferences of others [WH12].

As an example, imagine that the structure in Figure 3.1 is part of a social graph
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in which, nodes w1 and w3 have been activated before as active+ and active−

respectively and nodes w2 and w4 haven’t been activated yet and θv = 0.25 (we

show that nodes w2 and w4 are connected to other nodes of the graph by the

dotted lines around them). At time t1, in both WPCLT and K-LT models node v is

influenced by the total incoming influence which is larger than its threshold value

θv. Thus node v would be activated as active+, as pw1,v > pw3,v. Now imagine that

nodes w2 and w4 are activated as active− by other nodes of the graph at time t2; this

means that in both the WPCLT and K-LT models, node v is in active+ state at time

t2, while the majority of its neighbors have been activated as active−. But in DCM,

the state of node v changes from inactive to thinking at time t1 and its state remains

stable for d timesteps so that it can consider different influence spreads, after which

it decides to be activated by the influence spread which is accepted by the majority

of its neighbors. This causes the state of node v to change from thinking to active−

after d timesteps in the DCM model. Therefore, it is reasonable to give the ability to

the nodes to decide about the incoming influence spread.

v

w2

w1 w3

w4

0.3 0.2
+ _

0.1

0.2

Figure 3.1: An example graph substructure.
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3.2.2 NP-hardness of competitive influence improvement under
DCM

Let a vertex-labeled and arc-weighted community-structure graph be G = (V, A, l, p)

where V is the vertex-set, A is the arc-set, l : V → {inactive, thinking, active+, active−}

is the vertex-label function, and p : A→ (0, 1] is the arc-weight function. Consider

the vertex-labels in G after influence propagation under the DCM model is com-

plete, and let N− and N+ be the number of vertices in G with labels active− and

active+, respectively. We want to select a set of vertices S+ of size at most k relative

to a given set S− such that S+ ultimately has more influence than S− — that is, we

want N+ to be larger than N−. Let D(S−, S+) = max(0, N+ − N−) and ED(S−, S+)

be the expected value of D(S−, S+) (with this expectation arising from the various

θv being chosen uniformly at random from the interval [0, 1]1).

The problem of influence improvement under DCM can now be stated formally

as follows:

DCM COMPETITIVE INFLUENCE IMPROVEMENT (DCI-Imp)

Input: A community structure graph G = (V, A, l, p), a seed-set S−, and

positive integers d, k > 0 and c ≥ 0.

Output: A seed-set S+ of size at most k such that ED(S−, S+) > c, if such

a S+ exists, and special symbol ⊥ otherwise.

This problem looks easy, as we are only requiring some fixed amount of improve-

ment (which is the smallest possible, i.e., any improvement, when c = 0). However,

looks can be deceiving.

Theorem 1. If DCI-Imp is polynomial-time solvable when d = 1 and c = 0 then P = NP.
1Uniform choice of θv is consistent with previous linear-threshold-based models of influence

propagation such as that in [KKT03]. However, the results in this section apply relative to θv choice
under any distribution over [0, 1] (including, but not limited to a uniform distribution) as long as that
choice is ergodic, i.e., there must be a finite non-zero probability for every θv ∈ [0, 1] being picked,
including 0 and 1 as border cases.
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Proof. We first show that DCI-ImpD, the decision version of DCI-Imp (which asks
whether or not the requested S+ exists), is NP-hard by a polynomial-time reduction
from the following NP-hard problem:

DOMINATING SET [GJ79, Problem GT2]
Input: A graph G = (V, E) and an integer k.
Question: Is there a dominating set in G of size at most k, i.e., is there
a subset V′ ⊆ V, |V′| ≤ k, such that for each v ∈ V, either v ∈ V′ or
∃(v, v′) ∈ E such that v′ ∈ V′?

For any graph G = (V, E), let N(u) be the set of all vertices in G that are in-
neighbors of vertex u in G (including u itself). Given an instance (G = (V, E), k) of
DOMINATING SET, construct the following instance (G′ = (V′, A, l, p), S−, d, k′, c)
of DCI-ImpD:

• V′ = V1 ∪ V2 ∪ V3 where V1 = {v1
1, v1

2, . . . , v1
|V|}, V2 = {v2

1, v2
2, . . . , v2

|V|}, and

V3 = {v3
1, v3

2, . . . , v3
|V|+(k−1)}.

• A = A1 ∪ A2 where A1 = {(u, v) | u ∈ V1, v ∈ V2, and v ∈ N(u)} and A2

ensures that each each vertex in V2 has incoming arcs from exactly two distinct
vertices in V3.

• The initial labeling l of V is such that all vertices in V3 have label active− and
all other vertices have label inactive.

• p is such that the weight of each arc in A1 is 1/2|V| and the weight of each arc
in A2 is 1/4|V|.

• S− = V3.

• d = 1, k′ = k, and c = 0.

This construction can be done in polynomial time in the size of the given instance
of DOMINATING SET.

By the construction of G′ above, the only vertices that can change label from
inactive to thinking (and thereafter to either active+ or active−) under DCM are the
vertices in V2. A vertex v in V2 will only be able to change label from inactive to
thinking if θv > 1/2|V|. Such a thinking vertex v will then have final label active−
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unless there is at least one vertex u in V1 with label active+ that has an arc to v (as
the weight of such an arc would outweigh the weights of the two incoming arcs
from V3 and hence force v to have label active+). As |V3| = |V|+ (k− 1), D(S−, S+)

can only have value 0 or 1 for a given S+, with the value of 1 occurring if and only
if θv > 1/2|V| for each vertex v in V2 and the k vertices in S+ force all vertices in V2 to
have label + under DCM. However, by the construction of G′, the vertices in such a
S+ correspond to a dominating set of size k in G. Given that θv is drawn uniformly
from [0, 1], there is a S+ such that for some values of θv, D(S−, S+) = 1 and hence
σ(D(S−, S+)) > c = 0 if and only if there is a dominating set of size k in the given
instance of DOMINATING SET.

The above establishes that DCI-ImpD is NP-hard. To complete the proof, note
that any polynomial-time algorithm for DCI-Imp can be used to solve DCI-ImpD

in polynomial time, which, by the definition of NP-hardness, would imply that
P = NP.

This result shows that if the conjecture P 6= NP is true (which is widely believed

within Computer Science [For09, GJ79]), the simplest type of competitive influence

improvement cannot be computed correctly for all inputs in polynomial time.

One might still hope that this problem is practically solvable in polynomial time.

Two senses in which this might be possible are:

1. DCI-Imp is solvable in effectively polynomial time under certain restrictions.

For example, there might be an algorithm for DCI-Imp that is exponential-time

in general relative to the number k of nodes in S+ but runs in polynomial time

when k is a small constant. Such an algorithm would have runtime f (k)nx

where f is an arbitrary function, n is the input size, and x is a constant. This

notion of effective polynomial-solvability is the fixed-parameter tractability

underlying Downey and Fellow’s theory of parameterized computational

complexity [DF99].

2. DCI-Imp is solvable in polynomial time by a probabilistic algorithm with

high probability, e.g., > 2/3. This notion of solvability is essentially what
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many types of stochastic heuristics (in particular, those based on evolutionary

computation) promise.

However, it turns out that these types of solvability are also unavailable to us, as

proved in Theorems 2 and 3.

Theorem 2. If DCI-Imp is fixed-parameter tractable relative to parameter k when d = 1
and c = 0 then FPT = W[2].

Proof. In the reduction given in the proof of Theorem 1, the size k of the requested
dominating set in the given instance of DOMINATING SET is equal to the size
k′ of S+ in the constructed instance of DCI-Imp. Hence, this reduction is also a
parameterized reduction relative to parameter k′ in the constructed instance of
DCI-IMP. This result then follows from the W[2]-hardness of DOMINATING SET

relative to parameter k and the inclusion of FPT in W[2] [DF99].

Theorem 3. If P = BPP and DCI-Imp is polynomial-time solvable by a probabilistic
algorithm which operates correctly with probability ≥ 2/3 then P = NP.

Proof. BPP is considered the most inclusive class of problems that can be efficiently
solved using probabilistic methods (in particular, methods whose probability of cor-
rectness is ≥ 2/3 and can be efficiently boosted to be arbitrarily close to probability
one) [Wig07, Section 5.2]. If DCI-Imp has a probabilistic polynomial-time algorithm
which operates correctly with probability ≥ 2/3, DCI-ImpD is in BPP. However,
as BPP = P and DCI-IMPD is NP-hard by Theorem 1 above, the definition of
NP-hardness then implies that P = NP.

These results show that if, in addition to P 6= NP, the conjectures FPT 6= W[2] and

P = BPP are also true (both of which are widely believed within Computer Science

(see [DF99, DF13] and [Wig07, Section 5.2], respectively)), in general, the simplest

type of competitive influence improvement cannot be practically computed in either

of the senses above (the former relative to small-sized S+).

To summarize, the results in this section effectively rule out several popular

types of efficient algorithms for competitive influence improvement under the DCM
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model. As such, they also justify the search for and use of heuristic algorithms such

as the greedy community-based algorithm described in the remainder of this paper.

3.2.3 Community-based algorithm

Motivated by the useful characteristics of communities in social networks which

we mentioned previously in Section 3.1, we decided to base our CI2 algorithm

for competitive influence improvement on influential nodes in the community

structure of input graph G. An overview of CI2 is shown in Figure 3.2. At first, the

communities of the input graph are extracted; these communities are denoted by

labels C1, C2 and C3 in the figure. Then, in each community, the most influential

node is selected as a seed candidate. Finally, the node which has the maximum

influence spread among candidate nodes is selected as a seed node. The selected

seed node for the second competitor is denoted with a + sign in Figure 3.2. The CI2

algorithm is explained in more detail in the following section.

Community detection. Many approaches have been proposed to solve the com-

munity detection problem in online social networks. MLAMA-Net [MM16] is

an evolutionary algorithm, which solves the community detection problem in

a network of chromosomes using evolutionary operators and local searches. In

MLAMA-Net, each node includes a chromosome and a learning automaton. Each

chromosome explores a community for its corresponding node using evolutionary

operators and improves the community by a local search. The learning automaton

is responsible for saving the histories of local searches of each node. Very related

to MLAMA-Net, Khomami et al. proposed DLACD [KRM16], which extracts the

community structure of complex networks based on distributed learning automata.

To find the communities of the input graph, we use the listener-speaker approach

introduced in [XSL11] in conjunction with the information diffusion model. First,

each node v is considered as a unique community with community label equal to

its ID. Then one node is selected as the consumer of the information and receives
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Figure 3.2: An overview of the CI2 community-based algorithm.

the community labels from its neighbors. To decide which label will be accepted by

the selected node, the weights of the incoming edges are considered. For example,

suppose a selected node v has four in-neighbors u1, u2, u3 and u4, with edge

weights 0.1, 0.05, 0.3 and 0.25 respectively. When node v considers the labels from

its neighbors, it will weight each label as 0.1/(0.1 + 0.05 + 0.3 + 0.25) for node u1,

0.05/(0.1 + 0.05 + 0.3 + 0.25) for node u2, 0.3/(0.1 + 0.05 + 0.3 + 0.25) for node

u3 and 0.25/(0.1 + 0.05 + 0.3 + 0.25) for node u4. Then, the selected node accepts

one label from the collection of the received labels from its neighbors based on a

specified listening rule, such as the popularity of the observed labels in the ongoing

step. This process is then repeated and at each step, one new node is selected as the

consumer of the information. The main reason for using the approach of [XSL11] to

find graph communities is its ability (verified by experiments done in [XSL11]) to

efficiently find high-quality communities.
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Seed selection. After constructing the community structure from graph G, we need

to find the minimum number of nodes for the second competitor which achieve

higher influence spread than the influence spread achieved by the nodes selected

by the first competitor. The spread value of node v is the number of nodes which

can be accessed and activated by node v and the spread of nodes in set S is the sum

of spreads of each node in the set.

In each community Ci, we locally run an algorithm which uses DCM as its

propagation model to find the most influential node in Ci and store the node ID and

its spread value in candidate seed set S′. In this step we can use any approximation

algorithms, even the simple greedy algorithm [KKT03], to show the applicability of

our propagation model in solving the competitive influence maximization problem.

Note that the node which is selected as a candidate node in this step should be

different from the nodes which have been selected for the first competitor. The size

of S′ is equal to the number of communities and in each step, this set is updated to

hold the new candidate seeds of each community. Among the candidate seeds, the

one which has the maximum marginal gain is selected and added to S2. S1 and S2

are seed sets of the first and second competitors respectively such that

S2 = S2 ∪ arg maxv∈S′(δ(S2 ∪ {v})) (3.3)

In Equation (3.3), δ(S2 ∪ {v}) is the marginal gain of adding node v to seed set

S2.

Stop criterion. The above seed selection process is continued until the influence

spread achieved by nodes in S2 reaches the influence spread achieved by nodes in

S1. The steps of our community-based algorithm are shown in Algorithm 3.1.
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Algorithm 3.1 The CI2 community-based algorithm.

Input: G = (V, E), S1

Output: S2

1: S2 ← {}
2: Construct the communities of the input graph G and store them in

CommunitiesSet

3: while δ(S2) ≤ δ(S1) do

4: S′ ← {}
5: for each Ci ∈ CommunitiesSet do

6: call simple greedy algorithm to find most influential node si /∈ S1 in com-

munity Ci

7: S′ = S′ ∪ {si}
8: S2 = S2 ∪ arg maxv∈S′(δ(S2 ∪ {v}))
9: return S2

3.3 Evaluations

To evaluate the efficiency of our community-based algorithm in finding high-quality

seed sets in an acceptable running time, we have done our experiments on three

real-world datasets. These experiments show that there is a trade-off between

running time and the quality of seed nodes selected by a competitor by changing

parameter d, the number of timesteps a node can think about the incoming influence

spread. To track the effect of community structure of networks on our approach,

we also have used three synthetic datasets with the same numbers of nodes and

edges but different community structures. Our code is implemented in C++ and all

experiments were run on a Linux (CentOS 7.0) machine with a 3.6GHz Intel Core i7

CPU and 16GB of memory.
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Table 3.1: Specifications of real standard datasets.

NetHEPT Slashdot Amazon

#Nodes 15K 82K 262K

#Edges 62K 948K 1.2M

Average out-degree 4.12 9.8 9.4

Maximum out-degree 64 1527 425

#Connected components 1781 1 1

Largest component size 6794 82K 262K

Table 3.2: Specification of communities in the real standard datasets.

NetHEPT Slashdot Amazon

#Communities 2901 12K 32674

#Nodes in the biggest community 407 6050 2852

#Edges in the biggest community 2938 16294 7169

Average out-degree in the biggest community 6.2 11.67 2.52

Maximum out-degree in the biggest community 48 1407 5

3.3.1 Experiments setup

Dataset. The real-world datasets that we have used in our experiments are available

from the SNAP library on the Stanford University website1 and their specifications

are shown in Table 3.1. Using the community detection algorithm described in

Section 3.2.3, we found the communities in these datasets; the specifications of these

communities are shown in Table 3.2. In both Tables 3.1 and 3.2, the # sign indicates

the number of elements.

To generate our synthetic datasets, we used LFR benchmark [LFR08], which

specifies the heterogeneity of the networks by the distributions of node degrees

1http://snap.stanford.edu/

66



(a) µ = 0.03 (b) µ = 0.08

(c) µ = 0.15

Figure 3.3: Three networks generated by LFR benchmark with 1000 nodes and

different mixing parameter values.
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and community sizes. The node degrees and community sizes are taken from

power law distributions with exponents γ and β respectively. By assigning three

different values (0.03, 0.08 and 0.15) to the mixing parameter µ, setting N = 1000

(the number of nodes), γ = 2 and β = 1, and varying the in-degree of nodes

between 0 to 50 with average 15 and the community size between 20 and 50, we

generated three different datasets, which are visualized in Figure 3.3. Note that

the mixing parameter determines the fraction of one node’s links to other nodes

inside its community and nodes outside its community. More specifically, each

node shares a fraction of 1− µ of its links with the nodes inside its community and

a fraction of µ with nodes belonging to other communities.

Algorithms. We ran the implementation of our CI2 algorithm with the above

described datasets as well as the following algorithms:

• The greedy approximation algorithm [KKT03], which uses Monte Carlo (MC)

simulations to compute the spread of a node within a factor of (1− 1/e− ε)

for any ε > 0. In this algorithm, MC simulations were performed 10,000 times

to compute the spread of the seed sets.

• The INCIM algorithm [BHZR16], which computes the spread value of each

node such that it is very close to that computed by Monte Carlo simulations.

This algorithm finds the influence of each node as a combination of its local

and global influences to track the effect of each node in its community and

also, the effect of each community in the input graph.

• The IPA algorithm [KKY13], which selects as seed node the node which has

maximum influence propagation probability in each iteration. Based on the

recommendations in [KKY13], we set parameter threshold = 0.005.

• The LDAG algorithm [CYZ10b], which computes the spread of each node in

its belonging DAG (Directed Acyclic Graph) locally and achieves good results
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in quality of seed nodes. Based on the recommendations in [CYZ10b], we set

parameter θ = 1/320.

• The HighDegree algorithm [KKT03], which selects as seed node the node

which has maximum out-degree.

The results of these algorithm runs are discussed in the next section. Two char-

acteristics of these algorithms are worth noting. First, both the INCIM and IPA

algorithms use the idea of communities to find influential nodes and like LDAG

have reasonable running times and find good quality nodes. Second, though the

HighDegree and greedy approximation algorithms are now almost 15 years old

and may thus appear to be obsolete, they are still very commonly used in compar-

isons involving recently-proposed approaches to competitive and non-competitive

influence maximization [OCC16, PHN+16, KAAB17, WLY+16, LYW+16].

3.3.2 Experimental Results

Setting parameter d As we mentioned in previous sections, in the DCM propaga-

tion model, each node can think about incoming influence spread for d timesteps

and then decides to be activated based on the majority of its neighbor’s adoptions.

When d = 1, information propagates the same as in the LT propagation model,

where nodes can think for only one timestep about incoming influence spread, and

we have the best running time. As the value of parameter d is increased, nodes have

more time to think about incoming influence, which allows the selection of seed

nodes with higher quality; however, this also results in increased running time. In

Figure 3.4, we can see the changes in influence spread and running time associated

with values of parameter d from 1 to 15. We did this experiment on the NetHEPT

dataset with a seed set of size 50.

As we can see in Figure 3.4(a), as the value of parameter d changes from 1 to 7,

there is a remarkable increase in influence spread. However, changing the value of
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Figure 3.4: The effect of parameter d on influence spread and running time.

parameter d from 8 to 15 provides a marginal increase in influence for a great cost of

increased running time (see Figure 3.4(b)). We performed the same experiment on

the Amazon and Slashdot datasets and got essentially the same results. Hence, we

set the value of parameter d to 7, the point of diminishing returns, in the remainder

of our experiments. The value of d may be different for other datasets.

Efficiency of proposed algorithm. To study how efficiently we compute the spread

of nodes by extracting seed nodes from communities, we randomly selected 5

different set of nodes as seed sets of size 10, 20, 30, 40 and 50 from each of the

Amazon, NetHept and Slashdot datasets and ran CI2 and Monte Carlo simulations

to compute the spread of these seed sets. The results are shown in Figure 3.5.
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Figure 3.5: The influence spreads achieved by different randomly selected seed sets.
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Table 3.3: Differences between the influence spread values computed by MC and

CI2 (in percentage).

Datasets Seed set size

Used 10 20 30 40 50

Amazon 2.07% 2.63% 2.51% 1.81% 2.13%

NetHEPT 2.44% 1.54% 2.21% 3.33% 2.48%

Slashdot 2.15% 2.30% 3.56% 2.75% 1.35%

The differences between the values computed by MC and CI2 are shown in

Table 3.3. The results in Figure 3.5 and Table 3.3 show that the values which are

computed by CI2 are very close to the values computed by Monte Carlo simulations

which computes the spread of a node with a good approximation guarantee.

In these runs, calculating the spread of nodes locally inside the communities

they belong to seems to cause a huge decrease in running time. To verify this, we

used our CI2 algorithm to find a seed set of size 50 from the NetHEPT dataset

by (1) considering existing communities and calculating the spread values locally

inside communities and (2) calculating the spread of each node in the whole graph

without considering their own community. In the former case, CI2 finds the seed

nodes in approximately 22 seconds, while it finds such seed nodes in approximately

70 minutes in the later case. This clearly shows the effect of localizing the spread

calculations in running time, which is the result of considering community structure

in the CI2 algorithm.

Seed selection To simulate the competitive condition from the follower’s per-

spective, we chose some seed nodes randomly and activated them for the first

competitor as negative and ran CI2 to select the minimum number of nodes with

higher influence spread for the second competitor. The nodes selected for the sec-

ond competitor should be different from the ones selected for the first competitor.
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We also did the same process by running the greedy approximation algorithm and

the INCIM [BHZR16], IPA [KKY13], LDAG [CYZ10b] and HighDegree [KKT03]

algorithms with different values for k as their budgets. The generated seed sets are

of size 5, 10, 20, 30, 40 and 50. The minimum number of nodes selected by CI2 to

defeat the first competitor in each case is shown in Figure 3.6.

As we can see in Figure 3.6, the minimum number of nodes which is required to

be selected by the second competitor to achieve higher influence spread depends

deeply on how the seed nodes are selected by the first competitor. In Figure 3.6(a),

in which the seed nodes of the first competitor are selected randomly, fewer nodes

in each set are required to defeat the first competitor. However, when we extract the

actual seed nodes by running the algorithms mentioned above, in each set of nodes,

more nodes must be selected by the second competitor. For example, in Slashdot

dataset in Figure 3.6(b), 72 seed nodes must be selected to achieve higher influence

spread than the spread achieved by an actual seed set of size 50, while only 13

nodes need to be selected to achieve higher influence spread when the nodes in the

set of size 50 are selected randomly. Also, the algorithm which is used to extract the

actual seed nodes for the first competitor affects the number of seed nodes that need

to be selected by the second competitor, as different algorithms achieve different

levels of quality in their seed node extraction. In Figure 3.6(c-f), the number of seed

nodes that need to be selected to defeat the first competitor are 69, 67, 64 and 61 if

the seed sets of size 50 are extracted by the INCIM, IPA, LDAG and HighDegree

algorithms respectively from the Slashdot dataset. These figures tell us that as seed

nodes are selected with higher quality for the first competitor, more seed nodes

other the selected ones must be selected by the second competitor.

The effect of community structure on seed selection To study how the structure

of communities can affect the quality of seed nodes, we ran CI2 on three synthetic

LFR networks [LFR08] which vary their community structures by assigning differ-
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(f): Actual seed nodes selected for first competitor using HighDegree 

Figure 3.6: Minimum numbers of nodes which need to be selected by the second

competitor to achieve larger influence spread than the spread achieved by the first

competitor.
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Figure 3.7: Influence spread achieved on LFR networks with different mixing

parameter values.

ent values to the mixing parameter in LFR benchmark. If the value of the mixing

parameter is smaller, the communities are loosely connected to each other and there

are few links between nodes in different communities. The results of our runs

on LFR networks in Figure 3.7 show that CI2 is better at finding seed nodes in

networks whose community structures are more prominent. This is demonstrated

by the observation that in the first network with the smallest mixing parameter, the

influence spread achieved by the extracted seed set is higher than the two other

networks with larger mixing parameter values. One way to help CI2 act better

in networks with less prominent community structure is to consider the effect of

border nodes [BHZR16] on influence spread computations. Border nodes have at

least one link to nodes in other communities, which allows the spread of influence

from a border node’s own community to others and vice versa. As the main point

of this paper is to propose the DCM propagation model and our aim of using

community structure in CI2 algorithm is to improve the running time of finding

seed nodes, we will address the issue of border nodes in future work.
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3.4 Conclusion

In this paper we studied competitive influence maximization from the follower’s

perspective and introduced the Decidable Competitive Model (DCM), an extended

version of the LT model, for influence propagation in a competitive fashion. To find

the influential nodes in a social network graph, we proposed an efficient algorithm

which extracts the communities of the input graph and finds the most influential

node in each community as a seed candidate. Then the final seed nodes are selected

from the set including seed candidates. The size of the final seed set should be as

small as possible, i.e. we assign the seed nodes to the second competitor so as to

achieve higher influence spread comparing with the spread achievement of the first

competitor’s seed set by spending less budget. The ability of nodes to think about

incoming influence in the DCM propagation model simulates a realistic situation

in which a node’s tendency is toward the spread of influence which has been

adopted by the majority of their neighbors after d timesteps. Adding parameter d

to simulate the thinking ability of nodes results in finding influential nodes with

higher quality; moreover, by calculating the spread values of each node locally

inside its community, we achieved an acceptable running time. The results of our

experiments on different real and synthetic datasets prove the effectiveness of our

propagation model.

There are several promising directions for future research. First, faster algo-

rithms than the greedy algorithm used here could be used inside communities to

find influential nodes. Second, the effect of border nodes on the quality of seed

nodes should be investigated in networks with different community structures.

Finally, the effect of temporal evolution of networks on influence maximization

should be analyzed.
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Chapter 4

Privacy-preserving Online Social

Networks: Challenges and Solutions
(This chapter is ready to be submitted as a paper to a suitable journal or conference)

Online social networks (OSN) such as Facebook, Google+ and Twitter have attracted

billions of users which are using their free services. Such OSNs allow their users

to communicate with each other in different ways such as sending messages, pub-

lishing their ideas which can be seen by huge number of people, sharing photos,

like other user’s activities, etc. Besides these general-purpose social networks, there

are some other social networks which are made for professional purposes such

as Linkedin which is a business-oriented social network or Sermo 1 and Doximity 2

which are social networks for healthcare providers with over half a million users.

The centralized nature of user data which is stored on the company’s storage

servers and is controlled by one single entity causes a range of privacy concerns.

The administration cost of general-purpose social networks like Facebook, forces

the providers to monetize user data far beyond the user’s sharing interests. Users’

concerns about their private data increases in Healthcare Social Networks (HSNs)

as their personal health data are stored on OSN servers and are vulnerable to any

1http://www.sermo.com/
2https://www.doximity.com/
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kind of breaches.

The worry about OSNs privacy concerns goes beyond the users’. In July 2009,

the Canadian Internet Policy and Public Interest Clinic (CIPPIC) complained about

Facebook approaches to default privacy settings, collection and use of users’ personal

information for advertising purposes, disclosure of users’ personal information to

third-party application developers, and collection and use of non-users’ personal

information [oCD09]. Also, in April 2010, the Privacy Commissioner of Canada

and the heads of the data protection authorities in France, Germany, Israel, Italy,

Ireland, Netherlands, New Zealand, Spain and the United Kingdom sent a letter to

the chief executive officer of Google Inc. to express their concerns about privacy

issues related to Google Buzz [Car10].

Based on the importance of OSNs in people’s daily life and the sensitivity of

their data, a mechanism which can block or at least minimize the users’ privacy

violation while preserve the OSN advantages is strongly needed. In the last few

decades, a huge amount of work has been devoted to research on privacy and to

address the privacy problems over OSNs. The term privacy is a multifaceted and

complex concept which can be viewed from different perspectives. Based on the

research which was done by Gürses [DG10], privacy can be classified into three

paradigms: privacy as control, privacy as confidentiality and privacy as practice.

Privacy as control states that there should be a mechanism to enable individ-

uals to control and oversee the collection, processing, and use of their data. The

organizations that collect and process user data are supposed to act honestly. This

paradigm relates to the definition of privacy by Westin: “the right of the individual

to decide what information about himself should be communicated to others and

under what circumstances”[Wes68]. In privacy as confidentiality, trusting organi-

zations is avoided and disclosing any information by individuals is prevented or

minimized by some mechanisms such as cryptography. This paradigm is related

to the definition of privacy in [WB90]: “the right to be let alone ”. In both privacy
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as control and privacy as confidentiality, the main focus is on security and both

concepts try to allow individuals to prevent information disclosure or organizations

to enhance the security of data they hold and prevent its abuse for illegal purposes.

However, privacy has some other social dimensions beyond the decisions made in

isolation [DG12]. Technologies in the privacy as practice paradigm try to make the

information flow more transparent instead of concealing and controlling it. This

paradigm relates to Agre’s definition of privacy: “the freedom from unreasonable

constraints on the construction of ones own identity ”[AR98].

The architecture of OSNs can be viewed from different points of view based on

the way user data is stored and supervised. In most known OSNs such as Facebook,

Google+ and Twitter which use centralized client-server architectures, the users’ data

and their interactions are stored on OSN servers and are supervised by a single

entity, i.e., the OSN provider. In such centralized architectures, users’ privacy is

always facing potential privacy violations by the provider. To protect user data

from a ”big-brother” scenario with OSN providers, decentralized or peer-to-peer (P2P)

architectures for social networks have begun to emerge. In such OSNs, user data

can be stored on data owners’ computers, friends’ computers, random peers over

the social network or any trusted third-parties’ external storage [BB13]. Diaspora

[RG] with over 400000 users is the most successful decentralized OSN. A mixture

of centralized and decentralized architectures is called hybrid architecture which

stores user data on both providers’ dedicated servers and users’ trusted servers.

To the best of our knowledge, just a few studies have been done to address the

privacy concerns about Healthcare Social Networks (HSNs) [Li13, Cha16, LBL+12,

Li15]. However, the users of such online communities share sensitive information

about their health conditions which may negatively affect their job opportunities,

reputation, relationships and insurance choices if the data would be revealed to

unauthorized entities.

In this chapter, we explore different privacy solutions proposed for OSNs and
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explain each solution and their pros and cons in applying them to OSNs. In

Section 4.1 we discuss concepts that the reader should be familiar with to better

understand the paper. Section 4.2 is the section in which we will introduce known

privacy solutions for OSNs in three categories and we discuss the applicability of

each solution for different types of OSNs in Section 4.3. Then in Section 4.4, we

explain in detail why we recommend the decentralized architectures for OSNs and

discuss the design limitations and how to overcome them to have a practical P2P

architecture. We discuss what can be a suitable approach for healthcare OSNs in

Section 4.5. We conclude our chapter in Section 4.6.

4.1 Preliminaries

In this section, we introduce fundamental concepts of security and privacy and re-

view some basic encryption approaches which are needed for better understanding

of the chapter.

4.1.1 Online Social Networks (OSNs)

Social networks serve as a medium for modeling interactions between individuals,

groups and organizations. A social network can be modeled as a directed or

undirected graph G = (V, E) where V and E are the set of nodes and edges of

G. Individuals are modeled as the set of nodes V and the relationships between

them is modeled as the set of edges E. The relationships between individuals

are established based on the friendships in their real world life, being co-tagged

in a photo, co-authoring a book, etc. The edges in graph G can be weighted or

unweighted based on the problem which needs to be solved.
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4.1.2 Peer-to-Peer (P2P) overlays

P2P overlays can provide solutions for pervasive environments like wireless and

mobile networks which need a flexible and extensible underlying network to sup-

port different levels of diversity and personalization concerning both the users and

the applications [Mal15]. In such environments, P2P overlays allow for multiple

virtual network topologies to be built on top of the actual physical networks.

The P2P overlays are classified into four groups: structured P2P, unstructured

P2P, multi-layer and bio-inspired P2P [Mal15]. In structured overlay, the nodes

are connected to each other in a specific way like Distributed Hash Tables (DHTs)

which allow the uniform distributions of the resources among the nodes. However,

these tight structures between nodes make these overlays inefficient for dynamic

networks [Mal15] like social networks in which the churn rates are high, because in

each churn, the network should be updated to fix the structure.

Unstructured overlays are the second type of overlays in which the node rela-

tionships and lookup operations are more flexible in comparison with structured

ones. There are some pros and cons in using such overlays over the underlying

network. The flexibility of the connections guarantees resilience and robustness in

dynamic networks and reduces the maintenance costs such as the overhead of the

message exchanges. But the lookup operations are done by flooding [Mal15] which

make them less inefficient for lookups in comparison with structured overlays.

These types of operations are useful for single- and multi-attribute range queries

[Mal15].

In some networks in which different types of applications need to work together,

two or more overlays can be employed to minimize the management overheads and

also, benefit from efficient resource discovery of structured overlays and flexible

membership of unstructured ones together [Mal15]. These are called multi-layer

overlays.

The bio-inspired overlays are inspired from the biology field and are character-
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ized by their adaptive and reactive behaviour in distributed operations, that are

resilience to failure of components and are self-organized. These features make

them suitable to be used in heterogeneous environments with distributed operations

[Mal15]. The resource discovery in these overlays is done using swarm intelligence

techniques which make their implementation computationally difficult as they are

based on self-organization and the plethora of independent agents interact with

each other using indirect means [Mal15].

4.1.3 Group Key Management

One of the important functional building blocks for secure multicast architectures

like video conferencing, software updates and broadcasting stock quotes is group

key management protocol. In group encryptions, there exists a sender which sends

the data to a group of receivers in a secure multicast session handled by two main

entities called Group Controller and Key Server [CS05]. The sender sends a secret

symmetric key SK to all group members and asks the key server to generate another

secret key Ki per each user i and all the keys are stored in the key server. The secret

symmetric key itself is communicated to the group member on a secured public

channel between the server and the group members, that can be established by

DiffieHellman key exchange protocol [Res99]. To multicast a message, the sender

encrypts data with SK using a symmetric encryption algorithm so that the receivers

can decrypt the data with key SK. When a group member leaves the group, re-

keying is required as follows: the key server generates a new SK′ and encrypts it

with Ki of each user except the leaving member and broadcasts the new key to the

group members. So, the next encryptions will be done by the new generated key.

Another scenario in which re-keying is required is when a new member wants to

join an existing group. In this scenario, a key server generates a secret key Kj for the

new member j and generates a new key SK′, then encrypts SK′ with previous SK to

the existing members and encrypts it with Kj for the new member and broadcasts
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the new keys. By this way of key broadcasting, new members cannot decrypt the

previous messages sent in the group [CS05].

4.2 Privacy Solutions

To address the privacy concerns over OSNs, several approaches have been proposed

in recent years. Some of these approaches try to present a framework which

can be integrated with centralized architecture of current OSNs and preserve the

privacy of users by some mechanisms like data encryption [TGS+08, LB08, GTF08,

LXH09, BBS+09, SZF10, JMB11, BKW11, RMJ13, RMJ14]. These approaches trust

the OSN provider and user data is stored in OSN servers. However, there are

some other approaches which believe that the privacy concerns of OSNs are related

to their centralized nature. Such approaches presented a decentralized or peer-

to-peer architecture for OSNs and try to introduce new features which cannot be

supported by current OSNs to motivate users to use the new architecture [BSVD09,

Str09, JNM+12, Nar12, BB13, RJM15, NJM+12, GADS+16]. In such frameworks,

user data is stored on peers or user-trusted storage servers. Besides these two

categories, some other approaches have been proposed which are a hybrid of

centralized and decentralized architectures which use a hybrid of OSN providers’

storage servers and users’ trusted storages which can be users’ machines, users’

friends’ machines or cloud storage servers which are managed by users themselves

[RMJM11, SLC+11, WSW+11, LSC+11]. In the reminder of this section, we will

introduce the known approaches, which have been done to the date of this paper

with the aim of preserving users’ privacy in OSNs, and categorize them based

on the way they store user data into three groups, centralized, decentralized and

hybrid. Finally, we conclude this section with discussing the privacy solutions

presented for health-care OSNs.
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4.2.1 Centralized OSNs

In Figure 4.1, an overview of centralized approaches is shown. In the centralized

architectures, user data is stored on the servers which are controlled by the provider

centrally and different approaches try to protect user data by encrypting it before it

would be stored.

v7

V1

Network Graph

V2

V3

V4

V5

V6

V9

V8

Figure 4.1: An example of centralized approaches: encrypting user data before

storing on centrally controlled storage servers, but the relations between users can

be seen by the provider.

Lockr [TGS+08] is a browser plug-in in which users can define social access

control lists (ACL) to restrict their friends access to specific data and the defined

ACLs are reusable in different websites. A user who wants to grant access of her

published content to one of her friends should define a small piece of meta-data

called ”attestation” including an issuer, a recipient, a social relationship between

two parties, an expiration date, a relationship key and a digital signature. The

attestation is signed by the sender’s private key and encrypted by the receiver’s
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public key and is stored by the receiver after verification and decryption. This

approach can hide private data but the relationship between users is plain and

the data is stored on OSN servers in plain-text form. Lockr needs to reissue the

attestations with new relationship keys when a revocation is done and supports

only one-to-one communication, which means one attestation is issued for one

receiver, not a group of receivers.

flybyNight [LB08] uses a JavaScript implementation of AES and RSA and their

own implemented El Gamal to transmit encrypted messages to Facebook using a

Facebook API. The El Gamal algorithm is used for encrypting one-to-one commu-

nications while for one-to-many communication (group encryption), the authors

uses proxy cryptography. To to so, the user generates a group key for each group

member which would be the public key and a proxy key. Then encrypted data

is transfered along with the public key to a proxy server. In the proxy server, the

encrypted data would be re-encrypted again with the proxy key, n times for each

group member. flyByNight does not support efficient revocation as a new group

key and new proxy keys are required per each group member after revoking just

one member from the existing group.

The idea behind NOYB (short for ”None Of Your Business”) [GTF08], which

was introduced at the same time as Lockr [TGS+08] and flyByNight [LB08], is that

the profiles of users are partitioned into smaller clusters called atoms. The atoms

of one user are substituted with atoms of another user in the same cluster pseudo-

randomly and then the encrypted index of each atom is stored in a dictionary. The

dictionaries are stored on a different server and key exchange between users is done

out-of-band (OOB). NOYB does not introduce any mechanism to define permissions

to different friends or groups of friends. Also, the completeness of the dictionaries

is related to the number of users which use NOYB. Therefore, the number of NOYB

users affects its effectiveness.

Persona [BBS+09] is another framework for centralized OSNs in which users’

90



private information is hidden using ciphertext policy attribute-based encryption

(CPABE). Using ABE allows friend-of-friend interactions without requiring enumer-

ations of friend and attribute lists. A friend may limit who may read a response to a

wall post to a more restricted group. The dynamic grouping feature of Persona is

the result of using an attribute-based mechanism for encryption. But Persona does

not support an efficient revocation mechanism. Persona OSN is a Mozilla plugin

which can also work with other social networks such as Facebook and can integrate

with Facebook applications.

Submitting encrypted data to OSN servers may attract the attention of the

providers and cause some profile tracking, which may worry the users. Therefore,

the authors of FaceCloak [LXH09] introduced a mechanism in which the users’

private data is encrypted and stored on a third-party server which is trusted by

the user herself while some other fake data related to encrypted data are stored in

OSN servers in plaintext form. The fake data is generated using some dictionaries

for replacing sample texts such as names, but for more complex texts such as a

poem, some related fake text is replaced from Wikipedia. FaceCloak consists of

three phases: setup, encryption and decryption. In the setup phase, three keys are

generated: a master key and personal index key that are distributed to the user’s

friends by some out-of-band mechanism and an access key that is stored locally in

the user’s machine. In the encryption phase, text that starts with a unique separator

such as @@ is encrypted and stored in a third party server, and fake data is sent

to the social network server. Private data is stored as an index-value pair on a

third-party server, where the value is the data encrypted by the master key and

the index is a unique number generated from a cryptographic hash of a personal

index key and the type of private data. In FaceCloak, modifying the real content

of posts published by other users on one’s profile is not possible. Also, there is no

mechanism to define one-to-many communication.

One of the weaknesses of the previous approaches is that none of them support
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an efficient revocation mechanism which would be suitable for the frequently

changing social group memberships. The need of such a principal feature for

encryption-based systems which are used to preserve the privacy in social networks

encourages Sun et al. [SZF10] to introduce a privacy preserving approach which

supports dynamic revocation and search over encrypted data without decrypting it.

The main difference of this approach is in using broadcast encryption for efficient

revocation coupled with role-based searchable encryption. When a member is

revoked from a group, her public key is also revoked. So, in the decryption phase

of the broadcast scheme, she cannot obtain the renewed secret key to decrypt the

ciphertexts anymore.

EASiER [JMB11] is another approach which supports efficient revocation by

introducing an attribute-based encryption approach, in which the decryption pro-

cess is done by the participation of a minimally trusted proxy server that handles

revoked users and attributes. In EASiER, the centralized OSN provider acts as the

proxy server which cannot decrypt the messages directly since it doesn’t have the

attribute keys. When an unprovoked user wants to decrypt a ciphertext, she sends

a part of the ciphertext to the proxy server and receives some information, which

can be combined with the secret key of the user so the ciphertext can be decrypted.

In each revocation, just the proxy key would be renewed and the users re-key their

proxy keys. The superiority of EASiER’s attribute-based approach, compared to the

role-based approach of [SZF10], lies in its ability for multiple encryptions per each

role, which may be needed on same scenarios.

Scramble [BKW11] is a Firefox extension which allows users to define access con-

trol lists (ACL) of authorized users for each piece of data, based on their preferences,

and guarantees confidentiality of users’ data towards the social network site (SNS)

providers by storing encrypted data in a TinyLink server and its corresponding link

in the OSN servers. PGP’s web-of-trust (Pretty Good Privacy)[Zim95], which is a

data encryption and decryption concept that provides cryptographic privacy and
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authentication for data communication, is the key distribution mechanism used in

Scramble. There is no efficient revocation mechanism in Scramble and users are

required to distribute a new public key upon key revocation or key update.

CP2 (short for ”Cryptographic privacy protection”) [RMJ13] introduces a public

key broadcast encryption scheme which protects not only users’ private data from

the OSN provider and unauthorized users, but also the relationships between users

in the OSN. To protect the relationships, the user’s friends are determined by a

unique index which is a pseudonym other than the friend’s real name. Then the

mapping between users’ real names and their pseudonym is stored securely on

OSNs servers. Also, the groups’ names are specified by a pseudonym so that no

one will be aware of the user’s relationship with her friends. Using flexible access

controls of CP2, users can define new access policies using the combinations of

friends and relations with some boolean operations such as AND, OR, NOT. CP2

supports one-to-many communication and also provides an efficient mechanism

for group revocation.

Raji et al. [RMJ14] introduced another public key broadcast encryption scheme

which enables users to protect their shared data while keeping their connections/re-

lationships with other users anonymous. Also, users can employ the privacy setting

of other users in the same group. This is done by using a proxy server. When a user

wants to share data for the first time in a group in which another user has already

specified a privacy setting, the proxy server runs an algorithm to prepare some

parameters for the user and sends the result and the header information related

to the group to the user. This way, the user can use the defined policies of the

group to which she belongs to share her own data. The approach of this paper

[RMJ14] supports one-to-many communication and employs an efficient revocation

mechanism.

Table 4.1 gives a comparison of the illustrated solutions for centralized OSNs

based on different privacy concerns. There are different types of key distributions
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which we categorize into two groups: in-band and out-of-band. In in-band dis-

tribution, the encryption keys are generated and stored on OSN servers and are

distributed to the users. In out-of-band distribution, the key generation is done on

a third-party server and the keys are distributed by an out-of-band mechanism like

email, phone call, letter or via a third-party server. Also, based on the number of

senders of encrypted data in a group, communications can be one-to-one, one-to-

many and many-to-many [RMJ14]. In one-to-one communication, a sender encrypts

her data which can be decrypted by one specific receiver, while in one-to-many

communication, just one user can send encrypted data to the group and the other

members of the group can only be the receivers. But in many-to-many communica-

tion, each user in a group can be both sender and receiver. As we mentioned, most

of the privacy-preserving approaches for centralized OSNs use some encryption

mechanisms to protect user data. By encrypting data, some functionalities of OSNs

such as searchability are not accessible, especially in the cases where private data is

stored on a third-party server. Among the summarized approaches in the current

section, just Sun et al. [SZF10] presented a solution to search over encrypted data

without decrypting it in OSNs.

Methods Protect from Protect Efficient Search Key Communication

OSN Provider Relationships Revocation without Decryption Distribution Support

Lockr [TGS+08] – – – – In-bound One-to-one

flyByNight [LB08] – – – – Out-of-bound (proxy server) One-to-many

NOYB [GTF08] X – – – Out-of-bound One-to-many

FaceCloak [LXH09] X – – – Out-of-bound Many-to-many

Persona [BBS+09] X – – – Out-of-bound Many-to-many

Sun et al. [SZF10] X – X X In-bound One-to-many

EASiER [JMB11] X – X – Out-of-bound (proxy server) One-to-many

Scramble [BKW11] X – – – Out-of-bound (PGP) One-to-many

CP2 [RMJ13] X X X – In-bound One-to-many

Raji et al. [RMJ14] X X X – Out-of-bound (proxy server) Many-to-many

Table 4.1: Comparing the privacy approaches proposed for Centralized OSNs
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4.2.2 Decentralized OSNs (Peer-to-Peer)

The centralized nature of OSNs in which all user data is accessible by a single entity,

i.e. the OSN provider, encourages researchers to change their way of thinking

about preserving user data, which leads to a shift from client-server to a peer-

to-peer architecture coupled with encryption so that the users can protect their

own data and can have direct data exchange with other users without constant

Internet connectivity. The idea of decentralized social networks comes from the

P2P file sharing systems like Napster1 and Soulseek2 which were mostly used for

music. There are also other file sharing systems like Groove3, which is the Microsoft

project for music sharing that supports some communication mechanisms such as

discussion forums and search features. This way, Groove fulfills the requirements

of OSNs. Figure 4.2 shows a big picture of decentralized approaches.

In this section, we discuss the decentralized approaches that try to address the

OSNs’ privacy concerns with the main focus on data availability, users’ privacy and

searching in distributed environments. The approaches that are selected are the

state-of-the-art ones that have attracted significant attention in this scope.

PeerSoN (short for ”P2P Social Networking”) [BSVD09] tried to overcome two

limitations of OSNs which are privacy issues and the requirement of Internet

connectivity while keeping OSN features like searchability. The main properties

of PeerSoN are encryption, decentralization, and direct data exchange. Encryption

provides users’ privacy and decentralization based on a P2P infrastructure. This

limits the full accessibility of an OSN provider to user data and makes it easier

to integrate direct data exchange between users’ devices into the system without

the need for Internet connectivity. PeerSoN benefits from a two-tier architecture

to achieve its goals: look-up service and peers. For look-up service, a Distributed

1http://ca.napster.com/
2http://www.slsknet.org/
3https://music.microsoft.com/
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Distributed Hash Table (DHT)

Figure 4.2: An example of decentralized approaches: user data is stored in users’

storage servers

Hash Table (DHT), which is implemented using OpenDHT1, is used in which the

meta-data about users and their data are stored. Users’ offline messages are stored

on DHT for further accessibility.

To protect users from potential privacy violations by the provider, Safebook

[Str09] introduced a three-tier decentralized architecture relying on cooperation

among some social network users called peers. Safebook nodes form three types

of overlays: matryoshkas, P2P lookup service, and trusted identification service

(TIS). Matryoshkas form concentric rings of nodes surrounding each central node.

Matryoshkas act as trusted data stores, and as interaction points with other central

nodes. Direct contacts of each node shape the innermost shell of a matryoshka

called mirrors, which stores the core’s data in an encrypted form. Entrypoints

are the nodes in the outermost shell of a matryoshka, which acts as a gateway

for all data requests addressed to the core. In Safebook, each node is known by

an unambiguous identifiers or pseudonym which the mapping between nodes

and their pseudonyms are stored on TIS. In Safebook, each user has to trust other

1www.opendht.org
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nodes as her private data are stored encrypted on other node’s storages and all

data transfers are done through those nodes. This may be one of the weaknesses of

Safebook which causes some worries for its users.

LifeSocial.KOM [GGS+11] is another P2P architecture for OSNs with a number

of plugins that provide critical features of OSNs such as search, chat and group

generation. The core network layer of LifeSocial.KOM is a structured DHT-based

P2P overlay. Each user can define a privacy policy for their contents and include

the public key of the users authorized to access the contents.

LotusNet [AR12] is a P2P architecture for OSNs with a flexible and fine-grained

access control system. The framework is shaped by three layers: identity man-

agement, services and application logic. Identity management resides in a DHT

structure for handling interactions. Content is grouped by content type. Upon

sharing, the identity of the owner and the receiver, an expiration time and a regular

expression that specify the granted content types, is grouped into a grant certificate.

In this way, grants are paired with social contacts, rather than with shared resources

and limits the number of grant certificates.

Like LotusNet, the Prometheus access policies are a combination of some el-

ements, such as type of relationship, weight that specify the trust level of the

relationship and the users locations [KFA+10]. The user is able to define both white

lists and black lists to include or exclude specific users. The P2P architecture of

Prometheus is based on a DHT overlay. In their overlay, each user has a group

of trusted peers that act as user’s replicas and are responsible to provide the data

availability in the when the user is offline.

Porkut [NPA10] is another decentralized OSN which focuses mainly on avail-

ability by replicating user data on trusted friends’ storages. This approach considers

the geographical locations and online time patterns of users to select the best replica

nodes by different greedy algorithms, each of which concentrates on different cost

minimization objectives such as access cost, number of replicas and storage cost.
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Also, a privacy preserving indexing mechanism is introduced which facilitates

content discovery among friends. The indexes are stored on a DHT-based table in

the form of (key, value) pairs. Search terms are the keys of the index table and the

user profile identifiers are mapped to the value fields. In order to protect content

and owner privacy, the pairs are K-anonymized and will be published into index

table. By K-anonymizing the pairs, each pair is identical with at least K− 1 other

pairs [Swe02].

DECENT [JNM+12] is a modular and object-oriented architecture which uses a

DHT to store user data and supports flexible attribute policies and fast revocation.

There are three access policies for each object in DECENT: Read policy (R-Policy),

Write policy (W-Policy) and Append policy (A-Policy). R-Policy is an attribute-

based policy which describes the read access policy of each object. W-Policy is

an identity-based policy which is assigned to the object owner and describes who

can modify or delete the content of an object. A-Policy is an attribute-based policy

which describes who can add a comment/annotation to an object. DECENT uses

a mechanism for fast revocation which is the same with the one used in EASiER

[JMB11] with attribute delegation support. So, the users can define a friend-of-

a-friend attribute and ask all her contacts to delegate it to all of their contacts.

DECENT can protect users’ relationships from third-parties that may have no

relationship with the object owner and are therefore untrusted, such as storage

nodes.

As we stated earlier, one of the final goals of P2P architectures is to introduce a

mechanism to make social networks available without the need for Internet access.

To achieve this goal, users’ profiles should be accessible even when they are offline.

Rammohan Narendula [Nar12] introduced a mechanism to model user online times

in OSNs from their activity times. As in a decentralized architecture, user data

is stored in replicas which are mainly users’ friends, the online time of each user

depends on the online time of their replicas. Therefore, there should be an overlap
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between user’s online time and, at least, one of the nodes which is selected as

a replica node. The solutions which are suggested in [Nar12] to choose the best

replicas are: selecting the minimum number of replicas which have a time overlap

with the other replicas, selecting the top-k most active friends and finally, selecting

random friends which should be connected in time.

The authors of Pesca [RJM15] believe that the techniques which are used to

consider the availability of content in decentralized OSNs without Internet access

should consider not only the user’s status in terms of being online/offline in the

network but also the access control assigned to the published data. Therefore, they

introduced PESCA which enables the privacy of user data while considering its

availability by employing a broadcast encryption mechanism. In this framework,

the availability of each user is defined as a user online table (UOT) consisting of

users’ online patterns. Users’ online patterns are extracted from the times each

user communicate with her social friends by tracking her resource usages such as

storage or processing power usage. In PESCA, the best candidates to be selected

as replicas are the ones which are online at the time of sharing a content and also

are online when data audiences may access the content. A dynamic algorithm

selects the minimum number of online friends as replicas based on the union of the

up-times of data owner and her friends.

The main focus of eXO [LNTM11] is on searching and content discovery in

distributed OSNs. It uses a DHT overlay resource discovery for retrieving stored

content and they also enable the users to add tags to the content. However, tags are

not included in the global indexer and are stored on the owners’ computer. These

tags are used for query expansion: upon receiving a response form the DHT, the

user can contact the corresponding owner in the query response to retrieve the

related tags and issue a new query based on those tags.

Cachet [NJM+12], which is the improvement of DECENT [JNM+12], is an archi-

tecture which protects confidentiality by an attribute-based encryption, integrity
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by digital signature and availability of data in distributed OSNs. User data is

stored encrypted on untrusted nodes which shape a DHT. The authors argued that

showing a newsfeed to the user with hundreds of friends in a decentralized OSN

protected by an encryption mechanism, requires fetching the wall updates from all

their friends’ profiles and decrypting them, which takes minutes to be completed.

This process would be non-practical if the number of updates increases. Therefore,

they introduced a gossip-based social caching algorithm, which increases the perfor-

mance of newsfeed displaying. More specifically, when a user posts content on her

wall, online contacts who satisfy the ABE policy defined by the user provide cached,

decrypted content to other contacts who also satisfy the policy. So when an offline

contact gets online and wants to view the latest newsfeeds, an algorithm locates

other online contacts which have a cached version of new updates and query them

to be retrieved. The DHT is used for retrieving updates which may not be cached,

which ensures higher level of data availability.

Self-Organized Universe of People (SOUP) [KLF14] is another framework to

guarantee data availability with minimal replication overhead and without assum-

ing any permanent online storage. This framework is able to handle both high

churn of regular participants and attacks from malicious users. The replica nodes

are selected in two modes: bootstrapping mode and regular mode. When a node

joins the network newly, it is entered in the bootstrapping mode in which the node

begins to learn from the experience of its neighbors about their mirrors. After that,

the node goes into the regular mode and in this mode, the set of mirrors may be

changed periodically based on the exchanged experiences between nodes. SOUP

also employs a protective dropping algorithm to enable the nodes to decide they

accept extra mirror requests which may need to drop the data of some of the nodes.

The authors of My3 [NPA12] also put their focus on providing the data availabil-

ity in distributed OSNs and also try to solve the data inconsistency problem. Based

on their results, the authors believe that with having 4-5 replicas for each user, they
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can achieve availability higher that 90%. In their replica placement algorithm, the

minimum number of replicas are selected among the user’s trusted friends and the

content is stored on the replicas as plaintext. Therefore there is no confidentiality

involved in the My3 approach, in contrast to the previous approaches in this chapter

such as Pesca [RJM15]. To provide data consistency, when a replica comes online,

it notifies all other online replicas and updates its content with updates from the

others.

A recent work discussing the availability problem in decentralized OSNs is

DiDuSoNet, proposed by Guidi et al. [GADS+16]. In this work, the authors pro-

posed a Dunbar-based, specific kind of sub network with a limited number of

relations per each user. The dynamic framework in which the replicas are selected

from a user’s trusted friends in a way that the replica set is changed dynamically

due to users churn. When a user u joins the network, it selects a user among its

online friends, say v, as a replica and replicates its profile on that node. When v

becomes offline, u is responsible to select another replica when online, otherwise v

should select another replica and replicate u’s profile on the new replica and then,

v can leave the network. It means that the set of replicas for each user is selected

dynamically and the users’ profile is replicated each time on one’s storage. The best

candidate to be a replica node in each join/leave is selected based on a combination

of common friends between the data owner and the replica, online duration periods

of nodes and the number of contact frequencies between nodes. It is stated in the

paper that by replicating a user’s profile on only two online replica, maximum

availability is guaranteed in this framework. The authors also introduced FRoDO

[AGGR15], which is a protocol that can be applied to any P2P systems including

structured and unstructured P2P networks.

In Table 4.2, we can see a comparison of proposed approaches for decentralized

OSNs. This table clearly shows that just a few of these approaches can present a

mechanism which preserves the search feature of OSNs. Using search features in
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OSNs, users can find their friends from real life in the OSN or make new connections

based on common interests [BD09].

Methods Storage Interaction Availability Search

Method

PeerSoN [BSVD09] Nodes in DHT DHT – –

Diaspora [RG] User trusted storage (pods) DHT – –

Safebook [Str09] Trusted friends DHT – –

LifeSocial.KOM [GGS+11] DHT DHT – X

LotusNet [AR12] DHT DHT – X

Prometheus [KFA+10] Trusted peers DHT X –

Porkut [NPA10] DHT Trusted friends X X

DECENT [JNM+12] Random nodes in DHT DHT – –

Narendula et al. [NPA10] Trusted friends Direct or using a third-party server X X

Narendula et al. [Nar12] Trusted friends Direct or using a third-party server X –

PESCA [RJM15] DHT resides in users’ storage space DHT X –

eXO [LNTM11] DHT DHT – Partially supported

Cachet [NJM+12] Untrusted nodes in DHT DHT X –

SOUP [KLF14] Trusted friends DHT X –

My3 [NPA12] Trusted friends DHT X –

DiDuSoNet [GADS+16] Trusted friends DHT X –

Table 4.2: Comparing the privacy approaches proposed for decentralized OSNs

4.2.3 Hybrid OSNs

In most hybrid approaches, users can decide about where to store their private data.

In Figure 4.3, an overview of hybrid approaches is shown in which user’s private

data is stored on personal servers, while public data is stored on the provider’s

servers which are controlled centrally.

Raji et al. [RMJM11] proposed a privacy protection mechanism which employs

an identity-based broadcast encryption in which the relation keys are not stored

anywhere and they are obtained by a broadcast encryption algorithm in each

request. In this approach, the setup algorithm of the BE scheme is responsible

for generating the public/secret key pair for each user and the users can choose a

storage server for storing their private data. The selected storage server can be a

third-party server or it can be the storage provided by the OSN provider.
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Figure 4.3: An example of hybrid approaches: private data is stored on personal

storages

Vis-a-Vis [SLC+11] is a decentralized framework for OSNs which is based on

the privacy-preserving notion of a Virtual Individual Server (VIS). A VIS is a virtual

machine which is running in a paid cloud-computing utility such as Amazon Elastic

Compute Cloud (EC2) or Rackspace Cloud Servers. The main focus of Vis-a-Vis

is to protect users’ shared locations from unauthorized entities by storing them

encrypted on VIS. Also, Vis-a-Vis allows users to apply range queries to data items

by using a hierarchical structure rather than a distributed hash table (DHT).

Polaris [WSW+11] is another distributed OSN which improves users’ privacy

and preserves economic incentives for the OSN providers. In Polaris, users can

select different types of storages based on different application domains. As an

example, users can store their public photos on the photo sharing websites and

store their private data on their own mobile devices. In the end, there is a trade-off

between users’ sensitivity about their data and their economic preferences.

In Confident [LSC+11], two different types of servers are used for their decen-

tralized architecture: desktop and enterprise storage servers and cloud-based name

servers. The storage servers host user data and the authentication information are

selected from the users’ trusted friends. Confident relies on the social trust between
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friends. Therefore, data is stored plain on the storage servers. A list of available

replicas and a logical clock per each user are stored on the name servers, but name

servers cannot access the plain data as they are not trusted to access them.

4.2.4 Healthcare online social networks

To the best of our knowledge, a limited number of studies have been done with

the main focus on preserving users’ privacy in Healthcare online Social Networks

(HSNs). Most of the works try to present some recommendations to protect the pri-

vacy of health data and make the users aware about the potential privacy breaches

over HSNs and teach them how to protect their data using different settings pro-

vided by OSNs.

In [WWJ10], Williams et al. discuss the existing challenges of information

management in HSNs and explain how software developers can design a built-

in privacy protection OSN. The authors suggest that all the organizations which

deal with user data must adopt certain privacy principles such as: proactiveness

of privacy not its reactiveness, which means to fix privacy problems before they

happen, privacy by default, privacy by design, end-to-end lifecycle protection and

respect for users’ privacy.

The authors of [Li13] believe that policy makers and stakeholders are responsible

for keeping the online health data private and they should consider the suggestions

below in designing a secure OSN:

• Privacy awareness: minimize the amount of data which is shared by users to

accomplish the intended purpose.

• Privacy by education: prepare the users with a user-friendly way of privacy

settings.

• Privacy by design: building data protection and privacy by design into the

platform.
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• Privacy by regulation: using users’ data with their consent and prohibiting

inappropriate uses of health data.

Charbonneau et al. [Cha16] report a content analysis of privacy policies and

disclosure practices for 25 online ovarian cancer communities and they present a

coding sheet instrument to collect data from online ovarian cancer communities.

The data were collected based on four primary areas:

• notification to participants about how personal information is collected, used,

or shared

• choices for participants to opt out from sharing their data with third parties

• details about security measures used to protect personal health information

• ability for participants to access, modify, or delete the personal information

The results of the studies in this paper show that 96% of sites collect personal

information from their users and share them with third parties, 56% of them use

cookie technology to track users’ behaviors, 36% of them offered opt-out choices

for sharing data with third parties and just 28% of them allow users to delete their

accounts whenever they want.

Jingquan Li [Li15] also analyzes the privacy and security characteristics of

HSNs and believe that an effective protection for both the HSNs and their users

is accessible based on a shared responsibility between the OSN provider and the

users. Loiselle et al. [LA17] apply decentralization to protect users’ sensitive data

and they suggest to create HSNs on existing blockchain architecture.

HealthShare [LBL+12] is one of the approaches which presents a practical so-

lution to protect HSNs user data by two attribute-oriented authentication and

transmission schemes. The attribute-oriented authentication scheme enables users

to generate a tree structured attribute proof for themselves to anonymize their
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sensitive attributes. The attribute-oriented transmission scheme enables the users to

encrypt their health information into a ciphertext bonded with a customized access

policy with two modes: direct and indirect. For direct mode, users create the access

policies by themselves; for indirect mode, a delegated user may help to create an

appropriate access policy for the received ciphertext without having an access to

the content.

The most recent work on designing a healthcare-focused application is a Mind-

fulness Virtual Community (MVC) that Morr et al. [EMMA+20] have presented.

They have developed a user-centered platform for York University students that

enables them to interact with other students and psychologists in a P2P environ-

ment. As with previous approaches, the authors of MVC employ decentralization

for solving the privacy problems in healthcare environments.

4.3 Discussion

Privacy Education. As we stated before, one of the main concerns of OSN users

is about where their private data is stored and for which purposes their personal

information is used. However, in general-purpose OSNs such as Facebook and

Instagram, users trust OSN providers to keep their data private and control the

spreading of their data using pre-defined settings of the platform. But the fact

about how users’ data is used is far beyond the users’ thoughts. Based on an

article which was published by ProPublica1 in late 2016 [AMPJ16], Facebook is

buying data about users’ online and offline life from commercial data brokers to

enhance its advertisements. One of the brokers which Facebook signed a deal with in

2012 is Datalogix which filed a complaint with Federal Trade Commission alleging

Facebook’s violation of privacy. This article indicates that Facebook is willing to tell

its users many things which it knows about them, but not all the things which it

1https://www.propublica.org/
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provides to advertisers.

These facts show that in a general purpose OSN like Facebook, an educating

mechanism is needed to teach new users how to protect their own data using

default settings of the platform and make the users aware of the way OSN provider

may use their data for other purposes.

Types of relationships. In each type of OSN we have different types of users. In

general-purpose OSNs such as Facebook users are connected to each other based on

their common language, the geographical region in which users are living and the

friendship relations which they have with each other in real life. In professional

OSNs such as LinkedIn, relationships are based on common professional skills and

job preferences of the users. Sermo and Doximity connect experts and patients to

each other based on their medical concern or their users’ expertise. More specifically,

we investigate the type of relationships in some HSNs and we compare them with

the type of relationships in general-purpose OSNs. A notable difference between

HSNs and general-purpose ones is in the type of friend relationships between users.

In general-purpose OSNs, the relations between users are mostly based on the

friendship relations which they have with each other in real life. But in HSNs, the

relations are mainly based on common health problems and expertises.

In some HSNs like PatientsLikeMe, the users are people which have some health

problems and want to find other people with the same problem in order to benefit

from each others experiences about how to deal with their problem. If we call these

type of users as patients, the relationship between users is of type patient-patient.

In some other HSNs like Doximity1 and Sermo, users are health-care professionals

which want to stay connected to each other and broaden their expertise by sharing

their thoughts and experiences. If we call these users as experts, the relationship

between users are of type expert-expert. Besides these two types of HSNs, there are

some other OSNs like Inspire which provides a platform to connect patients to other

1https://www.doximity.com/
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patients and experts to access online help from other users. The type of relations

between users are patient-patient and patient-expert in such platforms.

Privacy Solutions. As the type of users are different in different OSNs, their

privacy concerns are different, too. Moreover, new types of requirements may

emerge to fulfill the users’ needs. For example, a more powerful group and friend

recommendation is needed in HSNs in comparison with general-purpose OSNs.

The reason is that in HSNs the relations are established based on some common

health problems between the users who do not know each other in real life, while in

general-purpose OSNs, the relations are mostly established based on the relations

the users have in their real life. Therefore, it is not applicable to design a unique

privacy framework which can be applied to all types of OSNs.

Another important factor in designing a privacy-enabled framework is its appli-

cability in current OSNs. As we discussed in previous sections, remarkable efforts

have been done to protect user data by encrypting it before they would be stored

on providers’ storages. However, in most OSNs such as Facebook, the provider does

not allow the users to send encrypted data to their storages and if any application

leaves some traces of encryption or other means which prevents the provider from

learning user data for different purposes including advertisements, they may be

removed by the provider [LXH09].

4.4 Recommended Privacy Solution

If we want to present a user-centric architecture with the main purpose of pre-

serving users’ privacy and overcome to some limitations such as need for Internet

connectivity, P2P architecture would be a good choice; while in HSNs where users’

generated contents are used for researching and analyzing purposes by other com-

panies, a hybrid approach would be a better choice for protecting user data with

the possibility to provide users’ generated content for researchers if the user apply
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permissions on releasing her private data anonymously.

However, there are still some limitations to design an acceptable architecture for

decentralized OSNs to convince users to shift from traditional client-server to P2P

infrastructure. Some of the limitations that we can mention are:

• Privacy approach: what mechanism should be used to preserve users’ data

privacy while it should be dynamic and flexible?

• Key management and distribution: what mechanism should be used to store

encryption keys confidentially and how to distribute them among users?

• Interaction method: how to handle communications between users?

• Storage: how and where user data should be stored?

• Topology: how the users should be connected to each other?

• Availability: how to guarantee the availability of published content even when

the users are offline?

• Searching: how to search for your real life friends in OSN or find new friends

based on common interests?

• Openness: how to design an open platform to support other third-party

applications?

• Robustness: how to handle disruptive behavior of users while there is no

single entity to define the rights?

In Figure 4.4, an overview of the recommended P2P architecture is shown. Our

architecture consist of a two-tier architecture: Data Exchange Tier (DET) and Lookup

Tier (LT). User data is stored encrypted on users’ devices which are located on DET

and the lookup operations are done on LT. The colors which are used for the nodes

in LT are related to the color of the users’ stored documents in DET. In this section,

109



we will introduce the steps needed to overcome most of the above challenges to

design a P2P architecture and discuss the possible solutions in each step.

DET

LT

Figure 4.4: Recommended privacy solution: user data is stored on Data Exchange

Tier (DET) on users’ devices and the lookup operations are done on Lookup Tier

(LT). Data replication is used to increase the data availability.

4.4.1 Encryption mechanism

Using a P2P architecture for OSNs, we eliminate the privacy breaches caused by

OSN providers which act as a big-brother for all the users and we give back data

control to the users. However storing user data on storages other than central

storages cannot guarantee the data privacy for users as there may be other unau-
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thorized data accesses based on where data is stored. So, an important issue which

should be considered in designing a P2P architecture is choosing an appropriate

encryption mechanism as well as a good approach for key management and distri-

bution. Moreover, data availability and searching are the other important concerns

in P2P architectures. In the remainder of this section, we propose our solution for

these challenges.

To provide the data confidentiality and access control for OSN users, we have

to employ a suitable encryption technique to support group encryption. Such

type of encryption techniques are called secure group communication, which is

the first requirement for secure data communication in OSNs. Also, the technique

which is used should have following features so that it could be applied to the OSN

platforms:

1. Dynamic: OSN platforms are dynamic environments in which the relation-

ships between users are changing frequently during time. So, the selected

technique should be able to handle such dynamic changes efficiently.

2. Efficient: the cost of encryption/decryption should be independent of the

number of recipients.

3. Low storage: the overhead storage which is needed to store encryption head-

ers should be minimum so that the cryptosystem would be scalable.

4. Stateless: revoking some users from a group should not cause the remaining

users to update their private keys.

5. Fully collusion resistant: all the users other than group users cannot collude

to decrypt a broadcast message.

6. One-to-Many communication: the initializer of a communication group would

be the broadcaster in her group and can encrypt her data and broadcast it to

other group members.

111



7. Forward/backward secrecy: a newly joined member should not be able to

decrypt former encrypted data (forward free) and a revoked member from a

group should not be able to decrypt later encrypted data.

One of the encryption mechanisms which can be applied to decentralized OSNs

is the adaptive public-key broadcast encryption which was introduced by Gentry

et al. [GW09]. This approach is secure against any number of colluders and

the ciphertext generated by this approach is of constant size for any number of

receivers. The randomized algorithms which made the broadcast encryption are

Setup, keyGen, Encrypt and Decrypt. The details of each algorithm is as follows:

Setup(λ, n) → 〈PubK, SecK〉. This algorithm runs GroupGen(λ, n) to generate

two groups G and GT, which are of prime order p with bilinear map e : G×G→ GT.

Then picks α
R←− Zp and g, h1, · · · , hn

R←− Zn+1.

PubK = (g, e(g, g)α, h1, · · · , hn)

SecK = gα

The Setup algorithm takes n, which determines the number of receivers in

the group, and λ as security parameter, which determines the maximum size of

broadcast group, and it outputs a public/secret key pair 〈PubK, SecK〉, which is

kept by the broadcaster.

KeyGen(i, SecK) → PrvKi. Picks ri
R←− Zp. Then

PrvKi = 〈di,0, · · · , di,n〉

PrvKi,0 ← g−ri , PrvKi,i ← gαhri
i , ∀j 6=iPrvKi,j ← hri

j

The KeyGen algorithm takes index i ∈ {i, · · · .n}, which is member’s identity,

and secret key SecK. It outputs a private key prvKi for member i of broadcasting

group.

112



Encrypt(S, PubK) → (Header, K). Picks a random t R←− Zp. Then

K = e(g, g)α.t

Header =

(
gt, (∏

j∈S
hj)

t

)
The Encrypt algorithm takes an S ⊆ {1, · · · , n} as the subset of users and PubK

as a public key and outputs a pair (Header, K). Header contains the data needed to

help users in S find the message encryption key and K is the message encryption

key, which is a symmetric key.

Decrypt(S, i, PrvKi, Header, PubK) → K. If we imagine Header = (C0, C1), then

K = e(PrvKi,i. ∏
j∈S,j 6=i

PrvKi,j, C0).e(PrvKi,0, C1)

The Decrypt algorithm takes S ⊆ {1, · · · , n} as the subset of users, user id

i ⊆ {1, · · · , n}, private key PrvKi of user i, a header Header and public key PubK

as inputs and the output of the algorithm is the decryption key K if i belongs to S.

The proofs of correctness of the above algorithms are explained in [GW09].

4.4.2 Topology

The way the nodes communicate with each other establishes an overlay on top of

the underlying physical network and is different from the connectivity between

nodes in the physical network which is called network infrastructure [Mal15]. For

P2P architectures, we can apply a two-tier architecture: Data Exchange Tier (DET)

and Lookup Tier (LT). In DET, the peers are connected to each other for direct data

exchange and in LT, peers are connected to a structured overlay such as DHTs for

lookup services.

Data Exchange Tier (DET). The connections between peers in DET are based on

their friendship connections, i.e., there exist a connection between two nodes v1
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and v2 in DET in our P2P overlay if a friend request was exchanged between these

two nodes through a secure channel and the friendship was established. Here we

only consider undirected edges for our graph. This rules out the both parties are

involved in establishing the connection. For other types of connections, such as

follower-followee in Twitter, we need to have directed edges, which we do not

consider in this chapter. Following this strategy causes our social network graph to

be partitioned into communities of friends and the size of the communities depends

on the number of peers collaborating to each other within them. The existence of

such communities affects directly the data availability in our P2P overlay [BD09] if

the replica placement strategy selects the replicas among users’ friends. Imagine

that one of the generated communities, say Ci, would be small in size because of

the number of its participants. The data availability in Ci would be low as data

is stored on a small number of replicas, which have been selected from Ci’s peers.

Therefore, in the replica placement strategy, we should consider the community

size and the availability rate of the data.

Lookup Tier (LT). Most of the structured overlays provide a key-value interface

to work with them. Therefore, in our solution we need a key-value pair for each

piece of meta-data related to a user, which can be stored in LT. The key is the

corresponding index of a value and is used for searching the value. The keys could

be a hash function of users’ UIDs which we discussed in previous section.

The structured overlay we choose for our LT affects the overall performance of

the overlay. In [KR07] the authors did some experiments to investigate the perco-

lation effect in two known structured overlays, Chord [SMK+01] and Symphony

[MBR+03] and they found out that 4% of peers are not reachable in a same com-

ponent with the network size of 106. Also, in [WCZJ04], it is shown that direct

communication between 36% of peers is impossible because of the blocks caused by

firewalls and Network Address Translators (NATs). These experiments show the

defects of the structured ring-based overlays in some special cases. Moreover, the
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maintenance cost of rings is high in the environments with high churn, because in

each join/leave of the peers in the overlay, their successors and predecessors should

be updated. Therefore, in dynamic environment of OSNs, we need an overlay for

our LT which can handle lookup and write operations correctly and its maintenance

cost would be low.

In [GGD+08], a ring-less structured overlay called Fuzzynet is presented, which

has all the functionalities of ring-based overlays, while achieving better performance

in its lookup and publish operations with no explicit maintenance. As it is stated in

the paper, Fuzzynet is ideal for high churn environments in which joining/leaving

of peers are done frequently. This approach can be applied to the Lookup tier of the

overlay.

4.4.3 Data availability

A crucial feature of OSNs is their need to a mechanism to make data available for

all the users whenever it is accessed even if the data owner would be offline. In cen-

tralized OSNs, the providers are responsible for guaranteeing the data availability

for their users by employing different data storages and distributing the overload

between them. But in decentralized OSNs, the users themselves are responsible for

storing their own data on their storages and ensure the data availability. However,

one user which contributes to the OSN by generating a content is not online 24/7 to

ensure the data availability for other users who want to access to generated content.

Therefore, profile replication is a good solution to keep the data available when

the data owner is offline, meaning that the data can be replicated on other users’

storages, called replicas. Thus, we need a strategy to choose the best replicas for

each user to make the data available whenever it is accessed.

The set which is selected as replica nodes for each node u should satisfy the

following features:

1. At least one of the replica nodes should be online with high probability at the
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time of sharing data items by u.

2. There should be time overlaps between u’s friends which are authorized to

access the data items and the replica nodes so that in each time, one or more

replica nodes are online to serve data accesses by authorized users.

3. The size of replica set should be minimum as the nodes in our P2P architecture

are ordinary users which use devices with limited amount of storage (even

the device can be a cellphone) and we can not replicate users’ data as much as

possible just to increase the data availability.

4. The selected replica nodes should maximize the data availability. Our strategy

may find different replica sets with the same size but different availability in

the case of the overall online time periods of the replicas. In such cases, the

set should be selected which achieves maximum availability.

5. The replica set should be resilient to dynamic nature of OSNs and the se-

lection strategy should keep the set updated upon each join/leave without

performance decrease.

We can model our decentralized OSN as an undirected graph G = (U, E, T),

where U is the set of users that have joined the OSN and are represented by the

vertices in the graph, E is the set of friendship relations between users and are

represented by graph edges and T is the set of online time patterns of each user

with predefined granularity (e.g., seconds, minutes, hours), which can be stored

in a table. As the online times are not certain and the status of one user may be

changed, in each slot of the table, we can store the probability of the user being

online or offline in that specific time period.

The replica placement problem can be stated formally as follows:

PROBLEM 1. (REPLICA PLACEMENT). Given an undirected graph G = (U, E, T) and a

node u, select a replica set Ru ⊆ Nu such that
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1. ∀v ∈ Nu, ∃ri ∈ Ru that is online with a probability bigger than a threshold value for

each time slot

2. ∀t ∃ri ∈ Ru, which the data stored on ri should be consistent with the data stored on

u

3. |Ru| would be minimized

In Problem 1, Nu is the set of u’s neighbors. The list of nodes in set Ru should be

stored in u’s storage. Table 4.3 shows an example of the online time patterns for

three nodes v1, v2 and v3. Let us assume that v2 and v3 are some of the neighbours of

v1 and we want to find a replica set for node v1 that satisfies the conditions stated in

Problem 1. As the three nodes are online in the first time slot with a low probability,

the replicas that are chosen does not need to guarantee a high availability for that

time slot. This means that nodes v2 and v3 are less likely to request v1’s data in the

first time slot. We can calculate the probability values of two nodes v1 and v2 being

online in a specific time slot as:

Pr(v1 or v2 being online) = 1− Pr(v1 not online).Pr(v2 not online) (4.1)

We calculate the online probabilities for all v1’s neighbours using Equation (4.1)

to find the online threshold values per each time slot. Then the replicas should be

selected in a way so that the online probability of the replicas be bigger than or

equal to the threshold value for each time slot.

In Section 4.2.2, we introduced and analyzed some approaches such as the ones

proposed by Narendula et al. [Nar12, NPA12] and Raji et al. [RJM15] that try to

solve Problem 1. In the later case, the authors consider extra parameters, such as

the list of authorized users for each data item.

Discussion 1. As we stated before, online time availabilities of the users are

initialized by themselves when joining the OSN, but it is very probable that the
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Table 4.3: The online time patterns for three nodes

v1 :
Time slot 1 2 3 ... 23

Online probability 0.5 0.2 0.75 ... 0.4

v2 :
Time slot 1 2 3 ... 23

Online probability 0.05 0.3 0.8 0.2 0.75

v3 :
Time slot 1 2 3 ... 23

Online probability 0.01 0.3 0.65 0.35 0.5

online time patterns would be changed due to the possible changes in users’ habits

in using the platform or changes in the users’ geographical locations. Thus, we

should consider such changes in online time patterns if we want to guarantee the

data availability provided by the replicas. To keep the online time patterns updated,

we can track the log records of the system, which hold some data of when a specific

user goes online or offline in the system. Using such records of data, the online time

patterns of users can be extracted automatically and if the changes in the online

time patterns of user u exceeds a threshold value, the replica selection algorithm

should be run again to update the set Ru.

Also, joining new users or leaving current users to/from the OSN platform is

another scenario which causes some changes to the replica set Ru. If one of the

users, which leave the OSN, would be a replica node, the data availability would

be affected based on the storage space and time availability provided by the leaved

node. Also, if a new user is added to the set which has access to the data item,

new replicas might be needed if online time of this new user has a portion not

overlapping with any existing replicas or u. These are the other cases in which

the replica placement algorithm needs to be run again for the user which has been

affected by the other nodes’ leave or join.
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Discussion 2. The replica placement algorithm finds the replica nodes for user

u to guarantee the availability of u’s data for all her friends, but as we stated in

Section 4.4.1, a user can encrypt her data in order to be accessible by just a specific

group of users who are determined in the Setup phase of the broadcast encryption

mechanism. This means that by defining such access levels, u’s data is not needed

to be available for all her friends, but for users in encryption group. In such cases,

the replica placement algorithm should find the replica nodes for u to guarantee

the availability for a smaller group of nodes called Authorized nodes (Authu). Also,

for each data item which is shared by u, we need to have a different set of replicas.

Following this approach, we store the data items of one user on different sets of

replicas, which prevents the overloading of a particular replica set if all data items

would be stored on one replica set. On the other side, we have a decrease in the

overall performance of our platform as the replica placement algorithm needs to

be run per each data item. Therefore, there should be a trade-off between the

performance and the load balancing.

Discussion 3. We replicate user data to increase the availability, but this replication

brings with itself some downsides such as managing data consistency on all replica

nodes, which is costly in terms of performance. Data consistency means that the

data on all replicas should be the same and any modification on data should be

carried out on all the copies to ensure consistency [TVS07].

As we stated before, the list of replicas for each node u is stored on its storage.

Therefore, node u can act as a master node for other replica nodes in the set Ru

and nodes ri ∈ Ru are backup nodes. The reason that node u can be a master node

is that u is the data owner and can make any modifications to its own data. The

master node is responsible to hold the list of replicas, list of changes to its own

storage including updating a data item or creating new data item and should be
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able to track which replica nodes have applied the changes to their local storage.

Discussion 4. Another important factor which needs to be considered in selecting

the best candidates as replicas is the relation between node u being replicated and

the candidate nodes. In some papers such as [BSVD09, JNM+12, NJM+12] the can-

didate nodes are selected from the random nodes or untrusted nodes and evaluating

their effectiveness as a replica node is done by the replica placement algorithm.

However, in most of the recent studies ([Nar12, KLF14, GADS+16]), the replica

nodes are selected from the trusted friends of u. De Salve et al. [DSDGR16, DSGR17]

discussed that there is a strong relationship between each user and its direct friends

by considering online times patterns. They showed in their experiments that the

stronger ties exist between a user and its friends, the more probable those users are

similar in their online times. Also, they concluded that users have more probability

to be online when at least 10 of their Dunbar friends [Dun98] are online. Dunbar

friends are defined as the direct friends of a user with strong tie strength, where the

tie in OSNs is measured as the contact frequency or the number of direct interactions

and the number of social interactions such as posts, comments and tags.

4.4.4 Searching

An important feature, which all OSNs should support, is a mechanism to enable

users to search for their friends from social life or find new friends based on common

interests. In centralized architectures, enabling this feature is possible without too

much effort as the list of users and the metadata related to each user is stored

centrally and executing queries on stored data to extract required results is possible.

But in P2P architectures where data is stored decentralized, executing such queries

efficiently is hard to achieve. Therefore, we need a mechanism to relate each data

item to its owner and determine each user by its interests based on what he/she

had published to enable efficient searching. In meanwhile, users’ privacy should be
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preserved and the relations between them should not reveal any information.

One of the ways for annotating content in OSNs is data tagging. In [GSS08], the

authors introduced a tagging approach for decentralized environments, which is

based on vector space model [SWY75], to characterize users, tags and resources.

This approach can be applied to our decentralized OSN as it can provide the

requirements we need for our architecture. In this framework, each feature (user,

tag or resource) is represented as a feature vector and the weight of elements is

calculated as a combination of item-to-item frequency and inverse item frequency. Then

the similarity between feature vectors is calculated based on the common notion of

IR-style cosine measure [NTW06]. The users which have bigger similarity values

can be considered as users with common interests based on what they have tagged

on their published data.

To preserve users’ privacy in our search framework, we can use unique identi-

fiers for users, tags and resources. This identifiers can be obtained from a hashed

value of a unique attribute of the features and should be stored encrypted in our

overlay. Another way to protect the identifiers and to hide the relations between

each identifier and its main source is to K-anonymize each identifier [Swe02].

4.5 Requirements of a privacy-enabled approach for

healthcare online social networks

In Section 4.4 we explained how to construct the required foundations of a P2P

architecture, which preserves users’ data by distributing and storing it on users’

storages. It also enables users to apply a broadcast encryption approach to their

private data whenever needed. The privacy requirements of Healthcare online

Social Networks (HSNs) are almost the same with the privacy requirements of

general-purpose OSNs. In both environments, users have some concerns about

how their data is accessed and for which purposes their data can be used. However,
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there are some differences between these two types of OSNs. In this section, we

investigate the HSN requirements.

4.5.1 Privacy Policies

The users of HSNs have more privacy concerns in comparison with general-purpose

OSNs as the data which is stored on HSN storages are related to health conditions

of users and are needed to be kept as private as possible. In order to know how

existing HSNs respect to their users’ concerns, we investigate the privacy policies

of four known HSNs, which have a reasonable number of active users:

• PatientsLikeMe1: a sharing web site with the aim of providing a platform for

patients to interact with each other and benefit from each others’ experiences.

• Sermo2: a platform to enable doctors to virtually meet each other and exchange

their knowledge.

• Inspire3: an online community for patients, family members, caregivers and

health professionals, which is provided by ClinicaHealth, Inc.

• QuantiaMD4: an online physicians’ community provided by Aptus Health

Holdings, Inc.

Advertisement and Third party companies. All the above platforms need user reg-

istration to let them write comments, communicate with other users, post messages,

upload photos, etc. In the process of registration, the users are required to input

personal information about themselves which is stored and kept in companies’

servers. In the privacy policy of all above companies, it is stated that the personal

1https://www.patientslikeme.com/
2http://www.sermo.com/
3https://www.inspire.com/
4https://secure.quantiamd.com/
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information of the users would be provided for third parties with whom the com-

pany has business relationship and the company’s sponsors. Also, in some special

cases, users’ information would be accessible to governments or other entities in

connection with a legal process. Interestingly, the companies assert that the users

themselves are responsible for what they share in the platforms and there is no

guarantee to keep their data private.

In the privacy policy of PatientsLikeMe, it is stated that “Members are encour-

aged to share health information but should consider that the more information

that is entered, the more likely it is that a Member could be located or identified”

[Tea20b].

Cookies and session cookies are the other technologies which are used in above

platforms in order to not only improve their platform’s functionality, but also to

track the users’ behavior in seeing advertisements provided by third parties and

as its result, to improve the advertisement policies. Besides these technologies,

Inspire uses the “tracking feature of Google AdWords to measure the effectiveness

of AdWords advertisements” [Tea20a].

Account deactivation. In all the introduced platforms, there is no option for ac-

count deactivation in the user profile and if a user wants to deactivate her account,

it can be done by sending an email to the provider with a keyword like “DEACTI-

VATE” in its subject line. However, deactivating an account does not mean user

data also is deleted from the servers. In the privacy policy of PatientsLikeMe, it

is stated that “If a Member chooses to deactivate their account, PatientsLikeMe

will not display or sell the Members Personal Data as of the date of deactivation.

However, the Members Personal Data, including Shared and Restricted Data, will

remain in the system unless you contact our community team to request that your

data be deleted.” [Tea20b].
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Opt-out options. As a user is registered to one of the introduced platforms, her

information is available for third parties and companies’ sponsors, as they stated in

their privacy policy, and there is no opt-out option for users to disallow the company

in selling their information to third parties. In privacy policy of PatientsLikeMe, it

is stated that “When a Member chooses to share Personal Information via a free text

field (e.g. forum, treatment evaluations, annotations, journals, feeds and adverse

event reports) and photos or images, the information shall be treated as Shared

Data” [Tea20b]. The only option which is provided in Sermo is that “We may

then provide our partners with engagement effectiveness metrics that include the

sharing of some minimal personal data for performance assessment purposes. To

the extent required by law, we will collect your explicit consent prior to providing

such identifiable information” [Tea20c].

Merging. In the privacy policy of all above companies it is stated that users’ data

including personal information collected from them would be completely transfered

to another company which buys the company as a result of sale, acquisition, merges

or bankruptcy. Upon merging, “PatientsLikeMe may transfer the Shared Data,

Restricted Data, and Platform Use Data to any successor to its business as a result

of any merger, acquisition, asset sale, bankruptcy proceeding, or similar transaction

or event, with such successor bound by the terms of this Privacy Policy with respect

to its use and disclosure of such information” [Tea20b], “ClinicaHealth will seek

to obligate the acquiring company to use any personal information transferred by

this Site in a manner consistent with this Privacy Statement, but cannot guarantee

that it will be able to impose that requirement, or that the acquiring company will

comply” [Tea20a].

All the above items clearly demonstrate that users do not have any control over

their personal data as the data would be stored in the companies’ storages and

there is even no settings or options for the users to define access levels for their data.
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Moreover, user data is accessible by third-party companies for advertisement and

research purposes upon the user’s registration. While in the P2P platform that we

introduced in the previous sections, user data is stored on the storages under their

own control and the users can also define fine-grained access levels for each part of

their data to determine who can access to what data. Furthermore, users can delete

their shared data whenever they want and remove accesses just by defining new

keys for the data items. Therefore, it is reasonable to apply our P2P architecture to

HSN platforms to preserve users’ privacy.

4.5.2 Friend and group recommendation

As we stated in Section 4.3, the main difference between HSNs and general-purpose

OSNs is in the type of friend relationships between users. Based on the types

of relations in HSNs, which are expert-expert, patient-patient and patient-expert, a

powerful searching mechanism is strongly needed in decentralized HSNs to enable

the users to find others which they don’t know before but have common health

problems or common expertises. The approach which was discussed in Section 4.4.4

can be applied to decentralized HSNs to support the search feature. When a new

user wants to join the platform, she should define her role in the HSN as patient

or expert. Then the user should selects some attributes for herself from the tag set

T. The attributes are stored as tags and annotations for the user. For example, if a

user, which has some heart problems and wants to join the platform to benefit from

the experiences of other user with same problem and be tracked by an expert, she

should introduce herself as a patient and assign herself some attributes about heart

problems from the existing tag set T. The profile of the user is interpreted as the

resource in our search framework which is tagged with appropriate attributes. The

tags help users to find other patients and experts related to their health problems.

Moreover, by combining the results of extracted tags related to specific users with

extracted resources related to specific tags, we can find communities of users which
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annotated themselves with tags related to the same health problems. Thus, new

users can join to the communities of existing patients and experts with the same

concerns.

4.6 Conclusion

In this chapter, we reviewed the existing solutions which have been presented

to overcome the privacy problems which Online Social Network (OSN) users are

facing with. A significant number of these solutions try to preserve user data by

applying encryption mechanisms to existing client-server architectures. This type

of solution is suitable for general-purpose OSNs which their services are freely

available for their users. However, user data is controlled centrally by a unique

authority. Therefore, decentralized approaches try to store user data on the servers

controlled by the users and provide additional features such as enabling P2P and

direct communications between users. Hybrid approaches try to combine these two

approaches by encrypting just sensitive data and storing it on trusted servers.

The solution which should be applied to the OSN platform depends on the type

of relationship between the users and the features which the OSN should provide

for their users. By investigating the privacy policy of well-known general-purpose

OSNs as well as Healthcare Social Networks (HSNs), we observe that the users are

responsible for what they share on online platforms and the providers make user

data available for third-party companies for advertisement and research purposes

upon user’s registration. Therefore, we recommend decentralized solutions to

enable the users to have full control over their own data. However, defining a

practical decentralized approach for OSNs is possible by overcoming the existing

challenges which are explained in this paper. Also, in order to be able to apply

a decentralized architecture to HSNs, a powerful search, and friend and group

recommendation is needed as the friendship relations are established based on
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common health problems or common expertises, and not based on the friendships

in social life.

In Chapters 5 and 6, we will present a solution for storing users’ data securely

on untrusted content-addressable storage servers and provide partial sharing/sub-

setting in the filesystem level. That is our first step for designing and implementing

a distributed private online social network.
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Datta. Peerson: P2P social networking: early experiences and insights.

In Proceedings of the Second ACM EuroSys Workshop on Social Network

Systems, pages 46–52. ACM, 2009.

[Car10] Nicholas Carlson. Letter about privacy concerns of google

buzz. https://www.priv.gc.ca/media/nr-c/2010/let_100420_e.

asp, April 2010.

[Cha16] Deborah H Charbonneau. Privacy practices of health social network-

ing sites: Implications for privacy and data security in online cancer

communities. Computers, informatics, nursing: CIN, 2016.

[CS05] Yacine Challal and Hamida Seba. Group key management proto-

cols: A novel taxonomy. International journal of information technology,

2(1):105–118, 2005.

128

https://www.priv.gc.ca/media/nr-c/2010/let_100420_e.asp
https://www.priv.gc.ca/media/nr-c/2010/let_100420_e.asp
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Chapter 5

Challenges in designing a distributed

cryptographic file system
(This chapter is based on a paper published in Twenty-seventh International Work-

shop on Security Protocols, Trinity College, Cambridge, UK, April 2019 [BJA19])

Private information about individuals is, today, stored in centralized repositories

that must be trusted fully to perform access control faithfully. Alternative ap-

proaches have been proposed that distribute data in peer-to-peer networks, but

they lack the availability required by real-world systems that process personal

information. Online social networks, censorship resistance systems, document

redaction systems and health care information systems have apparently-disparate

requirements for confidentiality, integrity and availability. However, we believe

that these problems are tractable if re-cast as filesystems problems, with a research

goal of developing filesystems that incorporate both centralized and distributed

components without sacrificing user privacy.

The four use cases we have identified have differing, even contradictory, require-

ments (Section 5.1). For example, the requirement for centralized auditing of access

to health care data is in direct opposition to the needs of a censorship-resistant

online social network. However, we believe that there is a set of filesystems and

cryptographic techniques that can be employed together, in various combinations,

137



to meet each use case’s requirements individually.

Techniques from modern copy-on-write filesystems can be combined with cryp-

tographic capabilities, convergent encryption and distributed systems concepts in

order to implement filesystem primitives with untrusted storage at global scale

(Section 5.2). Untrusted block stores may be centralized for high performance

or distributed for availability in the face of a censor, with local storage acting as

either a cache or a seed as appropriate. Subsets of both files and directory trees

can be selectively shared among users and applications, with mutability controlled

by application-specific policy enforced only on user- or organization-controlled

systems. Separating the control plane of policy enforcement from the data plane

of bulk storage yields a hybrid filesystem that can be applied to centralized or

distributed use cases.

We have begun to build a prototype of such a hybrid filesystem: UPSS: the

user-centric private sharing system. This filesystem can be accessed as a traditional

Unix filesystem or — perhaps more compellingly — incorporated directly into

applications as a library. The UPSS API allows applications to interact with the

system without knowledge of underlying structures such as the storage medium,

and to provide more sophisticated sharing protocols than can be supported by the

traditional POSIX filesystem API. Combining the research in both filesystems and

security protocols, the UPSS project strives to enable systems with rich collaboration

and strong user control in contexts as disparate as health care and censorship-

resistant social networks.

5.1 Motivation: use cases

The requirements for our privacy-preserving distributed filesystem stem from four

use cases that are not well-served by the state of the art:

• online social networking with untrusted service providers,
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• censorship-resistant social networking with network partitioning,

• corporate file sharing with redaction integrity and

• health care data sharing with privacy and audit requirements.

A summary of the four use cases’ requirements can be found in Table 5.1.

Table 5.1: Requirements derived from OSN (S), censorship-resistant network (C),

redaction integrity (R) and health care (H) use cases

Requirement S C R H

High availability (connected network) ! ! !

Availability in network partition !

Untrusted storage ! ! !

Partial/subset sharing ! ! ! !

Scalable to large user base ! ! !

Sharing reciprocity (“merge requests”) ! ! ! !

Peer-to-peer storage and caching !

Access auditing !

5.1.1 Online social network

General-purpose online social networks require high availability, frictionless content

sharing and high overall standards for ease of use. Users — and the applications

they employ — interact with shared content; any social application platform must

be able to provide this access while still allowing for user control over that sharing.

In addition to the above, however, it is desirable for any design incorporating

centralized elements to not trust the provider. That is, although a central store of data

may be required for availability and performance reasons, that provider need not

have access to the plaintext of users’ data.
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As we describe in Section 5.2.1, it is possible to share immutable directory trees

among users of a centralized data store while maintaining strong confidentiality, in-

tegrity and availability properties. This can be accomplished with well-understood

cryptographic and filesystem techniques. The challenge of building a practical

OSN from these raw materials is in the handling of shared mutable content. It must

be possible to describe mutation in terms of operations that can be checked for

consistency when performed by multiple authorized users. For example, updating

a tree of shared content can be expressed as a “merge request” that replaces one

immutable tree with another one, as long as the new tree references the original as

its predecessor.

Thus, we make the following observations about the requirements for a privacy-

preserving distributed filesystem being used as the basis for an OSN:

1. The requirement for high availability rules out techniques that base their

security and functionality guarantees on the use of peer-to-peer networks —

some centralized storage may be required to achieve better performance.

2. Centralized providers must only have access to encrypted data, ideally with-

out information about metadata such as file sizes.

3. Users should be able to easily delegate access to shared content, both to

applications and to other users.

4. The requirement for massively scalable performance rules out techniques that

impose heavy computational or network burdens on servers, such as secure

multi-party computation or private information retrieval.

5. It should be possible to manage mutable directory trees with operations that

can be checked for consistency, e.g., “merge requests”.
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5.1.2 Censorship-resistant social networking

Reliable and widely adopted information systems need to be resilient against any

censors by authorities such as governments. Decentralization of server modules

could be an effective approach for this issue, as any central point is a kind of weak-

ness for the system. Inevitably, most systems contain centralized management

and decision making modules, for example, user authorization on the cloud stor-

age should be done centrally. Peer-to-peer connections are a solution to reduce

the risk of being blocked. Along with this idea, caching techniques are another

effective ways to improve system’s high availability. Thus, to provide a reliable

and safe censorship-resistant information system, we can accommodate the follow-

ing fundamentals about the system’s underlying filesystem to support the stated

requirements:

1. The requirement for decentralization leads to a different sharing protocol on

the filesystem that lets users to have peer-to-peer data sharing. Necessarily,

we need a backup storage for those cases in which one or more principals are

offline. The sharing approach should handle backups as well. The connection

protocol should work for different users behind NATs (Network Address

Translators). Similar inspiring protocols have been introduced before, such

as Session Traversal Utilities for NAT (STUN) [RMMW08], for finding users’

public IP addresses and ports. Figure 5.1 shows this situation, in which the

connection between the users and the cloud storage account is blocked and

users are able to interact with each other in a peer-to-peer environment.

2. Along with peer-to-peer connections, availability in a network partition can be

supported by different caching techniques which support various periods of

time for cached data. The filesystem can handle data caching based on users’

share requests. In this way, having permanent cached data is also possible.

Expired cached data could be removed in different ways such as having a
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Figure 5.1: Applied censorship to the central point of the system

garbage collector that runs periodically.

5.1.3 Redaction with integrity

A common requirement for large organizations — both commercial and governmen-

tal — is the ability to release documents and information selectively in response to

information requests and legal discovery. Current approaches to such information

sharing involve the redaction of documents and a one-way release of information.

Linking redacted documents to their original versions is a manual process that

provides little technical assurance of integrity. A chain of custody for such infor-

mation may be asserted by the releasing organization but may not, using current

techniques, be verified by the receiving party.

It is desirable to be able to release portions of documents in a manner that

provides strong integrity verification and linking to the original document. Sharing

part of a file or a directory hierarchy should be efficient and should allow linking to
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commitments for unredacted versions without revealing any redacted information.

In addition, it may be desirable to provide a mechanism for changes to released

content to be shared back to the original, unredacted document, enabling new com-

munication patterns and — potentially — better strategies for internal information

compartmentalization. We can thus observe that:

1. Directory hierarchies and even files should be sharable in part, as subsets of

their unredacted originals.

2. Shared subsets should be linkable to original, unredacted documents with

strong integrity.

3. Changes to redacted documents should be re-sharable back to redacting

parties in a way that permits two-way collaboration over partial views.

5.1.4 Health care data sharing

Health care information systems have several requirements in common with OSNs

such as high availability and data sharing within the network. One additional

requirement, however, is the need for auditing of accesses to patient data. This

acts as a disincentive for health care workers to access the private information of

patients they are not caring for. However, in the context of a privacy-preserving

system, the requirement for audit records should not cause arbitrary patient data to

be exposed to the network security team.

One barrier to innovation in the health care context is the dichotomy between

“trusted” and “untrusted” systems and the enormous effort required to certify a

system as “trusted”. A filesystem that afforded the ability to securely share strict

subsets of patient data could enable new innovations. Applications running on

such a platform could be executed with lower stakes, as the impact of an application

accidentally leaking data without context, e.g., image data with no patient identifiers

attached, would be less than if the application implicitly had access to complete
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patient records. This is anologous on the partial data sharing requirement described

in Section 5.1.3, but in a very different environment.

We thus make the following observations about the challenges of building health

information systems atop a privacy-preserving distributed filesystem:

1. Confidentiality must be maintained from both system administrators and

health care workers who do not require patients’ information in the course of

providing care.

2. Access to patient data should be auditable without revealing patient informa-

tion to auditors.

3. It should be possible to provide new applications with access to data subsets

without implying access to complete patient records.

5.2 UPSS: the user-centric private sharing system

To design a system which can provide a fundamental basis for the majority of the

requirements discussed in Section 5.1, we use some key ideas of existing systems,

mainly discussed in Section 5.3, to design our system as a new filesystem asso-

ciated with efficient sharing mechanism. By introducing UPSS, we try to meet

confidentiality, high availability, data integrity, and an efficient sharing mechanism,

all integrated into a system to serve a wide range of applications.

To support confidentiality, we use cryptographic techniques to provide an end-

to-end sharing system, which stores user data in a secure way on the storage, with

user-controlled privacy. To provide a high level of availability, users’ storages or

cloud storage accounts can be used as temporary or even permanent caches to

maintain other users’ data online. Consequently, this data replication leads to data

inconsistency problem which is reduced to a version control problem by storing

user data in immutable objects in our system. UPSS suggests a content-addressing
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mechanism for data blocks on storage through cryptographic hashes obtained from

blocks’ content and their physical locations on storage.

Our system is constructed out of four main layers, which are depicted in Fig-

ure 5.2. In this section, we discuss UPSS, a User-centric Private Sharing System in

more detail and explain how UPSS can meet the discussed requirements.

Encrypted Block Store

Local Remote Private cloud

Immutable DAG

Mutable FS

prev

User access

Unix VFS

UPSS library API

ApplicationFUSE VFS

POSIX system calls UI

MutableDirectory

currentVersion
MutableFile

currentVersion

Figure 5.2: Layers in the UPSS prototype. Encrypted block store stores ciphertext

blocks, which are generated from plaintext blocks in immutable Merkle DAGs

(thick arrows represent block pointers). A mutable filesystem is exposed as a library

API, which can be consumed directly by applications or adapted to a conventional

filesystem API.
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5.2.1 Immutable DAGs

Data is stored in UPSS as a set of fixed-size immutable encrypted blocks. These

blocks, which are encrypted and named according to a hash of their ciphertext,

are linked together in a Merkle DAG (Directed Acyclic Graph). Merkle DAGs

are used to describe files, directories and versions of both. Immutable blocks

are encrypted using symmetric keys derived from cryptographic hashes of their

content, a technique known as convergent encryption [DAB+02], and named using

the cryptographic hash of their ciphertext, a technique known as content-addressable

storage. The name of a block and the key that can be used to access it are referred to

as a block pointer BPB = (nB, kB), given by:

kB = h(B)

nB = h
(
EkB{B}

)

where B is the plaintext block, E is a deterministic symmetric encryption, nB is the

name of a block and kB is the key used to decrypt it. A block pointer can thus be

seen as a cryptographic capability [DVH66] to read a block, though not necessarily

to modify it (see Section 5.2.3). The block pointer to the root node of a file or

directory implies the ability to access arbitrary quantities of content, up to an entire

filesystem.

Convergent encryption does not provide semantic security as it is vulnerable to

content-guessing attacks [BDPR98]. However, the de-duplication effect of the con-

vergent encryption makes it suitable for storage efficiency. For making a trade-off

between the security and the storage efficiency, Stanek et al. [SSAK14] introduced a

convergent threshold cryptosystem in which popular files — identical files that are

uploaded to the storage server by many users — are encrypted using convergent

encryption, while unpopular files are protected using another symmetric encryption
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around the inner convergent encryption. However, for enabling a the storage server

to identify the popular and unpopular files, two central server components need

to be fully trusted by the users, which is the opposite of our target. Currently, we

are not using the convergent threshold encryption. However, we are embedding

random padding inside the blocks with content size lower than the UPSS’s block

size. We can choose the deterministic and non-deterministic random padding,

where in the former case the de-duplication is enabled.

By defining blocks to be immutable, we reduce the data inconsistency problem

to a version control problem. A file modification causes a new version of the file

to be created and this modification affects the whole path up to the parent blocks

until the root block. We borrowed this feature from the Copy-on-Write (CoW) file

systems. The modifications are done with the block size granularity, means that

even if one bit in a block is modified, a new block is generated and the CoW updates

are applied. Version controls are met by keeping a pointer to the previous version

of the modified files in their corresponding root blocks.

The symmetric key of each block is stored inside its preceding block. In the

same way, the symmetric key of the root block in a sub-tree is stored in the blocks

of the parent directory. In this way, we avoid any central server to keep the chain of

our decryption keys. Moreover, we avoid duplication of same blocks generated by

different users as the blocks would eventually have the same ciphertext.

5.2.2 Mutable Filesystem API

All the details about the immutable DAGs and the underlying storage model

are hidden from the top level applications. UPSS provides an object view of the

underlying encrypted blocks for the applications and enables them to interact with

the system through the provided API. Each file and directory in mutable filesystem

layer is interpreted as an object called FSObject. The FSObjects are in-memory

objects constituting the mutable DAGs for our system. In this layer, the following
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metadata attributes are defined and used for each file or directory: access time,

creation time and the modification time.

Applications interact with UPSS using FSObject references. In case of any

modification on the content of a file or directory, the inner state of the corresponding

FSObject is changed and the modifications is applied to the underlying layers to

reflect the file/directory’s modification. However, the object reference remains the

same. This process is done in background and is transparent from the top level

applications. The results can be returned by callback functions provided by the

API’s methods. This approach can also make a non-blocking modification process

from the applications’ viewpoint running on the upper level.

The FSObjects enables us to have structured files, which can support some

functionalities not supported by the classical Unix filesystems that interpret the

files as unstructured byte arrays. One of the functionalities supported by UPSS

is guaranteeing the data consistency of the shared files between users. To do so,

the system should define a consistency model, suitable for distributed systems.

One applicable solution is to define the file structures as a Conflict-free Replicated

Data Type (CRDT) [SPBZ11b, SPBZ11a, KB17] to guarantee that shared files on

different replicas converge, by defining a Strong Eventual Consistency (SEC) model,

which leverages mathematical properties such as monotonicity in a semi-lattice

and/or commutativity, which ensure the absence of conflict. An add-only DAG

is an example of a CRDT data type [SPBZ11a] suitable for a distributed filesystem

with file sharing and redacting integrity.

5.2.3 Share Control Module

Providing a mechanism to share data, either on a multiuser system or over the

network in distributed systems, is a crucial feature for various information systems.

According to the requirements described in Section 5.1, a sharing module on top of

our filesystem is responsible to support different scenarios for both centralized and
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peer-to-peer data sharing. To have a very flexible, and also extensible design for the

future, we considered the sharing module as another application above the UPSS

API library, shown in Figure 5.3, along with other applications such as Unix VFS or

FUSE VFS, etc. Thus, the subsequent integrated system potentially supports a wide

range of required use cases for information systems.

As a primary prototype, this module is divided into two principal sub-modules

that handle share requests and data transmissions separately. The share control

module is an application, mainly responsible to manage share requests, in terms

of the sharing protocol, version control, users’ privileges and access controls. This

module receives or sends share requests. Once the request is processed and the user

and privileges are authorized, the share control module makes related modification

on shared data through the UPSS API.

On the other hand, data transmission is accomplished using the sharing block

store which communicates with the local block store or the local caches of the

system and other remote block stores. Figure 5.3 represents this module. These

features distinguish UPSS from the other systems described in Section 5.3.

As another important issue that rises about data sharing, this module handles

users’ access controls. When we talk about data sharing between users and their

privacy, accessibility appears as the other important issue. In UPSS, the concepts

of permissions and privileges are raised in different layers and vary based on the

scope in which the user is defined. For example, for local users in a multiuser

system, a file can be shared with traditional POSIX permissions such as “read”,

“write” and “execute”. However, for non-local users in the network involved with

share and merge requests, we need to define additional policies and definitions to

provide a user-centered privacy scheme through access controls. For example, any

user can share data with others, but nobody obtains or modifies data without the

right privileges. Data modification would be done after user authorization, which

can be achieved using cryptographic techniques such as public keys and certificates.
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POSIX system calls UI
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Figure 5.3: Sharing module includes two sub-modules, share control module and

sharing remote block store, to manage share procedure and data transmission

control

For remote users, modifying data could be followed with merge or pull requests.

The sharing protocol considers users’ access rights before the main procedure of the

request is accomplished. The rest of the procedure would be done in the mutable

layer, as it is implicitly shown in Section 5.2.2. The corresponding mutable block

would be added to the mutable Merkle DAG associated with the block pointer to its

ciphertext block. Here, the application of block pointers is identical to capabilities

[DVH66], as unforgeable references to ciphertext blocks of our system. Therefore,

we can see different security approaches in UPSS to guarantee user privacy and

data confidentiality.
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5.2.4 VFS layer(s)

Classical filesystem abstractions — files, directories and directory entries — rep-

resent a subset of the abstractions that can be represented in UPSS, but they are

important abstractions. These can be exposed to applications and users using exist-

ing virtual filesystem (VFS) layers provided in userspace (FUSE) or kernels (Unix

VFS). Higher-level applications may prefer to interact directly with the UPSS API,

but existing applications can work with UPSS without modification via an existing

VFS.

Requests from VFS layers can be addressed with inode numbers which are

the low-level files or directories identifiers. Mapping the low-level names to UPSS

entities enables the VFS and FUSE APIs to interact with UPSS. Besides the mappings

from low-level names to object references, VFS layers also provide metadata that

is only meaningful for the local system and its users, such as permissions for local

users.

5.3 Related Work

As a primary target of our study, we investigated existing privacy-preserving

approaches mainly in online social networks. First, we started with studying

different systems and modules regardless of their type, scope and the system

level in which they are integrated and employed, to find their key ideas, cons,

and pros. The only common feature between all of them is their effort to place

additional user privacy, especially against OSN server providers. As we expanded

our target to have a secure and privacy-preserving filesystem, we continued with

an investigation on several filesystems, focusing on their provided security features.

We summarize these studies starting from OSN tools to filesystems.
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5.3.1 Online Social Network Systems and Tool

Privacy on social networks can be discussed in different ways. A well-known

challenge is protecting users’ privacy against each other. However protecting users’

privacy against OSN servers and providers is also an important issue. Therefore,

attempts to improve privacy in centralized OSN systems appeared. Because of the

centralized architecture of most adopted OSNs, such as Facebook and Google Drive,

primary proposed approaches tended to be centralized in design. Lockr [TGS+08],

FlyByNight [LB08], NOYB [GTF08], Scramble [BKW11] and CP2 [RMJ13], all can

be counted as important and effective tools in this category. In addition to cen-

tralization, we can categorize privacy countermeasures and approaches in other

ways. Using cryptographic techniques or providing user-controlled privacy are

other effective features.

Lockr [TGS+08] and Scramble [BKW11] are browser plug-ins that restrict access

through user-defined access control lists. Although this feature makes a flexible

privacy scheme, it still suffers from storing plaintext data on OSN servers, in-

cluding user data and users relationships. FlybyNight [LB08] and CP2 (short for

“Cryptographic privacy protection”) [RMJ13] protect user data by some encryption

mechanism with this difference that CP2 can also protect the relationships between

users by determining the users with some unique pseudonyms. In NOYB [GTF08],

users’ profiles are partitioned into smaller clusters called atoms, and the atoms of

one user are substituted with atoms of another user in the same cluster pseudo-

randomly, and then the encrypted index of each atom is stored in a dictionary. The

authors of FaceCloak [LXH09], introduced a mechanism in which the users’ private

data is stored encrypted in a user-trusted third-party server, while some other fake

data related to encrypted data are stored in OSN servers in plain-text format. One

important point about using data encryption in communication with OSNs is that

these systems and their providers should allow encrypted messages and data to

be stored or transmitted. Moreover, data encryption should not affect OSNs’ main
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functionalities such as search use cases.

Another beneficial feature toward real privacy for users is user-controlled or

user-centered privacy. For example, Lockr, FaceCloak, and Scramble, allow users to

define and control their preferred privacy mainly through access control lists.

As it is stated above, the centralized nature of OSNs in which all users’ data

is accessible by a single entity, i.e., OSN provider, encourages the researchers to

change their mind about how to preserve users’ data, which leads to a shift from

client-server to a decentralized architecture coupled with encryption so that the

users can protect their data. Diaspora [BHG+12] is an example of such architecture

for OSNs.

In decentralized P2P systems, connectivity and high availability are other is-

sues that bring several other challenges to be discussed, along with other existing

problems such as privacy. PeerSoN (short for “P2P Social Networking”) [BSVD09] ,

Safebook [Str09] and Porkut [NPA10] are instances of decentralized OSNs that have

tried to come up with solving some parts of these challenges. PeerSoN [BSVD09]

tried to overcome connectivity and privacy limitations. The main properties of Peer-

SoN are encryption, decentralization, and direct data exchange. Safebook [Str09] is

another system that tried to protect users, from potential privacy violations, against

providers. It relies on the concept “peers”, which points to the cooperation between

users on the social network. Although Safebook has presented a decentralized

structure, it still relies on central servers that keep pseudonyms of interacting nodes

in the network. Also, there are criticisms of its privacy scheme. Porkut [NPA10], as

another example in this category, focuses mainly on data availability by replicating

users’ data on trusted friends’ storages. Also, a privacy preserving indexing mecha-

nism is introduced which facilitates content discovery among friends. The indexes

are stored on a Distributed Hash Table (DHT) [SMK+01] in the form of (key, value)

pairs. As another different example, we can consider Cachet [NJM+12] which is an

improvement of DECENT [JNM+12]. Cachet proposed a decentralized architecture

153



to be used in OSNs, which protects confidentiality by an attribute-based encryption.

It also provides integrity and availability by digital signature and gossip-based

social caching algorithm, respectively.

However, all the discussed decentralized approaches rely on distributed data

structures such as DHTs to enable the users to interact with each other and discover

other users and resources. The nodes which construct the DHT network should be

trusted to keep critical information about the users and the network topology.

To summarize, in both centralized and decentralized architecture of discussed

OSNs, we can still see unaddressed privacy, availability, and connectivity problems.

Despite all efforts done to overcome these restrictive issues, proposed approaches

seem superficial rather than beneficial, for our requirements. This matter leads

us to think about lower layers of the system, where we are involved with the

filesystem and its communication with applications in higher layers. If we can

provide confidentiality, data integrity, and availability at the same level as the

filesystem, higher level applications can benefit from these properties even while

interacting with the filesystem using standard POSIX APIs.

5.3.2 File systems

In most traditional filesystems, data integrity and availability is preferred over

confidentiality and privacy. For several years, the concept of privacy was something

beyond filesystems functionalities, and data writing and retrieval throughput was

the most important feature. As an example, (ZFS) [BAH+03] is placed in the group

of efficient widely adopted filesystems through Copy-on-Write (CoW) techniques.

Thus, distributed filesystems were introduced with the main target of providing

high availability along with the former feature. Examples of such filesystems are

Coda [SKK+90], Ivy [MMGC02] and Ori [MBHM13].

Coda [SKK+90] is one of the inspiring distributed filesystems with the idea of

shared data repositories. It retrieves data and resolves conflicts using the concept
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called accessible volume storage group (AVSG) as data replicas. Similar to Coda, Ivy

[MMGC02], as a multi-user peer-to-peer filesystem, has focused on data availability

with a different approach which relies on private snapshots from filesystem for

each participant. Ivy stores logs from the state of the filesystem in a distributed

hash table, called DHash [DKK+01]. A log constituted of the dedicated private

snapshot for each user, contains all user’s modifications to filesystem data and

meta-data. Thus, we can find signs of user privacy in Ivy’s approach, although

confidentiality has not been stated as its main feature. We can find these features

collected in Ori [MBHM13], plus its own data sharing mechanism, grafting, across

user multiple devices. Synchronization, failures handling and data recovery, are

expanded and emphasized in Ori more than two previous stated filesystems. Over

time, filesystems and other sharing stores expanded their functionalities, such as

content-addressing, based on new requirements in the community. As a modern

filesystem, IPFS [Ben14] synthesizes the key successful ideas behind systems such

as DHTs [SMK+01], BitTorrent [Coh03], Git [LM12], and SFS [MK98]. Moreover,

IPFS deals with encrypted mutable objects to improve confidentiality.

Like UPSS, Tahoe [WOW08] is a cryptographic filesystem that stores the content

encrypted in Merkle DAGs and provides access control by cryptographic capabili-

ties. In Tahoe’s design, both mutability and immutability is supported, which the

later case may cause data inconsistency in collaborative environments. The files are

encrypted with one symmetric key and they are erasure coded using Reed-Solomon

codes [Riz97] into N shares to be written to N servers. However, Tahoe is de-

signed for file sharing and archival storage; using Tahoe with POSIX-like read-write

workloads can cause “its performance to crawl to a halt” [tah20]. Having the files

encrypted with one key cannot provide the partial sharing/subsetting.

Having been inspired by discussed filesystems, we strongly believe that UPSS,

as a cryptographic content-addressable filesystem can serve typical filesystem

requirements associated with many of the modern requirements that are explained
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in Section 5.1. UPSS stores data in content-addressed fixed-length blocks and

controls block accessibility through its sharing module that supports both peer-to-

peer and client-server connections. The UPSS’s APIs, discussed in the Section 5.2,

provide a higher level of abstraction about the underlying storage model and enable

a variety of applications to use the system without any assumption about the

physical storage.

5.4 Conclusion

Distrustful information sharing is a common problem that is not well-addressed

by the existing state of the art. In online social networks, sharing any information

with friends requires sharing all information with a potentially-untrustworthy

provider. Countermeasures to the all-seeing provider are brittle, ineffectual or else

perform too poorly for general consumption. In the general social networking case,

users lose control of how widely their data is shared; the stakes are even higher

in censorship resistance scenarios. In environments with strong confidentiality

properties, conversely, a lack of secure sharing techniques stifles collaboration,

transparency and innovation. This is seen when organizations apply redaction

with no linkability to original data or when health-care authorities silo patient

information off from potentially-innovative applications.

One linkage among all four of these use cases is the need to share information se-

lectively and securely among parties without requiring complete trust. Any technique

for enabling such sharing must not be strictly one-way: it must provide the possi-

bility of reciprocation and collaboration. We have argued that all of these goals can

be met by recasting the above problems in terms of a privacy-preserving filesystem.

By decoupling storage from access control, a distributed user-centred filesystem

can provide confidentiality, integrity and availability properties to support systems

in all four of these use cases.
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Using encrypted fixed-length blocks in a content-addressable store, information

can be stored with untrusted providers, cached locally and/or distributed oppor-

tunistically via contact or peer-to-peer networks. Using convergent encryption and

Merkle DAGs, file and directory structures can be stored as immutable DAGs in a

manner that both preserves privacy and enables global deduplication. Higher-level

mutable filesystem objects can be maintained using higher-level sharing protocols

with application-specifiable authorization schemes. Finally, this filesystem can be

exposed to users via direct embedding within applications, via local Web frontends

or as a traditional filesystem within FUSE or a Unix VFS layer.

We are exploring these ideas in our prototype filesystem, UPSS: the user-centric

private sharing system. We believe that the availability of such a filesystem will

enable the development of applications and platforms that provide both strong

user privacy and rich collaborative sharing. Designing such systems may yet

demonstrate that sharing and security can go hand in hand.
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Chapter 6

UPSS: the user-centric private sharing

system
(This chapter is submitted as a paper to ACM Transaction on Storage (ACM TOS),

June 2020)

Across a broad spectrum of use cases, there is an acute need for private storage and

sharing, with strong security and performance properties. Existing systems provide

security or performance, with strong protection or ease of user-directed sharing, but

a failure to adequately address “both-and” requirements forces users to settle for

systems that do not fully meet their needs. This is true in environments as diverse

as social networking, electronic health records and surveillance data management.

Online social networking applications present users with a difficult choice be-

tween centralized systems with high levels of performance but weak privacy proper-

ties and distributed systems that attempt to provide stronger privacy properties but

lack reliability and practical levels of performance. The desirable scenario for users

is to provide them the ability to easily share arbitrary quantities of content with

others while maintaining a private-by-default posture. In particular, it is desirable

for a social networking system to ensure that the operators of network and storage

infrastructure have as little visibility as possible into the social interactions of users.

Contemporary approaches to health records include thick perimeters and high
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levels of trust in selected organizations and individuals. Such approaches introduce

needless risk even in an age of small systems with known players, and they do not

scale up to enable innovative health care ecosystems that improve outcomes without

placing patient information at risk. It is desirable to be able to share minimized

information — or indirect references to information — in such a way that access

can be audited without revealing patient details even to auditors.

In surveillance and law enforcement, there is often a need to redact identifying

or other operational details from surveillance imagery. While performing this

redaction, however, there is also a need to maintain a demonstrably strong chain

of custody from an original source image or video through to a redacted image

presented in a legal proceeding. Confidentiality is important in this scenario, but

so is the integrity of multiple versions of content and the linkages among them. In

Section 6.5, we will discuss how UPSS can address this requirement.

In all of these cases, what is needed is a mechanism for least-privileged storage of

information that facilitates simple sharing of arbitrary quantities of content at users’

discretion. Such a system should provide strong confidentiality and integrity prop-

erties, such that it can rely on commodity cloud services from untrusted providers.

We have built such a system in UPSS: the user-centric private sharing system, a

cryptographic filesystem designed to be “global first”, with no assumptions made

about the trustworthiness of storage infrastructure (Section 6.1) or even on com-

mon agreed-on definitions of users or user identities. Relying on key concepts

from capability systems [DVH66], distributed systems, log-structured filesystems

(Section 6.1.1) and revision control, we have developed a new approach to filesys-

tems (Section 6.2) that offers novel features while being usable in ways that are

compatible with existing applications.

We demonstrate the utility of this new approach to privacy-oriented filesystems,

conceptually described in [BJA19], via four case studies (Section 6.3): a comparison

with conventional Unix filesystems, locally (Section 6.3.2), remotely (Section 6.3.3)
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and globally (Section 6.3.4), and as the basis for a new model of private revision

control (Section 6.3.5). Through all of these case studies, we demonstrate that UPSS

provides a solid underpinning for new approaches to user-centric private data

storage and sharing, enabling users to benefit from both strong security and high

performance, with both private, least-privileged storage and simple user-directed

sharing.

6.1 Background

In this section, we define some concepts that are needed for a better understanding

of the remaining paper.

6.1.1 Preliminaries

In 1992, Rosenblum et al. designed a disk storage management technique called

Log-structured filesystem (LFS) [RO92] to improve the write performance of the

existing filesystems of the time, such as Fast File System (FFS) [MJLF84]. Log-

structured filesystems buffer large writes into memory and persist them to the disk

along with their metadata sequentially in big chunks called segments. In this way,

the disk rotation latency related to random accesses is avoided as all writes are done

sequentially. Therefore, the blocks related to a file are accessed sequentially.

Efforts on optimizing the procedure of writing on filesystems continued on

further popular filesystems such as ZFS [BAH+03], which employs the idea of

copy-on-write (COW), used in our filesystem, upss-fuse, as well. The main idea

of COW is to have immutable data, reducing the risks associated with concurrent

accesses to mutable state and enabling important techniques such as cryptographic

checksumming and greater parallelism. More specifically, when a data block is

needed to be copied from one address to another, a pointer to the source is created

for the target instead of actual copying, and the block is marked as read-only. In
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this way, all the read operations from the target are served by referring to the source

address. Upon writes in source or target, the block is copied to a new address,

and the pointers are updated. In this way, write procedures are postponed until

they actually are needed, which leads to performance improvement in the COW

filesystems.

Merkle DAG (Directed Acyclic Graph), which is a general version of a Merkle

tree, is a suitable data structure for managing files in filesystems such as ZFS

[BAH+03] and Btrfs [RBM13], or in version control systems such as Git. The nodes

of the Merkle DAG contain the cryptographic hashes of its children’s content, and

they also can contain some data. The root node can be used to compare different

Merkle DAGs. If the hash values of the root nodes of two Merkle DAGs would be

equal, it means that the two Merkle DAGs are identical. These features have made

Merkle DAGs useful to content-related procedures like data integrity checks on

filesystems.

6.2 UPSS: the user-centric private sharing system

UPSS is a private sharing system, which can provide confidentiality, integrity, and

availability properties. UPSS enables its users to share information selectively and

securely without requiring complete trust. The system is built from the best practices

of successful approaches such as version control systems, content-addressable

storage, and convergent encryption.

UPSS is designed in a layered architecture, shown in Figure 6.1. The block store

layer (Section 6.2.1) provides storage of immutable encrypted blocks. On top of

that, we have the immutable layer, described in Section 6.2.2, in which the relation

between the data items in various granularities is defined. Mutability is provided by

the in-memory mutable objects in the mutable filesystem layer (Section 6.2.3). The

public UPSS library API is the interaction point between applications and UPSS.
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Figure 6.1: The layered structure of UPSS.

6.2.1 BlockStore layer

As we have targeted UPSS to be used as a distributed system and to support

data sharing, its design includes a layer called block store, which is the API for

storing and retrieving data blocks, on and from the data storage. This layer has

a minimal interface, consisting of two main functions to read and write, and two

other functions for reporting the used blocks and outputting the block hashes. In

the current implementation, there is no garbage collector and this is left for future

work.

A block storage is a sea of encrypted blocks. This API supports local, remote, in-

memory and cloud data storage. We can have a local block store, which is writing

data on a local data storage, on a local system, or we can have a shared data storage

located on a remote system or on a cloud storage provider.

The write method accepts an encrypted block and generates the cryptographic
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hash of its content and a lookup operation is done on a map including the crypto-

graphic hashes of the previously stored encrypted blocks. The content is persisted to

the storage if its cryptographic hash does not exist in the map. This enables safe de-

duplication across many users even at a global scale. The generated cryptographic

hash is returned by the write method. The read method accepts the cryptographic

hash of a block and returns its corresponding encrypted block to the above layer.

The performance of read and write methods affects any other systems which are

using UPSS. We have implemented a caching block stores coupled with journaling

to write the blocks in faster block stores when possible. The caching block store

consists of two near and far stores, each of which is an implementation of the block

store. Upon finishing the writes in the near block store, the returned block pointer

is journaled to a local file and the write to the far block store, which is a more

expensive write, is done in background. In this way, we are providing non-blocking

writes in the caching block store and by journaling, we ensure that we are not

missing the expensive writes.

We have implemented a local block store for our system, which uses a local

file as the data storage. UPSS’ local block store can be a user’s storage medium,

or a temporary cache for other remote block stores, or permanent storage, such

as what is used in peer-to-peer systems in which everything is stored on the local

storages. It stores fixed-size encrypted blocks without any plaintext metadata.

Besides the local block store, we also have implemented amazon block store, that

is connected to Amazon S3 [AWS20] service, a remote block store, described in

Section 6.3.3.1, which is used as the storage integrated with our version control

system (Section 6.3.5), a memory block store for keeping everything in memory,

and a caching block store.

Listing 6.1 shows a caching block store that includes memory, local and remote

block stores.
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1 let memory_store = MemoryBlockStore ::new()?;

2 let local_store = LocalBlockStore ::new(file , block_size)?;

3 let remote_blockstore = RemoteBlockStore ::new(server_addr ,

block_size)?;

4 let l1_cache = CacheingBlockStore ::new(memory_store , local_store)

?;

5

6 let store = CacheingBlockStore ::new(l1_cache , remote_blockstore)?;

7

Listing 6.1: An example of creating a caching block store.

6.2.2 Immutable DAGs

In UPSS, each data item is stored as a set of fixed-size immutable encrypted blocks,

which are linked together in a DAG (Directed Acyclic Graph). For example, an

immutable file version can be represented as a tree of immutable blocks, a file’s

history as a DAG of versions and blocks, and a directory as a mapping from

names to files. Immutable blocks are encrypted using symmetric keys derived

from cryptographic hashes of their plaintext, a technique known as convergent

encryption [DAB+02, LCL+13, ASA17], and named using the cryptographic hash of

their ciphertext, a technique known as content-addressing. The name of a block and

the key that can be used to access it are referred to as a BlockPointer BPB = (nB, kB),

given by:

kB = h(B)

nB = h
(
EkB{B}

) (6.1)

In Equation (6.1), nB is the name of a block and kB is the key used to decrypt it.

A block pointer can thus be seen as a cryptographic capability [DVH66] to read a

block, though not necessarily to modify it. The block pointer to the root node of a

file or directory implies the ability to access arbitrary quantities of content, up to an
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entire directory tree in a filesystem. We integrate the convergent encryption with

optionally random padding to protect low-entropy block contents. UPSS supports

both deterministic and non-deterministic padding; De-duplication is only enabled

in the former case. UPSS defaults to SHA3 [Dwo15] algorithm for generating the

digests for the encrypted blocks, but the algorithm choice is not hard-coded in

the UPSS design and other hash functions can be used. We encrypt the blocks

using AES, which is a symmetric key algorithm. In the current design, we can

encrypt data blocks with 16, 24, or 32-byte keys using AES128, AES192, or AES256

algorithms, respectively. The hashing and encryption algorithms are embedded in

the block pointers to allow future cryptographic algorithm updates.

When fully convergent encryption is used (the UPSS default), de-duplication

is possible across multiple users, as the same content always hashes to the same

key, producing the same ciphertext. We reduce the data inconsistency problem to a

version control problem by defining blocks to be immutable. A content modification

causes a new version of the content to be created, and this modification affects the

parent block. This approach is similar to the update approach of copy-on-write

(COW) filesystems, which apply the updates all the way up until the root block.

UPSS keeps the old versions of content by storing a pointer to the previous version

of the modified content in their corresponding root blocks. Therefore, if the new

version of a block is not persisted to a block store yet, the older versions of the block

are accessible using the previous pointers until the updated version is ready to be

used.

6.2.3 Mutable Filesystem API

UPSS provides an object-oriented view of the underlying encrypted blocks and

enables the applications to interact with the system using the provided public API.

The traditional filesystem concepts such as files, directories, and directory trees

are implemented as in-memory objects that provide the mutability. Both File and
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Figure 6.2: The corresponding in-memory objects related to each file and directory.

Each in-memory object contains a Blob that keeps a list of copy-on-write references

to immutable in-memory Blocks.

Directory contents are managed by a binary Blob structure, which maps data into

immutable blocks via copy-on-write references. Figure 6.2 shows how we relate the

in-memory objects to files and directories.

In UPSS, all the modifications are handled in the mutable layer by updating

the in-memory objects, unless UPSS asks for persisting the objects explicitly. For

persisting a File or Directory, the list of BlockReferences, each of which points

to a Block, are persisted and their block pointers are added to a MetaVersion

structure. The final step is persisting the MetaVersion and adding or updating its

root block pointer in the object’s parent. Having the MetaVersion structure enables

us to implement partial sharing and redaction with intergrity check. However,

this feature is not fully implemented and we postponed it to the furure work (see

Section 6.5.2).

The process of persisting a MetaVersion is different from persisting data blocks.

The MetaVersion, which holds a list of block pointers to the encrypted data blocks,

is chunked into fixed-size encrypted blocks if its size is more than the UPSS’s block

size. The encrypted blocks related to the MetaVersion are linked together in a

linked list in which each block’s block pointer is embedded inside its preceding

block. A history of object versions is kept by the Prev pointers.
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UPSS is implemented as a library that can be linked directly into applications; a

simple example of such integration is shown in Listing 6.2. Currently, applications

integrating the UPSS library access it via Rust calling conventions, as the library is

written in Rust [Tea20a]. However, in the future, we will support other program-

ming languages such as C, Python and JavaScript/WASM via foreign function

interfaces as described in Section 6.5.1.

1 let store = LocalBlockStore ::new(file , block_size)?;

2 let fs = upss::UPSS::new(Box::new(store));

3

4 // [...]

5

6 let f = fs.new_file ()?;

7 f.write (& some_bytes)?;

8

Listing 6.2: An example of integrating the UPSS library directly into an application,

accessing FS objects via API calls.

6.3 Case studies

In this section, we demonstrate the practicality of UPSS via four case studies. Each

case study demonstrates UPSS’s qualitative ease of use as well as its quantitative

performance, with comparisons to other systems drawn where appropriate. These

four case studies are:

• UPSS as a local filesystem (Section 6.3.2),

• UPSS as a network filesystem (Section 6.3.3),

• UPSS as a global filesystem (Section 6.3.4) and

• UVC: UPSS as a version control system (Section 6.3.5).
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6.3.1 Benchmark description

We evaluated the cost of creating files and directories and reading and writing

from/into on-disk local and remote block stores. For evaluating file and directory

creation, we generated a user-defined number of files and directories, added them

to an ephemeral root directory and persisted the results into file-backed block stores.

For evaluating read and write operations, we generated 1000 files filled with

random data of size 4 KiB, the natural block size of our underlying storage, select a

file randomly and processed the sequential read and write operations on it.

We also implemented a macrobenchmark that simulates a web server behaviour.

We selected a file randomly from a file set and performed 10 consecutive read and

write operations with different I/O sizes: 4 KiB, 256 KiB, 512 KiB and 1 MiB. The

results of our macrobenchmark is discussed in Section 6.3.2.4.

The Filebench [fil16] framework gave us an idea about how to implement our

benchmark functions. We did not use the Filebench framework for our evaluations

as it did not provide the level of detail about filesystem’s behaviour during time

that is reported in Sections 6.3.2.2, 6.3.3.2 and 6.3.4.1.

We ran each microbenchmark function 1,000 times for the direct usage of UPSS

API and 5 times for the upss-fuse micro and macro benchmarks; the results are re-

ported as the arithmetic mean of the runs along with their standard deviations. We

ran the benchmarks on a 4-core, 8-thread 3.6 GHz Intel Core-i7-4790 processor with

24 GiB of RAM and 1 TB of ATA 7200 RPM magnetic disk, running Ubuntu Linux

4.15.0-72-generic (the machines’ configurations for the network filesystem evalua-

tions are different, explained in Section 6.3.3.2). The results of these benchmarks for

direct usage of UPSS API — as well as a comparison with benchmark results from

Sections 6.3.2.2 and 6.3.3.2 — can be seen in Figure 6.3. This figure clearly shows

the performance degradation caused by FUSE [VAM+19] in comparison with the

direct API usage.

One of the most expensive operations in UPSS is persisting data into block stores,
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Figure 6.3: A comparison of the performance of UPSS when accessed directly via

the UPSS API and via upss-fuse connected to a local or remote block store. The

numbers reported as the average number of operations done in 60 seconds for 5

runs. Confidence intervals are represented with error bars.

as discussed in Section 6.2.3. Since in-memory data structures may be written many

times in a short interval, “dirty” blocks are only written to the block store when

explicitly requested (or, in the case of upss-fuse, every 5 s), which leads to a new

version of the block; only at this point are any cryptographic hashes computed,

blocks encrypted, etc. The cost of this process is illustrated in Figure 6.4; it is

superlinear due to the larger amounts of metadata required to describe larger

amounts of data. This relationship is also seen in UPSS’ total storage requirements,

as shown in Equation (6.2), where the total space st required to store s B of data is
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very slightly superlinear.

st = (1.09 + 0.001613s) s (6.2)

6.3.2 UPSS as a local filesystem

Direct usage of the UPSS API requires program modification — and, today, the use

of a specific programming language. In order to expose the benefits of UPSS to a

wider range of software, we have implemented a filesystem in userspace (FUSE) [fus19]

wrapper that exposes UPSS objects to other applications via a hook into the Unix

VFS layer. As shown in Figure 6.5, upss-fuse maps FUSE inode numbers to in-

memory UPSS objects to service VFS requests. This allows conventional applications

to access an UPSS directory mounted as a Unix directory with POSIX semantics,

though there is one unsupportable feature: hard links. Hard links are defined

within the context of a single filesystem, but UPSS is designed to allow any direc-

175



tory to be shared as a root directory of a filesystem. Owing to this design choice, it

is impossible to provide typical hard link semantics and, e.g., update all parents

of a modified file so that they can perform their own copy-on-write updates (see

Section 6.2.3). Therefore, we do not provide support for hard links — a common

design choice in network file systems such as NFS.

POSIX application
upss-fuse

Kernel

libc

User 
code

stat(2)

stat(2)

…

fstatat(2)

lookup()

VOP_LOOKUP()

VFS

struct vop_vector {
  /* … */
  .vop_fsync = …
  /* … */
  .vop_getattr = …
  /* … */
  .vop_lookup = …
  /* … */
}

impl Fuse for UPSSFS {
  /* … */
  fn lookup(…)
  fn getattr(…)
  fn readdir(…)
  fn mknod(…)
  fn write(…)
  /* … */
}

FUSE

struct vop_vector
  fuse_vnops = {

ZFS

struct vop_vector
  zfs_vnodeops = {

File 
descriptor

inode

inode

vnode

Library API
Directory

File

object 
reference

Figure 6.5: upss-fuse exposes a UPSS directory to POSIX applications via an in-

kernel FUSE device.

The upss-fuse wrapper exposes an ephemeral plaintext view of an UPSS’s di-

rectory underneath a Unix mount point, allowing conventional file and directory

access, while keeping all data and metadata encrypted at rest in a local or remote

block store (see Section 6.3.5). Unlike existing cryptographic filesystems such as

NCryptFS [WMZ03] and EncFS [LFS16a], no plaintext directory structure is left

behind in the mount point after the filesystem has been unmounted. The only meta-
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data that is kept in the clear by the upss-fuse compatibility layer is the block pointer

of the root directory, which is automatically updated as the filesystem contents are

modified and the root directory is persisted to the block store. This block pointer is

currently kept in a plaintext file; we plan to protect it with symmetric or asymmetric

cryptography in the future (see Section 6.5).

6.3.2.1 Snapshots and consistency

As a copy-on-write filesystem, UPSS provides cheap snapshots. As a user-empowering

sharing system, these snapshots can be quickly shared with other users for read-only

access: a user need only share the block pointer to a file or directory with another

user, and that user will be able to retrieve the content from a block store and decrypt

it. To facilitate such sharing, upss-fuse exposes both cryptographic hashes (which

provide integrity guarantees over Merkle DAGs for blockchain-like applications)

and full block pointers (which allow content sharing) to users via POSIX extended

attributes, an of which is shown in Listing 6.3.

1 % xattr -p user.hash mnt/a-file -in-upss

2 sha3 -512: hdd3P80hjERoF1PO9ezuOEQQwG/Goey2Up5je ...

3

Listing 6.3: upss-fuse exposes UPSS cryptographic details to users via POSIX

extended attributes. This allows users to verify the integrity of a directory tree or to

share a directory’s contents via its block pointer.

UPSS creates snapshots whenever requested by asking for a directory’s crypto-

graphic name (which depends on its entries’ names, depending on their contents,

etc. — see Section 6.2.2). In order to provide data consistency, upss-fuse requests that

UPSS persist a “dirty” — i.e., modified — root directory every five seconds, or after

a tunable number of dirty objects require persisting. As described in Section 6.2.3,

persisting a Directory object causes its versioned children to be recursively persisted

(if dirty), after which the cryptographic block pointer for the new root directory
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version can be stored in the upss-fuse metadata file. As in other copy-on-write

filesystems, the cost of persisting an entire filesystem depends on the amount of

“dirty” content in the filesystem. The trade-off between the demand for frequent

data synchronization and the requirement for more frequent — though smaller —

persistence operations is illustrated in Figure 6.6.
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Figure 6.6: Trade-off of sync frequency vs performance. The average number of

operations (in five runs, each 60 seconds) that can be done per second for different

sync intervals are shown in y-axis (the content size in the write operations is 4 KiB).

Sync interval x means x objects are kept in memory until the next sync.

6.3.2.2 Performance comparisons

To illustrate the performance of UPSS when used as a conventional local filesystem,

we compared upss-fuse with the FUSE-based cryptographic filesystems CryFS [MRAMQ17]

and EncFS [LFS16b, LFS16a], as well as the mature, heavily-optimized ZFS [BAH+03].

The latter has been included because, although it is not a cryptographic filesystem

designed for fine-grained confidentiality, it is a log-structured filesystem with some
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common features such as copy-on-write updates and cryptographic hashes used to

name blocks. In contrast to upss-fuse, ZFS has been extensively optimized over the

past two decades to become a high-performance, widely-deployed filesystem.

We mounted each of these four filesystems on different paths in the Linux host

referenced in Section 6.3.1 and ran four microbenchmarks to test their speed in

creating empty directories (MakeDir), creating empty files (MakeFile), reading

randomly select files sequentially including 4 KiB of data (ReadFile) and writing

random data to files (WriteFile). Each of these four benchmarks was run for 60

seconds and the operations per second were calculated as the average of 5 runs;

the results are shown in Figure 6.7. UPSS outperforms EncFS and CryFS for all

operations, with performance especially exceeding these existing systems in the

critical Read and Write benchmarks. As might be expected, ZFS significantly

outperforms UPSS in three out of four benchmarks, with Read performance 6.176×

and Write performance 20.03× faster than upss-fuse, but upss-fuse does outperform

ZFS in one benchmark: MakeDir. In upss-fuse, creating files and directories have

the same cost, as they are both backed by empty collections of blocks, but ZFS is

optimized for the creation of files as the cost of directory creation speed. We also

note that upss-fuse performs 1.47− 8.2× more operations per second in various

benchmarks than CryFS and EncFS while also providing stronger security properties

(see Section 6.4).

Figure 6.8 shows a more detailed examination of the behavior of the four com-

parison filesystems. In these plots, a fixed number of benchmark operations were

performed; the x-axis represents the time needed to complete all 100k operations.

These plots show the bursty nature of real filesystems, and in the case of CryFS,

they reveal performance that scales poorly as the number of requested operations

increases.

Much of the bursty nature of these plots derives from how each filesystem

synchronizes data to disk. For example, by default, ZFS synchronizes data every 5 s
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Figure 6.7: Operations that can be performed per second by CryFS, EncFS, upss-fuse

and ZFS for our four microbenchmarks. The numbers reported as the average

number of operations done in 60 seconds for 5 runs along with their standard

deviations as error bars.

or when 64 MiB of data has accumulated to sync, whichever comes first. Similarly,

to provide a fair comparison, upss-fuse is configured to synchronize after 5 s or

15,000 writes (close to 64 MiB of data when using 4 KiB blocks). These periodic

synchronizations cause performance to drop, even on dedicated computers with

quiescent networks and limited process trees.

6.3.2.3 Deduplication

As stated in Section 6.2.2, UPSS’s convergent encryption provides natural de-

duplication for blocks containing the same content, even if they are saved and

encrypted by mutually-distrustful users. To evaluate the effect of de-duplication on
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Figure 6.8: Operations that can be performed per second by CryFS, EncFS, upss-

fuse and ZFS for our four microbenchmarks. The behaviour of the filesystems are

reported for 100k operations during time.
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overall performance, we compared writing the same content and different contents

into files by measuring the amount of data that can be written per second. As shown

in Figure 6.9, upss-fuse and ZFS benefit from de-duplication. This effect becomes

more pronounced for ZFS as write sizes increase.

6.3.2.4 Macro-benchmark

We ran our macrobenchmark function discussed in Section 6.3.1 on upss-fuse, CryFS,

EncFs and ZFS, to evaluate upss-fuse in a a web server simulation in which consecu-

tive read and write operations with different I/O sizes are performed on different

files. The results are reported in Figure 6.10. As in previous benchmarks, ZFS

outperforms the other filesystems for different I/O sizes. upss-fuse achieved better

results than CryFS and EncFS for the 4 KiB case. However, as the I/O size increases,

CryFS outperforms upss-fuse. The reason is that the bigger files we have, the more

number of fixed-sized blocks are generated by upss-fuse, each of which needs to be

encrypted with a different key and then persisted. But in CryFS all the fixed-size

blocks related to a file are encrypted with one symmetric key. Therefore, the key

generation is done once per each file in CryFS and this cause a better performance

for larger files, and in the same time, makes CryFS inapplicable for partial file

sharing and redaction scenarios that are supported by UPSS. Also, several studies

have shown that the files in a filesystem are small with the mean size of only a few

kilobytes [RO92, BHK+91, LZCZ86].

6.3.3 UPSS as a network filesystem

Although UPSS can be used as a local filesystem, it is primarily designed as a

system for sharing data across networks with untrusted storage providers. Taking

advantage of UPSS’s unique properties requires an evaluation that is not directly

comparable to other systems. Thus, we have compared the performance of upss-fuse

when connected to a remote block store (Section 6.3.3.1) to that of SSHFS [Tea20b] and
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Figure 6.10: Performance of CryFS, EncFS, upss-fuse and ZFS for the web server

macrobenchmark. The numbers are the average of KiB of I/O per second for five

runs, each 60 seconds.

the venerable NFS [SCR+03] (Section 6.3.3.2).

6.3.3.1 Remote block store

In UPSS, a block store caches encrypted fixed-size blocks on behalf of users. The

confidentiality and integrity of these blocks’ content is assured by cryptographic

operations performed by clients before blocks are sent to the block store, so the

underlying storage medium may be untrusted. The block store sees the blocks as

immutable ciphertext blobs, named by the cryptographic hash of their contents.

This approach allows us to build a block store in which a centralized server exploits
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high-quality network links and disks to receive and transmit large numbers of

encrypted blocks — the data plane — regardless of what block pointers are shared

between users — the control plane. Clients send a data block to be stored or request

to get previously stored data, identified by block pointers. This design is amenable

to multi-layer caching, with a system accessing a remote block store having the

option of caching immutable blocks in a local block store, and even caching those

results in memory.

6.3.3.2 Performance comparison

As in Section 6.3.2.2, we evaluated the performance of UPSS by mounting an

upss-fuse filesystem in a Unix mount point and comparing it to other filesystems

using four microbenchmarks. In this section, however, we connected our upss-fuse

filesystem to a remote block store and compared our performance results against

two other remote filesystems: the FUSE-based SSHFS [Tea20b] and the venerable

NFS [SCR+03]. Similar to Section 6.3.2.2, one comparison filesystem is primarily

designed for security and the other has higher performance after a long history of

performance optimization.

The remote block store server was run on a 4-core, 2.2 GHz Xeon E5-2407

processor with 16 GiB of RAM and 1 TB of magnetic disk, running FreeBSD 12.1-

RELEASE. The client machine, that runs upss-fuse, is a 4-core, 3.5 GHz Xeon E3-1240

v5 processor with 32 GiB of RAM and 1 TB of magnetic disk, running Ubuntu

Linux 16.04. Both the client and the server machines were located on the same

LAN, connected to each other via a Gigabit switch dedicated to test machines (and

therefore with little traffic). For our comparisons, we ran the benchmarks discussed

in Section 6.3.2.2 for 60 seconds and the operation per seconds are reported in

Figure 6.11. Figure 6.12 shows the behaviour of the benchmarked filesystems with

executing 100k MakeDir, MakeFile, Read and Write operations. In the network

environment UPSS outperforms SSHFS and NFS for MakeDir, MakeFile and Read
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operations and for Write, it achieves comparable results. For the Read benchmark,

upss-fuse has a slow start as the encrypted blocks are read from the remote block

store and are loaded into the memory. The Read benchmark generates 1000 files,

each of which of size 4 KiB, filled with random content. After the files being loaded

into memory, the other read operations are served from the in-memory objects.

This causes upss-fuse to be about 5× faster than NFS in the Read benchmark. For

a fair comparison, we also included the results of Read benchmark by clearing

the caching block store and the in-memory objects, shown as Read-CacheMiss in

Figure 6.11. More specifically, we generated the files on the remote block store, clear

all the related in-memory objects and remove the files from the caching block store.

Then we started reading the files from the remote block store and writing them to

the caching block store. The other two filesystems achieve better read results in

comparison with the Read-CacheMiss benchmark.

6.3.4 UPSS as a global filesystem

In addition to local and network filesystem, upss-fuse can also be connected to

untrusted cloud storage providers. To do so, we have implemented an UPSS block

store backed in the Amazon S3 service [AWS20] and compared its performance

with S3FS [GNr20] and Perkeep [LN18] (Section 6.3.4.1).

6.3.4.1 Performance comparison

We mounted upss-fuse backed with the Amazon block store (with and without

local caching), S3FS and Perkeep in a Unix mount point and compared them using

our four microbenchmarks. S3FS allows Linux and macOS to mount an Amazon

S3 bucket via FUSE without any security properties. Perkeep, formerly called

Camlistore, is a FUSE-based cryptographic filesystem that can be backed by memory,

local or cloud storage. We configured Perkeep to use an Amazon S3 account for our

evaluation.
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bar for upss-fuse shows the read Ops/s for the files that do not exist in the caching

block store and they are read from the remote block store and also are written to

the caching block store.

We ran the benchmarks discussed in Section 6.3.2.2 with 5k MakeDir, MakeFile,

Read and Write operations and the behaviours of upss-fuse-network, Perkeep and

S3FS during time are reported in Figure 6.13. In all of these cases, Amazon S3’s

response time is the bottleneck. To have a fair comparison, we ran the benchmarks

for upss-fuse with and without caching. With caching enabled, we write the en-

crypted blocks in a caching block store and journal the block names to an on-disk

file, then we write to Amazon S3 bucket by processing the journal using a back-

ground thread. This makes a large difference in the number of operations that can
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Figure 6.12: Operations that can be performed per second by upss-fuse-network,

NFS and SSHFS for four microbenchmarks. The behaviour of the filesystems are

reported for 100k operations during time.
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be done by upss-fuse as a global filesystem in comparison with S3FS and Perkeep

(Figure 6.13a). In Figure 6.13b, we disabled caching and persisted the content just

before the benchmark script is finished so that the content is ready to be read from

the Amazon block store. Even without caching and having the content persisted to

the Amazon block store, upss-fuse outperforms the other two filesystems by factors

of 10-8000. These results show that the cryptographic foundation of UPSS provides,

not just strong security properties, but a foundation for aggressive caching that

would be unsafe in a system that does not use cryptographic naming.

6.3.5 UVC: UPSS Version Control System

Supporting data sharing on filesystems or storages, is a broad field of study, which

makes the system involved with challenges. Revision control, communication pro-

tocols, policies on user access rights, employing the underlying filesystem, are a few

of involved, argumentative topics in this chapter of studies. The most motivating

point of designing UVC: UPSS Version Control System is that even distributed

revision control systems depend on trusted storage systems, with versioned con-

tent stored in plaintext and access control provided by third-party providers. The

key point is that using UPSS, we can use an untrusted backend for bulk storage,

maintaining encrypted data, along with a secure authentication and authorization

mechanism.

Version control systems are a group of data sharing systems to facilitate users’

contributions and collaborations on shared units of data, known as repositories.

Git and Apache Subversion (SVN) are examples of today’s widely-used version

control systems. The mechanism of sharing revisions of data differs in each system.

The most straightforward case is a centralized approach, in which data is stored

on a shared remote server, and changes will be synced to it. The server manages

requests, revisions, user accesses, and data storages to use. UPSS’s design provides

a mechanism to support revision control. on UPSS’s filesystem objects, described
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Figure 6.13: Operations that can be performed per second by upss-fuse-global,

S3FS and Perkeep for four microbenchmarks. The behaviour of the filesystems are

reported for 5k operations during time. In Figure 6.13a, the sync interval is 15000,

means that the number of objects that are kept in memory before being persisted is

15000. The objects are synced to caching block stores and are journaled to an on-disk

file to be synced to an Amazon block store in the background. In Figure 6.13b, the

caching is disabled and the sync interval is set to 4999 to sync everything to amazon

block store before the benchmark is finished.
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in Section 6.2.3. This makes us closer to the design of a distributed sharing system

relying on our cryptographic filesystem. As the first step, we have designed and

implemented a prototype of a centralized version control system, called UVC: UPSS

Version Control System’s prototype, UVC.

Various version control systems behave differently in detail, but they all support

some initial user stories such as: cloning shared data on a local machine, pushing

modifications to the sharing server, demonstrating repository statuses in terms

of sequences of modifications, etc. UVC, is a client-server program supporting

the mentioned initial user stories as the minimums of functionalities. Our version

control system constitutes of three principle sub-modules: the remote block store, the

version control server, and the version control client. The remote block store is a client-

server application that can be integrated with upss-fuse’s API as a BlockStore,

described in Section 6.2.1, to replace the local block store. In the following sec-

tions, we describe how our version control server and client, cooperate with this

application to manage our data sharing scenarios.

6.3.5.1 Version Control Server

UVC’s server is responsible for creating shared repositories, keeping track of

changes on them, validating and handling clients requests. A repository is a

directory, including a various number of files. As it is stated before, UPSS is a

content-addressable filesystem in which each object, either a file or directory, is

addressable through a global name called a block pointer. Any change on an UPSS’s

objects, results in a change in the content of the object’s data or its metadata, and

consequently, a new block pointer will be generated. We have benefited from this

feature, as each block pointer is a global identifier for a version of the shared direc-

tory. Hence, any change on the shared directory, like adding or removing files, or

altering their contents and names, results in a new revision of the shared directory.

The version control server tracks and manages these revision changes to provide
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users with collaboration on the shared repository. Each client’s request contains

a new block pointer for the modified directory, along with its previous revision’s

name, which is the block pointer of the previously synced revision, and finally,

required timestamps, and information about the user. The server investigates the

request considering the current status of the corresponding chain of revisions and

decides how to respond. It should be mentioned that authorization and authentica-

tion management are not supported in the current prototype and are considered as

our future developments to be added as a responsibility of UVC’s server. So, UVC

is designed to accomplish management policies and data transmission separately.

6.3.5.2 Version Control Client

UVC’s client is responsible for creating requests, communicating with the version

control server, keeping track of changes on the local machine, and retrieving modi-

fied data from, or writing it on, the remote block store. To clarify these processes

and the communication between the server and client, consider a push procedure:

Assume that the client has modified a file under a directory, which is cloned before,

and then runs the add command to add to the remote block store. To make the

stated procedure more sensible, it can be counted as Git’s behavior during add and

commit procedures together. However, the significant difference with Git’s logic is

that the modified data is synced to the remote block store before starting pushing

procedure. As the confidentiality of data is already guaranteed with the approach

of storing data encrypted, it is always safe to push it to the server speculatively. So,

the cost of pushing changes is even less than some of the existing systems, such

as Git’s protocol in which the data is not transmitted before push request. Making

data transmission and policy management elements separated in our prototype,

makes our version control system flexible to be expanded in the future with new

fine-grained access right policies, without affecting data transmission. When the

modified version of data is added to the remote block store, the block pointer of
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the new directory is sent to the server, wrapped in a new request associated with

other information. On the other side, the server validates a new push request and

investigate the revision sent, and then updates the intended chain of revisions and

sends a response packet back to the client. Figure 6.14 shows this procedure.

When the new revision of the shared directory is added to the server and

information is updated, other clients can pull it. A pull request will be sent to the

server in which the last synced revision is included. The server validates the request,

and returns a list of further revisions from the sent revision on, to the client. The

client application is responsible for fetching the last version from the remote block

store. Figure 6.15 demonstrates this process.

UVC is at the initial phases of development towards a sharing system built on a

cryptographic filesystem. The system is not parallelized or optimized yet. However,

we have evaluated this system in terms of execution time, comparing with Git,

another version control system that is used globally today. Section 6.3.5.3 describes

some of our observations.

6.3.5.3 Version Control System Evaluations

As it is mentioned in Section 6.3.5, to develop UVC, we were inspired by Git, which

is a widely-used revision control system. Our version control’s add command

is equivalent to Git’s add and commit commands together. Our push command

syncs changes to the server, like Git’s push command, without transferring data

during the push request. At the current state, our clone and pull commands almost

work in the same way, and both of them are fetching the new revision of the

shared directory from the remote block store. We have examined three of our most

essential procedures, including add, push, and clone commands, as our system’s

initial performance. Although UVC is an initial prototype, the main goal of our

evaluations was to find improvement opportunities.

For the evaluations, we started with an empty shared directory created by the
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Figure 6.14: The version control client program writes changes as a new revision of

the shared directory on the remote block store, and then sends a push request to

the version control server. Then the server validates the client’s request and will

update the corresponding revision chain’s information.
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Figure 6.15: The version control server validates the client’s request and responds

with the block pointer of the head’s revision. Then, the cryptographic hash included

in the head revision’s block pointer will be used to retrieve data from the remote

block store.
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version control server. Also, we made an empty repository on Git. In both cases,

the remote store was set on a local machine, to remove the cost of networking

connections. We have used the first 1024 files of the Linux kernel’s source code as a

pool of files. The size of the whole of the set was 18 MB. To evaluate the effect of an

increasing number of files, we began with one file to be added and pushed to the

server. Then we cloned the new revision of the shared directory. We repeated this

scenario, increasing the number of files, each time making the previous number to

the power of 2, up to 1024 files.

Figure 6.16 demonstrates the total time spent on push procedure for a different

number of files, comparing Git and UVC. By total push procedure, we mean all

commands run to sync new revisions to the server in both systems, which enables

other clients to pull updates. This includes add, commit, and push commands for

Git, and also, add and push commands for UVC. The preliminary result shows that

the execution time for add and push procedures are more than Git, as expected, but

we see the resulted latency is tolerable and growing linearly with a slow slope by

increasing the number of files. This performance is obtained without parallelism or

any performance improvements on UVC, as the initial evaluation from our system.

Beyond the comparisons between our system and Git, we tried to find the reason

for the latency resulted, investigating our add command and its internal phases

separately. We have found that the process of adding changes to the server, which

includes data writing to the remote block store, is the most time-consuming phase

of our push procedure. However, we found this delay tolerable for the current state,

especially as we have not made the system multi-threaded. The cost of in-memory

processes in UVC is demonstrated in Figure 6.16 as well. By in-memory data process,

we mean processing modifications happened to the local revision, and preparing

new revision, before writing changes on the remote block store. This procedure is

carrying out by the add command, which writes new revisions on the remote block

store.
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Figure 6.16: Time spent on total push procedure in UVC and Git. In UVC, writing

changes to the remote block stores are included through add command. In-memory

data processing shows the time spent on UVC execution before writing changes

to the remote block store. Results are showing the average of 5 runs, along with

corresponding standard deviations.

Also, a similar comparison has been made running the clone command on both

systems, increasing the number of files. As Figure 6.17 shows, the result is similar to

what we obtained from previous scenarios, as expected, which originates from the

communication between principals and UPSS’s filesystem read and write requests.

This figure also shows how the increasing number of files impacts our client-side

application performance, which is responsible for fetching the new revision from

the remote block store.

To summarize our evaluation, we inferred UVC needs improvement on two
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Figure 6.17: Cloning running time in UVC and Git. New version of a shared

directory is retrieved from the remote block store and version control server. Results

are showing the average of 5 runs, along with corresponding standard deviations.

separate layers. The first one is the client-server protocol used by the remote block

store and the other one in UPSS’s procedure of persisting data. As we stated

before, currently, version control server and remote block store server, handle

requests serially, and there is no optimized buffer or cache block store used in

UVC. Addressing these issues will lead us to achieve considerable performance

improvements.
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6.4 Related work

The existing filesystems try to introduce a practical solution for data integrity and

availability but mostly ignore confidentiality and privacy. Moreover, they do not

provide a sharing mechanism that can serve users’ needs in multi-user environ-

ments, such as partial sharing and subsetting and automatic conflict resolving all

together.

CFS [DKK+01], Coda [SKK+90], and Ivy [MMGC02] filesystems provide avail-

ability for user data stored on dedicated servers in a distributed environment along

with other features such as disconnected operations, content-addressable storage

and log-structured systems. Coda introduced an automatic conflict resolution that

cannot detect some classes of conflicts, such as update/update (two different up-

dates on same objects), remove/update (removing an object from one replica and

updating it in another) and name/name (creating new objects with identical names

in one directory on different replicas). Ivy also introduced a conflict detector called

lc that notifies users about the conflicts.

The more the cloud storage became popular, the more efforts have been done to

introduce functional filesystems in the cloud settings, such as NCryptFS [WMZ03],

EncFS [LFS16a] and CryFS [MRAMQ17]. NCryptFS and EncFS are cryptographic

filesystems, which protect the content by encrypting the files, but leave the filesys-

tem metadata, such as the directory structure unprotected. CryFS solves this prob-

lem by splitting all filesystem data into fixed-size blocks and encrypting each block

individually, but with one key for all encryption. The creators of EncFS expanded

their work to make it a multi-user filesystem by applying Unix local permissions

to the encrypted files before being stored on remote servers [LFS16b]. However,

the both approaches are not practical solutions for multi-user environments with

non-local users, that need a secure, fine-grained and flexible sharing approach.

Ori [MBHM13], IPFS [Ben14] and Perkeep [LN18] (formerly known as Cam-

listore) try to connect different computing devices with the same filesystem and

207



enable users to access their files everywhere. The authors of IPFS synthesize the

key ideas behind systems such as DHTs [SMK+01], BitTorrent [Coh03], Git [LM12],

and self-certifying pathnames [MK98] to create a peer-to-peer version-controlled

filesystem. Both Ori and IPFS reduce the data inconsistency problem to a version

control problem by storing new versions of files upon their modifications and the

former handles the updates with the CoW technique, which was introduced in

ZFS [BAH+03]. Synchronization, failures handling, data recovery and sharing

mechanism, or grafting, are the key features of the Ori filesystem. Perkeep is made

on a set of open source protocols trying to create a unified storage for keeping user

data from different sources such as their Twitter account or the their local hard

drive. Similar to upss-fuse, Perkeep can be mounted backed by a memory store, a

local store or a cloud account. However, none of Ori, IPFS and Perkeep provide a

mechanism for sharing or subsetting file and directory hierarchies for users with

different levels of access.

Tahoe [WOW08] is another cryptographic filesystem with the main goal of stor-

ing user data on untrusted storage servers. Like UPSS, Tahoe stores the content

encrypted in Merkle DAGs and provides access control by cryptographic capabili-

ties. Tahoe supports both immutable and mutable files in their design and for the

later case, it signs and verifies the files with a public/private key pair. The public

key and the verification key is stored as plaintext along with the files. Having

mutability in the file level can cause inconsistency if Tahoe is used in a collaborative

environment. The other difference between Tahoe and UPSS is that Tahoe encrypts

a file with one symmetric key and erasure code the ciphertext, using Reed-Solomon

codes [Riz97] into N shares to be written to N servers. However, Tahoe is designed

for file sharing and archival storage; using Tahoe with POSIX-like read-write work-

loads can cause “its performance to crawl to a halt” [tah20]. This approach cannot

provide partial sharing/subsetting and redaction, which is enabled in UPSS by

having cryptographic capabilities per each encrypted block.
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6.5 Future work

The very first thing that we need to do in the future is protecting the root block

pointer, that is the only information needed by upss-fuse to retrieve the root and

the entire directory tree. Currently, upon persisting the root directory, its block

pointer is stored in a file as plain-text. Instead, the block pointer can be secured by

user-defined credentials and be stored in a file or even in UPSS’s block store.

6.5.1 FFI

Although our prototype currently requires Rust linkage and calling conventions,

we are investigating the use of foreign function interfaces (FFI) to expose UPSS

to code written in other programming languages. We have been exploring Rust’s

excellent support for C FFI, including the explicit transfer of memory ownership, to

interface C code with Rust APIs. On top of this platform, we are exploring the use

of CPython extensions to further expose Rust APIs to Python modules. The use of

custom PyObject destructors allows the reference-counted garbage collection model

of Python to be combined with the more explicit memory models of C and Rust; we

have begun to explore this interface with prototype Rust code but have not yet built

a complete FFI for UPSS. Also, we have begun exploring the use of Rust/WASM

[was17] to provide UPSS functionality within client-side JavaScript code, e.g., in

a Web browser session. In the future, this will allow us to build UPSS-based Web

experiences in which user data is only decrypted within the user’s browser and

all communication with a remote HTTP-based block store is in terms of encrypted

blocks.

6.5.2 Expansion of Version Control System

As described in Section 6.3.5, our version control system does not currently support

authentication and authorization. Our next step to expand this system is to add

209



mechanisms that enable users to define fine-grained and flexible access rights.

We will explore new types of access control and partial sharing, benefiting from

our cryptographic content-addressed filesystem. Having the MetaVersion data

structure that stores the block pointers of a file enables us to partially share a file

with another user by generating a new MetaVersion including the block pointer

(block name and its decryption key) of the blocks that we aim to share, the block

name without the decryption key of the excluded blocks, and the block name of

the main MetaVersion of the file. In this way, we can have a redacted version of the

main file along with its linkage. Having all the block names in the new MetaVersion

enables UPSS to provide the data integrity by comparing the cryptographic hashes

of the block names included in the new and old MetaVersions.

We can expand our version control system to be a configurable centralized data

sharing system in the future, towards which UVC is our first step.

6.5.3 Parallelism

Based on our evaluation results, we have observed latency that is mainly due to

the single-threaded implementation of the UPSS core. Currently, blocks are read

and written serially, leading to delays in higher-level operations such as directory

entry iteration. Adding parallelism to UPSS and UVC, and availing of the new Rust

Futures API is a way of decreasing such latency.

6.5.4 Structured files

Files and directories are meaningful in classical filesystems and are interpreted as

unstructured byte arrays. However, the internal DAG structure of UPSS blocks

should allow UPSS to naturally define structured files and directories. With struc-

tured files, we can guarantee data consistency for structured file content such as

unserialized application data structures as well as the directory tree of the filesystem

[ANMU12, TSR15]. In this way, multi-user data on different replicas are guaranteed
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to be in the same state, without data loss and without requiring users to resolve

conflicts manually. Automatic filesystem-level conflict resolution has been explored

before in filesystems such as Coda [SKK+90], but UPSS’ internal block structure

naturally lends itself to a reinvigorated exploration of these ideas, defining files as

Conflict-free Replicated Data Types (CRDT) [KB17, SPBZ11b, SPBZ11a]. We have

started investigating CRDT structures that can be integrated into UPSS’ objects and

we will introduce a conflict-free version of UPSS in the future.

6.5.5 Hiding access patterns

Currently, UPSS can provide confidentiality, integrity and availability of data in the

block stores. However, some information may be learned from the access patterns

to the block stores. For example, an adversary would likely to be able to learn the

mapping between the client’s IP address and the accessed file by doing some traffic

analysis. UPSS is not secured against this threat in its current implementation. We

have started studying this problem and we believe that the client can be protected

against this threat by using a system such as Tor [DMS04]. The full implementation

is our other future work.

6.6 Conclusion

UPSS: the user-centric private sharing system is a decentralized cryptographic filesys-

tem that provides strong confidentiality and integrity properties while relying only

on untrusted backend storage. This filesystem is accessible as an embeddable Rust

library, a FUSE filesystem (with local or remote storage) or as the platform for a

novel confidential version control system. The performance of UPSS exceeds that

of comparable cryptographic filesystems and is within an order of magnitude of the

performance of a mature copy-on-write local filesystem ZFS. When using remote

storage, UPSS achieves almost the same results for write and cached read operations
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and better results for creating files and directories, compared to a mature network

filesystem NFS. UPSS’s performance exceeds that of an optimized global filesystem

Perkeep.

UPSS uses untrusted storage backends in which data is always encrypted at

rest as a sea of blocks: no file or directory structure can be discerned directly from

the contents of an encrypted block store. However, those information can be

learnt indirectly by traffic analysis, as we stated in Section 6.5.5. Along with

the confidentiality supported by encrypted blocks, UPSS is a content-addressable

filesystem, using cryptographic names that contain cryptographic hashes of blocks’

content, as global identifiers. This mechanism allows even sensitive user content

to be stored in commodity cloud storage without relying on centralized access

control. Convergent encryption can — at the discretion of individual users — be

used to enable de-duplication across mutually-distrustful users [PMÖL13, KBR13].

Cryptographically-named blocks can be combined into immutable DAGs of files

and directory hierarchies, with cryptographic capabilities, used to authorize access

to arbitrary quantities of data. UPSS provides a conventional filesystem API using

copy-on-write operations around immutable DAGs; this API is accessible directly as

an embedded library or proxied via a FUSE interface.

Using POSIX filesystem interfaces, we have compared the performance of UP-

SS/FUSE to other cryptographic filesystems, the mature copy-on-write filesystem

ZFS, the mature NFS filesystem, and Google’s global filesystem Perkeep. Using

modern cryptographic and copy-on-write techniques, UPSS demonstrates that it

is possible to achieve both strong security properties and high performance, even

with entirely untrusted storage. Furthermore, we have demonstrated the utility of

UPSS as a foundation for a novel distributed revision control system UVC: UPSS

Version Control System with inherent confidentiality properties that are not known

in contemporary revision control systems. UVC is our first step towards a secure

capability-based data sharing system to provide a fine-grained and flexible user
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authority management.

Whether used as a local, network or global filesystem, or the underlying filesys-

tem for a private revision control system, UPSS: the user-centric private sharing

system enables arbitrary quantities of data to be stored with strong confidentiality

and integrity properties on untrusted storage backends. UPSS’s performance is

comparable to — or, in some cases, superior to — mature, heavily-optimized filesys-

tems, proving that high standards of security in application or user storage need

not prevent practical performance. Wide adoption of UPSS and its techniques will

lay the foundation for future transformations in privacy and integrity for applica-

tions as diverse as social networking and medical data storage, providing better

opportunities for users — not system administrators — to take control of their data.
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Chapter 7

Summary

Online Social Networks (OSNs) have a significant impact on our lives as they enable

individuals to communicate with each other in a way that in real life may not be

possible. They also serve as a medium for propagating ideas and thoughts and,

in some cases, act as an advertising platform for product owners. Viral marketing

is an example of this type, which is based on the word-of-mouth effect on OSNs.

But, such networks do not always operate in users’ interests, especially in cases

that user data is critically important and needs to be kept confidential, one of the

main requirements of a health care information system such as health care OSNs.

However, by designing a system that can guarantee integrity, confidentiality and

availability requirements while considering users – not system administrators –

as real data owners, we can address the existing concerns of information systems

while still benefiting from them.

For solving the influence maximization problem in OSNs, that was the start

point of this thesis, a graph structure is extracted from the data that is stored and

controlled centrally by the OSN providers. Such data can also be used for other

purposes, such as advertisement, without users’ explicit consent. This lack of control

over data by the users and violating their privacy encouraged me to concluded my

thesis by designing and implementing a privacy-preserving optionally-distributed
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cryptographic filesystem. The filesystem can be used to build applications that

enable rich and collaborative sharing without suffering from the cost of out-of-

control sharing on untrustworthy systems.

In Chapter 2, I proposed an efficient algorithm, called INCIM (Influential Nodes

using Community structure for solving Influence Maximization problem) for solv-

ing the influence maximization problem under Linear Threshold model, by using

the community structure of OSN graphs. The spread value of each node is calcu-

lated as a combination of its local and global spread values. The local spread value

is calculated per node inside the community it belongs to. In this way, I limited

the search space to communities that are sub-graphs of the main graph that leads

to better running time. Also, I considered the effectiveness of the communities

in information spread, which was ignored by other approaches. A new graph of

communities was constructed and the global spread value was calculated for each

community. INCIM finds the influential nodes in a reasonable running time even

for large networks. Starting the information spread from the identified nodes led

to higher coverage over the whole network in comparison with the state-of-the-art

approaches.

After doing extensive studies on the influence maximization problem, I started

thinking about realistic scenarios that are happening in our daily life and were

missed in the studies. The influence spread adoption is affected by the decisions

made by others and individuals are likely to be mindful of the preferences of

others. Therefore in Chapter 3, I proposed a new propagation model called DCM

(Decidable Competitive Model) for competitive influence maximization problem,

which is a extension of the Linear Threshold model. In competitive influence

maximization, two adversaries are competing to gain more influence spread by

choosing the minimum number of influential nodes not selected by the other. DCM

enables the nodes to think about the incoming influence from the adversaries and

after d timesteps, decide to adopt one of the influence spreads, which is accepted
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by the majority of its neighbors. Then I presented CI2 (Competitive Influence

Improvement) algorithm for solving competitive influence improvement under the

DCM model and proved its NP-hardness. The results of the experiments on both

synthetic and real-world datasets show the applicability of the CI2 algorithm.

The other primary path that I took in this thesis was thinking about designing

and implementing a secure system that can fulfill users’ needs and addresses their

privacy-related concerns. Such a system can be a potential replacement for current

online social networks. I started by investigating the privacy-preserving approaches

introduced for OSNs, that can be categorized based on the OSN architectures:

centralized, decentralized or peer-to-peer, and hybrid. The existing approaches for

each category are reviewed in Chapter 4. My investigations show that none of the

existing approaches can address privacy, availability, and connectivity problems

for OSNs, but decentralization or hybridization that also includes elements of

decentralization, is the right direction toward further studies.

I also studied four motivational use cases with different and, in some cases,

contradictory requirements: online social networks, censorship resistance systems,

document redaction systems and health care information systems (Chapter 5).

These use cases have overlapping needs for strong confidentiality, integrity, user

control, reliability and performance properties. Moreover, they need a mechanism

for sharing information securely and selectively without having complete trust

in central servers. The result was a prototype filesystem called UPSS: the user-

centric private sharing system in which the data storage plane is separated from the

control plane. Storing data as encrypted fixed-size blocks in a content-addressable

store makes UPSS functional on untrusted storage providers. Mapping the file

and directory structure to immutable Merkle DAGs and convergent encryption

preserves privacy and provides global deduplication.

I went beyond the ideas and implemented a functional filesystem, where its

main idea was seeded in Chapter 5. The implementation details of the filesystem are
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presented in Chapter 6. UPSS can be used as a traditional filesystem in userspace

(FUSE), can be interacted using the provided public API by other applications, or as

a platform for version control systems with fine-grained access controls. I backed

UPSS with local, remote and global block stores and the extensive evaluations show

that it is comparable and in some cases, superior to mature filesystems such as

copy-on-write ZFS filesystem, mature NFS network filesystem and Google’s global

Perkeep filesystem. The distributed revision control system, UVC: UPSS Version

Control System, which is build on top of UPSS, is the first step towards a secure

capability-based data sharing system.

7.1 Future work

The upss-fuse can be the backbone of other systems. However, implementing such

systems is beyond the time frame of this thesis and needs the effort of a team of

expert people. Examples of such systems that can be built on top of upss-fuse are:

A secure and private online social network We can build a private Online Social

Network (OSN) using UPSS as a library in which user data can be stored on local or

remote block stores (see Sections 6.2.1 and 6.3.3.1), where the content is protected

against adversaries, but the access patterns may be learned by traffic analysis (see

Section 6.5.5). Content sharing can be supported by UVC (Section 6.3.5). Having

local block stores, we can build a censor-resistant network in a peer-to-peer manner.

However, there are some challenges in designing and implementing such systems

that are identified and studied in Chapter 4. Also, another question is that how can

we allow users to voluntarily participate in aggregation when it benefits them in

such a private network for research and business purposes? Such data structures

are required for solving graph-based problems such as influence maximization (see

Chapters 2 and 3).
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Conflict resolving in filesystem level Having a distributed read-write filesystem

that supports flexible sharing (Section 6.3.5) needs a mechanism for resolving

possible conflicts in both filesystem directory tree and file content. This is possible

by adding data structures to the structured files in UPSS (see Section 6.5.4), but we

have not integrated such structures yet.

A storage manager system with confidentiality-preserved auditing In some sys-

tems like health care information systems, it is crucial to detect the malicious behav-

ior of authorized users. The systems that are responsible for detecting such users

rely on the audited accesses of their users to the resources. Such audits are fed into

the analyzer applications to detect anomalies. However, the audited logs should

not reveal any information about the stored content. UPSS can provide such audits.

UPSS can keep the root block name without its decryption key (see Section 6.2.1) of

the accessed blocks on a block store. Those block names are meaningless outside of

UPSS itself. Also, it is possible to define a list of permitted blocks that a user can

access and ask UPSS to audit the accesses other than those blocks. Currently, such

auditing is not implemented on UPSS core or as an auditing application that uses

UPSS.
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