
Representing Transcription Factor Dimers By
Using Forked-Position Weight Matrices

by
©Aida Ghayour Khiavi

A Dissertation submitted to the School of Graduate Studies in partial fulfillment of
the requirements for the degree of

M.Sc.

Department of Computer Science

Memorial University of Newfoundland
May 2021

St. John’s Newfoundland



Abstract

Position Weight Matrices (PWMs) and sequence logos are one of the most popu-

lar tools among researchers for modelling and visualizing Transcription Factor (TF)

Binding Sites (TFBS). The PWM based models predict a single DNA sequence as

a reference TFBS for a specific TF, based on experimentally determined sequence

information. One of the standard assays for characterizing the TFBS of one TF on a

genomic-wide scale is called ChIP-Seq. The Chromatin Immunoprecipitation (ChIP)

method uses TF-specific antibodies to capture protein:DNA complexes, followed by

high-throughput sequencing of the bound DNA sequences (Seq). These experiments

are applied in a controlled manner to target only one TF at each run, thus describing

TFBSs of a single TF of interest. This approach is proven to be imprecise because

many TFs (e.g. Leucine Zippers) tend to bind to the DNA as homodimers or het-

erodimers. Hence, the ChIP-seq assay will obtain the entire set of dimer complexes of

a target TF (homodimers and heterodimers); and merge the captured information into

a single PWM which subsequently will lead to an imprecise description of the TFBS.

The TFBS constructed by the mixture of homodimers and heterodimers will result in

a model with two halves: a conserved part (binding sites of the TF of interest) and a

degenerated part (representing a mixture of the binding sites of TF’s partners). Cur-

rent PWMs (or Sequence Logos) seem inadequate to represent TF dimer binding sites

since they fail to represent the TF’s binding dynamic and disregard the alteration in
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sequence preference caused by different dimer partners of the given TF. To tackle this

problem, we introduce an R library named Forked Position Weight Matrix (FPWM),

which provides the user with variant functionalities to generate a more precise PWM

that adapts to TF dimers by forking it into the co-factors of the main TF. The FPWM

enhances TFBS prediction’s power and allows the biologists to have a more precise

interpretation of cell context by providing a more expressive model of TFBSs. The

FPWM is less susceptible to false-positives and is a more precise way to represent

dimer TFBSs, which introduces a new standard in dimer and TFBSs analysis.
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General Summary

If we consider the DNA a book written using 4 alphabets of A, T, C and G, then

each gene is a sentence. The final expression each sentence makes depends on factors

such as the context of the book or the usage of meaningless but necessary elements

like punctuations. It is proven now that 98% of human DNA does not encode for a

specific function but has the role of regulating genes’ expression. Some experimental

and computational methods try to see which set of genes interplay with which of these

regulatory factors. One of the methods for this purpose is ChIP-Seq, which is designed

to draw this relation between only one factor and its associated genes. In this thesis,

we explain how ChIP-Seq can miss information in some cases since some factors work

as two partners or dimers. Thus we proposed a model that takes this dimerization

into account, thus representing more precise data about the dimer factors and their

association with DNA.
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Chapter 1

Research Background

In this document, the interdisciplinary field of bioinformatics has been investigated.

Regarding the research area and the importance of understanding this report’s pur-

pose, a basic introduction to molecular biology and common terms and phrases is

provided first. Then the research background and related projects will be described

in this chapter.

1.1 DNA, Genes and Chromosomes

Based on an article published by "Watson and Crick" in 1953[1], DNA (DeoxyriboNu-

cleic Acid) is a double-helix polymer that base units, called nucleotides, from each

strand bind to each other in a complementary manner. This results in a ladder-shaped

molecule with base pairs of Adenine-Thymine or Guanine-Cytosine[2]. A gene, on the

other hand, can be defined as "a unit of DNA that is usually located on a chromo-

some controlling the development of one or more traits and is the basic unit by which

genetic information is passed from parent to offspring[3]." Genes are the functional

units of DNA, traditionally considered as protein-coding genes but also recognized as

functional RNAs (RiboNucleic Acids).
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DNA is a very long molecule that must be compressed into small packages to fit into

the cells within organism’s body. The free form of DNA and protein combination is

called chromatin. In order to compress this, DNA coils around the protein structures

(Histones) many times, forming a compact structure like beads, called nucleosome

(see 1.1).

Figure 1.1: Chromosomal DNA is compacted by coiling around histons forming
nucleosomes. This structure is compressed further to make the chromatin of a

chromosome. As can be seen, this spacial structure, makes DNA exposed to some
environmental elements (such as methyl structures) or keeps them inaccessible.
This image is a modified version of a pictures was adopted from U.S. National

Institute of Health[4] on October 2020. (permission of access granted since image is
available for public use with citation.)

Chromatins then condense further, constructing a characteristic structure called

a chromosome. The structure of the chromosome and how it is constructed, as de-

scribed, is depicted in Figure 1.1.

2



Human beings have 46 chromosomes, 23 coming from each parent. A part of genetic

researches focuses on understanding the role of DNA in orchestrating the development

of cells, tissues and organs with the help of many available genome sequence data.

The level of access to DNA sequences, is a determinant of how genes are expressed and

that is controlled through a dynamic protein-DNA structural organization (e.g. chro-

matin). Once the accessibility is achieved, genes can be exposed to their environment

for inter-playing with with other structures such as transcription factors.

1.2 Gene Expression

Cellular DNA holds the sequence information to specify the gene expression pattern

of each cell. The means of transmitting the information encoded in the DNA is

described as the central dogma of biology. The central dogma refers to the direction

of the information flow of a mechanism in which genetic information within the DNA

results in a functional product such as protein[5]. RNA is a molecule highly similar to

DNA except that it has only one strand instead of two (making its structure relatively

unstable) with a Uracil (U) instead of Thiamin (T). RNA makes a complimentary copy

of the DNA sequence in order to transmit the information encoded within DNA[6].

This information transition ( DNA -> RNA -> Protein) has two levels: transcription

and translation. Transcription is the crucial step determining which genes will be

expressed (or switched on) while in translation, the RNA made in the previous level

is translated to extract the information encoding the resulting protein. The product of

gene expression leads to specific functions, which perform various tasks, and specific

regions within the DNA, have regulatory effect on this expression. Almost 10% of

the whole genome is constructed from genes, while 90% of it is non-gene regions that

control genes regulation. So, in order for these genes to be recognized and expressed,
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a set of regulatory proteins identify gene regions by binding to specific sites on DNA,

then initiate transcription to start the gene expression[7].

1.3 Transcription Factors and their Binding Sites

Transcription Factors (TFs) are proteins that attach to Binding Sites (TFBSs) of

their preference on DNA and regulate the gene expression by interacting with the

regulatory element of that very gene. So, regarding their determining role in the gene

expression mechanism, it is necessary to find their binding sites on the genome to

predict the way it is going to affect transcription[8]. A single TF can bind to many

locations on DNA. The TFBSs can simultaneously target multiple TFs, leading to

a complex regulatory effect at binding sites. Although these sites may be distant

from the affected gene (up to 2 million base pairs [9]), they can associate with the

genes through chromatin loops. Some TFs can direct remodelling of chromatin and

reposition the nucleosomes, which subsequently opens the door for even more TF

recruitment. TFs also can prevent this from happening by keeping nucleosomes from

relocating[10]. TFs are categorized into multiple classes, regarding their structure and

how they bind to the DNA sequence. According to Figure 1.2, currently, there are ten

superfamilies of TFs. The three largest ones are called: Basic domains, Helix-Turn-

Helix domains and Zinc-coordinating DNA-binding domains. In Figure 1.3, examples

of these three superfamilies in interaction with a DNA sequence is depicted.
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Figure 1.2: Current set of TFs are categorized into ten super families, each of which
containing multiple families. The image is captured from HOCOMOCO’s website
[11] without any alterations. The permission is granted from Oxford University

Press on October 2020
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Figure 1.3: Representation of 3 TF super families in interaction with DNA sequence.
This picture is adopted then modified (from [12]) with direct permission from author.

1.4 Mapping Transcription Factor Binding Sites

After the Human Genome Project’s successful execution with the main goal of de-

scribing the entire sequence of base pairs that make up human DNA, the time came to

identify its functioning regions. After attempting to find and allocate each region to

one functional product, it was confirmed that only 1% of 3.3 billion nucleotides code

for proteins. Mammals have retained non-coding regions within their DNA sequence

and that many of gene-related disease or traits are associated with non-coding regions

[13]. Therefore, the importance of identifying coding-regions and drawing a relation

between them and traits or diseases seemed to be more important than ever. By the

advancement of technology and development of more precise methods of genome wise

study, the interest in analyzing these non-coding regions in DNA and their potential

role is rising rapidly[14]. Given that 99% of the human genome appears to be non-

coding, the question is what these regions are responsible for? Recently a project

was initiated in which researchers try to further define the role of these regions in
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the entire genome’s functionality, and that although the non-coding regions do not

directly code for protein, they have a significant role in regulating those regions that

do code for proteins.

1.4.1 ENCODE Consortium

Understanding the significance of non-protein coding regions of the human genome

was the motivation behind a broad consortium project named Encyclopedia of DNA

Elements (ENCODE). ENCODE project was started in 2003 by the National Human

Genome Research Institute. They gathered professionals skilled in computation to

approach the problem of "Identifying active regions of the DNA" with a combination of

high-throughput methods[15]. The ENCODE project stresses on quality of generated

data. All the data generation stages and its associated information should follow a

set of defined standards to be easily and systematically used and regenerated. For

this purpose, high-throughput technologies have been a great help, as they have made

the overwhelming task of data management remarkably straightforward. The central

Data Coordination Center is exclusively assigned to revising, collecting, and spreading

the data sets after a quality check. The resulting data collection and the analysis based

on those (such as graphs and data files) are publicly accessible through the website.

Overall, ENCODE follows a well-defined set of protocols to generate an integrated set

of data that is easy to handle and study. Following this, different types of data are

generated by the consortium, which is scientifically useful. A number of these data

sets are as follow[16]:

1. Genes and Transcripts: The project’s main goal is to annotate different DNA

sites to the list of the transcriptional products in hand. Accurate annotation of

all the non-coding sites or pseudogenes has not been an easy task. It is worth

mentioning that multiple algorithms have been developed that undertake this
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task and do it fast and automatically. However, the manual annotation done by

a human is still the most reliable approach. The ENCODE consortium’s priority

is to rely mostly on a manual approach with the help of automatic modelling

of the genes and transcriptional products that can be revised by traditional

approaches.

2. Cis-Regulatory Regions: The regions close to the gene that regulate the gene ex-

pression are called Cis-regulatory elements. These regions may include a couple

of elements, namely promoters, enhancers, silencers, etc. One of the principal

works of the ENCODE project includes locating Cis-elements and identifying

the TFs that bind to them to help scientists quickly investigate the behaviour

of regulatory elements and their impact on the expression of a particular gene.

3. Additional Data Types: The ENCODE project takes other data types under

consideration to complement some other ongoing projects or produce benchmark

data for public use. For example, they assemble data sets of DNA methylation.

Methylation is one of the processes that a DNA may undergo. To put it simply,

it is discovered that the addition of a methylation group to the DNA sequence

is an inheritable epigenetic phenomenon. Regarding this fact, ENCODE tries

to calculate the level of methylation at each DNA sequence of interest. This

will be described in further details in the following sections.

The ENCODE consortium employs various biochemical assays shown in Figure

1.4 to generate data and study DNA sequence. Other scientists also use most of these

experimental approaches in order to collect data. A number of these assays are as

follows[17]:
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Figure 1.4: ENCODE: Encyclopedia of DNA Elements: employed techniques and
methods scheme.

From [17], with the permission of use from Cold Spring Harbor Laboratory Press
Bookstore, granted on October 2020.

1. RT-PCR: Reverse Transcription(RT) Polymerase Chain Reaction is a technique

used to analyze gene regulation patterns by measuring the amount of RNA of

interest[18].

2. RNA-seq: This approach consists of making a library of Complementary-DNA

(cDNA) from a set of RNAs followed by high-throughput sequencing, which

subsequently will form a map of the transcriptional arrangements and possibly

each gene’s expression rate[19].

3. RIP-Chip: In RNA immunoprecipitation chip method, the RNA of interest,

along with the proteins bound to it, is isolated through an assay, so it helps the

researchers to identify a set of RNAs that may have similar protein performance

or resembling roles[20]. In some experimental cases, this approach has led to

identifying motifs of the 6-8 nucleotide length and was observed to be remarkably

9



specific and low on error[21].

4. DNase-seq: An enzyme named Deoxyribonuclease I (DNase I) exists within

our cells that digest DNA chaotically. However, due to chromatin’s charac-

teristic structure, this enzyme cannot contact all the DNA sequence regions.

DNase I-hypersensitive site sequencing (DNase-seq) is a method to locate those

regions where digestion occurs, which interprets it as locating the regulatory

elements[22].

5. FAIRE-seq: Formaldehyde-Assisted Isolation of Regulatory Elements, allows

researchers to isolate regulatory elements in the whole genome in an efficient

way. This assay, followed by a high-throughput sequencing method, results in a

highly efficient method for identifying regulatory regions on DNA sequence[23].

6. RRBS: Reduced Representation Bisulfite Sequencing is a method to study the

DNA methylation level on a genome. This model has developed as an alternative

for WGBS and employs a relatively reduced region of DNA sequence to represent

the whole methylation pattern[24].

7. Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET):

Using this method, scientists can investigate genome-wide interactions of the

chromatin and how regulatory elements interact with one another through differ-

ent stages of cell differentiation or development. CHIA-Pet helps draw the rela-

tion between regulatory proteins and their binding site throughout the genome[25].

Chip-Seq and Whole Genome bisulfite Sequencing (WGBS) will be explained in fur-

ther detail as they are the core of our work.
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1.4.2 Whole Genome bisulfite Sequencing

Methylation of DNA refers to a chemical interaction in which methyl groups are added

to the fifth position of the Cytosine structure (see Figure 1.5).

Figure 1.5: Attachment of a structure of methyl group to fifth position of cytosine
nucleotide, results in methylation.

This image is a modified version from [26], with a permission under Creative
Commons Attribution (CC BY) license available at:
http://creativecommons.org/licenses/by/4.0/ .

This phenomenon is stable and has a significant impact on gene expression through-

out the cell’s developmental stages, and is considered one of the most influential factors

in the dynamic of TF’s binding preference[27]. It has been reported that methylation

can inhibit TFs from binding to the regulatory elements; however, recent studies show

that this is not a general rule as some TFs bind only to methylated DNA, and some

show no specific alteration in behaviour[27]. Since the research foundation of this

thesis focuses on the dynamic nature of a given TF’s binding site and hence its func-

tionality in different contexts; it is vital to understand how methylation is measured

and represented. To measure the level of methylation, the DNA is treated with a

chemical named bisulphite that converts all the unmethylated Cytosine nucleotides

to uracil while the rest remains unchanged. Coupling this assay with high throughput
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sequencing facilitates the entire procedure. By doing this, it is possible to observe

the level of methylation at each Cytosine, which gives the researchers a broad insight

into the gene’s behaviour[28]. In one of our in house projects (MethMotif[27]), the

level of methylation profile of each TFBS is intuitively represented as a bar chart,

representing the state of methylation on the given TFBS. The level of methylation at

each position is categorized into three groups based on methylation score percentages:

first <10% (i.e. homogenously hypomethylated); secondly, methylation scores >90%

(i.e. homogenously hypermethylated) and finally, methylation scores ranging from

10% to 90% (i.e. heterogeneously methylated)[27]. An example of a methylation pro-

file for a given TFBS coupled with its DNA profile, studied in a cell-specific context,

is represented in Figure 1.6.

Figure 1.6: An example of Methylation Profile couple with sequence motif profile.
The three intervals expressing the level of methylation is shown in different colors.

This Figure is adapted from [27], on October 2020 with the permission of the
authors.
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1.4.3 ChIP and ChIP-seq

Chromatin Immunoprecipitation

ChIP is a highly efficient technique to study the association of a target protein (or

TF) with a DNA sequence. [29]. ChIP consists of multiple stages (see Figure 1.7).

Each of these stages should follow district instructions in order to achieve the highest

accuracy and efficiency at the end. Generally, ChIP starts with fixing the protein

structure bound to a DNA sequence at their bound position. This is done by applying

formaldehyde onto the sample, which forms a covalent link between protein structure

and the DNA sequence. "Formaldehyde is a reversible protein-DNA cross-linking

agent that serves to fix or “preserve” the protein-DNA interactions occurring in the

cell [30]." Once the protein structures are fixed in their place, the DNA string and

those complexes bound to it undergo a mechanical or chemical shearing procedure,

which breaks the whole segment into short fragments while the bound sequences

remain protected. The next step is immunoprecipitation.The target protein:DNA

complex, is selectively isolated by using a protein-specific antibody. This helps the

enrichment of a selection of fragments that are attached to protein structures. It is

worth mentioning that the selective isolation of a particular protein: DNA fragment

helps ChIP procedure detect continuous and distant fragments of the DNA targeted

by the protein of interest. Note that this strategy has its drawbacks, such as high

reliance on the specificity of the applied antibody or the amount of protein of interest

that exists in the sample also being a snapshot in time. It is strongly recommended

to have a highly specific antibody (to decrease the experimental noise) along with a

large amount of expressed protein of interest (to increase the accuracy of analysis).

After the immunoprecipitation phase, the DNA fragments and the protein attached

to them go through a reversed cross-linking stage in which their attached protein is
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washed away. In the end, what left is purified DNA fragments that were targeted

(around 150 bp) by the TF of interest. It is only by analyzing this pool of selected

DNA fragments that we can monitor the behaviour of TF of interest and see how it

affects the gene regulation[31].

Figure 1.7: Major stages of a typical ChIP assay for library construction.
This Figure is adapted from [31] under permission of use from the Springer Nature

publisher.

ChIP Followed by Sequencing (ChIP-Seq)

The term DNA sequencing refers to the procedure of finding the order of nucleotides

within the genome. The latest technologies that enable researchers to sequence mil-

lions of DNA fragments in only one set of experiments allowed researchers to perform

extensive and highly time-consuming projects. Next-Generation Sequencing (NGS)

or high-throughput sequencing is one of the novel ideas of recent years which refers

to set of sequencing technologies that allows researchers to sequence DNA or RNA

faster and cheaper than traditional methods. NGSs have been employed in many
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projects and experiments such as RNA sequencing, characterization of the DNase I

sensitive sites on the genome, or finding a new type of small RNAs [32]. Regarding

these remarkable achievements with NGS’s help, it is expected that with the devel-

opment of the third generation of sequencing technologies, significant discoveries and

experiments will be executed even more. ChIP assay, followed by sequencing, was one

of the most remarkable utilization of NGS. In ChIP-Seq, the sequencing is limited to

the DNA sequences of interest only. The coupling of ChIP assay with NGS results

in a highly efficient and accurate study (if the determinants were chosen adequately),

which also benefits from the observation’s vast range. Therefore, the generated data

by this method is highly reliable. However, the ChIP-seq method’s properties, such

as each read’s short length (around 25–32 base pairs), may not be quite preferable

for some other applications, but it is entirely compatible with ChIP-Seq technology.

ChIP-Seq presents a more accurate characterization of TFs and enhancer regions and

measures more numbers of these elements per each experiment’s run. The high accu-

racy and reliability of ChIP-seq, along with its ability to study a larger portion of the

genome, makes it a very suitable and recommended approach for studying protein-

DNA interactions. The general workflow of the ChIP-seq may include some main

stages (as shown in Figure 1.8), namely quality control, alignment, peak calling and

motif predication in following order[32]:
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Figure 1.8: The workflow of Data generation with the ChIP-seq experiment and the
procedure which ends to Motif Prediction.

The figured is adapted from [33], on October 2020 with the permission of use and
distribute with citation.

1. Library Construction: After Chromatin Immunoprecipitation, the extracted

DNA fragments undergo a couple of revising and modifications to construct

a library that is ready to be sequenced. For this purpose, adapter sequences

are adjusted to the fragments to prepare them for the next step. It is worth

mentioning that the main challenge in library construction is the amount of

DNA. As mentioned before, since the number of sequences is limited to the se-

quences of interest, there might be a phase in which the number of fragments

is increased by applying the Polymerase Chain Reaction (PCR) method. After

the construction of a proper library, fragments are ready to be aligned[34].

2. Alignment: In the field of genetics, alignment is the procedure of finding the

location of a collection of sequences by relating them to their source reference

in order to find their location of origin on the reference genome (refer to Figure

1.9). The result of the alignment stage is the generation of a data source that

can later be studied for related genomic features, aside from locating, such as

DNA sequence comparisons and gene expression rate[35].

16



Figure 1.9: Set of reads are aligned with the help of the reference gennome resulting
the map. First read is aligned at position 100, second one at 114 and the third read
at position 123. Note than insertion, deletions and mismatching at some positions

are possible scenarios.
This Figure is from [36], accessed on October 2020. The content of this website is
open for adapt and distribution under the Creative Commons Attribution 4.0

International License.

3. Peak Calling: After the alignment of DNA fragments, it is necessary to start the

computational approach to discover the TF of interest’s target fragment. For

this purpose, those regions of the genome from which the most DNA fragments

are originated should be validly detected. "Peak calling" studies the stack of

reads formed after aligning many fragments to the reference genome. These

stacks or "Peaks" may correspond to a TF of interest (TFBS). The peak calling

procedure includes two significant stages: Detecting the location that many of

the reads are piled upon each other, followed by validating that the detected

stack is indeed a signal from a TF’s binding Site, and not a false signal[37].

However, the levels of works are more than just these two. The peak calling

algorithm highly relies on the mapping layer’s performance. So it is necessary

to make sure that these two tools are compatible. The peak callers normally go

through several layers, namely: read shifting, background estimation, identifi-
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cation of enriched peaks, significance analysis and removal of artifacts. First,

the aligned reads (normally 150-300 bps) are shifted to merge both strands’

data, thus identifying the sub-sequence high probably involved in protein: DNA

interaction. The size of shifting can be set based on the size of the fragments

used in library construction, which can be done either experimentally or by ap-

proximating from sequence data. Note that the comparison of these two can

also be a way to work on the quality since the reads’ ratio coming from opposite

strands is expected to be almost 1. The next step would be identifying peaks.

This is done either by setting a threshold and monitoring the value coming from

each peak or detecting locations with minimum enrichment compared to the

background observed within a sliding window. After this phase, the significance

of peaks is determined. Most of the toolkits deliver a P-value for each peak;

many of them, on the other hand, rely on the height of the peak and/or compare

the enrichment to the background to rank the peaks. Finally, the artifact data

should be removed. First, a set of peaks that contain few reads are removed

with this assumption that they are the result of PCR amplification. Then those

peaks that have a high imbalance between reads coming from opposite strands

are deleted. After this phase, a list of peaks is delivered to the user as the

set of validated peaks. The choice of peak caller highly relies on the type of

experiment that is being run. For example, some of the peak callers work bet-

ter for the transcription factors. There are several popular peak callers, namely

Model-based Analysis of ChIP-Seq (MACS)[38], which is a commonly used tool,

especially for TFs. It is relatively easy to work with due to little required ad-

justments. However, sometimes, the user is not interested in the peaks but the

type of data that can range kilo or megabases of the genome. Spatial Clustering

for Identification of ChIP-Enriched Regions (SICER) [39] is developed for those
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types of studies, for example, chromatin modification.

Quality determinants

Several experimental determinants can impact the quality of ChIP-Seq assay results,

as follow: The first one is the bias that may arise in the genomic coverage of reads,

potentially manipulating the core signal. The next one is the library type, which

can be constructed using paired-end or single-end sequencing. It is reported that

paired-end libraries are more suitable for the proposes, such as identifying alternative

splice isoforms or discovering chimeric transcripts [40]. The third determinant to

name is the sequencing depth of ChIP and input chromatin samples (constructed by

fragmenting or enzymatic digestion of chromatin extracts), engaged as a control for

background signal. And finally, the type of strategy that is used for peak calling[40].

It is stated that in a certain level of standards, the analytical algorithms and the

choice of computational tools have a more significant impact on the final result than

experimental factors[41]. For example, it is reported that the minimum number of

cells that are required to operate a ChIP-Seq experiment can be reduced by fine-

tuning the experimental parameters, such as the quality of the antibody. The quality

of the final result can be improved by optimizing the concentration of formaldehyde

used for cross-linking the proteins and DNA regarding the type of cell and antibody in

use. Also, high-quality outcomes can be obtained by precise control of DNA shearing

and fragmentation of correct size[42]. The fragmentation size should be short enough

to result in narrower peaks initially, but not too short that they are not mapped

accurately. Regarding the abovementioned, the importance of computational analysis

of ChIP-Seq assay, which is the goal of this project evident. In the following, the

Bioinformatic strategies around ChIP-Seq will be described.
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1.5 Bioinformatics Analysis of ChIP-Seq data Sets

ChIP-seq data sets are a valuable data source only if they are properly analyzed us-

ing the appropriate analytical tools. The analysis of all data starts with managing

the retrieved data. The first step to comprehensively manage similar data sets is

to transform them into the same structure to facilitate data exchange and software

compatibility. As was described earlier, data collected from a ChIP-Seq experiment

represents sequencing information retrieved by the second stage of the assay (high-

throughput sequencing). However, the abundance of file formats that are generally

not well-defined or flexible enough has been one of the biggest bioinformatics chal-

lenges. Many formats are do not respect the standard protocol that everyone should

be following, yet are highly employed because of their strength. In the case of DNA

sequencing, one of the commonly used data formats, which is highly utilized for data

exchange among variant tools, is FASTQ. The FASTQ data format is an upgraded

version of a data format with the same properties, but with an extra column for

the quality score to provide some information about the reliability of each nucleotide

recorded. For example, in the Phred method, some lookup tables are constructed

by recording the correctly validated sequences from sequence traces[43]. These ta-

bles are hard-coded and are used by Phred to look up and calculate some factors

based on each peak’s resolution and shape[43]. Phred scores are originated as an

algorithmic strategy, in which some parameters such as peak resolution and shape

are connected to a known sequence precision stored as a lookup table. These lookup

tables are generated by analyzing the factors related to specific sequencing chemistry

of a large experimental data set of known accuracy. Q scores are generated based on

a logarithmic approach to base calling error probabilities (P) such as:

Q = −10log10P. (1.1)
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For example, a Phred quality score of 20, implies that in 100 sequences base units,

there is one error. So, in other words, the probability of an incorrect base call is

1 in 100, which means base call accuracy is 99%[44]. It is necessary to keep this

qualities in a systematic format. FASTQ is a text file, including four mandatory

lines. The first line starts with an @, followed by an ID. Although the ID is not

arbitrary, optional information can follow it. Then comes raw letters of the sequence,

immediately following each other without a tab or space. For instance, in DNA,

consequent A, T, C, and Gs follow each other to represent the sequenced fragment.

In the third line, a "+" symbol comes to signal the end of the sequence (it can also

be followed by optional information). In the final row, each letter’s quality score is

presented in the second row. For this purpose, ASCII characters are assigned to each

level of quality, and those characters are used to represent the quality of each letter of

the second row’s sequence. As expected, the number of characters in the fourth line

is equal to the number of letters in the second line[45], as depicted in figure1.11. Note

that "the byte representing quality starts from 0x21 (lowest quality; ’!’ in ASCII) to

0x7e (highest quality; ’ ’ in ASCII). Here are the quality value characters in left-to-

right increasing order of quality (ASCII)"[46]:

Figure 1.10: ASCII characters corresponding to different quality values in FASTQ
format.In earlier protocols, the " " was the last character. However, in last protocol
of Illumina, quality range needs only 42 first character, reflecting score from 0 to 41.

This text is adapted from [46], and is permitted to use and distribute under
Creative Commons Attribution-ShareAlike 3.0 Unported License.
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Figure 1.11: A typical FASTQ data file contracted from three sections: Record ID,
Sequence and quality recorded for each letter of sequence, using ASCII characters.

This Figure is adapted from [45], no permission required.

The FASTQ data format is used to represent a sequence and how reliable each

letter has been recorded as described in the workflow of ChIP-Seq after sequencing

comes alignment. The aligned set of sequences need to be represented in a data format

for further analysis. One of the current alignment data formats compatible with all

kinds of sequences and aligners is Sequence Alignment Map (SAM). This data format

consists of two parts: Header and Alignment. Basically, SAM keeps a record of se-

quences, along with the data obtained from aligning them against a reference genome.

All the lines in alignment sections start with an @ and contain obligatory 11 fields

that can be increased by optional ones. There 11 columns are QNAME (Read Name),

FLAG (SAM flag which can be decoded), RNAME (contig name or * for unmapped),

POS (mapped position of base 1 of a read on the reference sequence), MAPQ (map-

ping quality ), CIGAR (CIGAR string describing insertions and deletions), RNEXT

(Name of mate), PNEXT (Position of mate), TLEN (Template length), SEQ (Read

Sequence), QUAL (Read Quality) and TAGS, which can hold optional information in

TAG:TYPE:VALUE format [47].
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Figure 1.12: A typical SAM data file containing 11 mandatory columns and number
of optional elements under TAGS.

This is a modified version adapted from [47], with open access (No permission
required).

SAM can be converted to a binary form for sufficiency proposes, named Binary

Alignment/Map (BAM). BAM contains the same information as its associated SAM,

except that it represents it in binary format[48]. With achieving a comprehensive

set of sequences aligned against the reference genome, we can move to the next step,

detecting and verifying those locations on the genome that most of the reads origi-

nate from, using peak calling algorithms. These are the regions that the protein of

interest may have been interacting with the DNA sequence. There are many methods

and approaches for peak detection, and each has its own definitions and regulations.

However, before taking a look at the general concept of the peak, it is worth under-

standing the retrieved data better. The nature of the ChIP-seq experiment each tag

can only represent one of the DNA strands) results in the dependency of tags on the

strand of the DNA. As explained before, the DNA molecule is constructed from two

strands that complement each other. To distinguish between these two, each end of

the DNA molecule is named (5’ and 3’). So, mapping each of the sequence fragments
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onto the reference genome is done concerning the reference sequence and DNA frag-

ment’s direction[49]. This strand-dependent mapping of the tags will form a diagram

of the form, as depicted in Figure 1.13.

Figure 1.13: Reads are sequenced from both end in ChIP-seq procedure. Therefore,
a TFBS signals two set of peaks each at one of the directions. If the reads are
shifted towards each other half of the length of d, then one single peak will be

formed indicating potential TFBS’s region.
This Figure is adapted from [50] (openly accessible) on October 2020, without any

alteration.

After mapping, the tags’ distribution diagram is rendered, forming two peaks,

each responding to one of the DNA strands. The gap between the extremum point

of two peaks corresponds to the length of the produced tags; based on this, all the

tags are shifted to the 3’ end of the DNA strand they are mapped on, which results

in a merge of two first peaks. The new peak of the distribution diagram indicates the

actual TFBS[49]. After locating the TFBS, the region will be focused on. As it was

depicted, the peak locates a region upon which many tags have been plied. However,
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the concentration of tags at all the positions within the TFBS is not the same, which

owes to the fact that TF binds to the DNA in a sequence-specific manner. It means

that TFs can bind to many sequences that are not the same, but they seem to follow

a pattern.

Sequences sharing similar pattern are found within the DNA, which are called Motifs .

Motifs are believed to have a specific biological role, such as indicating Binding Site for

TFs. Many motifs have been discovered all through the years of study regarding their

essential role in gene expression. The sequence-specific behaviour of TFs results in

different degrees of binding to a motif, which directly impacts the gene expression level.

For example, in 1975, it was discovered that the "TATAAT box" is a motif located

before the Transcription Initiation Site, which is highly conserved in Escherichia coli

promoters. This motif, along with another motif, forms the RNA Polymerase II

binding site, which initiates transcription. Although the conservation level at each

position is high, finding a promoter with the same sequence is hard. Many of the

promoters match 7 -9 out of the total 12 base-pairs, determining the level of the

gene’s activity[51]. In order to describe these motifs (TFBSs in our study) and to

analyze how strongly they appear in variant conditions, it is necessary to drive a

model from the data gained from ChIP-Seq (or any other technology). It is only

by such a model that one can have an accurate understanding of a motif’s general

structure.

1.5.1 TFBS Representation, Scanning and Prediction

TFBS are short fragments of DNA that are located in regulatory locations. The

precise description of these Binding Sites is the goal of many computational or ex-

perimental projects in genetics. There are many experimental and computational

approaches for this purposed number, respectively, in [52] and [53]. Although so
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much effort is put into the description of TFBSs, which has discovered many of those,

the number of identified TFBSs is not even close to the proposed real number. For

example, the ENCODE project has described almost 200 TFs in less than 100 human

cell lines. Regarding the study’s massive scale, the sensitiveness of the case of study

(the nucleotide level resolution of each defined TFBS) employment of efficient meth-

ods to predict TBFBs is demanded. Computational approaches have been applied

extensively and resulted in favourable outcomes. These methods can vary from sim-

ple pattern matching strategies to highly complicated ones. Our focus in this study is

on pattern matching methods based on "PWMs" because of their popularity and effi-

ciency. These models are used to predict a TFBS by presenting a candidate sequence

using a model that is constructed from the data of experimentally discovered TFBSs.

These models are widely employed because of their accuracy and simplicity despite

them being around for decades[54].

Generally speaking, Position Weight Matrices are scanned against the DNA to rec-

ognize a TFBS. Variant computer-based tools are developed in order to recognize

a TFBS by scanning PWM against DNA. Which either predict a unique TFBS or

classify them into a cluster. Come of the approaches for PWM scanning are reviewed

in [55] and [56]. After discovering a regulatory sequence motif, all the target genes

regulated by that motif, which may bind to a TF, should be recognized. Consensus

sequences represent the Binding Site’s characteristics, but they do not reflect accu-

rate information about nucleotide alternation at each of TFBS’s positions. So, for

degenerate sequence preferences of TF’s, PWM is employed[56].

Position Weight Matrix

Position Weight Matrix (PWM) is the central tool in most of the motif prediction

applications nowadays. In the mildest case, its input includes a collection of aligned
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sequences (as shown in Figure 1.14) and declaration of background frequencies. This

method’s output will be the PWM and statistical data and information content for the

site and motif[57]. Position Weight Matrix is a 4-row matrix (in case of representing

Nucleotide sequences) with the number of columns equal to the length of the site that

it represents. To construct a Position Weight Matrix, a simple Position Frequency

Matrix (PFM) is built as represented in 1.15. The PFM depicts the total number of

a specific nucleotide (A, T, C, and G) that has been repeated at each position in a

set of aligned sequences. However, for computational efficiency, this matrix needs to

be normalized. For that purpose, a table of probabilities is constructed by dividing

the elements of PFM by the number of aligned sequences, which results in the sum

of each column’s elements equal to 1, as shown in 1.16.

Figure 1.14: A set of aligned sequences.
From [58], openly accessible for public use.

Figure 1.15: A Position Frequency Matrix corresponding to set of alignments above.
This Figure is from [58], adapted on October 2020, with permission of use for public.
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Figure 1.16: The sum of all elements in a PPM is equal to 1.
The image is from [58], with open access for use on October 2020.

The table of probabilities or the Position Probability Matrix must be converted to

a log form for even more efficiency. The final log scale matrix is referred to as PWM.

To calculate the score of any potential binding site using PWM, each nucleotide’s

elements at columns of the matrix should be summed up[59]. Note that background

frequencies can be calculated in a variant way. However, the most common way is to

consider equal frequency for each nucleotide, resulting in ¼ = 0.25[57]. Then, each

element of the PWM matrix is calculated using

PWMij = log2(
PPMij

Backgroundi

)

as shown in Figure 1.17.

Figure 1.17: The sum of all elements in a PPM is equal to 1.
The image is adopted from [58], on October 2020 with permission of access for

public.

As it is observable in 1.17, applying logarithm may result in unacceptable values

(infinities). To avoid such a scenario and eliminate null values, a sampling correction is

added to each element of PFM before taking the log of each. This sampling correction

is called “Pseudocount” and is calculated in variant ways regarding the tools and

applications in use[59].
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Sequence Logo

PWM is a vital and computationally efficient tool in bioinformatics. However, a

more graphical version of it would give the researchers a better insight into the motif.

"Sequence logo" is the graphical representation of PWM that can reflect a considerable

amount of information to people in a visual approach. A Sequence Logo illustrates

information content and relative frequency of a nucleotide at each consensus sequence

position. This method would be easier to recognize the sequence motif and the most

conserved base units at each position. There are computer tools available (refer to

[60] and [61]) to construct a Sequence-Logo from a PWM or directly from aligned

sequences[62].
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Figure 1.18: PWM can be directly employed to construct a Seq-Logo based on its
data. However, recovering data for PWM from Sequence Logo is not straight

forward.
Image is openly accessible on [62], and is adopted without any alterations on

October 2020.

As described before, a PWM for DNA sequences has four rows, each for one of

the nucleotides. The number of columns respects the length of aligned sequences,

each associated with one of the positions at sequence. As shown in Figure 1.18, the

sequence logo corresponding to the PWM on top has letters from different height and

different colours. The colours are conventionally assigned for each nucleotide: green

to A, blue to C, yellow to G and red to T. The height of each pile of letters at each

position regards the Information Content of that column and is measured in "bits."

Information Content is a measure to determine uncertainty. In DNA sequences, this
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uncertainty can be phrased as how well-conserved a nucleotide is at a position[63].

Having P for PWM, Height for Information Content of each, i for each row, and j for

each column (position), we can calculate the height of whole stack using the formula

below :

Heightj = 2 +
4∑
1
PWMij. log2 PWMij

Regarding this, height of each letter is calculated using formula[62]:

Letter = PWMij.Heightj

Sequence Logos is an efficient way to transmit information about motifs. It contains

various types of information that give the researcher a fundamental concept about

the motif of study. First of all, letters (representing nucleotides) are arranged from

the most frequent one to the least, from top to the bottom of the stack. So, the

consensus can be formed by taking only the topmost letter of each position. In

addition to this, the relative size of each letter at each position reflects how frequently

that nucleotide has been observed at that position ( The bigger the letter is, the higher

is the frequency) and vice versa. Also, each pile’s height at each of the positions

corresponds to the amount of information in hand from that position so that the

significant positions can be easily noticed. Besides, the sequence logo can be employed

to demonstrate motifs within the aligned amino acid sequences. By all these being

said, it should have been interpreted by now how important is the role of PWM

and sequence logo in the field of bioinformatics and what a great value they carry

in the case of computational analysis of biological data[64]. This makes these two

modelling tools the core of many high-level bioinformatics studies to achieve more

efficient and accurate results that help researchers gain a better insight into human

beings’ mysterious bio-mechanism.
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Chapter 2

Related Works and In house

Projects

To understand the research workflow and have a more profound insight into the bioin-

formatics behind my work, in this chapter, two projects proposed by our lab will go

under consideration along with other related material. These projects are closely as-

sociated with the core subject and have been employed to develop and implement this

thesis’ main work.

2.1 TFBS Databases

2.1.1 JASPAR

JASPAR[65] is an openly accessible database of TF binding profiles (Accessible at

http://jaspar.genereg.net)), and one of the firsts of its kind. These profiles are

stored as PFMs and TF Flexible Models (TFFMs) for TFs across variant species in

six taxonomic groups. These predicted TFBSs could be accessed through the UCSC

Genome Browser data hub[66] (access at http://jaspar.genereg.net/genome-tracks/)
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that contains tracks for the human genome assemblies hg19 and hg38[65].

2.1.2 HOCOMOCO

Homo Sapiens COmprehensive MOdel COllection [67] is an openly accessible database

of TFBSs that has been collected by integrating the data from both high and low-

throughput techniques from available databases and reanalyzing them. This research’s

main goal was to develop a non-redundant database in which each TF contributes to

the minimum possible number of models, while all models keep an acceptable TFBS

recognition quality[67]. HOCOMOCO has been one of the data resources in this study

and is accessible at http://hocomoco11.autosome.ru/.

2.2 TFBS Prediction Tools

2.2.1 TFBStools

One of the most coherent tools that have been developed for TFBSs analysis is called

"TFBStools." TFBStools is an R package that provides the user with functions for

matrix modification and DNA searching with those matrices’ help. TFBStools facil-

itates data access and storage for the user with the help of well-designed S4 classes.

Many valuable functions are developed to convert matrices to the desired form and

compare a pair of them. It also makes it possible to search a DNA sequence for poten-

tial TFBS by scanning the sequence with Position Weight Matrices (see Figure 2.1).

TFBStools also has a JASPAR database (an open-access database of TF binding pro-

files accessible at http://jaspar.genereg.net/) interface to present a better and

more extant analysis to the user. It is also compatible with the two most common

data formats in use for PWMs and generally provides an entire set of tools for TFBS

analysis on a genome-wide scale[68].
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Figure 2.1: The general workflow of TFBStools(). Information Content and Position
Weight Matrices can be generated from PFM. ICM can be used to make a sequence
logo and PWM can scan single sequence alignments in order to exploit TFBSs which

are stored in SiteSet object.
Image is taken from [68], an open access article, accessed on October 2020.

2.2.2 RSAT

Regulatory Sequence Analysis Tools or RSAT is a tool for analyzing cis-regulatory

elements in the genome. This software suite provides the user with multiple functions

for Motif Discovery in genome-wide scales, TFBS analysis (such as quality evalua-

tion or comparison), comparative genomics, along with regulatory variations analysis.

This software suite has been developed in a modular manner and can be employed

individually and as part of a pipeline to perform high-level tasks. This tool has a web

interface that is accessible for users at http://rsat.sb-roscoff.fr[69].

2.3 In House Projects

2.3.1 MethMotif

If we respect the classic definition of genetics, it is impossible to justify a number

of events such as phenotypic diversity in a population, the different phenotypes ob-

served between monozygotic twins, or their different susceptibility to variant disease

notwithstanding that they share the same DNA. So, to be able to explain these phe-
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nomena, scientists look at them from a different aspect named "Epigenetics"[70]. This

field was first proposed in 1939 under definition: "the causal interactions between

genes and their products, which bring the phenotype into being[71]." This definition

then was taken over with: a set of heritable variations in gene expression that are

not caused by modification of DNA sequence. Among all epigenetic markers, DNA

methylation is the most significant one. Many remarkable discoveries were done fo-

cusing on DNA methylation and representing how it alters gene regulation, which

resulted in the development of human epigenome projects and epigenetic therapies.

One of these projects is called "MethMotif".

DNA methylation has been reported as an influential factor in attracting TFs and

stressing the necessity to connect TFBSs with their associated DNA methylation pro-

file. MethMotif is a two-dimensional TFBS database that studies the Position Weight

Matrix of a TFBS accompanied by cell type-specific CpG methylation information.

"The CpG sites are regions of DNA where a guanine nucleotide follows a cytosine

nucleotide in the linear sequence of bases along its 5’→ 3’ direction. CpG sites occur

with high frequency in genomic regions called CpG islands (or CG islands)[72]." (See

Figure 2.2.)

Figure 2.2: A C-Phosphate-G (CpG) site from 5’ to 3’ is indicated as yellow.
The image is from [72] with permission of use for public, on October 2020.

MethMotif combines information driven from ChIP-seq and Whole Genome Bisul-

fite Sequencing (WGBS) for better characterization the location on DNA that was
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targeted by TF. The ChIP-seq and WGBS data were obtained from ENCODE con-

sortium and The gene expression Omnibus[73] (complemented by in house generated

data) databases[27]. After integrating ChIP-seq and WGBS data-sets, MethMotif

classifies the DNA-interacting proteins regarding methylation profiles of the DNA.

This integration gives the power to MethMotif to profile DNA methylation land-

scapes surrounding binding locations of DNA-bound proteins at a genomic scale. In

addition to this classification, MethMotif presents a new two-dimensional representa-

tion by combining the Position Weight Matrix of a TFBS and DNA methylation (refer

to Figure 2.3). This representation is very insightful because it is a more expressive

way to reflect DNA methylation’s impact on recruiting the TF of interest. To explore

MethMotif’s data-sets and to easy access to its database, a web-based interface has

been developed which is reachable at https://bioinfo-csi.nus.edu.sg/. The ac-

cess to MethMotif is available through the following three modes[27]:

1. ‘Motif database direct query’: Using the proper ID defined by MethMotif or

official gene name, the user can look for all DNA binding proteins stored in the

database.

2. ‘Explore’: Users can intuitively investigate DNA binding proteins. Embed-

ded dynamic heat-maps represent each protein categorized based on its CpG

methylation pattern, with a range of 200 base pairs surrounding ChIP-seq’s

peak summit.

3. ‘Batch query’: MethMotif provides the user with tools to facilitate the binding

sites’ characterization targeted by a protein of interest and other co-factors.

This observation is obtained by analyzing the existence of TFBSs and their

Methylation condition across a list of genome loci.
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At the time of writing this thesis, MethMotif database documents over 655 TFBSs

computed from over 2473 ChIP-seq data-sets in 16 different cell types[74].

Figure 2.3: Available data in MethMotif’s website, for TF CEBPB in context of
bone marrow cell line (K562). MethMotif covers two most well-known set of data

formats. It provides information about TF, cell type and motif.
This image is adopted with alteration from [74], with the permission of the author,

accessed on October 2019.
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2.3.2 TFregulomeR

TFs target the DNA sequence through a highly dynamic procedure that includes a

vast set of DNA segments. To increase the study’s resolution in this matter, it would

be quite advantageous if the broad range of the study narrows down by studying TFs

in a particular condition. Analyzing TFs in cell-specific context is the approach taken

in one of the hosting lab’s projects named "TFregulomeR," which is an R-package con-

taining variant functions to help people manipulate and analyze TFBS and methylome

meta-data. TFregulomeR derives data from MethMotif and Gene Transcription Reg-

ulation Database (GTRD)[75]. This library is especially useful to characterize TFs

that work as partners to bind to the DNA sequence and analyze them in different

partnering cases along with DNA methylation level data.

TFregulomeR’s extensive TFBS database can be explored by a simple function (TF-

BSBrowser) with the option to choose specific cell/tissue type, sample type, organ,

or species by providing the arguments to narrow down the search space.

As it was described in previous sections, the main goal of a ChIP-seq experiment is to

locate protein binding regions or "peaks." The raw output of the ChIP-seq experiment

is a large set of short DNA fragments referred to as "’reads." Large piles of these short

fragments clustered at a region after aligning the whole set of reads form peaks, which

can correspond to a binding site. By daily decrease in sequencing cost and the de-

velopment of new technologies, it has become possible to compare data derived from

different ChIP-seq experiments, for instance, to examine the binding of a protein of

interest in a specific condition such as the presence of another factor. One of these

comparative methods, which is commonly used, is called "Overlapping Analysis." In

this method, peaks called by different methods are compared and categorized into

"Common peaks" or "Exclusive Peaks" in such manners that those regions that are

called as peaks in both experiments are called "Common Peaks." Note that the pro-
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portion of common peaks from each set corresponds to the qualitative amount of that

very set compared to the other one, also to a predefined threshold which is set by

experiment[76]. TFregulomeR() package provides the user with a valuable function

to study the co-binding landscape of two sets of TFs. intersectPeakMatrix() has been

designed to study co-factors of TF of interest in cell-specific context by taking two sets

of peaks either from the user or TFregulomeR’s database. This package is accessible

for everyone at https://github.com/benoukraflab/TFregulomeR.
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Chapter 3

Research Question and Results

TF’s remarkably dynamic binding performance is an influential reason to study the

TFBSs in a cell-specific context. One problem with current methods is that contem-

porary databases represent TFBSs studied in several cell lines combined (and not in

a cell-specific way). Secondly, they rely on ChIP-Seq assay’s outcomes, even in the

case of dimer complexes. This is done based on the assumption that TFs bind to the

DNA sequence independently, resulting in an inadequate depiction of dimers. Thirdly,

these databases have not taken the impact of the methylation profile of a TFBS into

account, which is reported to have an undeniable effect on the binding preference

of TFs. Though there are differing DNA targeting approaches for TF families, the

modelling methods for predicting the target sequence are the same for all. In addi-

tion to that, the current PWM based pattern matching models that are employed for

motif prediction suffer from some drawbacks, although they are highly used for their

simplicity. Besides, it is reported that around 40% of almost 1,400 sequence-specific

TFs encoded in the human genome are not characterized yet[77]. The abovemen-

tioned are the problems we are tackling in here, and for the explained reasons there

is a high demand for research and development in this particular field. In this chap-
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ter, the study’s question will be explained further, and it will be described how we

approached these issues.

3.1 Question of Study and Current Limitation

Several factors should be taken into account while studying TFs’ behaviour in tar-

geting a specific DNA sequence. That is important because there are features other

than TF-DNA sequence interactions that can alter the DNA sequence being targeted

by the TF (refer to Figure 3.1). Some of these features are the impact of co-factors

that bind to TF of interest, DNA modifications to interplays between a TF of interest

with another TF[77].
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Figure 3.1: Other than binding specifications that regulate gene expression by
attracting TFs, other features affect this phenomenon. TFs can interact with each

other (B) or other structures present in the environment to alter their behaviour (C).
DNA modification (such as methylation) is an influential event (D) too. In addition
to these, DNA’s special structure can make TFBSs accessible for TFs or vice versa.
Also, some modules distant from the binding site can affect the area owning to DNA
shape(F). Also, the variation in the gene itself is one of the possible scenarios (G).
This Figure is adapted from [77], with the permission granted from the Elsevier

publication, on October 2020.

The whole set of TFs is categorized into over 60 families regarding the structural

similarities of them. One of the largest families of TFs is called "Basic Leucine Zipper"

or bZip[78].

We are focusing on this family for development of our project. This family of TFs

regulates the expression of many genes, and they can bind to over one hundred variant

DNA that corresponds to specific disorders, which makes them a hot topic in study-

ing TFs. Still, the question is why this family has such a broad sequence preference?
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The answer lies behind the structure of this set of TFs and how they work to target

DNA sequence. bZip TFs work in groups of two to target DNA sequence (see Figure

3.2). Basically, they first pair up with a molecule similar to themselves (forming a

homo-dimer) or with a distinct TF (constructing a heterodimer), then they collabo-

ratively target a sequence within the DNA and bind to it. The change in the partner

of each TF alters the sequence preference. Although there are several cases that the

mechanism of this group work has been studied, it is not yet discovered how the bZip

dimer targets a fragment of DNA. In many cases, the target sequence of bZip dimer

is related to the individual target of one of the partners. However, numerous cases

show that the DNA preference of bZip dimers cannot be predicted based on each of

the TFs’ independent preferences. This change in the behaviour of bZip TF in the

presence of a different partner expands the number of their target DNA sequences

and makes them a compelling case of study for scientists being a highly dynamic set

of TFs[79].
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Figure 3.2: bZIP dimer binding DNA. The L is for the leucine forming the interface
in the bZIP dimer.

This image is adopted from [80], with open access for public on October 2020.

The popular PWM based pattern matching models that are employed for mo-

tif prediction suffer from several drawbacks, although they are highly used for their

integrity. First of all, they are susceptive to the quality and quantity of the DNA frag-

ments on which the matrix is built. Also, a high rate of false-positive results has been

reported in studies that use PWM. In addition to these, the current modellings never

depict the relation between independent positions of TFBSs. Besides, to overcome

the individual model’s limitations, variant models are constructed for a single TFBS

to reflect sequences’ variation. Finally, PWM models do not reflect any information

about TFs’ alternate structure, neither the methylation profile.[54].

As depicted in Figure 3.3, the conventional model representing a TF of interest for all

TFs is of the form of the top captioned logo as the "global motif." This logo represents

the set of sequences that have been targeted when one member of the bZip family,

named CEBPB, was studied in different cell contexts. Many of sixteen ChIP-seq ex-

periments led to forming sequence logos similar to "Global Motif" constructed from
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two parts: one half represented a CAAT (or its complementary sequence reversed:

ATTG), and the other half a mixture of ATTG/CAAT and TCA/TGA. The reflec-

tion of ATTG/CAAT, a famous binding site for CEBPB in one half of the logo and

the ATTG/CAAT and TCA/TGA mixture on the other half, was a piece of evidence

on the fact that CEBPB is working with identical or dissimilar TFs.

Figure 3.3: studying bZIP dimers for motif discovery, results in a matrix which is
the mixture of data corresponding to homodimer and heterodimers. The global

motif belongs to the CEBPB. The exclusive impact of TF of study (CEBPB in here)
is obvious in left half of each logo.

The Figure is adopted from [81] with modifications applied with the permission of the
Oxford University Press publications, accessed on October 2020.

Based on the abovementioned, the problems can be narrowed down into the fol-

lowing: First, current high cited databases, such as JASPAR or MethMotif, are still

using the motif of CEBPB and a mixture of co-factors as CEBPB’s binding site motif,

as experiments like ChIP-Seq captures the entire data of both homodimers and het-

erodimers. In addition to that, current modelling methods are not expressive enough,

because not only merging all the collected data in order to form a single sequence-logo

makes the final Figure a roughly precise model, and the matrix of TF a systematically

noisy one, but also a single sequence logo does not reflect any information about TF’s
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structure or contribution of other co-factors. We have proposed a novel model to

tackle this issue, which will be described in the following section.

3.2 Proposed Model, Methodology and Results

As was discussed in the last chapter, TFs of bZIP family work in pairs to target DNA

sequences, and variation in the partner can alter the sequence preference. However,

the homodimers and heterodimers are captured together by assays like ChIP-seq,

resulting in a noisy PWM and subsequently a Sequence-logo of two halves: a conserved

and a degenerated half. For example, take the sequence ATTGCGCAAT captured

from a homodimer complex, and ATTGCATCA is the heterodimer’s binding site.

The resulting motif for a big set of these sequences may be ATTGCACCAT, which is

not an existing sequence on DNA (see 3.3 for better insight). To deal with such false

positives, we proposed a model named "Forked Position Weight Matrix" or FPWM,

an R library for providing the user with a better description and representation of TFs

precise characterization of TF dimers. FPWM is a PWM that systematically keeps

the conserved half of the traditional PWM as data of TF of interest and specifies the

region effected by co-factors by forking the matrix multiple submatrices. The visual

representation of FPWM would be a graph of sequence logos, with one parent node

representing the binding site of TF of interest, and two or more leafs representing

each of the co-factors under study. This form of visual representation for a TF and its

co-factors is more expressive, but the novel data format employed for this purpose is

compatible with all the well-known tools. In the following sections, the method and

material will be described.
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3.2.1 Data flow

The Forked Position weight matrices generated by the FPWM package are obtained

from the MethMotif, which records data compiled from MethMotif’s own data sets

and GTRD. As discussed, MethMotif integrates TF motif data with the methylation

information, representing a two-dimensional sequence logo of a motif accompanied

by associated methylation information. On the other hand, GTRD has been an

external resource to access ChIP-seq peaks called MACS peak caller. Each PWM

has its unique ID representing its resource (MethMotif or GTRD), species, cell type,

and TF’s name. The current version of FPWM works with the collection of peak

sets available through TFregulomeR. FPWM exports an intersection matrix with an

indication of the intersected peak percentage for each pair of peak lists selected by the

user. This peak intersection matrix, complemented with DNA methylation status, is a

valuable tool for co-factor and TF interaction analysis. The FPWM complies multiple

intersection peak matrices by receiving the ID of TF of interest and its co-factors that

the user is willing to study. The peak list of TF of interest will be the first peak list

in all intersection matrices. The second peak list for each intersection matrix will be

for one of the indicated co-factors. FPWM provides the users with functions to help

them choose the most significant co-factors, plot the graph, or generate the Forked

Position Weight Matrix. More details can be observed in Figure 3.4.
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Figure 3.4: This diagram depicts the flow of data and how FPWM accesses external
sources and tools. In the upper level, exploring the co-binding partners with

embedded functions is explored to describe top TF binding partners by overlapping
the query coordinates, based on co-binding percentage or enrichment score. This

step is followed by selecting a forking position and creating an FPWM based on the
number of top co-binding partners. In this level, individual matrices are generated
regarding the intersection of binding partners. In more detail, the main TF peaks
are segregated into individual PWMs, which are created only from intersecting

peaks with top co-binding partners. Eventually (but not limited to), the resulting
deconvoluted matrices can be exported as a TRANSFAC file employed by other

programs such as RSAT etc.
The figures is generated collaboratively by members of lab and with the contribution

of Walters Santas.
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3.2.2 Functionalities

FPWM provides the user with multiple functions in order to ease data visualization

and analysis. These functions can obtain and store intersected matrix of several peak

lists of cofactors from TFregulomeR(), modify them to generate FPWM, and store

them in an organized manner as an S4 class object. Some internal functions are

embedded to merge the first half of multiple PWMs and generate a proper parent

matrix of TF of interest and methylation information. FPWM library can store the

local file of a novel data format for multiple proposes. It also provides the user

with the graphical list of cofactors of TF of interest in the order of their significance.

Eventually, the FPWM library can read and analyze locally provided files and generate

a graph of the sequence logos for a TF and its cofactors with an optional methylation

level plot on top of them. All these functionalities are implemented in an R-library

package.
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Figure 3.5: The bar chart on the left is the outcome of one of FPWM’s functions.
Barandseqlogo() function receives the name of TF of interest (CEBPB in this case)

and plots a chart containing all the TF’s cofactors that are accessible via
TFregulomeR(). Each bar represents the co-binding percentage of TF of interest

with that cofactor, based on each pair’s intersected matrix retrieved from
TFregulomeR(). Each Sequence logo next to each bar represents the PWM of it. By
this vision, two cofactors have been selected for the FPWM plot. Note the difference
between the spacer region of homodimer (CEBPD) and heterodimer (ATF4). On

the right side of the figure, a Forked-PWM is depicted for two cofactors of CEBPB,
using the FPWMplotter() function. The weights on edges are relative co-binding

percentages of each cofactor. In this case, methylation levels have been plotted too.

3.2.3 R Object for FPWM

The Forked Position Weight Matrix works with an object in order to efficiently retrieve

and store data. An embedded function generates an s4 class object with multiple

slots for intersected storing PWMs derived from TFregulomeR. In addition to that,

IDs, forking position, overlapping percentages, and the novel Forked Position Weight

Matrix, along with methylation information for each profile, are stored in one class.

This approach helps users to access data more straightforwardly. A simplified scheme

of the FPWM library is provided in the Figure 3.6.
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Figure 3.6: A S4 class is created once the package is installed to store user-provided
data along with the content derived from TFregulomeR(). This class-oriented

approach makes it easy to modify and access data for users and developers. As it is
depicted, multiple functions have been embedded in the plot or generate files.

FPWM’s outcome can be received using RSAT or TFBStools() for genome-wide
analysis.

3.2.4 Novel Data Format

A typical TRANSFAC format of data is depicted in Figure 3.7.
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Figure 3.7: A PFM of CEBPB’s motif, organized in TRANSFAC format, derived
from MethMotif[27]. First half shows the ID and some additional information, the
second half, holds the PWM matrix with an extra "Positions" column named PO

representing each position in a sequence.The content terminates with a XX followed
by //.

FPWM derives data on intersected matrices from TFregulomeR() (see left side of

Figure 3.8), then regarding a user-defined forking point, merges the conserved region

of global motif into one single matrix (parent), and concatenates the degenerated part

of each intersection matrix to the parent, forming a single profile matrix for them all

which is called Forked Position Weight Matrix (refer to right side of the Figure 3.8).
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Figure 3.8: A simplified scheme of how FPWM is constructed from only two
matrices. Based on a forking points ( 5 in this scheme), two matrices are splitted

and merged up to the Forking point. The second half of matrices follow the merged
matrix immediately. Notice the repetition in positions, than indicate forking

position.

After construction of the FPWM with this approach, FPWM storing functions

can degenerate the data files of TRANSFAC format as shown in Figure 3.9.
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Figure 3.9: A file of Forked-TRANSFAC format, degenerated into two regular
TRANSFAC formats, for CEBPB overlapped with CEBPD and ATF4. The merged
section of each FPWM, holds the total number of CEBPB peaks overlapped with
ATF4 and CEBPD (4991 in here). In order to form new matrices, the elements in
merged part, are divided by number of peaks at each of the subsequent co-factors.

(1741 for CEBPD and CEBPD and 3250 for CEBPB and ATF4)

With the help of this new format, it is possible to depict all possible co-factors of

a TF of interest in a single file, along with some other implicit information such as

the total number of TF of interest’s binding sites with its co-factors, and the number

of each binding sites for the TF of interest and each specific co-factor. To generate

the FPWM, the first half of all matrices are added up (resulting in the total number

of overlapped peaks of TF of interest with its co-factors). Then, for forking them

into each of matrices, the merged matrix is divided by the co-factor matrix’s value.

This value is calculated by dividing the total number of overlapped peaks between

TF of interest and all its co-factors by the number of overlapped peaks between TF of

interest and the target co-factor. For example, regarding the Venn diagram in 3.10,
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the value for the CEBPB-CEBPD matrix’s element will be 4991/1741. Note that in

all steps, numbers are rounded to integers to respect the TRANSFAC format.

Figure 3.10: The number of overlapped peaks TF of interest (CEBPB) and two of
its co-factors (CEBPD and ATF4). We assume the amber circle in the center

represents all the set of peaks determined for CEBPB, and similar to that, the pink
circle representing the peaks of ATF4 and the blue one for CEBPD. As can be seen,

these sets share several peaks, which would be how overlapping peaks are
determined. Note that this Figure is simplified for a better understanding. There

can be scenarios in which all the circles have shared regions.

This approach to store data, inspired by TRANSFAC data format, allows us to

organize and keep data in an efficient way and is a more expressing approach to

depict the presence of co-factors and the level of their involvement in our case of

study. Using this method, the generated matrices are tested and evaluated in the

next section to discuss how these forked matrices perform better than the resource

database’s: MethMotif.
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3.2.5 Evaluation and Results

The main goal of developing the FPWM package is to highlight the neglected is-

sue that dimers have more dynamic sequence preferences. To evaluate our proposed

model, we need to investigate its power in predicting the dimer complexes’ binding

site. We aim to scan the binding site of these dimer complexes with FPWM and then

compare it to the global matrix of the target TF. Our evaluation shows that FPWM

shows a higher match score than the current motif profiles, thus improving the TFBS

prediction power.

The FPWM evaluation has two distinguished phases. The first phase is to see whether

FPWM for a target TF and one of its co-factors perform better in the sense of predict-

ing the dimer’s binding site, compared to the global matrix of target TF. The second

phase would be evaluating FPWM in the context of different cell lines. In the later

one, we aim to show that cell-specific FPWM performs better compared to a general

matrix profile for targeted TF. Thus, the evaluation steps can be seen as below:

1. Targeting one TF and a set of its co-factors in one cell-line.

2. Targeting one cell-line and a set of other cell-lines for one TF that exists on all

of them.

At each of these steps, FPWM will be scanning the set of sequences that are common

between target TF (cell-line) and one of its co-factors ( cell-lines). The Venn diagram

below, is for the clarification of this fact.
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Figure 3.11: Scanned sequences: there can be two possible scenarios for the set of
peaks that are scanned using the related matrices. In scenario A, we are studying a

given TF and its co-factor. As explained, these two TFs share a subset of their
peaks representing those regions in which they form a dimer. These regions should
be closely studied to show how FPWM, designed for dimer complexes, outperforms
the general matrices. In scenario B, we are trying to evaluate the cell-line specific
behaviour of FPWMs. Here, we target one TF then trying to study FPWM’s
performance on a combination of several cell-lines for the same TF. For this
purpose, the set of sequences that are a TFBS for the given TF shared among

multiple cell-lines are scanned. We aim to see a more powerful TFBS prediction by
excluding noises coming from the integration of extra cell-lines.

The set of peaks are exported as a .BED file. "BED (Browser Extensible Data)

format provides a flexible way to define the data lines that are displayed in an annota-

tion track[82]." This file holds information about genomic intervals or in this context

chromosomal location ranges. By convention, the locations are written in the notation

of Start < End for both strands of DNA; thus there is just one coordinate system for

this matter.
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Figure 3.12: An example of a genomic interval and how the coordinate system works,
adapted from [83] with the permission of author, with minor modifications. As
mentioned, we are dealing with two strands: Positive and negative in locating a
specific region on the DNA strand. Although these are opposite strands, one

coordinate system is used to navigate the genome. In the Sequence Alignment Map,
a binary flag indicates the strand being negative or positive.

As can be seen in Figure 3.12, each strand has two directions. The upstream region

is considered the region before 5’ and relative to the direction of the transcription.

With all these in mind, a BED file is a file including 3 requires columns: Chromosome

name, Start and ending coordinates. Note that this file may contain 9 and more

optional columns, respecting the information that is needed for the study. An example

of a simple .BED file can be seen in Figure 3.13.
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Figure 3.13: example of a simple BED file with only required fields

With all the above mentioned in mind, at each stage, we will study the performance

of the FPWM compared to the global matrix. The evaluation methods are shown in

the number of cases in the following subsections.

FPWM for different co-factors of a targeted TF

In this subsection we take a look at different co-factors that one TF interacts with.

Two cases are presented in here. In first one the target TF is CEBPB and the second

one is MAFF.

Case 1 : CEBPB and its co-factors in K562

The process of constructing FPWM for a given TF’s co-factor, starts with taking a

look at the quick report of main co-factors of CEBPB, ranked based on the size of

common peaks.
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Figure 3.14: CEBPB co-factor report: Using the functionalities embedded in the
FPWM package, the user can start by taking a look at the most significant

co-factors of a given TF. As shown in the figure, the report is composed of two main
sections: the bars on the left side, are representing the amount of overlapping that
occurs between peaks of two TFs (names are shown on the left side of the bar.) On

the right side, the motif profile for the set of overlapping peaks is represented,
coupled with the methylation profile of the same TFBS. This helps the user detect

the conserved region (highlighted in gray), which corresponds to the given TF
(CEBPB in here) and subsequently setting a proper forking point.

By a quick look at the report, it can be easily noticed that from position 5 on, the

matrices are starting to differ. Note that each of these matrices is constructed for the

intersected peaks between TF and its co-factor. Thus, the conserved region (in the

left) and different sequence preference of each CEBPB’s partners is easily noticeable

in the right half of the sequence logo. Note that in this report, not only the DNA

sequence profile matters but also does the sequence methylation profile.

With the interpretation coming from the co-factor report, we can move on and con-
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struct an FPWM for the co-factors seen in the report.

As a result, an FPWM for CEBPB, along with all the specified co-factors, will be

constructed. This matrix can be segregated into exclusive matrices for each of the

dimers then used for TFBS prediction. In the following, we used the CEBPB-ATF4

matrix to scan the common peaks coming from the ChIP-Seq assay of each of those

TFs. As seen in Figure 3.15, it outperforms the global matrix for CEBPB.

Figure 3.15: CEBPB-ATF4 FPWM performance analysis on the common peaks of
the CEBPB and ATF4 in K562: In this bin-map plot, we compare the performance
of two different matrices. An FPWM of CEBPB+ATF4 (shown in pink) and the
global matrix of CEBPB (shown in green) are used to scan the set of peaks that

CEBPB and ATF4 are sharing (which corresponds to the CEBPB-ATF4
heterodimer). The summit of peaks is in the center of the graph, and they have a
padding of 100 bases from each direction. As it is depicted, the FPWM shows a
better match (higher P-value) as the scanner approaches towards the TFBS peak
summit. This concludes better prediction power of FPWM compared to a general

matrix. Note that both matrices are in cell0line K562.
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Case 2 : CEBPB and its co-factors in HepG2

In order to showcase this applies for all the cases, we did the same procedure for

a different cell line. We construct FPWM this time with passing the argument

cell=HepG2. As can be seen in 3.16, our FPWM for CEBPB-ATF4 dimer, in HepG2

cell line, shows better match thus higher prediction power compared to global matrix

for CEBPB.

Figure 3.16: CEBPB-ATF4 FPWM performance analysis on the common peaks of
the CEBPB and ATF4 in HepG2: Similar to the previous case, in here we are

comparing the performance of FPWM of CEBPB+ATF4 (shown in pink) and the
global matrix of CEBPB (shown in green), which are used to scan the set of peaks
that CEBPB and ATF4 are sharing only this time in the other cell-line (HepG2).
The summit of peaks is in the center of the graph, and they have a padding of 100
bases from each direction. As it is depicted, the FPWM shows a better match

(higher P-value) as the scanner approaches towards the center of TFBS. This shows
the better prediction power of FPWM compared to a general matrix and proves how

our model works properly in all selected cell-lines.

These examples are two of many only to show that performance evaluation is not

restricted to one cell line and our tool works well for all the scenarios. To extend this

claim, we are going to study another dimer in the following subsections.
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Case 3 : MAFF and its co-factors in K562

In order to observe other set of dimers in the cell line K562, we targeted MAFF as out

main TF. After going through the analogous procedure to construct a FPWM, we use

the matrix for MAFF-MAFG dimer to scan their intersected peaks. As it is evident

in 3.17, the FPWM for MAFF-MAFG dimer, works better compared to global matrix

for MAFF that exists out there.

Figure 3.17: FPWM for MAFF-MAFG is used for scanning common peaks of
MAFF and MAFG in the K562: In here, we are showcasing another dimer

(MAFF-MAFG homodimer matrix from FPWM) in the K562. The performance of
two different matrices is compared here. The FPWM of MAFF+MAFG (shown in
pink) and the global matrix of MAFF (shown in green) are used to scan the set of
peaks that MAFF and MAFG are sharing (which corresponds to the MAFF-MAFG
homodimer). As it is depicted, the FPWM shows a better match (higher P-value) as
the scanner approaches towards the center of TFBS (o on the x-axis). This shows
the better prediction power of FPWM compared to a general matrix for all dimers

in a given cell-line.

The same result comes out when we study another dimer in the same cell line

which can be seen in next figure.

In 3.18 it is illustrated how the FPWM for MAFF-NFE2 dimer, shows better binding
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site prediction compared to global matrix for MAFF, which is the target TF in this

case.

Figure 3.18: MAFF and NFE2 case in K562: Here, we are showcasing another dimer
(MAFF-NFE2 heterodimer matrix from FPWM) in the K562 to prove the

outperformance of FPWM for both homodimer and heterodimers in a given cell line
for all the dimer complexes. The performance of FPWM of MAFF+NFE2 (shown in

pink) and the global matrix of MAFF (shown in green) are compared through
scanning the set of peaks that MAFF and NFE2 are sharing (corresponding to the
MAFF-NFE2 heterodimer). As seen, the FPWM results in a better match (higher
P-value) as the scanner approaches towards the center of TFBS (o on the x-axis).
This means better prediction power of FPWM than a general matrix for all dimers

in a given cell-line.

3.2.6 FPWM of a targeted TF in different cell lines

The FPWM is not only a more powerful tool for different dimers of a TF, but it also

outperforms when it comes to the prediction of dimer binding sites in different cell

lines. In this subsection, we will explain how studying a target TF in different cell

lines can result in different sequence logos. Then it will be shown how a cell-specific

FPWM of a given TF can enhance prediction power.

To better portrait, the impact of different cell environments on the sequence preference
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of a dimer, an example of CEBPB as a target TF is shown in the following figures.

Here, we aim to show how augmenting the motif of a certain TF in a given cell line

can deform the visualized motif profile. For example, consider the below figure:

Figure 3.19: CEBPB motif profile in a single cell-line (K562): the sequence logo is
coupled with the methylation profile of this TFBS, as can be seen on top of the
figure. Methylation profile plays a big role in genome occupancy of a given TF.

The 3.19 is the motif profile for CEBPB in K562 only. However, if another cell

line that shares the same peaks are added to the set of sequences to construct the

motif profile, we will observe some changes in one part of the sequence logo coupled

with methylation level as shown in 3.20:
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Figure 3.20: CEBPB motif profile in K562, with taking intersected peaks coming
from an other cell-line. Note how involvement of only one extra cell-line puts an
impact on both DNA and methylation profile. (refer to Figure 3.19 for better

understanding). As can be seen, the methylation level is increased in positions 6 and
11, which can alter the sequence preference of the given TF in bigger scales.

As can be seen, adding only one cell line’s common peaks with the current one

(K562) alters the DNA sequence profile along with the methylation level. In the 3.21,

we show the same event, for the case of REST.

As shown in Figure 3.21, a motif profile for this TF shows a different pattern,

especially in the case of spacer nucleotides. Furthermore, it is clear that all sequence

logos are conserved in the left half, and the second half of them are under the influence

of the cell lines differentiation. Regarding this behaviour, a graph of the sequence logos

would be a more efficient visualization. In the figure, we represent q forked PWM for

the TF named "REST." From the topmost logo towards down, the new cell line peaks

are added to the previous one forming a similar but an altered sequence logo. Note

that this is different from the intersection matrix because more and more data coming

from cell lines are taken into account. After adding all cell lines, the final logo would

be the general sequence logo for a given TF, without any cell line specifications.
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Figure 3.21: A forked sequence logo for REST by augmenting the initial matrix
profile (REST in K562) with additional cell lines for the same TF. In this plot, the
differentiation of the DNA profile for REST is showcased. The plot on the left side
is the conserved region of TFBS that barely changes when a new set of peaks from a
new cell-line is added into the current data. However, by taking a closer look at the
spacer nucleotides at positions 11-12 (highlighted in grey), it is clear how spacers are

toggling with the addition of more cell lines.

As shown in Figure 3.21, as the data coming from a new cell line adds to the

previous one, it leads to some alteration, which is more obvious in spacer nucleotides

(positions 11 and 12). For example, starting with REST in K562, you can observe

that spacer nucleotides are AT. By adding one cell line to this, these nucleotides are

changed to AG. By adding two other cell lines, it is observed that the spacers turn
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to AA. This happens along with minor modifications to the rest of the sequence logo.

This observation motivates us to study the FPWM of a given TF but in different cell

lines. For that purpose, we analyze the TF in cell line GM12878, forked to JUND (the

previous step is implied) in cells in HCT116, K562, H1-hESC and HepG2. Here we

only present the result for FPWM of JUND in cells in GM12878 forked to HCT116.

Figure 3.22: The result of scanning JUND peaks shared between cell lines GM12878
and HCT116 using FPWM. Here we represent the performance of an FPWM that is
constructed for a given TF but multiple cell-lines. For this purpose, an FPWM of
cell-lines GM12878 and HCT116 is constructed for JUND. Then, the set of peaks

shared between these two cell-lines are scanned using both FPWM (in pink) and the
global motif profile of JUND in GM12878. As expected, the FPWM shows a better

match compared to the global matrix.

As it is presented in 3.22, the FPWM, shows better scores compared to the gen-

eral matrix profile. This visualization proves that we successfully enhanced TFBS

prediction resolution, even more, using cell-specific motif profiles. This is considered

a second layer of enhancement in prediction power, which works perfectly for dimer
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complexes.

In this chapter, we observed the behaviour of the FPWM and how the matrix per-

forms in the context of different co-factors of a TF in a given cell line, or different cell

lines in which a given TF exists. Through this, we showed how different partnering,

or environmental platform (of each cell line) can alter the sequence preference, and

how the FPWM is a better tool for predicting dimer TFBSs. This also imply a more

specific and noise-free prediction requires the assessing tools to increase their accu-

racy and change their perspectives when dealing with different TF families, a problem

which FPWM addresses and improves.

3.2.7 Complimentary Analysis

RSAT performance evaluation

As it was explained before, the data file formats are a visual structure for holding spe-

cific information. Two popular data formats for motif profile matrices are TRANSFAC

and MEME. By convention, TRANSFAC holds a PCM matrix to represent motif pro-

file, while MEME keeps a PPM. The case here is that data format should not be one of

the factors that impact TFBS scanning and matrix evaluation. However, throughout

our studies, it was observed that RSAT matrix scanning shows some irregularities.

Due to the importance of proper data formatting to us, we designed a targeted exam

in order to study the behaviour of RSAT towards different data formats. For this

purpose, we selected the matrix profile for CEBPB from JASPAR, via the RSAT

website, as seen in Figure 3.23.
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Figure 3.23: Motif profile matrices of CEBPB from JASPAR, in TRANSFAC (left)
and MEME (right) format. Both data files start with some informative lines,
followed by a motif profile matrix. In the TRANSFAC format (on the left), the
motif profile matrix is a PCM, and the sum of columns in each row is the same

number of studied sequences. In MEME format (on the right), the main matrix is a
PPM in which the sum of columns is equal to one.

To determine whether the data format alters the final result, we format the PPM

in TRANSFAC format. To be more specific, we replace the motif profile matrix

of TRANSFAC data with the matrix from the corresponding MEME file. This is

basically a simple normalization of PCM to PPM, as shown in Figure 3.24.
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Figure 3.24: A normalized TRANSFAC data format, as the result of merging the
standard TRANSFAC and MEME formats presented in 3.23. Here, the general

structure of the TRANSFAC format is kept (shown in pink), but the representative
matrix is substituted with the corresponding matrix from MEME format (shown in

green), which is a PPM (normalized to the scale of 1).

Three of these matrices are representing the same TFBS only in different data

formats. It is expected that the result of the evaluation would be the same for all

these matrices. However, the result of the evaluation shows otherwise.
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Figure 3.25: Comparison of RSAT’s matrix scanning using three matrices for
CEBPB binding site motif. The TRANSFAC file is holding a PCM matrix with the
sum of rows equal to the number of sequences involved in the study. In MEME

format, the main matrix is a PPM with the sum of rows equal to 1. The normalized
TRANSFAC format has the same data format as the TRANSFAC file but holds the
same representative matrix as MEME format (a PPM). Here, we observed slightly

different P-values for each of these files, which shows a data-format-oriented
behaviour of RSAT, which is inadequate.

figure 3.25 represents a box plot of the P-values of each matrix when used to scan

CEBPB binding sites. As it is shown, although they are quite the same, they are not

identical. This issue is even more critical in MEME and normalized TRANSFAC, as

they are holding the same matrix. In the following figure, the weight score of the

matrices are represented as a box plot.
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Figure 3.26: Comparison of RSAT’s matrix scanning using three matrices for
CEBPB binding site motif. As mentioned earlier, The TRANSFAC file is holding a
PCM matrix with the sum of rows equal to the number of sequences involved in the
study. In MEME format, the main matrix is a PPM with the sum of rows equal to

1. The normalized TRANSFAC format has the same data format as the
TRANSFAC file but holds the same representative matrix as MEME format (a
PPM). Here, we represent a dramatic drop in the normalized TRANSFAC file’s
weigh score compared to the other file formats holding basically the same matrix.

As shown in 3.26, the weight score of the matrices also differ one from another.

This difference is more significant in the case of normalized TRANSFAC. As explained,

although it holds the same matrix that MEME format does, it shows a dramatically

lower weight compared to the other two. Regarding all these, we can conclude that

RSAT’s matrix scanner makes an assumption based on data format and behaves

differently regarding what is the matrix format. To avoid this problem in our results,

we exported and used all the matrices of the TRANSFAC format holding a PCM

within them, then used the P-value as our metric for comparison. However, this issue

motivated us to develop our own matrix scanner, which would be our next step of
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research.

Data format and compatibility

One of the biggest challenges throughout this study was dealing with names and def-

initions that are interchangeably employed to refer to varied types of TFBS matrices.

It is undeniable that general terms to address equivalent but distinct subjects can

impact downstream analysis and final interpretation. It can also put massive over-

head on the procedure of linking various components that were not compromised on

terms and definitions in the first place. For instance, it is a common -but problematic-

practice to use the term PFM to refer to either the Position Count Matrix (PCM)

or Position Probability Matrix (PPM). Such imprecise usage of words leads to ran-

dom selections of data format, causing incompatibility among tools. Moreover, this

inconsistency puts the massive overhead of format conversion on the user, which may

add a bias to the final result and increase the risk of human error and restricts the

user to the compatible tools rather than the outperforming ones. More importantly,

this keeps the researcher from comparing tools and applications in a systematically

proper way. The input/output data format is typically determined in the applica-

tion design phase and before developing. Regarding the lack of standard definition

for data formats, developers either have to limit themselves to several target tools

that they want to be compatible with or cover all the possible data formats, which

is computationally expensive. Regarding these issues, we needed to detect the most

common formats, evaluate it, and then develop our program so that the output can be

widely employed. In previous sections, it was already explained how different matrix

profiles could be generated from a set of aligned sequences to represent a collection of

targeted sequences systematically. Also, in previous sections, it was already explained

how different matrix profiles could be generated from a set of aligned sequences to
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represent a collection of targeted sequences. From a FASTA file of aligned sequences,

we can directly generate a Position Count Matrix. Each column of this matrix will

correspond to each of the positions, while each element is holding each nucleotide’s

count, associated with that very row. As may be obvious, the sum of columns in PCM

is equal to the number of sequences under study. To unify study cases and ease the

comparison and interpretation, it would be of the help the whole matrix is normalized

in such manners that the effect of the count is discarded from the result. Thus, the

PCM’s elements can be divided by the total number of the count, resulting in the

Position Probability Matrix, which holds elements all smaller than 1. It is needless

to say, the sum of the columns in PPM would and should be equal to 1 regardless

of the number of sequences under study. Regarding different representations of the

motif, profiles have been explained on page 53 and how they end up in sequence logos.

However, different data formats contain a matrix profile and some additional data for

user knowledge. We studied several tools and applications in this field to make a

precise decision on the right approach in this case.

The two major data formats being employed by popular tools and databases are

TRANSFAC [84] and MEME [85].

However, due to the lack of outlined protocols for data formats, many applications

prefer working with a raw matrix profile instead of formatting it in a conventional

structure. Before describing these data formats’ anatomy, it would help distinguish

between several most used terminologies to better understand how a motif matrix can

be represented, then formatted into a proper data file.

To precisely describe the existing issue in the sense of data format, it is essential to

compromise the choice of words. Different terminologies are frequently used to refer

to distinct formats, and in here, we are trying to avoid making the same mistake by

reviewing several terms before falling into the main issue we are going to address.
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The first term, which is constantly used in this area, is "Frequency." According to

Merriam-Webster, the frequency can be defined as "the number, proportion, or per-

centage of items in a particular category in a set of data [3]." regarding that and since

the term "number," "proportion," and "percentage" refer to a distinct type of matri-

ces, we find this term too general and not quite suitable to be used for referring to

matrices. To clarify further, reviewing the terms "count" and "probability" is needed.

Merriam-Webster defines the "count" as "a total obtained by counting and the prob-

ability as "the ratio of the number of outcomes in an exhaustive set of equally likely

outcomes that produce a given event to the total number of possible outcomes [86]."

This proportional nature of probability sets a range on it (normally 0 to 1), which is

not the case in counting. However, due to the more intuitive image that percentage

can give, this number is typically normalized over 100, resulting in "percentage." By

aforementioned, two important conclusions can be drawn:

1. The term frequency (frequency matrix in particular) is a general term, and its

employment can cause in the random selection of either of those three matrices

mentioned above.

2. Although the count matrix and probability matrix represent the same motif

profile, the count can be any integer number, while probability has a range of

[0,1].

We rather use “percentage matrix” instead of probability matrices, which are normal-

ized over 100, only for the sake of precision. Another thing to be pointed out is PWM

usage to refer to all kinds of matrices representing a motif profile. Although this ter-

minology is not wrong, again, to be more precise, it should be noted that PWM is a

particular matrix that is directly used to construct a sequence logo. However, PWM

is widely used to refer to all types of motif profile matrices. Although we accept this
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convention here, if we look at the visual presentation of a probability matrix and a

PWM matrix, we can see how these two are indeed different types of matrices.

Following this, we studied several popular tools to investigate what type of data

format is more popular among researchers. The summary of this review can be seen

in the table 3.1

Output’s tool name PCM PPM PWM Formatted data file

JASPAR TRANSFAC, MEME

HOMER[87]

HOCOMOCO

FACTORBOOK[88]

RSAT TRANSFAC

SwissRegulon[89]

MethMotif* TRANSFAC, MEME

TFregulomeR* TRANSFAC, MEME

FootprintDB[90]

Table 3.1: Quick review of selected applications to investigate their preferred data
formats. PCM, PPM and PWM represents pure matrices. As can be observed,

many databases prefer to provide the user with only matrices rather than formatting
them into common data file formats such as TRANSFAC and MEME.
*MethMotif and TFregulomeR() are discussed further in the text.

As it is shown, TRANSFAC and MEME are the most common data formats that

have been accepted amount developers in this field. However, the tendency to use raw

matrix profiles without structurally formatting them is evidence of the lack of strong

conventions over data formatting. In the following lines, TRANSFAC and MEME

will be further discussed.
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Anatomy of selected data formats

TRANSFAC is a data format first introduced by the TRANSFAC database, one of the

most well-known databases of the TFs. TRANSFAC has been around for years and

has helped significantly to publish data on eukaryotic gene transcription regulation.

TRANSFAC’s main database is experimentally evident, and its contributions have

made available data compatible with many tools and usable for further analysis[91].

TRANSFAC data format is one of the most stable and widely employed formats

in databases that most tools and applications employ. The original data format

introduced by the TRANSFAC team is shown in 3.27.

Figure 3.27: First published data format by TRANSFAC team, taken from [92],
openly accessible for public on October 2020.

As shown in the figure, the TRANSFAC format starts with several informative

lines and ends with them. The main body that holds the matrix is a PCM matrix

with defined columns for each of four types of nucleotides. In addition to those, a

column for positions is observed, which represents to which position in the aligned set

of sentences the number corresponds. Another column named "Consensus sequence,"
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which aims to show the optimum binding site by representing either the most frequent

nucleotide at that position or an approximation of the frequency at that very position.

The other data format to be discussed is MEME format. This format is used by the

MEME suite, an online toolkit that provides users with functions to study and analyze

representative sequences such as DNA or protein sequences. The MEME data format

is shown in Figure 3.28

Figure 3.28: An example of MEME data format, taken from Minimal MEME format
examples

As can be seen, this data format also starts with several descriptive columns.

Then comes the main body of data, which holds the motif profile. This format, by

convention, holds a PPM without any additional information about rows or columns.

However, in descriptive lines, it is mentioned in what order the columns are associated

with each nucleotide. Also, since the range of numbers is 0 to 1, the number of studied

sequences should be named.

With regards to these two data formats, the differences can be narrowed down to the

following main points:
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1. TRANSFAC format holds a PCM, while MEME format holds a probability

matrix.

2. The sum of columns in TRANSFAC format is equal to the number of sequences

that have been studied, while in MEME format, it is always equal to 1.

3. MEME format, despite TRANSFAC, does not have an extra row and a column

for names and positions, respectively.

Regarding all the aforementioned, it should be clear by now how data formats

can vary in details thus resulting in incompatibility among analysing tools and appli-

cations. We aim to highlight the importance of creating standard common dialogue

among researchers and avoid any potential trouble that can easily result in big impact

on the final outcome.
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Chapter 4

Discussion and Conclusions

4.1 Discussion

PWMs, along with Sequence Logos, have been the standard tools for modelling and

visualizing the TFBSs. These tools rely on a collection of DNA sequences that are

targeted by a specific TF. These sequences were originally identified through in vitro

experiments. These included a set of gel-shift followed by SELEX, which delivered

a set of sequences targeted by a given TF. By progress that high-throughput tech-

nologies have brought into this field, it has been possible to study the TFBSs at

a genome-wide level in the in vivo context by Chromatin Immunoprecipitation of a

given TF, followed by high-throughput sequencing of the bound DNA loci. ChIP-Seq

assay allows the researcher to characterize TFBSs of a given TF in the cell context,

considering transcription co-factors and chromatin state. These in vitro assays were

executed in a regulated condition where only one TF of interest is studied versus a

library of sequences. However, there are classes of TF, with a specific structure that

binds to the DNA sequence as dimers (e.g. Leucine Zippers). This family of TFs work

in groups to target DNA sequences. They partner with a protein similar to them-
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selves (resulting in a homodimer) or distinct from them (composing a heterodimer)

and bind to DNA sequence as a complex. Thus, the ChIP-Seq assay will capture the

entire collection of dimer complexes that are in the cell. With this nature of ChIP-Seq

and subsequently aggregating heterogeneous DNA binding sequences in order to form

a single PWM to represent TFBSs, results in a systematically noisy matrix or dyed

motif that includes a conserved region, which corresponds to the binding sites of TF

of interest, and a degenerated part, corresponding to the aggregated binding sites for

partners of TF of interest. Regarding the abovementioned, it can be concluded that

traditional representative models such as PWM and sequence logos do not properly

represent the TFBSs and do not accurately model binding sites for dimer complexes,

as the degenerated part of representation is noisy. To tackle this issue, we have de-

veloped FPWM, an R-Library that provides users with functionalities for generating

Forked PWMs and Forked sequence logos. This library enables the users to visualize

a more expressing plot that reflects the background scenario of dimers and their part-

ners, along with matrices representing the sequence affinity of a given TF with those

of a segregated list of partners more accurately. FPWM, contrary to current mod-

elling methods, represents dimer partners as PWMs and Sequence logos, forked from

the main TF motif. The current version of FPWM uses the TFregulomeR() library

to identify co-factors and to deconvolute a given TF’s partners. FPWM explores

and delivers a report of the given TF’s partners in a cell-specific approach, ranked

based on their amount of co-binding, along with their Sequence Logos. This report

helps the user study and analyze the significant partners and identify a proper forking

point for downstream analysis. After determining the forking position (in the sense

of DNA sequence and/or methylation profile) and exporting the list of top co-binding

partners, the user can generate a forked PWM (FPWM) then a forked sequence logo

corresponding to the matrix. The FPWM can be used for matrix-based analysis, and
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the plot takes a more expressive approach to imply the dimer nature of the given TF,

along with reflecting the information about the binding partner and the percentage

of the co-binding level. In addition to the TF partners’ study, FPWM can generate

matrices for a given TF, forked into the cell lines currently in the database. This pro-

cess adds another layer of improvement into the cell-line specific TFBS matrices and

enhances TFBS prediction power in several different cell lines that the TF has been

observed in. Analogous to the TF partner studies, a forked model for one specific TF

can be generated using the provided functionalities to carefully observe the impact of

aggregation of multiple cell lines into one representative matrix, then scanning novel

sites with a selective manner.

As mentioned in previous sections, due to the popularity of the TRANSFAC format

among the developers of relevant tools and applications, users of the FPWM package

are provided with functionalities to export and generate FPWM standard TRANS-

FAC format. Each data file contains an FPWM along with information about forking

position and overlapping percentage for further examinations.

4.2 Conclusions

Using FPWMs for TFBSs prediction on DNA sequences using Matrix Scan tools on

the RSAT website results in a more accurate and higher match-score than traditional

PWMs representing a given dimer complex. Certainly, traditional PWMs carry more

noise and less informative bases in dimer co-binding regions. The FPWM allows the

user to scan chimeric motifs composed of a merge of several binding sites coming from

different TFs. Since these binding sites are not exhibited in the collection of DNA

sequences employed to construct the original PWM, using these matrices can easily

end in false-positive predictions. In addition to this, its dimer partner can alter the
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function of a specific TF. FPWM represents a novel approach to better model and

visualization of the context-specific TFBSs.

To evaluate the Forked PWMs and compare it to its resource database (Meth-Motif’s),

a set of motif scanning was performed using matrices from FPWM and MethMotif.

For this purpose, several TFs from the bZIP family were chosen as TF of interest,

followed by overlapping analysis to retrieve the set of sequences common between a

TF and its particular partner. The coordinates of peaks co-bound by TF of interest

and its partner were loaded as a BED file from MethMotif. The peaks were expanded

from both directions with padding of -+100, and the result FASTA file was achieved.

This FATSA file was then scanned using matrices from MethMotif and FPWM. The

set of matched sequences with the P-Value threshold <= 0.0001 were explored to

target the sequence holding the best p-value corresponding to the center of TFBS.

As a result, it was observed that FPWM improves PWM models of TF dimers, thus

enhancing our understanding of the TF cooperatively and opening a new window to

accurate TFBS prediction. In the end, the impact of FPWM, can be summarized as

follow:

1. The FPWM is a novel approach to visualize TFBSs more expressively. By using

FPWM, the susceptibility to false positives and systematic noises are reduced,

and the power of TFBS prediction is enhanced.

2. The FPWM provides a better understanding of a given TFs functionality by

allowing the user to have a more precise interpretation of a given TFs binding

dynamic.

3. Aside from the computational value of the FPWM, it opens the door for preci-

sion in biological aspects by putting the given TF in different contexts: cell-line

wise or co-factor wise.
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4. The FPWM is embedded into MethMotif database as a new tool for TFBS

analysis and is aiming to represent a new standard in exploring TFBSs for

dimer families.

4.3 Future extensions and publications

In this project, we enhanced the power of TFBS prediction for the bZIP family, a large

family of TFs with core functionalities throughout cell evolution. Malfunction of this

group of co-factors is associated with several challenging diseases such as cancer[93] or

Leukemia[94]. Regarding the significance of this family and the drawback of current

TFBS databases, we hope that current databases address the issue highlighted by us

and update their representative models using the FPWM library. We started this

update with our lab’s database (MethMotif), and we are going to release the next

version of MethMotif (MethMotif 2021) with FPWM for dimer TFBSs.

Figure 4.1: A look up for ATF7 in MethMotif 2021 accessible at
methmotif.org/2021.
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Figure 4.2: In details of each profile, FPWM is available for download.
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Figure 4.3: The downloaded file shows the plot for number of most significant
partners of ATF7.

Hopefully, FPWM will be improved and updated to cover more families of TF in

the future. We are also looking forward to dragging the attention of other popular

databases to this problem and seeing the update on their websites. Furthermore, due

to some issues faced while dealing with matrix scanners, we believe that the current

version of matrix scanners highly relies on a simplified structure from TF and do not
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perform well enough for more complicated complexes such as TF dimer. When writing

this thesis, we are working closely with the team behind RSAT to develop a scanner

that is suitable for dimer analysis with higher compatibility with FPWM. We are

looking forward to seeing these updates in the next releases of RSAT, and eventually,

all the TFBS analysis tools and applications. For dragging public attention, we have

published this work in several formats so far, as follows:

1. The manuscript was initially submitted to the journal of Bioinformatics (with an

impact factor of 5.61), and currently, we are working on the revisions. The name

of contributors to the paper is mentioned in the "Statement of Co-Authorship)"

section, outlining the roles of each contributor.

2. This work has been represented as a subdivision of MethMotif in two confer-

ences, namely "Applied Bioinformatics in Life Sciences (3rd edition)", held in

Leuven, Belgium, on February 13-14, 2020, and 28th conference on "Intelligent

Systems for Molecular Biology (ISMB)," on July 16-13, 2020. The latter one

was located in Montreal and held virtually due to known circumstances.

Figure 4.4: Our work has been selected for a poster presentation during the VIB
Conference Applied Bioinformatics in Life Sciences (3rd edition).
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Figure 4.5: The FPWM was presented at the visual conference on Intelligent
Systems for Molecular Biology (ISMB), 28th.
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Appendix A

Documentation of the FPWM

Package

The following is the manual file of the FPWM package, which is a short instruction

guideline to work with functionalities. The vignette file of FPWM, along with the

recent version of the script is available online at https://github.com/aidaghayour/

FPWM.
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Package
October 15, 2020

Title Forked Position Weight Matrix.

Version 0.0.0.9000

Description This package generates a Froked Position Weight Matrix which is helpful to have a bet-
ter insight about characteristics of Transcription Factor Dimers.

Depends R (>= 3.5.2)

License What license is it under?

Encoding UTF-8

LazyData true

Suggests knitr, rmarkdown

VignetteBuilder knitr

Imports ggplotify,
ggplot2,
gridExtra,
grid,
lattice,
gridGraphics,
base2grob,
ggplot2,
ggseqlogo,
stringr,
cowplot,
reader

RoxygenNote 7.1.0

R topics documented:
Barandseqlogo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
BetaAdder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
ConvertToFTRANSFAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
ensemblesfunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
FPWMPlotter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
MatrixAdder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
ModifyBetaFormat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
ObjectGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
PlotMultiFTRANSFACFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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2 Barandseqlogo

ReadFTRANSFACFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
StoreFTRANSFACFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
StoreMultiTRANSFACFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
storeTRANSFAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
ToTFBSTools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Index 10

Barandseqlogo A function for generating barchart and seq-logo of co-factors of se-
lected TF

Description

This function generates a barchart of co-binding Percentage for each co-factor of selected TF, along
with seq-logo for each of co-factors.

Usage

Barandseqlogo(
NumberofTop,
highestscore,
cell,
TF,
Local = FALSE,
path = "",
Methylation = FALSE

)

Arguments

NumberofTop Number of top co-factors with higher co-binding Percentage to be illustrated

highestscore Co-binding Percentage wich will be the minimum percentage of the shown co-
factors.

cell A character string, which is the name of cell under study.

TF A character string which will be the Transcription Factor of interest.

Local A logical value, which will read a local .CSV file in case of TRUE. The file
should contain two columns: scores, columnnames which are the co-binding
percentages and IDs respectively.

path The path to .CSV file in case Local=TRUE.

Methylation Is a logic argument which indicates if user wants Methylation Score to bu plotted
on top of sequence logos or not.
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BetaAdder A function to merge Beta Score matrices to generate a single matrix.

Description

This function takes the class object and creates a merge of exclusive Beta Score Matrices by calcu-
lating the elementwise weighted average of them; up to the forking position. Weight of each matrix,
is the overlapping percentage of intersectPeakmatrix.

Usage

BetaAdder(TheObject, sp)

Arguments

TheObject is an object of S4 class that holds original matrices exported from the package
TFregulomeR().

sp is the forking position. User can define up to which position it is required to
merge two matrices using this argument.

Value

This function receives a class object, and returns an updated class object.

Examples

This function is called within ClassAssignment() function.

ConvertToFTRANSFAC Generating proper matrix similar to TRANSFAC format of all matri-
ces.

Description

This function generates a matrix of 5 column (Position,A,T, C, G) with redundant position numbers
at Position column reflecting number of leafs and their PWMs.

Usage

ConvertToFTRANSFAC(TheObject)

Arguments

TheObject This argument is an object of the class which holds the information ready to be
plotted.

Value

This class receives a class Object which holds the plotting data, and updates it by adding the proper
matrix of new format: FTRANSFAC.
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Ensembles A function for generating the object for TF in different cell lines

Description

This function browses all the cell lines of a given TF and augoments the provided motif with added
cell lines to represent the impact of cell line on motif structure

Usage

Ensembles(sp, tfname, tfID, CelllinesNumb)

Arguments

sp Forking point for final plot

tfname The name of target tf in strings

tfID the targeted motif using MethMotif IDs as the target cell line under study.

CelllinesNumb Maximum number of cell lines to be considered

ensemblesfunc A function for exporting the motif matrix and augomenting it with ad-
ditional cell lines

Description

This function

Usage

ensemblesfunc(tfname = "JUN", tfID = "MM1_HSA_K562_JUN")

Arguments

tfname The name of target tf in strings

the targeted motif using MethMotif IDs as the target cell line under study.
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FPWMPlotter A function for generating the forked Position Weight Matrix

Description

This function takes the generated class object and plots a forked position weight matrix.

Usage

FPWMPlotter(TheObject, Methylation = TRUE)

Arguments

Methylation is a logical value. If it set on TRUE, Methylation level chart will also be plotted.
If Flase, only sequence logos will be shown.

GraphDataObj is an object of S4 class with modified and converted data ready to be plotted.

MatrixAdder A function to merge motif matrices to generate one matrix as parent
node.

Description

This function takes the object and creates a merge of all matrices by claculating the elementwise
addition of them, up to a user specified position (Forking Position).

Usage

MatrixAdder(TheObject, sp)

Arguments

TheObject is a object of S4 class that holds original matrices exported from the package
TFregulomeR().

sp is the forking position. User can define up to which position it is required to
merge matrices using this argument.

Value

This function recieves a class object, and returns an updated class object by adding merged matrix
to parentmatrix slot

Examples

This function is called whithin ClassAssignment() function.
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ModifyBetaFormat A function for converting Beta Score matrices into proper data frames.

Description

This function receives the S4 class object and converts Betalevel matrices into data frames for better
plotting and browsing purposes.

Usage

ModifyBetaFormat(TheObject)

Arguments

TheObject is an object of S4 class that holds original matrices exported from the package
TFregulomeR().

Value

This function receives a class object, and returns an updated class object by modifying Beta Score
Matrices.

Examples

This function is called within ClassAssignment() function.

ObjectGenerator A function togenerate a class object then assign proper data exported
from TFregulomeR to its slots.

Description

This function assigns proper data to their associated slots of a S4 classe. This information is either
provided by user, or exported from TFregulomeR’s dataware using user specified data.

Usage

ObjectGenerator(sp, peak_id_y_list, peak_id_x, height = 2, width = 3)

Arguments

sp This argument, defines from which point on, the matrix needs to be forked, or in
the other words, up to which point two exclusive matrices need to be aggregated.

peak_id_y_list This argument is a list of TF ID’s which will be intersected with Peak_id_x.
peak_id_x This argument holds an id of TFBS compatible with TFregulomeR(). This is the

target peak ID wich will be employed by IntersecPeakMatrix of TFregulomeR
to extract desired data.

height An argument which allows user to customize the height of final graph relative to
screen.

width An argument which allows user to customize the width of final graph relative to
screen.
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Value

This component, returns a class object which holds all the neccessary information for other functu-
ins.

PlotMultiFTRANSFACFile

A function for storing .PDF of plots, by providing a .txt file of FPWMs
concatination, in proper format.

Description

This function reads an stored .txt file of multiple FTRANSFAC matrices and generates the associ-
ated plot for each set then stores the figure as a PDF file. Name of each files indicates from each
line the infomration is being imported to result to given plot.

Usage

PlotMultiFTRANSFACFile(File = "All.txt")

Arguments

File the directory of .txt file of multiple FPWMs merged in proper format.

Value

Stores number of PDF files regarding the number of FPWMs provided within the file.

ReadFTRANSFACFile A function for generating a class object from a local file in proper
format

Description

This function reads an stored .txt file of FTRANSFAC format and constructs a class object from it.
As default, the returned class Object does not contain Methylation Score matrices. If needed, files
exported from TFregulomeR() with the same name and format should be provided before setting
MEthylation==TRUE.

Usage

ReadFTRANSFACFile(
File = "MM1_HSA_K562_CEBPB___4-FTRANSFAC.txt",
Methylation = FALSE

)

Arguments

File the directory of .txt file

Methylation a logical argument which indicates if Methylation Score files are provided and
needed to be included in Object or not.
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Value

A class object for plotting. The Methylation Score matrices can be optionally ommitted or not.

StoreFTRANSFACFile Generation and storing a file of the standard TRANSFAC format

Description

This function generates a .txt file of the format TRANSFAC with slight modifications in positions
column.

Usage

StoreFTRANSFACFile(TheObject)

Arguments

TheObject This argument is an object of the class which holds the information ready to be
plotted.IDs, Scores and Froked_PWM are mednatory.

Value

This function stores a .txt file at working directory, and returns name of the file for more conve-
nience.

StoreMultiTRANSFACFile

Generating and storing a .txt file named "All.txt" which contains mul-
tiple FPWMs, contatinated together, respecting TRANSFAC format.

Description

This function generates a .txt file which holds number of the data structures needed for one set of
plotting in FTRANSFAC format.

Usage

StoreMultiTRANSFACFile(List_sp, Listof_peak_id_y_list, List_peak_id_x)

Arguments

List_sp List of forking position numbers for each one of FPWM.
Listof_peak_id_y_list

A list of lists. Each list within this list, is a set of IDs which are going to form
one FPWM plot.

List_peak_id_x A list of IDs. The ID in List_peak_id_x[i] will be employed to form multiple
IntersecPeakMatrices with all the IDs exisiting in Listof_peak_id_y_list[i].

Value

This function stores a .txt file at working directory, and returns name of the file for more conve-
nience.
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storeTRANSFAC A function for storing TRANSFAC files of the forked matrices.

Description

This function generates files of regular TRANSFAC format in order to further analysis and eval-
uation. Each file name holdes the name of Transfactor of interest, and the co-factor that is under
analysis in the current matrix.

Usage

storeTRANSFAC(TheObject)

Arguments

TheObject the input is the object of FPWM class that holds the raw matrices directly ex-
ported from TFregulomeR().

ToTFBSTools A function for generating object of TFBStools holding PFM of each
fokred matrix.

Description

This function generates a TFBStools object of each matrix present in FPWM class object, and
returns a list containing all the objects.

Usage

ToTFBSTools(TheObject)

Arguments

TheObject is the object of the FPWM class. It needs to contain the matrices, IDs and parent
matrix.
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