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Abstract

Biomarkers are the substances with quantitative properties present within

organisms indicating disease progression. Metabolomics is a newer approach

towards understanding the human body following the footsteps of other

"omics" techniques (genomics, proteomics, transcriptomics). Metabolomics

refers to the scientific study of low molecular intracellular elements called

metabolites. With the advancement of technology, it is now easier to extract

different sets of metabolites from various forms of biological samples such as

cells, tissues, bio-fluids, etc.

Metabolomic data analysis is a complex workflow. It requires sophisticated

data processing and statistical analysis. Various tools have been devel-

oped, such as data cleaning and preprocessing tools, modeling tools, vali-

dation/result visualizations, and many more. Most of these software tools

are developed for comprehensive studies rather than precisely focusing on

metabolomic biomarker discovery. As a result, their capacity, in most cases,

is limited. The modeling techniques commonly used in these tools are also

not adequate. Many of these software tools provide basic analysis methods

rather than more advanced machine learning techniques. The high through-

put metabolomic datasets require compound analysis techniques. This the-

sis designed and developed a software tool that encompasses the general

metabolomic biomarker research workflow. Our software platform is equipped
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with many basic to advanced analysis techniques, interactive visualizations,

delicate result analysis, and comparison modules (The first version release

can be found at, http://18.189.6.35:8000/). Our software is designed so that

users do not have to switch in between different tools during the study since

the platform provides necessary features that are commonly used throughout

the workflow. Some of the software’s significant features are outlier handling

of the uploaded datasets, analyzing the dataset with principal component

analysis or partial least square discriminant analysis, and comparing differ-

ent models. The software makes the study process fast and convenient. We

employed a differential correlation network analysis model for the biomarker

discovery studies, which is advantageous in finding key metabolites that in-

fluence diseases through interaction.

Keywords: Metabolomics, Machine Learning, Data Visualization, Differen-

tial Correlation Network, Biomarker Discovery
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Chapter 1 : Introduction

Systems biology, through its augmentation, has provided us diverse perspec-

tives to understand the living organisms [38]. The discovery of DNA, Genes,

and the advancement of sequencing techniques widened our capacity. In

today’s post-genomics era, researchers are seeking additional details and ex-

posure to the biological system. This desire led to the development of pro-

teomics and transcriptomics. Finally the same quest led the development of

metabolomics [27, 32, 60, 61, 24].

The medical field has been remarkably benefited from the breakthrough in

metabolomics. Applications of metabolomics are notable in major medical

science areas such as disease/drug progression or exploration of bio-markers

[40, 56]. Useful sets of biomarkers are pivotal for early disease detection

and treatments [45, 65]. So far, metabolomics has been applied to identify

biomarkers for complex health conditions like cancers, arthritis, psycholog-

ical disorders, and many more [58]. Historically, visible bodily traits have

been used as disease biomarkers. With the advent of technology and medical

equipment, biomarker research progressed into the molecular horizon [62]. In

this thesis, our boundary of focus will be on metabolomic biomarker analysis.

To be more specific, we will be building a software platform for metabolomic

biomarker analysis. Biomarker analysis is a complex process. The domain

knowledge is not enough to headway through the field. Instead, data-driven
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statistical modeling techniques and experiments are required [76, 44]. At

present, we have an abundance of collected metabolomic data. More com-

puting and statistical modeling techniques are needed at this point to be

efficient with processing these data. Lately, computer scientists and statisti-

cians have also started contributing to metabolomics by designing new tools

and techniques [64].

Researchers use different tools for different tasks throughout biomarker dis-

covery studies [64]. Apart from the promising possibility, we lack one single

tool solely dedicated towards metabolomic biomarker research even today

[50, 49]. Assessing multiple modern software tools/programs, we have iden-

tified the following set of hindrances. 1) not all the tools are easy to access.

Most of them are standalone, dependent on specific environments/operating

systems. 2) these tools require substantial computational resources and may

not perform well with less powerful computers. 3) usability has been a big

issue. Some tools are daunting and ambiguous to use as they require a lot

of configurations to set up. 4) Not all the tools have varied and advanced

visualizations or reports. Most of them come with unclear plots which are

barely interactive. 5) Majority of these tools are available with classic trivial

modeling techniques, whereas today, we need more advanced, powerful, and

efficient methods to look into the dataset.
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This thesis is an attempt to enrich the field. We have developed a web

server that removes a great deal of burden from the potential users (The first

version release is hosted temporarily at http://18.189.6.35:8000/). From data

pre-processing, data analysis to result validation/report generation, most un-

wanted redundancy can be avoided with our new software tool. The tool is

equipped with efficient and advanced algorithms. The visualization tech-

niques implemented in the software provide more insights. We have also

focused on a model that works projecting the differential correlation of the

metabolites into a network where topological analysis is performed to find

central/key metabolites responsible for the disease condition.

Metabolomic biomarker research requires portable, resourceful, easy to use

services. Therefore we have designed and developed this web-based sys-

tem that can be accessed independently to high-performing computing re-

sources. With easy navigation, modular services, descriptive dialogues, state-

of-the-art interactive visualizations, anyone can use it without any detailed

knowledge of the domain. The platform allows users to store and save their

data/results and access them with secure and private protocols. Mighty and

out-of-the-box data analysis models that we have implemented serve the users

efficiently. The differential correlation analysis model filters the significant

metabolites by converting them into a network and running topological cen-

trality analysis.
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In Chapter 2, we have a thorough review of the literature. In Chapter 3,

we discuss different analysis models, methods, techniques, etc. Chapter 4

demonstrates our system’s overall design, software implementation, techni-

cal details, features, etc. Then in Chapter 5, we see the results, reporting,

and validation processes. In chapter 6, we make a substantial discussion of

our overall thesis project, findings, and limitations. Finally, we conclude the

thesis report in chapter 7.
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Chapter 2 : Background

The term Metabolomics has been coined recently. Nonetheless, the practice

of the concept is age-old [27, 51]. Metabolites refer to the smallest viable

molecules (mostly weighing 1500 Dalton’s or even lesser) present inside the

cells resulting from different metabolic processes [13]. Studying and profil-

ing them signifies the cell’s state, resistance concerning disease, or progress

respecting drugs. Recent advancements in technologies, especially in chro-

matography techniques, led us to identify most of them present in subject

samples such as urine, saliva, tissue, blood, and many more [58]. Some

details about metabolites, study procedures, data generations, etc. remain

greatly apprehended in the conscious works by Fell [19]. Hiroaki Kitano [39]

quoted that the goal of computational system biology can be divided into

two subgroups. The first one is the data mining or knowledge discovery

from experimental datasets, and the other one is considered the simulation

attempts to predict the dynamics of the systems. Cuperlovic [12] in their

review article described how metabolomics is also designed to achieve these

two similar goals.

The earliest reference to the idea could be traced back to 2000 BC - 1500 BC.

The Greeks, the Egyptians, and Chinese physicians had known about the con-

cepts [58]. They had learned that urine and its taste or color could be traced

to diseases. They used biosensor ants to examine urine samples for diabetes.
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Egyptians also knew about urine and its traceable properties. They identi-

fied frequent urination and Polyuria to be correlated. Arabs had learned that

urine changes its color and smell during various illnesses. During eighteen

and nineteenth centuries, metabolomics received modern attention. Mass

spectronomy was developed to profile body fluids [14]. Researchers started

studying enzymatic reactions caused by metabolic processes. Twenty-first

century endeavor can be considered when Horning [28] adopted metabolic

analysis technique in his works in 1971. In the year 1998 Oliver and his

colleagues first used the term metabolomics keeping its association with

its predecessor’s genomics, proteomics and transcriptomics [52]. Soon after

that, researchers used the terms metabolomics, metabonomics, metabolomic-

profiling and many more in other works [10].

Biomarkers, the medical term shortly used for biological markers, refer to

the symptoms with quantitative and predictive properties [45]. They can

be characterized and evaluated with disease progression, biological, genomic,

metabolic processes, and pharmacological response. For centuries researchers,

epidemiologists and physicians have been looking for biomarkers in a variety

of health conditions. Last few decades, biomarker research programs boomed

due to economic, epidemiological, and technical reasons [44]. Metabolites

are downstream representations from the genome, transcriptome, and pro-

teome [27]. Analyzing metabolites can reveal significant traits in the upper
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tiers. Many diseases tend to be showing changes in metabolic pathways long

before they show potential phenotypic symptoms. Therefore metabolomic

bio-markers have potential in early disease prediction [61].

Before the in silico modeling and applications, biological samples are col-

lected in the form of biofluids. Samples need to be analyzed thoroughly

with sample separation techniques. Existing metabolomic studies mostly use

nuclear magnetic resonance (NMR), spectroscopy[16, 33, 43], mass spectrom-

etry (MS) and multivariate chemometrics [34]. NMR is popular because it is

reproducible. Though the NMR generated datasets require data preprocess-

ing, it is well suited in the clinical setup. Spectrometric techniques such as

mass spectrometry (MS) or gas spectrometry (GS) are also common analytic

techniques that separate the molecules using motion. Mass spectrometry has

the advantage of a parallel application, e.g. gas chromatography with mass

spectrometry or liquid chromatography with mass spectrometry [15]. The

parallel application results in added performance.

Metabolites are the results of chemical reactions. They are susceptible to

perturbations making the analysis harder. It is common to see a combina-

tion of multiple techniques for added accuracy [15]. Enriched computational

power and abundance of high throughput datasets enabled us to apply statis-

tical techniques varying from univariate statistical testing to multivariate re-
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gression methods [42]. Existing metabolomic data analysis techniques can be

categorized into three different groups. First, data overview tools e.g. princi-

pal component analysis (PCA) or clustering methods. The second category

includes the linear and nonlinear classification models. Some linear tech-

niques can be partial least square (PLS) or orthogonal partial least square

(OPLS). Examples of nonlinear techniques are neural networks or support

vector machines. The last category is validation techniques.

In general, researchers studying or modeling metabolomic datasets never fol-

lowed any particular guidelines. Everyone tried modeling the data set to the

computational model they were interested in. Charles E. Determan, in his

work [36] reviewed all the machine learning models and statistical analysis

techniques that are mostly used on metabolomic data sets. He presented a

guideline relating to research goals and models (Figure 1).

For the last couple of decades, exponential growth can be seen in metabolomics.

Some good platforms, software, and tools are now crafted, focusing on dif-

ferent metabolomics areas and goals. Some of them are open-sourced tools

or packages, and some others are commercial. Spicer et al., in their pa-

per [64] reviewed some major tools used in metabolomics. They catego-

rized the tools based on functionalities like preprocessing, annotation, and

many more. Popular Softwares like XCMS, cRMN, EigenMS, Metabomxtr,
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Figure 1: Determan’s general guidelines of algorithms to be applied based
on study purposes.If goal is classification only then popular choice is apply-
ing random forest algorithm. Otherwise algorithm is chosen based feature
properties and dataset type.

MetabR etc. are used to preprocess LCMS data. Ionwinze, MetabolAnalyze,

metabolomics, MetaboLyzer, muma etc are the tools to analyze preprocessed

MS data [3, 4, 8, 64, 67]. From the usability perspective, we have found three

different tools that serve researchers in different processes. 1) command-line

interface, 2) graphical user interface, and 3) script packages or library. Table

1 highlights some major software tools used in the studies for similar tasks.
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MetaboAnalyst MetaboNexus Meta X
Release Year 2009 2014 2015
Programmed with R, Java R R,Java
Platform
Independent Yes No(Windows only) Yes

Outlier Handling No No Yes

Normalization
Techniques

quantile normalization
Or
Internal Standard

quantile normalization
Or
Internal Standard

Sum, PQN, VSN, QC-RSC, Normalization
ComBat, SVR, quantiles

Modeling Algorithms
used Internal standard PCA,Clustering,PLS-DA, ROC-analysis PCA,Clustering, PLS-DA, ROC-analysis

Report Geneeration Yes No Yes

Table 1: Existing tools/softwares comparison

In biomarker discovery studies, model fitness can not be deliberately dis-

played by only accuracy or precision rate. More sophisticated measurement

of proof is needed. Generally, biomarker discovery studies go through three

different phases of validations [6]. The first phase is known as the discovery

phase, where a set of signature biomarkers is generated from the training

set, which is tested on the test set. Next to the discovery phase comes the

pre-validation phase or cross-validation phase. Both the discovery phase

and cross-validation phase together provide a better estimate and confidence

over the bio-markers. The final step of validation is considered the signifi-

cant confirmation in biomarker studies. This stage is clinically validated. In

this phase, biomarkers are monitored and studied on healthy and affected

subjects for a final assessment of the resulted bio markers’ success or failure.

In Figure 2, we have summarized a metabolomic biomarker study’s general

workflow. It can be seen from the figure that a study starts clinically with

data generation. Then they are analyzed with computational and statistical

modelings, finally, the generated results are verified through clinical trials.

10



Figure 2: Metabolomics bio-marker discovery workflow. Initially samples
are clinically assessed and dataset is generated. Dataset then gets curated
and analysed. Finally data mining results in biomarker set which is vali-
dated.
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Chapter 3 : Methodology

A good quality dataset is rudimentary to find significant biomarkers. In

general, before applying statistical modeling, datasets are preprocessed with

different techniques. Various preprocessing methods frequently applied on

metabolomic datasets are reviewed in the article written by Jun Yang et al.

[74] . Also, Table 2 lists some efficient preprocessing techniques that we have

adopted in our software.

Name Method Details

Missing Value correction

This method is by default applied to prto all preprocessing tasks.
It ensures that if the dataset consists any feature -
variable with more than 80% missing or null value.
then that feature variable is discarded.

Mean Centering and Variance Scaling

This method is very popular among data scientist.
It ensures proper variance among the feature variables.
This method scales the value by substracting the mean value
of the feature from every value.
So basically Xnew = Xold −Xmean

where X denotes the feature variable.

Univariate Scaling

This scaling method generates new feature values by
dividing the old feature value with its standard deviation.
Thus
Xnew = Xold − Sold

where X denotes the feature and S denotes the standard deviation of Xth variable.

Pareto Scaling

Pareto scaling is little improvement of Univariate scaling.
Here in stead of standard deviation we use square root of standard deviation.
Thus
Xnew = Xold/Sold

where X denotes the feature and S denotes the standard deviation of Xth variable.
Ln Transformation Ln transformation scales the feature value to its ln scale so Xnew = lnXold

Vast Scaling
Designed by Keaun et all in 2003. It works similar like Univariate scaling.
It multiplies the old feature by the ratio of mean and standard deviation. So basically
Xnew = (Xmean/Sold) ∗Xold

Range Scaling
It substracts the feature mean from the feature and then divides the feature with variance.
Thus
Xnew = (Xold −Xmean)/Xvariance

Level Scaling Just like Range scaling however in stead of variance it uses mean as denominator also. So
Xnew = (Xold −Xmean)/Xmean

Table 2: List of available data preprocessing techniques

Mostly, the analysis techniques used in metabolomics are adopted from other

Omics study fields. Especially from Transcriptomics. They vary from uni-

variate to multivariate analysis techniques. Some of the classic methods used
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in earlier days involved the parameter by parameter studies of the metabo-

lites such as T-test or analysis of variance (ANOVA) [41]. Multivariate tech-

niques include some observatory, supervised or unsupervised methodologies

like support vector machine, K-Means clustering, principal component anal-

ysis (PCA), partial least squares projection to latent structures (PLS), Or-

thogonal partial least squares projection to latent structures (OPLS) and

many more [41, 71].

3.1 Principal component analysis (PCA)

Principal component analysis (PCA) [69] is the most widely applied multi-

variate analysis technique used in Metabolomics. PCA uses the concept of

lower-dimensional principal components explaining the variance of its higher

dimensional original dataset. PCA makes a linear transformation to the

dataset capturing maximum variance and minimum dimensions. PCA con-

verts the data matrix into two factorized matrices. The first one is a score

matrix that contains the new positioning of the data points. The second one

is a loading matrix that has weights for the original variables. If we have

a data matrix X with x1, x2, x3, .....xn set of vectors. Where xi denotes the

ith observation/metabolite in the dataset. Then PCA seeks a transformed

matrix Xa where,

Xa =
n∑

i=1

aixi (1)
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Here a = a1, a2, a3....an is a vector of constants. The transformed matrix and

its covariance can also be generated by a′Sa where S is the covariance matrix.

On the other hand, another matrix factorization technique named singular

value decomposition (SVD) can also generate principal components. SVD

represents dataset X = UEW T where E is a rectangular diagonal matrix, U

is an n-by-n matrix, W is a p-by-p matrix. (p is the number of instances in

the dataset).

PCA is effective both as data reduction and visualization model [46]. It

is also highly regarded as a preprocessing step before applying clustering

algorithms [17]. Generally, PCA is used as an introductory analysis tech-

nique to explore the dataset. It is considered as an exploratory multivariate

data analysis model by many researchers [18, 54]. Many researchers consider

PCA as a starting point to form the overview of a hypothesis. Some notable

PCA applications in metabolomics are urine or serum metabolites studies in

kidney cancer or Parkinson’s disease, gut microbiome studies, cancer-related

pathways analysis studies, and many others.

3.2 Partial least squares discriminant analysis (PLS-

DA)

PCA performs well on observatory and unbiased dimension reduction prob-

lems. However, at times its capacity can be limited. PCA depends on the

14



data points’ variations both within the similar and between the other group

or classes. Hence supervised form of analysis technique PLS became pop-

ular as in near to hand modeling technique [68, 70] . PLS serves multiple

purposes, such as data observation, classification, prediction, regression, visu-

alizations, etc. PLS’s underlying principle is to transform or project dataset

into lower-dimensional latent spaces preserving the dataset’s overall covari-

ance structure.

Datasets using PLS can be represented by two metrices( X and Y ). X

being an M ∗ N size matrix of dependent data points (M is the number of

variables while N is the number of data points). Y is a P ∗N sized matrix

denoting the group of the data points (P is the number of dependent vari-

ables while N is the number of data points). PLS projects this data matrix

into a k dimensional matrix T . T is basically the rotated matrix of X and

Y with t1, t2, t3...tk data points. T is represented by the following equation -

T = XW (2)

where W is a matrix representing weights of the X variables. Once T is

generated, it is then possible to design a prediction or classification model

Y ∗. It can be done by multiplying T with another weight matrix C ′. C ′ is

known as Y weight matrix describing Y matrix on the rotated latent space.
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so basically -

Y ∗ = TC ′ (3)

Since T is represented by XW so we can reform it as -

Y ∗ = XWC ′ (4)

The formula above can be again converted into a linear regression model by

simply replacing WC ′ with BP LS. So finally -

Y ∗ = TBP LS (5)

where B0, B1, B2.....BM represents linear coefficients for X. at any given time

new prediction y∗ can be done by -

y∗ = B0 +B1x1 +B2x2 +B3x3 + ....+BMxM (6)

PLS can also serve to visualize the datasets. Once X is projected on latent

space we can then visualize T on a scatter plot to understand closely the

cluster of the variables. We can achieve that goal by looking into weight

vectors of the variables represented by W . The score matrix T also allows

us to compare scores among the projections. Such as if t1 and t2 are two

projections in T then they are represented as following equation and can be
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portrayed on any graphs to compare them.

t1 = w0,1 + w1,1 x1 + w2,1x2 + ...+ wm,1xM (7)

t2 = w0,2 + w1,2 x1 + w2,2 x2 + ...+ wm,2xM (8)

Apart from classification, regression, visualization, dimension reduction, PLS

also serves another popular way. PLS uses the concept of variable influence on

projection, directly measuring the contribution of data features. We can also

achieve the same goal by looking into the regression coefficient from previous

equations as well. However, VIP scores are explicitly designed in PLS to

verify the variable contribution. VIP score of variables can be calculated by

the following equation -

V IP =

√√√√M ∗ (
k∑

i=1

W 2
i ∗ SSYi)/SSYcum) (9)

Here w2
i is the sum of the square of the corresponding Y variable. SSYi

represents the normalized sum of squares of Y on latent space, and SSYcum

represents the cumulative sum of squares of Y on latent space
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3.3 Differential correlation network analysis

PCA, PLS, and other individual testing techniques are commonly adopted in

biological studies. Enormous research and application have embraced these

methods to extrapolate the interrelated elements associated with disease

conditions. There have been recent developments in tools and techniques

studying biological systems. Some current perspective includes the studies

of pairwise interaction of the elements, e.g: protein-protein, gene-gene or

metabolite-metabolite. Another recently developed significant study model

in biomarker research is the study of differential correlations among the fac-

tors [22, 31]. Instead of looking for the absolute property behind any bio-

logical condition, the fundamental idea is that it is easier to map them since

the metabolites tend to show deferentially correlated characteristics.

Network mapping is essential when it comes to studying differential correla-

tion or interaction among the metabolites. Metabolites are results of cellular

processes, and they can be represented in the form of a network that we call

the pathway. Thus mapping differentially correlated pairwise interactions

among the metabolites, we highlight the significant metabolites and figure

out the cellular processes producing them.

Differential correlation studies of the metabolites, mapping them into net-

works and analyzing the topological properties can be a robust biomarker
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detection method. A similar study exhibited tremendous outcome finding re-

sponsible metabolite bio-markers in Osteoarthritis study affecting knee joint

[29]. It can be a potential model studying metabolites for other bio-marker

studies as well. Thus we have incorporated the differential correlation analy-

sis model in our thesis and broadened its capacity. The differential correlation

methodology and topological analysis is the major concentration of this the-

sis. We have extended our analysis model by giving it a platform combining

easy-to-use and configurable panels, handy network mapping, advanced 2d,

and 3d interactive visualization and multiple topological analysis techniques,

automatic and manual filtering techniques, and many more.

This model works in two phases. First phase includes the study of case con-

trol population data. The initial dataset is divided into two sets: the case

set and the control set. Pairwise correlation using Pearson correlation coeffi-

cient r in both case and control is then measured. Corresponding correlation

rcase and rcontrol are used to compute the change of correlation difference

rdif f among the two set of data points. If i and j represents two metabolites

and rcase(i,j), rcontrol(i,j) are the corresponding pair wise Pearson correla-

tion coefficient then rdif f (i, j) is calculated using the normalized difference

of Fisher’s z transformation among rcase(i,j) and rcontrol(i,j),
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rdif f (i, j) = (
√

(ncase − 3)/2 ∗ zcase(i, j)− (
√

(ncontrol − 3)/2 ∗ zcontrol(i, j))

(10)

zcase(i, j) = 1/2ln((1 + rcase(i, j))(1− rcase(i, j))) (11)

zcontrol(i, j) = 1/2ln((1 + rcontrol(i, j))(1− rcontrol(i, j))) (12)

ncase and ncontrol here defines the number of data points among the case and

control population. zcase and zcontrol on the other hand defines Fisher’s z

-transformation of correlation coefficient r and can be computed by equa-

tion 11 and 12. This model of analysis involves an extraordinary approach

to eradicate the data bias to get better results. This model incorporated a

1000-fold permutation test. On each permutation random data points among

the case and control are shuffled. Then rdif f is calculated again, and this

process is continued 1000 times. The entire iteration ensures a null distribu-

tion among the data points.

The second phase of the analysis model incorporates a network mapping
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of the metabolite pairs. The concept of p-value to signify significant pairwise

differential correlation among the metabolites is embraced. p-value can be

represented as a notifier of the metabolite pair importance. Usually, a p-value

cut-off is set to ignore the metabolite pairs that resemble low priority. This is

done to make the network more robust and easy to visualize. This also han-

dles the computational burden when the topological analysis is done on the

network represented by the metabolites. The differential correlation model

incorporates the concept of positive and negatively correlated metabolites

denoting the metabolite concentrations are significantly correlated on cases

than control and vice versa. In the network graph resulted from the correla-

tion matrix, the vertices denote the metabolites, and the edges among them

represent the p-value signifying their correlation. Significant metabolites are

likely to be more central and connected to most other metabolites. That is

why once the network is constructed, a topological analysis is done, including

centrality probing among the metabolites.

In graph theory, researches are conducted on graphs studying the centrality

of the vertices [53]. Centrality works as an indicator identifying how closely

connected a vertex is in the network. In different studies, this technique

determines the important vertices [21]. Graph represented by significance

matrix of the metabolites also shows similar traits. Centrality analysis on

this network reveals the important vertices which indicate the responsible
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metabolites behind the disease condition [41]. In our system, we have incor-

porated four different centrality measurement techniques.

The first topological centrality analysis technique we have implemented in

our system is degree centrality. This is the simplest yet most popular and

effective centrality measurement technique in graph theory. This technique

defines the number of connections the vertices have. The idea is that the more

connection a vertex has, the more important it plays in the network. If we

have a graph G:=(V, E) where V is the set of vertices and E is the set of edges,

then i’th vertex Vi’s degree centrality can be measured by CD(Vi) = deg(Vi).

The next adopted centrality analysis technique in our system is closeness

centrality. Closeness centrality indicates how connected a vertex is with the

rest of the network vertices. If we have a graph G:=(V,E) then closeness

centrality of the ith vertex Vi would be Cc(Vi) = 1/(
∑n

j=1 d(VitoVj)). So

checking the shortest path from a vertex to every other vertex in the net-

work and then calculating the average gives us the closeness centrality of a

vertex.

The third kind of centrality measurement technique that we have imple-

mented in our system is the betweenness centrality which indicates how often

a vertex comes up in the shortest path between two different vertex pairs in
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the network. It is a complex yet potent indicator of graph vertices. If we

have a graph G := (V,E), then we can calculate the betweenness centrality

of a vertex Vi such that -

Cb(Vi) =
∑

(SP (Vs → Vt through Vi)/(SP (Vs → Vt), where[Vs 6= Vt 6= Vi]

(13)

Finally, the last among the centrality measurement techniques that we have

implemented in our system is the page rank centrality analysis. The founders

of google initially coined this technique. Page rank algorithm indicates a

vertex’s importance based on how important the neighbouring vertices -

Cpr(Vi) = (1− d) + d(Cpr(Vj)/C(Vj) + d(Cpr(Vk)/C(Vk) + ....+ d(Cpr(Vn)/C(Vn)

(14)

j, k....n represents the neighboring node of i. d is a damping factor coefficient

set between 0 and 1. Historically it is set to 0.85. C(v) is the total number

of outgoing edges from v. The formula was initially proposed for directed

graphs; however it works great in undirected graphs by replacing each undi-

rected edge with two separate directed edges. Overall steps of the analysis

model are represented on the following page -
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Algorithm 1 Differential correlation analysis
1: Read and split them into case and control dataset matrix naming

casematrix and controlmatrix

2: generate correlation matrix rcase and rcontrol using Pearson correlation
Coefficient

3: Generate a single diagonal matrix rdif f from rcase and rcontrol using
the above stated equations

4: Initiate a similar sized matrix computesig to keep track of the p-value
significance of the pairwise correlations

5: Initiate a similar sized matrix computesig to keep track of the p-value
significance of the pairwise correlations

6: for number0fpermutation← 1 to 1000 do
7: generate a new case and control matrix with intial values naming

case− copymatrix and control − copymatrix

8: Select an integer nswap where 1 ≤ nswap

9: for j ← 1 to nswap do
10: randomly genrate two integer i and j where i ≤

size(ncasematrix) and i ≤ size(controlmatrix)
11: Swap the data point from ith position in case − copymatrix and

jth position in control − copymatrix

12: generate new correlation matriices like step 2 but this time from
case− copymatrix and control − copymatrix

13: Similarly generate a single diagonal matrix permute−rdif f from the
metrices generated in step 12

14: Compare intial rdif f from step 3 with permute− rdif f from step 14.
15: if Corresponding pair in rdif f < permute− rdif f then
16: Increment corresponding pair in the significance matrix

computesig

17: Once computesig is generated completely with all the p-vaalues of the
corresponding metabolite pairs,discard the pairs not matching the ini-
tail p-value cut off margin generally p− value < 0.05

18: Render the matrix into a network and apply topological centrality
analysis to find out the most central metabolite vertices.
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Chapter 4 : Software implementation

4.1 Technical specification

Highlighting the software’s domain and functionalities, we have named the

project Metamarker. Inside the server platform, the software serves in the

unit form that we call a project. Inside a project, users can create multiple

jobs or tasks. Tasks can be of two kinds: 1) applying some normalization

or prepossessing techniques, 2) some machine learning algorithms. The four

significant modules that we have in the system are as follows :

1. Authentication and privacy module

2. Preprocessing and outlier handling module

3. Data processing and result generation module

4. Result analysis, comparison and reporting module

We also have a resource allocation module that ensures proper allocation of

the computing resources and works in the server’s background. The authenti-

cation module encompasses the user details and generates a unique reference

key. Preprocessing and outlier handling module comes with data preprocess-

ing algorithms to create normalized, cleaner, and efficient datasets. The data

processing module comes with three different statistical data analysis tech-

niques. Finally, the result analysis module provides an easy-to-use interface
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where users can compare different modeling results and examine the differ-

ences. It also offers downloadable resources for users to serve other purposes.

A general outline of its modular and parallel design is illustrated in Figure

3. It shows the primary module’s activities and how they are mapped.

Figure 3: Metamarker design workflow. Major modules work indepen-
dently. At any given time user can switch between the modules. The figure
describes the pathways: which modules are accessible from other modules.

4.2 System environment

The project is developed with Python Django framework and various machine-

learning libraries like Pandas, Numpy, Scickit, etc. We have used Github
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(https://github.com/arafatarshad/metamarker) to manage the build pro-

cess. The beta version is hosted with Amazon AWS web services with a

dynamic IP address (http://18.189.6.35:8000/) and soon to be available for

public access. Table 3 contains a more technical specification of the software.

We have designed the database using the Mysql workbench. The schema

diagram is illustrated in Figure 4. The project has 24 tables, as shown. The

bottom colored layer depicts the tables responsible for web sessions, authenti-

cations, migrations, background task processing/tracking, and other backend

significant data storage. The background_task and completed_background

tasks tables from this layer are essential since these two tables work as the

queue for processing job requests. The system looks into these tables every

three seconds to see if any new job is in the queue or not. Once the pro-

cessing job gets applied, the request status gets updated and shifted to the

other table. The second layer on the top left position represents the database

tables designed to keep track of the project and associated processing jobs.

The job table inside the left green layer holds all the job references. The

tables inside the top right layer save each processing models’ parameters and

results in the system.
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Table 3: Technical specification

Programming & ScriptingLanguage Html: 58%, Javascript : 26.7%, Python:5.5%,CSS: 9.8%
Database and Database Server MySQL, MySQL Server
Version Control and Repo Git, GitHub

Backend Library
Django==2.1.7, django-background-tasks==1.2.5,
django-compat==1.0.15 , djangorestframework==3.11.0,
Flask==1.1.2, Flask-Compress==1.5.0

Data mining libraries

matplotlib==3.2.1, numpy==1.18.3
pandas==1.0.3, Pillow==7.1.2
plotly==4.6.0, PyMySQL==0.9.3
pyparsing==2.4.7, python-dateutil==2.8.1
pytz==2019.3, reportlab==3.5.42
retrying==1.3.3, scikit-learn==0.22.2.post1
scipy==1.4.1, six==1.14.0
sklearn==0.0, Werkzeug==1.0.1

Data Visualization Library

dash-core-components==1.9.1
dash-html-components==1.0.3
dash-renderer==1.4.0
dash-table==4.6.2
dash-table-experiments==0.6.0
D3 js V4

Network ing and Visualization Library cytoscape js 3.16
3d-force-graph - 1.66.7

Preprocessing and Outlier Handling

Missing value Handling
Mean Removal and Variance Saclling
Univariate ScalingPareto ScalingLog Scaling
Vast Scaling
Xvast Scaling
Range Scaling
Level Scaling

Data Processing Algorithms
Principal Component Analysis
Partial Least Sqaure (PLS -DA)
Differentail Correlation Analysis and Network modeling

reporting Table , chart, datasets, files
Mail Notification Server smtp.gmail.com
Background Processing Yes
Concurrent Task Processing Yes
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Figure 4: Database schema design
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4.2.1 Project, task and data flow

Metamarker is manageable, uncomplicated, and efficient. To focus on the

rapid purpose serving capability, we have considered minimizing overhead

on futile tasks such as account registration or sign up, etc. Throughout the

entire project, the user interface has been kept user-friendly, attractive, and

resourceful.

The software serves users in the unit form of a project where users can create

multiple projects with their email addresses. The system generates a unique

reference key identifying the projects. Users can access the project anytime

throughout the project life cycle using the reference key. Inside a project,

users can apply preprocessing and outlier handling techniques to the datasets

and generate new datasets. The system handles these kinds of functionali-

ties in the form of instant tasks. On the other hand, the system serves users

to apply statistical data modeling techniques as scheduled jobs since they

generally require longer processing time. So, preprocessing of the datasets

and processing of the datasets are handled differently in our system. Inside

a project, users can create multiple processing jobs with preferred existing

data set and preferred statistical modeling algorithms. Figure 5 Illustrates

how user projects and processing tasks are related.
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Figure 5: Projcet and processing task relation grid. All the processing jobs
are part of a project. Users can create multiple projects and access them
independently.

4.2.2 Job scheduling and task manager

High throughput data processing requires heavy computation. We have

tested our system with a dataset of 152 metabolites and 380 instances of

data points. We came to notice that preprocessing tasks were not taking
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much time. On the other hand, processing the dataset with PCA or PLS

and differential correlation analysis consumed time ranging from 10 seconds

to 10 minutes to generate results. We have tested the system with the same

data set in three different environments and noticed a similar outcome. The

settings used during these testings are as follows. 1) Macintosh computer

with 2.7 GHz intel core i5 processor with 8 gigabytes of RAM and one ter-

abyte of the storage drive. 2) Linux operating system on 2.5 GHz quad-core

Intel i5 processor and 16 gigabytes of ram with one terabyte of storage. 3)

Amazon AWS, an instance with Linux based operating system, and an ama-

zon real-time SD database with one terabyte of storage. More about the

testing process is discussed in the discussion section. We have designed our

system to be portable and released it with open-source licensing through the

Github repository. So the users can also install and host their private portal

with our program. To ensure that the project works on a different platform,

we have implemented a job scheduler for the processing tasks.

The job scheduling method runs in our server’s background to ensure that

the server host is putting all its resources on one processing task at a time.

Once a user creates a processing job, the request gets stored in a queue. The

server processes one request applying the designated processing methods.

Once the job is executed, the server moves to the next job request waiting

in the queue. At any given time, the user can see the job requests that have
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been created under a project through the task manager panel in our system.

The task manager is designed like a table with six columns. A glimpse of

the task manager interface of the software is presented in Figure 6. The

rows represent the jobs. The first column denotes the name of the job that

the user has put during the job creation. The second column denotes the

dataset name. The third column denotes the date when the job was created.

The fourth column defines the status of the job. Jobs can be under pending,

running, and finished status. The fifth column denotes the model which is

used for that processing job. Finally the last column is what provides the

user manage the jobs. User can either delete the jobs or once the system

completes job, user can access the results by clicking on the show results

button.
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Figure 6: Task manager table : list of existing processing job
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4.3 Software interfaces

We have designed the software with minimal registration/sign-up process for

rapid transaction towards the data processing. Upon arrival to the landing

page user will be asked to select an option whether to create a new project or

select an existing one from the user’s project list (shown in Figure 7(a)). The

project life cycle starts with a dataset uploaded through the project creation

form which is shown in the figure 7(b). The form has only five input fields to

fill up, which takes less than a minute to complete. During project creation,

the system generates a 128-bit unique reference key. This key is crucial for

the user to preserve for follow-up access to the project. Our system shares

the reference key only once throughout the project life cycle that is during

project creation. The key is forwarded to the user via the email channel that

the user signed up with. Select a project button as shown in Figure 7(a),

which allows the user to access an existing project using the reference key

of the project (Figure 7(c)). The authentication grid takes only two inputs.

The first one is the user email, and the second one is the project reference

key. Once the submit button is clicked, the system verifies the key against

the email address and loads the corresponding project.

35



(a) Landing Page Create or Select Project

(b) Create New Project page

(c) Select existing project page

Figure 7: Project landing page, create, select ,authenticate
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Successfully authenticated users are initially redirected to the home page/

dashboard of the software. The admin panel’s major components are shown

in Figure 8. The admin panel is developed on an open-source admin panel

interface named Admin LTE [11]. The fundamental structure of the web

pages throughout the admin panel has been kept similar and consistent.

The navigation bar (Figure 8(b)) provides access to all the modular features.

The homepage offers a basic overview of the initially uploaded dataset. It

comes with two tables and a line chart. The first table in Figure 8(c), pro-

vides a glimpse of the dataset. Right next to that comes a line chart. It

represents all the data instances in the data set regarding the feature name

or dataset column. Again, The table shown in Figure 8(d) provides an overall

description of the initial dataset. This second table (Figure 8(d)) has four

columns the first column is the serial number, and the second column lists

all the feature names in the dataset. The third column indicates the type of

the data instances, and the last column shows the number of outlier/missing

values associated with that feature.
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(a) Navigation

bar

(b) Data overview table

(c) Line chart representing data with respect to features

(d) Dataset detail table

Figure 8: Project homepage, main navigation, and associated data
overview 38



All the modular features are arranged through the left navigation bar in

the software. The first tab in the navigation bar provides access to the pre-

processing panel of the software. Once users arrive at the data preprocessing

and outlier handling page (Figure 9), the system will allow the user to select

the existing dataset under the project. Every time a preprocessing task is

performed, a new dataset is created and stored inside the project. Users can

choose one or multiple methods from the checklist. Finally, when confirmed,

the system will apply the techniques and generate the new dataset.

4.3.1 Data processing with principal component analysis

The navigation menu has an option labeled Data Processing with PCA

which links the webpage where users can apply PCA to their preferred

datasets. The system performs PCA tasks in the form of a scheduled pro-

cessing job. Once the user creates a job with the desired configuration, the

job is submitted to the processing queue. When the job is executed, user can

find the results through the task manager.

The web page interface for PCA has been implemented with minimal config-

uration, Keeping consistency with simplicity(Figure 10). PCA serves users

both exploratory and dimension reduction purposes. When the focus is an
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Figure 9: Data preprocessing panel. Users can select the dataset and name
of the resulting dataset from the input boxes. Users can choose one or mul-
tiple preprocessing techniques from the checkbox. Finally the system ap-
plies the tecniques and saves the resulting dataset with user given name.

observation of the dataset, users can select the number of components gen-

erated by the system. When the primary intention is to reduce the number

of dimensions and inspect significant metabolites, users can configure the

other dropdown. The system allows users to reduce the variables to as low

as 10% of the total number of variables present in the dataset. For example,

if a dataset comes with 100 variables, the system will lower it and present

the first ten variables showing the dataset’s highest variance. Components in

PCA’s are generated in an ordered form. The first component holds the most
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variance, and the second component is lesser than that, and so on. From this

panel, users can generate a minimum of two to a maximum of N number of

components. N being the size of the dataset variables.

Figure 10: Data processing with PCA

4.3.2 Data processing with PLS-DA

The navigation menu labeled Data Processing with PLS links the web

page for the PLS application interface (Figure 11). The system applies PLS

in the form of a processing job. From the interface, users can select a dataset,

put a name and create the job. Once the server executes the job, users get no-

tified to access the result. Our system adopted the idea of a component-based

PLS application. Users can select multiple components. On each component,
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a different latent space is found with different loadings and weight matrices.

The first component captures the most significant latent space and associ-

ated results. The second one captures comparatively lesser and so on.

PLS depends on the data group variables or class variables. The program

must know which column represents the group. In general, PLS is designed

to work on multiple dependent variables. It can have multiple Y variables;

however, to keep it simple, we have designed our PLS model to support only

one dependent Y variable, which has to be represented in the last column of

the dataset.

Figure 11: Data processing with PLS-DA

4.3.3 Differential correlation analysis in data processing

Our quest for an out of box analysis techniques led us to look over enormous

new methods. We understand that the differential correlation study model
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could be a compelling alternative viewpoint for metabolite interactions. The

model has proven its constructive results finding the key metabolites responsi-

ble for Osteoarthritis among the adults [29]. As mentioned before, this model

has two distinct phases or stages. The first stage is where differential cor-

relation among the metabolite pairs is analyzed, significance p-value among

the pairs is studied. In the second stage, a network is modeled. Topologi-

cal analysis is conducted to find out the central-most significant metabolites.

Similarly, in our software, we have divided the model to work on the datasets

in two different stages.

Figure 12: Data processing with differential correlation analysis

In the first step, we generate the significance matrix denoting pair wise inter-

action of the metabolites. Like any other processing job in the software, this
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task is also carried out in the form of a scheduled processing job. Users can

create a new job from the Data processing with differential correlation

analysis panel in our software (Figure 12). During the job creation, the user

can select the number of permutation starting from 100 to 1000. User can

also configure the p-value cutoff anything in between from 0.001 to 0.05.
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Chapter 5 : Results, reports and result com-

parison module

So far, we have discussed the analytical features and different models of the

system. We have also discussed the design workflow, including the analyt-

ical features that can be accessed through our system. We have discussed

other pages like the preprocessing and processing module. We have also

looked into the system environment, database, and many more. Now we are

moving more into our outputs, deliverable and observational side of the soft-

ware. This thesis has been aimed to provide a rigid shape to metabolomic

biomarker research. Simultaneously, we were also focusing primarily on pro-

viding a platform for the differential correlation analysis represented by net-

work and topological sorting. PCA and PLS has been used in numerous

studies, and they already have the proper attention from researchers. The

differential correlation analysis model [29] on the other hand, is new to the

domain. Thus this method was our center of attention. To make the analysis

model familiar, accessible, and effective, we have added enormous interactive

visualizations and sorting mechanisms. This chapter will first discuss the

results and illustrative visualizations we have implemented for differential

correlation analysis and then move forward with other results from PCA and

PLS.
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Moving through this chapter to keep consistency, we will demonstrate our

system with the same metabolic dataset. The data set we have used in our

test purpose is collected and initiated in 2011 for an Osteoarthritis Study

among the Knee OA patients undergoing knee replacement surgeries in New-

foundland [75, 77]. The data set was generated recruiting patients at St

Claire’s Mercy hospital and Health Science’s Center General Hospital in St

John’s over a couple of years. The primary motivation for us to use this

dataset is because it is a very well-maintained and clean dataset.

5.1 Differential correlation analysis: results and visual-

izations

We have already discussed that the model has two major distinctive stages.

In the first stage, the pairwise correlations of the variables are analyzed, and

a diagonal matrix representing their significance is generated. The second

stage involves converting the significance matrix into a network and sorting

the vertices based on topological properties. The differential correlation net-

work and associated results are implemented over two different web pages in

our system. Network rendering, visualization, and run-time processing re-

quire heavy computations. Various front-end scripting libraries are involved

in the pages. Combining them in one page would not be efficient, and users

might experience lagging or delay in page loading. That is why multiple pages

were designed to reduce the run time resource and computation requirements.
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The first result page covers the entire prospect of our analysis method.

On top of the web page, we have generated two heat maps. Both of the

heat maps are rendered in the backend server using python’s plotting library

named Plotly and Dash[2]. The heat maps display the correlation matrix

and the significance matrix. The heat maps are interactive with scroll-able

and zoom-able properties. Hovering over the map elements, users can get the

corresponding metabolite names and their Pearson correlation coefficient. In

the significance matrix, the actual significance coefficient value is generally

a tiny fractional number. To illustrate that visually we have multiplied the

value by 1000 to make it more visual and illustrative. An example can be

seen in Figure 13, where we have generated the heat maps using our Os-

teoarthritis dataset. The rows and columns of the heat maps represent the

metabolites from our dataset while the cell represents the values.

First result page also contains the network graph representing the signifi-

cance matrix (Figure 14). The network is generated on a JavaScript canvas

pane. We have used front end java script library named cytoscape.js [20] to

render the graph. The vertices in the network represent the metabolites and

the edges represent the correlation among them. The network is highly user

interactive. User can use their mouse to drag and resize the pane as well

as the graph separately. Users can rearrange the vertices. It also has the
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(a) Correlation heatmap (partial view)

(b) Significance Heatmap (partial view)

Figure 13: Heatmaps placed in the first result page. (a) represents a
screenshot of the correlaton matrix generated by differential correlation
analysis. (b) represents the screenshot of the significance matrix which is
resulted as final outcome of first stage in differential corrleation analysis.
The X and Y axis in both these plots represents metabolites.

analysis and different modeling functionalities that user can select from the

drop downs placed on top of the pane.

The first drop-down option from the menu bar is for layouts. Users can

model the graph with four different layout models. The next drop-down is

for the topological analysis. This drop-down provides the centrality measure-

ment techniques which we have described in chapter 3. The third drop-down
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Figure 14: Differential correlation network analysis: default view with cir-
cular layout. The top of the pane contains three dropdown options with
more functionalities applicable to the network. Inside the network the ver-
tices represents the metabolites. The edges represents the interactions hav-
ing p-value greater than cutoff value.

in the menu bar allows users to filter the graph for better visualizations. Fi-

nally, we have a button in the menu bar that resets the map. By default,

the network is rendered with a circular layout. While circular layout places

the vertices on the circumference, the concentric layout uses multiple layers,

one over the other. The grid layout represents the vertices in the shape of a

rectangular grid. Finally, we have the fourth layout model named breadth-

first approach. The concept is similar to concentric, yet the vertices in this

layout options are layered in a parallel manner. A glimpse of all these layouts

applied on our test dataset can be seen in Figure 15.
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(a) Circular layout of the graph

(b) Concentric layout of the graph

(c) Grid layout of the graph

(d) Breadth-First layout of the graph

Figure 15: Differential correlation analysis: layout rendering options
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Centrality analysis on the network reveals important vertices indicating

the responsible metabolites behind the disease condition. As mentioned be-

fore, the second drop-down from our menu bar provides users the four cen-

trality measurement techniques applicable to the network. Once selected a

method, the system generates a table listing all the metabolites and their

respective centrality values in the form of a pop-up modal table. Such an ex-

ample is shown in Figure 16 using our test dataset. Here we have generated a

table of page rank centrality from the significance matrix of our dataset. One

great additional feature of this table is the sorting/filtering ability. Users can

sort the list of metabolites from the table and select their preferred number

of metabolites for further validation studies.

The third dropdown in the menu bar allows the user to filter the network for

better analysis. Once the user selects from the list options, the system runs a

centrality analysis on the network and removes the vertices that do not fit the

selected criteria. The dropdown selection options are sorted percentage-wise.

For example, suppose a user wants to sort the network according to degree

centrality, keep the top 50% and remove the rest. In that case, all the user

has to do is select the top 50% central vertices option from the dropdown,

and the system re-rends the graph accordingly, running all the steps in the

background. Finally, the last option in the menu bar is a button that resets

the network any time throughout the session. Instead of reloading the entire
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Figure 16: Modal table with centrality analysis. The modal appears once
user applies the centrality measurement method from the second dropdown
menu.Left column lists the name of metabolits and right column lists their
value. The table can be sorted or exported into csv or json file.

page, users can refresh the network and save loading time through the Reset

button.

Second web page is entirely focused on the correlation network and its

different run time states. Upon arrival to this web page, users will see a

similar graph to the previous page. While the last pane offered filtering by

the vertices, this new pane allows users to filter the network based on edge

properties. The input form allows the user to filter the graph with p-values

ranging between 0.001 to 0.05. Edge filtering based on p-values provides more

visibility and perspective when the network is very dense. To show how it
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makes the difference, in Figure 17 we have regenerated the same graph pre-

sented in Figure 15. This time we have filtered the edges with 0.001 p-value

limit. In contrast, the previous one had a p-value limit of 0.01. We can see

this time the graph seems cleaner, less dense, and more visible.

The graph on this second web page has more interactive capabilities than the

one on the previous page. The edges and vertices both respond to mouse left

clicks and right clicks differently. Also, along with the network pane, we have

added two more boxes on the bottom. The first box among them provides

clicked object information and the second box offers some applicable func-

tionalities on the related object Such an example can be seen in Figure 18

based on our data set. We have designed the interaction with four different

approaches described below.

Browsing and navigating through a graph could be very hectic sometimes.

Especially with sparse networks where edges overlap each other and vertices

are very hard to notice. Also, sometimes, a user might need to explore the

network figuring out preferred interactions randomly. To make this process

smooth and easy, we have incorporated a selection feature. At any given

time, users can select a vertex by left mouse click on the vertex. This will do

three things. First, the vertex will be highlighted (animated) as a selected

item. The clicked object information table will generate the vertex’s informa-
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(a) Circular layout of the graph

(b) Concentric Layout of the graph (c) Grid Layout of the graph

(d) Breadth-First layout of the graph

Figure 17: Network layouts with edge filtering applied

tion, including the vertex’s name and a table listing the neighboring nodes

and the edges’ p-values. On the other hand, more options for the clicked

element table will provide options to change the element color for helpful

browsing or delete the vertex to make the network density low. Using the
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Figure 18: Extended network analysis options in second result page. Apart
from the network the UI provides two tables left one named clicked object
information table right one named more options for the clicked element

Osteoarthritis dataset, We have demonstrated this interaction in Figure 19.

Another interaction feature provides an ability to find out similarly val-

ued edges in the network. Upon right-clicking on edges, the system animates

and highlights all other edges having the same p-value. This interaction also

dynamically renders the clicked object information table and more options

for the clicked element table. Since the clicked element is an edge, the first

table generates the source vertex and the target vertex connected by the

edge and shows their p-value. The second table provides an edge coloring or

deleting option. In Figure 20 we have presented a glimpse of the right-click

action on edges. The network edges also support left mouse click events that

animate the source and destination vertices of the edge in the network.

The graph that we have implemented is very interactive and informative.

55



(a) This pictures demonstrates the left mouse click action on the network. Upon
mouse click on vertex PC.ae.C38.5 highlighted it with color blue

(b) and generated two boxes in (b). Left one in (b) includes a table listing all
the neighbours of the vertex.Right one provides a option to manually color or
delete the vertex.

Figure 19: Left mouse button interactions and panel information about the
clicked items
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(a) Selection of one edge and animating the similar or lesser p-valued edge in the net-
work

(b) Boxes that are generated dynamically with more information and added func-
tion

Figure 20: Right mouse click interaction on the network. which highlights
similar p-valued edges and generates two tables. First table provides gen-
eral information second one provides interactive options.

Additionally, the system allows the graph presented in the network pane to

be converted into a three dimensional animated diagram for more visual ca-
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pacity and intuition (see Figure 21). It is done in real-time by simply clicking

on the blue button on top in the menu bar labeled "launch 3d network". The

3d graph appears in a new pop-up modal with a black background and an

animation of rendering the map over few seconds. It starts with a small

compact network and then expands to the entire dimension of the panel. It

holds all the vertices and edges the 2d graph in the network pane holds since

it is rendered in real-time. If a user deletes a vertex or edge from the 2d

graph, that won’t be reflected in the 3d graph.

While the 2d graph, by default, shows the vertex name in the graph 3d

model but is designed to show the edges’ p-values. And user can get the

name of the vertices by hovering the mouse pointer over the vertex. The 3d

model, unlike the previous 2d model, supports a middle mouse button for

zoom in and zoom out interaction.
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(a) 3d modeling of the differential correlation net-

work from zoom 0

(b) 3d modeling of the differential correlation net-

work from zoom 30

(c) 3d modeling of the differential correlation net-

work from zoom 70

Figure 21: 3d modeling of the real time 2d network from the network pane.

59



Network centrality indicators are very crucial for our model. While the

previous web page was designed to represent the centrality in tabular form

here, we have brought it to a new look and feel. We have graphically illus-

trated the centralities of the vertices. On the second result page, we have

two plots associated with centrality. The first plot shows the overall central-

ity distribution throughout the network in real-time. And the second plot,

followed by the first one, shows the metabolites’ actual centrality in a chart.

Both the plots are generated in real-time. Every time users make changes

to the network. The charts will be different. Just like the previous one, we

have incorporated all four of the centrality indicators adopted in our system.

We have a similar dropdown from where users can select and observe the

result. While the first plot shows the overall network centrality concentra-

tion and gives the user idea of what to expect in the graph. The second plot

shows vertex-wise centrality indicators. Since it is represented graphically,

it is easier to compare or see the differences among them. Figure 22 shows

a representation of the two plots with degree centrality. We can see the dis-

tribution of the degree variance throughout the samples from these plots for

our test dataset.
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(a) Degree Centrality Distribution

(b) Degree Centrality’s of the Vertices

Figure 22: two line charts providing real time information of the centrality
distribution and actual real time centrality value

The final piece of information associated with the second result web page

is the general network information tab attached at the very bottom of the

page. It provides specific size information of the network in real-time. It

is beneficial when users are dealing with an extensive network and looking

to know the size. It gives the number of vertices and edges in the network

in real-time. Finally, it also provides a list of all the orphan vertices in the

network (a vertex with no edges connecting them).

61



5.2 Partial least square analysis result

In the previous chapter, we have discussed PLS in detail. Also, we have

discussed how we have implemented PLS in our system. Now it’s time we

describe once the system processes the dataset with PLS what happens next.

As we recall from the previous chapter PLS converts the dataset X and Y

into a latent space. X is converted into a x score; similarly, Y is transformed

into a y score. x score and y score represent the data points into projected

space. Two vectors x loading and y loading are also generated by PLS. While

x score and y score represent the data, x loading and y loading represent the

variables in X and Y . One popular way to look into the significance or cor-

relation of the variables is to look into the xloading and y loading vectors.

Another perspective of looking into the variable correlations in PLS is to look

into the third set of vectors X and Y weights. If we remember the equation

Y = XW , W is what X stands for, and From Y ∗ = TC ′, C ′ is what the y

wights stand for.

PLS results have few sets of parameters. Loading vectors (x loading and

y loading) , score matrix(x score and y score), weight vector (x weight and y

weight). Y weights or y loadings are relevant when there are multiple vari-

ables in Y . In our case, we will always have only one dependent Y variable.

Also, we are mostly concerned about the correlation and covariance among

the X variables. That is why we have chosen to ignore the Y loading and y
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weights. We have focused on X loading and X weights instead.

X and Y scores represent the actual data points in projected space, which

could be analyzed if we were interested in the classification or prediction of

Y variables. Since our primary concern is to find the relationship among the

X variables only, we have chosen to ignore the score matrices. Instead, we

have decided to focus on something else. In the previous chapter, we have

mentioned that PLS directly ranks the X variables known as VIP values for

the variables. In our system, we have demonstrated the PLS-generated VIP

values. X loading and X weight.

After PLS is applied, the task manager’s job status gets updated and the

user gets notified by email. Like the previous differential correlation analysis

job result, the user can access the result through the task manager table.

Inside the PLS result page, users will see a line chart representing the vari-

ables’ VIP scores. In the previous chapter, we have mentioned that PLS is

applied as in component basis. Each component comes with its own set of

loadings, scores, and weights. The first component captures the best-fitted

latent space. Then comes the second one and then the third one. This is

why we have added a menu bar that allows users to select the associated x

loading and weight vector represented in the graph from each component.

A demo presentation of the graphs are shown in Figure 23. We have ran
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the PLS algorithm on the Osteoarthritis dataset and and generated this bar

plot shown in the picture. The top bar plot represents the VIP score of the

metabolites. In the bottom one the component wise loading or weight of the

metabolites are generated.

(a) PLS VIP score

(b) PLS loading and weight chart

Figure 23: In both the bar chart the row represents the metabolites and
the column represents values. (a) shows vip scrore and (b) has a dropdown
option that lets user to toggle between loading and weight values.
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5.3 Principal component analysis result

In chapter 4, we have discussed PCA in detail, including we have imple-

mented PCA in our system. Now we will discuss how we have assembled

the results of the model, like the previous two models. Users can access

the results of the PCA model through the task manager. PCA works with

components, and the prior components carry more variance than the latter.

The first thing that we have shown in our PCA result section is the variance

covered by each component. We have implemented a pie chart that describes

the variance overview of the components. Next to that pie chart, we have

added a menu for the user to analyze component-wise results . Upon select-

ing a component, a bar chart is generated showing the relevant variables and

how they contribute.

An example of the PCA model application on our dataset is shown in Figure

24. As we have run the model with three components, the pie chart shows

how each part captures the variances. It can be seen the first component

holds the majority variance. Later in the image, we can also see the signif-

icant metabolites and how they contribute to the variance. One additional

feature that we have implemented here in the bar chart is filtering the vari-

ables that do not contribute. The bar chart filters out variables (metabolites)

that are not significant in component results and do not show them in the

plot.
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(a) Pie Chart for PCA Component variance

(b) Bar chart for PCA component wise result

Figure 24: Principal component analysis results. (a) represents a pie chart
representing the number of component and corresponding variance cap-
tured by them, (b) shows the actual value of the metabolites how they vary
in selected component.
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5.4 Result comparison module

Another remarkable feature that we have implemented is the result compar-

ison module. It allows comparison of different model results. This feature

provides additional validity and insights into the findings. Every job can

be projected to a single platform through our system and compared to each

other. The comparison can be made on a job to job basis as well as model to

model basis. Not just with similar models but also within the same job with

different parameters or different modeling jobs. For example: If we have a

processing job done through our system with a PLS algorithm, we can use

the result comparison module to compare the loading matrix with the same

job’s VIP score or weight matrix. We can also compare the result of that job

with other jobs in the project, such as a job processed by PCA or differential

correlation analysis.

The comparison module is designed to work in three sequential steps. In

the first step, the user can select two processing jobs from the drop-down

list. Users can choose two jobs with the same model or different model or

even two identical jobs. Table 4 demonstrates which properties of the first

and second job can be compared through the platform. Once job selection is

made, the second step configuration tab with additional criteria gets visible

on the screen for first and second jobs. In the third step, a line chart is

generated. The blue line in the diagram denotes the first job, and the red
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First Job/
Second Job

Principal
Component
Analysis

Partial
Least
Square

Differenatial
Correlation
Analysis

Principal
Component
Analysis

The first job’s
component-wise
values can be compared
with the second jobs
similar or different
component-wise
values

First Job component-wise
values can be comapred with
Second job’s component-wise
loading, weight or VIP values

First Job component-wise
values can be compared
with
second job’s centrality
values

Partial
Least
Square

First job component-wise
loading,weight or VIP
valuecomparison with
Second job’s
component-wise values

The first job’s loading,
weight,or VIP value
comparison
with second job’s loading,
weight or VIP value’s

First Job component-wise
loading, weights or VIP
value can becompared
to Second job
centrality wise comparison

Differenatial
Correlation
Analysis

First Job centrality values can
be compared to
component-wise values
from second jo

First Job’s centrality values
can be compared with the
component-wise loading,
weights, or VIP value from
the second job

First Job’scentrality
values
can be compared to
second job’s centrality
values

Table 4: First job vs second job result comparison critetria

one represents the second one. The chart’s left side shows the scale for the

first job, and the right one shows the scale for the second one. The X-axis is

where the metabolites are represented, and they are the same for both. On

top of the chart, there is a dropdown menu that is used for added visibility.

This dropdown allows the user to flip the scale for the second job to see

inverted results for more insights.

Let us describe this page feature with an example. Let’s say we want to

compare a result analyzed by PLS with a differential correlation analysis

result. So in step one, we select PLS-based jobs from the dropdown, and

in the second dropdown, we choose a differential correlation analysis-based

job. Then we click submit, and a second step criterion pops up. We select

the desired component and type of result for PLS, and then we choose the
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(a) Step 1: select two processing job from the list for comparison

(b) Step 2: Select the parameters based on the selection from step 1

(c) Step 3: the line chart generated for both the job

Figure 25: Job comparison panel and the three steps associated to the pro-
cess
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kind of centrality measurement criteria for the second job. Then once again,

click submit button, and we get the line chart generated. Such an applica-

tion can be seen in Figure 25 where we have used the comparison module

to compare two jobs. The first one is a PLS-based job, and the second one

is a differential correlation analysis job. The standard comparison criteria

that match these two jobs are component-wise loadings or weights from the

first job and centrality matrices from the second job. Thus, we selected our

desired configurations from these two jobs and generated a plot defining their

relationship or differences.

5.5 Download reports and manage project

Another vital part of the result and reports module is the download manager.

Each task in our system results in deliverables stored in the database. Our

system provides proper visualization and validation techniques, and it also

allows users to download the deliverable for further assessment or future

reference. The deliverables are sorted according to the jobs and listed under

the downloads panel in a similar table to the task manager’s table. Each job

has different kinds of deliverables. For example, jobs that are processed with

PCA lets the user download the component-wise variable results. PLS, on

the other hand, enables users to download loading or weight vectors. Details

list of job-wise data downloading options is presented in Table 5, and a demo

representation of the download panel is shown in Figure 26.
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(a) Download panel,list of processing jobs to manage downloads

(b) Download options for Differential Correlation Analysis

Figure 26: Download panel and the job wise downloadables
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Type Of Processing Model Downlodables

Principal Component Analysis Componenet Result

Defines the contribution of

the vriables for covariance in that

compnent

Partial Least Square X weight

The model generated weights

associated to the

X variables

Partial Least Square Y weight

The model generated weights

for the

Y variabel

Partial Least Square VIP Score

Model ranked list of varaibles

defining

their significacne

Partial Least Square X Loading

The model generated values

associated

with X variables for

projection onto latent space

Partial Least Square Y Loading

The model generated values

associated

with Y variables for

projection onto latent space

Differential Correlation Analysis Initial Correlation Matrix

the initial pair wise correlation

matrix using pearson correlation

analysis

Differential Correlation Analysis Final Correlation Matrix

Corrleation matrix that is generated

after applying

the n number of fold permutation

Differential Correlation Analysis Significacne Matrix

The pairwise significance matrix with

the p-values

used to generate the network

Differential Correlation Analysis Network Data

Original Network data with edge,

vertices,

and p-value as edge weights

that can be downloaded and

imported to cytoscape

Table 5: Download options according to processing task
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Chapter 6 : Discussion and system evaluation

We have designed this research project to eradicate the void due to the lack of

data overview and processing tools in metabolomic biomarker studies. Before

we started this project, we studied the literature thoroughly and understood

the dire need for software solely dedicated to biomarker research. Most of the

existing tools and software’s are designed for multidisciplinary usage and do

not explicitly encompass biomarker research capacity. In many cases, these

tools are ambiguous and require technical knowledge/training. The models

work as a black box, and the results or reports are hard to understand. Users

need to use multiple tools throughout the study for different purposes, and

a lot of time is spent managing these tasks for different phases. Similarly,

most of the existing software is hard to access, standalone or requires heavy

computing resources that most personal computers can not support. Our

thesis has created a general outline and successfully implemented a quick

and easy webserver to tackle all the problems we have just mentioned.

Our potential users are biologists, pathologists, pharmacists, data scientists,

and, lastly, computer scientists. Mostly our users are individuals with heavy

domain knowledge rather than having technical, statistical, or computational

modeling knowledge. When it comes to getting a general overview of any

dataset, form any hypothesis, or validate them, our users are mostly depen-

dent on daunting software that works like complete black boxes. All the
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modeling techniques require hundreds of parameter calibrations since they

are designed for multidisciplinary usage. Our thesis has developed an en-

tire software encompassing one task and one task only, biomarker discovery

with metabolite data set. Thus we have designed our user interface and user

experience with precise and minimal setup requirements. Our software is

designed to be attractive. It has interactive, responsive, and modern visual-

ization techniques that allow users to play with the system and provide more

significant insights.

Our workflow is simple and effective. And the most crucial part: it bun-

dles necessary techniques presented in one single platform. It’s not like users

have to use one tool for preprocessing, another tool for modeling, and the

third one for result analysis. Everything has been manifested in the same

project efficiently and smoothly. Our rapid accessibility protocol ensures

that users do not have to waste time with redundant or unnecessary tasks

like account creation or maintenance. Our unique reference key ensures that

user’s data and results are secured and private.

Efficiency is another issue with most other software. While other tools are

designed to run on high-performing computers, we have designed our system

to be equipped with low or average-performing computers. The users can

avail of our service through our online portal, and our open source licensing
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allows users to set up the service in user preferred live or local environment.

Our singleton job scheduling technique ensures one task at a timing mecha-

nism, which provides efficiency in low-performing servers or computers.

We have designed the system to be fast and rapid, at the same time we have

not compromised with resources. With multiple preprocessing and process-

ing techniques, we have encompassed our system to fulfill users’ exploratory,

dimension reduction, or advanced correlation mapping purposes. We have

covered both unsupervised and supervised modeling techniques. The compar-

ison tool allows users to play with different model outputs for more insights

and validation.

Lastly, we have to mention the advanced differential correlation analysis

technique, which proved to be promising in metabolomic biomarker research.

While most other fundamental modeling techniques are prevalent and well

adopted, this new technique needed more attention, popularity, and a rigid

platform. We can undoubtedly say with our advanced graph analysis and

2D/3D interactive network visualizations, we have provided it a basis for

recognition. With the model’s potential and our simple, intuitive service in-

terface, we are confident that this model will flourish and help users better

understand.
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6.1 Metamarker compared to other popular softwares

We have discussed our system briefly and described how it aids the void in

finding biomarkers from a dataset. Now we will look into some other popular

software used for similar purposes by users, and we will make a comparison

of our system along with the rest.

The first popular software that we have reviewed is named MetaboAna-

lyst 3.0 [73]. This system was introduced in 2009 as a stand-alone soft-

ware with one single module to process and apply general functional analysis

on metabolomic datasets. In 2012 the second version of the software was

released with only four statistical modeling techniques for functional data

analysis. Even with these limited capabilities, this tool saw tremendous de-

mand among the researchers. By 2013, the system was processing around

3200 tasks a month. in 2015, the system was redesigned and transformed into

a web-based service, adding few new features due to popular demand. At

that time, it was processing almost 40000 processing tasks from researchers

all over the world. The software has been through various updates, and

currently, it has eight different modules providing three categories of studies.

The first category is exploratory studies on the dataset. The second category

is functional analysis or statistical modeling of the dataset, and the third one

is advanced methods for translational studies of the dataset.
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MetaboAnalyst is designed to focus on comprehensive studies such as gene

gene interaction network analysis or time series data analysis, pathway anal-

ysis, and more (the homepage shows the list in figure 27). Yet, these differ-

ent modules cover fundamental techniques. The biomarker analysis module

available in Metaboanalyst is designed mostly for classification or predictive

modeling purposes. The p-value combination, vote counts or direct merging,

receiver operating characteristic (ROC) curves are some of its techniques.

Metamarker, on the other hand, is precisely designed for bio-marker research

only and, more specifically, dimension reduction or finding significant bio-

markers among the sample. It may not provide a platform for other branches

of studies yet for one specific task; it is equipped with all the basic to ad-

vanced techniques. We will discuss more on the advantage and shortcomings

of these two systems in Table 6.

Another popular software tool used in metabolomics study is MetaX [67],

an R package designed for metabolomic dataset analysis. It was released in

2017 as a command-line tool serving comprehensive analysis like univariate

and multivariate statistics, power analysis and sample size estimation, re-

ceiver operating characteristic analysis, biomarker selection, etc. It also had

a web-based interface that allowed a user to apply data quality assessment

and normalization method evaluation on a dataset. Some essential advan-

tages and drawbacks of MetaX and Metamarker is shown in Table 7.
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Criteria MetaboAnalyst 3.0 Metamarker

Hosted Environment
Linux server with 16GB RAM
and eight-core
2.6 GHz Processor

Linux server with
16GB RAM and quad-core
2.4 GHz Processor

Preporcissing and
Outlier

Mostly focused for Raw
spectral data

Varied range of preprocessing
techniques availabe for
different kind of data sourrce

Biomarker Analysis

provides ROC curve analysis,
along with the p-value vote count.
The analysis is mainly
designed for
new sample prediction or
classification purpose

Analysis is specifically designed
for biomarker identification
with dimension reduction and
other metabolite ranking methods.
Prediction is not part of the scope,
although provides processed data
to be downloaded and importet for
specific classification or regression
purposes.

Exploration of the dataset Provides models like PCA or
PLS to explore the dataset

All three adopted models can
fulfil exploratory purpose

Reports

Reports are presented as tables
and
2D graphs and charts. Mostly
Ven diagrams

Reports are presented in form of
tables, graphs, chart, networks,
csv files

Visualizations

Most of the visualizations
are heatmaps
generated by R package,
feature details table

line charts,bar charts, pie charts,
2d Network mapping,
3d network mapping
distribution plot
(all interactive generated with
python plotly, dash, cytoscape js,
D3, and many more)

Session
User session is not saved
everytime user visits the system
they have to process again

Session is saved and user can revisit
with reference key

Network visualization allows for gene gene interaction
network

Metabolite pair wise
correlation network
visualization along wtih
topological analysis

Model comparison
models applied on datasets
can not be compared. Allows
single job processing per session only

Advanced platform to comparer tasks
performd on dataset

Other branches of
metabolomics

Provides varied option for
other brnaches (like pathway analysis)

Limited exposure for
other branches
of studies apart from
biomarker identification

Portability Can be installed in local environment Can be installed in user’s local environment
also

Table 6: Comparison between MetaboAnalyst and Metamarker
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Criteria Meta X Metamarker

Hosted Environment

Initially provided web based GUI
along with command line tool. Yet
Web based sercvice is no longer
available

Offers web-based multiple paged
GUI service

Missing Value
Imputation

features with 50% <missing
values are imputed

features with 80% <missing
values are imputed

Scaling &
Transformation

Pareto scaling, vast scaling,
range scaling, autoscaling and
level scaling
generalized logarithm
(glog) and cube root transformation.

Pareto scaling, vast scaling,
range scaling, level scaling,
Mean Centering and
Variance Scaling,Ln Transformation,

Data Quality
Assesment
Techniques

peak distribution and box plot,
the number of missing value
distribution,
correlation heatmap,
the metabolite m/z (or mass)
distribution,
the plot of m/z versus retention
time,
the PCA score or loading plot of all
samples.

data table,
missing value and data type table,
correlation heatmap,
centrality distribution table,
Line chart,
PCA score,
PLS loading,Score, Weight
VIP Score

Statistical
Analysis

Univariate and Multivaraite,
including PCA,PLS-DA, OPLS-DA,
U-test,ROC curve

PCA, PLS-DA, Differential Correlation
network topological analysis

Metabolite
correlation
network
analysis

Pair wise correlation and
pair wise differential correlation
network.

pairwise differential correlation
network

Network
Visualization

2D network generated with igraph
package.
can be exported to file
which can be added to Cytoscape
and Gephi for further analysis.

Network is colored according to
component. doesnot provide
interaction
or filtering 3D network is not
available

2D as well as 3D network generated
with D3, Cytoscape JS.

No need to explicitly export to
Cytoscape
for further analysis rather .
It can be done
directly through the system.
On top of that
network data is available to be
downloaded for
further analysis

Network coloring is based on
neighboring
vertices. Both automated
vertiex and edge-based
filtering option is available.
different layout options available.
realtime 2D to 3D conversion
available.

Network
Analysis

univariate and multivariate
statistical analysis methods.

Topological centrality measurement
analysis methods

Model
comparison

models applied on datasets
can not be compared. Allows
single job processing per session only

Advanced platform to comparer tasks
performd on dataset

Other branches
of
metabolomics

Provides varied option for
other brnaches (like pathway analysis)

Limited exposure for
other branches
of studies apart from
biomarker identification

Portability command line tool can
be installed in local environment

GUI based tool can be installed in
local environment

Repository
and remote
access

User session is not saved, Does
not provide
repository for user data,job and
results
Does not allow revisit

Offers repository to save data
and results
can be revisited and remote
access to the
repository with a secured
reference key

Optimization
GUI based system
is not optimised to work
with low configured computers

System is optimized with
singleton design pattern ensuring
one task at a time

Table 7: Comparison between Metamarker and MetaX
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Figure 27: Landing page for MetaboAnalyst. It lists all the mod-
ule/category names available to the system.

The last popular model that we have looked into for motivation is designed

and implemented in the form of a standalone program [30]. It was released

in 2014 and can be installed and used only on the Windows platform. It is

designed with a basic workflow. Upload dataset preprocessed with existing

raw peak data preprocessing technique and then apply statistical modeling

to identify metabolites. Though it was intended mainly for metabolite iden-

tification however it provides comprehensive study features. For biomarker

discovery, it adopted PLS and Random forest to find significant metabolite

variables from the dataset.

The software MetaboNexus is programmed with R as a batch file that can
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be executed in the Windows operating system. The system’s performance

depends on the configuration of the computer. We have described the pros

and cons of these two systems compared to each other in Table 8.

Criteria Meta X Metamarker

Hosted Environment
Locally Windows machine
highly dependent on the host
configuration

Hosted online and also can be hosted
local machines

Pre processing
Allows preprocessing to
be done on peak lsit of
molecular feature

9 different kind of processing
techniques available for user preference

Statistical
Analysis

Univariate analysis and PCA,
PLS-DA,ROC curve
and Random Forest

PCA, PLS-DA, Differential Correlation
network topological analysis

Reporting and
Visualization

Graphs, Score plot,
Box plot, Heatmap

Bar plot, tables, line chart, csv files,
2d and 3d network graphs

Network
Analysis Does not allow network analysis

Interactive network analysis
with filtering, also
real time
Topological centrality measurement
analysis methods

Model
comparison

models applied on datasets
can not be compared. Allows
single job processing per session only

Advanced platform to comparer tasks
performd on dataset

Portability
Can be installed in windows
based (minimum XP)
computers only

GUI based tool can be installed in
local environment independent to
operating system

Repository
and remote
access

User session is not saved however
limited exposure to pro processing
since the files are saved in local
machine.

No direct remote access to the system

Offers online repository to save data
and results
can be revisited and remote
access to the
repository with a secured
reference key is available

Optimization
Not optimised to work

with low configured computers

System is optimized with
singleton design pattern ensuring
one task at a time

Table 8: Comparison between Metamarker and MetaboNexus

6.2 Challenges, open issues and limitations

Every efficient major scale software takes a team of programmers, architects,

QA testers to work few years in assembling and the pieces together. The

process works iteratively. New features are added every now and then. Con-
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sider the related software MetaboAnalyst. In 2009 it was implemented with

only four statistical modeling techniques. And six years of effort later, it

flourished with eight different modules serving three categories of studies.

One programmer programs our Metamarker project, and it took 18 months

to design, develop and test the first version of the software. This is just

the beginning of unlimited potential. It will undoubtedly flourish in the fu-

ture with added features and updates. Some of the drawbacks, issues, and

limitations are discussed in the following section.

1. Metamarker is not designed for pathway analysis or other comprehen-

sive studies. While most other software provides a platform for com-

prehensive data analysis, Metamarker allows limited exposure to that.

Metamarker is wholly focused on biomarker discovery purpose and de-

signed to aid the shortcomings of the other software.

2. Metamarker is designed for rapid study, at the same time provides an

online repository to the user. Thus it is designed with very narrow user

registration properties. Also, it is crucially dependent on the unique

reference key to access a project. And if the key is lost, the user will

lose access to data. This is one of the tradeoffs we had to consider to

make the design fast and simple. Once the key is lost, the only way to

get the access back is to contact the database administrator, who can

generate a new key or delete the project.
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3. Metamarker can only work effectively with CSV file formated metabolomic

dataset where the first row has to be the variables’ name. The last col-

umn has to have the group variables/class variables. This requirement

is widespread with other popular software and needed to ensure efficient

performance.

4. While PCA and PLS are adopted for bio-marker discovery, the result

and visualizations for these two models are not as varied as the dif-

ferential correlation analysis. The reason is that PCA and PLS are

already well established compared to the differential correlation analy-

sis model. We explicitly wanted to provide a solid ground to this third

lesser-known model. This is one reason for our first version release; we

mainly focus on designing more for the differential correlation and net-

work analysis. In future releases, we will be adding more visualizations

for PCA and PLS models also.

5. The differential correlation analysis can only support binary case-control

population dataset. If it has more than two group variables, then the

model will not perform accordingly. The system works assuming the

variable group size to keep the interface simple.

6. The system does not allow concurrent processing tasks at a time. To

ensure that our software performs efficiently, we have implemented a

singleton design pattern. By default, the system enables one job at
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a time; however, it can be converted into a system offering parallel

processing by changing few lines of configuration in the program. We

prefer the one task at a time model to ensure the lower configured

computer’s efficiency.

7. In case of server starvation (when there is no processing job for the

job scheduler), the job scheduler module sometimes goes to a standby

mode. In such situations, users have to refresh the task manager page

to restart the job scheduler. We have designed it this way to save server

resources.

8. As of now, the system can only process numeric data input for the pro-

cessing model. The system is designed to ignore alphabetical or non-

numeric data. This is one of the design requirements to ensure proper

assessment of the dataset. One automated functionality is present in

our system to convert non-numeric ordinal values to numeric values;

however, that feature is not active in the prototype. Users with techni-

cal knowledge can download the open-source program and change some

program lines to activate that feature.
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Chapter 7 : Conclusion

Metabolomics is growing as a popular field of study, and it will see more ad-

vancement in the future. It has many potentials to offer, and diverse applica-

tions are possible through the study of Metabolomics. While metabolomics

encompasses various tasks, we have entirely focused on one aspect in this

thesis. We have focused on enriching its capacity in the field of biomarker

discovery.

As a newer branch of study, metabolomics lacked advanced modeling tools

and software. Most of the tools focus on a wide range of applications rather

than concentrating specifically on significant bio-marker discovery from the

dataset. Not to mention these tools require specific technical training and

knowledge about the system to work with. Apart from usability, the sys-

tem’s accessibility and portability were other concerns. Not all of them are

suitable to perform in different computing environments, and not all are re-

motely accessible. Most of the software tools are also very much dependent

on computation power, and in low-configured computers, they do not per-

form very well. Besides, the modeling techniques used in these software tools

need to be more innovative.

We have encountered all these shortcomings throughout this thesis project,

then designed and developed a robust modern, and efficient system called
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Metamarker. Our approach is very intuitive. The interface is designed in a

straightforward and contemporary fashion, which will ensure users’ comfort

of eyes and always grab their attention. The tedious account registration

process is eradicated rather than that rapid project-based authentication

protocol has been developed. Advanced reporting and interactive visualiza-

tions have been adopted to provide more insights to the users. Also, diverse

analysis and data modeling techniques have been adopted in our system. We

have designed a standard workflow for biomarker discovery where users can

create a project, handle outliers, run analysis and observe results. We assem-

bled all of them in one platform and provided the ground to easily compare

the processing jobs for a user to have more observatory insights. Besides,

we have also ensured the system performs well in lowly configured computer

environments with its one task at time scheduling techniques.

We have also worked our way by providing a solid ground for a network-based

analysis model: Differential correlation analysis holds impressive potential.

We have just designed the bridge for users to use this promising model on

their dataset. We have also extended its capacity with advanced topologi-

cal analysis, various filtering options, different distribution plots, and many

more.

A complete dedicated software solution was a dire need for the biomarker
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discovery prospect with Metabolomic datasets. It was challenging, and time-

consuming effort was needed to fill the void. Our software named Metamarker

is planned and developed considering a broad aspect of the study field and

user capacity. And we are confident it will play a substantial role among the

user serving data cleaning, exploratory, and dimension reduction purposes.

We wish Metamarker can be a useful tool for the metabolomics research

community. All the limitations that we have addressed will be the scope of

future extensions and upgrades.
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