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Abstract

Visual object tracking is a fundamental task in the field computer vision. Visual object tracking

is widely used in numerous applications which include, but are not limited to video surveil-

lance, image understanding, robotics, and human-computer interaction. In essence, visual ob-

ject tracking is the problem of estimating the states/trajectory of the object of interest over time.

Unlike other tasks such as object detection where the number of classes/categories are defined

beforehand, the only available information of the object of interest is at the first frame.

Even though, Deep Learning (DL) has revolutionised most computer vision tasks, visual

object tracking still imposes several challenges. The nature of visual object tracking task is

stochastic, where no prior-knowledge is available about the object of interest during the training

or testing/inference. Moreover, visual object tracking is a class-agnostic task, as opposed object

detection and segmentation tasks. In this thesis, the main objective is to develop and advance

the visual object trackers using novel designs of deep learning frameworks and mathematical

formulations.

To take advantage of different trackers, a novel framework is developed to track moving

objects based on a composite framework and a reporter mechanism. The composite framework

has built-in trackers and user-defined trackers to track the object of interest. The framework

contains a module to calculate the robustness for each tracker and a reporter mechanism serves

as a recovery mechanism if trackers fail to locate the object of interest.

Different trackers may fail to track the object of interest, thus, a more robust framework

based on Siamese network architecture, namely DensSiam, is proposed to use the concept of
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dense layers and connects each dense layer in the network to all layers in a feed-forward fashion

with a similarity-learning function. DensSiam also includes a Self-Attention mechanism to

force the network to pay more attention to non-local features during offline training.

Generally, Siamese trackers do not fully utilize semantic and objectness information from

pre-trained networks that have been trained on an image classification task. To solve this prob-

lem a novel architecture design is proposed , dubbed DomainSiam, to learn a Domain-Aware

that fully utilizes semantic and objectness information while producing a class-agnostic track

using a ridge regression network. Moreover, to reduce the sparsity problem, we solve the ridge

regression problem with a differentiable weighted-dynamic loss function.

Siamese trackers have high speed and work in real-time, however, they lack high accuracy.

To overcome this challenge, a novel dynamic policy gradient Agent-Environment architecture

with Siamese network (DP-Siam) is proposed to train the tracker to increase the accuracy and

the expected average overlap while running in real-time. DP-Siam is trained offline with rein-

forcement learning to produce a continuous action that predicts the optimal object location.

One of the common design block in most object trackers in the literature is the backbone

network, where the backbone network is trained in the feature space. To design a backbone

network that maps from feature space to another space (i.e., joint-nullspace) and more suitable

for object tracking and classification, a novel framework is proposed. The new framework is

called NullSpaceNet has a clear interpretation for the feature representation and the features in

this space are more separable. NullSpaceNet is utilized in object tracking by regularizing the

discriminative joint-nullspace backbone network. The novel tracker is called NullSpaceRDAR,

and encourages the network to have a representation for the target-specific information for the

object of interest in the joint-nullspace. In contrast to feature space where objects from a specific

class are categorized into one category however, it is insensitive to intra-class variations.
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Furthermore, we use the NullSpaceNet backbone to learn a tracker, dubbed NullSpaceR-

DAR, with a regularized discriminative joint-nullspace backbone network that is specifically

designed for object tracking. In the regularized discriminative joint-nullspace, the features from

the same target-specific are collapsed into one point in the joint-null space and different target-

specific features are collapsed into different points in the joint-nullspace. Consequently, the

joint-nullspace forces the network to be sensitive to the variations of the object from the same

class (intra-class variations). Moreover, a dynamic adaptive loss function is proposed to select

the suitable loss function from a super-set family of losses based on the training data to make

NullSpaceRDAR more robust to different challenges.
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Chapter 1

Introduction

1.1 Background, Research Motivation and Contribution

The work in this thesis is mainly based on Siamese network. Siamese formulates the object

tracking problem as a similarity metric learning for prediction. The network consists of two

branches, namely the target branch and the search branch. The target branch takes in the target

image to produce a filter-like and the search branch takes in the test image and produces a

feature map. The filter-like and the feature map are combined using a cross-correlation layer

which produces a score map to locate the object. Visual object tracking has a different nature

compared to fundamental tasks such as object detection and segmentation, where in object

tracking the classes/categories are not defined beforehand. Moreover, the tracking of the object

of interest is often done in an unconstrained environment. Motivated by these observations,

different network designs using Deep Learning (DL) along with mathematical formulations that

are specifically designed for visual object tracking are studied in this thesis. We have identified

and addressed these research problems:
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Research problems:

• P1- Design a composite framework that has the ability to fuse multiple trackers’ predic-

tion and can recover from tracking failures.

• P2- Design a novel network architecture to utilize the non-local features of the object of

interest.

• P3- Design a novel network to fully utilize the semantic and objectness of the object of

interest.

• P4- Design a novel network to balance the trade-off between the high-speed and accuracy

to track the object of interest.

• P5-Develop a mathematical formulation in the deep learning framework to map from

feature space to joint-nullspace.

• P6- Design a novel network to incorporate the joint-nullspace in the object tracking.

Objectives and Contributions:

• Objective1: Problem P1 has been solved in chapter 2 by proposing a framework which

contains two built-in trackers and optional user trackers plugins that can be used by the

user to include additional trackers in the framework to handle specific scenarios. This

allows more flexibility and generalizes the framework to be efficient in different appli-

cations. Moreover, a new mechanism, called a reporter, that intervene when there is a

tracking drift and correct the object trajectory. Furthermore, a new metric was developed,

which is named a virtual vector to be combined with trajectory analysis to calculate a

more accurate robustness score.
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• Objective2: DensSiam has been proposed in Chapter 3 to solve the Problem P2. A novel

end-to-end deep Densely-Siamese architecture is proposed for object tracking. The new

architecture can capture the non-local features which are robust to appearance changes.

Additionally, it reduces the number of shared parameters between layers while building

up deeper network compared to other existing Siamese-based architectures commonly

used in current state-of-the-art trackers. Moreover, an effective response map based on

Self-Attention module that boosts the DensSiam tracker performance . The response

map has no-local features and captures the semantic information about the target object.

The proposed network architecture tackles the vanishing-gradient problem and leverages

feature reuse to improve the generalization capability.

• Objective3: A novel network architecture has been proposed in Chapter 4 to tackle the

problem in P3. The proposed network architecture captures the Domain-Aware features

with semantic and objectness information. The proposed network architecture enables the

features to be robust to appearance changes. Moreover, it decreases the sparsity problem,

as it produces the most important feature space. Consequently, it decreases the overhead

calculations. in addition to the proposed network architecture, a differentiable weighted-

dynamic domain loss function is developed specifically for visual object tracking to train

the regression network to extract the domain channels that are activated by target cat-

egory. The developed loss is monotonic with respect to its hyper-parameters, and this

will be useful in case of high-dimensional data and non-convexity. Consequently, this

will increase the performance of the tracker. The proposed architecture tackles the gen-

eralization capability from one domain to another domain (e.g., from ImageNet to VOT

datasets).
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• Objective4: To solve problem P4, DP-Siam has been proposed in Chapter 5. Dp-Siam

is a novel dynamic Siamese Agent-Environment architecture that formulates the tracking

problem with reinforcement learning. DP-Siam produces a continuous action that pre-

dicts the optimal object location. DP-Siam has a novel architecture that consists of three

networks: an Agent network to predict the optimal state of the object being tracked, an

Environment network to get the Q-value during the offline training phase to minimize the

error of the loss function, and a Siamese network to produce a heat-map. The Environ-

ment network acts as a verifier to the action of the Agent network during online tracking.

Secondly, the proposed network architecture allows the tracker to dynamically select the

hyper-parameters in each frame instead of the traditional method of fixing their values for

the entire dataset, which has not been done before. Finally, the design of the proposed

architecture increases the generalization to other domains (e.g. from ImageNet to VOT

datasets).

• Objective5: Problem P5 has been tackled in Chapter 6. A novel Network (NullSpaceNet)

that learns to map from the pixel-level image to a joint-nullspace. The formulation of

NullSpaceNet ensures that the nullspace features from the same class are collapsed into a

single point while the ones from different classes are collapsed into different points with

high separation margins. NullSpaceNet is architecture-agnostic, which means that it can

easily integrate different feature extractors in its architecture. To train the proposed net-

work, a differentiable loss function is developed to effectively train NullSpaceNet. The

proposed loss function is different from the standard categorical cross-entropy functions

where the proposed loss function ensures that the within-class scatter matrix vanishes

while maintaining a positive between-class scatter matrix. The differentiable loss func-
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tion has a closed-form solution with no free-parameters. On top of that, the proposed

NullSpaceNet has a clear interpretation of the learned features, both mathematically and

geometrically.

• Objective6: Finally, P6 has been solved in Chapter 7. Firstly, a novel formulation for the

feature learning in the backbone network by projecting the feature onto a joint-nullspace.

The joint-nullspace ensures that the same target-specific information is collapsed into

one point in the learned space, while different target-specific information is collapsed

into different points in the learned space. Secondly, the new formulation produces a high

discriminative power due to the high separation margin among the different points in

the learned space, while being extremely-low separation margin among the same target-

specific information points in the learned space. Finally, a dynamic loss is proposed to

adaptively switch between loss function based on the training data.

1.2 Organization of the Thesis

Chapter 2 motivates the research in visual object tracking and identifies the problems that are

being tackled in this thesis followed by the contributions. Chapter 3 introduces DensSiam

tracker, a novel network architecture that is specifically designed for object tracking to utilize

the non-local features. DomainSiam tracker is introduced in chapter 4 to solve the problem

of semantic and objectness information of the object of interest. In Chapter 5, the network

design of DP-Siam tracker is explained. Chapter 6 introduces the NullSpaceNet network to map

from feature space to joint-nullspace. This Chapter is an introduction to Chapter 7. Chapter 7

provides explanation to NullSpaceRDAR tracker and how to regularize the tracker to work in a

highly discriminative power features. Finally Chapter 8 concludes the thesis and gives a future
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directions in visual object tracking.
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Chapter 2

Adaptive Framework for Robust Visual

Tracking

2.1 abstract

Visual tracking is a difficult and challenging problem, for numerous reasons such as small object

size, pose angle variations, occlusion, and camera motion. Object tracking has many real-world

applications such as surveillance systems, moving organs in medical imaging and robotics.

Traditional tracking methods lack a recovery mechanism that can be used in situations when

the tracked objects drift away from ground truth. In this chapter, we propose a novel frame-

work for tracking moving objects based on a composite framework and a reporter mechanism.

The composite framework tracks moving objects using different trackers and produces pairs

of forward/backward tracklets. A robustness score is then calculated for each tracker using its

forward/backward tracklet pair to find the most reliable moving object trajectory. The reporter

serves as the recovery mechanism to correct the moving object trajectory when the robustness
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score is very low, mainly using a combination of particle filter and template matching. The

proposed framework can handle partial and heavy occlusions; moreover, the structure of the

framework enables integration of other user-specific trackers. Extensive experiments on recent

benchmarks show that the proposed framework outperforms other current state-of-the-art track-

ers due to its powerful trajectory analysis and recovery mechanism, the framework improved

the area under curve from 68.0% to 70.8% on OTB-100 benchmark.

2.2 Introduction

Object tracking is very important in many applications such as image understanding, robotics,

surveillance, and human-computer interaction [1]. In the last decade, the development of satel-

lite and unmanned aerial vehicle (UAV) has significantly increased. Remote sensing videos,

especially aerial ones, have been widely used in surveillance because of their ability to provide

full coverage of ground areas of interest. However, objects tracking in these videos is very

challenging due to many factors including small objects size, illumination changes, pose angle

variations, occlusion, background clutter, and camera motion.

Conventional trackers (e.g. [2–5]) produce objects trajectories between successive frames

using a specific model that updates the objects locations in new frames. Tracking drift is a

common problem in tracking objects using conventional trackers, where the new locations esti-

mated by the tracker being used start to drift away from the true object locations. Tracking drift

is more persistent in aerial videos in situations when there is consistent partial or full occlusions.

Generally, object trackers can be categorized into three categories [1, 6]: generative, dis-

criminative, and composite trackers. Generative trackers track objects by searching for the im-

age region that best matches a template or an appearance model [1]. For example, the histogram-
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based tracking method [7] relies on treating the weighted histogram of the current object image

patch as a template, and the mean shift is used as an efficient search strategy. Black et al. [8]

used a subspace as an offline template and tracked the object under the optical flow framework.

He et al. [9] created a local sensitive histogram as a template, that is invariant to illumination,

and an exhaustive search of the image patch with the similar local histogram is performed in

the vicinity of the object. In [10], the distribution field is used to define the probability pixels

over a grayscale image to construct a template for the object. Zoidi et al. [11] employed the

similarity over a color histogram and texture descriptors to locate the target. Generally, the gen-

erative trackers discussed above fail in situations when there are occlusions and usually cannot

be recovered from tracking drifts.

Discriminative trackers deal with the object tracking problem as a binary classification prob-

lem to separate the foreground from the background. Discriminative methods exploit the visual

information from the target of interest and the background. Avidan et al[12] used the support

vector machine classifier (SVM) with optical flow. CCOT [13] is based on discrimination cor-

relation filter (DCF) and utilized multi-resolution deep feature map. Henriques et al. [14] used

an analytic model of correlation filter for datasets of thousands of translated patches to utilize

the circulant matrix and diagonalized it with the Discrete Fourier Transform. In [15], a neural

network (MDNet) was used with shared layers and multiple branches of domain-specific layers,

where each branch is responsible for binary classification and each domain corresponds to the

training sequence.

Discriminative trackers have good performance over time, however, similar to generative

trackers, they still suffer from the same drift problems when there are frequent occlusions.

CFNet traker [16] used Siamese network and integrated a correlation filter layer to the network.

In [17] a semantic branch added to Siamese network to capture more robust deep features of the
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object of interest. In [18] a deconvolutional network is used as a learnable upsampling layer to

map the low resolution feature to enlarged feature map. [19] proposed event-triggered tracking

framework, occlusion and drift identification module is used to identify if the drift has occurred.

When drift event occurs, the target re-detection module is activated by the event-triggered de-

cision module to recover the target again in short-term tracking. [20] used a lightweight con-

volutional network of two layers without offline training to extract a set of normalized patches

from the target region. The extracted normalized patches are used as filters to integrate a se-

ries of adaptive contextual filters surrounding the target to define a set of feature maps in the

subsequent frames. [21] used self-similarity in visual tracking, the target image is divided into

non-overlapped patches described by the histogram of gradient (HOG) features. Afterwards,

a polynomial kernel feature map is constructed to extract the self-similarity information. A

linear support vector machine is used as a classifier. [22] proposed a particle filter framework

to handle the appearance changes. The framework used online Fisher discrimination boosting

feature selection mechanism to enhance the discriminative capability between the target and

background. [23] used a patch based tracker which adaptively integrates the kernel correla-

tion filters with multiple effective features. The template patch is trained by kernel correlation

filtering and particle filter framework and adaptively set the weight of each patch for each par-

ticle in a particle filtering framework. [24] proposed a regularized correlation filter (CF) based

tracking to capture the long-term spatio-temporally nonlocal superpixel appearance information

to regularize the CF learning. [25] proposed a boolean map based representation that exploits

connectivity cues for visual tracking. The appearance model is described histogram of oriented

gradients and raw color features. Boolean maps form together a target representation that can

be approximated by an explicit feature map of the intersection kernel, which is fed into a logis-

tic regression classifier. In [26], proposed a high-dimensional multi-scale spatio-colour image
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feature vector to represent the target object. Afterwards, this feature vector is randomly pro-

jected onto a low-dimensional feature space. A feature selection technique is used to design

an adaptive appearance model. In [27], an appearance model was developed based on features

extracted from a multiscale image feature space with data-independent basis. A non-adaptive

random projections is used along with a sparse measurement matrix to extract the features of

the appearance model. In most scenarios where drift and significant appearance changes occurs,

the above trackers cannot recover the object of interest.

Composite trackers are trackers that combine multiple trackers to track objects. The co-

tracking algorithm in [28] used a support vector machine classifier to train with multiple dif-

ferent features and combined their results. The MEEM algorithm [3] used multiple trackers to

memorize their past states, so that the tracker can ignore false positive. The unifying algorithm

[29] used the relation among individual trackers by measuring the consistency of each tracker

between two successive frames and the pair-wise correlation among different trackers. Kown et

al.[30] decomposed the appearance model into multiple observation models and motion mod-

els (VTD) and exploited the results in a unifying tracker within a Bayesian framework. In [31],

a Struck tracker [32] was used based on three different feature descriptors; Haar-like features

to represent texture information of a target object, color histograms to consider the local color

distribution of the target object, and illumination invariant feature. In [33], a refined trajec-

tory of an object is obtained by combining the trajectories of other conventional trackers in a

benchmark. [34] used a tracker space, with multiple trackers, and adaptively sampled to run

one at a time. Adaptive NormalHedge algorithm [35] proposed an adaptive framework based

on a decision-theoretic online learning algorithm called NormalHedge. Adaptive NormalHedge

used a set of weighted experts to predict the state of the target and overcomes the fixed percent-

age factor that is used in the standard NormalHedge. The HDT tracker [36] took feature maps
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from different CNN layers and used the parameter-free Hedge algorithm [37] to hedge multiple

CNN-based trackers into a strong tracker. In [38], the authors proposed a CNN-based tracker

to hedge deep features from different layers in the network. The correlation filter is applied to

each feature maps from different layers to build up weak trackers which can be hedged into a

strong tracker.

Generally, composite trackers will have a pre-set of trackers that can handle different sce-

narios but they cannot be extended or generalized. Therefore, their ability to handle challenging

aerial videos with frequent occlusions and pose changes depends on the individual trackers per-

formance. In most cases, this combination of challenges present in aerial videos causes tracking

drift even in composite trackers which lack a mechanism to recover and correct the objects tra-

jectories.

In this chapter, we present an effective tracking framework that has the ability to track

objects in challenging aerial videos. The proposed framework has the following novelties:

1. The framework contains two built-in trackers (MDNet [15] and CCOT [13]) and optional

user tracker plugins that can be used by the user to include additional trackers in the

framework to handle specific scenarios. This allows more flexibility and generalizes the

framework to be efficient in different applications.

2. A new mechanism, called the reporter, that intervenes when there is a tracking drift and

correct the object trajectory.

3. A new metric was developed, the virtual vector shown in Figure 2.7 to be combined with

trajectory analysis to calculate a more accurate robustness score.

The rest of this chapter is organized as follows. Section II details the proposed framework. In

section III, we present the experimental results obtained on two UAV data-sets and compare
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Figure 2.1: Composite framework with the user-plugin trackers and reporter.

them with current state-of-the-art relevant tracking algorithms. Finally conclusions and future

work are provided in section IV.

2.3 Proposed framework

In this section, we present the proposed framework as shown in Figure 2.1. The framework

mainly consists of two blocks: 1) the tracking block and 2) the trajectory analysis and recovery

block. In the first block, a trackers manager controls, manage, and compile the results from the

different built-in and user-plugin trackers, more explanation in next sub-section. The second

block consists of three steps: 1) the trajectory analysis of forward/backward tracklets, 2) a

robustness score calculation, and 3) a reporter mechanism. Figure 2.1 shows the block diagram

of the proposed framework. Initially the target is selected then, the framework is initialized .

The trajectory analysis and recovery block will be explained in sub-section B. Each tracker in

the framework is executed from framet-n to framet to get the forward trajectory and then, from
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framet to framet-nto get the backward trajectory.

2.3.1 The tracking block

Tracklet is a trajectory within a short period of time, it will be used throughout this chapter.

The input to this block is the video frames that contain the initial location of the target. The

first tracker gives the forward trajectory-1 and backward trajectory-1, while the second tracker

gives the forward trajectory-2 and backward trajectory-2. Both trackers work simultaneously

to track objects. The optional user trackers plugins are added by user to include additional

trackers to handle different scenarios. The tracking block outputs the location trajectories of the

target overtime which will be delivered to the second block (trajectory analysis/recovery block

) through the trackers manager.

2.3.2 The trajectory analysis and recovery block

The second block receives the trackers results from the trackers manager and process them

through a trajectory analysis robustness score, and finally the reporter.

2.3.2.1 Trajectory analysis and robustness for forward and backward

The trajectory is the set of positions of the center of the bounding boxes through the tracking

process. Suppose we have a set of frames. We will denote the first frame by framet-n and the

last frame by framet; where n is any number of frames. Suppose we do not have user-defined

trackers, therefore, the composite framework consists of the first trackers that is CCOT and

the second one is MD-Net. The framework is executed in two directions, forward trajectory

for both trackers; from framet-n to framet (Tt-1f and Tt-2f). The outcome of this execution is
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two forward trajectories. Another execution at the same time is made in reverse direction from

framet to framet-n(Tt-1b and Tt-2b); the outcome of this execution is two backward trajectories.

Figure 2.7 shows the forward and backward trajectories, when they are cyclic, the robustness

score will be very close to 1 and that indicates the current tracking result is very accurate

and when they are non-cyclic the robustness score has a large value. To the end, we have two

forward trajectories and two backward trajectories; in other words, a pair of forward trajectories

and a pair of backward trajectories; the first pair of trajectories is from CCOT tracker and the

second pair trajectories is from MD-Net tracker. The robustness score is measured for each

pair (forward and backward) of trajectories; the trajectories with the highest robustness score

are selected as the final trajectories. Consequently, the forward trajectory is the best choice to

advance the tracking process within our adaptive framework.

In the trajectory analysis and robustness score, we use the geometric similarity, the cyclic

weight, the appearance similarity, and the cosine similarity between virtual vectors. Virtual

vectors are developed to calculate the angle between forward and backward trajectories through

virtual vectors starting from the ending position and ending at the starting position as shown

in Figure 2.7. We develop the virtual vector measure to get more accurate results in terms of

robustness score. In Figure 2.7 we assume there are two virtual vectors starting the end of the

forward trajectory result and ending where the initial position of the bounding box is located

and the location of the object after backward analysis. Consequently, an angle between the two

virtual vectors is called ✓. A small ✓ indicates that, the initial location of the target object and

the ending location of the object after backward tracking are very close to each other or might

be identical. Thus we employ the cosine similarity to measure the angle between the paired
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virtual vectors as follows

Cos(✓t) =
~xt0:t29 · ~xt29:t0

k~xt0:29kk~xt29:t0k
(2.1)

Suppose we have a video sequence of 30 frames, let ~xt denotes the bounding box location

at frame t, which is estimated by the built-in tracker-1 in the forward direction. The forward

trajectory from t0 to t29 can be described as follows

~xt0:t29 = {~xt0 , ~xt1 , ..., ~xt29} (2.2)

where ~xt0 is the bounding box position at the initial frame, ~xt29 is the bounding box at the last

frame. Similarly, the built-in tracker is initialized to trace the target object in the backward

direction. The backward trajectory can be described as follows

~xt29:t0 = {~xt29 , ~xt28 , ..., ~xt0} (2.3)

Similarly, the built-in tracker-2 is described in the same way. The geometric similarity can be

computed from:

� = exp(�k~xt0:t29 � ~xt29:t0k2

k�2k ) (2.4)

Where, � is the geometric similarity and �2 is an empirically determined value equals to 500.

When the difference between the trajectories is very small, the exponential gives a number very

close to 1 and vice versa. In the ideal case, the forward and backward trajectories are identical

therefore, the geometric similarity � equals to 1. This equation will be used later to calculate

Eq. 2.6.

In Figure 2.7, at cyclic virtual vectors block the blue trajectory is matched or very close to

the red trajectory, therefore this trajectory is selected as a valid trajectory and called cyclic. In

such a case the geometric similarity is very close to 1. In contrast, at non-cyclic virtual vectors
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block the blue forward trajectory does not match the red backward trajectory therefore, we dis-

card this trajectory and we call it non-cyclic, because the initial object can not be accessed again

from the backward direction. In such a case the geometric similarity decreases. To calculate the

cyclic weight, we count the number of mismatched bounding boxes in the forward trajectory

with their correspondences in the backward trajectory from the intersection over union (IoU) as

follows:

 =
�(~xt0:t29 , ~xt29:t0)

�(~xt0:t29) +�(~xt29:t0)
(2.5)

Where the denumerator �(~xt0:t29) and �(~xt29:t0) is the area of the bounding boxes overlap in

the forward and backward trajectories. The numerator is the area of the bounding boxes union

in the forward and backward trajectories. Practically, we do not need to count the number of

mismatched frames ⌫ in the whole period; we consider the first four frames in the forward

trajectory which corresponds to the last four frames in the backward trajectory. If the  is less

than 0.33, a mismatch will be declared. Consequently, the forward and backward trajectories

form a non-cyclic trajectory. To assign a weight to the cyclic or non-cyclic trajectories, we will

use X where X is an arbitrary number to set the cyclic weight bases quit differently. If the

number of mismatched frames ⌫ is 0 or 1 within the first four frames in the forward trajectory,

the cyclic weight will be 105 otherwise it will be 1.

Now assume we have ~xt0:t29 and ~xt29:t0 from the composite framework. The first four frames

in the forward trajectory will be denoted by ~ti where i 2 {0, 1, 2, 3} and its correspondence

from the backward trajectory is ~ti where i 2 {29, 28, 27, 26}.

Let P ( ~xt) denote the image patch centered at position x at frame t in the backward trajectory and
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Backward trajectory

Forward trajectory

Figure 2.2: Left: the backward trajectory and the centered patch, right: the forward trajectory

and the first four frames (set).

S t0:t3 denotes the first set of four patches in the forward trajectory as shown in Figure 5.1. The

appearance similarity of P ( ~xt) to the set S t0:t3 can be calculated from Gaussian kernel between

the set and the patch. In general a Gaussian kernel is used to measure the similarity between

two vectors or 2-D matrix. The appearance similarity can then be calculated as follows:

�t = exp

✓
�
P

Q2St0:t3
kK · (P ( ~xt)�Q)k2

4!h�2
2

◆
(2.6)

Where �t is the appearance similarity, �2
2 = 900 empirically determined, ! and h are the

width and height of the bounding box, respectively. K is a Gaussian weight mask as shown in

2.5, and ”·” is the element-wise weight multiplication. Small �t indicates high changes in the

bounding box appearance or a tracking error.

The larger robustness score is, the more tracking results being accurate. We set the robust-
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- MDNet - CCOT - SRDCF - KCF - Ground-Truth - OURS

Figure 2.3: Visual results on VOT2016 data-set for four sequences.

ness score threshold to be 0.65, if one or both trackers scores are greater than the predefined

threshold, then the framework will select the highest score. If both trackers scores are less than

the predefined threshold, then the framework will activate the reporter mechanism.

When the forward and backward trajectories are identical the similarity becomes 1. If the

trajectories are not identical the similarity decreases. Finally, the robustness score for the com-

posite framework can be calculated from :

µ1 = X

✓ 29X

t=t0

�t · �t · cos ✓t

◆
(2.7)

Similarly for the built-in tracker-2 µ2. The normalized score is required to compare both scores

to each other. the normalized robustness score will be calculated as follows

µ̂1 =
µ1

µ1 + µ2
(2.8)
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Algorithm 1: Reporter mechanism algorithm
Input : µ: robustness score, n: number of particles.

Initialization : initialize particle filter with n particles.

Precondition : If µ̂1 & µ̂2... < 0.65 goto :1 else get the score from Eq. 2.8 and

2.9.

Output : Recover the lost location of the target object.

1: foreach particle in next frame do:

2: create bounding boxes around the n particles

3: update n using linear motion model

4: Measure the similarity among the object in the previous frame and the object in the next

frame using the template matching.

5: If the matching score < 0.50, then the object still occluded/lost, go to 1 if no go to 6

6: The highest score with the particle which associated the bounding box is the most likely

the lost location.

7: The recovered location and its bounding box are fed into the composite tracker

8: end
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Figure 2.4: Visual results on UAV123 data-set for four sequences.

µ̂2 =
µ2

µ1 + µ2
(2.9)

Maximum score represents the best trajectory, as it tells how similar the forward and back-

ward trajectories are to each other. The more similar the trajectories are to each other, the higher

the value of the robustness score.

2.3.2.2 The reporter

The proposed reporter mechanism as shown in algorithm 1 consists of the particle filter and

the template matching. It only works when the robustness score is less than the predefined

threshold which is 0.65 in our framework through this chapter. When the robustness score is

less than the threshold, the particle filter will be initialized by 300 particles around the center
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Figure 2.5: Normalized kernel Gaussian mask (K).

of the object, each particle is associated with five states as shown in Eq. 2.10. Therefore, the

particle filter updates the states using the linear motion model of the previous object (which the

object in framet-n ) to the future states.

States = (xt, yt, st,↵t, ✓t) (2.10)

where xt, yt, st, ↵t, ✓t are x, y translations, scale, aspect ratio, and in-plane rotation angle

respectively. At each particle, a bounding box is created around the location of particle; the size

of the bounding box is 36 ⇥ 36 pixels since we work on very tiny objects in UAV. Afterward,

template matching is used to calculate the similarity among the object in the previous framet-n

and all bounding boxes where all particles are located. The higher score of template matching

is, the more likely the location of object is correct in framet. Now the recovered location of

the target object will be the input to composite trackers. Finally the framework takes the input

images and calculates the forward/backward trajectories by the tracking block which has two

trackers. The analysis of these trajectories is done in trajectory analysis and recovery block to

give the final result which is the location of the object of interest.
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Table 2.1: Overlap rate and the average time in each frame against state-of-the-art trackers on

VIVID-EGTest and VOT data-sets

Sequences

Trac
ke

rs
01 02 03 04 05 VOT2016Road Overall

OVR
Tim

e(s
)

OVR
Tim

e(s
)

OVR
Tim

e(s
)

OVR
Tim

e(s
)

OVR
Tim

e(s
)

OVR
Tim

e(s
)

OVR
Tim

e(s
)

MDNet
0.71 1 0.69 1.1 0.82 1.01 0.81 1 0.84 1.07 0.78 1.09 0.78 1.04

CCOT 0.79 0.05 0.74 0.06 0.83 0.05 0.77 0.08 0.83 0.07 0.77 0.089 0.79 0.07

SRDCF
0.80 0.2 0.62 0.2 0.79 0.8 0.73 0.3 0.79 0.7 0.78 0.88 0.75 0.51

KCF 0.72 0.005 0.65 0.002 0.77 0.008 0.76 0.005 0.76 0.007 0.75 0.008 0.73 0.006

MTA 0.73 0.08 0.69 0.10 0.83 0.09 0.73 0.07 0.82 0.12 0.80 0.08 0.77 0.09

OURS 0.87 0.25 0.76 0.22 0.86 0.17 0.88 1.23 0.89 1.20 0.80 1.24 0.84 0.72

2.4 Experimental Results

In this section we will provide the parameters that were used in our experiment to make this

approach reproducible with the same results. Also a qualitative discussion is provided by the

end of this section. Each centered image of the target object is re-sized to be a 36 ⇥ 36 patch. To

initialize the particle filter, 300 particles were used. The frame numbers n is set to n = 30 The

implementation was performed using MATLAB-2017b, a computer with Core I7 CPU, 2.1 GHz

processor with TITAN XP GPU, 64-GB RAM and no code optimization. We used VOT2016

[39], Vivid [40] and UAV123 [41] datasets to evaluate our proposed framework as shown in

Figure 2.11. The overlap can be calculated as follows S = rt\ra
rt[ra

, where r is the bounding box,
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Table 2.2: Comparison with the state-of-the-art trackers on VOT2015.

Tracker A R EAO FPS

MDNet 0.60 0.69 0.38 1

DeepSRDCF 0.56 1.05 0.32 < 1

EBT 0.47 1.02 0.31 4.4

SRDCF 0.56 1.24 0.2 5

BACF 0.59 1.56 � 35

EAST 0.57 1.03 0.34 159

Staple 0.57 1.39 0.30 80

SamFC 0.55 1.58 0.29 86

Ours 0.612 0.67 0.39 0.72

Table 2.3: Comparison with the state-of-the-art trackers on VOT2016.

Tracker A R EAO FPS

ECOhc 0.54 1.19 0.3221 60

Staple 0.54 1.42 0.2952 80

STAPLE+ 0.55 1.31 0.2862 > 25

SiamRN 0.55 1.36 0.2766 > 25

GCF 0.51 1.57 0.2179 > 25

Ours 0.55 1.15 0.3308 0.72

\, and [ are the intersection and union of two bounding boxes, respectively.

Based on ground truth data, Figure 2.3 visually compares the tracking results obtained us-
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Table 2.4: Comparison with the state-of-the-art trackers on VOT2017.

Tracker A R EAO FPS

SiamDCF 0.500 0.473 0.249 60

ECOhc 0.494 0.435 0.238 60

CSRDCF++ 0.453 0.370 0.229 > 25

SiamFC 0.502 0.585 0.188 86

SAPKLTF 0.482 0.581 0.184 > 25

Staple 0.530 0.688 0.169 > 80

ASMS 0.494 0.623 0.169 > 25

Ours 0.540 0.370 0.250 0.72

Table 2.5: Comparison of state-of-the-art trackers on OTB-50 and OTB-100.

Tracker Ours MDNet CCOT LMCF CFNet Staple PTAV SiamFC ECOhc

OTB-50
AUC 0.669 0.645 0.614 0.533 0.530 0.507 0.581 0.516 0.592

Prec. 0.936 0.890 0.843 0.730 0.702 0.684 0.806 0.692 0.814

OTB-100
AUC 0.708 0.678 0.671 0.580 0.568 0.578 0.635 0.582 0.643

Prec. 0.930 0.909 0.898 0.789 0.748 0.784 0.849 0.771 0.856

Speed FPS 0.86 1 0.3 85 75 80 25 86 60

ing different state-of-the-art trackers against the proposed tracker. It shows that our approach

is more robust and handles most of four sequences well although very fast motion in row 1 or

occlusion in row 2 except the row 3 where mismatch occurs at frame106 in VOT2016 dataset

[39]. In this sequence, the object is diffused with background; in such case the robustness score
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Table 2.6: Ablation study of performance evaluation for adding user-plug-in trackers (ECOhc

and SiamFC) to the propsed framework.

Proposed Tracker Dataset Speed

Built-in User-plug-in Components OTB-50 OTB-100 FPS

Baseline ECOhc SiamFC Reporter Virtual-vector AUC Prec. AUC Prec. -

X 0.646 0.899 0.680 0.908 0.8926

X X 0.650 0.909 0.688 0.910 0.8906

X X 0.651 0.910 0.687 0.909 0.8920

X X X 0.654 0.917 0.693 0.915 0.8898

X X 0.649 0.909 0.689 0.913 0.8759

X X X 0.653 0.912 0.695 0.917 0.8739

X X X 0.655 0.923 0.693 0.916 0.8753

X X X X 0.660 0.931 0.708 0.923 0.8730

X X X 0.654 0.924 0.692 0.915 0.8590

X X X X 0.657 0.928 0.698 0.922 0.8571

X X X X 0.656 0.927 0.700 0.924 0.8584

X X X X X 0.669 0.936 0.708 0.930 0.8563

declares that the forward and backward trajectories are not similar or the object has been lost.

The reporter starts to work and the particle filter will create 300 particles and its correspond-

ing patches. Then the reporter mechanism successes to recover the object in the next frames.

whereas many existing trackers have errors propagated. Also in row 4, frame #10 our approach

reports that the robustness score is 0.22 which is less than the predefined threshold; In this case
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Figure 2.8: Success plot on UAV123 for top 10 trackers. Legend shows AUC.

the reporter starts to work and it will create the 300-particle and unfortunately none of them

is overlapped ,therefore, the framework reports that, the object is lost. we sample these parti-

cles randomly from Gaussian distribution however, this case is very rare since the particles are

randomly distributed around the object.

Table 2.1 summarizes the results in terms of overlap rates and the time spent in each frame

for the five sequences in VIVId-EGTest dataset and VOT-2016 road sequence. It confirms that

our approach is able to properly track the object with lowest tracking errors.
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Figure 2.9: Precision and success plots on OTB-50 benchmark. All curves and numbers are

generated from OTB toolkit.

Figure 2.10: Precision and success plots on OTB-100 benchmark. All curves and numbers are

generated from OTB toolkit.
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Figure 2.11: Visual results on two data-sets VOT2016-Road and VIVId-EGTest.

30



Figure 2.4 shows the visual results on UAV123 [41] data-set, we ran and evaluated 9 trackers

in addition to ours on UAV123 data-set using success plot [33], and calculated the percentage of

frames that is within a threshold with an intersection-over-union (IOU). Figure 2.8 ranks track-

ers acoording to their area-under-curve (AUC) score. CCOT runs at (0.30 FPS) and its AUC

is 51.7%. Our tracker runs at (0.86 FPS) with an AUC score of 53.8% which is outperforming

CCOT by 2.1%. At the first row all trackers fail to track the object of interest due to occlusion

except CCOT tracker and ours. Moreover, when the object undergoes full occlusion such as row

#3 all trackers drift off. However, our tracker still can track the object, in this case the reporter

mechanism works and particle filter starts to propagate the particles to find the most similar

patch to the object of interest. Figure 2.11 shows the results on VIVID-EGTest data-set and

Vot2016-road sequenc. The first row shows that the object undergoes full occlusion in frame

#17, all trackers fail to track the object however, our tracker can find the object after occlusion.

We ran our tracker on VIDI-EGTest data-set, row #2 to row #6 show different challenges such

as occlusion (row #2), very tiny objects (row #3), sudden discontinuity (jump forward) (row

#4), illumination changes (row #5) and frequent occlusion by trees(row #6). Our tracker can

handle all these scenarios compared to the other tracker.

Extensive experiments are conducted to evaluate our tracker against the state-of-the-art

trackers on OTB-50, OTB-100, VOT2015, VOT2016 and VOT2017 benchmarks. All exper-

iments in this section were done using only the built-in trackers except the experiment in Table

5.7. Table 5.2 shows the performance of our tracker against eight state-of-the-art trackers in

terms of accuracy (A), robustness score(R) and expected average overlap (EAO). The first four

trackers in Table 5.2 are non-real-time while other trackers are working in real-time. In terms of

accuracy the proposed framework is outperforming other trackers especially MDNet by 1.2%.

The robustness of the proposed framework is the best compared to all other trackers, the gap
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between the second best tracker (MDNet) is 2%. Consequently, the expected average overlap

for the proposed framework has increased compared to MDNet by 1%. Table 5.3 and Table 4.1

show the performance of the proposed framework against five and eight state-of-the-art trackers

respectively. The proposed framework outperforms all other trackers. Figure 2.5 and Figure

2.10 show the precision and area-under-curve (AUC) on OTB-50 and OTB-100 respectively, all

curves are generated from OTB toolkit. Table 2.5 shows that the proposed framework outper-

forms all listed trackers on OTB-50 and OTB100.

The proposed framework outperforms other methods because it relies on the trajectory anal-

ysis from each tracker. The framework chooses the best trajectory pair (forward and backward)

based on the highest score of robustness. On top of that, in case all trackers drift off, the frame-

work detects that the object is lost and the reporter mechanism starts to work by creating 300

particles to find the most similar patch to the object of interest. The performance of the pro-

posed framework on OTB benchmark better than VOT benchmark by 10% since the VOT has

very challenging sequences. Figure 2.3 shows at the first row a very challenging sequence,

the object (ball) moves very fast also in Road-sequence the object undergoes a full occlusion.

However, the proposed tracker outperforms the state-of-the-art trackers.

2.4.1 Ablation Study

In this experiment, we show the effect of adding more trackers (user-plug-in) to the framework.

In addition, we show the effect of framework variation components such as the reporter and

virtual vector. Table 5.7 lists the variation components of the proposed framework. Baseline

means using only the framework with built-in trackers without the reporter and virtual vector.

The first row shows that, using only the baseline hardly improves the performance. The second
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row shows that, adding the reporter to baseline improves the overall performance. This con-

firms the importance of the reporter. In the third row, adding virtual vector to baseline without

the reporter improves the performance as reporter with almost the same performance. In the

fourth row, adding the reporter and virtual vector to the framework improve the overall perfor-

mance. Table 5.7 also lists the tested user-plug-in trackers(ECOhc and SiamFC). Obviously,

adding user-plug-in trackers with reporter and virtual vector significantly improve the overall

performance.

2.5 Conclusion

In this chapter, a composite framework for unmanned vehicle tracking is presented. The com-

posite framework consists of two trackers with trajectory analysis and virtual vectors. The

composite framework uses the forward and backward trajectories. A new mechanism called

reporter is used to make the tracker more robust. The reporter uses the robustness score and

particle filter to decide which trajectory will be selected from the forward pairs.

Extensive experiments were conducted on OTB-50, OTB-100, UAV123, VOT2015, VOT2016

and VOT2017. The experiments have shown that, adding user-plugins, reporter and virtual vec-

tor to the robustness score increased the robustness of the proposed framework. Future work

includes a deep convolutionl reporter within the composite framework and using the moving

horizon estimation instead of particle filter.
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Chapter 3

DensSiam: End-to-End Densely-Siamese

Network with Self-Attention Model for

Object Tracking

3.1 Abstract

Convolutional Siamese neural networks have been recently used to track objects using deep

features. Siamese architecture can achieve real time speed, however it is still difficult to find

a Siamese architecture that maintains the generalization capability, high accuracy and speed

while decreasing the number of shared parameters especially when it is very deep. Furthermore,

a conventional Siamese architecture usually processes one local neighborhood at a time, which

makes the appearance model local and non-robust to appearance changes.

To overcome these two problems, this chapter proposes DensSiam, a novel convolutional

Siamese architecture, which uses the concept of dense layers and connects each dense layer to
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all layers in a feed-forward fashion with a similarity-learning function. DensSiam also includes

a Self-Attention mechanism to force the network to pay more attention to the non-local features

during offline training. Extensive experiments are performed on four tracking benchmarks:

OTB2013 and OTB2015 for validation set; and VOT2015, VOT2016 and VOT2017 for testing

set. The obtained results show that DensSiam achieves superior results on these benchmarks

compared to other current state-of-the-art methods.

3.2 Introduction

Visual object tracking is an important task in many computer vision applications such as image

understanding [1], surveillance [2], human-computer interactions [3] and autonomous driving

[4]. One of the main challenges in object tracking is how to represent the appearance model

in such a way that the model is robust to appearance changes such as motion blur, occlusions,

background clutter [5, 6]. Many trackers use handcrafted features such as CACF [7], SRDCF

[8], KCF [9] and SAMF [10] which have inferior accuracy and/or robustness compared to deep

features.

In recent years, deep convolutional neural networks (CNNs) have shown superior perfor-

mance in various vision tasks. They also increased the performance of object tracking methods.

Many trackers have been developed using the strength of CNN features and significantly im-

proved their accuracy and robustness. Deep trackers include SiamFC [11], CFNet [12], Deep-

SRDCF [13], HCF [14]. However, these trackers exploit the deep features which were originally

designed for object recognition and neither consider the temporal information such as SiamFC

[11] nor non-local features such as the rest of the trackers. The key to design a high-performance

tracker is to find the best deep architecture that captures the non-local features while maintain-
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ing the real-time speed. Non-local features allow the tracker to be well-generalized from one

domain to another domain (e.g. from ImageNet videos domain to OTB/VOT videos domain).

In this chapter, we present a novel network design for robust visual object tracking to im-

prove the generalization capability of Siamese architecture. DensSiam network solves these

issues and produces a non-local response map. DensSiam has two branches, the target branch

that takes the input target patch from the first frame and the search branch that takes later im-

ages in the whole sequence. The target branch consists of dense blocks separated by a transition

layer, each block has many convolutional layers and each transition layer has a convolutional

layer with an average pool layer. Each dense layer is connected to every other layer in a feed-

forward fashion. The target response map is fed into the Self-Attention module to calculate

response at a position as a weighted sum of the features at all positions. The search branch is

the same architecture as the target branch except that it does not have the Self-Attention mod-

ule since we calculate the similarity function between the target patch with non-local features

and the candidate patches. Both target and search branches share the same network parameters

across channels extracted from the same dense layers. To the best of our knowledge, this is the

first densely Siamese network with a Self-Attention model.

To summarize, the main contributions of this work are three-fold.

• A novel end-to-end deep Densely-Siamese architecture is proposed for object tracking.

The new architecture can capture the non-local features which are robust to appearance

changes. Additionally, it reduces the number of shared parameters between layers while

building up deeper network compared to other existing Siamese-based architectures com-

monly used in current state-of-the-art trackers.
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• An effective response map based on Self-Attention module that boosts the DensSiam

tracker performance . The response map has no-local features and captures the semantic

information about the target object.

• The proposed architecture tackles the vanishing-gradient problem, leverages feature reuse

and improves the generalization capability.

The rest of the chapter is organized as follows. We first introduce related work in Section

7.3. Section 7.4 details the proposed approach. We present the experimental results in Section

7.7. Finally, Section 3.6 concludes the this chapter.

3.3 Related work

There are extensive surveys on visual object tracking in the literatures [15]. Recently, deep

features have demonstrated breakthrough accuracies compared to handcrafted features. Deep-

SRDCF [13] uses deep features of a pretrained CNN (e.g. VGG [16]) from different layers and

integrate them into a correlation filter. Visual object tracking can be modeled as a similarity

learning function in an offline training phase. Siamese architecture consists of two branches,

the target object branch and the search image branch. Siamese architecture takes the advan-

tage of end-to-end learning. Consequently, the learned function can be evaluated online during

tracking.

The pioneering work for object tracking is the SiamFC [11]. SiamFC has two branches, the

target branch and the appearance branch, a correlation layer is used to calculate the correlation

between the target patch and the candidate patches in the search image. The search image is

usually larger than the target patch to calculate the similarities in a single evaluation. CFNet
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[12] improved SiamFC by introducing a differentiable correlation filter layer to the target branch

to adapt the target model online. DSiam [17] uses a fast transfer motion to update the leaned

model online. Significantly improved performance as it captures some information about the

object’s context.

SINT [18] uses optical flow and formulates the visual object tracking as a verification problem

within Siamese architecture, it has a better performance however, the speed dropped down from

86 to 4 frames per second. SA-Siam [19] uses two Siamese networks based on the original

Siamese architecture [11]. The first network for semantic information and the other one for

appearance model. This architecture significantly improved the tracker performance as it al-

lows the semantic information of the appearance model representation to incorporate into the

response map. However these trackers use the features taken directly from CNN which pro-

cesses the information in a local neighbourhood. Consequently the output features are local and

do not have a lot information about the neighbourhood. Thus using convolutional layers alone

is not effective to capture the generic appearance model.

3.4 Proposed Approach

We propose effective and efficient deep architecture for visual tracking named Densely-Siamese

network (DensSiam). Fig. 3.1 shows the DensSiam architecture of the proposed tracker. The

core idea behind this design is that, using densely blocks separated by transition layers to build

up Siamese network with Self-Attention model to capture non-local features.
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Figure 3.1: The architecture of DensSiam tracker. The target branch has the Self-Attention

model to capture the semantic information during offline training.

3.4.1 Densely-Siamese Architecture

DensSiam architecture consists of two branches, the target branch and the appearance branch.

The target branch architecture as follows: input-ConvNet-DenseBlock-TransitionLayer-DenseBlock-

TransitionLayer-DenseBlock-DenseBlock-SelfAttention.

Dense block: Consists of Batch Normalization (BN) [20], Rectified Linear Units (ReLU), pool-

ing and Convolution layers, all dimensions are shown in Table 3.1. Each layer in dense block

takes all preceding feature maps as input and concatenate them. These connections ensure that

the network will preserve the information needed from all preceding feature maps and improve

the information flow between layers, and thus improves the generalization capability as shown

in Fig. 3.2. In traditional Siamese the output of lth layer is fed in as input to the (l + 1)th layer

we denote the output of lth layer as xl. To formulate the information flow between layers in
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Figure 3.2: The internal structure of dense block without BN, ReLU, 1⇥1 conv and Pooling

layers shows the connections between convolutional layers in DenseBlock2

dense block lets assume that the input tensor is x0 2 <C⇥N⇥D. Consequently, lth layer receives

all feature maps according to this equation:

xl = Hl([x0, x1, ..., xl�1]), (3.1)

Where Hl consists of three consecutive operations, batch normalization, ReLU and a 3 ⇥ 3

convolution and [x0, x1, ..., xl�1] is a feature map concatenation.

Transition layer: Consists of convolutional operation, average pooling and dropout [21]. Adding

dropout to dense block and transition layer decreases the risk that DensSiam overfits to negative

classes. DensSiam does not use padding operation since it is a fully-convolutional and padding

violates this property. Consequently, the size of feature maps in dense blocks varies and can not

be concatenated. Therefore, transition layers are used to match up the size of dense blocks and

concatenate them properly.

3.4.2 Self-Attention Model

Attention mechanism was used in image classification [22], multi-object tracking [23], pose

estimation [24], etc. In addition to the new architecture of DensSiam and inspired by [25, 26]

that use the attention mechanism in object detection, DensSiam architecture integrates the Self-
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Attention model to target branch as shown in Fig. 3.3.

Given the input tensor x 2 <W⇥H⇥D which is the output feature map of the target branch,

Self-Attention model divides the feature map into three maps through 1⇥ 1 convolutinal oper-

ation to capture the attention, f(x) and g(x) can be calculated as follows:

f(x) = Wf ⇥ x, (3.2)

g(x) = Wg ⇥ x, (3.3)

Where Wf , Wg are the offline learned parameters. Attention feature map can be calculated as

follows:

� =
exp (m)
NP
i=1

exp(m)

, (3.4)

Where � is the attention map weights and m= f(xi)Tg(xi). Self-Attention feature map can be

calculated as follows:
NX

i=1

(�⇥ h(xi)), (3.5)

Where h(x) = Wh ⇥ x and Wh is the offline learned parameter. We use logistic loss for

both dense block and Self-Attention model to calculate the weights using Stochastic Gradient

Descent (SGD) as follows:

l(y, v) = log(1 + exp(�yv)), (3.6)

Where v is the single score value of target-candidate pair and y 2 [�1,+1] its ground truth

label. To calculate the loss function for the feature map we use the mean of the loss over the
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Figure 3.3: Self-Attention Model, the feature map is divided into three maps, blue circles are

matrix multiplication. The input and the output tensors are the same size.

whole map as follows:

L(y, v) =
1

N

X

n2N

l(y[n], v[n]), (3.7)

Finally, the search branch has the same architecture as target branch except the search branch

does not have the Self-Attention model. The output of Self-Attention map and the output of the

search branch are fed into correlation layer to learn the similarity function.

3.5 Experimental Results

We divided the benchmarks to two sets, the validation set which includes OTB2013, OTB2015

and the testing set which includes VOT2015 VOT2016 and VOT2017. We provide the imple-

mentation details and hyper-parameters in the next subsection.
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3.5.1 Implementation Details

DensSiam is pre-trained offline from scratch on the video object detection dataset of the Ima-

geNet Large Scale Visual Recognition Challenge (ILSVRC15) [27]. ILSVRC15 contains 1.3

million labelled frames in 4000 sequences and it has a wide variety of objects which contribute

to the generalization of the DensSiam network.

Network architecture. We adopt this architecture input � ConvNet � DenseBlock1 �

TransitionLayer �DenseBlock2 � TransitionLayer �DenseBlock3 �DenseBlock4 �

SelfAttention as shown in Table 3.1.

Hyper-parameters settings. Training is performed over 100 epochs, each with 53,200 sam-

pled pairs. Stochastic gradient descent (SGD) is applied with momentum of 0.9 to train the

network. We adopt the mini-batches of size 8 and the learning rate is annealed geometrically at

each epoch from 10�3 to 10�8. We implement DensSiam in TensorFlow [28] 1.8 framework.

The experiments are performed on a PC with a Xeon E5 2.20 GHz CPU and a Titan XP GPU.

The testing speed of DensSiam is 60 fps.

Tracking settings. We adapt the scale variations by searching for the object on three scales Os

where O = 1.0375 and s = {�2, 0, 2}. The input target image size is 127 ⇥ 127 and the search

image size is 255⇥ 255. We use the linear interpolation to update the scale with a factor 0.764.

3.5.2 Comparison with the State-of-the-Art

In this section we use VOT toolkit standard metrics [29], accuracy (A), robustness (R) and

expected average overlap (EAO). Table 5.2 shows the comparison of DensSaim with MDNet

[30], DeepSRDCF [13], EBT [31], BACF [32], EAST [33], Staple [34] and SiamFC [11]. The

four top trackers are non-realtime trackers and we still outperform them. In terms of accuracy,
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Table 3.1: Data dimensions in DensSiam.

Layers Output size Target branch Search branch

Convolution Tensor (8, 61, 61, 72 ) 7 ⇥ 7 conv, stride 2 7 ⇥ 7 conv, stride 2

DenseBlock1 Tensor(8, 61, 61, 144)
[1⇥ 1conv]⇥ 2
[3⇥ 3conv]⇥ 2

[1⇥ 1conv]⇥ 2
[3⇥ 3conv]⇥ 2

TransitionLayer Tensor (8, 30, 30, 36) 1 ⇥ 1 conv , average pool 1 ⇥ 1 conv , average pool

DenseBlock2 Tensor(8, 30, 30, 180)
[1⇥ 1conv]⇥ 4
[3⇥ 3conv]⇥ 4

[1⇥ 1conv]⇥ 4
[3⇥ 3conv]⇥ 4

TransitionLayer Tensor(8, 15, 15, 36) 1 ⇥ 1 conv , average pool 1 ⇥ 1 conv , average pool

DenseBlock3 Tensor (8, 15, 15, 252)
[1⇥ 1conv]⇥ 6
[3⇥ 3conv]⇥ 6

[1⇥ 1conv]⇥ 6
[3⇥ 3conv]⇥ 6

DenseBlock4 Tensor(8,9,9,128) [7⇥ 7conv]⇥ 3 [7⇥ 7conv]⇥ 3

Self � Attention Tensor(8, 9, 9, 128) [1⇥ 1conv]⇥ 3 –

DensSiam is about 2 % higher than MDNet while it is the best second after MDNet in terms

of expected average overlap. DensSiam is the highest in terms of robustness score in real-time

trackers. We also report the results of our tracker on VOT2016 and VOT2017 as shown in Table

5.3 and Table 4.1. The comparison includes ECOhc [35], SiamFC [11], SiamDCF [36], Staple

[34], CSRDCF++ [37]. DensSiam outperforms all trackers in terms of accuracy, robustness

score and expected average overlap.

3.6 Conclusions and Future Work

This chapter proposed DensSiam, a new Siamese architecture for object tracking. DensSiam

uses non-local features to represent the appearance model in such a way that allows the deep

feature map to be robust to appearance changes. DensSaim allows different feature levels (e.g.
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Table 3.2: Comparison with the state-of-the-art trackers including the top four non-realtime for

VOT2015.

Tracker A R EAO FPS

MDNet 0.60 0.69 0.38 1

DeepSRDCF 0.56 1.05 0.32 < 1

EBT 0.47 1.02 0.31 4.4

SRDCF 0.56 1.24 0.2 5

BACF 0.59 1.56 � 35

EAST 0.57 1.03 0.34 159

Staple 0.57 1.39 0.30 80

SamFC 0.55 1.58 0.29 86

DensSiam(ours) 0.619 1.24 0.34 60

Table 3.3: Comparison with the state-of-the-art trackers on VOT2016.

Tracker A R EAO FPS

ECOhc 0.54 1.19 0.3221 60

Staple 0.54 1.42 0.2952 80

STAPLE+ 0.55 1.31 0.2862 > 25

SiamRN 0.55 1.36 0.2766 > 25

GCF 0.51 1.57 0.2179 > 25

DensSiam(ours) 0.56 1.08 0.3310 60
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Table 3.4: Comparison with the state-of-the-art trackers on VOT2017.

Tracker A R EAO FPS

SiamDCF 0.500 0.473 0.249 60

ECOhc 0.494 0.435 0.238 60

CSRDCF++ 0.453 0.370 0.229 > 25

SiamFC 0.502 0.585 0.188 86

SAPKLTF 0.482 0.581 0.184 > 25

Staple 0.530 0.688 0.169 > 80

ASMS 0.494 0.623 0.169 > 25

DensSiam(ours) 0.540 0.350 0.250 60

low level and high level features) to flow through the network layers without vanishing gradi-

ents and improves the generalization capability . The resulting tracker greatly benefits from the

Densely-Siamese architecture with Self-Attention model and substantially increases the accu-

racy and robustness while decreasing the number of shared network parameters. The architec-

ture of DensSiam can be extended to other tasks of computer vision such as object verification,

recognition and detection since it is general Siamese framework.
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Chapter 4

DomainSiam

4.1 Abstract

Visual object tracking is a fundamental task in the field of computer vision. Recently, Siamese

trackers have achieved state-of-the-art performance on recent benchmarks. However, Siamese

trackers do not fully utilize semantic and objectness information from pre-trained networks that

have been trained on image classification task. Furthermore, the pre-trained Siamese archi-

tecture is sparsely activated by the category label, which leads to unnecessary calculations and

overfitting. In this chapter, we propose to learn a Domain-Aware that fully utilizes semantic and

objectness information while producing a class-agnostic features using a ridge regression net-

work. Moreover, to reduce the sparsity problem, we solve the ridge regression problem with a

differentiable weighted-dynamic loss function. Our tracker, dubbed DomainSiam, improves the

feature learning in the training phase and generalization capability to other domains. Extensive

experiments are performed on five tracking benchmarks, including OTB2013 and OTB2015,

for a validation set as well as VOT2017, VOT2018, LaSOT, TrackingNet, and GOT10k for a
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testing set. DomainSiam achieves a state-of-the-art performance on these benchmarks while

running at 53 FPS.

4.2 Introduction

Tracking is a fundamental task in many computer vision tasks such as surveillance [1], computer

interactions [2] and image understanding [3]. The objective of tracking is to find the trajectory

of the object of interest over time. This is a challenge since the object of interest undergoes

appearance changes such as occlusions, motion blur, and background cluttering [4, 5]. Recent

deep trackers such as CFNet [6] and DeepSRDCF [7] use pre-trained networks that have been

trained on image classification or object recognition.

In recent years, convolutional neural networks (CNNs) have achieved superior performance

against hand-crafted trackers (e.g., CACF [8], SRDCF [9], KCF [10] and SAMF [11]). Siamese

trackers such as SiamFC [12], CFNet [6], SiamRPN [13], and DensSiam [14] learn a similar-

ity function to separate the foreground from its background. However, Siamese trackers do

not fully utilize semantic and objectness information from pre-trained networks that have been

trained on image classification. In image classification, the class categories of the objects are

pre-defined, while in object tracking tasks, the tracker needs to be class-agnostic while benefit-

ing from semantic and objectness information. Moreover, the image classification increases the

inter-class differences while forcing the features to be insensitive to intra-class changes [15].

In this chapter, we propose DomainSiam to learn Domain-Aware, which fully utilizes se-

mantic and objectness information from a pre-trained network. DomainSiam consists of DensSiam

with a self-attention module [14] as a backbone network and a regression network to select the

most discriminative convolutional filters to leverage the semantic and objectness information.
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Moreover, we develop a differentiable weighted-dynamic domain loss function to train the re-

gression network. The developed loss function is monotonic, dynamic, and smooth with respect

to its hyper-parameters, which can be reduced to l1 or l2 during the training phase. On the other

hand, the shrinkage loss function [16] is static, and it can not be adapted during the train-

ing phase. Most regression networks solve the regression problem with static loss such as the

closed-form solution if the input to the network is not high-dimensional or minimizing l2. The

results will be made available 1.

To summarize, the main contributions of this chapter are three-fold.

• A novel architecture is proposed for object tracking to capture the Domain-Aware fea-

tures with semantic and objectness information. The proposed architecture enables the

features to be robust to appearance changes. Moreover, it decreases the sparsity problem,

as it produces the most important feature space. Consequently, it decreases the overhead

calculations.

• A differentiable weighted-dynamic domain loss function is developed specifically for

visual object tracking to train the regression network to extract the domain channels that

are activated by target category. The developed loss is monotonic with respect to its hyper-

parameters, and this will be useful in case of high-dimensional data and non-convexity.

Consequently, this will increase the performance of the tracker.

• The proposed architecture tackles the generalization capability from one domain to an-

other domain (e.g., from ImageNet to VOT datasets).
1https://vip-mun.github.io/DomainSiam
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The rest of the chapter is organized as follows. Related work is presented in section 4.3. Section

4.4 details the proposed approach. We present the experimental results in Section 4.5. Finally,

section 4.6 concludes the chapter.

4.3 Related work

In this section, we firstly introduce the state-of-the-art Siamese-based trackers. Then, we briefly

introduce the gradient-based localization guidance.

Siamese-based Trackers

Recently, Siamese-based trackers have received significant attention, especially in realtime

tracking due to their balanced accuracy and speed. However, Siamese-based trackers drift to

the background due to lack of semantic and objectness information about the positive samples.

Siamese-based trackers always provide a heat map which encodes the most important channels

for the object category as well as the sparse channels. Consequently, the heat map is sparsely

activated by the category label. In general, a Siamese network consists of two branches: the tar-

get branch and the search branch, and both branches share the same parameters. The score map,

which indicates the position of the object of interest, is generated by the last cross-correlation

layer.

The first Siamese network was first proposed in [17] for signature verification. The pio-

neering work that uses Siamese in object tracking is SiamFC [12]. SiamFC searches the target

image in the search image. Siamese Instance Search [18] proposed SINT, which has a query

branch and a search branch, and the backbone of this architecture is inherited from AlexNet
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[19]. CFNet [6] enabled SiamFC to be re-trained once per frame instead of using an offline pre-

trained network. CFNet integrated a correlation layer to back-propagate gradients through an

online learning. Moreover, CFNet improved SiamFC by adding a correlation layer to the target

branch. SA-Siam [20] proposed two Siamese networks: the first network encodes the seman-

tic information, and the second network encodes the appearance model. This is different from

our architecture, which has only one Siamese network. SiamRPN [21] formulated the tracking

problem as a local one-shot detection. SiamRPN consists of a Siamese network as a feature

extractor and a region proposal network that includes the classification branch and regression

branch. DensSiam [14] used the Densely-Siamese architecture to make the Siamese network

deeper while maintaining the performance of the network. DensSiam allows the low-level and

high-level features to flow within layers without the vanishing gradients problems. Moreover, a

self-attention mechanism was integrated to force the network to capture the non-local features.

SiamMask [22] improved the offline training of Siamese networks by using augmentation loss

to produce a binary segmentation mask. In addition, the binary segmentation mask locates the

object of interest accurately. ATOM [23] formulated the tracking as a target estimation prob-

lem. ATOM proposed a Siamese network with explicit components for target estimation and

classification. The components are trained offline to maximize the overlapping between the

estimated bounding box and the target. Siamese-based trackers provide a heat map which is

sparsely activated by the category label due to lack of the semantic and objectness information.

Gradient-based Localization Guidance

It turns out that the gradient can be used to determine the importance of each channel in the
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heat map in Siamese networks. Moreover, the global average pooling of the gradients acts as

Attention to locate the target from the heat map. In this category of learning, the objective is

to determine the most important channel of the network with respect to the object category. In

an object classification task, each category activates a set of certain channels. Grad-CAM [24]

used a gradient of any target logit (e.g., ”cat”) and, using this gradient, determined the active

category channel for this logit. The work in [25] demonstrated that the global average pooling

of the gradients is implicitly acting as Attention for the network; consequently, it can locate the

object of interest accurately.

4.4 Proposed Approach

We propose DomainSiam for visual object tracking. The complete pipeline is shown in Fig. 4.1.

The DensSiam with the Self-Attention network is used as a feature extractor; however, in any

Siamese network, these features do not fully utilize the semantic and objectness information.

Furthermore, the channels in Siamese networks are sparsely activated. We use the ridge regres-

sion network with a differentiable weighted-dynamic loss function to overcome the previous

problems.

4.4.1 Ridge Regression Network with Domain-Aware Features

In Fig. 4.1, the pipeline is divided into three blocks: the input block to the target branch and

the search branch; the DensSiam block, which has the same architecture in [14]; and the ridge

regression network. The DensSiam network produces two feature maps for target and search

images, respectively. Imbalanced distribution of the training data makes the feature maps pro-

duced by Siamese networks less discriminative, as there is a high number of easy samples com-
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DensBlock2 Self-Attention Self-Attention
Features

Conv Layer-1 Conv Layer-2 Ridge Loss

Global Average Pooling

DensSiam Network

DenseBlock2
Correlation Layer

Concatenation

Response Map

Ridge Regression Network to Extract 
Domain-Aware Channels

DenseBlock4Transition Layer

DenseBlock4Transition Layer

Input Images
Important Channels
(Domain-Aware Features)

1 × 1 Convolution
and MaxPooling

High Score Channels

Figure 4.1: The architecture of DomainSiam tracker. It consists of three blocks: the input

images block, which includes the target image and search image; the DensSiam network with a

Self-Attention module at the end of the target branch; and the Ridge Regression Network, which

highlights the important channels and produces the Domain-Aware features. The response map

is produced by the correlation layer, which is the final layer. The correlation layer calculates the

correlation between the Domain-Aware channels and search branch features and is represented

by DenseBlock4.
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Figure 4.2: A comparison of convergence speed on L2 loss, Shrinkage loss [16], and our pro-

posed loss function. The average loss is calculated on a batch of eight samples on VOT2018

[26] dataset.
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pared to the hard samples. Siamese networks use pre-trained networks that have been trained

on other tasks (e.g., classification and recognition). These networks increase inter-class differ-

ences and are also insensitive to intra-class variations. Consequently, this property decreases

the performance of Siamese networks, as the tracker needs to be more discriminative to the

same object category. Moreover, the pre-trained network is sparsely activated by the object

category. In other words, in the feature channels/maps there are only a few active channels that

correspond to the object category. The regression network in Fig. 4.1 highlights the importance

of each channel in the feature map to the object of interest and discards the others.

In Fig. 4.1, the ridge regression network regresses all samples in the input image patch to their

soft labels by optimizing the following objective function.

arg min
w

kW ⇤Xi,j � Y (i, j)k2 + �kWk2 (4.1)

Where ⇤ denotes the convolution operation, W is the weight of the regression network, X 2

RN⇥D is the input features and Y 2 RN⇥D is the soft label. Gaussian distribution is used as

a soft label map, and its centre is aligned to the target center and � > 0 is the regularization

parameter.

Y (i, j) = e�
i2+j2

2�2 (4.2)

Where (i, j) is the location corresponding to the target location and � is the Gaussian kernel

width. The closed-form analytic solution for equation 4.1 is defined as

W =
�
X>X + �I

��1
X>Y (4.3)

The optimal solution of W can be achieved by equation 4.3; however, solving this equation is

computationally expensive as X>X 2 RD⇥D. Instead, we use the ridge regression network

with the proposed loss function to solve equation 4.1.
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4.4.2 Ridge Regression Optimization

In Fig. 4.1, the ridge regression network consists of two convolutional layers, ridge loss and

the global average pooling. The global average pooling encourages the proposed loss function

to localize the object of interest accurately compared to the global max pooling. It is worth

mentioning that both global average pooling and global max pooling have similar performances

on object classification tasks. As shown in Fig. 4.1, in the last block, the Domain-Aware feature

space is calculated by

�i = GAP (@L/@Fi) (4.4)

Where � is the Domain-Aware non-sparse features; GAP is the global average pooling; L is

the domain-dynamic loss function, which will be discussed later; and F is the input feature

channel of the ith channel to the ridge regression network. Let the objective function of the

ridge regression network be x

x = kW ⇤Xi,j � Y (i, j)k2+�kWk2 (4.5)

We propose a differentiable weighted-dynamic loss function for visual object tracking to solve

equation 4.5. This is inspired by [27], who uses a general loss function for the variational

autoencoder, monocular depth estimation, and global registration, as follows.

L(x,↵) =
|↵� 2|
↵

eay
 ✓

x2

|↵� 2| + 1

◆↵/2

� 1

!
(4.6)

where a 2 [0, 1] is a hyper-parameter, y is the regression target of a sample, and ↵ 2 R is

the parameter that controls the robustness of the loss. The exponent term in this loss function

tackles the imbalanced distribution of the training set by assigning a higher weight to hard sam-

ples. The imbalanced data occurs when the number of easy samples (background) is extremely
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higher than the hard samples (foreground).

The advantage of this loss function over equation 4.1 and equation 4.3 is that it can automati-

cally adjust the robustness during the training phase. This advantage comes from the ↵ param-

eter. For example, at ↵ = 2 the equation 4.6 becomes L2

lim
↵!2

L(x,↵) =
eay

2
x2 (4.7)

Similarly, when ↵ = 1, the equation 4.6 becomes L1

L(x,↵) = (
p
x2 + 1)eay � 1 (4.8)

Another advantage of equation 4.6 is becoming Lorentzian loss function [28] by allowing ↵ = 0

as follows

lim
x!0

L(x,↵) = log

✓
1

2
x2 + 1

◆
eay (4.9)

As noted before, the proposed loss function is dynamic, which allows the network to also learn

a robust representation. The gradient of the equation 4.6 with respect to ↵ is always positive.

Consequently, this property makes the loss monotonic with respect to ↵ and useful for non-

convex optimization.
@L

@↵
(x,↵) � 0 (4.10)

The final proposed loss function is given by

L(x,↵) =

8
>>>>>>>>><

>>>>>>>>>:

e
ay

2 x2 if ↵ = 2

log
�
1
2(x)

2 + 1
�
eay if ↵ = 0

(1� exp
�
�1

2(x)
2
�
)eay if ↵ = �1

|↵�2|
↵

eay
✓⇣

(x)2

|↵�2| + 1
⌘↵/2

� 1

◆
otherwise

(4.11)
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Fig. 4.2 shows that the optimization over the proposed loss function achieves faster convergence

speed, while in the Shrinkage loss function proposed in [16] and the original ridge regression

loss function 4.1 (l2), the convergence speed is slower. The importance of each channel in the

feature map is calculated by plugging equation 4.11 into equation 4.4. It is worth noting that

the output feature map of the ridge regression network contains only the activated channels that

have the most semantic and objectness information corresponding to the object category. The

Domain-Aware features and the feature channels from denseBlock4 are fed into the correlation

layer to calculate the similarity and produce the response map.

4.5 Experimental Results

The benchmarks are divided into two categories: the validation set including OTB2013 [29]

and OTB2015 [4] and the testing set including VOT2017 [30], VOT2018 [26], and GOT10k

[31]. We introduce the implementation details in the next sub-section and then we compare the

proposed tracker to the state-of-the-art trackers.

4.5.1 Implementation Details

We used the pre-trained DensSiam network (DenseBlock2 and DenseBlock4) that has been

trained on Large Scale Visual Recognition Challenge (ILSVRC15) [32]. ILSVRC15 has over

4000 sequences with approximately 1.3 million frames and their labels . DomainSiam, which

has been trained on 1000 classes, can benefit from this class diversity. We implemented Do-

mainSiam in Python using a PyTorch framework [33]. Experiments are performed on Linux

with a Xeon E5 @2.20 GHz CPU and a Titan XP GPU. The testing speed of DomainSiam is 53

FPS, which is beyond realtime speed.
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Table 4.1: Comparison with the state-of-the-art trackers on VOT2017 in terms of Accuracy (A),

expected Average Overlap (EAO), and Robustness (R).

Tracker A" EAO" R # FPS

CSRDCF++ 0.453 0.229 0.370 > 25

SAPKLTF 0.482 0.184 0.581 > 25

Staple 0.530 0.169 0.688 > 80

ASMS 0.494 0.169 0.623 > 25

SiamFC 0.502 0.188 0.585 86

SiamDCF 0.500 0.473 0.249 60

ECOhc 0.494 0.435 0.238 60

DensSiam 0.540 0.350 0.250 60

DomainSiam(proposed) 0.562 0.374 0.201 53

Training. The ridge regression network is trained with its proposed loss function separately

from the Siamese network with 70 epochs. The highest scores associated with 100 channels

are selected as the Domain-Aware features. The training is applied with a momentum of 0.9, a

batch size of 8 images, and the learning rate is annealed geometrically at each epoch from 10�3

to 10�8.

Tracking Settings. The initial scale variation is Os where O = 1.0375 and s = {�2, 0, 2}. We

adopt the target image size of 127 ⇥ 127 and the search image size of 255 ⇥ 255 with a linear

interpolation to update the scale with a factor of 0.435.
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Table 4.2: Comparison with state-of-the-art trackers on VOT2018 in terms of Accuracy (A),

expected Average Overlap (EAO), and Robustness (R).

Tracker A" EAO" R# FPS

ASMS [34] 0.494 0.169 0.623 25

SiamRPN [13] 0.586 0.383 0.276 160

SA Siam R [20] 0.566 0.337 0.258 50

FSAN [26] 0.554 0.256 0.356 30

CSRDCF [35] 0.491 0.256 0.356 13

SiamFC [12] 0.503 0.188 0.585 86

SAPKLTF [26] 0.488 0.171 0.613 25

DSiam [36] 0.215 0.196 0.646 25

ECO [37] 0.484 0.280 0.276 60

DomainSiam(proposed) 0.593 0.396 0.221 53

4.5.2 Comparison with State-of-the-Art Trackers

In this section, we use five benchmarks to evaluate DomainSiam against state-of-the-art track-

ers. We use VOT2017 [30], VOT2018 [26], LaSOT [46], TrackingNet [47], and GOT10k [31].

Results on VOT2017 and VOT2018

We used the standard metrics on short-term challenge on the VOT dataset. The results on the

VOT dataset shown in Table 4.1 and Table 5.4 are given by the VOT-Toolkit. DomainSiam

outperforms the state-of-the-art trackers listed in both tables. It is worth mentioning that Do-

mainSiam is about 2% higher than the DensSiam tracker in terms of Accuracy (A) and Expected
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Table 4.3: Comparisons with state-of-the-art trackers on TrackingNet dataset in terms of the

Precision (PRE), Normalized Precision (NPRE), and Success.

Tracker PRE " NPRE " SUC."

Staple CA [8] 0.468 0.605 0.529

BACF [38] 0.461 0.580 0.523

MDNet [39] 0.565 0.705 0.606

CFNet [6] 0.533 0.654 0.578

SiamFC [12] 0.533 0.663 0.571

SAMF [11] 0.477 0.598 0.504

ECO-HC [37] 0.476 0.608 0.541

Staple [40] 0.470 0.603 0.528

ECO [37] 0.492 0.618 0.554

CSRDCF [35] 0.480 0.622 0.534

DomainSiam(proposed) 0.585 0.712 0.635

Average Overlap (EAO) in Table 4.1 while running at 53 frames per second. Table 5.4 shows

that DomainSiam is ranked as the best tracker in terms of accuracy with 0.593 and gain of 0.7 %

compared to the second-best tracker, which is SiamRPN. In terms of expected average overlap,

DomainSiam is ranked as the best tracker with score of 0.396 while the score of the second-best

tracker is 0.383 with gain of 1.3 %. In terms of robustness, the number of failures per sequence,

DomainSiam achieves the best score of 0.221, which is about 5% higher than the second-best

tracker (SiamRPN) while working in realtime speed.

Results on TrackingNet Dataset
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Table 4.4: Comparison with state-of-the-art trackers on LaSOt dataset in terms of the Normal-

ized Precision and Success.

Tracker Norm. Prec. (%)" Success (%)"

MDNet [39] 46.0 39.7

DaSiam [41] 49.6 41.5

STRCF [42] 34.0 30.8

SINT [18] 35.4 31.4

StrucSiam [43] 41.8 33.5

SiamFC [12] 42.0 33.6

VITAL [44] 45.3 39.0

ECO [45] 33.8 32.4

DSiam [36] 40.5 33.3

DomainSiam(proposed) 53.7 43.6

Table 4.5: Comparison state-of-the-art trackers on GOT10k dataset in terms of Average Overlap

(AO), and Success Rates (SR) at overlap thresholds of 0.50 and 0.75.

TRACKER DomainSiam (proposed) CFNet SiamFC GOTURN CCOT ECO HCF MDNet

AO 0.414 0.374 0.348 0.347 0.325 0.316 0.315 0.299

SR(0.50) 0.451 0.404 0.353 0.375 0.328 0.309 0.297 0.303

SR(0.75) 0.214 0.144 0.098 0.124 0.107 0.111 0.088 0.099

This is a large-scale dataset that was collected from YouTube videos. Table 7.6 shows that

DomainSiam outperforms MDNet, which is the second-best tracker on the TrackingNet dataset
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with 2% in terms of precision and about 3% in terms of success. DomainSiam outperforms all

other trackers on the TrackingNet dataset.

Results on the LaSOT Dataset

The average sequence length in this dataset is about 2500 frames. Table 7.8 shows that Domain-

Siam achieves the best success score with over 2% from the second-best tracker (DaSiam). Our

tracker significantly outperforms DaSiam with 4% in terms of normalized precision.

Results on GOT10k Dataset

This dataset has 180 test sequences. We tested the proposed tracker against seven trackers as

shown in Table 7.7. DomainSiam outperforms CFNet, which is the best tracker in terms of Av-

erage Overlap (AO) with 4%. It is worth noting that DomainSiam achieves the best performance

among all trackers in terms of Success Rate (SR) at thresholds of 0.50 and 0.75.

4.6 Conclusions and Future Work

In this chapter, we introduced DomainSiam tracker, a Siamese with a ridge regression network

that fully utilizes semantic and objectness information for visual object tracking while also pro-

ducing a class-agnostic features. We developed a differentiable weighted-dynamic loss function

to solve the ridge regression problem. The developed loss function improves the feature learn-

ing, as it automatically adjusts the robustness during the training phase. Furthermore, it utilizes

the activated channels that correspond to the object category label. The proposed architecture

decreases the sparsity problem in Siamese networks and provides an efficient Domain-Aware

feature space that is robust to appearance changes. DomainSiam does not need to be re-trained

from scratch, as the ridge regression network with the proposed loss function is trained sep-

arately from the Siamese network. DomainSiam with the proposed loss function exhibits a
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superior convergence speed compared to other loss functions. The ridge regression network

with the proposed loss function can be extended to other tasks such as object detection and

semantic segmentation.
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Chapter 5

DP-Siam: Dynamic Policy Siamese

Network for Robust Object Tracking

5.1 Abstract

Balancing the trade-off between real-time performance and accuracy in object tracking is a ma-

jor challenge. In this chapter, a novel dynamic policy gradient Agent-Environment architecture

with Siamese network (DP-Siam) is proposed to train the tracker to increase the accuracy and

the expected average overlap while performing in real-time. DP-Siam is trained offline with

reinforcement learning to produce a continuous action that predicts the optimal object location.

DP-Siam has a novel architecture that consists of three networks: an Agent network to predict

the optimal state (bounding box) of the object being tracked, an Environment network to get

the Q-value during the offline training phase to minimize the error of the loss function, and

a Siamese network to produce a heat-map. During online tracking, the Environment network

acts as a verifier to the Agent network action. Extensive experiments are performed on six
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widely used benchmarks: OTB2013, OTB50, OTB100, VOT2015, VOT2016 and VOT2018.

The results show that DP-Siam significantly outperforms the current state-of-the-art trackers.

5.2 Introduction

Visual object tracking is a fundamental task in many computer vision topics such as image

understanding [1], surveillance [2], human-computer interaction [3], and autonomous driving

[4]. Recently, Siamese networks have received more attention in visual tracking because of their

outstanding performance (e.g., [5–9]); however, they have a continuous trade-off between real-

time performance and accuracy. Many trackers focus on increasing accuracy at the expense

of real-time performance. For example, many trackers increase their accuracy by adopting a

search strategy such as iterative search [10], tree search [11, 12], Bayesian processes [13], or

bandit-based schemes [14]. However, these trackers are far from real-time performance. On the

other hand, [5, 7, 15] perform in real time (100 fps), but their accuracy is low (A⇡0.24).

In recent years, Siamese networks have been widely used in visual object tracking; for ex-

ample, in VOT2018, four out of the top nine trackers are Siamese-based. The Siamese network

learns the similarity function between the template image (object of interest) and the search

image (entire image), which is a very strong feature in Siamese-based trackers. We participated

in the VOT2018 challenge with our previous work, DensSiam [16], and achieved good results.

However, we noticed that the Expected Average Overlap (EAO), which measures the overlap

between ground truth and the predicted bounding box, is relatively low in all trackers, especially

in situations in which the appearance model significantly changes. Moreover, we noticed that

the Robustness (R), which measures how many times the tracker fails and needs to be restarted

in a sequence, is also low. Our motivation in this chapter is to address these two issues by adding
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an Agent-Environment framework to the Siamese network. The Agent-Environment framework

uses an experience table and forces dynamic hyper-parameters selection to increase the EAO

and lower the number of failures (R). To validate our motivation, the difference between our

previous Siamese tracker (DensSiam) and the novel proposed architecture (DP-Siam) is shown

in Table 5.6. The results of the proposed tracker (DP-Siam) are compared against current state-

of-the-art trackers in Tables 5.2-5.4 on the VOT datasets, Table 5.8 on the OTB benchmark, and

Table 5.10 on the UAV datasets.

In this chapter, we present a novel Siamese Agent-Environment architecture to achieve high

accuracy (A) and Expected Average Overlap (EAO), by choosing the optimal state (bounding

box) of the current object being tracked while performing in real time as shown in Fig. 5.1. The

Agent-Environment is trained end-to-end using reinforcement learning, while Siamese learns

the similarity between the search image and the template patch.

To summarize, the main contribution of this work is:

• Firstly, we propose DP-Siam, a novel dynamic Siamese Agent-Environment architecture

that formulates the tracking problem with reinforcement learning. DP-Siam produces a

continuous action that predicts the optimal object location. DP-Siam has a novel archi-

tecture that consists of three networks: an Agent network to predict the optimal state of

the object being tracked, an Environment network to get the Q-value during the offline

training phase to minimize the error of the loss function, and a Siamese network to pro-

duce a heat-map. The Environment network acts as a verifier to the action of the Agent

network during online tracking.

• Secondly, the proposed architecture allows the tracker to dynamically select the hyper-

parameters in each frame instead of the traditional method of fixing their values for the
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1 309 784

– Ground truth – DP-Siam (proposed) – SiamFC – KCF

Figure 5.1: Sample results of the proposed DP-Siam tracker compared to Siam-Fc and KCF

trackers. The rows show 3 different sequences, while the columns show the trackers output

over time (the frame number is printed on the top left corner of the image).
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entire dataset, which to the best knowledge of the authors, has not been done before.

• Finally, the design of the proposed architecture increases the generalization to other do-

mains (e.g. from ImageNet to VOT datasets).

The results and the pre-trained network are publicly available. 1 The rest of the chapter is

organized as follows. We first introduce related work in Section 5.3. Section 5.4 details the

proposed approach. We present the experimental results in Section 5.5. Finally, Section 5.6

concludes the chapter and presents future directions.

5.3 Related work

Recently, deep learning has been widely used in visual object tracking. Siamese-based trackers

formulate the tracking problem as a similarity learning function [6]. Reinforcement learning-

based trackers formulate the tracking problem as action-decision [17–20]. Siamese trackers

consist of two branches that have the same shared parameters. The basic branch extracts the

template, while the other finds the candidate patches in the search image.

Siamese-based Tracking:

A Siamese network was first proposed in [21]. A Siamese network consists of two branches

with shared parameters: the target branch and the search branch, as shown in the bottom left part

of Fig. 5.3 (Siamese network). The last layer of the Siamese network is the cross-correlation

layer. The cross-correlation layer generates the score map, which indicates the location of the

object of interest. The training is done by positive and negative pairs using the logistic loss

objective function.

`(y, v) = log(1 + exp(�yv)) (5.1)
1https://vip-mun.github.io/DpSiam/
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where v is the real-valued score of a single target candidate pair and y 2 {+1,�1} is its ground-

truth label. This will produce a map of scores v : D ! R, which effectively locates the center of

the bounding box. Object tracking can be modeled as similarity learning. The Siamese network

calculates the similarity between the target input patch and a much larger search image at all

translated sub-windows. Consequently, a score map will be generated, and the object of interest

can be located at the highest similarity score [6].

A pioneering work of using Siamese networks in tracking is presented in SiamFC [6], which

searches for the patch most similar to the template of the basic branch. Later, Tao et al. [5]

propose SINT, which has two identical branches: the query branch and the search branch. The

architecture is inherited from AlexNet [22]. The work in [6] proposes a fully convolutional

Siamese network (SiamFC) to calculate the similarity function between two frames. RAS-

Net [7] improved this similarity metric by learning the attention mechanism using a Residual

Attentional Network. In [23], a semantic branch with a channel attention mechanism and an

appearance branch is proposed. The semantic and appearance branches are trained separately

to preserve the heterogeneity of the network. The GOTURN tracker [15] learns a generic rela-

tionship between the appearance model and the object motion. GOTURN uses a simple feed-

forward network without online updating. CFNet [8] uses a Siamese network with a correlation

filter as a differentiable layer. CFNet is a real-time tracker with an architecture inherited from

SiamFC [6]. DSiam [24] introduces a dynamic Siamese network based on a fast transforma-

tion learning model to enable the tracker to online learn the target appearance variations. The

architecture of DSiam is also inherited from SiamFC [6]. DCfnet [25] proposes a correlation

layer in a lightweight Siamese network and estimates the object’s location as a probability heat-

map. FlowTrack [26] uses optical flow estimation, feature extraction, aggregation, and a cor-

relation filter as special layers in the Siamese network. Moreover, a spatial temporal attention
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mechanism is introduced into the Siamese network for adaptive aggregation. More recently,

SiamRPN [9] formulates the tracking problem as a one-shot local detection task by introducing

a region proposal network after the Siamese network, which is end-to-end trained offline with

large-scale image pairs. In contrast to the above networks, DensSiam [16] uses dense blocks

and transition layers in a Siamese network with an attention mechanism instead of only using

convoluational layers. The architecture is trained on ImageNet [22].

Reinforcement Learning-based Tracking: In trackers based on reinforcement learning,

the objective is to learn how to take actions to maximize the reward. Rewards tell the agent

how good the current perfomance is. In [27], tracking is performed based on an active detection

model. The model is considered class-specific to force the agent to focus on the candidate

regions and identify the correct location of the target object. In [18], the tracking is formulated

as an online decision-making process, where the agent learns when to update its appearance

model, reinitialize if the target has been lost, or stop updating. The tracker in [28] uses a

template selection strategy to effectively choose the appropriate template for tracking based on

the current frame. The selection strategy is self-learned during the training phase with randomly

selected images from the dataset. The work in [29] proposes a tracker controlled by an action-

decision network (ADNet). The tracker has various actions (up, down, right, left, etc.), and

based on reinforcement learning, the tracker learns a good policy. The tracker in [30] uses

reinforcement learning to learn a policy that decides to use either Hog features or deep features.

The agent learns to select the policy based on an iterative manner. However, most of these

trackers either learn a series of actions from the action pool or adaptively select the efficient

features during the tracking process. Consequently, the speed and accuracy are relatively low.
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5.4 Proposed Approach

5.4.1 DP-Siam Architecture

DP-Siam consists of three networks: an Agent network, an Environment network, and a Siamese

network. As seen in Fig. 5.3, the input image is fed into the Agent network, which will pro-

duce an action (translation in the x and y and scale s). During offline training (indicated by

the red-dashed lines in Fig. 5.3), a Q-Value guides the learning process. This is achieved by

feeding the patch of the ground truth into the Environment network input layer and the Agent

network action into the final layer of the Environment network. In online tracking (indicated by

the green-solid lines in Fig. 5.3), the input image is fed into the Agent network to produce the

predicted object’s location, which is used later to feed the Environment network. The Environ-

ment network produces a score to evaluate the action taken by the agent network. Moreover, the

Environment network acts as a dynamic selector for the hyper-parameters. Finally, the Siamese

network produces a heat-map as shown in Fig. 5.2 with a score at each entry: the highest score

indicates the location of the object being tracked. The layers’ dimensions are shown in Fig. 5.3

Reinforcement learning:. Reinforcement learning is formulated using a Markov Decision

Process (MDP). In MDP, the patches that contain the object of interest can be seen as states,

while changes in scale s and translation (x and y) can be seen as an action. The reward can be

described as a function r(s, a) of a state-action pair that consists of states (s 2 S) and actions

(a). In MDP, the state transition describes how to transit from one state to another under a

certain action. To adapt this definition in visual tracking, we assume that every ground truth

patch or predicted bounding box is a state, and the crop operation applied on the current frame

to extract the patch is a state transition to the next state st+1.
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– Ground truth – DP-Siam (proposed)

Figure 5.2: The resulting heat-map of dynamic policy gradient Siamese.

5.4.2 Offline Training

DP-Siam proposes a novel Agent-Environment architecture, as depicted in Fig. 5.3, which

formulates the tracking problem as a dynamic search in reinforcement learning using a Markov

Decision Process (MDP). The objective is to find the policy that maximizes the cumulative

discounted reward. DP-Siam handles the randomness in the formulation through maximizing

the expected sum of discounted rewards. The reward function is formulated as:

r(s, a) =

8
>>><

>>>:

+1, if IoU >= 0.65

�1, otherwise
(5.2)

Note that the threshold 0.65 was chosen empirically to increase the robustness of the track-

ers.The network configuration during offline training is shown by the red dashed lines in Fig.

5.3. The input image is fed into the agent network to produce a three-dimensional vector

(x, y, s) that represents the action. The ground truth patch is fed into the input layer of the
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Figure 5.3: Agent-Environment architecture with Siamese network.

Environment network, while the action is fed into its final layer. The Environment network then

produces a Q-value that is used to guide the learning process. In offline training, DP-Siam finds

the optimal policy ⇡⇤ that maximizes the expected sum of discounted rewards as:

⇡⇤ = argmax
⇡

E
"
X

t�0

�trt|⇡
#

(5.3)

where gamma � is the discounted factor, 0 < � < 1, t is the episode length, and E(.) is the
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expectation function.

The Agent network produces an action to locate the object of interest. The action is a three-

dimensional vector (x, y, and s), where x, y and s represent the horizontal translation, vertical

translation, and scale changes, respectively. The Agent network works in offline training to learn

a good policy to locate the object of interest. The Environment network works in offline training

to produce an evaluation of the state-action pair quality (Q-value). To offline-train the Agent-

Environment framework, we use the optimal Q-value to maximize the expected cumulative

reward achievable from a given state-action pair as:

Q⇤(s, a) = max
⇡

E
"
X

t�0

�trt|s0 = s, a0 = a, ⇡

#
(5.4)

where ⇡ is the policy, s0 is the initial state, a0 is the initial action, and Q⇤ is the optimal Q-value

that satisfies the following Bellman equation:

Q⇤(s, a) = Es0⇠"

h
r + �max

a0
Q⇤(s0, a0)|s, a

i
(5.5)

where s0 is the next state, a0 is the next action, and " is the probability distribution of s0.

Eq. 5.5 is not computationally efficient because it calculates Q⇤(s, a) for every state-action

pair. Hence, we use the Agent-Environment network to let the network learn the approximation

of this equation. Consequently, the approximation of Q⇤(s, a) will be done using:

Q(s, a; ✓A) ⇡ Q⇤(s, a) (5.6)

Q(s, a; ✓E) ⇡ Q⇤(s, a) (5.7)
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where ✓A and ✓E are the weights of the Agent and Environment networks, respectively, and

s and a are the same state-action pair in both equations 5.6 and 5.7.

To train the DP-Siam network, the loss function L of the Agent-Environment network is

formulated based on the optimal Q-value and the Expectation of the state-action pair as:

(5.8)
Li(✓A; ✓E) = Es,a⇠p(.)

h
(r + �max

a0
Q(s0, a0; ✓A)|s, a

�Q(s, a; ✓E)
2
i

s, a are sampled from the probability distribution p(.) and s0, a0 are the next state and next

action, respectively.

During the offline training, the framework iteratively tries to make the Q-value close to the

target value. Finally, the network is updated with respect to Q as follows:

(5.9)rLi(✓A; ✓E) = Es,a⇠p(.)

h
r + �max

a0
Q(s0, a0; ✓A)|s, a�Q(s, a; ✓E)rQ(s, a; ✓E)

i

Improving offline learning: Eq. 5.9 is sufficient to be used in training with consecutive

samples; however, learning from consecutive samples is challenging because the Environment

network determines the next samples, which are always correlated with previous ones. Conse-

quently, this leads to learning bias towards certain actions. To address this problem, DP-Siam

proposes a novel solution based on 1) using an experience table (s, a, r, s0) that is continually

updated as episodes are running and 2) training the framework on random mini-patches of tran-

sitions from the experience table instead of using consecutive samples. This was partially in-

spired by Mnih et al. [31], who used the concept of experience tables in reinforcement learning.

However, to the best of our knowledge, the use of an experience table and Random Sampling

of transitions have not been used in Visual Object Tracking. Moreover, we have modified the

algorithm of Mnih et al. as follows: 1) our action at is different, and it is a crop function, and
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Algorithm 2: Training Dp-Siam with experience table
Initialize: Experience table D to capacity N , Agent and Environment networks with

random weights and Q(s, a) respectively

input : Sample frames from the current sequence with its ground truth

output: Optimal weights (✓A) and (✓E)

for episode = 1 to M do
Select at least 20 frames randomly with their ground truth.

for t = 1 to T do
With probability ✏ select an action at = action[Q⇤(CROP (s), a; ✓A)];

Otherwise, select a greedy action at = action[maxa Q⇤(CROP (s), a; ✓A)];

Execute the action at to observe the next state s0 and reward rt;

Set s0 = s;

Store the transitions (s, at, rt, s0) in D;

Obtain normalized scores for each entry of score map using policy network ;

Sample random mini-patch from D;

Perform gradient update using Eq. 5.9;

end

end

2) we normalize the output map because we have more than one network, and, hence, we have

to normalize the outputs of the networks to be in the same range.

Algorithm 2 shows how to train DP-Siam with the proposed experience table. We ini-

tialize the experience table with capacity D and the Agent-Environment networks with ran-

dom weights; then, for each episode, we randomly select at least 20 frames from the cur-

rent sequence with their ground truth. Based on an exploration policy with probability ",
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the Agent-Environment network selects an action at = action[Q⇤(CROP (s), a; ✓A)]; other-

wise, it selects a greedy action at = action[maxa Q⇤(CROP (s), a; ✓A)]. The action selection

process can be further explained as follows: the network will select the action that generated

this optimal Q⇤ and assign it to at. This is done by the network generating a Q⇤, then the

action that caused this Q⇤ value is assigned to at. This is described by the equation: at =

action[Q⇤(CROP (s), a; ✓A)]. In some cases, the Q⇤ is still low, below the threshold ✏. In this

case, we perform a greedy action using the equation at = action[maxa Q⇤(CROP (s), a; ✓A)],

which again finds the highest Q⇤ and selects the action that produced it as the value for at. In

the implementation, we generate two lists: an optimal Q value list (Q⇤ � list) and an actions

list (a � list) that generated these Q⇤. Then, we apply the maximum operation to find the

largest value of Q⇤, and then the corresponding a from the a � list is assigned to at. Finally,

the framework is updated according to Eq. 5.9.

The crop processing is performed on the frame according to the previous state/patch and the

action. Then, the new state becomes the new cropped patch, and the new reward are received

from the Agent network. All transitions are stored in the experience table.

5.4.3 Online Tracking.

In online tracking, the green-solid lines in Fig. 5.3 show the interactions of the different compo-

nents of the architecture while the tracking is performed. The blue lines show the interactions

during online initialization. The Agent-Environment framework is initialized from two sources:

1) the ground truth in the first frame and 2) the highest 20 candidates score (patches) from the

heat-map of the Siamese network. As shown in Fig. 5.3, online tracking initialization starts

with the object first labelled in the first frame with its ground truth (input image). This input
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labelled image is fed to the Siamese network that executes a forward pass, which will produce

a heat-map. The highest 20 candidates are selected from the heat-map to initialize the Agent

network. Each score from these 20 candidates in the heat map is mapped into its corresponding

patch from the search image through cosine interpolation [32]. The states st of the 20 patches

in the first frame are calculated by cropping the object of interest. Finally, the Environment net-

work is initialized with the ground truth. The Agent-Environment network is initialized from

the ground truth because the actual object exists in it, and the highest 20 candidates because

they will have the highest probability of the object of interest that most likely exists . It is

worth mentioning that the online initialization is done only once at the beginning of the online

tracking and in cases when the tracker fails (R�measure).

After initialization, the Agent network receives the final predicted image as an input and

provides the actions at. The Environment network receives the predicted image from the Agent

network and produces a score. At the same time, the Siamese network gives a score for each

entry in the heat-map. The final object’s location is determined by the highest score from the

Environment network and the heat-map as shown in Algorithm 3.

5.5 Experimental Results

We trained our network on ImageNet, which means we did not include any sequences from the

tested dataset. Some trackers have been trained on ImageNet such as SiamRPN, CFNET, and

SiamFC. Other trackers have been trained on different datasets such as PTAV on ALOV [48],

MDNET on OTB100 and VOT2014.

We used the publicly available trained networks of these algorithms and ran them as imple-

mented by their authors on the test datasets. The results confirmed their reported results in the
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Algorithm 3: Siamese with Agent-Environment
input : Score of Agent-Environment q and score of Siamese network E (20 entries)

output: The bounding box of the tracked object

for each E in Siamese heat-map do
Normalize the Siamese score value E by taking the softmax function to scale the

values to be a probability;

Normalize the Agent-Environment score value q by taking the softmax function to

scale the values to be a probability;

Compare the value of q and E;

Choose the highest score value;

Choose the bounding box according to the highest score value;

end

Table 5.1: Data dimensions in DP-Siam.

Layers Size Agent branch Environment branch

convloution 107 ⇥ 107 ⇥ 3 107 ⇥ 107 ⇥ 3 107 ⇥ 107 ⇥ 3

convloution 51 ⇥ 51 ⇥ 96 51 ⇥ 51 ⇥ 96 51 ⇥ 51 ⇥ 96

convloution 11 ⇥ 11 ⇥ 256 11 ⇥ 11 ⇥ 256 11 ⇥ 11 ⇥ 256

FullyConnected 3 ⇥ 3 ⇥ 512 3 ⇥ 3 ⇥ 512 3 ⇥ 3 ⇥ 512

FullyConnected 512 ⇥ 1 ⇥ 1 512 ⇥ 1 ⇥ 1 512 ⇥ 1 ⇥ 1

FullyConnected 512 ⇥ 1 ⇥ 1 512 ⇥ 1 ⇥ 1 512 ⇥ 1 ⇥ 1

corresponding papers. We have chosen not to change anything in these algorithms to avoid bias

and/or any mistakes.
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Table 5.2: Comparison with the state-of-the-art trackers on VOT2015 including the top three

trackers ranked by Accuracy.

Tracker A EAO R fps

DP-Siam(proposed) 0.59¡ 0.39¿ 0.70¡ 82

MDNet [11] 0.60¿ 0.38¡ 0.69¿ 1

OACF [33] 0.58 0.36¬ 1.81 5

HP[34] 0.58 0.33 1.578 69

RAJSSC [35] 0.57 0.34 1.63 22

DeepSRDCF [36] 0.56 0.32 1.05 10

EBT [37] 0.47 0.31 1.05 4

SRDCF [38] 0.56 0.29 1.24 5

BACF [39] 0.59¬ - 1.56 35

EAST [30] 0.57 0.34 1.03¬ 159

Staple [40] 0.57 0.30 1.39 80

SiamFC [6] 0.55 0.29 1.58 86

Datasets: The proposed tracker is tested on OTB2013 [49], which has 50 sequences, as well

as on OTB50 and OTB100 [50], with 50 and 100 sequences, respectively. Other experiments

were conducted on UAV20L and UAV123 [51], which have 20 sequences and 123 sequences,

respectively. DP-Siam is also tested on VOT2015 [52], VOT2016 [41], and VOT2018 [45],

which includes all the sequences of VOT2017 as well as other sequences.

Evaluation metric: The success and precision metrics [49] are used to evaluate all trackers

on OTB2013, OTB50, and OTB100. Success measures the intersection over union (IoU) of
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Table 5.3: Comparison with the state-of-the-art trackers on VOT2016 including the top three

trackers ranked by Accuracy.

Tracker A EAO R fps

DP-Siam(proposed) 0.540¬ 0.380¿ 0.250¿ 82

SSAT [41] 0.577¿ 0.321¡ 0.291¡ 22

STAPLE+ [41] 0.557¡ 0.286 0.368 25

SRBT [42] 0.496 0.290¬ 0.350 15

MDNet N [11] 0.541 0.257 0.337¬ 1

HP [34] 0.539 0.242 0.46 69

DPT [43] 0.492 0.236 0.489 10

ColorKCF [41] 0.503 0.226 0.443 90

GCF [41] 0.520 0.218 0.485 7

SiamFC-A [6] 0.532 0.235 0.461 86

NSAMF [44] 0.502 0.227 0.438 25

ground truth and predicted bounding boxes. The success plot shows the rate of bounding boxes

whose IoU score is larger than 20 pixels from the centre of the ground truth. The precision

measures the percentage of the object location within 20 pixels from that of the ground truth.

The Area Under the Curve (AUC) of success plots is applied to rank the trackers.

For the VOT2015, VOT2016, and VOT2018 datasets, we follow the Visual Object Tracking

challenge (VOT) standards [49] to evaluate the tracking performance using the accuracy A

(overlap with the ground truth), the expected average overlap EAO, and the robustness R (failure

rate). The tracker is said to fail when there is no overlap between the predicted bounding box
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Table 5.4: Comparison with the state-of-the-art trackers on VOT2018 including the top three

trackers ranked by Accuracy.

Tracker A EAO R fps

DP-Siam(proposed) 0.612¿ 0.387¿ 0.150 ¿ 82

SiamRPN [9] 0.586¡ 0.383¡ 0.276¬ 160

SA Siam R [23] 0.566¬ 0.337¬ 0.258¡ 50

FSAN [45] 0.554 0.256 0.356 30

DSiam [24] 0.215 0.196 0.646 25

HP [34] 0.331 0.2726 0.632 69

ECO [46] 0.484 0.280 0.276 60

CSRDCF [38] 0.491 0.256 0.356 13

SiamFC [6] 0.503 0.188 0.585 86

SAPKLTF [45] 0.488 0.171 0.613 25

ASMS [47] 0.494 0.169 0.623 25

Table 5.5: Effect of hyper-parameters of dynamic Siamese on the proposed tracker performance

on VOT2016 and VOT2018.

Dataset Fixed Parameters 3 parameters optimization 5 parameters optimization

A EAO R A EAO R A EAO R

VOT2016 0.52 0.33 0.28 0.53 0.3312 0.26 0.54 0.38 0.25

VOT2018 0.53 0.27 0.33 0.55 0.2805 0.18 0.61 0.387 0.15
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Table 5.6: Comparison between the new approach (DP-Siam) and the previous authors’ ap-

proach (DensSaim) on VOT2018

Tracker A EAO R fps

DensSiam [16] 0.54 0.250 0.350 60

DP-Siam (proposed) 0.61 0.387 0.150 82

Table 5.7: Ablation study using variations of DP-Siam

Variations of DP-Siam OTB2013 OTB100 Speed

Siamese Experience Table Hyper-parameter Selections AUC Prec. AUC Prec. fps

X 0.631 0.850 0.607 0.836 ⇠ 82

X 0.633 0.858 0.593 0.821 ⇠ 82

X X 0.640 0.861 0.630 0.840 ⇠ 82

X X 0.671 0.901 0.642 0.863 ⇠ 83

X X 0.679 0.905 0.652 0.874 ⇠ 82

X X X 0.686 0.918 0.677 0.883 ⇠ 82

and the ground truth. In the case of a failure, the tracker is restarted.

5.5.1 Comparison with state-of-the-art

We compare the proposed tracker (DP-Siam) with the state-of-the-art trackers on both OTB and

VOT benchmarks. Conventionally, a tracking speed beyond 25 fps is considered real-time [49].
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5.5.1.1 OTB benchmarks

Table 5.8 shows the comparison between DP-Siam and the state-of-the-art trackers on OTB2013,

Table 5.8: Comparison of state-of-the-art real-time trackers on OTB benchmarks.

Dataset Measures DP-Siam BACF PTAV ECOhc DSiamM EAST Staple SiamFC CFNet LMCF LCT HP AdNet

(proposed) [39] [53] [46] [24] [30] [40] [6] [8] [54] [55] [34] [29]

OTB2013
AUC 0.686 ¿ 0.656 0.663¡ 0.652 0.656 0.638 0.593 0.607 0.611 0.628 0.628 0.629 0.659 ¬

Prec. 0.918 ¿ 0.859 0.895¬ 0.874 0.891 - 0.782 0.809 0.807 0.842 0.848 0.874 0.903 ¡

OTB50
AUC 0.621 ¡ 0.570 0.581 0.592¬ - - 0.507 0.516 0.530 0.533 0.492 0.554 0.659¿

Prec. 0.839 ¡ 0.768 0.806¬ 0.814¬ - - 0.684 0.692 0.702 0.730 0.691 0.745 0.898¿

OTB100
AUC 0.677 ¿ 0.621 0.635¬ 0.643¡ - 0.629 0.578 0.582 0.568 0.580 0.562 0.601 0.635

Prec. 0.883¿ 0.822 0.849 0.856¡ - - 0.784 0.771 0.748 0.789 0.762 0.796 0.851¬

fps 82 35 25 60 25 159 80 86 75 85 27 69 3

OTB50, and OTB100. Area under curve (AUC) and precision are used to evaluate the track-

ers. The comparison shows that DP-Siam achieves the best performance among all trackers

on the OTB2013 and OTB100 benchmarks. The comparison on OTB2013 clearly shows that

DP-Siam is ranked as the best tracker in terms of AUC with a gain of 2.3% compared to the

second-best tracker, which is PTAV. In terms of precision, DP-Siam is ranked as the best tracker

with 0.918 compared to PTAV, which had 0.903. DP-Siam achieves the second-best perfor-

mance on OTB50 with a score of 0.621 in AUC and 0.839 in precision. The best tracker in

terms of AUC on OTB50 is AdNet, which has a gain of 3.8% compared to the proposed tracker.

In terms of precision, AdNet is the best tracker with a gain of 5.9% compared to the proposed

tracker. It should be noted that AdNet has two versions: a fast version with 15 FPS and a slow

version with 3 FPS [29]. In the fast version, AdNet uses a few samples, while in the slow ver-

sion, AdNet uses large samples to make an accurate decision. In Table 5.8, we used the slow

version (3 FPS), which is more accurate than the fast version. The proposed tracker has one
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Table 5.9: Effect of hyper-parameters selection on the proposed tracker performance on

OTB2013 and OTB100.

Dataset Fixed Parameters 3 parameters optmization 5 parameters optimization

AUC Prec. AUC Prec. AUC Prec.

OTB2013 0.640 0.861 0.655 0.896 0.686 0.918

OTB100 0.630 0.840 0.657 0.865 0.677 0.883

version and works beyond real-time (82 FPS). The proposed tracker and AdNet outperform the

HP tracker, which has a score of 0.629 in terms of AUC and 0.874 in terms of precision. HP

tracker uses hyper-parameters optimization with different network from the proposed network.

DP-Siam is ranked the first on OTB100 with 0.677 in AUC and 0.883 in precision with a gain

of 3.4 % in terms of AUC. The precision plots and success plots of one path evaluation (OPE)

[56] are shown in Fig. 5.4. In OTB50 and OTB100, the most dominant challenge is the occlu-

sion; however, DP-Siam achieves a leading performance. The plots in Fig. 5.4 are obtained by

running the OTB toolkit on the tracking results codes published by the authors.

Table 5.10: Summary of the results on UAV20L and UAV123.

Dataset Measures DP-Siam SiamRPN ECO MEEM SiamFC CFNet SRDCF MUSTER HP AdNet

(proposed) [9] [46] [57] [6] [33] [38] [15] [34] [29]

UAV20L
AUC 0.492 ¿ 0.454 0.435 0.295 0.399 0.349 0.343 0.329 0.424 0.401

Prec. 0.681 ¿ 0.0.617 0.604 0.482 0.613 0.570 0.507 0.514 0.613 0.615

UAV123
AUC 0.519¡ 0.527 ¿ 0.525 0.392 0.498 0.436 0.464 0.391 0.464 0.483

Prec. 0.777 ¿ 0.748 0.741 0.627 0.726 0.651 0.676 0.591 0.685 0.724
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Figure 5.4: The precision plots and success plots of OTB benchmarks.
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5.5.1.2 VOT benchmark

Table 5.2 shows the comparison between DP-Siam and state-of-the-art trackers on VOT2015.

Raw scores generated from the VOT toolkit are listed, including the best trackers in terms of

accuracy. DP-Siam is ranked as the second-best tracker in terms of accuracy with 0.59 compared

to MDNet, which had an accuracy of 0.6. However, DP-Siam is ranked the best tracker on

VOT2015 in the EAO measure with 0.39, followed by MDNet with 0.38. In the robustness

measure, DP-Siam is the second-best tracker with 0.70 after MDNet, which had 0.69. It is

obvious that DP-Siam and MDNet are the best two trackers on VOT 2015; however, DP-Siam

works in real time with a speed of 82 fps compared to MDNet, which has 1 fps. Based on this,

DP-Siam can be considered the overall best real-time tracker on this benchmark dataset.

Table 5.3 shows the results of the comparison on the VOT2016. DP-Siam is ranked as

the third-best tracker in terms of accuracy with 0.54 compared to SSAT[41] with 0.577 and

STAPLE+ [41] with 0.557. The accuracy of DP-Siam comes in third place on VOT2016 after

SSAT and STAPLE+ due to a slight overfitting to some objects from the training ImageNet

dataset. This problem can be solved using a dataset that has a wide variety of training objects

such as a YouTube-BoundingBoxes dataset [58]. However, DP-Siam is the best tracker in the

other two measures: robustness, with 0.25, and expected average overlap, with 0.38.

Table 5.4 shows the comparison of DP-Siam on VOT2018. DP-Siam is ranked as the best

tracker in terms of accuracy with 0.612 and gain over 2.6 % compared to the second-best tracker,

which is Siam-RPN. DP-Siam is also ranked as the best tracker in terms of robustness, with

0.150, and expected average overlap, with 0.387. It is worth noting that DP-Siam outperforms

SiamRPN (the best tracker in the VOT2018 challenge) with a gain over 12.6% in robustness.

It is evident from Table 5.4 that DP-Siam also outperforms all top trackers in the VOT2018
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challenge in all three evaluation measures. It should be noted that AdNet has been trained on

VOT2013, Vot2014, VOT2015, and ALOV300 [59] benchmarks, and many sequences from

these benchmarks already exist on VOT2016 and VOT2018 [29]. Consequently, comparing our

tracker or other state-of-the-art trackers to AdNet on the VOT benchmark is not objective and

will produce biased results in favor of AdNet. More qualitative results are given in Fig. 5.9.

(a)

(b)

Figure 5.5: DP-Siam results on Octopus sequence with: (a) Fixed hyper-parameters and (b)

Dynamic hyper-parameters.

5.5.1.3 UAV Dataset

UAV [51] contains a long-term evaluation subset (UAV20L) and a short-term evaluation subset

(UAV123). The evaluation is done using precision and success plots. DP-Siam is compared

against the state-of-the-art trackers for UAV. The comparison includes: ECO [46], PTAV [53]

, SiamRPN [9], SiamFC [6] and CFNet [46] as shown in Fig. 5.6. In Fig. 5.6 (a) the success
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Figure 5.6: Summary of the results on UAV, (a) and (b) show the success and precision plots on

UAV20L, (c) and (d) show the success and precision plots on UAV123.

plot shows that DP-Siam outperforms SiamRPN, as DP-Siam has a success of 0.492, while

SiamRPN has a success of 0.454. Similarly, the precision plot Fig. 5.6 (b) shows that DP-Siam

outperforms PTAV and SiamRPN. We conducted another experiment on the UAV123 dataset as

shown in Fig. 5.6 (c) and (d). In Fig. 5.6 (c) the success plot shows that SiamRPN outperforms

DP-Siam with a gain of 0.8%. However, in Fig. 5.6 (d), DP-Siam outperforms SiamRPN with

a gain of 2.9% and ECO with 3.6%.

Individual Challenging Attributes: To study the performance of the proposed tracker un-

107



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − Out−of−View (30)

 

 

DPSiam [0.549]
SiamRPN [0.473]

SiamFC [0.448]

ECO−HC [0.434]

ECO [0.425]

SRDCF [0.399]

CFNet [0.377]

MEEM [0.323]

SAMF [0.312]

MUSTER [0.304]

DSST [0.289]

CSK [0.266]

KCF [0.257]

DCF [0.256]

TLD [0.251]

AdNet [0.437]

HP [0.434]

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − Background Clutter (21)

 

 

DP-Siam [0.421]
SiamRPN [0.391]

ECO [0.388]

ECO−HC [0.378]

MUSTER [0.352]

CFNet [0.349]

SiamFC [0.336]

SRDCF [0.321]

DSST [0.314]

MEEM [0.307]

SAMF [0.282]

KCF [0.272]

CSK [0.271]

DCF [0.262]

TLD [0.186]

AdNet [0.347]

HP [0.340]

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − Illumination Variation (31)

 

 

DP-Siam [0.490]
SiamRPN [0.531]

ECO [0.459]

ECO−HC [0.434]

SiamFC [0.398]

SRDCF [0.395]

CFNet [0.388]

MEEM [0.320]

MUSTER [0.317]

SAMF [0.309]

DSST [0.307]

DCF [0.282]

KCF [0.270]

CSK [0.251]

TLD [0.210]

AdNet [0.449]

HP [0.395]

(c)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − Viewpoint Change (60)
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Success plots of OPE − Camera Motion (70)
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Success plots of OPE − Similar Object (39)
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Success plots of OPE − Scale Variation (109)
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Success plots of OPE − Aspect Ratio Change (68)
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Success plots of OPE − Low Resolution (48)
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Success plots of OPE − Fast Motion (28)
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Success plots of OPE − Full Occlusion (33)
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Success plots of OPE − Partial Occlusion (73)
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Figure 5.7: Success plots with 12 attributes on UAV123.
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Figure 5.8: Success plots on:(a) deformation on OTB2013 and (b) deformation on OTB2015

der different individual circumstances, another experiment was conducted on 12 challenging

attributes in the UAV123 dataset, including out-of-view, background clutter, illumination vari-

ation, viewpoint change, camera motion, similar object, scale variation, aspect ratio change,

low resolution, fast motion, full occlusion, and partial occlusion. The success plots’ results are

shown in Fig. 5.7. The plots clearly show that the proposed tracker outperforms the state-of-the-

art trackers in 10 out of the 12 attributes, and places in second in the remaining two attributes.

Table 5.10 summarizes the results on UAV201L and UAV123.

Moreover, another important attribute, deformation, was not included in the UAV datasets.

To evaluate the proposed algorithm in regard to the deformation of the object being tracked,

we evaluated DP-Siam on the deformation sequences (e.g. Basketball, Bird1, and Bird2) in

OTB2013 and OTB2015. Fig. 5.8 shows that DP-Siam outperforms the state-of-the-art trackers

in the deformation challenge.
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Ground truth – DP-Siam (Ours) – SiamFC – SRDCF – KCF

Figure 5.9: Visual results of the proposed method on challenging sequences from VOT2018

dataset. The rows show different sequences, while the columns show the trackers output over

time (the frame number is printed on the top left corner of the image. The sequences in vertical

order, book, butterfly, fish3, soccer1, godfather, matrix, dinosaur and iceskater2.
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5.5.2 Effect of Dynamic Hyper-parameters

Dynamically selecting the hyper-parameters allows the tracker to adapt to significant scale

changes that affect the object’s appearance model, and, hence, allow it to have better perfor-

mance. If the hyper-parameters (scale penalty, scale learning rate, window weight, and template

learning rate) are fixed, the tracker will have a better performance on some sequences than on

other sequences. To show the effect of the dynamic hyper-parameters selection, consider the

sequence ’Octopus’. In the case of dynamic hyper-parameter selection, the bounding box will

appear as shown in Fig. 5.5 (a). However, in a case using dynamic hyper-parameters selection,

the bounding box will appear as shown in Fig. 5.5 (b). We performed an experiment to show

the effect of including/excluding dynamic hyper-parameters selection in Table 5.7. This exper-

iment clearly shows that by adding the hyper-parameters’ components, it increases the tracker

performance.

During training, we initialize the framework with initial values for the five hyper-parameters

from random distribution; then, the framework iteratively updates these hyper-parameters to

minimize the loss function. During online tracking, the network has learned the best values for

the five hyper-parameters during the offline training, and, hence, it will select the best values

during the online tracking to minimize the loss function.

To show the effect of using dynamic hyper-parameters selection versus using fixed hyper-

parameters, three experiments were conducted using the OTB2013, OTB50, and OTB100 as

follows: 1) fixing all the hyper-parameters, 2) three hyper-parameters are dynamically selected

and 3) five hyper-parameters are dynamically selected. The results in Table 5.9 show that dy-

namic hyper-parameters selection provides better performance since they can accommodate

more challenges. DP-Siam has five hyper-parameters (scale step, scale penalty, scale learning
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rate, window weight, and template learning rate). If the hyper-parameters are being fixed along

the entire sequence, DP-Siam will work well within these hyper-parameters. On the other hand,

if the hyper-parameters are dynamically selected, the bounding box around the object of interest

will adapt to the shrinking and expansion.

The Environment network also acts as a dynamic selector for the hyper-parameters. We

conducted three experiments on dynamically selecting the hyper-parameters: 1) fixing the five

hyper-parameters, 2) the first three hyper-parameters (scale step, scale penalty and scale learn-

ing rate) are dynamically selected, and 3) the five hyper-parameters are dynamically selected.

Table 5.5 shows the effect of dynamic hyper-parameters on the tracking performance in

the case of fixing hyper-parameters and dynamic hyper-parameters. The comparison includes

three hyper-parameters optimization and five hyper-parameters optimization. DP-Siam is acting

poorly in the case of fixing the hyper-parameters because the fixed hyper-parameters might

be suitable for particular sequences while not suitable for others. The results in the case of

dynamic hyper-parameters are better because dynamic hyper-parameters accommodate more

challenges. The results of five hyper-parameters optimization are more accurate than the three

hyper-parameters because more hyper-parameters accommodate more challenges.

5.5.3 Comparison with DensSiam

Experiments were conducted to compare the proposed tracker and the authors’ previous work,

DensSiam [16], as shown in Table 5.6. The new proposed architecture in DP-Siam significantly

increases the accuracy and expected average overlap. DP-Siam is trained to dynamically select

the policy and hyper-parameters in contrast to DensSiam and most other Siamese trackers that

assign fixed hyper-parameters for the whole dataset.
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5.5.4 Ablation Study

Table 5.7 presents an ablation study that highlights some variations of DP-Siam. Three varia-

tions of DP-Siam were tested and evaluated on OTB2013 and OTB100. The baseline ”Siamese”

is first evaluated, and it uses a Densely-Siamese architecture. ”Experience Table” is used as a

memory for DP-Siam to store the Q-value, while ”Hyper-parameter selections” is used with five

hyper-parameters to automatically select the most suitable hyper-parameters.

Table 5.7 shows the importance of each component. With only the ”Siamese” network, DP-

Siam gives a poor performance. Similarly, DP-Siam with only ”Experience Table” or ”Hyper-

parameter selection” gives low performance. Adding compilations of the components substan-

tially increases the DP-Siam performance. It is worth mentioning that adding all components

to DP-Siam gives the best performance in terms of accuracy and precision.

5.5.5 Implementation details

We used the ImageNet Large Scale Visual Recognition Challenge (ILSVRC15) [60] for the

training of DP-Siam. The ILSVRC15 contains 1.3 million labelled frames in 4000 sequences,

and it has a wide variety of objects that contribute to the generalization of DP-Siam.

Hyper-parameters initial settings: Training is performed over 100 epochs, each with

53,200 sampled pairs. Stochastic gradient descent (SGD) is applied with a momentum of 0.9

to train the network. We adopt the mini-patches of size 8, and the learning rate is annealed

geometrically at each epoch from 10�3 to 10�8. We implement DP-Siam in TensorFlow [61]

1.8 framework. The experiments are performed on a PC with a Xeon E5 2.20 GHz CPU and a

Titan XP GPU.

Tracking settings: We adapt the initial scale variations of Os where O = 1.0375 and s =
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{�2, 0, 2}. The input target image size is 127 ⇥ 127 and the search image size is 255 ⇥ 255.

We use linear interpolation to update the scale with a factor of 0.764.

5.6 Conclusions and Future Work

In this chapter, a novel dynamic Siamese tracker is proposed with a policy gradient to dynami-

cally train the policy to select the best action from the action space. Unlike traditional Siamese

trackers, which have fixed hyper-parameters for the entire dataset, the proposed architecture

dynamically selects the hyper-parameters for each frame or group of frames. The proposed

tracker uses reinforcement learning to learn and predict the next hyper-parameters set based

on the gradient policy. The proposed tracker substantially increases the generalization and the

expected average overlap since the bounding box can be precisely adapted with the shape of

objects. Future work includes extending DP-Siamese to use a Bayesian inference network to

predict more hyper-parameters. Future work also includes training DP-Siam with a YouTube-

BoundingBoxes dataset.
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Chapter 6

NullSpaceNet: Nullspace Convoluional

Neural Network with Differentiable Loss

Function

6.1 abstract

We propose NullSpaceNet, a novel network that maps from the pixel-level image to a joint-

nullspace (as opposed to the traditional feature space), where the newly learned joint-nullspace

features have a clear interpretation and are more separable. NullSpaceNet ensures that all input

images that belong to the same class are collapsed into one point in this new joint-nullspace,

and the different classes are collapsed into different points with high separation margins. More-

over, a novel differentiable loss function is proposed that has a closed-form solution with no

free-parameters. NullSpaceNet’s architecture consists of: 1) a feature extractor backbone (i.e.,

the convolution and pooling layers), which is used to extract features from the input, and 2) a
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nullspace layer, which maps from the pixel-level image to the joint-nullspace. Consequently,

a reduction in learnable parameters has been achieved. NullSpaceNet is architecture-agnostic,

which means that it can use any feature extractor as a backbone in its first components.

NullSpaceNet exhibits superior performance when tested over 4 different datasets against VGG16,

MobileNet-224, and MNASNET1-0. In general, NullSpaceNet needs only around 1 � 30% of

the time it takes a traditional CNN to classify a batch of images, and with better accuracy of up

to 2.57%.

6.2 Introduction

In recent years, Convolutional Neural Networks (CNNs) have revolutionized computer vision

tasks such as object tracking [1–4], surveillance systems [5], image understanding [6], computer

interactions [7] and generative models [8]. Image classification is one of the core tasks in

computer vision, especially in Large Scale Visual Recognition Challenges (e.g., ILSVRC15)

[9]. Most classification networks consist of two components: 1) the feature extractor and 2)

the classifier. The feature extractor uses a stack of convolutional layers to extract the deep

features from the input images through consecutive convolutional operations. The classifier uses

fully-connected layers with a softmax layer. It has been proven that most learnable parameters

within the classification network are located in the fully connected layers [10]. For example,

the classifier in VGG16 has 102.76 million parameters, while the feature extractor has only 32

million parameters. Consequently, this huge amount of learnable parameters requires extensive

computations during both training and inference.

In this chapter, we propose NullSpaceNet, a novel network that maps from the pixel-level

image to a joint-nullspace, as opposed to a traditional CNN that maps to a classical feature
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space. The newly learned nullspace features have a clear interpretation and are more separa-

ble. In particular, instead of using the fully connected layers with the categorical cross-entropy,

NullSpaceNet maps the pixel-level image to a joint-nullspace. All input images from the same

class are collapsed into one point in this new joint-nullspace and the different classes are col-

lapsed into different points with high separation margins. Moreover, the hyperplane that has the

orthonormal vectors of the projected nullspace features is well-defined and can be described as

shown in Fig. 6.4 and Eq. 6.21.

The architecture of NullSpaceNet consists of: 1) a feature extractor backbone (i.e., the convo-

lution and pooling layers), which is used to extract features from the input, and 2) a nullspace

layer, which maps from the pixel-level image to the joint-nullspace. NullSpaceNet is architecture-

agnostic, which means that it can use any feature extractor as a backbone in its first compo-

nent. For example, the VGG16 feature extractor component (i.e., VGG16 without the fully

connected layers) can be used as the feature extractor backbone of NullSpaceNet. The core

idea of NullSpaceNet is to minimize the within-class scatter matrix to be zero or very close to

zero, while maintaining the between-class scatter matrix to be always positive. This makes the

classification task more robust as shown in Fig. 6.5. The pre-trained network and the source

code are available online. 1

To summarize, the main contributions of this chapter are:

1. A novel Network (NullSpaceNet) that learns to map from the pixel-level image to a joint-

nullspace. The formulation of NullSpaceNet ensures that the nullspace features from the

same class are collapsed into a single point while the ones from different classes are col-

lapsed into different points with high separation margins. NullSpaceNet is architecture-

agnostic, which means that it can easily integrate different feature extractors in its archi-
1https://github.com/NullSpaceNet
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tecture.

2. A differentiable loss function is developed to train NullSpaceNet. The proposed loss

function is different from the standard categorical cross-entropy functions. The proposed

loss function ensures that the within-class scatter matrix vanishes while maintaining a

positive between-class scatter matrix. The differentiable loss function has a closed-form

solution with no free-parameters.

3. The proposed NullSpaceNet has a clear interpretation of the learned features, both math-

ematically and geometrically.

These three contributions resulted in NullSpaceNet needing only around 1� 30% of the time it

takes a traditional CNN to classify a batch of images, and with a better accuracy of up to 2.57%

over all 4 datasets we used in testing.

The rest of the chapter is organized as follows: Related work is presented in section 6.3, then

section 6.4 details the proposed NullSpaceNet. The training and inference phases are presented

in section 6.5. The experimental results are presented in section 6.6. The results and discussion

are detailed in 6.7. Finally, section 6.8 concludes the chapter.

6.3 Related Work

Nullspace and Linear Discriminant Analysis (LDA) have existed as analytical methods for a

significant period of time [11–15], and[16]. LDA has frequently been employed as a dimen-

sionality reduction tool or feature extractor within the field of classification [17–20, 20–24] ,

and [25]. Nullspace can be derived from the Fisher-criterion objective function in an analytical
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way. The work in [26] used multiple local nullspaces to detect the small moving objects in aerial

videos. Using the nullspace allows the detector to nullify the background while maintaining the

moving objects.

Nullspace has been used in [27] to specify whether the incoming data belongs to the existing

class or not. In particular, they used Incremental Kernel Nullspace Discriminative (IKNDA). To

speed up their method, an intelligent update scheme is used to extract information from newly

added samples. The work in [28] proposed Max-Mahalanobis distribution (MMD) using LDA

to improve the robustness of the adversarial attack. [29] proposed to learn a capsule subspace

using orthogonal projection. The length of the resultant capsules is utilized to score the proba-

bility of belonging to different categories. The authors in [30] proposed application of Hybrid

Orthogonal Projection Estimation (HOPE) to CNN for image classification. HOPE is a hybrid

model that combines orthogonal linear projection, for feature extraction, with mixture models.

The idea in HOPE is to allow for extraction of useful information from high-dimension feature

vectors while filtering out irrelevant noise. [31] used LDA with the Fisher-criterion on VGG16

to classify facial gender. LDA was applied on the output of the last layer to derive a light weight

version of VGG16. A Bayesian classification is then used to classify the output. Notice that

this is completely different from NullSpaceNet, where we reformulate the learning process in

a differentiable way to train the network to learn a joint-nullspace. DeepLDA [32] proposed to

use LDA to learn to maximize Eigenvalues of the Fisher-criterion. After training, DeepLDA

uses the entire training set to extract the dominant basis vectors to project the new samples.

In contrast to all previous methods, we use the nullspace in VGG16 in a learnable way with a

differentiable loss function to project the pixel-level image to a joint-nullspace.

The only work we found that included using LDA in a deep learning framework was presented

in [32], where the authors solved the LDA and integrated it in a deep CNN. It is worth mention-
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ing that the work in [32] did not include any reference to any usage of nullspace. In our work,

we do not solve for the LDA, instead we reformulate the problem within the nullspace to train

the network to project from the pixel-level image onto the joint-nullspace.

6.4 NullSpaceNet

The formulation of NullSpaceNet can be applied to different feature extractor backbones. In

this section, for the sake of demonstration, the formulation is applied to NullSpaceNet that

uses the VGG16 feature extractor as its backbone in the first component of the network. This

formulation is also applied to other feature extractor backbones as outlines in section 6.4.6.

6.4.1 Problem Definition

Given a dataset of training images X = {x1, x2, ..., xN} 2 Rw⇥h⇥d, where w, h and d are the

width, height, and depth of each image, respectively, and N is the number of images in the train-

ing dataset. Each image is associated with a respective class C, where C = {c1, c2, ..., cn} 2 R

and n is the number of classes in the training dataset. In this chapter, the VGG16 feature ex-

tractor component �(x; ✓) is used as the backbone feature extractor in NullSpaceNet.

The objective is to force the network to learn a joint-nullspace that maps from the pixel-level

image to a strong discriminative nullspace. The learned nullspace will replace the classifier

component, which has the most learnable parameters within the network. In other words, there

will be no fully connected layers, but instead a learned joint-nullspace as shown in Fig. 6.1.
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6.4.2 Proposed Architecture

NullSpaceNet’s feature extractor architecture uses the VGG16 feature extractor as a backbone.

With these settings, NullSpaceNet has 19 layers, each layer consists of (Conv-BatchNormalization-

ReLu), the pooling is considered as a stand-alone layer. A (Conv-BatchNormalization-ReLu)

layer can be added before the nullspace layer to accommodate different backbones and datasets.

The novelty of NullSpaceNet lies in the nullspace layer and the differentiable loss function,

which is detailed in section 6.4.3. The nulllspace layer forces the network, through backpropa-

gation, to learn the projection from the pixel-level image to a joint-nullspace, where the joint-

nullspace features have optimal separation margins. The Nullspace layer achieves this through

spanning vectors of the optimal within-class scatter matrix. This will be discussed in more de-

tail in section 6.4.3. Formulating the nullspace layer in this way prevents the network from the

Small Sample Size (SSS) problem (i.e., the model has a high dimensional output features while

training on small batches of images).

6.4.3 Mathematical Formulation of The Loss Function

Background: To derive a differentiable loss function to train the joint-nullspace, we start from

the linear discriminant analysis (LDA) [33]. In this chapter, we assume that the output of the

feature extractor component in the network for each batch is F 2 RD⇥N , where D is the

dimension of the output of the feature extractor and N is the number of images. The objective

of the LDA is to find a projection matrix P 2 Rd⇥N , where d < D, that minimizes the within-

class scatter matrix and maximizes the between-class scatter matrix simultaneously. This can
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Figure 6.1: NullSpaceNet architecture,V GG16 feature extractor component is used as a back-

bone. The NullSpace layer is at the end of the architecture. Note that the nullspace layer has

been magnified for the sake of visualization.

be achieved by maximizing the Fisher-discriminant criterion J (P ) as follows:

J (P ) =
P>SbP

P>SwP
(6.1)

Where P is the projection matrix, Sb and Sw are the between-class and within-class scatter

matrices, respectively. The optimization of Eq. 6.1 can be solved for the generalized Eigenvalue

problem as follows:

SbP = �SwP (6.2)
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where � is the Eigenvalue of the eigenvector S�1
w

Sb.

Derivation of the proposed novel loss function:

Lemma 1: The traditional VGG16 with FC has a tendency to minimize the within-class scatter

matrix, however, it does not put constraints on the between-class scatter matrix.

Proof: From the visualization in Fig. 6.5 (b) and using visual inspection, the learned fea-

tures of VGG16 with FC layers are scattered with no constraints on the between-class scattered

matrix; for example, some classes (e.g., class #4, #5 and class #2 and #8) overlap.

Using Lemma 1 in NullSpaceNet: In NullSpaceNet, we force two constraints on the learn-

ing process. In particular, we force the between-class scatter matrix to always be positive while

minimizing the within-class scatter matrix to be zero as follows:

P>SbP > 0 (6.3)

P>SwP = 0 (6.4)

Lemma 2: When NullSpaceNet satisfies the two constraints from Lemma 1 (Eq. 6.3 and 6.4),

the distribution of the same class features in the new joint-nullspace approaches the Dirac Delta

function.

Proof: Assuming the features are represented by the normal distribution, for simplicity, we will

use a 1-D normal distribution.

Z
g(x̄)f

�
x̄|µ̄, �̄2

�
dx̄ (6.5)

where g(x̄) is the mean value function of the projected features by the network to the joint-

nullspace, µ̄ is Gaussian mean, and �̄ is the standard deviation of the distribution. We take the
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Conv
K = 7

Figure 6.2: NullSpaceNet with MobileNet as a backbone, s denotes convolution stride and k

denotes kernel size.

limit of Eq. 6.5 as �̄2 approaches zero.

lim
�̄2!0

(

Z
g(x̄)f(x̄|µ̄, 0)dx̄)

=

Z
g(x̄)�(x̄� µ̄)dx̄ = g(µ̄)

(6.6)
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Conv
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Figure 6.3: NullSpaceNet with MnasNet as a backbone. MBConv denotes mobile inverted

bottleneck conv., k denots the kernel size and SepConv denotes separable conv.

where g(µ̄) is the dirac delta function. Using Lemma 2 in NullSpaceNet: Using Eqs. 6.3, 6.4,

and 6.6 to find the limit of Eq. 6.1 (which guarantee the best separability as explained above),
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we get:

lim
(PTSwP )!0

J (P ) = 1 (6.7)

Since the between-class scatter matrix Sb in Eq. 6.3 is hard to calculate, especially in the case

of high dimensional features, we calculate Sb using the total-class scatter matrix St and the

within-class scatter matrix Sw as follows:

Sb = St � Sw (6.8)

By substituting Eq. 6.8 in Eq. 6.4 and using Eq. 6.3 we get:

P>StP > 0 (6.9)

Since the output of the NullSpaceNet is F 2 RD⇥N when the input batch X 2 RW⇥H⇥D⇥N ,

where N is the number of images. We define the within-class scatter matrix Sw and the total-

class scatter matrix St from the output of NullSpaceNet as follows:

Sw =
1

N
FwF

>
w
, St =

1

N
FtF

>
t

(6.10)

where Fw is the centered class mean output features (i.e, subtracting the class mean from each

feature output belonging to this class), and Ft is the centered global mean output features as

shown in Eq. 6.11.

Fw = (X � µc)

Ft = (X � µg)

(6.11)

Where µc is the class mean and µg is the global mean of the dataset.

Now, we want to integrate the scatter matrices we derived in Eq. 6.10 in the joint-nullspace

formulation. Let Ut denote the nullspace of the total-class scatter matrix and Uw denote the
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nullspace of within-class matrix. From the definition of the nullspace and using the fact that St

is non-negative definite, we get:

Ut =
�
u 2 Rd | Stu = 0

 

=
�
u 2 Rd | u>Stu = 0

 

=
�
u 2 Rd | (F>

t
u)>F>

t
u = 0

 

=
�
u 2 Rd | F>

t
u = 0

 
.

(6.12)

similarly, we get Uw
2.

Lemma 3: The projection matrix P that satisfies the constraints in Eq. 6.3 and Eq. 6.4 can

be achieved, if and only if, P lies in the shared space between U?
t

and Uw, mathematically

represented as:

P 2 (U?
t
\ Uw). (6.13)

where U?
t

is the orthogonal complement subspace of Ut spanned by the centered global mean

output features. U?
t

can be obtained using the Gram-Schmidt process [34].

Proof: Geometrically by looking at Eq. 6.12 and Eq. 1 (in the appendix), the only space that

satisfies Stu = 0 and Swu = 0 is the joint-space where U?
t

and Uw overlap [17].

Using Lemma 3 in NullSpaceNet:

Now we have the nullspace of Sw, which is Uw, and the nullspace of St, which is Ut. One

problem when claculating the nullspace of Sw is that the dimensionality of the nullspace is at

least (D + C � n), where D is data dimensionality (which is high when we use the output of

NullSpaceNet, e.g., 2048), C is the number of classes, and n is the sample size as it has been

proved in [35]. To address this problem, we revert to Eq. 6.8 where it can be seen geometrically

that St is the intersection of the nullspace of Sb and the nullspace of Sw [33]. Hence, the
2See Details in Appendix Eq. 1
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nullspace of St can be removed based on this observation. We proceed with this solution using

the Singular Value Decomposition (SVD) theory to decompose Ft as follows:

Ft = U⌃V > (6.14)

Where U and V are orthogonal and U has orthonormal basis.

⌃ =

0

B@
⌃t 0

0 0

1

CA (6.15)

⌃t is the diagonal matrix ⌃t 2 Rt⇥t with the Eigenvalues. Now we can represent St as follows:

St =
1

N
FtF

>
t

=
1

N
U⌃V >V ⌃TU>

=
1

N
U⌃⌃TU>

=
1

N
U

0

B@
⌃2

t
0

0 0

1

CAUT

(6.16)

We select a portion of basis U with dimension U1 2 Rm⇥t where t = RANK(St), using the

new subspace U1 spanned by the new set of the basis, we project the scatter matrices as follows:

S̃b = U1SbU
>
1 ,

S̃w = U1SwU
>
1 , and

S̃t = U1StU
>
1

(6.17)

Where (̃.) represents the reduced version of the decomposed Sb, Sw, and St.

From Eq. 6.14 and Eq. 6.17, we can now apply the SVD on Ft with complexity of O (Dn2)
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instead of O (D2n). Also, instead of calculating the nullspace of Sw, we can calculate the

nullspace of S̃w as shown in Eq. 6.18. This gives the network two advantages: 1) the model

does not suffer from the small sample size (SSS) problem, e.g., the model has high dimensional

output features while training on small batches of images, as in [32], and 2) it is faster than

solving the generalized Eigenvalue problem.

W = Span(S̃w) (6.18)

Where W is the nullspace of S̃w.

Finally, the projection matrix that satisfies Eq. 6.3 and Eq. 6.4 can be calculated by:

P = W ⇥M (6.19)

Where M is the eigenvectors of W T S̃bW corresponding to the non-zero Eigenvalues. Con-

sequently, maximizing the Eigenvalues of W T S̃bW , by NullSpaceNet, leads to projecting the

features onto the joint-nullspace.

6.4.4 Loss Function and Its Gradient

Training the NullSpaceNet requires the loss function to be differentiable everywhere. Hence,

we propose a novel differentiable loss function that maximizes the positive, or minimizes the

negative, of the average non-zero Eigenvalues of the decomposed W T S̃bW . Given C classes,

we define E as an Eigenvalue and k = C � 1 is the number of Eigenvalues. The steps to

calculate the proposed differentiable loss function is shown in Alg. 4. The final loss function is

shown in Eq. 6.20.

L(�E(x; ✓)) = �1

k

kX

i=1

SV DEi(W
T S̃bW ) (6.20)
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Algorithm 4: Steps to Calculate the Proposed Loss Function
input : The output of the last layer of V GG16 F 2 RD⇥N

output: Optimize the weights of the NullSpaceNet using the proposed differentiable loss

function L based on the nullspace formulation

1: Calculate matrix Ft;

2: Calculate SV D(F T

t
);

3: Calculate the scatter matrices Sw, Sb, St;

4: Calculate matrices S̄t, S̄b, S̄w from Eq. 6.17;

5: Calculate the nullspace W of S̄w using Eq. 6.18;

6: Solve for the Eigenvalues of W T S̃bW using 6.19;

7: Formulate the loss function over the average of the non-zero Eigenvalues using Eq. 6.20;

8: Use the proposed differentiable loss function in Eqs. 6.20 and its derivative as shown in

the appendix Eq. 50 to train the network
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Where E 2 {E1, . . . , Ek} = {Ej|Ej < min {E1, . . . , EC�1}+ ✏}.

Using the chain rule [36], the derivative of the loss function in Eq. 6.20 w.r.t the last layer H is

given by @L(�E(x;✓))
@H

3.

6.4.5 Insights into NullSpaceNet

In this section, we provide a deeper look, both mathematically and geometrically, into the pro-

posed NullSpaceNet.

Mathematical Insights: The main idea of NullSpaceNet is to learn to map the input data to

another subspace (different from the traditional feature space) that satisfies the two constraints

in Eq. 6.3 and Eq. 6.4. The new proposed subspace (i.e., the joint-nullspace) mathematically

forces the within-class scatter matrix to vanish through the optimization of the proposed loss

function in Eqs. 6.20. Meanwhile the new joint-nullspace mathematically forces the between-

class scatter matrix to always be positive through the optimization of the loss function in Eq.

6.20.

Geometric Insights: The features that are produced by NullSpaceNet are living in the hyper-

plane represented by U?
t
\Uw, as shown in Fig. 6.4. The hyperplane is now well-defined and all

the features are located in a confined space that can be precisely described both mathematically

and geometrically.

Based on the above insights discussion, this proves our claim that same class inputs are col-

lapsed into one point in the joint-nullspace, and the different classes are collapsed into different

points with high separation margins.
3See Details in Appendix Eq. 50
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Figure 6.4: A geometric illustration of the learned features projected by the network in the

joint-nullspace. Each color associated with a letter encodes a class, note that all inputs from the

same class are collapsed into a single point. Notice that all classes exist on the Grey-colored

hyperplane (U?
t
\ Uw) including point k.

6.4.6 Using other Feature Extractors

NullSpaceNet formulation can be applied to different feature extractor backbones. The only

difference is that the last layer should be of spatial size F 2 RD⇥1. For example, in case of

using the feature extractor of MnasNet, a convolutional layer with kernel size=3 is used to pro-

duce a 2D tensor of shape D ⇥ 1 as shown in Fig. 6.2. On the other hand, in the case of using

the feature extractor of MobileNet, a convolutional layer with kernel size = 7 is used to produce

a tensor of shape D ⇥ 1 as shown in Fig. 6.3.
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6.5 Training and Inference of NullSpaceNet

6.5.1 NullSpaceNet Training Phase

The input batch of images is fed into the input layer as shown in Fig. 6.1. The batch goes

through NullSpaceNet’s feature extractor layers, which include convolution, batch normaliza-

tion, and pooling. Then, to the new nullspace layer, where all calculations and the new loss

function in Eq. 6.20 are performed as shown in Alg. 4.

During the training, we keep track the mean of each class (i.e., µk = (µ1, ..., µc)) from the last

layer which has the dimension RD⇥N using the moving average, where N is the number of im-

ages. Then, the eigenvectors of the decomposed W T S̃bW are calculated after the training using

the moving average for each class, which is then used in Eq. 6.19 to calculate the projection

matrix P .

6.5.2 NullSpaceNet Inference Phase

In the inference phase, the output of NullSpaceNet tT can be classified using the hyperplane

equation below:

argmax
k
�k(t) = t>⌃�1µk �

1

2
µ>
k
⌃�1µk (6.21)

Where � is the hyperplane and ⌃ = P ⇥ P>.

6.6 Experimental Results

Implementation Details:

NullSpaceNet is defined in mixed-precision using the publically available NVIDIA APEX li-

brary [37]. NullSpaceNet was trained using 4 v100 Tesla GPUs with 32 GB and implemented
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in Python using PyTorch framework [38]. All experiments have been performed on Linux with

Xeon E5 @2.20 GHz CPU and NVIDIA Titan XP GPU. All experiments are performed on net-

works which are trained from scratch. We set ✏ to 1 and the number of epochs for the training

to 200. We used Adam optimizer [39] with a learning rate anneals geometrically at each epoch

starting from 0.001, a momentum of 0.9, and a batch size of 400 images.

Datasets:

NullSpaceNet has been tested on ImageNet [10], CIFAR10 [40], CIFAR100 [40] and STL10

[41].

ImageNet is a large scale dataset for classification and detection. ImageNet classification has

1000 categories of natural images, it consists of 1.3 million images for the task of classification.

CIFAR10 and CIFAR100 have 10 and 100 classes of spatial size (32 ⇥ 32), respectively. The

images were collected from natural scenes. Each dataset has 50,000 images for training and

10,000 images for testing. We used 49,000 for training, 1,000 for validation and 10,000 for

testing for both datasets.

STL10 dataset has 10 classes and the resolution of images has been re-sized to (64 ⇥ 64).

STL10 has 5,000 images for training, while the testing set has 8,000 images. We used 5,000 for

training set, 1,000 for validation set from the testing set and the remaining 7,000 for testing.

6.6.1 NullSpaceNet Results with VGG16 as backbone

Results on ImageNet:

ImageNet has a higher resolution with a spatial size of 224⇥ 224 compared to CIFAR datasets

and STL10 . Results of the proposed NullSpaceNet with VGG16 as backbone compared to the
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(a) NullSpaceNet

 

(b) VGG16+FC

Figure 6.5: t-SNE visualization of the learned features on STL10 dataset using (a)

NullSpaceNet, (b) VGG16+FC.

Table 6.1: Test Accuracy on ImageNet (resolution: 224 ⇥ 224).

Architecture
Top-1 Top-5

# Params.
Avg. inf.

Accuracy Accuracy time/batch

V GG16 + FC (cross-entropy loss) 74.4 % 91.0% 134,309,962 3.1556

NullSpaceNet (Proposed) 75.7% 93.2% 18,411,936 0.0262

traditional VGG16 with FC tested on ImageNet are shown in Table 6.1. The number of param-

eters have been reduced from ⇡134 Million in VGG16+FC to ⇡18 Million in NullSpaceNet.

As it can be seen from Table 6.1, the accuracy gain is in favor of NullSpaceNet. NullSpaceNet

has a Top-1 accuracy of 75.7% while VGG16+FC has a top-1 accuracy of 74.4%, which is a

gain of 1.3%. The average inference time has significantly reduced with a rate of 99.17%.

Results on CIFAR10 Dataset

The results on CIFAR10 dataset are shown in Table 6.2. VGG16+FC achieves an accuracy of

93.51%, while the proposed NullSpaceNet achives 94.01%. The accuracy difference between

the proposed NullSpaceNet and the VGG16+FC is ⇡ 0.5%, in favor of NullSpaceNet.

More importantly, there is a significant reduction in the network parameters of NullSpaceNet
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Table 6.2: Test Accuracy on CIFAR10.

Architecture Accuracy # Params. Avg. inference time/batch

V GG16 + FC (cross-entropy loss) 93.51% 134,309,962 0.6841

NullSpaceNet (Proposed) 94.01% 18,411,936 0.0051

compared to VGG16+FC. The parameters went down from ⇡ 134 Million parameters in VGG16+FC

to ⇡ 18 million in NullSpaceNet, which is a reduction of 86.29%. Moreover, Table 6.2 shows

that the inference time required per batch by VGG16+FC is 0.6841 seconds while NullSpaceNet

required only 0.0051 seconds, which is a reduction of 99.25% in favor of NullSpaceNet.

Results on CIFAR100 Dataset

The results on CIFAR100 dataset are shown in Table 6.3. NullSpaceNet outperforms VGG16+FC

by gain of 0.07% in terms of accuracy (the gain is not significant similar to the CIFAR10

dataset). However, the number of parameters in NullSpaceNet has been reduced from ⇡ 134

Million parameters to ⇡ 18 million parameters. Moreover, Table 6.3 shows that the inference

time required per batch by VGG16+FC is 0.6841 seconds while NullSpaceNet required only

0.0051 Seconds, which is a reduction of 99.25% in favor of NullSpaceNet.

The importance of conducting this experiment on CIFAR100 dataset is to prove that NullSpaceNet

performance is not significantly affected by the increase in the number of classes in the classi-

fication task.

Results on STL10 Dataset

The results on STL10 dataset are shown in Table 6.4. NullSpaceNet outperforms VGG16+FC

in terms of accuracy with gain of 2.57%, parameters reduction of 86.29%, and inference time

reduction of 99.22%. It is worth noting that NullSpaceNet significantly benefits from the higher
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Table 6.3: Test Accuracy on CIFAR100.

Architecture Accuracy # Parameters Avg. inference time/batch

V GG16 + FC (cross-entropy loss) 92.26% 134,309,962 0.6841

NullSpaceNet( proposed ) 92.33% 18,411,936 0.0051

Table 6.4: Test Accuracy STL10 dataset.

Architecture Accuracy # Parameters Avg. inference time/batch

V GG16 + FC (cross-entropy loss) 93.74% 134,309,962 1.3487

NullSpaceNet (proposed) 96.31% 18,411,936 0.0105

image resolution, STL10 has an image resolution of 64 ⇥ 64.

Visualization

To visualize the learned features by NullSpaceNet and VGG16+FC on STL10 dataset, t-SNE is

used to produce Fig. 6.5. Each color is associated with a number that represents a class in the

STL10 dataset. It can be seen from Fig. 6.5 (a) that the within-class scatter for all classes has

been reduced to the minimum and the between-class scatter has been maximized with high mar-

gin separation among all classes. Fig. 6.5 (a) visualizes the power of the learned joint-nullspace

that has the optimal separation among different classes. By examining Fig. 6.5 (b), the classes

are overlapping and the separation margin is not optimal.
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6.6.2 NullSpaceNet with other Feature Extractor Backbones

Another two experiments have been conducted on MobileNet [42] and MnasNet [43] as the

backbones of NullSpaceNet. The architectures of NullspaceNet with MobileNet and MnasNet

as backbones are shown in Fig. 6.2 and Fig. 6.3, respectively.

Table 6.5 shows that the MobileNet network has 5.4 Million parameters with an accuracy of

70.6%. In the case of NullSpaceNet with MobileNet as the backbone, the accuracy went up

to 72.30% and a reduction in the number of parameters of ⇡ 8.7% has been achieved. Con-

sequently, the inference time dropped down by 70.67%. It is clear that NullSpaceNet with the

MobileNet feature extractor backbone does not significantly reduce the number of parameters

due to the last fully connected layer in the original MobileNet, which only has 469,460 param-

eters. However, the inference time has been significantly reduced.

Similarly, Table 6.5 shows that NullSpaceNet with MnasNet backbone has a gain of 1.7% in

terms of accuracy and a number of parameters reduction rate of 27.95%. The average inference

time of NullSpaceNet with MnasNet as a backbone has been significantly reduced by 69.05%.

This confirms that NullSpaceNet can be applied to different backbones with the benefit of pa-

rameter reductions and inference time.

6.7 Results and Discussion

Impact of Image Resolution

The accuracy gain between the proposed NullSpaceNet with VGG16 as backbone and the tra-

ditional VGG16+FC when tested on CIFAR10 and CIFAR100 is 0.5% and 0.07%, respectively,

in favor of NullSpaceNet. The gain suggests that the accuracy does not significantly benefit
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Table 6.5: Test Accuracy on ImageNet dataset using different backbones with image resolution

224⇥ 224.

Architecture
Top-1 Top-5

# Params.
Avg. Inf.

Accuracy Accuracy time/batch

MobileNet-224 70.60% 89.50% 5,400,000 0.300 Seconds

NullSpaceNet(MobileNet-224) 72.30% 92.41% 4,930,540 0.088 Seconds

MNASNET1-0 75.20% 92.50% 3,900,000 0.210 Seconds

NullSpaceNet(MNASNET1-0) 76.80% 93.70% 2,810,140 0.065 Seconds

Table 6.6: A summary of comparing NullSpaceNet vs. VGG16+FC on 5 datasets, CI-

FAR10, CIFAR100, STL10 and its modified version, and ImageNet. All results are in favor

of NullSpaceNet

Dataset
Accuracy Image Params. Time

Difference Size Reduction Reduction

CIFAR10 +0.50% 32⇥ 32 +86.29% +99.25%

CIFAR100 +0.07% 32⇥ 32 +86.29% +99.25%

STL10 (64x64) +2.57% 64⇥ 64 +86.29% +99.22%

STL10 (modified 32x32) +0.02% 32⇥ 32 +86.29% +99.25%

ImageNet +1.30% 224⇥ 224 +86.29% +99.17%

from the projection onto the proposed joint-nullspace in this case. This can be justified based

on the fact that the image resolution in CIFAR10 and CIFAR100 is 32 ⇥ 32. This means that

the number of pixel-level features to be mapped to either the feature space or the joint-space is
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Table 6.7: Test Accuracy on modified version of STL10 (resolution: 32 ⇥ 32).

Architecture Accuracy # Params. Avg. inference time

V GG16 + FC (cross-entropy loss) 93.89% 134,309,962 0.6841

NullSpaceNet (Proposed) 93.91% 18,411,936 0.0051

small, and hence explains the low accuracy gain.

This justification is further supported in light of the results on the STL10 (which has higher

image resolution of 64⇥ 64), and thus better accuracy in favor of NullSpaceNet.

Furthermore, another experiment has been performed on a reduced resolution version of STL10.

All training images have been reduced to 32 ⇥ 32 resolution, similar to CIFAR10 and CI-

FAR100. NullSpaceNet has been trained on the modified version of STL10, and the results

are shown in Table 6.7. It is seen that the accuracy gain drops to 0.02%, similar to the ones in

CIFAR10 and CIFAR100.

Impact of Image Resolution

It is clear from Table 6.1 that the NullSpaceNet has a gain of +1.3 in terms of Top-1 accu-

racy compared to VGG16+FC on ImageNet. ImageNet has 1000 classes and the spatial size of

images is 224 ⇥ 224. This confirms our justification that NullSpaceNet has better accuracy in

cases of images with higher resolution. In general, NullSpaceNet outperforms VGG16+FC in

all cases. All results are summarized in table 6.6

Top-k Error Rate on STL10

Top-k error rate is the fraction of the testing set for which the true label is not among the five

labels that are most likely by the model prediction [10]. Fig. 6.6 shows top-1 accuracy on

STL10 dataset. It is clear from Fig. 6.6 that NullSpaceNet has a lower error rate compared
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Figure 6.6: Top-1 error on the validation set of STL10. At the beginning, NullSpaceNet and

VGG16+FC have almost the same error rate, then NullSpaceNet has a lower error rate as the

number of epochs increase.

to VGG16+FC. In Fig. 6.7, the top row shows the training and testing loss over three datasets

CIFAR10, CIFAR100, and STL10. It is clear that NullSpaceNet converges to the minimum at

200 epochs without overfitting to the training set. In the bottom row, we report the top-1 and

top-5 accuracy on CIFAR10, CIFAR100, and STL10. The Top-1 and Top-5 accuracy show that

NullSpaceNet is robust to image challenges as the top-5 accuracy is always high.
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Figure 6.7: Accuracy and Loss on CIFAR10, CIFAR100, and STL10. Top row: Training and

testing losses. Bottom row: the top-1 and top-5 accuracy.

6.8 Conclusions and Future Work

A typical CNN optimizes the weights of the network by maximizing the likelihood between

the estimated probability of the predicted class and the true probability of the correct class.

NullSpaceNet learns to project the features from the pixel-level (i.e, input image) to a joint-

nullspace. All features from the same class are collapsed into a single point in the learned

joint-nullspace, whereas all features from different classes are collapsed into different points

with high separation margins. Also, a novel differentiable loss function is developed to train

NullSpaceNet to learn to project the features onto the joint-nullspace. NullSpaceNet with the

proposed differentiable loss function exhibits superior performance, with accuracy gains of
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0.02 � 2.57%, and a reduction in inference time of ⇡ 99 � 70% in favor of NullSpaceNet.

This means that NullSpaceNet needs 1� 30% of the time it takes a traditional CNN to classify

a batch of images with competitive accuracy. Future work includes extending this work to

other fields such as object tracking. The future work will formulate the joint-nullspace as a

learnable regularizer and auxiliary loss to merge the feature space and nullspace in one network.

Formulating the regularizer in this way, will leverage the best of both spaces.
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Chapter 7

NullSpaceRDAR: Regularized

Discriminative Adaptive NullSpace for

Robust Visual Object Tracking

7.1 Abstract

Visual object tracking is a fundamental task in many computer vision applications. Recently,

discriminative-based and Siamese-based trackers have achieved outstanding performance on

most recent benchmarks. However, these trackers use the pre-trained backbone networks that

have been solely trained on classification without taking into consideration object tracking.

These pre-trained backbones do not have a strong discriminative ability to classify the object of

interest from distractors. To bridge this gap, in this paper, we propose to learn a tracker, dubbed

NullSpaceRDAR, with a regularized discriminative joint-nullspace backbone network that is

specifically designed for object tracking. In the regularized discriminative joint-nullspace, the

158



features from the same target are collapsed into one point in the joint-nullspace and differ-

ent target-specific features are collapsed into different points in the joint-nullspace. Conse-

quently, the joint-nullspace forces the network to be sensitive to the variations of the object

from the same class (intra-class variations). Moreover, a dynamic adaptive loss is proposed

to select the suitable loss function from a super-set family of losses based on the training data

to make NullSpaceRDAR more robust to different challenges. Extensive experiments have

been conducted on five benchmarks to evaluate NullSpaceRDAR: OTB100, VOT variations

(i.e., VOT2015, VOT2016, VOT2018, and VOT2019), LaSOT, TrackingNet, and GOT10k. The

overall results show that NullSpaceRDAR outperforms the current state-of-the-art trackers

7.2 Introduction

Visual Object tracking is the task of finding the trajectory of an arbitrary target over time. Visual

object tracking has gained much attention in the last few years due to it is being a fundamental

task in many computer vision applications such as autonomous driving [1], point clouds [2],

adversarial attacks [3], surveillance [4].

Recently, many trackers have achieved excellent performance with examples of these in-

cluding SiamRPN [5], SiamMask [6], SiamRPN++ [7], and DP-Siam [8]. However, these track-

ers use backbone networks that have been trained on ImageNet [30] for classification without

taking into consideration the object tracking task. Moreover, these trackers do not fully utilize

the background information, which makes the tracker more robust to distractors. Consequently,

there is a trade-off between the three performance evaluation metrics: 1) the accuracy (A), 2)

the expected average overlap (EAO), and 3) the robustness (R) (see Section 7.7 for more details

on these metrics). For example, according to Table 7.5, ATOM [12] is ranked as the top tracker
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in terms of Accuracy (0.603), however its robustness (0.411) is ranked sixth out of 9 trackers

in the table. Similarly, SiamRPN++ [7] is ranked as the second-best tracker in Table 7.5 in

terms of accuracy (0.599), however its Expected Average Overlap (EAO) and Robustness (R)

are ranked seventh and eighth.

To achieve a superior performance in all three metrics (i.e., A, EAO and R), this paper argues

that the best tracker should have a strong discriminative ability by using background information

to classify the target from the background and accurately estimate the target location. To achieve

this strong discriminative power, this paper proposes to transfer the backbone features from the

traditional feature space to a novel joint-nullspace with strong discriminative power ability.

This paper introduces NullSpaceRDAR, a tracker that learns the backbone’s features in a

joint-nullspace instead of feature space. The joint-nullspace will ensure that features from the

same target-specific are collapsed into one point in the joint-nullspace. Moreover, features from

different target-specific information are collapsed into different points in the joint-nullspace.

Hence, this formulation ensures a high discriminative power that effectively enables the tracker

to separate the target from the background with high discriminative ability.

To summarize, the two main contributions of this paper are:

• First, a novel formulation is proposed for the feature learning in the backbone network

by projecting the features onto a joint-nullspace. This new formulation enables a high

discriminative ability due to the large separation margin among the different points in the

learned space, while grouping the same target-specific information points with extremely-

low separation margins in the learned space.

• Second, a novel dynamic loss is proposed to adaptively switch between different loss

functions based on the training data.
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- Ground truth - NullSpaceRDAR (proposed) - DiMP - ATOM

Figure 7.1: Results of the proposed tracker (NullSpaceRDAR), ATOM, and DiMP on three

different sequences from VOT2019. The columns contain the output of the trackers over time,

while the rows contain iceekater2, Fernando, and matrix sequences

The source code and results are made publicly available1. The rest of the paper is organized

as follows. Section 7.3 introduces the related work. Section 7.4 details the proposed approach.

The experimental results are presented in Section 7.7. Finally, Section 7.8 concludes the paper

and presents future directions.
1https://vip-mun.github.io/NullSpaceRDAR/
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7.3 Related work

In recent years, deep learning has revolutionized visual object tracking and advanced state-

of-the-art performance. For example, Siamese-based trackers have achieved outstanding per-

formance with high speed. Also, there is another family of discriminative-based trackers that

incorporate discriminative classifiers in their formulation and also achieved outstanding perfor-

mance.

Siamese-based Object Tracking:

The seminal work SiamFC in this category was proposed in [13]. SiamFC formulates the

object tracking problem as a similarity metric learning for prediction. The network consists

of two branches, namely the target branch and the search branch. The target branch takes in

the target image to produce a filter-like for the feature map of the search branch. The search

branch takes in the test image and produces a feature map that is generally has a larger spatial

size compared to the target branch. The filter-like and the feature map of the search branch

are combined using a cross-correlation layer which produces a score map to locate the object

of interest. The higher the score, the more likely the object of interest is located within the

indicated area. CFNet [14] used a correlation filter in SiamFC in an end-to-end fashion to train

the whole network for object tracking. The correlation filter in CFNet is differentiable and has

a closed-form solution. DensSiam [15] uses the Dense-block [16] to transform the backbone

network to a Densely-Siamese network. Moreover, DensSiam uses a self-attention mechanism

in the target branch to boost the appearance model. SiamRPN [5] was the first work to use RPN

[17] on top of Siamese-based trackers. SiamRPN uses RPN with classification and regression

branches instead of relying on multi-scale search which is time consuming. SiamRPN works

beyond realtime at 160 frames per second (FPS) due to its local one-shot detection formulation.
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Due to the limitations of Siamese-based trackers which take advantage of deeper networks such

as ResNET50 [18], SiamRPN++ [7] proposed to use a spatial-aware sampling strategy to over-

come the problem of lacking strict translation invariance. SiamRPN++ is a follow-up work on

SiamRPN that has achieved outstanding performance compared to SiamRPN. SiamRCNN [19]

uses the re-detection framework in object tracking, the two-stage object detection approach is

combined using tracklet-based dynamic programming. SiamRCNN uses the appearance model

in the first frame template and the previous successful frame to model the historical appearance

model. SiamBAN [20] takes advantage of the fully convolutional network to model the object

tacking as a parallel classification and regression problem in one network. SiamBAN does not

assume a prior bounding boxes to avoid the associated hyper-parameters. SiamCAR [21] uses a

per-pixel manner and decomposes the visual tracking problem into a classification-based pixel

and regression-based pixel. With these settings, SiamCAR uses two networks: Siamese network

for feature extraction and a network for classification and regression to avoid hyper-parameter

tuning. SiamCAR does not use RPN or anchors for bounding boxes.

Despite the fact that Siamese-based trackers achieve outstanding speed and a good accuracy,

the background information is not utilized.

Discriminative-based Object Tracking:

In this category, we include trackers that use online learning and discriminative-based learning,

including correlation filter trackers. Meta-learning can be used in discriminative-based trackers

in offline training to learn how to update the model, similar to [22–27], and [28] . ATOM

[12] divides the object tracking problem into two sub-tasks, object classification and target

estimation. In object classification, the objective is to separate the target from the background

by training a discriminative classifier online. In target estimation, the objective is to precisely

locate the object of interest by using overlap maximization optimization in offline training. The
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DiMP [10] tracker is built based on ATOM, where the network is derived from a discriminative

learning loss within an optimization problem. DiMP is designed to predict the parameters of

the model in an online manner with a few iterations. PrDim [29] is a follow-up work to improve

the performance of DiMP tracker. In PrDimp tracker, a probabilistic regression framework is

adapted in the target estimation. Thus, rather than estimating the target location confidence,

PrDiMP estimates the conditional probability density of target’s location.

Even though these trackers incorporate background information, their performance is still

prone to inaccuracies and failure due to the lack of strong discriminative abilities.

7.4 Proposed Approach

NullSpaceRDAR consists of two phases: 1) Feature projection onto a joint-nullspace, and 2)

Adaptive bounding box estimation, as shown in Fig. 7.2. In the feature projection onto a

joint-nullspace phase, the backbone is first trained offline on ImageNet [30] to map from the

feature space to the proposed highly discriminative joint-nullspace by regularizing the cate-

gorical cross-entropy with a differentiable regularizer. The regularizer encourages the network

to minimize the within-target-specific scatter matrix to be zero and the between-target-specific

scatter matrix to be positive and large.

In the adaptive bounding box estimation phase, the network learns to classify the target

(using the online classifier) and accurately estimates its location (using the target estimator).

7.4.1 Feature Projection onto Joint-Nullspace Phase

In this phase, NullSpace backbone is trained offline on classification using the ImageNet [30]

dataset to learn a strong discriminative joint-nullspace instead of the traditional feature space.
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Figure 7.2: NullSpaceRDAR architecture

Fig. 7.4 shows an example of projecting 10 classes onto the traditional feature space and the

joint-NullSpace. Only 10 classes were projected for the sake of visual clarity.

7.4.1.1 Mathematical Formulation

The training set (i.e., the input batch) is fed into the backbone network as shown in Fig. 7.2

and passes through the NullSpace blocks to output category-confidence from the classifier. Let

the training set Xtrain = {x1, x2, ..., xi, ..., xN} and xi 2 Rw⇥h⇥d, where w, h, d are the width,

hight and the depth of the input image, respectively. Let the loss function be defined as the
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Figure 7.3: Diagram of ResNet blocks (backbone) and NullSpace blocks (backbone) (a) ResNet

diagram, the loss function is regularized by the mean L2 regularizer of the network’s weights

while (b) Diagram of NullSpace blocks, the loss function is regularized by nullspace of the

network’s weight.

categorical cross-entropy loss given by:

L(f(xi;⇥), yi) = � 1

N

NX

i=1

cX

j=1

y
ij
log fj (xi;⇥) (7.1)

Where f is the backbone network, xi is the input image, ⇥ corresponds to the parameters of

the backbone network, yi is the ground truth label of image xi, and yij is the jth element of the

one-hot label vector corresponds to xi. Let the regularized discriminative loss function be:

Lr(f(xi;⇥), yi) = � 1

N

NX

i=1

cX

j=1

y
ij
log fj (xi;⇥) + �R(⇥) (7.2)

Where � is a scalar value that corresponds to the regularization strength and R(⇥) is the reg-

ularizer function. Note that the first component of the regularized loss function (i.e., the cat-

egorical cross-entropy) uses the output of the classifier along with the labels to calculate the
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Figure 7.4: The projection from feature space to joint-nullspace. Left: the feature space of the

backbone network before projection. Right: the projection onto joint-nullsapce. For the sake of

visual clarity, only ten classes have been projected.

cross-entropy loss. The objective is to find a differentiable regularizer function that is robustly

discriminative and encourages similar target-specific information to collapse into one point.

Moreover, different target-specific information is collapsed into different points with high sep-

aration margin.

7.4.1.2 Regularized Discriminative Joint-Nullspace

In this setting, we use the output feature vector of the last block (NullSpaceBlock4 1), which

has a size of F 2 RD⇥1⇥1, where D = 2048. In the case of a batch of images, the spatial

size of NullSpaceBlock4 1 becomes F 2 RD⇥N for a batch of size N . To find a regularizer

function that minimizes the within-target-specific scatter matrix and maximizes the between-

target-specific scatter matrix, Linear Discriminant Analysis (LDA) [31] is used as a starting

point for derivation. In the context of visual object tracking, the objective is seeking a learnable

projection matrix B that minimizes the within-target-specific scatter matrix for similar objects

while maximizing the between-target-specific scatter matrix as follows:

J (B) =
B>tbB

B>twB
(7.3)
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Where J is the objective function and tb and tw are the between-target-specific scatter matrix

and the within-target-specific scatter matrix, respectively.

The closed-form solution of Eq. 7.3 is given by,

tbB = EtwB (7.4)

Eq. 7.4 is the solution for the generalized eigenvalue, where E is the eigenvalue of the eigenvec-

tor tw�1tb. To encourage the network to minimize the within-target-specific scatter matrix and

maximize the between-target-specific scatter matrix, we restrict the nominator and denominator

of Eq. 7.3 as follow,

B>tbB > 0

B>twB = 0
(7.5)

These restrictions encourage the same target-specific information to collapse into one point and

the different target-specific information to collapse into different points with high separation

margins. By taking the limit of Eq. 7.3 and substituting by Eq. 7.5 bottom equation, we get:

lim
(BT twB)!0

J (B) = 1 (7.6)

Let tt denote the total scatter matrix, where tt = tb + tw, consequently tb can be expressed as

follows,

tb = tt � tw (7.7)

The relationship between the total scatter matrix and the projection matrix can be derived by

substituting Eq. 7.7 in Eq. 7.5 as follows,

BT (tt � tw)B > 0

BT ttB > 0
(7.8)
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The within-target-specific scatter matrix and the between-target-specific scatter matrix are cal-

culated as follows,

tw = 1
N
FwF>

w

tt =
1
N
FtF>

t

(7.9)

where Fw = (F � µc), Ft = (F � µg), µc and µg are the class mean and global mean over the

training dataset, respectively.

Let ⌦t denote the between-target-specific scatter matrix and ⌦w denote the nullspace of the

within-target-specific scatter matrix, both are defined as follow,

⌦t =
�
⌦ 2 Rd | tt⌦ = 0

 

=
�
⌦ 2 Rd | ⌦>tt⌦ = 0

 

=
n
⌦ 2 Rd |

�
F>
t
⌦
�>

F>
t
⌦ = 0

o

=
�
⌦ 2 Rd | F>

t
⌦ = 0

 

(7.10)

⌦w =
�
⌦ 2 Rd | tw⌦ = 0

 

=
�
⌦ 2 Rd | ⌦>tw⌦ = 0

 

=
n
⌦ 2 Rd |

�
F>
w
⌦
�>

F>
w
⌦ = 0

o

=
�
⌦ 2 Rd | F>

w
⌦ = 0

 

(7.11)

From Eqs. 7.5, 7.10, and 7.11, it is geometrically clear that the only space that satisfies these

equations is a joint-nullspace. In particular, the constraints on the projection matrix (described

in Eq.7.5) are satisfied, if and only if, B is located at the shared space that is composed of

the orthogonal complement subspace ⌦?
t

and ⌦w as shown in Fig. 7.3. The subspace ⌦?
t

is

produced by applying Gram-Schmidt process [32] to ⌦t. Due to the high dimensionality of the

output of the network, we factorize the centred output around the global mean using Singular
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Value Decomposition (SVD) as follows,

Fw = Uw⌃V
> (7.12)

Where U and V have orthonormal basis, from Eq.7.12, the total scatter matrix can be re-written

as follows,

tw =
1

N
Uw

0

B@
⌃2

w
0

0 0

1

CAU>
w

(7.13)

Similarly, tt is calculated using,

tt =
1

N
Ut

0

B@
⌃2

t
0

0 0

1

CAU>
t

(7.14)

Where ⌃w and ⌃t correspond to a diagonal matrix with eigenvalues. With this formulation,

we select subspace ut ⇢ Ut based on the rank of tt. Consequently, the nullspace ⌦w of tw can

be represented by a subset of orthogonal basis ⌦̃w instead of the whole space ⌦w,

⌦̃w = SPAN
�
t̃w
� (7.15)

Where t̃w is the projection onto subspace ut given by t̃w = uttwu>
t

. With this formulation, the

projection matrix that minimizes the within-target-specific scatter matrix and maximizes the

between-target-specific scatter matrix is given by,

B = Eigenval(⌦̃wuttbu
>
t
⌦̃>

w
) (7.16)

Where Eigenval(.) is the non-zero eigenvalues. Hence, the regularizer that projects the feature

space onto the joint-nullspace is given by,

R(w) = � 1

C � 1

C�1X

i=1

Eigenval(⌦̃wuttbu
>
t
⌦̃>

w
)2 (7.17)
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Where C is the number of classes, as an example, C=1000 classes for ImageNet. Negative sign

is to maximize the values during the optimization. This is a convex regularizer that satisfies Eq.

7.5. Finally, the regularized loss function is given by,

Lr(f(x;⇥), yi) = � 1

N

NX

i=1

cX

j=1

y
ij
log fj (xi;⇥)

� �

C � 1

C�1X

i=1

Eigenval(⌦̃wuttbu
>
t
⌦̃>

w
)2

(7.18)

Eq. 7.18 has two components: 1) The cross-entropy, which is used to maximize the log-

likelihood between mass probability of the label distribution and the predicted class distribu-

tion and 2) The regularizer of the joint-nullspace which projects from the feature space to the

joint-nullspace. The regularizer of the joint-nullspace maximizes the expected non-zero over

Eigenvalues of (⌦̃wuttbu>
t
⌦̃>

w
) to encourage the network to be more discriminative. Moreover,

the regulaizer of the joint-nullspace encourages the network to project the similar target-specific

information onto one point and different target-specific information onto different points in the

joint-nullspace as discussed above. This behavior is inherited from the two restrictions which

are given in Eq. 7.5. Algorithm 5 summarizes the regularized discriminative joint-nullspace

framework which is used to train the NullSpace backbone network.

7.4.2 Adaptive Bounding Box Estimation Phase

After the NullSpace backbone is trained by the regularized discriminative loss function in

Eq.7.18, the weights of NullSpaceBlock3 in Fig. 7.2 are frozen in both branches. Then,

the feature maps B4 1 from the training branch are fed into the predictor network to predict the

weights of the online classifier filter that discriminates between the target and distractors. The
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Algorithm 5: Projection onto a regularized discriminative joint-nullspace
input : ResNet50 backbone where the output of the last block NullSpaceBlock4 1

F 2 RD⇥N

output: NullSpace backbone with the features are being projected onto joint-nullspace

1: Forward a batch of images through the backbone network;

2: Find the centric class mean and global mean from Fw and Ft;

3: Calculate the between-target-specific scatter matrix, within-target-specific scatter matrix,

and total scatter matrix from Eq. 7.7 and Eq. 7.9;

4: Calculate the nullspace of the total scatter matrix ⌦t from Eq. 7.10 and the nullspace of

the within-target-specific scatter matrix ⌦w from Eq. 7.11;

5: Factorize the centered output around the global mean using Singular Value Decomposition

(SVD) from Eq. 7.12;

6: From Eq. 7.15, calculate the nullspace spanned by the reduced version of t̃w;

7: Find the non-zero eigenvalues ⌦̃wuttbu>
t
⌦̃>

w
, and train the network using the regularized

loss function in Eq.7.18;
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same predictor network architecture presented in DiMP [10] is used. The feature map B4 2

from the testing branch is fed into the convolutional layer (i.e., the red block in the online clas-

sifier) to be convolved with the predicted filter. Consequently, the convolution operation outputs

the score map that has a rough estimation of the target bounding box.

The target estimator network uses the proposed novel adaptive super-set loss function to force

the network to automatically select the best loss from a family of loss functions. The target

estimator network takes the feature maps (B3 1, B3 2, B4 1, and B4 2) from the NullSpace

backbone along with the ground truth bounding box and N bounding box proposals to produce

the Intersection over Union (IoU) score for each proposal as shown in Fig. 7.2. In particular, the

training images are fed into the backbone of NullSpaceRDAR to produce feature maps(B3 1

and B4 1)). Then, the target estimator network takes only the first feature map as input from

both maps, through two convolutional layers, along with the ground truth bounding box (i.e,

the ground truth of the first frame in the training set). The two feature maps are then fed into

two differentiable pooling layers (yellow PrPool layer) [39] to output a fixed feature representa-

tion for each feature map through two fully connected layers (Green FC layers). Then, the two

feature representations are concatenated to produce the reference vector, which is a high-level

representation of the target appearance.

Similarly, the test frame is fed into the NullSpace backbone to produce feature maps B3 2

and B4 2 as shown in Fig. 7.2. These feature maps are then fed into the target estimator

network through convolutional layers, along with the N bounding box proposals. To generate

the bounding box proposals, Gaussian noise is applied to the rough estimation of the bounding

box (i.e., the bounding box in the score map) to generate 10 proposals with different scales

and translations. The proposals, along with the feature maps, pass through PrPool layers to

produce N feature maps (fixed representation for each proposal). The reference vector is fused
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with the N feature maps of the proposals through channel-wise production. In this proposed

design, the target information, which is represented by the reference vector, and the background

information, which is represented by the proposals, form the required information about the

target and its distractors. The outputs of the channel-wise production are converted into N test

vectors by using two fully connected layers as shown in Fig. 7.2. Finally, the test vectors, which

have the target and background information, are fed into a fully connected layer to produce the

Intersection over Union score (i.e., IoU) between the target bounding box in the training image

and the bounding box proposals in the test image.

7.4.2.1 Mathematical Formulation

As shown in Fig. 7.2, the target estimator network is designed to calculate the Intersection over

Union (IoU). Let the output of the NullSpaceRDAR target estimator network niou 2 RN, which

is the IoU for each proposal. Moreover, the ground truth IoU of the proposals piou 2 RN , where

N is the number of proposals and piou is calculated from:

piou =
|Br \Bt|
|Br [Bt|

(7.19)

Where Br is the bounding box of the target in the training image and Bt is the bounding box of

the object in the test image (i.e., the proposal). Note that the proposals in the proposed network

are set to be at least 10 proposals and piou is calculated for each proposal in the test image. Given

the IoU ground truth proposals (i.e., piou) and the output prediction of NullSpaceRDAR target

estimator (i.e.,niou), the objective is to adaptively train the NullSpaceRDAR target estimator

network using the super-set loss function. In other words, instead of training the network with

the mean squared error L2 loss that is sensitive to outliers/large errors [33], the adaptive loss

function is used. The adaptive loss function automatically switches between loss functions
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within a super-set of loss functions as described below.

The adaptive bounding box loss function is partially inspired by [33], but our motivation

is to make the target estimator network more robust by allowing the network to automatically

select the best loss for the bounding box estimation task. The proposed adaptive loss function

is a super-set of different loss functions, for example, L2, L1, Lorentzian loss function [37], and

Charbonnier loss functions [38], to name a few.

The objective in NullSpaceRDAR target estimator network is to maximize the predicted

IoU (i.e., niou). Let the absolute difference between niou and ground truth proposals piou be:

x = |niou � piou| (7.20)

The adaptive loss function that maximizes niou and minimizes the error can be calculated by,

L(x,↵) =
|↵� 2|
↵

eay
 ✓

x2

|↵� 2| + 1

◆↵/2

� 1

!
(7.21)

Where a 2 [0, 1] is a hyper-parameter value which can be tuned on the validation set, y is

a positive IoU weight vector that can be initialized from a Gaussian distribution. Moreover,

↵ 2 R is the selector parameter that can control the type of loss during training.

It is worth mentioning that different values of ↵ give different loss functions. Specifically,

↵ is a continuous learnable parameter that can capture, for example, L2, Lorentzian and other

in between losses. This means that the adaptive loss can be any of these loss functions during

the optimization. For example, setting ↵ = 2, the loss function will approach L2,

lim
↵!2

L(x,↵) =
eay

2
x2 (7.22)

The loss function becomes a Lorentzian loss function when ↵ = 0,

lim
↵!0

L(x,↵) = log

✓
1

2
x2 + 1

◆
eay (7.23)
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By setting ↵ = 1, the loss function turns into a smoothed L1,

L(x,↵) =
⇣p

x2 + 1
⌘
eay � 1 (7.24)

The loss function based on the different ↵ values has four bases as follows,

Lest(x,↵) =

8
>>>>>>>>><

>>>>>>>>>:

e
ay

2 x2 if ↵ = 2

log
�
1
2(x)

2 + 1
�
eay if ↵ = 0

�
1� exp

�
�1

2(x)
2
��

eay if ↵ = �1
|↵�2|
↵

eay
✓⇣

(x)2

|↵�2| + 1
⌘↵/2

� 1

◆
otherwise

(7.25)

It can be seen from Eq. 7.25 that the loss function always increases monotonically w.r.t. ↵ due

to @L
@↵
(x,↵) � 0. The gradient of the loss function in Eq. 7.25 is calculated as follows,

@Lest

@x
(x,↵) =

8
>>>>>>>><

>>>>>>>>:

xeay if ↵ = 2

2xeay

x2+2 if ↵ = 0

xe(ay�
1
2x

2) if ↵ = �1

xeay
⇣

x
2

|↵�2| + 1
⌘↵�2

2 otherwise

(7.26)

For the sake of the optimization, we take the negative log-likelihood of the probability density

function defined over the adaptive loss function of Eq. 7.25 as follows,

p(x|µ,↵) = 1

S(↵)
exp(�Lest) (7.27)

Where µ is distribution mean, p is the probability density function of the adaptive loss, and (↵)

is the scale function defined by S = LeakyRelu(↵). Consequently, the negative log-likelihood

is given by,

�log(p(x|µ,↵)) = Lest + log(S(↵)) (7.28)
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Where ↵ now is a free and differentiable parameter that is set by NullSpaceRDAR during the

training. To initialize ↵, a scaled version of the Sigmoid function is used as follows,

↵ =
2

e�i + 1
(7.29)

Where i 2 [0, 2], and Sigmoid to keep the value in range [0, 2]. In this setting, NullSpaceRDAR

decides the degree or robustness of the adaptive loss function.

7.5 NullSpaceRDAR Offline Training

NullSpaceRDAR is an end-to-end architecture, which means that the whole architecture, in-

cluding the online classifier and target estimator network, is trained offline. The online classifier

uses a combination of L2 and hinge loss depending on the location of the target in the image.

The loss function of the online classifier is given by,

Lcls =
1

n

X

n

kh� yc)k2+�kwk2 (7.30)

Where n is the batch size and h is the output weighted score map (s), as shown in Fig. 7.2,

by a Gaussian kernel gc to avoid imbalanced classes. In this network, yc is the ground truth

score map which can be initialized from a Gaussian distribution with a high score at the target

location and a low score in the background region. The weighted score map h is given by,

h =

8
><

>:

gcs if target region

gc ⇤Relu(s) if background region
(7.31)

After the projection onto the joint-nullspace, NullSpaceRDAR freezes the weights of NullSpaceBlock3 1

and NullSpaceBlock3 2 in both branches of the backbone network to fully exploit the power
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of the features in the regularized joint-nullspace during the training. The NullSpaceRDAR tar-

get estimator network is simultaneously trained by using the negative log-likelihood as shown

in Eq. 7.28. At the beginning of the training, ↵ is initialized using Eq.7.29, and during the

training optimization, NullSpaceRDAR is free to select the best possible loss function from the

super-set. For example, during the training optimization, NullSpaceRDAR may select L2 loss

when the ↵ approaches 2. Similarly, NullSpaceRDAR may select L1 when ↵ approaches 1. In

this setting, different values of ↵ have different robustness. For example, L1 tolerates large er-

rors compared to L2, which is sensitive to outliers/large errors. The unified loss function which

is used to train NullSpaceRDAR is given by,

Lunified = �Lcls � �log(p(x|µ,↵)) (7.32)

Where � and � are hyper-parameters that can be selected based on the validation set.

7.6 NullSpaceRDAR Online Tracking

In online tracking, the first frame is augmented by applying flipping, channel-wise dropout,

Gaussian noise with � = 0.01 to blur out the frame, shifting, and rotation. These augmented

frames result in 16 frames acting as a training set. Then, the augmented frames are fed into the

training branch of NullSpaceRDAR backbone to produce 16 feature maps from NullSpaceBlock4 1

in the training branch as shown in Fig. 7.2. The feature maps are then fed into the online clas-

sifier, which has the predictor network. The predictor consists of an initializer network and

optimizer. The initializer network has a convolutional layer followed by a PrPool layer [39]

which is used to produce an initial estimate of the filter’s weights. The optimizer refines the

initial estimate of the filter’s weights using steepest descent to calculate the final filter (i.e.,the
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filter that has the target-specific and background-specific information) of the classifier. The on-

line classifier is used to distinguish the target object from distractors (i.e., the background and

other objects). The test frame (i.e., starting from the second frame), is fed into the test branch,

the NullSpace feature extractor backbone produces a feature map from NullSpaceBlock4 2,

that is for a single test frame. This feature map is then fed into the online classifier through

a convolution layer which convolves the feature map by the predicted filter, producing a score

map. It is worth mentioning that the score map gives an initial estimation of the target location.

Once NullSpaceRDAR has the initial target location (i.e., the bounding box) from the classifier

module, it applies a Gaussian noise to the target center to generate 10 candidate proposals for

the task of accurate target estimation. The target estimator network produces an IoU score for

each proposal as detailed in sub-section 7.4.2 by overlap maximization. The final target location

is then calculated by the mean of the highest of the three IoU scores.

7.7 Experimental Results

Datasets:

NullSpaceRDAR has been trained on five different datasets to provide extensive results and

guarantee more diversity of classes. Specifically, we used ImageNet [30] for feature projection

onto the joint-nullspace and the training split of GOT10k [40], LaSOT [41], COCO [42], and

TrackingNet [43] for the adaptive bounding box estimation phase.

1) ImageNet: This dataset has different sequences for different tasks such as object detection

and image classification. ImageNet has 4000 sequences and 1.3 million images for object clas-

sification. NullSpaceRDAR has been trained on ImageNet to project the input onto the proposed

joint-nullspace.
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2) GOT10k: Contains natural images of 1.5 million labeled images. GOT10k is a large-scale

dataset with over 560 classes of real-world moving objects as well as over 80 classes for motion

patterns.

3) LaSOT: It stands for Large-Scale Single Object Tracking which has varieties of different

classes. LaSOT contains natural images for 70 categories, each category contains 20 sequences.

Moreover, LaSOT has long-term videos to validate long-term trackers.

4) COCO: This is another large-scale dataset that has a variety of sequences for different vision

tasks such as object segmentation, object recognition, and object detection. COCO has 80 cat-

egories and over 200,000 frames with their labels for the task of object detection.

5) TrackingNet: This is a large-scale dataset for object tracking in the wild. It has over 30,000

sequences associated with 14 million bounding boxes. The majority sequences in the Track-

ingNet dataset are chosen in the wild to cover more real-world scenarios such as occlusions and

scale variations.

6) OTB benchmark: This benchmark has different challenging attributes with three sets, namely

OTB50, OTB100, and OTB2013. In our experiments, we used OTB100 which has 100 se-

quences.

7) VOT benchmark: VOT is considered to be the golden testing benchmark in visual object

tracking. It is usually held every year with/without some changes in the dataset or the evalua-

tion toolkit. It has 60 sequences collected from natural images. We used VOT2015, VOT2016,

VOT2018, and VOT2019 for testing.

Evaluation metrics:

To evaluate NullSpaceRDAR, standard evaluation metrics from the VOT challenges [11] are

adopted. In particular, Accuracy (A), Robustness (R), and Expected Average overlap (EAO).

Moreover, the precision and success metrics are used to report the performance of NullSpaceR-
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DAR on the OTB datasets [44].

Accuracy (A): is the average of the Intersection over Union (IoU) in successful frames. The

accuracy is only measured after 10 frames from the re-initialization process.

Expected Average Overlap (EAO): is the average overlap between the predicted bounding box

and the ground truth bounding box. The average is calculated over all test sequences.

Robustness(R): is the measure of how many times the tracker fails to track the target object.

The failure of the tracker is reported when the Intersection over Union (IoU) is zero.

Precision: measures the percentage of frames whose predicted center is within 20 pixel from

the ground truth center [11].

Success Plot: is the ratio of successful frames at a range of thresholds (i.e. from 0 to 1).

7.7.1 Implementation details

NullSpaceRDAR has been implemented with Python and Pytorch framework [80]. The back-

bone network has been defined in a mixed-precision using the Nvidia Apex library [81]. NullSpac-

eRDAR has been trained using 4 GPUs (Nvidia Tesla V100) with each containing 32 GB of

memory. The source code is implemented on a single machine with multi-GPU with data par-

allelism to take advantage of all available resources. A Xeon E5 CPU (2.20 GHz) and 32 GB of

RAM are powering the machine, which runs a Linux operating system. ResNet50 is initialized

by ImageNet weights and trained using the regularized adaptive discriminative loss function to

project the feature space onto the joint-nullspace. The training is done on 50 epochs and 20.000

sequences per epoch. The online classifier is optimized for 5 iterations and the training batch

is split into 3 frames for training and 3 for testing from a segment of length 60. The predicted

filter (i.e., the filter in the online classifier) is set to 4⇥ 4 and the learning rate starts from 10�2
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Figure 7.5: The precision plots and success plots of OTB benchmarks.

and is annealed geometrically to 10�5. The number of proposals is set to 10, extracted from a

Gaussian noise with �2 = 0.2.

7.7.2 Comparison with the state-of-the-arts

NullSpaceRDAR is tested and compared to state-of-the-art trackers on different datasets such as

OTB [44], VOT [11], UAV123 [45], and the testing split of LaSOT [41], TrackingNet [43], and

GOT10k [40]. None of the trackers were modified to give NullspaceRDAR an advantage. All

trackers were used as-is to maintain a fair comparison and avoid any potential bias or mistakes.

Table 7.1: Comparison of state-of-the-art real-time trackers on OTB benchmarks.

Dataset Metric NullSpaceRDAR PrDiMP50 PrDiMP18 DiMP50 DiMP18 DPSiam BACF PTAV ECOhc DSiamM EAST Staple SiamFC

(proposed) [29] [29] [10] [10] [8] [46] [47] [48] [49] [50] [51] [13]

OTB100
AUC 0.693¡ 0.696¿ 0.680¬ 0.684 0.660 0.677 0.621 0.635 0.643 - 0.629 0.578 0.582

Prec. 0.920¿ - - 0.899¡ 0.865 0.883¬ 0.822 0.849 0.856 - - 0.784 0.771
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Table 7.2: Comparison with the state-of-the-art trackers on VOT2015 dataset using standard

metrics Accuracy (A), Expected Average Overlap (EAO), and Robustness (R).

Tracker A" EAO" R# FPS

DeepSRDCF [52] 0.56 0.32 1.05 10

EBT [53] 0.47 0.31 1.05 4

SRDCF [54] 0.56 0.29 1.24 5

HP[55] 0.58 0.33 1.578 69

RAJSSC [56] 0.57 0.34 1.63 22

MDNet [57] 0.60¡ 0.38¡ 0.69¡ 1

OACF [58] 0.58 0.36¬ 1.81 5

BACF [46] 0.59 - 1.56 35

EAST [50] 0.57 0.34 1.03 159

Staple [51] 0.57 0.30 1.39 80

SiamFC [13] 0.55 0.29 1.58 86

SiamRPN [5] 0.59¬ 0.35 0.93¬ 160

NullSpaceRDAR(proposed) 0.62 ¿ 0.440¿ 0.68¿ 41

7.7.2.1 OTB benchmark

Table 7.1 shows the performance in terms of Area Under Curve (AUC) and precision on OTB100.

As shown in Table 7.1, NullSpaceRDAR achieves the second-best tracker in terms of AUC with

0.693, while the top tracker is PrDiMP50 with 0.696. The PrDiMP tracker achieves a gain of

+0.3 compared to NullSpaceRDAR. It is worth mentioning that PrDiMP has two versions,

PrDiMP50 which has ResNet50 as a backbone network and PrDiMP18 which has ResNet18
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Table 7.3: Comparison with state-of-the-art trackers on VOT2016 dataset using standard met-

rics Accuracy (A), Expected Average Overlap (EAO), and Robustness (R).

Tracker A" EAO" R# FPS

MDNet N [57] 0.541 0.257 0.337 1

SSAT [59] 0.577¬ 0.321 0.291 22

SiamFC [13] 0.532 0.235 0.461 86

HP [55] 0.539 0.242 0.46 69

STAPLE+ [59] 0.557 0.286 0.368 25

SRBT [60] 0.496 0.290 0.350 15

NSAMF [61] 0.502 0.227 0.438 25

DPT [62] 0.492 0.236 0.489 10

ColorKCF [59] 0.503 0.226 0.443 90

GCF [59] 0.520 0.218 0.485 7

SiamRPN[5] 0.560 0.344¬ 0.260¬ 160

SiamRPN++[7] 0.640¡ 0.464¡ 0.200¡ -

NullSpaceRDAR(proposed) 0.690¿ 0.530¿ 0.180¿ 41

as a backbone network. PrDIMP18 achieves 0.680 in terms of AUC, which is ranked as the

third-best tracker. On the other hand, NullSpaceRDAR achieves the best precision of 0.920

with gain of +2.1% compared to the second-best tracker DiMP with precision of 0.899. It

clearly shows that NullSpaceRDAR outperforms all other trackers in terms of precision with a

significant margin. It worth noting that, PrDiMP50, PrDiMP18, and DiMP50 share the ResNet

network architecture in the feature space while NullSpaceRDAR uses the Nullspace backbone
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Table 7.4: Comparison with state-of-the-art trackers on VOT2018 dataset using standard met-

rics Accuracy (A), Expected Average Overlap (EAO), and Robustness (R).

Tracker A" EAO" R# FPS

FSAN [9] 0.554 0.256 0.356 30

CSRDCF [54] 0.491 0.256 0.356 13

ASMS [63] 0.494 0.169 0.623 25

SiamRPN [5] 0.586 0.383 0.276 160

SA Siam R [64] 0.566 0.337 0.258 50

SiamFC [13] 0.503 0.188 0.585 86

SAPKLTF [9] 0.488 0.171 0.613 25

DSiam [49] 0.215 0.196 0.646 25

ECO [48] 0.484 0.280 0.276 60

ATOM [12] 0.590 0.401 0.204 -

SiamRPN++ [7] 0.600 0.414 0.234 -

DiMP18 [10] 0.594 0.402 0.182 -

DiMP50 [10] 0.597 0.440¬ 0.153¡ -

PrDiMP18 [29] 0.607¬ 0.385 0.217 -

PrDiMP50 [29] 0.618¡ 0.442¡ 0.165¬ -

NullSpaceRDAR(proposed) 0.627¿ 0.446¿ 0.140¿ 41

network in the joint-nullspace. The plot in Fig. 7.5 shows the success plot and precision plot

on OTB100, the results are given by using the OTB toolkit [44] on the publicly available source

codes.
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Table 7.5: Comparison with state-of-the-art trackers on VOT2019 dataset using standard met-

rics Accuracy (A), Expected Average Overlap (EAO), and Robustness (R).

Tracker A" EAO" R# FPS

ATOM [12] 0.603¿ 0.292 0.411 -

SiamRPN++ [7] 0.599¡ 0.285 0.482 -

DiMP50 [10] 0.594¬ 0.379¡ 0.278¡ -

SiamMask [6] 0.594 0.287 0.461 -

MemDTC [65] 0.485 0.228 0.587 -

STN [66] 0.589 0.314 0.349 -

Ocean [67] 0.594 0.350 0.316¬ -

DCFST [68] 0.589 0.361¬ 0.321 -

NullSpaceRDAR(proposed) 0.603¿ 0.384¿ 0.250¿ 41

7.7.2.2 VOT benchmark

Table 7.2 shows the results of the proposed tracker (NullSpaceRDAR) on VOT2015 compared

to the top trackers in VOT2015 [59]. As shown in Table 7.2, NullSpaceRDAR outperforms

all trackers. In terms of Accuracy (A) NullSpaceRDAR achieves a score of 0.62 with a gain of

+2% compared to the second-best tracker MDNet. It is worth mentioning that NullSpaceRDAR

achieves the best rank in terms of Expected Average Overlap (EAO) with a significant margin of

+6% compared to the second-best tracker MDNet. In term of Robustness (R), NullSpaceRDAR

achieves the best performance with a score of 0.68 compared to the second-best tracker MDNet.

In VOT2016 [78], the ground truth labels have been re-labeled and each pixel has been seg-

mented compared to VOT2015. Table 7.3 shows the results of NullSpaceRDAR compared to
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Table 7.6: Comparisons with state-of-the-art trackers on TrackingNet dataset in terms of the

Precision (PRE), Normalized Precision (NPRE), and Success.

Tracker PRE " NPRE " SUC."

Staple CA [69] 0.468 0.605 0.529

BACF [46] 0.461 0.580 0.523

MDNet [57] 0.565 0.705 0.606

CFNet [14] 0.533 0.654 0.578

SiamFC [13] 0.533 0.663 0.571

SAMF [61] 0.477 0.598 0.504

ECO-HC [48] 0.476 0.608 0.541

Staple [51] 0.470 0.603 0.528

ECO [48] 0.492 0.618 0.554

CSRDCF [54] 0.480 0.622 0.534

ATOM [12] 0.648¬ 0.771 0.703

DiMP18 [10] 0.666¡ 0.785¬ 0.723¬

DiMP50 [10] 0.687¿ 0.801¡ 0.740¡

NullSpaceRDAR(proposed) 0.687 ¿ 0.813¿ 0.749 ¿

the top trackers in VOT2016. NullSpaceRDAR outperforms all trackers in terms of Accuracy

(A) with a score of 0.690 compared to the second-best tracker SiamRPN++. In terms of EAO,

NullSpaceRDAR achieves state-of-the-art with a score of 0.530 and the second-best tracker

SiamRPN++ achieves 0.464. Similarly, NullSpaceRDAR is ranked the best tracker in terms of

Robustness (R) with a score of 0.180 while the second-best tracker SiamRPN++ has a score of
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Table 7.7: Comparison with state-of-the-art trackers on GOT10k dataset in terms of Average

Overlap (AO), and Success Rates (SR) at overlap thresholds of 0.50 and 0.75.

TRACKER NullSpaceRDAR ATOM [12] DiMP50[10] DomainSiam [70] CFNet [14] SiamFC [13] GOTURN CCOT [71] ECO [48] HCF MDNet [57]

AO 0.626¿ 0.556¬ 0.611¡ 0.414 0.374 0.348 0.347 0.325 0.316 0.315 0.299

SR(0.50) 0.726¿ 0.634¬ 0.717¡ 0.451 0.404 0.353 0.375 0.328 0.309 0.297 0.303

SR(0.75) 0.498¿ 0.402¬ 0.492¡ 0.214 0.144 0.098 0.124 0.107 0.111 0.088 0.099

Table 7.8: Comparison with state-of-the-art trackers on LaSOT dataset in terms of the Normal-

ized Precision and Success.

Tracker Norm. Prec. (%)" Success (%)"

MDNet [57] 46.0 39.7

DaSiam [72] 49.6 41.5

STRCF [73] 34.0 30.8

SINT [74] 35.4 31.4

StrucSiam [75] 41.8 33.5

SiamFC [13] 42.0 33.6

VITAL [76] 45.3 39.0

ECO [48] 33.8 32.4

DSiam [77] 40.5 33.3

ATOM [12] 57.6¬ 51.5¬

SiamRPN++ [7] 56.9 49.5

DiMP50 [10] 64.3¡ 56.9¡

NullSpaceRDAR(proposed) 65.7¿ 57.4¿

188



0.20. It is worth noting that NullSpaceRDAR outperforms all tracker in VOT2016 while work-

ing in real-time speed of 41 FPS. It is worth mentioning that VOT2018 includes all sequences

from VOT2017.

In VOT2018 [9], a long-term tracking challenge has been introduced (does not apply to

the proposed tracker) along with minor changes in the dataset bounding boxes. As shown in

Table 7.4, NullSpaceRDAR is ranked the best tracker in terms of Accuracy (A) with a score of

0.627 with a gain of +0.9 compared to the second-best tracker PrDiMP50 with a score of 0.618.

NullSpaceRDAR achieves a score of 0.446 in terms of EAO and comes in the first place before

PrDiMP50 with a score of 0.442. In terms of Robustness (R) NullSpaceRDAR comes in the

first place with a gain of +1.3 compared to DiMP50. Even though NullSpaceRDAR is built in

DiMP framework, it outperforms all variations of DiMP trackers thanks to the joint-nullspace

and the adaptive loss function.

In VOT2019 [11], the dataset has been updated along with introducing two new challenges

in thermal and depth imagery (do not apply to our proposed tracker). As shown in table 7.5,

NullSpaceRDAR is ranked as the top tracker in terms of accuracy with a score of 0.603. While

ATOM achieves a similar accuracy of 0.603, however, in terms of EAO, NullSpaceRDAR

achieves 0.384, which is a leading score with a gain of +9.2% compared to ATOM. More-

over, NullSpaceRDAR outperforms DiMP50, the second-best tracker, with a gain of +0.5 in

terms of EAO. Similarly, NullSpaceRDAR outperforms all other trackers in terms of robustness

with a score of 0.250 while DiMP50 achieves the second-best tracker with a score of 0.278. The

visual results on VOT2019 are shown in Fig. 7.7

These results on VOT benchmark confirm that NullSpaceRDAR outperforms all current

state-of-the-art trackers on VOT benchmark.
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7.7.2.3 TrackingNet

As illustrated in Table 7.6, precision, normalized precision, and success rate are used to evaluate

the trackers in this dataset. Precision measures the percentage of frames whose predicted center

is within a threshold from ground truth center. Normalized precision is introduced to overcome

the sensitivity of precision to the resolution of the images, the precision is normalized over the

size of the ground truth bounding box [43]. The success rate measures the percentage of frames

where the predicted bounding box overlaps with the ground truth within a threshold. Table 7.6

shows that NullSpaceRDAR has the best precision (PRE) score of 0.687 (tied with DiMP50).

In terms of the Normalized precision (NPRE), NullSpaceRDAR is ranked the best tracker with

a gain of +1.2 over DiMP50. The Success (SUC) of NullSpaceRDAR is 0.749 with a gain

of +0.9 compared to DiMP50. Since TrackingNet is a large-scale dataset that has varieties of

sequences and objects, this confirms our claim of the generalization ability of NullSpaceRDAR.

7.7.2.4 GOT10k

The proposed tracker was further evaluated on the GOT10k [40] dataset. Table 7.7 shows the

comparison between NullSpaceRDAR and state-of-the-art trackers ATOM [12], DiMP [10],

DomainSiam [70], CFNet [14], SiamFC [13], GOTURN [79], CCOT [71], ECO [48], and

MDNet [57]. It is clear that NullSpaceRDAR achieves a leading performance on the large-scale

dataset GOT10k. In particular, NullSpaceRDAR achieves the best Average Overlap (AO) with

a score of 0.626 and the second-best tracker DiMP achieves 0.611, this gives a gain of +1.5% in

favor of NullSpaceRDAR. GOT10k evaluates the Success Rate (SR) at 0.50 and 0.75. In terms

of SR = 0.50, NullSpaceRDAR is ranked the best tracker with a score of 0.726 and the second-

best tracker DiMP50 achieves 0.717. In terms of SR = 0.75, NullSpaceRDAR outperforms
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DiMP50 with gain of +0.6 in favor of NullSpaceRDAR. GOT10k is another large-scale with

high diversity classes, it has over 10,000 videos, this another evidence for the efficient of the

joint-nullspace along with the adaptive loss function.

7.7.2.5 LaSOT

LaSOT is another large-scale dataset. Table 7.8 shows the results of NullSpaceRDAR along

with state-of-the-art trackers, MDNet [57], DaSiam [72], STRCF [73], SINT [74], StrucSiam

[75], SiamFC [13], VITAL [76], ECO [48], DSiam [77], ATOM [12], SiamRPN++ [7], and

DiMP [10]. As shown in Table 7.8 NullSpaceRDAR achieves the best performance in terms of

Normalized Precision (Norm Prec.) with a score of 65.7%, while DiMP50 comes in the second-

best rank with a score of 64.3%. Similarly, NullSpaceRDAR outperforms DiMP50 with again

of +0.5 in favor of NullSpaceRDAR in terms of success rate. This affirms the claim that the

NullSpace backbone affects the final performance of the tracker and significantly increases the

performance on large-scale datasets.

7.7.2.6 Individual Challenging Attributes

To further evaluate NullSpaceRDAR, another experiment has been conducted on twelve chal-

lenging attributes from the UAV123 [45] dataset. The twelve attributes contain viewpoint

change, out-of-view, low resolution, background clutter, camera motion, similar object, scale

variation, illumination variation, fast motion, full occlusion, partial occlusion, and aspect-ratio

changes. Fig. 7.6 shows the success plots on UAV123. Out of twelve challenging attributes,

NullSpaceRDAR outperforms all other trackers on 10 out of the 12 challenging attributes.

Moreover, NullSpaceRDAR is ranked the second-best tracker on the remainder 2 attributes, the

scale-variation and aspect-ratio attributes. The reason behind that is that NullSpaceRDAR does
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Table 7.9: Ablation study using variations of NullSpaceRDAR

Variations of DP-Siam LaSOT OTB100

Baseline Joint-nullspace Adaptive B.B. loss Norm. Prec Success AUC Prec.

X 0.643 0.569 0.684 0.899

X X 0.649 0.571 0.687 0.906

X X 0.653 0.572 0.690 0.918

X X X 0.657 0.574 0.693 0.920

not use the bounding box regression to regress the coordinates. NullSpaceRDAR is anchor-free,

which uses bounding box estimation to refine the proposals that were generated by Gaussian

noise on the roughly calculated bounding box center from the online classifier.

7.7.3 Ablation Study

To show the impact of each component in the proposed NullSpaceRDAR, Table 7.9 shows an

ablation study on variations of NullSpaceRDAR. The baseline in Table 7.9 means NullSpac-

eRDAR without the joint-nullspace (i.e., feature space) and adaptive bounding box estimation

loss (i.e., mean squared loss). Specifically, adding just the adaptive bounding box estimation

loss will boost the performance of the tracker from 0.643 in terms of normalized precision to

0.649 on LaSOT dataset. Similarly, the adaptive bounding box estimation loss will boost the

performance of NullSpaceRDAR on OTB100 from 0.684 in terms of AUC to 0.687 and the

precision from 0.899 to 0.906. On the other hand, the projection from the feature space to the

joint-nullspace boosts the performance of NullSpaceRDAR from 0.643 to 0.653 in terms of

normalized precision with a gain of 1% compared to +0.6% in case of adaptive bounding box
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Figure 7.6: Success plots on UAV123 over 12 attributes. Note that due to the limit of space,

NS.RDAR is the shortened form of the proposed tracker (NullSpaceRDAR).
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–Ground truth –NullSpaceRDAR(Ours) –DiMP –ATOM –SiamRPN

Figure 7.7: Visual results for the VOT2019 dataset on different sequences. The sequences are

ordered in rows while the output of the trackers are ordered in columns. The frame number is

printed on the top left corner. From the top row to the bottom row, the sequences are agility,

basketball, dinosaur, godfather, gymnastics1, hand, matrix, and road.
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estimation loss. Similarly, on OTB100, adaptive bounding box estimation loss will boost the

AUC by +0.6 and the precision from 0.899 to 0.918. Adding all components (i.e., the joint-

nullspace and the adaptive bounding box estimation loss) will boost the overall performance

on LaSOT by 1.4% in terms of normalized precision, 0.5% in terms of success, 0.9% in terms

of AUC on OTB100, and 1.9% in terms of precision on OTB100. It is clear from Table 7.9

that the larger impact is from the joint-nullspace. Consequently this supports the effect of the

joint-nullspace.

7.8 Conclusions and Future Work

In this paper, a novel regularized discriminative adaptive joint-nullspace tracker is proposed

which tracks the objects of interest. The joint-nullspace ensures that the features from the

same target-specific information are collapsed into one point and the different features are col-

lapsed into different points in the joint-nullspace. The joint-nullspace has a strong discrimina-

tive power due to its formulation, which increases between-target-specific scatter matrix and

decreases the within-target-specific scatter matrix. Moreover, to accurately locate the objects

of interest, an adaptive bounding box estimation loss function is proposed in the context of vi-

sual object tracking to select the best loss function from a super-set family. NullSpaceRDAR

is trained in an end-to-end manner and significantly increases the robustness and the general-

ization of the tracker. The future work includes formulating the online classifier and the target

estimator network in one network using the joint-nullspace.
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Chapter 8

Conclusion

In this chapter, we conclude the main contribution in this thesis and provide potential extension

to the presented work.

8.1 Conclusions

Based on the presented work throughout this thesis, the following conclusions can be drawn:

• A novel framework for object tracking to fuse the predicted output of multiple trackers

and select the best prediction to cover more challenging scenarios. The proposed frame-

work has the ability to expand by allowing the user to include more trackers (i.e., user

plugins). Moreover, a novel mechanism, called reporter, has been proposed to intervene

whenever all trackers fail to track the object of interest. The reporter mechanism is based

on particle filter and provides a correction to the trajectory of the object of interest. To ac-

curately calculate the robustness score, a novel metric has been proposed, namely virtual

vector.
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• A novel end-to-end network tracker has been proposed, the network is designed based

on the Densely-Siamese network, called DensSiam. The key idea is to capture the non-

local features which are robust to appearance changes. The novelty of this architecture

additionally reduces the number of shared parameters in the network while building up

a deeper network compared to traditional Siamese network. Furthermore, an effective

response map based on self-attention has been proposed to increase the localization per-

formance of the tracker. This response map contains non-local features along with the

semantic information about the object of interest. This novel design tackles the vanishing-

gradient problem and leverage the feature re-use ability to boost the generalization in the

tracker.

• A novel network tracker has been proposed to capture the domain-are features with se-

mantic objectness information, dubbed DomainSiam. The domain-aware features enables

the appearance model to be robust to challenging scenarios such as scale changes and il-

lumination variations. This network produces its prediction (i.e., the bound box) based

on the most important feature channels. Consequently, this leads to huge reduction to

sparsity problem and overhead calculations. To train this novel network, a novel differ-

entiable weighted-dynamic loss function has been proposed specifically for visual object

tracking. This loss fucntion is monotonic with respect to its hyper-parameters, leading to

higher performance in case of high-dimensional data and non-convexity.

• A novel network design for object tracking, called DP-Siam, has been proposed. DP-Siam

consists of a dynamic Siamese Agent-Environment networks that formulate the object

tracking in reinforcement learning framework. DP-Siam produces a continuous action

that predicts the optimal object location. DP-Siam has a novel architecture that consists

208



of three networks: an Agent network to predict the optimal state of the object being

tracked, an Environment network to get the Q-value during the offline training phase to

minimize the error of the loss function, and a Siamese network to produce a heat-map.

The Environment network acts as a verifier to the action of the Agent network during

online tracking. The proposed architecture allows the tracker to dynamically select the

hyper-parameters in each frame instead of the traditional method of fixing their values for

the entire dataset, which to the best knowledge of the authors, has not been done before.

• Most of trackers work in feature space, meaning that the backbone network is trained on

classification task by categorical cross entropy. To design a network that is specifically

suitable for classification and tracking, a novel network, namely NullSpaceNet, has been

proposed. The network learns to project traditional feature space onto a joint-nullspace.

This design ensures that the projected features from the same class are collapsed into a

single point while ones from different classes are collapsed into different points with high

septation margin. NullSpaceNet is architecture-agnostic that can be applied to any net-

work with fully connected layers. A novel differentiable loss function has been proposed

to train the developed NeullSpaceNet. This loss function is totally different from the cate-

gorical cross-entropy function. The proposed loss takes into consideration the projection

onto the joint-nullspace. Moreover, NullSpaceNet features have a clear interpretation

both mathematically and geometrically compared to standard feature space.

• A novel formulation for feature learning in object tracking has been proposed, dubbed

NullSpaceRDAR. In nullSpaceRDAR, the feature learning in the backbone network is

regularized by projecting onto a joint-nullspace. This formulation ensures that the same

target-specific information are collapsed into one point in the learned space while the
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different target-specific information are collapsed into a different points in the learned

space. This leads to high discriminative power to between-target-specific scatter matrix

and decrease the within-target-specific scatter matrix. Moreover, to accurately locate the

object of interest, a dynamic and adaptive loss function as been proposed in the context

of visual tracking to select the best loss function from a super-set family. NullSpaceR-

DAR is trained in end-to-end manner and significantly increases the robustness and the

generalization of the tracker.

8.2 Future Research Directions

The work presented in this thesis has a number of different future extensions. These directions

aim at increasing the object tracking robustness, accuracy, and the expected average overlap.

• Using moving horizon estimation to act as a trajectory recovery mechanism when the

tracker fails to locate the object of interest. This mechanism ensures to increase the

robustness of the tracker.

• Improving the target estimator speed and accuracy using recently proposed transformers

[1] for object detection. As a matter of fact, improving in object detection task leads to

improving in object tracking, however, it needs major modifications.

• Incorporating the uncertainty and conditional probability in both target estimator and

target classification. Due to the unconstrained environment in object tracking, it is better

to estimate the conditional probability score instead of the confidence score such as the

work in [2].
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• Utilizing more metrics to learn by deep networks. For example, Siamese networks learn

a similarity metric, however, it does not use background information, instead, F1-Score

can be re-formulated to be differentiable with respect to the weights of the network. This

way the network can learn more metrics and including the background information in

end-to-end manner.

• Force the network to adaptively predict hyper-parameters during the online tracking using

Bayesian inference within reinforcement learning framework.

In summary, future direction can be in two directions: 1) Developing a fast and accurate re-

gression network to regress the coordination of the bounding box and 2) Developing a dedicated

classifier for object tracking that is a class agnostic.
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Appendix A

Loss function of NullSpaceNet

In this appendix, we provide our derivations for the derivative of the loss function. The first part

of the appendix is the analytical derivative of the loss function w.r.t the W T S̃bW . The second

part is the computational graph derivation of the W T S̃bW w.r.t the last layer of NullSpaceNet

H as shown in Fig. A.1.

A.1 Analytical Derivative of The Loss Function w.r.t WTS̃bW

The nullspace of the within-class scatter matrix is defined as follow:

Uw =
�
u 2 Rd | Swu = 0

 

=
�
u 2 Rd | u>Swu = 0

 

=
�
u 2 Rd | (F>

w
u)>F>

w
u = 0

 

=
�
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(A.1)
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From Equation (20) in the paper, the loss function solves for the Singular Value Decomposition

(SVD) as follows:

L(�E(x; ✓)) = �
kX

i=1

SV DEi(W
T S̃bW ) (A.2)

For simplicity let L = L(�E(x; ✓)), @L
@A

= @A, and A = W T S̃bW . The SVD of A is given by:

A = UEV T (A.3)

Since the loss function adds up the Eigenvalues, we will derive the derivative of the loss function

w.r.t three components U,E, and V . Note that the derivative here assumes the low rank case

where A 2 Rm⇥n of rank k and k  min(m,n). The derivative of A w.r.t each component is

given by:

@A = @UEV T + U@EV T + UE@V T (A.4)

From the properties of the SVD and by imposing the orthogonality of U and V , this condition

holds:

UTU = V TV = I (A.5)

Where I is the identity matrix. Hence, the derivative of the Equitation A.5 w.r.t U , similarly for

V , is given by:

@UTU + UT@U = 0 (A.6)

Equation A.6 satisfies the fact that the transpose of the matrix eqauls its negative as follows:

@UTU = �UT@U (A.7)
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which means that both sides in Equation A.7 are anti-symmetric matrices. Multiplying the right

hand side of Equation A.7 by U and using the condition in Equation A.5 :

U UT@U| {z }
@↵u

= @U (A.8)

From Equation A.8 the derivative of U , similarly for V, is:

@U = U@↵u (A.9)

Since U is orthogonal:

@↵u = UT@U (A.10)

In our implementation we do not fully use all basis vectors however, in the back-propagation

all basis have an effect on the accumulated error. Hence, using Gram-Schmidt we add the

orthogonal complement U?@�u to @U as follows

@U = U@↵u + U?@�u (A.11)

Multiplying both sides of Equation A.4 by UTV

UT@AV = UT@U| {z }
@↵u

E V TV| {z }
I

+

UTU| {z }
I

@E V TV| {z }
I

+

UTU| {z }
I

E@ V TV| {z }
@↵v

T

(A.12)

The equation A.12 becomes:

UT@AV = @↵uE + @E + E@↵v
T (A.13)
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In Equation A.13, since the @↵u and @↵v
T are anti-symmetric matrices, the right diagonals are

zero or almost zero. This property, anti-symmetric, forces the Equation A.13 to be split into

two equations, the on-diagonal component and off-diagonal component:

I · UT@AV = @E (A.14)

Ĩ · UT@AV = @↵uE + E@↵v
T (A.15)

Ĩ is the complement of I where the right diagonal is zeros and all other elements are non-zero.

Using the property of anti-symmetric:

Ĩ · UT@AV = @↵uE � E@↵v (A.16)

Taking the transpose of Equation A.16

Ĩ · (UT@AV )T = �E@↵u + @↵vE (A.17)

Multiplying both Equations A.16 and A.17 by Eand adding up:

Ĩ · [UT@AV E + E(UT@AV )T ] =

@↵uE
2 � E2@↵v

(A.18)

Rearrange Equation A.18

@↵u = F · [UT@AV E + E(UT@AV )T ] (A.19)

Where F is defined as follows

Fij =

8
><

>:

1
E

2
j�E

2
i

i 6= j

0 i = j
(A.20)
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Similarly for @↵v

@↵V = F · [EUT@AV + (UT@AV )TE] (A.21)

To find @�u, multiply Equation A.4 by ? UT and substituting by Equation A.11

? UT@↵V =? UT@UEV T+

? UTU@EV T+ ? UTUE@V T

| {z }
0

=? UT@UEV T

= ? UT [U↵u| {z }
0

+U?@�u]EV T

= @�uEV T

(A.22)

Consequently, @�u, similarly for @�v, can be re-written as follows:

@�u = U?@AV E�1 (A.23)

Finally, Using the property of anti-symmetric, the derivative of U is given by:

@U = U [F · [UT@AV E+

EV T@ATU ]]+

[I � UUT ]@AV E�1

(A.24)

@E is given below:

@E = I · UT@AV (A.25)

@V as follows:

@V = V [F · [EUT@AV+

V T@ATUE]]+

[I � V V T ]@ATUE�1

(A.26)

219



A.2 Computational Graph Derivation of WTS̃bW

The computational graph of the proposed loss function is shown in Fig. A.1. From Equation 11

in this chapter let these variables are defined as follows:

µh = µg, H̃ = Ft, H̃c = Fw
(A.27)

Assuming the forward pass has been executed once and all needed variables are cached,

using the chain rule we can derive the derivative of W T S̃bW w.r.t the last layer of NullSpaceNet

as shown in Fig. A.1 as follows:

@S̃b = U@EV T (sqw) (A.28)

@(sqw) =
X

U@EV T S̃b
(A.29)

@(squ1) = @S̃bSb
(A.30)

@Sb = @S̃b(squ1) (A.31)

@W = 2W@(sqw) (A.32)
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@(S̃w2) = @V @W (A.33)

@(squ2) = @(S̃w2)Sw
(A.34)

@Sw2 = (squ2)@S̃w
(A.35)

@u1 = 2[@(squ1) + @(squ2)]@(S̃w2)u1 (A.36)

@H̃1 = @u1@A (A.37)

@St = (@Sb)Sw
(A.38)

@Sw1 = �@Sb
(A.39)

@sq1 =
1

N
I(N,D)@St

(A.40)
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@H̃2 = 2@(sq1)H̃ (A.41)

@H1 = @H̃1 + @H̃2 (A.42)

@Hµh
= �[@H̃1 + @H̃2] (A.43)

@(sq2) =
1

N
I(N,D)[@Sw1 + @Sw2 ] (A.44)

@H̃c = 2H̃c@(sq2) (A.45)

@H2 = @H̃c
(A.46)

@µc = �
X

@H̃c
(A.47)

@H3 =
1

C
@µcI(N,D) (A.48)
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@H4 =
1

m
I(N,D)@µh

(A.49)

Finally, @L(�E(x;✓))
@H

is calculated as follows

@L(�E(x; ✓))

@H
= @H1 + @H2 + @H3 + @H4 (A.50)
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Figure A.1: Computational graph of the proposed loss function.The red arrows are the forward

pass and the green arrows are the backward pass. Each arrow has a variable name on it.

224


