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Abstract

In large-scale wireless sensor networks (WSNs), the position information of individual

sensors is very important for many applications. Generally, there are a small number

of position-aware nodes, referred to as the anchors. Every other node can estimate its

distances to the surrounding anchors, and then employ trilateration or triangulation for

self-localization. Such a system is easy to implement, and thus popular for both terrestrial

and underwater applications, but it suffers from some major drawbacks. First, the density

of the anchors is generally very low due to economical considerations, leading to poor

localization accuracy. Secondly, the energy and bandwidth consumptions of such systems

are quite significant. Last but not the least, the scalability of a network based on fixed

anchors is not good. Therefore, whenever the network expands, more anchors should be

deployed to guarantee the required performance. Apart from these general challenges,

both terrestrial and underwater networks have their own specific ones. For example, real-

time channel parameters are generally required for localization in terrestrial WSNs. For

underwater networks, the clock skew between the target sensor and the anchors must

be considered. That is to say, time synchronization should be performed together with

localization, which makes the problem complicated.

An alternative approach is to employ mobile anchors to replace the fixed ones. For

terrestrial networks, commercial drones and unmanned aerial vehicles (UAVs) are very

good choices, while autonomous underwater vehicles (AUVs) can be used for underwater

applications. Mobile anchors can move along a predefined trajectory and broadcast beacon

signals. By listening to the messages, the other nodes in the network can localize themselves

passively. This architecture has three major advantages: first, energy and bandwidth
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consumptions can be significantly reduced; secondly, the localization accuracy can be much

improved with the increased number of virtual anchors, which can be boosted at negligible

cost; thirdly, the coverage can be easily extended, which makes the solution and the network

highly scalable.

Motivated by this idea, this thesis investigates the mobile node-aided localization and

tracking in large-scale WSNs. For both terrestrial and underwater WSNs, the system

design, modeling, and performance analyses will be presented for various applications,

including: (1) the drone-assisted localization in terrestrial networks; (2) the ToA-based

underwater localization and time synchronization; (3) the Doppler-based underwater lo-

calization; (4) the underwater target detection and tracking based on the convolutional

neural network and the fractional Fourier transform. In these applications, different chal-

lenges will present, and we will see how these challenges can be addressed by replacing

the fixed anchors with mobile ones. Detailed mathematical models will be presented, and

extensive simulation and experimental results will be provided to verify the theoretical

results. Also, we will investigate the channel estimation for the fifth generation (5G) wire-

less communications. A pilot decontamination method will be presented for the massive

multiple-input-multiple-output communications, and the data-aided channel tracking will

be discussed for millimeter wave communications. We will see that the localization problem

is highly coupled with the channel estimation in wireless communications.
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Chapter 1

Introduction

1.1 Background

Large-scale wireless sensor networks (WSNs) are crucial for environmental, military, com-

mercial, and scientific purposes, and have gained increasing attention in the past decade

[2,3]. The underwater sensor networks are of particular interest to academia and industry,

due to the rapid growth of human ambition on ocean exploration. With underwater sen-

sors, ocean monitoring, tsunami warning, and resource exploration will become easier and

more efficient. However, in order to exploit the full potentials of the large-scale WSNs,

one important technical challenge must be properly addressed is how to obtain the loca-

tion information of individual sensors in real time. In many network applications, location

information of sensors is critical for decision making. For example, for environmental mon-

itoring applications, environmental data without the corresponding location information is

meaningless. However, how to effectively obtain such information remains as a challenging
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problem in both terrestrial and underwater applications.

As we know, the GPS (Global Positioning System) is playing a dominant role in outdoor

applications. However, GPS signals are not available for underwater sensor networks, due to

water’s absorption of electromagnetic waves. Under the terrestrial scenario, GPS may not

be necessarily a good choice for some applications. For example, for a large sensor network

in deep forests for environmental and fire monitoring, the GPS signals can be easily blocked.

On the other hand, even when the GPS signal is available, it might be uneconomical and

impractical to equip a GPS chip on every node for the following considerations: first, a

GPS receiver is sometimes more expensive than the rest of the sensor node; secondly, the

node number in a large-scale WSN can be very big, as the name suggests [3]. Besides, it is

unrealistic to collect sensors’ location information manually, due to the massive quantity

and the movement of wireless sensors. Therefore, a practical strategy is to install GPS chips

on a small number of sensors, and use them as reference nodes, i.e., anchors. Then, the other

nodes localize themselves with reference to these location-aware anchors through geometric

methods. These anchors can work independently or cooperatively, and the cooperative

localization systems can improve positioning accuracy at the cost of more communication

overheads and higher computational complexity.

For the underwater scenario, one possible solution is to deploy buoys on the sea surface

of the target area [4]. The buoys are equipped with the GPS receivers, and they can

localize themselves in real time. Then, they serve as location-aware anchors, and broadcast

their positions and timing information through hydrophones. The underwater acoustic

devices can receive the signals for self-localization. This system is not economic for large

underwater acoustic sensor networks, because the density of buoys should be comparable
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to that of the underwater sensors to ensure coverage. Another choice is to manually localize

some of the sensors, and use them as anchors for the localization of other sensors. Once a

sensor is localized, it can also serve as an anchor. This process repeats until the location

information of all sensors is obtained. The major issue of such a system is the low accuracy,

as has been pointed out by [5]. To be specific, the positioning accuracy of this system is

highly dependent on the density of anchors, which is generally very low.

As we can see, the localization in large-scale WSNs is challenging. Fortunately, the

surge of UAVs such as small consumer drones and AUVs provides us with another possible

solution. Drones have been applied to many areas, such as photography, radar imaging [6],

telepresence platform [7], and even express delivery [8]. In [9] and [10], the energy efficiency

and throughput of drone-assisted WSNs are discussed. Drones provide a favorable platform

for many applications because they are affordable, agile and versatile. Taking the DJI

INSPIRE 2 as example, each of the four rotors can provide a thrust of two kilograms, and we

can install all kinds of sensors on it conveniently [11]. Therefore, drones can serve as mobile

anchors for localization in large-scale WSNs. For underwater WSNs, the AUVs can serve

as mobile anchors as well as mobile data collector and aggregator [12–17]. When the AUVs

move close to the sensors, they can collect the data through optical communications or

magnetic induction methods, which support very high data rates. However, the AUVs must

localize the sensors before that. To achieve this goal, the AUVs travel on the predefined

trajectories, and broadcast beacon signals periodically. Any acoustic device within the

communication range of the AUVs can receive the beacon signals and localize themselves

through trilateration. This system can also work in the opposite way, that is, the target

devices generate beacon signals, whereas the AUVs stay silent. From the received signals,
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the AUVs can localize and track the target devices. Nowadays, some AUVs are solar-

powered and suitable for long-endurance missions [18]. By employing AUVs, the number

(or density, equivalently) of anchors can be boosted at a negligible cost, leading to much

improved localization accuracy [5]. The AUVs can greatly extend the network coverage

by moving around in the area of interest. The positioning and timing error caused by the

AUVs’ movement is negligible, because their typical velocity is only around 1.5 m/s [18,19].

1.2 Challenges and Problem Description

In large-scale WSNs, by replacing the fixed anchors with drones and AUVs, better coverage

and higher localization accuracy can be achieved at very low cost. However, there are still

some challenges in system design, and depending on the applications, the challenges lie in

different aspects. In this section, we will briefly review these challenges.

1.2.1 Challenges in Terrestrial Localization

Most terrestrial localization techniques are ranging-based, and the underlying idea is tri-

lateration or triangulation. To be specific, a target node estimates its distances to the

anchors in its communication range and employs trilateration to localize itself. Therefore,

a major problem is how to estimate the distances. For ranging purposes, four common

choices are ToA (Time of Arrival), TDoA (Time Difference of Arrival), RTD (Round-Trip

Delay) and RSS (Received Signal Strength). The ToA-based ranging method can be very

accurate, but it requires high-precision time synchronization between the transmitters and

receivers, which is expensive in practical implementation. Thus, it is not suitable for low-
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cost WSNs. TDoA is adopted in GPS, where only time synchronization among anchors

is required. The RTD can be estimated by sending a small packet to an anchor and re-

ceiving the corresponding reply packet. By doing that, a target node can easily estimate

the distance without expensive time synchronization. However, the RTD-based method

still experiences heavy communication burden since the target nodes need to send/receive

packets to/from all anchors within the communication range.

For terrestrial localization, the RSS-based ranging method is attractive among the

four candidates since it does not have the above mentioned deficiencies. The basic idea

is to estimate the distance between the transmitter and receiver based on the RSS. For

this method, a LoS (Line-of-Sight) path between the transmitter and receiver is generally

assumed. Nevertheless, how to apply the RSS-based method to NLoS (None-Line-of-Sight)

scenarios is studied in many literatures [20–22]. For example, the authors of [22] proposed

to rule out the NLoS RSS values by setting a predefined threshold. The radio propagation

model is an essential component in RSS-ranging based localization systems. Generally, RSS

is affected by many factors, such as shadowing and the multi-path effect, corresponding to

the slow and fast fading, respectively. These factors introduce vigorous fluctuations in RSS,

which causes large ranging errors. Fortunately, shadowing and multi-path fading can be

ignored in wide open fields, where large-scale WSNs are generally deployed. Nevertheless,

RSS measurements still fluctuate due to the imperfections of the radio propagation model

and the devices used for measurements.

In the radio propagation model, the model parameters vary with environments and

time, which means we need to update them in real time. To address this issue, a possible

solution has been proposed in [23], where the central node periodically estimates those
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parameters by collecting the RSS measurements among anchors and broadcasts the esti-

mated parameters. Then, the other nodes in the network can utilize those parameters to

localize themselves by measuring the RSS of anchors.

The RSS-ranging based localization method is easy to implement, however, it suffers

from several major defects as follows. Firstly, it is difficult to obtain unbiased estimates of

distances from RSS measurements in practical scenarios [24]. Even with perfect channel

parameters, an estimator that achieves the Cramér-Rao lower bound (CRLB) is still ab-

sent [25]. Secondly, because positioning error is proportional to ranging error, inaccurate

distance estimates will lead to poor localization accuracy. Thirdly, due to economic con-

siderations, the density of anchors is generally kept very low. In later discussions, we will

see that by employing a drone as a mobile anchor, most of these problems can be very well

addressed.

1.2.2 Challenges in Underwater Localization

For underwater large-scale WSNs, ToA and TDoA are the most common choices, because

they achieve great balance between performance and complexity. Employing AUVs as

mobile anchors, the sensors can estimate ToA or TDoA by receiving the beacon messages

from AUVs. Generally, there will be a time bias between the AUVs and the sensors. As a

result, time synchronization must be conducted through bi-directional message exchange.

For the localization and time synchronization system based on fixed anchors, a huge number

of anchors are required, because every target sensor needs at least three or four anchors in

its communication range, depending on whether the average sound speed is known or not.

Besides, because the anchors are fixed, their coverage will be quite limited. Therefore, the
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authors of [12] proposed to deploy an AUV as a mobile anchor in the area of interest. The

AUV travels on the predefined trajectories, and broadcasts beacon signals periodically. By

receiving the beacons, all sensors in the network localize themselves. In [17], the sequential

time-synchronization and localization (STSL) algorithm is proposed for the AUV-based

system, in which time synchronization and localization are conducted iteratively. This

method has two problems: firstly, extra estimation error is introduced by assuming the

AUV is static in a short period of time; secondly, according to the simulation results, it

converges slowly.

Apart from ToA and TDoA, Doppler shrift is another choice for underwater localization.

As known, Doppler shift is generally used to estimate radial velocities of targets. However,

it can also be used for three dimensional localization. Compared with the ToA-based

method, the Doppler-based one has advantages in some applications. For example, suppose

we employ AUVs to find a flight recorder in a specific water area, like in the search of the

missing aircraft MA370. For the ToA-based method, the flight recorder should be equipped

with a modem to broadcast beacon messages. For the Doppler-based method, it only needs

to broadcast a sinusoidal wave at a fixed frequency. However, the mathematical model of

the localization problem based on Doppler shift is more complicated.

After localization and time synchronization of the underwater sensor network, the sen-

sors can work collaboratively to scan a target area and identify the objects in this area.

The location and velocities of these targets can be estimated simultaneously. In recent

years, the continuous active sonar (CAS) is getting more research interest, because it al-

lows the sonar to transmit probe signals at very low power for a long period of time, and

the reflected waves will be received by the other nodes. Based on the received signals,
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distance and radial velocity of the target can be estimated. With enough observations, the

sensor network can localize and track the target. In this system, a major challenge is the

real-time processing of large volume of data.

1.3 Motivations and Research Contributions

Based on the previous discussions, RSS is a good choice for ranging in terrestrial WSNs.

When we employ a drone as a mobile anchor, the major challenge is how to get the real-

time parameters of the propagation model. To solve this issue, an intuitive idea is to jointly

estimate the model parameters and sensor’s location. By doing this, the communications

burdens of the conventional localization framework can be alleviated. Meanwhile, the

mobility of drones makes it possible to boost the number of virtual anchors at low cost,

leading to much improved localization accuracy.

For underwater localization, AUVs can serve as mobile anchors. ToA and Doppler

shift can be employed for localization, and they both have certain advantages in specific

applications. The advantage of the ToA-based approach is that localization and time

synchronization of the sensors in a network can be simultaneously conducted. On the

other hand, Doppler shift contains both location and velocity information, and is a good

choice for mobile target tracking. Similar to the terrestrial scenario, the mobility of the

AUV can significantly improve system performance and reduce the cost.

With the above mentioned motivations, we will investigate the design, modeling, and

analyses of mobile node-assisted localization in large-scale WSNs in this thesis. Also, moti-

vated by the channel modeling needs for the localization problems, the channel estimation
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and channel tracking are investigated for massive multiple-input-multiple-output (MIMO)

and millimeter wave (mmWave) communications, which are two key enabling techniques

for the fifth-generation (5G) cellular networks. The major contributions are summarized

below.

(1) Algorithm design and comprehensive analyses are conducted for the drone-assisted

localization framework. The theoretical results are supported by simulations and

experiments.

(2) A two-phase low-complexity algorithm is presented for ToA-based underwater local-

ization and time synchronization. Based on the theoretical and simulation results,

the CRLB can be closely achieved.

(3) It is shown that we can exclusively depend on the Doppler shift measurements for un-

derwater localization, and the positioning accuracy grows cubically with the sampled

sequence length.

(4) The convolutional neural network-based target detection and localization framework

is designed for CAS, and the accuracy can be as high as 97 percent.

(5) The spatial sparsity of signals in massive MIMO systems is thoroughly analyzed, and

a pilot decontamination method based on spatial filter is proposed.

(6) A data-aided channel tracking scheme is proposed for mmWave communications.

Theoretical and simulation results show that the CRLB can be achieved, and the

communication redundancy is significantly reduced.
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1.4 Thesis Organization

The topics of different chapters are briefly summarized in this section.

In Chapter 2, the fundamentals of the related techniques in localization and com-

munications are introduced, including the RSS-ranging based terrestrial localization, the

ToA-based underwater localization, the massive MIMO technique, and the millimeter wave

communications. Also, challenges and problems concerning these techniques are also pre-

sented in detail.

In Chapter 3, a drone-assisted zero-configuration localization framework will be pre-

sented. A drone will be employed as a mobile anchor and the RSS is used for rangingo.

An algorithm is introduced to jointly estimate the unknown parameters of the propagation

model and the target node’s distance to the drone. The closed-form positioning error is

derived for the Newton’s method and the CRLB is closely achieved. This new framework

has two advantages over the conventional one: 1) offline measurements are totally unnec-

essary; 2) the number of virtual anchors can be vastly increased at negligible cost, leading

to very high positioning accuracy.

In Chapter 4, an AUV-aided joint localization and synchronization algorithm will be

presented for underwater WSNs. Similar to the terrestrial scenario, an AUV serves as a

mobile anchor, and keeps broadcasting beacon messages. The nodes in the WSN achieve

self-localization by receiving the beacon messages from the AUV. A two-phase joint time

synchronization and localization algorithm is presented. In the first phase, the relative

clock skew is ignored, because it is generally very small. Then, the nonlinear equations

are transformed into linear ones, and the least square (LS) algorithm is employed to obtain
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coarse time synchronization and localization results. In the second phase, the coarse es-

timation is refined by another LS estimator. Compared with the existing algorithms, the

proposed one achieves the CRLB with much lower computational complexity.

In Chapter 5, the passive localization of acoustic devices based on Doppler shift mea-

surements will be investigated. It can be easily shown that the Doppler shifts not only

contain speed information, but also position information. Therefore, we will discuss the

localization accuracy of systems exclusively dependent on Doppler shift. A low-complexity

Doppler estimation algorithm is employed and the probability density function of its estima-

tion error is derived. Based on Doppler shift measurements, a two-phase linear algorithm is

presented for Doppler-based underwater localization, and its closed-form localization error

is given. As a benchmark, the CRLB of the proposed system is analyzed.

In Chapter 6, the focus will be the proactive tracking of underwater objects/events

based on underwater sensor network. After obtaining the position information of the nodes

in an underwater WSN, we can employ the network for surveillance of the target water

area. Some proactive nodes will periodically broadcast linear frequency modulated (LFM)

signals, which will hit the targets, get reflected and received by the other nodes. Depending

on the target’s position and velocity, the received signals will also be LFM signals of differ-

ent frequencies and frequency rates. We can use the Fractional Fourier Transform (FrFT)

to analyze the received signal’s spectrum and find the peak. Based on the location of the

peak, the target’s distance and radial velocity can be estimated. However, the accuracy

is highly dependent on the sampling interval of the spectrum. Smaller sampling interval

leads to higher accuracy but also induces considerable complexity. To overcome this issue,

a machine learning-based approach is presented to automatically detect the existence of the
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target, and roughly estimate the peak’s location if targets exist. Then over-sampling can

be conducted for a small area around the peak, leading to improved accuracy and reduced

complexity. The idea is based on the following observation: if a target exists, we will be

able to observe an “X” pattern on the spectrum. Extensive simulations are conducted to

verify the effectiveness of the presented architecture.

In Chapter 7, a pilot decontamination method based on spatial filter will be presented

for massive MIMO communications. To employ massive MIMO for high-speed data trans-

mission from drones to BSs, the pilot contamination issue must be resolved. Due to pilot

reuse, every user will experience interference from users in adjacent cells who employ the

same pilot sequence. In massive MIMO systems, the communication protocols are gener-

ally divided into four phases: pilot transmission, processing, uplink data transmission, and

downlink data transmission. In the first phase, the BS receives both the desired signal and

the pilot contaminated signal. In the second phase, all users in the target cell stay silent

for one symbol period and the BS only receives interference from adjacent cells. The fast

Fourier transform can then be employed to analyze the spatial spectrums of the received

signals. The spatial sparsity of the massive MIMO channels makes it possible to identify

the pilot contamination components by comparing the two spectrums on different spatial

signatures (or angles of arrival). A spatial filter can then be constructed to eliminate pilot

contamination. Both theoretical analysis and simulation results demonstrate the effective-

ness of the proposed method, whose complexity is comparable to that of the conventional

LS channel estimator.

In Chapter 8, a data-aided fast channel tracking algorithm will be introduced for mil-

limeter wave communications. The mmWave channels are generally very sparse, and the
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CSI in adjacent data blocks are highly correlated. Therefore, it is possible to employ the

CSI from the previous data block for the data detection in the current block. Then, based

on the detected data, the CSI can be updated. By doing this, we only need to transmit

pilot sequence at the very beginning, and exclusively depend on detected data for channel

tracking. The channel estimation overhead can thus be significantly reduced. We will see

that the data-aided channel tracking algorithm has very high accuracy and low cost in

sparse channels.

The last chapter summarizes the thesis and presents the future work.
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Chapter 2

Fundamentals of Localization and

Communications in Terrestrial and

Underwater Networks

In this chapter, several important localization and communication techniques in terres-

trial and underwater networks will be introduced. The localization and communication

are deeply coupled, especially in the era of 5G. To be specific, both Massive MIMO

and mmWave demand high accuracy channel estimation, and the channel state informa-

tion (CSI) contains ToA and DoA information, which can be used for positioning. For

localization of terrestrial WSNs, the RSS-ranging based method is very popular, while

ToA or TDoA are more common choices in underwater applications. For the wireless com-

munications, the discussion will be focused on massive MIMO and mmWave, because they

are believed to be the most important techniques for the next generation wireless commu-
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nication systems. The system model and channel estimation process will be presented, and

the major challenges will be discussed.

2.1 Fundamentals of Terrestrial Localization

2.1.1 Related work

Currently, terrestrial localization is mainly based on radio signals [21,22,26–30]. In [31–33],

the fundamental limits of radio based localization systems on positioning accuracy are

discussed. Generally, a small number of location-aware nodes are deployed in the network,

referred to as anchors. The localization system can work in passive or proactive mode. In

the proactive mode, the anchors broadcast beacon signals periodically. The other nodes

in the network can receive the beacon signals, estimate the DoA, RSS, ToA, TDoA, etc.,

and employ these measurements to localize themselves. In the passive mode, the anchors

will stay silent, detect signals from other nodes, and extract their position information.

Generally, these systems can be roughly divided into two categories: the ranging-based

methods and the ranging-free methods, depending on whether they need to calculate the

distances between anchors and target nodes or not.

The basic idea underlying the ranging-based methods is trilateration. To be specific,

a target node estimates its distances to the anchors in its communication range and em-

ploys trilateration to localize itself. Therefore, the major problem is how to estimate the

distances. The ranging process can be based on ToA, TDoA, RTD and RSS, as we have

mentioned in the previous chapter. The ranging-free localization methods can also be

implemented with various kinds of measurements [26,34–37]. For example, DoA is a com-
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mon choice for positioning systems [34]. Using DoA instead of distance, two anchors are

sufficient for 2D or even 3D positioning. Besides, angular information can be combined

with ranging results to improve positioning accuracy [26]. However, antenna arrays, the

indispensable elements for DoA-based systems, are both clumsy and costly for small and

cheap sensors. Another kind of appealing measurement is often referred to as connectivity.

The underlying idea is that if a target sensor receives signals from several surrounding

anchors, it must lie in their intersection [35, 36]. According to the experimental and the-

oretical results in [37], the connectivity-based positioning system can even outperform its

peer based on RSS-ranging in noisy environments. Fingerprint-based algorithms are also

very popular, but mainly for indoor applications. For example, fingerprint is combined

with deep learning in [38–40] for indoor localization, and the positioning error can be very

close to or even smaller than one meter.

Not all the above mentioned positioning techniques are suitable for WSNs due to the

following considerations. First, the cost of the positioning system should be acceptable.

Second, due to limited power supply, the communication traffic of the positioning system

and the computation complexity of the localization scheme are restricted. Last but not

the least, the expected positioning accuracy should be achieved. Considering all these

factors, the RSS-ranging based localization system is widely acknowledged to achieve good

compromise between performance and cost.

2.1.2 RSS-Ranging based Localization

In RSS-ranging based localization systems, the anchors are periodically broadcasting bea-

con signals, and every other node can estimate its distances to surrounding anchors ac-
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cording to the RSS. Then, trilateration can be employed for self-localization.

The radio propagation model is an essential component in RSS-ranging based localiza-

tion systems, and it is given by

P (d) = P0 − 10 ⋅ α ⋅ lg (d) + n, 1 (2.1)

where P (d) and P0 represent the RSS (in dBm) at distances of d (in meters) and d0

(d0 = 1 m is the reference distance throughout the paper), respectively. α denotes the path

loss exponent, and its value in free space is 2. n is the measurement error of P (d) and can

be modeled by the zero-mean Gaussian distribution, i.e., n ∼ N (0, σ2
n). This model has

been extensively verified by field experiments and adopted in many studies [37,41,42]. To

simplify notations, we rewrite (2.1) as

P (d) = P0 − β ⋅ ln (d) + n, (2.2)

where β = 10 ⋅ α/ ln 10.

The RSS-ranging based localization systems are very popular in large-scale WSNs, and

three major research directions in this field are summarized in the following paragraphs.

The first research direction is how to improve ranging accuracy [30,43], which is crucial

for any trilateration based positioning methods. Based on the assumptions of perfect

channel parameters and log-normal distribution of RSS values, the CRLB of ranging error

has been discussed in many literatures [37, 41, 44]. In [41], an unbiased range estimator is

proposed, and ranging error is proven to be proportional to the transmitter-receiver (T-R)

distance. However, to the best of our knowledge, the optimal estimator that achieves the

1Throughout the thesis, lg (⋅) and ln (⋅) represent base-10 and natural logarithms, respectively.

25



CRLB is still absent, even with full knowledge of the channel parameters, i.e., P0 and β.

In [24], imperfect channel parameters are considered, which is more realistic.

The second major research direction is how to estimate the target’s position based on

the ranging results. By viewing the target’s coordinate as unknown parameters, a series

of circular equations can be established according to the radio propagation model. The

solutions of these equations provide the positioning result, where the positioning error is

inevitable due to the ranging error. The CRLB of positioning error has been discussed in

many literatures [28, 29, 41]; nevertheless, how to achieve that is still under investigation.

In [28], a low complexity algorithm based on the least square method is presented for

circular equations. In [29], an extended centroid localization algorithm is proposed to

remedy the positioning error caused by biased range estimators. Newton’s method is

proposed as a solution in [41], and the authors have demonstrated that CRLB of positioning

error can be achieved under perfect channel parameters, by assigning smaller weights to

further anchors. Similar to other trilateration based localization systems (e.g., GPS), the

performance of RSS-ranging based positioning system is highly dependent on the number

and geometrical distribution of anchors. As a result, the positioning accuracy of target

sensors can be quite different [41,45]. We will show in the next section that the density of

anchors puts a fundamental limit on positioning error.

The third direction concentrates on how to get channel parameters. An intuitive idea

is to calculate them based on off-line measurements. In fact, the ML estimate of these

parameters can be obtained through the LS method [41]. However, these parameters should

be timely and automatically updated because they vary with time and environments. To

address this issue, a possible solution is proposed in [23]. The basic idea is to collect
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the RSS measurements among anchors, and use a central node to estimate and broadcast

channel parameters automatically and periodically. Nevertheless, a major problem of this

system is the extra communication burden for the purpose of collecting RSS measurements

and broadcasting channel parameters.

2.1.3 Deficiencies of the Conventional Architecture

The RSS-ranging based localization system is easy to implement; nevertheless, it suffers

from several major defects as follows.

First of all, due to economic considerations, the density of anchors is quite limited,

which leads to poor positioning precision. In [25], the variance of positioning error of the

RSS-ranging based method is given as:

σ2
p = tr{(HTD−1H)−1} ⋅ exp(

σ2
n

β2 ⋅ ln 10
− 1) , (2.3)

where the i-th row of H is the unit vector pointing from the i-th anchor to the target node.

D is a diagonal matrix, and the i-th element is the square of the distance between the

target node and the i-th anchor. The first component in the right hand side of Equation

(2.3) is defined as GDOP (Geometrical Dilution of Precision) since matrixes H and D are

determined by the geometrical distribution of anchors. Using the results in Lemma 1 (given

in Appendix A.1), we have the lower bound of GDOP as

GDOP = tr{(HTD−1H)−1} ≥
4

∑
N
i=1 1/d2

i

, (2.4)

where di is the distance between the i-th anchor and the target node. The equality of Equa-

tion (2.4) holds when the two eigenvalues of HTD−1H are equal (considering 2-dimensional

localization). Statistically, the lower bound of positioning error is inversely proportional
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to anchor number, as we will show in latter discussions. In the conventional localization

systems based on fixed anchors, N is very small and the lower bound of positioning error

is quite high. Besides, due to the limited number of anchors, GDOP varies vigorously

with the geometrical distribution of the network, which makes this system unstable [25],

i.e., some nodes may have high positioning accuracy, while others may experience large

positioning error.

The second problem is that it is difficult to obtain unbiased estimates of distances

from RSS measurements in practical scenarios [24]. Even with perfect channel parameters,

an estimator that can achieve the CRLB is still absent [25]. Because positioning error is

proportional to ranging error, inaccurate distance estimates will lead to poor localization

accuracy.

The last problem is the real-time update of the channel parameters, including P0, α,

and σ2
n. To address this issue, a possible solution has been proposed in [23], where the

central node periodically estimates those parameters by collecting the RSS measurements

among anchors and broadcasts. The three phases of this solution can be summarized as:

a) the central node estimates channel parameters according to the RSS measurements

among anchors, and broadcasts periodically;

b) the target node receives channel parameters and measures RSS values of anchors

within its communication range;

c) after receiving signals from three or more anchors, the target node can estimate its

distances to anchors based on RSS values and localize itself through trilateration.

This method is very straight forward and effective. However, it will inevitably aggravate
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communication burdens and battery consumption on sensor nodes. This is quite obvious

because of the following communication links dedicated to the localization purpose: 1)

anchors report RSS measurements to the central node; 2) the central node broadcasts

channel parameters to the network. Therefore, the central node needs to be very powerful,

so as to cover the whole network.

2.2 Fundamentals of Underwater Localization

With the growth of human ambition on ocean exploration, more and more underwater

devices are deployed. These devices are used for environmental monitoring, resource ex-

ploitation, tsunami warning, wreck salvage, and so on. For many applications, a reliable

underwater localization technique is very important. In underwater WSNs, ToA is the

most common choice for localization and time synchronization of the nodes. In this sec-

tion, we will first survey related work in this area, and then introduce the underwater

acoustic channel model and the ToA-based localization technique. After localization and

time synchronization, the WSN can be used for silent object detection in the coverage area,

and this topic will be briefly discussed in the last part of this section.

2.2.1 Related work

During the past several decades, many localization systems for underwater WSNs have

been proposed, including various system architectures and the localization algorithms. We

will briefly review the existing work from these two aspects.

For the system architecture, the first choice is to deploy buoys on the sea surface of the
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target area [4]. These buoys are equipped with the GPS receivers, and they can localize

themselves at very low cost. Then, they serve as location-aware anchors, and broadcast

their position and timing information through hydrophones. Another choice is to manually

localize and synchronize some of the sensors, and use them as anchors for the localization

of other sensors. Once a sensor is localized and synchronized, it can also serve as an anchor.

This process iterates until the location information of all sensors is available. The major

issue of this system is the low accuracy, as has been pointed out by [5]. To be specific,

the positioning and timing accuracy of this system is highly dependent on the density of

anchors, similar to the terrestrial scenario. Due to the small number of initial anchors,

the system performance is quite limited. Another problem of this architecture is that the

positioning and timing error propagates in iterations [31,32,46].

An alternative is to deploy AUVs as mobile anchors [12–17]. The AUVs travel on the

predefined trajectories, and broadcast beacon signals periodically. Any acoustic device in

the communication range of the AUVs can receive the beacon signals and localize them-

selves through trilateration. By employing AUVs, the number (or density, equivalently) of

anchors can be boosted at negligible cost, leading to much improved accuracy [5]. Also,

the AUVs can provide very good coverage by moving around in the area of interest.

The localization algorithms are generally independent from the system architecture.

These algorithms can be based on DoA, ToA, TDoA, RSS, etc [47]. The ToA-based or

TDoA-based ones are the most common, because the timing error is reported to be at the

level of millisecond (ms) [48], leading to high positioning accuracy. The major challenges

include the stratification effect, long propagation delays, and energy constraints [49].

In [50], it was argued that RSS-ranging based method should work better in aquatic
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environments than on ground. The reason is that RSS decreases faster with distance

in underwater scenarios due to absorption, which leads to a strong correlation between

distance and RSS. In [15], the authors installed directional antennas on an AUV. On

every side of the AUV, there are two beams. When a target device receives signals from

the AUV for two consecutive beams, triangulation can be employed for localization. The

largest advantage of this system is that sensor nodes are passive, which will save energy and

prolong battery life. In [51], the authors discussed the possibility of employing Doppler

for target course estimation, based on the assumption that the Doppler velocity log is

available. In [52], the authors employed Doppler shift measurements for node tracking.

Information fusion is also an interesting topic in this area. For example, the authors

of [53] combined ToA and DoA for object localization through the Bayesian method. To be

specific, the localization result is the coordinate that maximizes the likelihood density of

the measurements. In [54], the authors discussed the possibility of employing both ToA and

Doppler shift for localization. In [55], the Doppler and ToA measurements were combined

for localization.

2.2.2 Underwater Acoustic Channel Model

For underwater localization applications, the underwater acoustic channel model plays a

very important role in system design, and it is generally given as [56–59]:

h(τ, t) =
L−1

∑
l=0

Al(t)δ(τ − τl(t)), (2.5)

where L denotes the number of paths between the transmitter and the receiver, and these

paths are indexed from 0 to L − 1. τl(t) represents the propagation delay of the l-th path
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at time t, and it can be approximated by

τl(t) = τl − alt, (2.6)

where al is often referred to as Doppler rate, and it describes how fast the delay of the l-th

path varies. The arriving paths are ordered based on the time of arrival, i.e., τl(t) < τl+1(t)

for an arbitrary l ∈ {0, 1, ⋯, L − 2}.

Al(t) is the real-time propagation loss of the l-th path, and we can assume it as a

constant for a relatively short period of time, because the coherence time for underwater

acoustic channels is on the level of seconds [57,58]. The path loss model is given as [50,60]

A(d, fc) = (d/d0)
γa(fc)

d−d0 , (2.7)

where d is the T-R distance, and d0 is a reference distance. γ indicates the spreading

loss, and it varies between 1 and 2, for cylindrical and spherical spreading, respectively.

a(fc) is often referred to as the absorption coefficient, and it is a function of the carrier

frequency fc. For fc = 10 kHz, a(fc) is around 2 dB/km. In [60], we can see that the

absorption coefficient increases with frequency piece-wise linearly. However, the bandwidth

of underwater acoustic system is only around several kHz (e.g.,The AquaSeNT OFDM

modem works on the frequency ranging from 14 kHz to 20 kHz [61]), and a(fc) can be

viewed as a constant for given fc. Therefore, the path loss model in dB is

Alg = 10 lgA(d, fc) = 10γ lg (d/d0) + 10(d − d0) lg a(fc). (2.8)

Generally, only the LoS signal provides useful information in localization systems, while

the multi-path components are interference. Therefore, the receiving nodes need to find

a way to decide whether a specific signal component is from LoS or NLoS path. This is

indeed an important topic, and has been investigated in literatures such as [62].
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2.2.3 ToA-based Localization

As we have mentioned, ToA and TDoA are the most common choices for underwater

localization. For WSNs, the anchors are generally assumed to be synchronized, while the

other nodes are not. In such systems, there are several major challenges and we will discuss

them in the following paragraphs.

First, underwater sound speed is not constant due to the heterogeneous salinity, den-

sity and temperature of seawater, leading to the well known stratification effect [49, 63].

Generally, the underwater sound speed ranges from 1420 m/s to 1560 m/s [64]. Although

an algorithm has been proposed to compensate for the stratification effect in [63], it is

computationally intense. In [17], the authors showed that a small uncertainty in acoustic

speed will cause significant positioning error. Also, the authors showed that the stratifica-

tion effect can be ignored by viewing the average acoustic speed as an extra unknown. This

approach has been widely utilized [65,66], because it can greatly reduce the computational

complexity.

Second, the localization problem is generally entangled with the time synchronization

problem, if ToA or TDoA are employed. Therefore, the optimization problem is compli-

cated and non-convex. Based on the ToA measurements, the ML estimator is reported

to achieves the CRLB at the cost of expensive computation; therefore, a more efficient

sub-optimal LS estimator is presented in [1]. In [1], the uncertainties of anchors’ clock and

location information are also considered. The CRLBs for both the accurate and inaccurate

anchor information are derived. In [17], the sequential time-synchronization and localiza-

tion (STSL) algorithm was proposed, in which an AUV served as the mobile anchor. The
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AUV was assumed to be static during a short period of time due to its low speed, which

makes time synchronization easier. This method has two problems: first, extra estima-

tion error is introduced by assuming the AUV is static in a short period of time; second,

according to the simulation results, it converges slowly.

2.2.4 Continuous Active Sonar

After time synchronization and localization, the WSNs can be used for target detection

and localization in the surveillance area. Such targets include icebergs, whales, leaked oil,

etc. These targets are silent, and the network needs to work in the proactive mode. To be

specific, some nodes will periodically broadcast probe signals, which will hit the targets, get

reflected and received by the other nodes. Depending on the target’s position and velocity,

the received signals will have specific Doppler shift and propagation delay, by measuring

which, we can estimate the target’s distance and radial velocity.

For such systems, the probe signals should be carefully chosen. Conventionally, short

pulse signals with low duty cycles are used as the probe signals. For such systems, the

operator only has one detection opportunity for every cycle, which is generally designed

to be very long to detect objects far away from the network. The use of short pulses

was inevitable in the past because the sonar systems had limited dynamic range, which

forced the transmitted signal to have a steady envelop. However, the state-of-the-art sonar

systems have much larger dynamic ranges, and the duty cycle is no longer severely limited,

which makes it possible to implement the continuous active sonar (CAS).

In CAS, probe signals with very high duty cycle will be used for target detection.

Compared with the pulsed active sonar, the CAS has the following advantages.
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(1) CAS has larger detection probabilities. For underwater objects, especially large size

objects, glint noise is a big problem. Because of glint noise, the strength of the

reflected signal varies with time, and is mostly weak. As a result, the pulsed signals

have a large miss rate.

(2) CAS suppresses false alarm rate. In shallow waters, there are many unstable reflec-

tions. Pulsed active sonar cannot filter these components, while CAS can average

them out through time diversity.

(3) CAS can improve tracking performance. Due to the low duty cycle, pulsed active

sonar cannot provide continuous information with respect to the target, which leads

to target ambiguity.

(4) CAS works at much lower power, which is environmentally friendly. The negative

impact of active sonar on underwater animals can be minimized, because the signal

strength is at the ambient noise level.

In [67], the authors employed CAS for target localization by jointly estimating target’s

distance and DoA. To be specific, the localization result is the coordinate that maximizes

the likelihood function of the ToA and DoA measurements. In [43], joint estimation of

target’s velocity and position was considered. In [68], experiment was conducted to show

that the CAS can achieve much better performance at lower SNR, compared with the

conventional systems.

For CAS, the linear frequency modulated (LFM) signals are preferred, because they

achieve great balance between time and frequency domain resolutions, allowing the si-

multaneous estimation of both target’s distance and radial velocity. LFM signals have

35



time-variant spectrums, and we cannot use the conventional Fourier transform to analyze

the spectrum of the received signals. Instead, the Wigner distribution should be com-

puted to accurately estimate the initial frequency and the frequency rate of the received

signal. However, this involves very high computational complexity, leading to the difficulty

of real-time signal processing. In [69], LFM signals are used for probing, and a band of

lag-Doppler filters are used for joint estimation of delay and Doppler shift. The filters

are designed based on uniform sampling in velocity and distance. However, it is not self-

adaptive. Fortunately, the surge of the Fractional Fourier Transform (FrFT) provides us

an alternative [70, 71]. To be specific, the authors showed that the FrFT of a given signal

corresponds to a rotation in the Wigner distribution [70]. To reduce the complexity of the

FrFT, two fast discrete FrFT algorithms were presented in [71].

When the LFM signal transmitted by a node hits the target, gets reflected and received

by another node, the receiver will receive another LFM signal, with different initial fre-

quency and frequency rate. These parameters are dependent on the target’s distance and

radial velocity. The receiving node will then conduct the FrFT, and we will get the two

dimensional spectrum of the received signal. For a LFM signal, we can always find a peak

in the spectrum, and its position is dependent on the initial frequency and frequency rate.

Therefore, we can estimate the target’s distance and radial velocity with respect to the

receiving node. With enough receiving nodes, we can then estimate the target’s location

and velocity.
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2.3 Introduction to Massive MIMO

In wireless data transmission, due to the limited energy and bandwidth, efficiency is as

important as robustness. During the past decade, we have seen great progress in wireless

communication techniques in the 5G cellular systems. Among them, the massive MIMO

technique shows great potential in improving spectral and energy efficiency simultaneously.

In this part, we will briefly introduce the background, system model, and the pilot con-

tamination issue of massive MIMO systems.

2.3.1 Background

In 2010, Thomas L. Marzetta proposed a new architecture for cellular networks, which is

often referred to as massive MIMO or large-scale MIMO [72]. This new framework draws

so much attention since being proposed because it casts light on two fundamental problems

of wireless communications, namely spectral efficiency and power efficiency. To understand

the revolutionary merit of this new technology, we need to briefly review its predecessor,

the traditional multi-user MIMO (MU-MIMO). In LTE-A, as many as 8 antennas are de-

ployed at a BS to simultaneously serve two single antenna terminals through SDMA (Space

Division Multiple Access), while there are typically tens of users in one cell. Therefore,

SDMA needs to coexist with OFDMA (Orthogonal Frequency Division Multiple Access) in

the traditional MU-MIMO systems.

Compared with its predecessor, the major upgrade of massive MIMO is the dramatic

increase of antenna number at BSs. This change seems trivial but it can actually boost

system capacity by orders of magnitude. The secret is that massive MIMO totally discards
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OFDMA and is able to serve all users in one cell through SDMA. In other words, every

terminal is free to employ all the time-frequency resources for data transmission, instead of

sharing them with its peers. Apart from much higher spectral efficiency, the expansion of

antenna array at BSs also brings the following advantages. First, resource allocation can be

simplified to great extent. Second, uplink signal detection and downlink precoding become

much easier because the channel vectors of different users are asymptotically orthogonal.

Third, fast fading and random noise can be averaged out through array signal processing.

Last but not the least, because of the great power gain of the BS antenna array, cheap

power amplifiers working at the milli-Watt level can be employed [73,74].

The TDD (Time Division Duplex) protocol is widely used in massive MIMO to separate

the up-link and down-link data. The communication protocol consists of four phases: 1) up-

link transmission of pilot sequences; 2) channel estimation at BSs; 3) up-link data trans-

mission; 4) down-link data transmission. Generally, TDD is favored over FDD (Frequency

Division Duplex), because it allows us to only estimate up-link channel and obtain the

down-link one through channel reciprocity, supported by practical measurements [75]. It

is important to avoid down-link channel estimation, since the communication resources

required for that are proportional to the number of antennas at BSs.

Massive MIMO promises many advantages over the conventional MU-MIMO, but to

fully exploit these potentials, accurate CSI (Channel State Information) is indispensable.

However, channel estimation for massive MIMO is more challenging due to the large an-

tenna array and the aggressive spatial multiplexing. There are many issues to be addressed,

and the pilot contamination is perceived as a major one. We will briefly explain this issue

in the following section.
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2.3.2 System Model and Pilot Contamination

Similar to the traditional multi-user MIMO systems, accurate CSI is indispensable for

massive MIMO systems. Generally, orthogonal pilot sequences are assigned to users in the

same cell and intra-cell interference can be totally eliminated. However, the limited pilot

sequences must be reused in adjacent cells. Therefore, users sharing the same pilot sequence

will interfere with each other in the process of channel estimation and this phenomenon

is referred to as pilot contamination, which puts a fundamental limit on the capacity of

massive MIMO systems [72].

To understand the pilot contamination issue, we need to first introduce the system

model. In massive MIMO systems, hundreds of antennas are installed at the BS to serve

tens of users. Generally, the antenna array at the BS can be in various forms, e.g., linear,

rectangular or even cylindrical. However, to maximize the angular domain resolution, linear

arrays are preferred. Suppose M antennas are linearly placed at the BS and the distance

between any two adjacent antenna elements is equal to half the carrier wavelength [76].

Given that the number of detectable paths between a user and the BS is B, the channel

model will be [76]:

h =
B

∑
b=1

√
ρbe[ωb]e

jφb , (2.9)

where φb and e[ωb] denote the random phase delay and spatial signature of the b-th path,

respectively. Using θb to denote the angle of arrival of the b-th path, we have ωb = π cos θb,

and e[ωb] is given by [76] as

e[ωb] =
1
√
M
⋅ [1, exp(−jωb), ⋯, exp(−j(M − 1)ωb)]

T . (2.10)

ρb is the slow fading factor of the b-th path, caused by propagation attenuation and shad-
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owing, given by

ρb =
sb
dγ
, (2.11)

where sb is a log-normal random variable, i.e., 10 lg sb ∼ N (0, σ
2
shad). γ is the path-loss

exponent and d represents the distance between the user and the BS. This model is widely

adopted in massive MIMO related literatures [77–80].

Assume that the user number per cell is K and the pilot length is τ , in order to avoid

intra-cell interference, users in the same cell should be assigned orthogonal pilot sequences,

which demands τ ≥ K. Suppose we have L cells in the area of interest, and K orthogonal

pilot sequences are fully reused in all cells, the received pilot signal at the l-th BS will be

Y(l) =H
(l)
l PT

+∑
l′≠l

H
(l)
l′ PT

+N, (2.12)

where P = [p1,p2,⋯,pK], and pk is the k-th pilot sequence. The elements in N ∈ CM×τ

are independently and identically distributed (i.i.d.) zero-mean complex Gaussian noise,

with a variance of σ2
n. H

(l)
l′ ∈ C

M×K is the channel matrix between the users in cell l′ and

the BS in cell l. With MF, the channel estimate of the l-th cell will be

Ĥ
(l)
mf =Y(l)P∗/τ =H

(l)
l +∑

l′≠l
H
(l)
l′ +NP∗/τ, (2.13)

where we implicitly use the fact that PHP = τ ⋅ IK , due to the orthogonality of different

pilot sequences. For the k-th user in the l-th cell, the MF-based channel estimate will be

ĥ
(l,k)
mf = h

(l)
l,k +∑

l′≠l
h
(l)
l′,k + nk, (2.14)

where nk =Np∗k/τ . As we can observe in (2.14), the MF-based channel estimate consists of

three components. The first and last parts are the desired channel information and noise,
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respectively, while the middle part contains interference from other cells due to pilot reuse,

i.e., pilot contamination. The contaminated channel estimate will then introduces strong

inter-cell interference during the data transmission.

In [81], the authors derived a closed-form achievable rate for TDD massive MIMO

systems under the impact of pilot contamination. For cell-edge users, this problem is

particularly detrimental, because their signal strength is comparable to the peer users in

adjacent cells.

2.3.3 Pilot Decontamination Methods

To tackle the pilot contamination issue, many solutions have been proposed [78–80,82–91].

Generally speaking, pilot decontamination strategies can be divided into four categories

[92], and we will summarize them in the following paragraphs.

The first choice is to create more orthogonal pilot sequences. This can be done in time

domain by increasing the length of pilot sequences, or in frequency domain by reducing the

frequency reuse factor [72]. In [93], the authors employed a pilot length seven times the

number of users per cell, so as to guarantee pilot orthogonality among users in adjacent

cells. Because adjacent cell users are the major interfering sources, such methods can

suppress pilot contamination to the great extent. However, spectral efficiency will decrease

due to the increased length of pilots in time or frequency domain. To reduce the overhead,

the authors proposed a time-shifted pilot scheme in [84]. In this method, when users in a

specific cell are transmitting pilot sequences, all the adjacent cell users are at the phase of

downlink data transmission or processing. By doing so, pilot contamination is no longer an

issue, but inter-cell interference might get stronger as cell-edge users will experience strong
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interferences from the BSs in adjacent cells during the pilot transmission phase. Channel

estimation will have to be conducted under a lower SINR (Signal to Interference and Noise

Ratio).

The second way of pilot decontamination is to identify the subspace of the desired sig-

nals by utilizing the statistics of the CSI and the received signals. For example, eigenvalue

decomposition (EVD) is employed for channel estimation in [94], where the authors proved

that every channel vector is an eigenvector of the covariance matrix of the received signals

when the BS antenna number is sufficiently large. The idea was further developed in [87],

where the authors proposed to obtain the subspace of the channel vectors through singular

value decomposition (SVD) of the received signal matrix. Pilot contamination can then

be eliminated by projecting the received signal onto this subspace. However, the efficacy

of these methods is based on the assumption that the desired signals are always stronger

than the pilot contamination, which can not be guaranteed for cell-edge users. When

the received signals are sparse in space, there is another possible solution for pilot decon-

tamination as proposed in [79] and [95]. In [79], the authors showed that the minimum

mean square error (MMSE) estimator can completely eliminate the pilot contamination,

given that the angle spreads of the desired and interfering users do not overlap. Therefore,

the same pilot sequence should be assigned to those users with minimum overlap in the

angular domain. In [95], based on the assumption that the desired signals are generally

stronger than the pilot contamination, the authors utilized both angular and power domain

discriminations for pilot decontamination.

In the third type of pilot decontamination methods, both data and pilot are employed

for channel estimation [86,91]. Because data is generally longer than the pilot, even when
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users are sharing the same pilot sequence, their data are still asymptotically orthogonal.

Therefore, the decoded data, in spite of being only partially correct, can be used to suppress

pilot contamination and improve channel estimation accuracy.

The last strategy is referred to as pilot contamination precoding (PCP) [89, 90, 96].

Different from the other three methods where different cells work almost independently,

PCP is dependent on multi-cell cooperation. The basic idea is to add a precoding and

decoding layer among adjacent cells. Pilot contamination can be completely eliminated

given that the BS antenna number approaches infinity. The price of the PCP algorithms is

the overhead of the CSI exchange among the BSs. It might be a problem for 5G networks

where the large user population, high data rate and low latency requirements exist.

2.4 Introduction to Millimeter Wave Communications

2.4.1 Background

The popularity of smart phones have been growing rapidly over the past decade. Currently,

our cellular system works on 2 GHz frequency band, which is a very crowded. To be specific,

many different communication protocols work on this frequency, including Bluetooth, WiFi,

and ZigBee. As a result, researchers propose to move our cellular system to higher frequency

band, ranging from 20 to 60 GHz, whose wave length is at the level of several millimeters

[97]. As a result, this new technology is referred to as millimeter wave communications

[98–100].

Different from most of the new technologies, millimeter wave communication is not try-

ing to improve the utilization of the available bandwidth, but to explore more unoccupied
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frequency resources. Besides, when combined with the massive MIMO technology, high

spectral efficiency can still be obtained on millimeter wave band [101]. However, millimeter

wave signals experience severe attenuations due to the very high frequency. To overcome

this issue, massive MIMO is generally viewed as a promising solution. Specifically, the

large antenna arrays at BSs can boost the equivalent isotropically radiated power through

beamforming. Besides, users can work at the same time-frequency resources through space

division multiple access, which improves spectral efficiency. The combination of millime-

ter wave and massive MIMO shows promising potentials. Nonetheless, accurate CSI is

indispensable for this purpose. In fact, the channel estimation in millimeter wave massive

MIMO communications is very challenging, which can be attributed to the considerable

consumption of the time-frequency and hardware resources. In the following section, we

briefly overview the current work in this area.

2.4.2 Channel Estimation for Millimeter Wave Communications

In the conventional fully digital antenna arrays, one RF chain is required for each antenna

to control the amplitude and phase of the transmitted signal. In [102], the authors proposed

an efficient beam alignment scheme. By employing a hierarchical codebook, the searching

space can be narrowed down very fast. In [103], they authors further refined the codebook

in [102] by allowing the searching beams to overlap, which further reduced the overhead.

However, this kind of approaches demand a huge amount of RF chains. Besides, due to the

large physical dimension of the antenna arrays at BSs, vibration and movement of beams

caused by wind are inevitable. As a result, the beam alignment should be frequently exe-

cuted. In [104], the authors jointly estimated the channels of multiple users in the same cell,
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and the channel estimation issue was modeled as a tensor decomposition problem. For this

purpose, a layered pilot transmission scheme was proposed, in which a much shorter train-

ing sequence was required. However, this method only worked in high SNR regime, and

thus was not suitable for millimeter wave frequencies. According to the channel measure-

ment results [97, 105], the millimeter wave channels are generally sparse in angle domain,

which means the channel estimation can be conducted by estimating the direction and the

corresponding gain of each path [103,106–110]. A class of compressed sensing based channel

estimation schemes were studied in [103,107,110], where the spatial sparsity was exploited.

However, as has been pointed out in [103,107], a communication link between the BS and

the mobile user is demanded, which hinders it from practical applications. By noticing that

path angles vary much slower than path gains, the authors in [108] proposed a two-stage

channel estimation algorithm. The path angles were estimated through the multiple signal

classification (MUSIC) method in the first stage, while the gains of individual paths were

estimated by the least square method in the second stage. The MUSIC method was also

utilized in [109], where a channel subspace matching pursuit (CSMP) algorithm was pro-

posed to reduce the overhead of channel estimation. Also based on the idea of separating

the estimation of the direction and gain, the authors in [106] introduced the operation

of spatial rotation for channel estimation, which significantly reduced the number of RF

chains required in the system while maintained near-optimal system performance. This

idea was further developed in [111], where the authors showed that non-orthogonal angle

division multiple access is possible for multiple users. Considering the hardware cost and

the energy consumption at receivers, low-resolution analog-to-digital converters (ADCs)

are preferred in millimeter wave massive MIMO systems. The authors in [112] studied the
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channel estimation with few-bits ADCs. They showed that the performance of 4-bit ADCs

was comparable to that of infinite-bit ADCs. Noting that millimeter wave channels were

clustered in the angle of arrival/departure and delay (AoA-AoD-delay) domain, the authors

in [113] proposed the approximate message passing (AMP) with nearest neighbor pattern

learning algorithm to exploit the cluster structure, hence improving channel estimation

accuracy.

To reduce the channel estimation overhead, a possible choice is channel tracking. The

basic idea is that the channel parameters do not vary fast in mmWave channels, and we can

use a small number of training symbols to update the CSI. The fundamental reason that

makes channel tracking possible is the channel sparsity in space. In the following section,

we will analyze the spatial sparsity of the mmWave channels.

2.4.3 The Spatial Sparsity

In this part, we will conduct the discussion based on linear antenna arrays, due to the

simplicity. Suppose the user equipment transmits a symbol x to the BS, and M antennas

are installed at the BS. Consider the LoS scenario, the received signal at the BS is given

by

y = x
√
ρse

jφe[ωs] + n, (2.15)

where e[ωs] is the spatial signature of the received signal (given in (2.10)), φ is a random

phase delay, and n represents noise component. The spatial spectrum of the received signal

can be defined as

Y (ω) = e[ω]Hy = x
√
ρse

jφe[ω]He[ωs] + e[ω]Hn. (2.16)
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From another perspective,

Y (ω) = e[ω]Hy =
1
√
M

M

∑
m=1

y[m]ejmω = IDTFT [y ], (2.17)

where IDTFT is short for inverse discrete time Fourier transform. From (2.16), we can see

that it is important to figure out how the envelope of e[ω]He[ωs] varies with ω.

Let f(∆ω) ∶= e[ω1]
He[ω2] (∀ω1, ω2 ∈ [0,2π)), where ∆ω = ω2 − ω1, and we have

f(∆ω) =
sin M∆ω

2

M sin ∆ω
2

⋅ e−j(M−1)∆ω/2. (2.18)
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Figure 2.1: The absolute value of f(∆ω) for different M .

Figure 2.1 shows the numerical results of ∣f(∆ω)∣ for different M . From the figure,

the main lobe of ∣f(∆ω)∣ is centered at 0, with a width of 4π/M . For massive MIMO

systems, M is generally very large, and most energy concentrates on a small angle spread.

Therefore, interference and the desired signals are generally well separated in space (i.e.,

the main lobes of signal and interference do not overlap). In this case, a spatial filter can

be constructed to filter out the main lobe of interference while maintain most energy of

47



the desired signals.

Similar to the time domain signal processing, we can employ IDFT (Inverse Discrete

Fourier Transform)2 instead of IDTFT to analyze the spectrum of a target sequence, which

is more suitable for the modern digital signal processors. To be specific, the discrete spatial

spectrum of the received signal y is

yω = IDFT [y ] = FMy, (2.19)

where FM ∶= [e [0 ] ,e [ω0] ,⋯,e [(M − 1)ω0] ]
H and ω0 = 2π/M . As a result, yω is the

sampled version of Y (ω) in (2.17). An arbitrary spatial signature e[ω] (ω ∈ [0,2π)) can be

decomposed as e[ω] = ∑M−1
m=0 αme[mω0], where αm and its absolute value are given by

αm = e[mω0]
He[ω] and ∣αm∣ =

1

M

RRRRRRRRRRR

sin M
2 (ω −mω0)

sin 1
2(ω −mω0)

RRRRRRRRRRR

. (2.20)

There exists an integer l ∈ [0,M − 1], which guarantees ω/ω0 ∈ [l, l + 1). Therefore, we can

write ω as ω = (l + β)ω0 (0 ≤ β < 1). Based on these definitions, we present the following

theorem.

Theorem 1. When M is infinitely large, more than 80% of the energy concentrates on

e[lω0] and e[(l + 1)ω0]. To be specific, lim
M→∞

∣αl∣
2 + ∣αl+1∣

2 ≥ 8/π2 and the equality holds

when β = 0.5.

Proof. When β = 0, we have ω = lω0, leading to ∣αl∣
2 + ∣αl+1∣

2 = ∣f(0)∣2 + ∣f(ω0)∣
2 = 1. When

2It should be noted that we can employ the fast Fourier transform (FFT) to reduce computational

complexity.
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β ≠ 0, the limit of ∣αl∣
2 + ∣αl+1∣

2 can be derived as follows.

lim
M→∞

∣αl∣
2
+ ∣αl+1∣

2
= lim
M→∞

∣f(βω0)∣
2
+ ∣f(ω0 − βω0)∣

2

=
sin2 βπ

π2
[

1

β2
+

1

(1 − β)2
] .

Define R(β) = sin2 βπ
π2 [ 1

β2 +
1

(1−β)2 ] (β ∈ (0,1)) and the numerical results show that R(β) is a

convex function. Noticing that
dR(β)
dβ ∣β=0.5

= 0, we can conclude that R(β) has a minimum

at β = 0.5, and R(0.5) = 8/π2.

Theorem 1 shows that most energy of the received signal from a specific direction

concentrates on the two samples in the main lobe. As a result, if we use αle[lω0]+αl+1e[(l+

1)ω0] to approximate e[ω], the residual error will be smaller than 20%. Generally, if we

take the closest 2R components to re-establish e[ω], the residual error can be defined as

Res[R ] = 1 −
R

∑
r=1

∣αmodM (l+1−r)∣
2
+ ∣αmodM (l+r)∣

2, (2.21)

where modM(k) =mod(k,M). Then, the residual error is upper bounded by

Res[R] ≤
π2

12
+

1

4R2
−

R

∑
r=1

1

2r2
, (2.22)

which is justified in Appendix D.1.

The above analyses show that the discrete spatial spectrum of the desired signal is

sparse, and most energy of the received signal concentrates on narrow angle spreads. Due

to the spatial sparsity, efficient algorithms can be designed for channel estimation and

channel tracking, as we will see in later discussions.
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2.5 Summary

In this chapter, we reviewed some existing work in terrestrial and underwater localization

techniques, and introduced the fundamentals of massive MIMO and mmWave communi-

cations. Specifically, we showed the deficiencies of the conventional RSS-ranging based

localization system, the challenges of ToA-based underwater localization, the pilot con-

tamination in massive MIMO systems, and the spatial sparsity in mmWave channels. In

the remaining part of this thesis, we will present new algorithms and architectures for more

accurate localization and channel estimation in mobile node-aided WSNs.
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Chapter 3

Drone-Assisted Zero-Configuration

Localization Framework

From the discussions in section 2.1.3, we can see that the positioning framework based

on fixed anchors has some deficiencies. Fortunately, the surge of small consumer drones

provide us with another possible solution. Recently, drones have been applied in many

areas, such as photography, radar imaging [6], telepresence platform [7], and even express

delivery [8]. In [9, 10], the energy efficiency and throughput of drone-assisted WSNs are

discussed. Drones provide a favorable platform for many applications because they are

affordable, agile and versatile. Taking the newest DJI INSPIRE 2 as example, each of the

four rotors can provide a thrust of two kilograms, and we can install all kinds of sensors

on it conveniently [11].

For localization systems, we can employ a drone as a mobile anchor. The drone hovers

over the WSN and serves as virtual anchors. For every broadcast period, the drone broad-

51



casts its position information, and the target node can measure the RSS value and build a

equation with respect to the unknowns. At the target node side, both channel parameters

and the nodes’ position are viewed as unknowns. Consider 2D localization, after four or

more periods, the node will have enough data to localize itself.

Compared with the conventional framework, the drone-assisted one has three major

advantages.

a) The density of virtual anchors can be boosted vastly, while the increased cost is

negligible, which makes the new framework not only more accurate but also far more

stable.

b) The offline configuration such as channel estimation in conventional system is avoided.

c) The central node in conventional system is not required and the communication load

among nodes is minimized; therefore, the communication resources such as energy

and bandwidth can be saved.

To justify the superiority of this new framework, extensive analysis and simulations will

be conducted in this chapter. Besides, it has been implemented on a drone for field exper-

iments, and the results are promising. 1

1The major work in this chapter has been published in [J19]: Z. Gong, C. Li, F. Jiang, R. Su et

al., “Design, Analysis, and Field Testing of an Innovative Drone-Assisted Zero-Configuration Localization

Framework for Wireless Sensor Networks,” IEEE Trans. Veh. Technol., vol. 66, no. 11, pp. 10322-10335,

Nov. 2017.
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3.1 System Model of the Drone-Assisted Framework

With a drone, the new localization framework is depicted in Figure 3.1. The target node is

Current Position
of the Drone

Historical Positions
of the Drone

Target
Sensor

h

Figure 3.1: Framework of the drone-assisted localization system.

represented by a black square, and the colored disk denotes its communication range. The

drone hovers over the target node at the hight of h, and moves from one position to another.

The current position of the drone is denoted by a solid disk while its historical positions

are denoted by hollow circles. At each position, the drone gets its position information

from the onboard GPS chip and broadcasts its 3-dimensional coordinates, serving as one

virtual anchor. As it moves around, many virtual anchors can be obtained.

With coordinate and RSS measurement of the i-th virtual anchor, the following equation
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Figure 3.2: Geometrical model.

can be established according to the path-loss propagation model:

fi(x, y,P0, β) = P0 − β ⋅ ln (di) = Pi, (3.1)

where d2
i = (x− xi)

2 + (y − yi)
2 + h2. Pi and (xi, yi) denote the RSS and 2D position of the

drone. The geometrical meanings of these variables are illustrated in Figure 3.2.

As we can see from Equation (3.1), four unknowns are involved, i.e., the two-dimensional

coordinate of the target node (x, y) and the channel parameters (P0, β). Theoretically, with

messages from four or more virtual anchors, the target node can localize itself. It is worth

noting that this method actually circumvents the process of channel estimation and ranging.

Therefore, the defects of the conventional localization framework are eliminated.

Rewriting Equation (3.1) in matrix format, we have

f(x) = P, (3.2)

where P = [P1, P2,⋯, PN ]
T denotes the measured RSS vector, x = [x, y,P0, β ]

T stands for

unknown parameters, f(x) = [f1(x), f2(x),⋯, fN(x)]
T , and N is the number of virtual
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anchors.

3.2 Newton Iteration Algorithm

We use the Newton iteration method to solve the problem in (3.2). To begin with, the

corresponding differential equation of Equation (3.2) is given by

∆P = F ⋅∆x, (3.3)

where F is the gradient of f(x) with respect to x given by

F = ∇f(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β(x1−x)
d21

β(y1−y)
d21

1 − ln (d1)

β(x2−x)
d22

β(y2−y)
d22

1 − ln (d2)

⋮ ⋮ ⋮ ⋮

β(xN−x)
d2N

β(yN−y)
d2N

1 − ln (dN)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.4)

Assume the initial estimation of x is x(0), and details of Newton iteration method are

shown in Algorithm 1.
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Algorithm 1 Newton iteration method for Equation (3.2).

Require:

Measured RSS vector, P;

Drone’s positions, (xi, yi)’s;

Ensure:

Estimation of x, x̂;

1: The initial value of x is x(0);

The initialized iteration counter, k = 0;

The maximum iteration number, kmax;

The iteration threshold TS = 0.1, ∣∆x∣ = 2TS;

2: while ∣∆x∣ > TS and k < kmax do

3: ∆P = P − f(x(k));

4: F = ∇f(x)∣x=x(k) ;

5: ∆x = (FTF)−1FT∆P;

6: x(k+1) = x(k) +∆x;

k = k + 1;

7: end while

8: x̂ = x(k)

9: return x̂;
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3.3 Positioning Error Analysis and CRLB

In spite of the advantages of the new framework, it cannot provide absolutely accurate

localization results, because errors in RSS measurements are inevitable. Suppose the mea-

surement error of RSS is independently and identically distributed (i.i.d.) [37, 43, 44], and

we can denote the measurement errors as a zero-mean Gaussian vector εP, which satisfies

E {εpε
T
p} = σ

2
nIN , and IN represents an identity matrix of order N . In the remaining

part of this section, the positioning error of the proposed system will be analyzed, and the

CRLB will be derived.

3.3.1 Positioning Error Analysis

By taking the first order Taylor expansion, estimation error εx can be approximated as

εx = x̂ − x = (FTF)
−1

FTεP. (3.5)

This approximation is accurate when σ2
n is relatively small. The covariance matrix of x̂

can then be derived as

cov {x̂, x̂} = E {εxε
T
x} = σ

2
n ⋅ (F

TF)−1. (3.6)

Rewriting x̂ as x̂ = [x̂T1 , x̂
T
2 ]
T , where x̂1 = [x̂, ŷ]

T , and x̂2 = [P̂0, β̂]
T , it is clear that

x̂1 denotes the estimation of the target’s coordinate, while x̂2 denotes the estimation of

channel parameters. In addition, Equation (3.6) can be rewritten as

cov {x̂, x̂} =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cov {x̂1, x̂1} cov {x̂1, x̂2}

cov {x̂2, x̂1} cov {x̂2, x̂2}

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.7)
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The variance of the positioning error is given by σ2
p = E{(x̂−x)

2+(ŷ−y)2} = tr{cov{x̂1, x̂1}}.

Based on Equations (3.6) and (3.7), we can obtain

σ2
p = σ

2
n ⋅ tr{[(F

TF)−1]
2×2
} . (3.8)

According to Equation (3.4), it is clear that the trace of [(FTF)−1]
2×2

is related to β2.

Besides, it is also determined by the number and geometrical distribution of virtual anchors,

quantified as GDOP . However, it is difficult for us to fathom how GDOP varies with

matrix F from Equation (3.8). To gain more insights, we can decompose matrix F as

F = [F1,F2], where F1 contains the first two columns of F and F2 consists of the remaining

parts. Then, the following equation can be obtained

FTF =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

FT
1 F1 FT

1 F2

FT
2 F1 FT

2 F2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.9)

According to the Block Matrix Inversion Theorem [114] given below

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A B

BT C

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(A −BC−1BT )−1 −(A −BC−1BT )−1BC−1

−C−1BT (A −BC−1BT )−1 (C −BTA−1B)−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.10)

[(FTF)−1]2×2 can be rearranged as

[(FTF)−1]
2×2
= [FT

1 F1 −FT
1 F2 (F

T
2 F2)

−1
FT

2 F1]
−1
. (3.11)

From Equation (3.4), we can see that F1 is proportional to β; therefore, we can ensure

that the trace of [(FTF)−1]
2×2

is inversely proportional to β2. As a result, (3.11) can be

rewritten as

tr{[(FTF)−1]
2×2
} = GDOP /β2. (3.12)
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Substituting (3.12) into (3.8), we have the variance of positioning error in our proposed

framework as

σ2
p = GDOP ⋅ σ

2
n/β

2. (3.13)

Compared with Equation (2.3), we can see that positioning errors of these two systems are

both proportional to their GDOP . In our scheme, the GDOP can be much smaller than

that of the conventional one because of having a much larger number of virtual anchors

by using a drone. We will present some numerical results to support this claim in next

section. Furthermore, we have the following inequality proved in [25]:

σ2
n/β

2
< exp(

σ2
n

β2 ⋅ ln 10
) − 1. (3.14)

As a result, even with the same GDOP , the variance of the positioning error of the proposed

scheme is still smaller than that in the conventional one. It is also worth noting that the

positioning error in Equation (2.3) is obtained under the assumption of perfect channel

parameters, which means the performance of the conventional system will be worse in

practical scenarios.

3.3.2 CRLB Analysis

Assuming RSS observations are independent, their joint PDF conditioned on unknown

parameters is given as

fP∣x(P∣x) =
N

∏
i=1

fi(Pi∣x), (3.15)

where the PDF of the i-th observation is

fi(Pi∣x) =
1

√
2πσ2

n

⋅ exp(−
(Pi − P i)

2

2σ2
n

), (3.16)

59



and P i = E{Pi} = P0 − β ⋅ lndi. The logarithm of fP∣x(P∣x) can be obtained as

lP∣x(P∣x) = ln fP∣x(P∣x) =
N

∑
i=1

li(Pi∣x), (3.17)

where

li(Pi∣x) = ln fi(Pi∣x) = − ln
√

2πσ2
n −
(Pi − P i)

2

2σ2
n

. (3.18)

We then obtain the Fisher information matrix (FIM):

Fx = −E {∇x(∇xlP∣x(P∣x))
T} =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1,1 ⋯ f1,4

⋮ ⋱ ⋮

f4,1 ⋯ f4,4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.19)

By representing x, y, P0, β with u1, u2, u3, u4 respectively, we can explicitly denote fk,l

as

fk,l = −E {
∂2lP∣x(P∣x)

∂uk∂ul
} = −

N

∑
i=1

E {
∂2li(Pi∣x)

∂uk∂ul
} . (3.20)

Through tedious but straight-forward deduction, it can be proven that

Fx = FTF/σ2
n. (3.21)

That is to say, with Algorithm 1, we can approximately achieve CRLB and the overall

estimation error of the four parameters is minimized. Intuitively, trace of [(Fx)
−1]2×2

can be viewed as a reference of localization accuracy [31]. However, this is only true for

unbiased estimators. The Newton iteration algorithm is not unbiased, and the positioning

error can be smaller than the trace of [(Fx)
−1]2×2 in some scenarios, as will be shown in

simulation results.
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3.4 Increase the Quantity of Virtual Anchors

As has been mentioned, the most significant advantage of using a drone is that the number

of virtual anchors can be vastly boosted at low cost. Therefore, a fundamental question

is how the density of anchors contributes to the performance of the proposed system in

terms of estimation error, positioning error, and computational complexity, which will be

answered in this section.

3.4.1 Estimation Error Analysis

Suppose the original system has N virtual anchors, and its FIM is given by F
(N)
x =

FT
NFN/σ

2
n (obtained from Equation (3.21)). When we add another virtual anchor to the

system, matrix FN will be extended as FN+1 = [F
T
N , f]

T
, where f is given as

f = [
β(xN+1 − x)

d2
N+1

,
β(yN+1 − y)

d2
N+1

,1,− ln (dN+1)]

T

. (3.22)

(xN+1, yN+1) and dN+1 are the 2-dimensional coordinates and distance of the new added

virtual anchor. Accordingly, the updated FIM will be

F
(N+1)
x = FT

N+1FN+1/σ
2
n = F

(N)
x +ffT

/σ2
n. (3.23)

Here, fT f is positive semidefinite since

yTffTy = ∣yT f ∣2 ≥ 0, ∀y ∈R4×1. (3.24)

According to the matrix theory in [115], the k-th largest eigenvalue o f F
(N+1)
x , i.e.,

λk(F
(N+1)
x ), is guaranteed to be no smaller than that of F

(N)
x , i.e., λk(F

(N)
x ). In other

words, we have

λk(F
(N+1)
x ) ≥ λk(F

(N)
x ) > 0. (3.25)
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Then, it follows that

0 < λk ([F
(N+1)
x ]

−1
) ≤ λk ([F

(N)
x ]

−1
) . (3.26)

This inequality indicates that the trace of the FIM’s inverse will shrink when we add an

extra virtual anchor to the existing network, which ensures that the overall estimation

error will decrease. As the overall estimation error is the summation of the positioning

error and channel estimation error, we cannot guarantee that the decrease of the overall

estimation error indicates the decrease of the positioning error. However, statistically, it

is always beneficial to add an extra virtual anchor to the system, as will be shown in the

following subsection.

3.4.2 Positioning Error Analysis

In Appendix A.1, the lower bound of GDOP is given as

GDOP ≥
4

∑
N
i=1 r

2
i /d

4
i

, (3.27)

and the equality holds given:
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

FT
1 F2 = 0

FT
1 F1 = c ⋅ I2,

(3.28)

where c is a constant, given as

c =
Nβ2

2R2
⋅ [ln(

R2 + h2

h2
) −

R2

R2 + h2
] . (3.29)

When the number of virtual anchors is relatively large, these two conditions are asymptot-

ically fulfilled, which is illustrated in Appendix A.2. In this case, the limit of GDOP ⋅N
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can be obtained as

lim
N→∞

N ⋅GDOP = lim
N→∞

4N

⋅∑
N
i=1 r

2
i /d

4
i

=
4

lim
N→∞

1/N ⋅∑Ni=1 r
2
i /d

4
i

. (3.30)

As N grows to infinity, the denominator of Equation (3.30) approaches E{r2
i /d

4
i }. As a

result, we can rearrange Equation (3.30) and conclude

GDOP =
4

N ⋅E{r2
i /d

4
i }
+ o(1/N), (3.31)

or equivalently,

GDOP ∼
4

N ⋅E{r2
i /d

4
i }
(N →∞), (3.32)

where o(1/N) indicates a component much smaller than 1/N . E{r2
i /d

4
i } is determined by

h and R, and is discussed in Appendix A.2.

Equation (3.31) explicitly reveals that GDOP is inversely proportional to N when the

number of virtual anchors is sufficiently large. That is to say, the positioning accuracy can

be vastly improved by incorporating a large number of virtual anchors.

3.4.3 Computational Complexity

Along with the increase of virtual anchors, the computational complexity of the proposed

scheme increases. In this subsection, we show that how computational amount grows with

N . Algorithm 1 is an iterative process; therefore, we only need to analyze one iteration for

the computational complexity. Table 3.1 shows the computational complexity of each step

in every iteration. Therefore, the overall computation amount is in the order of O(N),

which is acceptable and comparable to that of the conventional scheme. The first step of

the iteration process (step 3) is to compute ∆P, which takes 2N additive, 4N multiplicative
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and N logarithmic operations. In this process, we compute 1/2 ⋅ lnd2 instead of lnd, so

as to replace the extraction operation with a multiplicative one. Then, in step 4, it only

costs 2N multiplications to compose matrix F in Equation (3.4), if intermediate variables

are properly stored. In step 5, the major computation comes from the multiplication of

FT and F. In spite of the symmetry of FTF, 10N multiplications and 10N additions are

still required. Comparatively, the computation amount of its inversion is not very large,

only 43/2 = 32 multiplications with Cholesky decomposition [116]. To save computations,

the multiplication between FT and ∆P should be handled first. The multiplications of

these three matrixes cost 4N + 16 multiplications and 4N + 8 additions. Finally, step 6

contributes another N additive operations.

Table 3.1: Computational Complexity

Step Multiplications Additions Logarithms

3 2N 4N N

4 2N 0 0

5 14N+48 14N -2 0

6 0 N 0

Overall 18N+48 19N -2 N
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3.5 Numerical Evaluation

In this sections, comprehensive simulation results will be presented to support the theo-

retical analysis in previous sections and verify the reliability of the proposed localization

framework. To be specific, the simulations will show that the positioning error analysis is

very accurate. Besides, we will see that the lower bound of GDOP is very tight and can

be achieved when the number of virtual anchors is relatively large.

3.5.1 Positioning Error Approximation

The approximation of positioning error concerning the proposed system is given by (3.13),

and the simulation results are shown in Figure 3.3.
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Figure 3.3: The relation between GDOP and positioning error.

The communication radius of nodes and the height of drone are set as 50 meters and
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5 meters, respectively. 20 virtual anchors are uniformly distributed in the communication

range of the target node. Under different noise levels, the simulation results of the variance

of positioning error (VPE) versus GDOP are presented in Figure 3.3, and theoretical results

are plotted in solid lines for comparison. Generally, the simulation and theoretical results fit

better when σ2
n is relatively small. According to the field experiments, the variance of RSS

values is between 3 and 4, in which (3.13) gives very accurate approximation of VPE. Also,

it should be noted that the simulated error can be smaller than the theoretical results. This

is because CRLB is derived for unbiased estimators, while the Newton iteration algorithm

is biased. Nevertheless, we can see that the iteration algorithm can very closely approach

the CRLB.

3.5.2 The Lower Bound of GDOP

Figure 3.4 shows how the expectation and lower bound of GDOP vary with the number

of virtual anchors and the height of the drone. For an arbitrary number of virtual anchors

uniformly distributed in the communication range of the target node, the average GDOP

can be obtained through simulation. On the other hand, the lower bound of GDOP is

given by Equation (3.31) (Theo. I) and Equation (3.27) (Theo. II). As shown in Figure 3.4,

both the lower bound and the expectation of GDOP decrease with N . Besides, it is notable

that when N is relatively large, for example, N ≥ 80, a good match of the simulation results

and theoretical results is observed. This corroborates our claim that the lower bound of

GDOP can be asymptotically achieved when N becomes sufficiently large.

When N is relatively smaller, different columns of matrix F are nonorthogonal and

the left side of Equation (3.27) is strictly larger than the right side. As a result, the gap
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h = 15m

h = 10m

h = 5m

Figure 3.4: The relation between GDOP and N .

between theoretical and simulation results is quite large. Also, we can see that there is small

discrepancy between the results of Equation (3.31) (Theo. I) and Equation (3.27) (Theo.

II), because generally speaking, E{1/w} is unequal to 1/E{w} for a random variable w.

However, when N is large enough, this discrepancy is negligible.

From Figure 3.4, it is also clear that the height of the drone has an impact on GDOP .

This can be explained by (3.31), where d2
i = r

2
i + h

2. As h increases, the denominator

will decrease, leading to the increase of GDOP and positioning error. From this respect,

lower height is preferred for smaller GDOP and positioning error. However, along with

the low height of the drone, several side effects emerge. First, the reflected signals from the

ground will have a strong impact on the RSS measurements [117]. Second, the coverage

of the drone will be limited in real applications. Last but not least, the airflow stirred

up by the drone and reflected from the ground will undermine the stability of the drone,
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which introduces interference in RSS measurements. In field experiments, we found that it

becomes easier to stabilize the drone at the height of 5 meters or larger, which also provides

great coverage.

3.5.3 Variance of GDOP

The increase of the number of virtual anchors not only makes the system more accurate but

also more stable. As has been mentioned, GDOP is determined by both the distribution

and the number of virtual anchors (or anchors in the conventional system). For an arbitrary

N , GDOP is a random variable because of the random distribution of virtual anchors, and

the average GDOP is shown to decrease with N in Figure 3.4. Then, the relation between

the variance of GDOP and N is presented in Figure 3.5. From Figure 3.5, the variance

6 8 10 12 14 16 18 20
N

100

101

102

V
a
r
ia
n
c
e
o
f
G
D
O
P

h = 5m

h = 10m

h = 15m

Figure 3.5: The variance of GDOP versus N .
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of GDOP is quite large when N is relatively small, which makes the system unstable.

However, given that N is large enough (20 or more), we can see in Figure 3.5 that the

variance of GDOP is smaller than 1. When we increase N from 6 to 20, the computational

amount is only tripled while the variance of GDOP is reduced by two orders of magnitude.

Another interesting observation is that the relevance between the variance of GDOP and

the height of drone is barely noticeable.

3.6 Field Experiments

To verify the reliability of the proposed system, we implemented it on a DJI Phantom II

and conducted field experiments. The field experiments were conducted in a football field

Raspberry Pi 2

USB-to-TTL
serial cable

Power

GPS Module

Drone

ZigBee Module

Figure 3.6: Field experiment setup.
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in rural area, so as to minimize the RF interferences.

3.6.1 Experimental Setup and Data Collection

In the experiment, the transmitter and receiver are both equipped with ZigBee modules

(XBEEPRO2, DIGI). They work in the 2.4 GHz ISM band and the transmit power is

10 mW, being able to cover hundreds of meters in line of sight scenarios. The central

control unit is a Raspberry Pi 2 board and we can program it with Java scripts or C

language. The transmitter is equipped with a GPS chip (GP-20U7), which sends location

information through a serial port to the control unit periodically. Then, the control board

will broadcast the location information through the ZigBee module at the frequency of

1 Hz. The receiver receives signals with the ZigBee module and measures the RSS at

the same time. For convenience, the receiver is also equipped with a GPS chip, through

which the receiver can localize itself and store the location information as reference. Then,

the location information and the corresponding RSS are stored as one entry. During the

experiment, the receiver is connected to a laptop for initialization and real time monitoring

through Ethernet cable.

Transmitter Receiver

Raspberry Pi

ZigBee ModuleGPS Module

USB-to-TTL
Cable

COM

USB

COM

)  ) ) ) 

2.4 GHz
Raspberry Pi

ZigBee Module

COM

Figure 3.7: System diagram of the receiver and transmitter.
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As GPS is reliable on the longitude and latitude measurements while unreliable on the

height measurement, due to the poor vertical dilution of precision, we need to collect the

height information of the drone in alternative ways (an altimeter, or just a rope). By re-

motely controlling the drone moves around the target sensor, we collect RSS measurements

and coordinates of the drone and record them in the laptop for postprocessing.

3.6.2 Experimental Results

Figure 3.8 shows the top view of the distribution of virtual anchors and the target sensor.

The red disk denotes the target node while the asterisks are the projections of virtual an-

Figure 3.8: Top view of the distribution of virtual anchors.

chors. For convenience, we build a cartesian coordinate system with the origin on the target

node. Besides, x axis and y axis are parallel to the longitude and latitude, respectively.

To begin with, we use the collected data to verify the radio propagation model given

by Equation (2.1). The results are shown in Figure 3.9, where the solid line denotes

the theoretical results and the measured results are represented by solid squares. The
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theoretical results are derived by the estimation of channel parameters from Algorithm

1. In this experiments, we have the estimated first meter signal strength and path loss

exponent as -14.73 dBm and 2.03, respectively. The variance of the RSS measurements

is between 3 and 4. From Figure 3.9, a good match between the measured RSS and the

expected RSS generated from the radio propagation model is observed, which indicates

that the radio propagation model is suitable for our proposed system.
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Figure 3.9: The experimental relation between distance and RSS.

Based on the radio propagation model, (3.2) can be established, and then Algorithm 1

can be applied for localization. Figure 3.10 presents the results of the GDOP and position-

ing error versus the number of virtual anchors. Generally, both GDOP and positioning

error decrease with the increase of virtual anchors. We also provide the lower bound of

GDOP given by Equation (3.27). It is clear that when N is sufficiently large, the GDOP
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from our field experiments is quite close to the bound, which is consistent with the previous

analysis. Figure 3.10 also reveals that when the number of virtual anchors is greater than

16, the positioning error of the proposed system is less than 3.5 m, which is promising.

The next step is to test our algorithm and theoretical analysis based on the collected

data in Figure 3.8. First of all, the four virtual anchors closest to the target node are chosen

for localization. Then, the remaining virtual anchors are added one by one. As shown in

Figure 3.10, both positioning error and GDOP tend to decrease when the number of virtual

anchors increase from 4 to 23. The positive relation between positioning error and GDOP

can be clearly observed, in spite of some small discrepancies which will be discussed in next

subsection. Also, the lower bound of GDOP given in Equation (3.27) proves to be very
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Figure 3.10: Experimental results of positioning error and GDOP .

tight when N is relatively large. It should be noted that we will not be able to observe
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the reciprocal relationship between GDOP and N , because that is the statistical result

of an enormous number of distributions of virtual anchors, while the distribution in our

experiment is fixed.

The influence of GPS error on positioning results can be clearly observed in Figure

3.10. GDOP decreases strictly while positioning error shows some small fluctuations.

A new added virtual anchor might serve to improve GDOP , but its inaccurate position

information also induces extra positioning error. Therefore, adding a new virtual anchor

does not necessarily improve positioning accuracy. To see this in Figure 3.10, positioning

error even increased when we added the 8-th and 10-th virtual anchors to the network.

Besides, after N is larger than 16, positioning error stops to change, while GDOP continues

to decrease. A possible explanation is that the improvement of GDOP is counteracted by

the position error of new added virtual anchors.

Besides, it is also of interest to plan the rout of the drone to provide better GDOP

to sensor nodes, because the drone can only stay in the air for a short period (about 25

minutes in our case) due to limited battery capacity. To be specific, we will need to plan

such a route for the drone, that can provide decent coverage for all the nodes in the network,

given the maximum possible duration of the drone’s battery.

3.7 Summary

In this chapter, a drone-assisted localization framework is presented for large-scale WSNs.

The drone servers as a mobile anchor and broadcasts its location information periodically.

All the nodes can achieve self-localization based on RSS measurements. By viewing the
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channel parameters as unknowns, zero-configuration is achieved. The positioning error of

the new system is analyzed, and the variance of positioning error is proven to be inversely

proportional to the number of virtual anchors statistically. From the simulation results,

we can see that the simple Newton iteration algorithm can solve the equations and closely

approaches the CRLB. Lastly, field experiments verify the reliability of the proposed sys-

tem.

75



Chapter 4

AUV-Aided Joint Localization and

Time Synchronization in

Underwater Networks

In Chapter 3, we talked about the possibility of employing drones as mobile anchors for

localization in terrestrial WSNs. In the following three chapters, we will move to the

underwater scenario, and continue our discussions on AUV-aided acoustic sensor networks.

To begin with, the AUV-aided joint localization and time synchronization problem will be

discussed in this chapter.1

As we have mentioned, there are two major challenges for the TDoA- and ToA-based

1Related work can be found in [J16]: Z. Gong, C. Li and F. Jiang, “AUV-Aided Joint Localization and

Time Synchronization for Underwater Acoustic Sensor Networks,” IEEE Signal Process. Lett., vol. 25, no.

4, pp. 477-481, April 2018.
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localization systems: (1) the stratification effect; (2) time synchronization is required.

To solve the first problem, the average underwater sound speed is considered as an extra

unknown. The time synchronization will be conducted simultaneously with the localization

process. As a result, there are six unknowns: the three dimensional coordinate of the target,

the average underwater sound speed, and the clock bias and skew of the target node’s

clock. For the conventional architecture based on fixed anchor, this is challenging, because

the target node needs at least six anchors in its communication range for simultaneous

localization and time synchronization. However, with a mobile anchor, the equivalent

number of anchors can be boosted at negligible cost, similar to Chapter 3. In this chapter,

we will investigate the AUV-assisted WSNs, in terms of algorithm design and performance

analysis.

4.1 System Model

The AUVs generally have onboard navigation systems, such as GPS chips and inertial

navigation sensors. An AUV can initialize its position information with the onboard GPS

chip before diving. Then, it will dive and navigate itself through predefined trajectories

with an inertial sensor. Besides, it can surface periodically to update its position infor-

mation through GPS, so as to avoid error accumulation in inertial sensors. To achieve 3D

localization, the trajectory of the AUV cannot be on a plane. Therefore, we assume that

the AUV moves with fixed direction and velocity for K + 1 time slots, and then it turns to

a randomly selected direction, and moves forward at the new direction with fixed velocity

for another K +1 time slots. During this process, the AUV periodically broadcasts beacon
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signals, including its real-time location information and transmitting time of packets. This

process will continue until we have N straight lines on AUV’s trajectory. Assume that the

location information and the transmitting time of the k-th period on the n-th line is xn,k

and tn,k, respectively. When this packet is received by a target sensor at time rn,k, the

measured propagation time will be

Tn,k = s ⋅ rn,k + o − tn,k = Tn,k + nn,k, (4.1)

where s and o denote the clock skew and offset of the clock on target sensor, with respect

to the clock on AUV. Tn,k is the accurate propagation time and nn,k is the overall timing

error. Both rn,k and tn,k are contaminated by zero-mean Gaussian noise with an identical

variance of σ2
t . Therefore, the total timing error will be a zero-mean Gaussian variable

with a variance of (s2+1)σ2
t . On the other hand, based on the ToA measurement, we have

∥x − xn,k∥ = Tn,k ⋅ c, (4.2)

where xn,k is the three-dimensional coordinate of the AUV at the k-th time slot on the

n-th line, c is the average underwater sound speed, and ∥ ⋅ ∥ indicates the Euclidean norm

of an arbitrary vector.

Define a new vector θ ≜ [xT , o, c, s]T to contain the unknowns, and reorganize (4.2) as

fn,k(θ) = ∥x − xn,k∥/c − s ⋅ rn,k − o + tn,k = −nn,k, (4.3)

in which six unknowns are included. After K + 1 measurements on each of the N lines, we

have N(K +1) nonlinear equations. Generally, these nonlinear equations can be iteratively

solved by many algorithms (e.g., Newton iteration method). However, this is a non-convex

problem, and the iteration algorithm may stuck at local optimums if we employ random
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initializations of the unknowns [17]. To solve this problem, a two-phase algorithm dedicated

for (4.3) will be presented in the next section.

4.2 A Two-Phase Algorithm

In the first phase of this algorithm, the relative clock skew is ignored, because it is gen-

erally very small. Then, the nonlinear equations can be transformed into linear ones, and

LS algorithm is employed to obtain coarse time synchronization and localization results.

In the second phase, the coarse estimation is refined by another LS estimator. Compared

with the existing algorithms, our proposal achieves the CRLB with much smaller compu-

tational complexity. Besides, the proposed method is passive, and thus energy efficient for

underwater sensors. To be specific, target sensors are silent and only receive signals from

the AUV.

4.2.1 Phase I: Initial Synchronization and Localization Results

In the first phase, we transform the non-linear equations into linear ones, by doing which

a coarse estimation of the unknowns can be obtained. Generally, clock skew is less than

200 ppm [118–120], and the corresponding s lies in [1− 2E-4,1+ 2E-4], which is very close

to 1. Therefore, we can replace it with ŝ = 1 to roughly estimate the other unknowns. For

brevity, define qn,k ≜ ŝ ⋅ rn,k − tn,k, square both sides of (4.2), and we will have N(K + 1)

equations of the following form:

∥x − xn,k∥
2
− q2

n,kc
2
− o2c2

− 2qn,koc
2
= en,k, (4.4)
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where en,k is the overall error caused by timing error and the uncertainty in ŝ, and is given

in (4.5) as

en,k = 2c2
(ntn,k − s ⋅ nrn,k − (1 − s) ⋅ rn,k)(qn,k + o) + c

2
(ntn,k − s ⋅ nrn,k − (1 − s) ⋅ rn,k)

2 (4.5)

In (4.5), ntn,k and nrn,k are measuring errors of tn,k and rn,k, respectively. Then, after

subtracting the (n,0)-th sub-equation from the (n, k)-th one, we can obtain

(xn,0 − xn,k)
Tx + (q2

n,0 − q
2
n,k)/2 ⋅ c

2
+ (qn,0 − qn,k) ⋅ c

2o

=(∥xn,0∥
2
− ∥xn,k∥

2
)/2 + (en,k − en,0)/2 (for k ≠ 0).

In matrix form, we have

Hp = y + e, (4.6)

where e = [eT1 ,e
T
1 ,⋯,e

T
N ]

T is the error vector and en = [en,1 − en,0,⋯, en,K − en,0]
T /2. The

unknown vector p is given by

p = [xT , c2, c2o]
T
. (4.7)

Besides, we have H = [HT
1 ,H

T
2 ,⋯,H

T
N ]

T , and y = [yT1 ,y
T
2 ,⋯,y

T
N ]

T , where Hn and yn are

given by

Hn =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(xn,0 − xn,1)
T (q2

n,0 − q
2
n,1)/2 qn,0 − qn,1

(xn,0 − xn,2)
T (q2

n,0 − q
2
n,2)/2 qn,0 − qn,2

⋮ ⋮ ⋮

(xn,0 − xn,K)
T (q2

n,0 − q
2
n,K)/2 qn,0 − qn,K

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

yn = [(∥xn,0∥
2
− ∥xn,1∥

2
),⋯, (∥xn,0∥

2
− ∥xn,K∥

2
)]
T
/2.

(4.8)

Then, p can be estimated as

p̂ = (HTH)−1HTy, (4.9)
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and we have the positioning result as x̂ = p̂[1:3], where p̂[1:3] is a vector containing the first

three elements of p̂. The clock offset and average underwater sound speed are estimated

as ô = p̂[5]/p̂[4] and ĉ =
√

p̂[4], respectively. p̂[4] and p̂[5] are the last two elements of p̂.

Therefore, a coarse estimation of θ can be obtained as θ̂ = [x̂T , ô, ĉ, ŝ]T , where ŝ is equal

to 1.

To ensure the positioning and timing accuracies, the trajectory of the AUV should be

carefully designed to make sure that (4.6) is not ill-conditioned. Because of space limit,

we will not discuss this issue here, and the interested readers are referred to [121] and [44].

4.2.2 Phase II: Refined Synchronization and Localization Results

After the coarse estimation in Phase I, θ̂ should be reasonably close to θ, which leads to

the following approximation

f(θ) − f(θ̂) ≈
∂f

∂θ
⋅ (θ − θ̂), (4.10)

where

f(θ) = [f1(θ)
T , f2(θ)

T ,⋯, fN(θ)
T
]
T (4.11)

and

fn(θ) = [fn,0(θ), fn,1(θ),⋯, fn,K(θ)]
T . (4.12)

Based on this approximation, δθ = θ− θ̂ can be estimated to refine the estimate results. As

we known, ToA measurement errors are generally very small (at the level of milliseconds

[48]), which means we have f(θ) ≈ 0(K+1)N×1. Moreover, the partial fraction matrix can

be replace by

R =
∂f

∂θ
∣
θ=θ̂

. (4.13)
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To be specific, R = [RT
1 ,R

T
2 ,⋯,R

T
N ]

T , and Rn is given as

Rn =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̂T−xTn,0
∥x̂−xn,0∥ĉ , −1,

−∥x̂−xn,0∥
ĉ2

, −rn,0

x̂T−xTn,1
∥x̂−xn,1∥ĉ , −1,

−∥x̂−xn,1∥
ĉ2

, −rn,1

⋮

x̂T−xTn,K
∥x̂−xn,K∥ĉ , −1,

−∥x̂−xn,K∥
ĉ2

, −rn,K

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.14)

After the replacement, the approximation in (4.10) can be revised as

− f(θ̂) ≈Rδθ. (4.15)

Then, we can estimate the bias of coarse estimation in Phase I as

δ̂θ = −(R
TR)−1RT f(θ̂), (4.16)

and the time synchronization and localization results can be refined as

θ̂r = θ̂ + δ̂θ. (4.17)

It should be noted that this process can be repeated to get more accurate results. Besides,

we only deal with localization and time synchronization in this paper, and when it comes

to tracking, particle filter is a popular tool to further improve accuracy [122–124], which

will be part our future work.

4.3 Performance Analysis of the Two-Phase Algorithm

4.3.1 Localization and Time Synchronization Errors

In Equation (4.16), the noise in ToA measurements will cause estimation error, and similar

to the works in [25] and [5], the covariance matrix of estimation error can be approximated
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by

cov{θ̂} = (s2
+ 1)σ2

t (R
TR)−1. (4.18)

To further evaluate the performance of the proposed method, the CRLB of ToA based

localization and synchronization systems is analyzed below.

In Equation (4.3), we can see that fn,k(θ) follows zero-mean Gaussian distribution, with

a variance of (s2 + 1)σ2
t . We assume all the timing errors are independent and identically

distributed, and the joint probability density function of the observations is

fr,t(r, t∣θ) = (∣2πΣt∣)
−1/2
⋅ exp{−

1

2
f(θ)TΣ−1

t f(θ)}, (4.19)

where r = [rT1 , r
T
2 ,⋯, r

T
N ]

T is the time of receiving vector, and rn = [rn,0, rn,1,⋯, rn,K];

t = [tT1 , t
T
2 ,⋯, t

T
N ]

T is the time of transmission vector, and tn = [tn,0, tn,1,⋯, tn,K]
T . The

covariance matrix will be Σ = (s2 + 1) ⋅σ2
t IN(K+1), and ∣ ⋅ ∣ represents the determinant of an

arbitrary square matrix. The natural logarithm of fr,t(r, t∣θ) is

l(θ) = −
1

2
(ln ∣2πΣ∣ + f(θ)TΣ−1f(θ)) . (4.20)

Define F as the Fisher information matrix, and the (m,n)-th element of F will be

[F]m,n = E {
∂l

∂θm
⋅
∂l

∂θn
} , (4.21)

where θm and θn are the m-th and n-th elements of θ, respectively. For notational suc-

cinctness, f(θ) is replaced by f in the following derivations.

For m,n ≤ 5, we have

[F]m,n =
1

(s2 + 1)σ2
t

⋅
∂fT

∂θm
⋅
∂f

∂θn
. (4.22)
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For m ≤ 5, n = 6, we have

[F]m,6 = −
1

(s2 + 1)σ2
t

∂fT

∂θm
E {

∂fT

∂s
} . (4.23)

The last case is m = n = 6, and we can obtain

[F]6,6 =
N2(K + 1)2s2

(s2 + 1)2
+

1

(s2 + 1)σ2
t

E {
∂fT

∂s
}E {

∂f

∂s
}. (4.24)

Define Ro as

Ro ≜ [
∂f

∂x
,
∂f

∂o
,
∂f

∂c
,E {

∂f

∂s
}] , (4.25)

and Fisher information matrix will be

F =
1

(s2 + 1)σ2
t

⎛
⎜
⎜
⎜
⎜
⎝

RT
o Ro +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

05×5 05×1

01×5
N2(K+1)2s2σ2

t

s2+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎠

. (4.26)

Given that the estimation results are very close to the actual values, we have R ≈ Ro.

Besides, compared with the elements in RT
o Ro, the non-zero element at the right bottom

of the additional matrix is negligible because σ2
t is very small. Thus, we have cov{θ̂} ≈ F−1,

and the estimation error of the proposed algorithm is very close to CRLB.

4.3.2 Computational Complexity Analysis

In phase I, the construction of y requires 3N(K + 1) multiplications, 3NK + 2N additions

and NK divisions, while the construction of H requires 6NK+N multiplications, N(K+1)

additions and NK divisions. In Equation (4.9), we divide the process into three steps: the

first part is to compute HTH and its inversion; the second part is to multiply HT and

y; the last part is the multiplication of the previous two parts. The overall computation

complexity will be 20NK + 25 multiplications and 20NK additions, plus the 5-dimension
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matrix inversion. Similarly, the overall computational complexity of phase II includes

31N(K+1)+36 multiplications, 33N(K+1)+3 additions, 3N(K+1) divisions and N(K+1)

root operations, plus the 6-dimension matrix inversion.

Therefore, the overall computational complexity increases linearly with the number of

observations. The algorithm in [1] has a computational complexity of the same order but

several times larger, because it contains nine unknowns.

4.4 Numerical Evaluation

In this section, we will conduct Monte Carlo simulation for one hundred thousand times to

verify our analysis in previous sections. The average underwater sound speed is uniformly

distributed between 1420 and 1560 m/s as in [64]. The broadcast interval is set as 5 seconds,

and AUV velocity is chosen between 1.5 m/s to 2.5 m/s. N and K are equal to 4 and 50,

respectively. The standard deviation of timing error varies from 0.1 ms to 1.6 ms. For

visual convenience, σ2
t is transformed to decibel according to σ2

t /dB = 10 lg (1000σt)
2 =

10 lgσ2
t + 60, where lg(⋅) represents the base-10 logarithm. Clock skew is set as 1 + 1E − 4

(or 100 ppm). The normalized mean square error (NMSE) of ŝ is defined as

NMSE of ŝ = (
ŝ − s

s − 1
)

2

, (4.27)

which indicates the relative estimation error with respect to the fractional part of s.

The simulation results are shown in Fig. 4.1, including the estimation error of target

sensor’s position, clock skew, clock offset, and the average underwater sound speed. “Sim.

Res.” and “Theo. Res.” are short for “Simulation Results” and “Theoretical Results”

(in (4.18)). As comparison, the LS algorithm proposed in [1] is also simulated. It should
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Figure 4.1: Localization and synchronization errors of the presented algorithm and the LS

algorithm in [1].
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be noted that perfect knowledge of the average sound speed is assumed to be available

in [1]. Therefore, only the estimation of our algorithm is presented in Fig. 7(d). As we

can see, the proposed method outperforms the LS algorithm in [1]. Besides, the results

show that our performance analysis in (4.18) is very accurate in the simulation range of

σ2
t . Moreover, it is clear that our algorithm has a very good approach to CRLB. As we

can see, the discrepancy between CRLB and simulation results increases with the growth

of σ2
t , as is suggested by (4.26).

4.5 Summary

In this chapter, a low-complexity two-phase linear algorithm for the AUV-assisted local-

ization and time synchronization system is presented and analyzed. Closed-form error

analysis is presented and proves to be accurate through simulation. Besides, the localiza-

tion and time synchronization errors of this algorithm can approach CRLB, supported by

both theoretical and simulation results. Moreover, the computational complexity grows

linearly with the number of observations, which is acceptable. Because this is a passive

system, i.e., target sensors are silent and only receive signals from the AUV, it is energy

efficient and has unlimited capacity.
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Chapter 5

Passive AUV-Aided Localization

Based on Doppler Shift

Measurements

The AUV-aided localization techniques for underwater acoustic devices show promising

applications in many scenarios, and most literatures in this area are based on the ToA or the

TDoA measurements. However, these measurements are not readily available. To develop a

more universally applicable scheme, we will investigate the possibility of employing Doppler

shift measurements for underwater localization of acoustic devices in this chapter.1

1The work in this chapter has been published in [J4]: Z. Gong, C. Li, F. Jiang, and J. Zheng, “AUV-

Aided Localization of Underwater Acoustic Devices Based on Doppler Shift Measurements,” IEEE Trans.

Wireless Commun., vol. 19, no. 4, pp. 2226-2239, April 2020.
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5.1 Motivation

Doppler shift is widely used in underwater acoustic sonar to estimate target’s radial veloc-

ity. However, we will show that the Doppler shift measurements also contain the target’s

position information, and can be used for localization. Compared with the ToA-based or

TDoA-based systems, the Doppler-based system has many advantages. First, localization

accuracy can be boosted at very low cost. For example, assume that we need to increase

the localization accuracy by one order. For the ToA-based or TDoA-based methods, the

AUV needs to broadcast one hundred times faster (or longer). For the Doppler-based

method, we just need to sample the sinusoidal wave 4.5 ( 3
√

100 ≈ 4.5) times longer, as will

be shown in the performance evaluation part. Secondly, the TDoA and ToA based methods

generally include time synchronization, which increases complexity. Thirdly, the ToA and

TDoA measurements are not always available for various underwater localization applica-

tions, because our target does not necessarily have onboard communication modules. For

example, assume that we want to track some moving objects, such as sharks and whales.

We only need to attach a very simple tag that can generate sinusoidal acoustic waves for

the Doppler-based localization system. However, for the ToA or TDoA based methods, we

will need to install a much more complicated device for bidirectional communications.

In this chapter, we will present a Doppler-based positioning system for the underwater

acoustic devices. The AUV moves around in the area of interest and serves as a mobile

anchor. This system can works in both active and silent modes. In the active mode, the

AUV broadcasts its location information and a sinusoidal wave periodically. The target

devices can localize themselves by receiving the signals from the AUV. In the silent mode,
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the AUV stays silent and receives signals from the target devices. Based on the received

signal, the AUV can estimate the location of the targets.

In most related researches, the Doppler measurements are assumed to be available from

the Doppler log files. However, in the presented system, we incorporate the Doppler esti-

mation process into the localization system for two reasons. First, by including the Doppler

estimation process, we can boost system performance by improving Doppler estimation ac-

curacy. Second, we can obtain the statistics of the Doppler shift estimates, which allows us

to develop more accurate localization algorithms, as we will show in latter discussions. In

scenarios where the ToA and TDoA measurements are not available, the proposed method

can work as a backup. Besides, even when the ToA or TDoA measurements are avail-

able, the proposed algorithm can still be used to improve the system performance through

information fusion.

The rest of the chapter is organized as follows. In Section 5.2, the system model is

described. In Section 5.3, we briefly introduce the Doppler shift estimation algorithm and

conduct comprehensive analysis of the estimation error. In Section 5.4, the intuition and

details of the presented algorithm are presented. In Section 5.5, we thoroughly analyze the

performance of the proposed system and algorithm, in terms of the CRLB, the localization

error, and the computational complexity. In Section 5.6, simulation results are presented

and explained in details. The last section briefly summarizes this chapter.
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5.2 System Model and Problem Formulation

With the onboard GPS and inertial sensors, the AUV can localize and synchronize itself

[125, 126]. It moves around on the predefined trajectories and periodically broadcasts

beacon signals2. We assume that it moves on an arbitrary direction in constant velocity

for several broadcast periods. Then, it alters the direction and repeats this process. This

process will be repeated for M times, and the 3-dimensional velocity on the m-th direction

is vm = [v
(m)
x , v

(m)
y , v

(m)
z ]

T
. The position of the AUV at the k-th time slot on the m-th

direction is xm,k = [xm,k, ym,k, zm,k]
T , and the corresponding Doppler estimate is f

(m,k)
D .

The position of the target device is x = [x, y, z]T . Then, let dm,k = ∥x − xm,k∥, and we can

obtain

(xT − xm,k)
Tvm

dm,k
⋅
fc
c
= f
(m,k)
D , (5.1)

where c denotes the underwater sound speed and dm,k = ∥x − xm,k∥. This equation can be

rearranged as

fm,k(θ) =
(xT − xm,k)

Tvmfc

dm,kc
− f
(m,k)
D = 0, (5.2)

where θ = [x, y, z, c]T contains the 3D coordinate of the target and the average underwater

sound speed. Let fm(θ) = [fm,1(θ), fm,2(θ),⋯, fm,K(θ)]
T and we have

f(θ) = [f1(θ)
T , f2(θ)

T ,⋯, fM(θ)
T
]
T . (5.3)

By solving f(θ) = 0, we can get the estimate of the target’s location. However, this is

not a convex problem. If we employ iterative algorithms to solve it, the initial estimate of

the unknowns should be carefully chosen to make sure the algorithm converges. To avoid

2Although we are presenting the proposed system in the active mode, it can also work passively mode

with very little configuration.
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the initial estimation process, a low-complexity two-phase algorithm will be presented in

latter discussions. Before that, we need to first talk about how to get the Doppler shift

measurements.

5.3 Doppler Shift Estimation

In this section, we will employ a widely adopted Doppler estimation algorithm and analyze

its estimation error.

5.3.1 Doppler Shift Estimation in Single-Path Scenario

To make the problem mathematically tractable, we will start with the single-path scenario.

By removing the multi-path effect, we can better evaluate the impacts of different parame-

ters on system performance. Besides, the theoretical results can still serve as a benchmark.

Intuitively, the system performance will degrade at the presence of multi-path effect.

The onboard transmitter of the AUV broadcasts a sinusoidal wave at a frequency of

fc (in Hz). The receiver samples the received signal at fs (in Hz), and the sampled sequence

s at the target side will be

s[n] = A sin (2π(fc + fd)/fsn + θ) + ns[n], (5.4)

where fd is the Doppler shift, A is the amplitude of the received signal, and ns contains

zero-mean Gaussian noise, with a variance of σ2. Let ω = 2π(fc + fd)/fs, and we have

s[n] = A sin (ωn + θ) + ns[n], (5.5)

For a sample number of N , we can obtain the discrete spectrum of s as sω = DFT{s}. The
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k-th element in sω is

sω[k] =
1

N

N−1

∑
n=0

s[n]e−jknω0 , (5.6)

and ω0 = 2π/N . There must exist l ∈ {0,1,⋯,N −1} and β ∈ [0,1) that satisfy ω = (l+β)ω0.

Equation (5.6) can then be rewritten as

sω[k] =
A

N

N−1

∑
n=0

1

2j
(ej(ωn+θ) − e−j(ωn+θ)) e−jknω0 + nω[k]

=
A

2N
(ejθk

sin(l + β − k)π

sin(l + β − k)π/N
− ejθ̃k

sin(−l − β − k)π

sin(−l − β − k)π/N
) + nω[k],

(5.7)

in which θ̃k and θ̃k are given by

θk = θ − π/2 + (N − 1)(l + β − k)ω0/2,

θ̃k = −θ − π/2 + (N − 1)(−l − β − k)ω0/2.

(5.8)

The noise nω is the DFT of ns, given by

nω[k] =
1

N

N−1

∑
n=0

ns[n]e
−jknω0 . (5.9)

Figure 5.1: The peak location for 0 ≤ β < 0.5.

When k is close to l, sω is very close to a scaled sinc function, and there are always two

samples in the main lobe, as shown in Figure 5.1. Let Sp and Ss represent the two samples
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in the main lobe. When 0 ≤ β < 0.5, we have Sp = sω[l], and its amplitude is

∣Sp∣ = ∣sω[l]∣ ≈
A sin(βπ)

2βπ
. (5.10)

Ss = sω[l + 1], and we have

∣Ss∣ = ∣sω[l + 1]∣ ≈
A sin(βπ)

2(1 − β)π
. (5.11)

Generally, Sp and Ss have the largest amplitudes in sequence s[k] (0 ≤ k ≤ ⌊N/2⌋). In this

case, we can estimate β as

β̂ =
∣Ss∣

∣Ss∣ + ∣Sp∣
. (5.12)

It should be noted that both Ss and Sp follow Gaussian distribution, and they have the

same variance. To analyze the estimation error distribution of (5.12), we rewrite it as

β̂ =
∣S̄s + nω[l + 1]∣

∣S̄p + nω[l]∣ + ∣S̄s + nω[l + 1]∣
=
⎛
⎜
⎝

1 +

¿
Á
ÁÀ(Rp + n3)

2 + (Ip + n4)
2

(Rs + n1)
2 + (Is + n2)

2

⎞
⎟
⎠

−1

, (5.13)

where S̄p and S̄s are expectations of Sp and Ss, respectively. Rs, Is, Rp and Ip are given

by

Rs =R{S̄s}, Is = I{S̄s},Rp =R{S̄p}, Ip = I{S̄p}. (5.14)

The noise components in (5.13) are defined as follows:

n1 =R{nω[l + 1]}, n2 = I{nω[l + 1]}, n3 =R{nω[l]}, n4 = I{nω[l]}. (5.15)

n1, n2, n3, n4 are irrelevant and identically distributed zero-mean Gaussian variables, with a

variance of σ2

2N . Therefore, we can obtain the approximation of β̂ through Taylor expansion

as

β̂ ≈
∣S̄s∣

∣S̄s∣ + ∣S̄p∣
+
Rs∣S̄p∣/∣S̄s∣

(∣S̄s∣ + ∣S̄p∣)2
n1 +

Is∣S̄p∣/∣S̄s∣

(∣S̄s∣ + ∣S̄p∣)2
n2 −

Rp∣S̄s∣/∣S̄p∣

(∣S̄s∣ + ∣S̄p∣)2
n3 −

Ip/∣S̄p∣

(∣S̄s∣ + ∣S̄p∣)2
n4.

(5.16)
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In (5.16), we ignore the high-order components, because the absolute values of the noise

components are inversely proportional to
√
N , which means they are negligible compared

with S̄p and S̄s. In this case, β̂ can be approached by Gaussian distribution, and the

variance is

var{β̂} ≈
∣S̄p∣

2 + ∣S̄s∣
2

(∣S̄s∣ + ∣S̄p∣)4
⋅
σ2

2N
≈

2σ2r0(β)

NA2
, (5.17)

where r0(β) is given as

r0(β) = π
2
(2β2

− 2β + 1)β2
(1 − β)2/ sin2

(βπ). (5.18)

In (5.17), we implicitly employed the following approximations:

∣S̄p∣ ≈
A sin(βπ)

2βπ
, and ∣S̄s∣ ≈

A sin(βπ)

2(1 − β)π
. (5.19)

On the other hand, for β ∈ [0.5, 1), the peak and sub-peak values are given as

∣Sp∣ ≈
A sin(βπ)

2(1 − β)π
and ∣Ss∣ ≈

A sin(βπ)

2βπ
. (5.20)

Then, β can be estimated as

β̂ =
∣Sp∣

∣Sp∣ + ∣Ss∣
, (5.21)

and we can prove that the variance of β̂ is identical to the results in (5.17).

5.3.2 Improve Doppler Shift Estimation Accuracy

When β is very close to 0 or 1, the algorithm described in the previous section is not

reliable. To be specific, there is a high probability that the sub-peak cannot be correctly

identified, because it is very weak. This scenario is illustrated in Figure 5.2. Originally,
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the peak sample and the sub-peak sample are indexed by lp = l + 1 and l, respectively.

However, β is very close to one, and the sub-peak is very weak, comparable to the other

samples outside the main lobe. At the presence of noise, l cannot be accurately identified.

In this case, the following method can be employed to improve estimation accuracy.

Figure 5.2: The refinement of Doppler shift estimation.

Let lp be the index of the peak value in the spectrum, and there must exist βo ∈

[−0.5, 0.5) that satisfies ω = (lp +βo)ω0. We have lp +βo = l+β, or βo = β − ⌊β⌉ equivalently.

As shown in Figure 5.2, we take another two samples equally spaced around the peak

sample, (i.e., S1 and S2). They are given as

S1 =
1

N

N−1

∑
n=0

s[n]e−j(lp−0.5)nω0 ,

S2 =
1

N

N−1

∑
n=0

s[n]e−j(lp+0.5)nω0 ,

(5.22)

and their absolute values can be approximated by

∣S1∣ ≈
A cos(βoπ)

2(0.5 − βo)π
and ∣S2∣ ≈

A cos(βoπ)

2(0.5 + βo)π
. (5.23)
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Then, we can obtain the estimate of βo as

β̂o =
(∣S2∣ − ∣S1∣)/2

∣S2∣ + ∣S1∣
. (5.24)

By employing the Taylor expansion and keep the first order components, we have the

approximation as follows

β̂o ≈ βo +
R2∣S̄1∣/∣S̄2∣

(∣S̄1∣ + ∣S̄2∣)
2
n1 +

I2∣S̄1∣/∣S̄2∣

(∣S̄1∣ + ∣S̄2∣)
2
n2 −

R1∣S̄2∣/∣S̄1∣

(∣S̄1∣ + ∣S̄2∣)
2
n3 −

I1∣S̄2∣/∣S̄1∣

(∣S̄1∣ + ∣S̄2∣)
2
n4. (5.25)

S̄1 and S̄1 are the expectations of S1 snd S2, respectively. R1, I1, R2 and I2 are defined as

R1 =R{S̄1}, I1 = I{S̄1},

R2 =R{S̄2}, I2 = I{S̄2}.

(5.26)

Based on (5.25), we can decide that the estimation error can be well approximated by zero-

mean Gaussian distribution. Similar to the analysis in previous section, we can obtain the

variance of β̂o as

var{β̂o} =
2π2σ2

NA2
(0.5 − βo)

2
(0.5 + βo)

2
⋅ ((0.5 − βo)

2
+ (0.5 + βo)

2) . (5.27)

The estimate of β will be

β̂ = β̂o − ⌊β̂o⌋, (5.28)

and the variance of β̂ is

var{β̂} = var{β̂o} =
2σ2r1(β)

NA2
, (5.29)

where r1(β) is given in (5.30).

r1(β) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

π2
(0.5 − β)2(0.5 + β)2[(0.5 − β)2 + (0.5 + β)2]/ cos2

(βπ), β ∈ [0,0.5)

π2
(0.5 − β)2(1.5 − β)2[(0.5 − β)2 + (1.5 − β)2]/ cos2

(βπ), β ∈ [0.5, 1).

(5.30)
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As we can see in Figure 5.3, when β ∈ (0.25,0.75), r0(β) < r1(β). This means we should

use (5.12) or (5.21) to estimate β. On the other hand, when β ∈ [0,0.25) ∪ (0.75, 1), we

have r0(β) > r1(β). That is to say, (5.24) and (5.28) provide better estimate in this case.

As a result, after the estimation in the previous section, we need to decide if we should

refine the results based on the method presented in this section. To be specific, when

β̂ ∈ [0,0.25) ∪ (0.75,1), we should re-estimate β based on (5.24) and (5.28).

0 0.25 0.5 0.75 1
β

0.2

0.4

0.6

0.8

1

r
0
,
r
1
,
r

r0(β)
r1(β)
r(β)

Figure 5.3: The numerical result of r0(β), r1(β) and r(β), with respect to β.

Finally, we have the variance of β̂ as

var{β̂} =
2σ2

NA2
r(β), (5.31)

where r(β) is defined as

r(β) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

r1(β) β ∈ [0,0.25) ∪ [0.75, 1)

r0(β) β ∈ [0.25, 0.75).

(5.32)

With β̂, we have the estimate of fd as

f̂d = fs(l + β̂)/N − fc, (5.33)
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and the variance is

var{f̂d} ≈
f2
s

N2
⋅ var{β̂} ≈

2σ2f2
s

N3A2
r(β), (5.34)

as is verified by the simulation results in Figure 5.4.

SNR = 0dB,

fc = 15 kHz,

fd = 9:25Hz,

fs = 4fc,

N=fs = 0:2

(a) β = 0.85.

SNR = 0dB,

fc = 15 kHz,

fd = 6:75Hz,

fs = 4fc,

N=fs = 0:2

(b) β = 0.35.

Figure 5.4: The numerical and theoretical Doppler estimation error.

Besides, the amplitude can be estimated by the least square (LS) method. For β̂ ∈

[0,0.5), the LS estimate of A is

Â =
2π(1 − β̂)β̂

sin(β̂π)
⋅
(1 − β̂)∣Sp∣ + β̂∣Ss∣

(1 − β̂)2 + β̂2
. (5.35)

For β̂ ∈ [0.5, 1), we have the estimate of A as

Â =
2π(1 − β̂)β̂

sin(β̂π)
⋅
(1 − β̂)∣Ss∣ + β̂∣Sp∣

(1 − β̂)2 + β̂2
. (5.36)

Â can be used for SNR estimation, which is essential for the localization algorithm in

the following section. To be specific, different Doppler shift measurements have different
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accuracy due to different SNRs, and they should be assigned with different weights during

the localization.

As we know, underwater acoustic signals generally experience severe multi-path effect.

As the AUV transmits a sinusoidal wave, the target will receive a series of sinusoidal

waves of different frequencies. However, in all these paths, only the line-of-sight (LoS) one

provides information about the location of the target.

r(t) =
L−1

∑
l=0

Al sin (2π (fc + f
(l)
d ) t + θl) + n(t), (5.37)

where f
(l)
d is the Doppler shift of the l-th path and L is total path number. Generally, the

LoS path is much stronger than the other paths, and it is the major contributor of the

Doppler shift [55, 58,127–129]. As a result, the LoS path signal is desired, while the other

paths can be modeled as additive Gaussian noise, which increases the noise level [58]. It

is expected that the system performance will degrade at the presence of multi-path effect,

but the theoretical results in this section can still serve as a benchmark.

5.4 Doppler-Based Localization

As has been discussed in [5] and [66], by employing the AUVs for underwater localization,

better performance can be achieved at lower cost. In this section, we present a low-

complexity AUV-aided localization system based on Doppler shift measurements.

5.4.1 A Linear Localization Algorithm

The localization algorithm has two phases. In the first phase, the coarse result is ob-

tained by extracting linear constraints on the unknowns. By doing this, we can obtain the
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Figure 5.5: Geometrical intuition of the low-complexity algorithm.

localization result with linear algorithms, but we are not fully utilizing the information.

Therefore, we add a second phase, during which the localization result will be refined.

5.4.1.1 Phase I: Coarse Localization

As we have discussed, we want to extract linear constraints on the target’s location from

the nonlinear equations. The intuition is presented in Figure 5.5. As we can see, the AUV

moves on a straight line at a constant velocity. At t1, it broadcasts the beacon signal, and

the target can decide that it is on a conical surface by estimating the Doppler shift. At

t2, a second conical surface can be identified. The target must lie on the intersection of

these two conical surfaces, which is a circle, and that circle must lie on a specific surface.

As long as we can find that surface, we can establish a linear equation with respect to the

target’s location. When the AUV moves in different directions, we can obtain a series of
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linear equations, by solving which the target’s position can be estimated. We will unveil

the mathematical details of this process in the following discussions.

Assume that the AUV is moving on the m-th direction at a constant speed vm. We

have two Doppler shift measurements f
(m,i)
D and f

(m,j)
D , at the i-th and the j-th broadcast

periods, respectively. Given that the positions of the AUV at these two periods are xm,i

and xm,j , the following equations can then be constructed

(xT − xTm,i)vm = cm,idm,i, (5.38a)

(xT − xTm,j)vm = cm,jdm,j , (5.38b)

where cm,i = cf
(m,i)
D /fc and cm,j = cf

(m,j)
D /fc. For (5.38a), we square both sides, and

multiply them with c2
m,j ; for (5.38b), we square both sides and multiply them with c2

m,i.

We can then obtain

c2
m,j(x

Tvm − xTm,ivm)
2
= c2

m,ic
2
m,j∥x − xm,i∥

2, (5.39a)

c2
m,i(x

Tvm − xTm,jvm)
2
= c2

m,ic
2
m,j∥x − xm,j∥

2. (5.39b)

Subtract (5.39b) from (5.39a), leading to

c2
m,j(x

Tvm − xTm,ivm)
2
− c2

m,i(x
Tvm − xTm,jvm)

2

=c2
m,ic

2
m,j(2∆Tm,i,jx

Tvm + ∥xm,i∥
2
− ∥xm,j∥

2
),

(5.40)

where ∆Tm,i,j denotes the time lapse between the i-th and j-th time slots, and it satisfies

xm,j − xm,i =∆Tm,i,jvm. Define ωm = xTvm, and we have

c2
m,j(ωm − xm,ivm)

2
− c2

m,i(ωm − xm,jvm)
2

=c2
m,ic

2
m,j(2∆Tm,i,jωm + ∥xm,i∥

2
− ∥xm,j∥

2
).

(5.41)
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Equation (5.41) can be reorganized as

amω
2
m + bmωm + cm = 0, (5.42)

where

am =(c
2
m,j − c

2
m,i),

bm =2 (−c
2
m,jx

T
m,ivm + c

2
m,ix

T
m,jvm − c

2
m,ic

2
m,j∆Tm,i,j ),

cm =c
2
m,j(x

T
m,ivm)

2
− c2

m,i(x
T
m,jvm)

2
+∆Tm,i,jc

2
m,ic

2
m,j(xm,i + xm,j)

Tvm.

(5.43)

By solving (5.42), we will obtain two roots as

ω̂m =
−bm ±

√
b2m − 4amcm

2am
. (5.44)

These two roots represent two parallel surfaces, and the target can only lie on one of them.

In Figure 5.6, we show these two surfaces in top view. As we can see, the intersection

of two conical surfaces lies on the true target surface. However, if we extend the second

conical surface to the opposite direction, it will have another intersection with the first

conical surface, and that gives us the fake target surface. Mathematically, the fake solution

originates from the squaring operations in (5.39a) and (5.39b). To identify the true target

surface, we notice that ωm must satisfy the following inequality:

(ωm − xTm,kvm)f
(m,k)
D = (ωm − xTm,kvm)

2fc/dm,k/c > 0, (5.45)

where we implicitly replace f
(m,k)
D with the left hand side of (5.1).

Note that we can use different combinations of i, j ∈ {1,2,⋯,K} to estimate ωm and

average out noise. Assume we have obtained the valid solution as ω̂m, and the target

surface will be determined by

vTmx = ω̂m. (5.46)
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Figure 5.6: The fake target surface and the true target surface.

This process will be repeated on M directions, and the following linear equation can be

obtained:

Vx = ω, (5.47)

where ω = [ω̂1, ω̂2,⋯, ω̂M ]
T and V = [v1,v2,⋯,vM ]

T . We can then employ the least square

estimator to obtain the coarse estimate of the target’s location, given by

x̂c = (V
TV)

−1
VTω. (5.48)

As we can see, the complexity of this algorithm grows linearly with the number of Doppler

measurements. Besides, it should be noted that c is assumed to be known in this algorithm.

Generally, it is not far away from 1500 m/s, and we can employ this value for the coarse

estimation.
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5.4.1.2 Phase II: Refinement of the Result

In Phase I, we are only partially using the information provided by the Doppler measure-

ments. For example, in Figure 5.5, the Doppler estimates tell us that the target lies on a

specific circle, but we are extending the searching area to a surface, which leads to infor-

mation loss. As a result, we should find a way to further extract the available information

and try to improve localization accuracy.

After Phase I, the coarse estimate of θ is obtained as θ̂c = [x̂
T
c , ĉc]

T , where ĉ = 1500 m/s.

Let ∆θ be the estimation error, i.e., θ̂c = θ+∆θ, and ∆θ can be approximated by the first

order Taylor expansion as

f(θ̂c) − f(θ) ≈H∆θ. (5.49)

H is the Jacobian matrix given by

H =
∂f(θ)

∂θ
= [HT

1 ,H
T
2 ,⋯,H

T
M ]

T , (5.50)

where Hm is

Hm =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂fm,1(θ)))
∂x

∂fm,1(θ)))
∂y

∂fm,1(θ)))
∂z

∂fm,1(θ)))
∂c

∂fm,2(θ)))
∂x

∂fm,2(θ)))
∂y

∂fm,2(θ)))
∂z

∂fm,2(θ)))
∂c

⋮ ⋮ ⋮ ⋮

∂fm,K(θ)))
∂x

∂fm,K(θ)))
∂y

∂fm,K(θ)))
∂z

∂fm,K(θ)))
∂c

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.51)
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The partial derivatives in (5.51) are given by

∂fm,k(θ)))

∂x
=
fc
c
⋅

⎡
⎢
⎢
⎢
⎢
⎣

v
(m)
x

dm,k
−
(x − xm,k)

Tvm(x − xm,k)

d3
m,k

⎤
⎥
⎥
⎥
⎥
⎦

∂fm,k(θ)))

∂y
=
fc
c
⋅

⎡
⎢
⎢
⎢
⎢
⎣

v
(m)
y

dm,k
−
(x − xm,k)

Tvm(y − ym,k)

d3
m,k

⎤
⎥
⎥
⎥
⎥
⎦

∂fm,k(θ)))

∂z
=
fc
c
⋅

⎡
⎢
⎢
⎢
⎢
⎣

v
(m)
z

dm,k
−
(x − xm,k)

Tvm(z − zm,k)

d3
m,k

⎤
⎥
⎥
⎥
⎥
⎦

∂fm,k(θ)))

∂c
= −

fc
c2
⋅
(x − xm,k)

Tvm

dm,k
.

(5.52)

∆θ can then be estimated with the weighted least square algorithm. However, H is

unavailable in practical scenarios, because θ is unknown. As a result, we need to use

Hc =
∂f(θ)
∂θ
∣
θ=θ̂c instead, and the final result will be

∆θ̂ ≈ (HT
c WHc)

−1HT
c Wf(θ̂c), (5.53)

where W is the weight matrix. Define wm,k as

wm,k = A
2
m,k/r(βm,k)∝

1

var {f
(m,k)
D }

, (5.54)

where Am,k is unavailable and we need to estimate it through (5.35) or (5.36). The weight

matrix is given by

W = diag{[wT
1 ,w

T
2 ,⋯,w

T
M ]}, (5.55)

where wm = [wm,1,wm,2,⋯,wm,K]
T .

Then, the coarse estimate θ̂c can be refined as

θ̂ = θ̂c −∆θ̂. (5.56)

The refined estimate of x and c will be x̂ = θ̂[1 ∶ 3] and ĉ = θ̂[4], respectively. It should

be noted that this process can be iterated to further improve the estimation accuracy.
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Based on our simulations, one or two iterations should be enough to provide very accurate

localization results.

5.4.2 Time Synchronization Based on Localization Results

After localization, passive time synchronization can be easily achieved. To be specific, the

AUV can broadcast signals with time stamps, while the acoustic sensors will receive the

signal and synchronize their local clocks.

The time stamp of the m,k-th packet is tm,k, and it is received by the target node at

local time rm,k.

∥x − xm,k∥ = c ⋅ (s ⋅ rm,k + o − tm,k) (5.57)

Then, we can construct the following equation:

d̂ = ĉ ⋅ (s ⋅ r + o ⋅ 1MK − t), (5.58)

where d̂ = [d̂T1 , d̂
T
2 ,⋯, d̂

T
M ]

T , d̂m = [d̂m,1, d̂m,2,⋯, d̂m,K]
T . r̂ = [r̂T1 , r̂

T
2 ,⋯, r̂

T
M ]

T , r̂m =

[r̂m,1, r̂m,2,⋯, r̂m,K]
T . t̂ = [t̂T1 , t̂

T
2 ,⋯, t̂

T
M ]

T , t̂m = [t̂m,1, t̂m,2,⋯, t̂m,K]
T .

With MK observations, s and o can be estimated with least square method. To be

specific, (5.58) can be reorganized as

tt = Tα (5.59)

where tt = d̂/ĉ + t, T = [r,1MK], and α = [s, o]T . Then, s and o can be estimated as

α̂ = (TTT)−1TT tt. (5.60)
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5.5 Performance Analysis

5.5.1 Positioning Error of the System

Due to the estimation error in Doppler shifts, the localization error is inevitable. Suppose

fD contains the Doppler shift estimates and is given by fD = [f
T
D,1, f

T
D,2,⋯, f

T
D,M ]

T
, where

fD,m is given by fD,m = [f
(m,1)
D , f

(m,2)
D ,⋯, f

(m,K)
D ]

T
. Let µ = E{fD ∣x, c} denote the accurate

Doppler shifts, and the Doppler estimation error vector will be ef = fD −µ, which leads to

estimation error in θ̂. If we take the first order Taylor expansion, we have ef ≈Heθ, where

eθ = θ̂ − θ is the estimation error. Equivalently, we have

eθ = (H
TWH)

−1
HTWef . (5.61)

The covariance matrix of θ̂ is given by

Rθ̂ = E {eθeθ
T} = (HTWH)−1HTWE {efef

T}WH(HTWH)−1
≈ (HTΣH)−1. (5.62)

where Σ = E{(fD − µ)(fD − µ)
T ∣x, c} gives the covariance matrix of fD. Generally, the

estimation error of different Doppler shifts is independent, and Σ is a diagonal matrix. In

the last step of (5.62), we implicitly employ the approximation W ≈ N3/(2σ2f2
s ) ⋅Σ

−1.

The estimation error of x is

ex = x̂ − x. (5.63)

The estimation error of c is

ec = ĉ − c = eθ[4]. (5.64)
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From another perspective, Rθ̂ can also be written as

Rθ̂ = E {eθeθ
T} =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Rx̂ Rx̂,ĉ

RT
x̂,ĉ Rĉ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.65)

Rx̂ is the covariance matrix of x̂, Rĉ is the variance of ĉ, and Rx̂,ĉ = E{(x̂ − x)(ĉ − c)}.

The mean squared positioning error is

MSE{x̂} = tr{Rx̂}. (5.66)

5.5.2 CRLB of the Doppler-based Localization System

As we have demonstrated in Section 5.3, the Doppler estimation error can be well ap-

proximated by zero-mean Gaussian distribution, and the variance is given by (5.34). In

this section, we will derive the FIM, which can be used to quantify the amount of target’s

location information that can be extracted from the Doppler shift estimates.

To start with, the probability density function of fD is given by

p(fD ∣x, c) = (2π)
−NK/2

⋅ ∣Σ∣−1/2
⋅ exp(−

1

2
(fD −µ)

TΣ−1
(fD −µ)), (5.67)

while its logarithm (i.e., l(fD ∣x, c) = lnp(fD ∣x, c)) is given by

l(fD ∣θ) =
−NK

2
ln 2π −

1

2
ln ∣Σ∣ −

1

2
(fD −µ)

TΣ−1
(fD −µ). (5.68)

Based on our analysis in Appendix B.2, the FIM F is given as

F =
∂µT

∂θ
Σ−1∂µ

∂θ
+

1

2
{
∂σT

∂θ
Σ−2∂σ

∂θ
} , (5.69)

where we have σ = diag{Σ}. In Appendix B.3, we have justified the following equations:

∂µ

∂θ
=H, and

∂σ

∂θ
= PH, (5.70)
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where P = diag([pT1 ,p
T
2 ,⋯,p

T
M ]), and the k-th element of pm is given as

pm[k] =
2fsσ

2

N2A2
m,k

⋅
dr

dβm,k
. (5.71)

Then, the FIM can be reorganized as

F =HTΣ−1H +
1

2
{HTPΣ−2PH} =HT

(Σ−1
+

1

2
PΣ−2P)H. (5.72)

The l-th diagonal element in Σ−1 is

Σ−1
[l, l] =

N3A2
m,k

2f2
s σ

2r(βm,k)
=
NT 2

c A
2
m,k

2σ2r(βm,k)
, (5.73)

where Tc = N/fs is the total sampling time. The l-th diagonal element in 1
2PΣ−2P is

(
1

2
PΣ−2P) [l, l] =

⎛

⎝

2f2
s σ

2

N3A2
m,k

⋅ r(βm,k)
⎞

⎠

−2
⎛

⎝

2fsσ
2

N2A2
m,k

⋅
dr

dβm,k

⎞

⎠

2

=
T 2
c (dr/dβm,k)

2

2r2(βm,k)
. (5.74)

As we can see, the l-th diagonal element in Σ−1 is proportional to N , while the correspond-

ing value in 1
2PΣ−2P is a constant. Generally, N is very large, which renders the second

part negligible. When N is infinitely large, we have the limit of F/N as

lim
N→∞

F/N =HTΣ−1
N H, (5.75)

where ΣN = NΣ. Or equivalently, the asymptotic FIM is

F ∼HTΣ−1H. (5.76)

This result is identical to the inverse of Rθ̂ in (5.62), which means the two-phase algorithm

can asymptotically achieve the CRLB. Although the result in (5.62) is only approximation

by taking the first order Taylor expansion, it is actually very accurate, as will be shown in

simulations.
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5.5.3 Computational Complexity

The localization algorithm contains three steps. The first step is to estimate Doppler shifts.

The Doppler estimation algorithm involves the FFT, and the complexity is at the order of

O{N log2N}. For MK measurements, the overall complexity is MKO{N log2N}. The

second step is the coarse localization. In (5.44), the computation complexity of calculating

ωm’s is at the order of O{MK}. In (5.48), the complexity of VTV is at the order of O{M},

while that of matrix inversion is O{M3}. In Phase II, the complexity of calculating the

individual components is at the order of O{MK}. To compute (5.54), the complexity is

also at the level of O{MK}. Generally, M and K are much smaller than N . As a result, the

major computational complexity lies in the Doppler estimation, and thus, is at the order

of O{MKN log2N}. To modern central processors, this complexity is acceptable even

when N is very large. Besides, if we have some statistical information about the Doppler

shifts, we do not need to compute the whole spectrum, and the FFT can be avoided. To

be specific, we only need to analyze the spectrum for a specific frequency range, and the

complexity can be reduced to the order of O{MKN}.

5.6 Numerical Evaluations

In this section, we will conduct simulations to verify the analytical results in previous

sections. To be specific, we will show that the approximated 3D positioning error is accurate

and the asymptotical CRLB can be closely approached. Besides, we will show how different

parameters contribute to the overall performance.
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5.6.1 The Impact of Iteration Number and SNR

As we have briefly mentioned in Section 5.4.1, if we repeat the refinement process in Phase

II, the localization accuracy can be improved. Simulations are conducted and the results

are presented in Figure 5.7. fc is set as 15 kHz, the sampling time is fixed as 0.1 s, and

sampling frequency is 60 kHz. When the iteration number (Niter) equals zeros, there is a

discernable gap between the CRLB and the MSE of the presented algorithm, especially

in low SNR regime. However, by adding one iteration, the localization accuracy can be

substantially improved. By increasing the iteration number to 2 or 3, the localization error

will decrease continuously, but the performance gain is negligible. Besides, we notice that

as SNR increases, localization error decreases constantly, because Doppler shift can be

more accurately estimated. As a matter of fact, the variance of 3D localization error is

inversely proportional to the SNR, as we can observe in (5.62).

Figure 5.7: The impact of iteration number and SNR on localization accuracy.
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5.6.2 The Impact of N and SNR

Intuitively, as we increase N or SNR, the accuracy of Doppler estimation will be improved.

As a result, localization accuracy should be improved. In this section, we will evaluate

the system performance for different N and SNR values. The sampling frequency is fixed.

Therefore, the increase of N is equivalent to the increase of sampling time. Based on

our theoretical analysis, the variance of positioning results is inversely proportional to N3.

The simulation results are presented in Figure 5.8. Every time we double the number of

CRLB
MSE

Figure 5.8: The impact of N on localization accuracy.

samples, the MSE of localization result will be reduced by a factor of 8, which is consistent

with our analysis. Besides, we notice that for N = 0.05fs, the proposed algorithm has

a significant performance gap compared to CRLB. This is because our analysis is based

on first order Taylor expansion, which is only accurate for small Doppler shift estimation
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error. However, when N is not large enough, Doppler estimation error will be significant

and the result in (5.66) is no longer accurate.

5.6.3 The impact of M and K

When we increase M and K, the localization error is expected to decrease. In this section,

we conduct simulations for different combinations of M and K. The results are shown in

Figure 5.9. As we can see, M is increased from 2 to 4, and then to 6, while K varies in

Figure 5.9: The impact of M and K on localization accuracy.

{4,6,8}. Generally, by increasing M and K, more measurements can be obtained, and

better localization accuracy can be achieved. However, the impact of M and K is more

complicated than that of N . As has been pointed out by many researchers, the trajectory

of the AUV has a significant impact on the localization accuracy. Therefore, depending

on the trajectory of the AUV, the increase of M and K may show significant or negligible
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influence on performance.

5.7 Summary

In this chapter, we thoroughly investigated the possibility of employing Doppler shifts for

underwater localization. A low complexity algorithm for Doppler estimation was presented,

and the estimation error can be well approximated by zero-mean Gaussian distribution.

Based on the Doppler estimates, a two-phase linear algorithm was employed to extract

high-accuracy position information of the target devices. Both the closed-form localization

error and the CRLB were provided. They proved to be consistent for reasonably small

Doppler estimation error. Besides, extensive simulations were conducted to verify the

theoretical results. Overall, we can see that the Doppler-based underwater localization

system has great advantages over the ToA- or TDoA-based ones in some aspects, and it

can also work complementarily with the conventional systems.
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Chapter 6

Proactive Underwater Target

Detection and Tracking Based on

LFM Signals

In Chapter 4, an AUV is employed to locate a target equipped with a hydrophone. In

Chapter 5, this requirement is relaxed, and the target only needs an acoustic device being

able to generate sinusoidal waves at a fixed frequency. However, what if the target is totally

silent and cannot transmit or receive any acoustic signals? This kind of examples include

icebergs, whales, leaked oil, etc. For these scenarios, one AUV will not be enough and

multiple anchors are required. In previous sections, we have talked about the localization

and time synchronization in larger-scale underwater acoustic sensor networks. The local-

ized and synchronized nodes can then server as anchors for proactive underwater target

detection and tracking, which will be investigated in this chapter. Although the system
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model will be presented based on fixed anchors, the algorithms can be easily modified to

work with mobile ones. 1

6.1 Introduction

In Section 2.2.4, we already briefly introduced the CAS based on LFM signals. Such a sys-

tem contains a huge number of location-aware nodes, serving as anchors. A small number of

them are transmitting signals while all the others are listening. A major challenge in imple-

mentation is the computational complexity. Although the fast DFrFT algorithms proposed

in [71] have already reduced the computational complexity to great extent, we still need to

process very large two dimensional spectrum. If there are multiple objects, it will become

highly complicated. To solve this problem, we propose a machine learning-based approach

to first roughly estimate the position of the peak, and then conduct over-sampling on the

small area around the peak. This is possible depending on the following observation: if a

target exists, we will be able to find an “X” pattern on the spectrum, and the cross point is

dependent on the target’s location and velocity. If multiple targets exist, there will be mul-

tiple “X” patterns. As we know, there are many machine-learning architectures, and the

Convolutional Neural Networks (CNNs) are specifically designed for pattern recognition.

We will thus design our system based on a CNN. The major advantage of this approach

is that it allows us to compute the discrete spectrum with much larger sampling interval.

With the under-sampled spectrum, although we won’t be able to accurately estimate the

1The presented work has been published in [J1]: Z. Gong, C. Li and F. Jiang, “A Machine Learning-

based Approach for Auto-Detection and Localization of Targets in Underwater Acoustic Array Networks,”

IEEE Trans. Veh. Technol., accepted, to appear in 2020.
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position of the peak, the “X” patterns can still be reserved, which allows us to perform

coarse estimation. The computational complexity can thus be significantly reduced.

In this chapter, we will present an innovative underwater localization architecture based

on CNN and FrFT. The system is composed of three parts: the FrFT-based spectrum

analysis, the CNN-based auto-detection of the “X” patterns, and the joint estimation of

target’s location and velocity. The topics are summarized as follows.

1) We will see that the MLE of the initial frequency and frequency rate can be obtained

by identifying the peak of the FrFT of a LFM signal contaminated by white Gaussian

noise. The parameters are designed carefully for efficient signal processing.

2) A CNN architecture will be presented for automatic detection of the targets and

rough position of the peak in the two dimensional spectrum.

3) A low-complexity algorithm will be designed for joint estimation of target’s location

and velocity based on the FrFT of the received signals.

4) Extensive simulations will be conducted and the results show that the presented

framework has great potential in achieving accurate object detection and tracking.

The rest of this paper is organized as follows. In Section 6.2, the system model is pre-

sented in details, and the discrete FrFT (DFrFT) algorithm and some important properties

will also be unveiled. In Section 6.3, a low-complexity algorithm for joint estimation of

target’s location and velocity is proposed. In Section 6.4, the CNN-based auto-detection

system is introduced, including the system architecture, data preparation, and training de-

tails. The simulation results are presented in Section 6.5, and the last section summarizes

this chapter.
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6.2 System Model and The DFrFT Algorithm

6.2.1 System Model

We will start with a simple 2D model with only two nodes: node 0 is transmitting a probe

signal periodically, while node 1 is listening. When a target enters the surveillance area,

the signal transmitted by node 0 will be reflected by the target and received by node 1, as

illustrated in Figure 6.1.

Node 1

Node 0

Figure 6.1: System model illustration.

Suppose node 0 and node 1 are located at x0 = [x0, y0]
T and x1 = [x1, y1]

T . The target

moves at a constant speed of v = [vx, vy]
T . Node 0 transmits a LFM signal from t = 0 to

t = T , given by

s(t) = Aej(2πf0t+kπt
2), t ∈ [0, T ], (6.1)

where f0 is the initial frequency and k is the frequency rate.

The received signal at node 1 will be

r(t) = P0s(ρ(t − τ)), (6.2)

which is another LFM signal. P0 is the propagation loss and P0A is the amplitude of the
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received signal. τ is the delay of the received signal, and it is proportional to the sum of

the distances between nodes and the target, at the time the signal first reached the target.

ρ is the time scaling factor (Doppler rate), given by

ρ =
c − v0

c + v1
, (6.3)

where v0 and v1 are the radial speeds of the target with respect to node 0 and 1. c is the

average underwater sound speed. If the target is moving away from the node, the velocity

is positive. Otherwise, it will be negative. Suppose the target’s position is x = [x, y]T at

t = 0, and we have

v = ∥v∥,

v0 =
(x − x0)

Tv

∥x − x0∥
,

v1 =
(x − x1)

Tv

∥x − x1∥
.

(6.4)

The signal will first reach the target roughly at t = τ0 = ∥x − x0∥ /(c− v0)
2, when the target

is located at xτ0 = x + vτ0. As a result, we have

∥x0 − xτ0∥ + ∥x1 − xτ0∥ = cτ. (6.5)

Assume the maximum scanning distance is dmax, and the maximum delay will be

τmax = 2dmax/c. After frequency mixing at the receiver, the received signal will go through

a low-pass filter, and the baseband signal will be

r(t) =A0e
j[2πf0(1−ρ)t+kπ(1−ρ2)t2+2kπρ2τt+θ]

=A0e
j(2πf̃0t+πk̃t2+θ),

(6.6)

2Here we are assuming that the v0 is constant from t = 0 to t = τ0.
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where A0 is the amplitude of the signal after filtering. f̃0 and k̃ are given as

f̃0 = f0(1 − ρ) + kρ
2τ and k̃ = k(1 − ρ2

), (6.7)

for t ∈ [τmax, T ]. θ is the phase delay and it is of no significant for the localization purpose.

Apparently, this is a new LFM signal, whose initial frequency and frequency rate are

given as f̃0 and k̃ in (6.7). By estimating f̃0 and k̃, we can compute the values of ρ and τ ,

which are directly dependent on the Doppler shift and delay. For a large-scale underwater

sensor network, by incorporating the information from multiple nodes, we can estimate the

target’s location and velocity.

The major challenge here is the accurate estimation of the parameters of the LFM

signals received at listening nodes. In the past two decades, the Fractional Fourier Trans-

form (FrFT) has been developed as a powerful tool for underwater acoustic sonar signal

processing. In [70], the authors unveiled the strong connection between the FrFT and

the Wigner distribution. In [71], a fast discrete FrFT algorithm was proposed, and the

complexity was almost identical to the conventional FFT. In the following sections, we will

briefly introduce the FrFT-based joint estimation of delay and radial velocity.

6.2.2 FrFT-Based Parameter Estimation for LFM Signals

For an arbitrary LFM signal with amplitude A, initial frequency f0 and frequency rate k,

assume additive white Gaussian noise is presented, the received signal will be

r(t) = Aej(2πf0t+kπt
2)
+ n(t), t ∈ [0, T ]. (6.8)

The maximum likelihood estimate should be

[f̂0, k̂, Â] = arg min
f̄0,k̄,Ā

∫

T

t=0
∣r(t) − Āej(2πf̄0t+k̄πt

2)
∣
2
dt. (6.9)
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Because we are only interested in f0 and k, (6.9) is equivalent to

[f̂0, k̂] = arg max
f̄0,k̄

∣∫

T

t=0
r(t) exp (−j2πf̄0t − k̄πt

2
)dt∣ , (6.10)

as has been shown in Appendix C.1. Conventionally, this can be achieved by taking the

Wigner distribution of r(t), because Wigner distribution approximately gives the energy

distribution of the received signal in time-frequency domain. After getting the Wigner

distribution, a two-dimensional search can be conducted to find the peak, and the corre-

sponding horizontal and vertical coordinates are dependent on f0 and k. However, this

process involves high computational complexity.

Another choice will be the FrFT, which is a powerful tool for LFM signal processing.

The a-th order FrFT of r(t) is given as

Ra(u) = ∫
∞

−∞
Ka(u, t)r(t)dt. (6.11)

Ka(u, t) is the kernel function given as

Ka(u, t) =
√

1 − j cotφejπ(u
2 cotφ−2 cscφut+t2 cotφ), (6.12)

where φ = aπ/2. For a = 0 or a = ±2, the kernel approaches K0(u, t) = δ(u − t) and

K±2(u, t) = δ(u + t), respectively. a = 1 gives us the conventional Fourier transform. The

FrFT has two important characteristics:

Ra(u) = Ra+4(u) and Ra(u) = Ra+2(−u). (6.13)

Therefore, we only need to conduct the FrFT for a ∈ [−1, 1]. As we can see, the FrFT tries

to decompose the received signal into a series of LFM signals, and we will obtain a two

dimensional spectrum. In the spectrum, assume we have found the peak at [â, û]:

[â, û] = arg max
a,u

∣Ra(u)∣. (6.14)
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Obviously, the absolute value of Ra(u) will be maximized for

f0 = u cscφ and k = − cotφ. (6.15)

Therefore, the initial frequency and frequency rate can be estimated as

f̂0 = û csc φ̂ and k̂ = − cot φ̂, (6.16)

where φ̂ = âπ/2.

The direct computation of the FrFT introduces high complexity. In [71], two fast

discrete algorithms were proposed, and we will customize one of them for our use in the

underwater localization systems. Particular, we will explore efficient methods to narrow

down the search area for lower computational complexity.

6.2.3 Discrete Implementation of the FrFT

Consider a signal x(t) confined to t ∈ [0, T ], given by

x(t) = Aej(2πf0t+πkt
2), t ∈ [0, T ]. (6.17)

Suppose k is positive, the instantaneous frequency of x(t) is f0 + kt, which ranges from f0

to f0 + kT . The FrFT of x(t) is

Xa(u) = ∫
∞

−∞
Ka(u, t)x(t)dt. (6.18)

To simplify the notation, we can rewrite Ka(u, t) as

Ka(u, t) = Aa exp [jπ (αu2
− 2βut + αt2)] , (6.19)

where α = cotφ, β = cscφ, and Aa is given as

Aa ≡
exp (jπ sgn(sinφ)/4 + jφ/2)

∣ sinφ∣1/2
. (6.20)
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(6.18) can be rewritten as

Xa(u) =Aae
jπαu2

∫

T

0
e−j2πβutejπαt

2

x(t)dt,

=Aae
jπ(α−β)u2

∫

T

0
ejπβ(u−t)

2

ejπ(α−β)t
2

x(t)dt.

By defining η = α − β = − tan(φ/2), we can rewrite Xa(u) as

Xa(u) =Aae
jπηu2

∫

T

0
ejπβ(u−t)

2

ejπηt
2

x(t)dt. (6.21)

If we further define g(t) = ejπηt
2
x(t), h(t) = ejπβt

2
, and x̃a(t) = Aag(t) ∗ h(t) (∗ denotes

linear convolution), an immediate observation here is

arg max
u,a

∣Xa(u)∣ = arg max
u,a

∣x̃a(u)∣. (6.22)

The spectrum of h(t) is H(f), given by

H(f) =
1
√
β
ejπ/4 exp(−jπf2

/β). (6.23)

In this case, one might be attempted to directly sample g(t), h(t), and x̃a(t), and then use

the FFT to implement the convolution. However, we cannot do that for now because h(t)

is not bandlimited, and we will take the following approach.

Suppose the Fourier transforms of g(t) and x̃a(u) are G(f) and X̃a(f), respectively.

We apparently have

X̃a(f) = AaG(f)H(f). (6.24)

We can see that G(f) is bandlimited to [f0, f0 + kT ]. Therefore, if we define H̃(f) as

H̃(f) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

H(f), ∣f ∣ < f0 + kT,

0, otherwise,

(6.25)
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we have

X̃a(u) = AaG(f)H̃(f). (6.26)

Suppose h̃(t) is the inverse Fourier transform of H̃(f), we have

x̃a(u) =Aah̃(u) ∗ g(u). (6.27)

Because x̃a(u), g(t), and h̃(t) are all bandlimited to [f0, f0+kT ], we can now sample them

to get the discrete version of (6.27) as

x̃a(mTs) = AaTs

Na/2−1

∑
n=−Na/2

h̃((m − n)Ts)x(nTs), (6.28)

where Na is the total number of samples.

An example of the implementation of this algorithm is shown in Figure 6.2. The initial

frequency is 120 Hz, and the frequency rate is 4.2, with a sampling rate of 400 Hz. Suppose

the signal lasts for 4 seconds, the amplitude of x̃a(u) is given in Figure 6.2. The peak is

roughly located at a = −0.149 and u = −27.795.

For this fast FrFT algorithm, Na should be very carefully chosen. For x(t), with a

sampling rate of fs = 1/Ts, we have totally fsT samples. Generally, we have Na ≫ N

to avoid the the alising. As a result, we need to conduct over-sampling on H̃(f) and

G(f) when we are using the FFT algorithm to implement the convolution. There are two

different ways to do that. The first choice is to conduct zero-padding on g(t) and h̃(t) after

sampling. The other option is to directly conduct interpolations on the discrete spectrums

of g(t) and h̃(t). Then interpolations are equivalent to over-sampling.

For a = 1, the FrFT is equivalent to the conventional DFT. For the given LFM, the

frequency lies between f0 to f0+kT . If a = −1, the spectrum lies between −f0 and −f0−kT .

125



Figure 6.2: An example of the DFrFT.

As a result, to avoid aliasing, we must have

NaTs ≥ 2(f0 + kT ). (6.29)

Or equivalently, Na should be chosen as

Na ≥ 2(f0 + kT )fs. (6.30)

For example, as we can see in Figure 6.2, for a = 1 the frequency varies from 120 to 136 Hz;

for a = −1, the frequency lies between -136 to -120 Hz. The minimum Na is dependent

on the initial frequency, frequency rate, broadcast period, and sampling frequency. For a

given system, we can choose Na based on system parameters.
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6.3 Position and Velocity Estimation of the Targets

Suppose M + 1 nodes are distributed in the area of interest, indexed from 0 to M . Node 0

is periodically broadcasting a LFM signal, while the other nodes are all listening. Assume

the target moves at a constant speed v = [vx, vy]
T . The radial velocity with respect to the

m-th node will be

vm =
(x − xm)

Tv

∥x − xm∥
, (6.31)

where xm and x are the positions of the m-th node and the target at t = 0. Based on τ̂m

and ρ̂m, we can build equations accordingly to estimate the target’s location and velocity.

6.3.1 Coarse Localization

Suppose the reflected signal is received at the m-th node, with the initial frequency fm and

frequency rate km, given as

fm = f0(1 − ρm) + kρ
2
mτm

km = k(1 − ρ
2
m).

(6.32)

Suppose fm and km are estimated as f̂m and k̂m based on the DFrFT algorithm. The

estimates of τm and ρm can be computed as

ρ̂m =
√

1 − k̂m/k,

τ̂m =
f̂m − f0(1 − ρ̂m)

kρ̂2
m

.

(6.33)

Based on τ̂m and ρ̂m, we can obtain two equations

τ̂m = ∥xτ0 − xm∥/c + ∥xτ0 − x0∥/c,

ρ̂m =
c − v0

c + vm
,

(6.34)
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where ρm is the doppler scaling factor and xτ0 is the target’s location at t = τ0. With

M listening nodes, 2M equations will be available, and five unknowns are involved: two

dimensional coordinate and velocity, and the average underwater sound speed. Define

fm(xτ0 , c) as

fm(xτ0 , c) =∥xτ0 − xm∥ + ∥xτ0 − x0∥ − cτ̂m, (6.35)

and the least square estimator is

[x̂τ0 , ĉ] = arg min
xτ0 ,c

M

∑
m=1

∣fm(xτ0 , c)∣
2. (6.36)

The objective function is not convex, and we need to conduct coarse estimation first to get

an approximation of the optimal solution , before the iterative algorithms can be employed

to refine the result.

The first step is to rewrite (6.35) as

∥xτ0 − xm∥ = −∥xτ0 − x0∥ + cτ̂m. (6.37)

By squaring both sides, we have

∥xτ0∥
2
+ ∥xm∥

2
− 2xTmxτ0 = d

2
0 − 2cτ̂md0 + c

2τ̂2
m, (6.38)

where d0 = ∥xτ0 − x0∥. Then we minus the m-th equation from the first one and we will

obtain

∥xm∥
2
− ∥x1∥

2
+ 2xT1 xτ0 − 2xTmxτ0 = 2(τ̂1 − τ̂m)cd0 + (τ̂

2
m − τ̂

2
1 )c

2. (6.39)

In this case, we can define φ = [xTτ0 , cd0, c
2]T and (6.39) can be transformed into a linear

equation of φ:

Aφ = b, (6.40)
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where A and b are given as

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2(x1 − x2)
T 2(τ̂2 − τ̂1) τ̂2

1 − τ̂
2
2

2(x1 − x3)
T 2(τ̂3 − τ̂1) τ̂2

1 − τ̂
2
3

⋮ ⋮ ⋮

2(x1 − xM)
T 2(τ̂M − τ̂1) τ̂2

1 − τ̂
2
M

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

b =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∥x1∥
2 − ∥x2∥
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(6.41)

The least square estimate of φ can be obtained as

φ̂ = (ATA)
−1

ATb. (6.42)

The coarse estimate of target’s position can be obtained as x̂τ0,c = φ̂[1 ∶ 2], while the

average underwater sound speed can be estimated as ĉc =
√

φ̂[3]. These results are just

coarse estimates, but they should be reasonably close to the true value. Thus, we can now

use them as the initial estimate and use iterative algorithms to refine the result.

6.3.2 Refined Location and Velocity Estimation

Define θ = [xTτ0 , c]
T , and the least square estimate of θ is

θ̂ = arg min
θ

M

∑
m=1

∣fm(θ)∣
2. (6.43)
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To iteratively improve the estimation accuracy, we can construct θ̂0 = [x̂
T
τ0,c, ĉc]

T , which

should be very close to θ and can serve as the initial estimate.

Define f(θ) = [f1(θ), f2(θ),⋯, fM(θ)]
T , and the Jacobian matrix is given by

F =
∂f

∂θ
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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xτ0−x1

∥xτ0−x1∥ +
xτ0−x0

∥xτ0−x0∥ −τ̂1
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∥xτ0−x2∥ +
xτ0−x0

∥xτ0−x0∥ −τ̂2

⋮ ⋮

xτ0−xM
∥xτ0−xM ∥
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⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎥
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⎥
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. (6.44)

Suppose θ is estimated as θ̂k in the k-th iteration, we can update the estimate in the

(k + 1)-th iteration as

θ̂k+1 = θ̂k − (F
T
kFk)

−1Fkf(θ̂k), (6.45)

where Fk is the Jacobian matrix evaluated at θ = θ̂k.

Generally, one or two iterations should lead to the convergence, which has very low

computational complexity. Suppose the refined localization result is x̂τ0 and the average

underwater sound speed is estimated as ĉ. The next step is to estimate the target’s velocity.

From the second part of (6.34), we have

c −
xT − xT0
∥x − xm∥

v = ρmc + ρm
xT − xTm
∥xT − xTm∥

v. (6.46)

Because we are assuming that the target’s radial velocity is constant during the sampling

time, we can replace x with xτ0 in (6.46). The incurred error will be negligible. To be

specific, we can obtain the following approximation

(
ρm(x̂τ0 − xm)

∥x̂τ0 − xm∥
+
(x̂τ0 − x0)

∥x̂τ0 − x0∥
)

T

v ≈ (1 − ρ̂m)ĉ, (6.47)
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which is a linear function of the target’s velocity. There are M equations like this and they

can be easily solved with the least square method.

6.4 CNN-Based Target Detection

6.4.1 Motivation

For the discussed underwater localization system, the proactive node is periodically broad-

casting the LFM signals, with a period of T , of several seconds. To achieve real-time

scanning, the computation load must be handled very fast. However, the computation

cost of Figure 6.2 is still very challenging. Another problem is that the accurate local-

ization of the peak in the spectrum is highly dependent on the sampling interval. With

smaller interval, higher accuracy can be obtained, but the over-sampling leads to very high

computational cost.

Apart from the computational cost, how to identify the existence of targets is also a

huge problem. An intuitive idea is to set up a threshold and claim the existence of targets

whenever there are samples larger than the threshold. However, the spectrum is not sparse,

and we can see quite a few side peaks comparable to the highest peak, even when we only

have one target in the surveillance area. Also, if multiple objects exist, the situation will

become more complicated.

These two problems can be simultaneously solved by the incorporating a CNN in the

system. As we know, CNN is becoming very popular these years because of its ability of

pattern recognition. We will thus employ this tool to first search for the desired pattern in

the obtained map and try to identify the positions of the peaks. Then, around each peak,
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Figure 6.3: Top view of Figure 6.2 around the peak.

over-sampling can be conducted to refine the result.

Practically, we cut a small portion of the map in Figure 6.2, and normalize all the

values to [0, 255]. We can draw the top view of that partial map in gray scale, as shown in

Figure 6.3. An interesting observation is that we can always find an “X” pattern around

the peak value. The position, angle, and width of the pattern varies with the parameters,

including initial frequency, frequency rate, signal duration, sampling frequency, and so on.

Even when we sample the spectrum at a much lower rate, this pattern can still be reserved.

As a result, an intuitive idea is to search this pattern in a under-sampled spectrum, and

then conduct fine search around the target area to improve the accuracy. By doing this,

high accuracy can be obtained without very high complexity.

The fundamental reason for the performance improvement is that the “X” pattern

can be very well preserved even when we conduct under-sampling on the 2D spectrum.

Then, the powerful CNN allows us to find the rough location of the peak based on the

low-resolution 2D spectrum.
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Figure 6.4: The structure of the CNN.

6.4.2 Structure of the Convolutional Neural Network

The structure of the employed CNN is shown in Figure 6.4. The input is the 99×99 figures

obtained from the spectrum, while the output is “Negative” or “Positive”, depending on

whether the targets are identified or not in the figures. There are totally six layers: three

convolutional layers, two max pooling layers, and one full connected layer. Each pixel stores

a number varying from 0 to 255. A figure will first be fed into a convolutional layer, with

eight filters of size 3×3. The convolutional layer will be followed by a batch normalization

layer and an Relu layer. A max pooling layer is added to eliminate the redundancy.

The second convolutional layer has 16 filters of size 3 × 3, while the third convolutional

layer has 32 filters of the same size. The increase of the filters can help to extract the

high-level structures. Lastly, we have a fully connected layer with ten outputs, followed by

the soft-max layer and the classification layer.

Because the input has a dimension of 99×99, while the original spectrum is very large,

we need to first conduct under-sampling on the 2D spectrum. The default sampling interval

is 100, if not specified. Then we can get a much smaller map, and a carpet search will
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be conducted with the trained CNN. The under-sampled map will be divided into tens of

blocks, which will be fed into the CNN sequentially. This structure will apparently allow

us to detect multiple objects.

One input figure contains around ten thousand pixels, which is quite large. However,

due to the sparse structure of the CNN, only a very small number of parameters are

required for training. To be specific, for each convolutional layer, one filter has only

3 × 3 = 9 parameters. With the 56 filters, only hundreds of parameters are needed for the

whole network. Therefore, we can see that the number of parameters is not dependent

on the input size, which means the training complexity grows linearly with the input size.

After three convolutional layers, the output is then fed into a fully connected layer, but

the size is small and the complexity is low. These advantages all come from the fact that

the CNN can extract the sparse features from the pictures.

6.4.3 Data Preparation and Training

Apparently, the major challenge is how to generate and label the training datasets. In our

case, simulations are conducted in Matlab to generate maps, and these maps are divided

into small blocks. Codes are written to automatically label the generated blocks for training

purposes.

In our case there are only two labels: “Negative” means no target detected, while

“Positive” indicates detected pattern. Examples are given below in Figure 6.5.

In Figure 6.5 (a), we have a positive case, where the “X” pattern can be clearly observed.

White noise presents out of that pattern and the noise is weaker than the signal components.

In (b), we have a negative case. Part of the tail of a pattern is captured, and we can infer
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(a) (b) (c)

Figure 6.5: Examples of the positive and negative cases.

that we should be able to find the pattern by shifting the window to the top-left. In (c)

we have another negative case, and the map contains pure noise.

Simulations for different distance-velocity combinations are conducted. For each com-

bination, the DFrFT was utilized to compute the two dimensional spectrum. Then, the

program will automatically divide the spectrum into small blocks of 99×99, and each piece

will be stored as a png file. Those figures with the “X” patterns will be stored in the

“Positive” folder, while the others will be stored in the “Negative” folder. For the positive

cases, data augmentation will be conducted to enlarge the dataset.

Based on the collected data, we conduct data augmentation. The basic idea is to shift,

rotate, and scale the figures of the positive cases, and obtain variations of the original data.

This will help to improve the robustness of the CNN, by training it to recognize the shifted,

rotated and scaled patterns. In practical measurements, the position, width, and angle of

the “X” pattern is dependent on many parameters, including sampling rate, sampling time,

and also the under-sampling process. For different parameters, the “X” patterns may look

quite different for the same LFM signal. Therefore, the data augmentation is an important

step to improve the robustness of the CNN.
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6.5 Simulations

In this section, comprehensive simulations will be conducted to verify the theoretical results

presented in the previous sections. The initial frequency of the probe signal is chosen as

1 kHz, and the frequency rate is 50 Hz/s. The scanning period is eight seconds, and the

maximum scanning distance is three kilometers. As a result, for each period, we will

conduct FrFT on the received signals in the last four seconds to avoid ambiguity. The

average underwater sound speed is 1500 m/s. After frequency mixing of the received signal

and the local probe signal, we will get the signal in (6.7). This signal will then be sampled

at the frequency of fs = 400 Hz. Na is thus chosen as Na = f
2
s , and we will need to expand

the sampled sequence length from N = 4fs by fs/4 times through zero-padding. That is to

say, the original sequence has a length of N = 1600, and we will need to add Na −N = 9N

zeros at the end of the sequence. The fast DFrFT algorithm can then be employed to

obtain the spectrum of the signal.

The sampling frequency is 5 kHz, and the sampling period is four seconds. There are

nine anchors distributed on the sea floor, one of which is actively broadcasting the probe sig-

nal while the others are silent. Without loss of generality, we build a two dimensional coor-

dinate centered at the proactive node, and the silent nodes are located at: [−1000,−1000]T ;

[−1000, 1000]T ; [1000,−1000]T ; [1000,1000]T ; [−2000,−2000]T ; [−2000, 2000]T ; [2000,−2000]T ;

[2000,2000]T . Suppose the target is located at [0,1500]T at t = 0, and it is moving at a

velocity of [2,1]T m/s.
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6.5.1 CNN-Based Target Detection

For the CNN-based target detection, we conduct the training with 500 and 750 training

samples. The trained network is then used for target detection for 300 samples. The

results can be found in Table 6.1. “True Positive” means that the target exists, and is

Table 6.1: Validation Statistics

500 Training Samples 750 Training Samples

Positive Negative Positive Negative

True 99.27% 97.27% 99.67% 99%

False 2.73% 0.73% 1% 0.33%

Error Rate 1.73% 0.67%

successfully detected by the network; “True Negative” means that the target does not

exist, and is correctly reported as “Negative”; “False Positive” means the target does not

exist, but reported as “Positive”; “False Negative” means a “Positive” case is reported to

be “Negative”. By increasing the training sample number from 500 to 750, the overall

error rate will decrease from 1.73 % to 0.67 %. For practical applications, this error rate

is totally acceptable. Because the network keeps scanning in a period of T seconds, the

probability that a target is not detected in two consecutive periods is negligible.

137



6.5.2 Joint Localization and Speed Estimation

For the joint estimation of target’s location and speed, the accuracy is dependent on various

parameters. In this part, we will evaluate how SNR, node number, and iteration number

contribute to the system performance.

-10 -8 -6 -4 -2 0
1

2

3

4

5

6

Figure 6.6: Localization error for different iteration numbers.

In Figure 6.6, the impact of SNR and M on localization accuracy is evaluated. The

SNR varies from -10 to 0 dB. As we increase the SNR, the localization error will gradually

decrease. For 0 iteration, namely the result in (6.42), we can see that the average local-

ization error is at the level of 2 to 6 meters. If we add one iteration, the accuracy will be

improved by around one meter at -10 dB. However, for high SNR, the improvement will

gradually become negligible. If we further increase the iteration number to 2, we can see

that the results are almost identical for those of one iteration. As a result, we can conclude
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that one iteration is totally enough.

In Figure 6.7, simulations are conducted for M ∈ {6,7,8}. Every time we add one extra

node, the average localization error will decrease by around one meter. This is a well known

effect, because the increase of anchor number leads to the decreased GDOP (Geographical

Dilution of Precision), which is proportional to the variance of localization error. For
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Figure 6.7: Localization error for different M .

very large underwater sensor networks, M is generally very large, which leads to high

positioning accuracy. Practically, the distribution of the nodes also contributes to the

localization accuracy, and thus should be carefully manipulated.

Based on the localization result, we can now estimate the target’s velocity. This can

be easily done through (6.47). Simulations are conducted for different anchor numbers,

and the results are presented in Figure 6.8. Because (6.47) is an approximation, we can
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Figure 6.8: Velocity estimation error for different M .

expect the result to level off, as observed in Figure 6.8. Similar to the localization error, we

can see that the increase of anchor number leads to improved performance. The velocity

estimation error is at the level of 0.2 to 0.3 m/s, which renders a ten percent relative error.

6.6 Summary

In this chapter, a proactive positioning system based on CNN and DFrFT is presented for

underwater localization of silent objects. The active nodes periodically broadcast LFM

signals, and the silent nodes can estimate target’s position and velocity based on the

reflections. The DFrFT is employed to obtain the spectrum of the reflected signals, and

the CNN is the utilized to search for target. With the rough location of the peak provided

by the CNN, over-sampling can be conducted to improve the accuracy. Based on the

location of the peaks in the spectrum, a low-complexity algorithm is presented for the
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joint estimation of the target’s location and velocity. The simulation results show that

the localization error is at the level of 2 to 6 meters, while the velocity estimation error is

about ten percent.
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Chapter 7

Pilot Decontamination in

Non-cooperative Massive MIMO

Cellular Networks Based on

Spatial Filter

In the previous chapters, the possibility of employing mobile nodes for localization in

WSNs has been discussed. For such applications, fast communications between the mobile

anchors and the BSs is critical. For the terrestrial scenario, the 5G cellular network plays

a very important role, and the massive MIMO technique is crucial for 5G. However, to

employ massive MIMO for high-speed data transmission from drones to BSs, the pilot

contamination issue must be resolved, as we have discussed in Chapter 2. In this chapter,
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a pilot decontamination method based on spatial filter will be presented.1

7.1 Motivation

The massive MIMO technology has been a very hot research topic in recent years for

its great potential to improve the spectral and energy efficiencies [72]. As one of the

most important enabling techniques for the 5G cellular networks, it aims to serve tens

of single-antenna users with hundreds of antennas at the BS. The increase in antenna

numbers at the BSs brings many advantages. First, energy efficiency can be improved

because energy can be concentrated on the target users through beamforming [94]. Besides,

spatial division multiple access (SDMA) can be employed over the orthogonal frequency

division multiple access (OFDMA), which allows the same time-frequency resources be

reused by all users in the same cell, hence, leading to much higher spectral efficiency. In

spite of the tradeoff between the energy efficiency and the spectral efficiency [130], massive

MIMO will boost both of them in a reasonably wide signal to noise ratio (SNR) range.

Moreover, low-complexity algorithms (e.g., matched filter) can be employed for precoding

and decoding in massive MIMO systems [131, 132] because channel vectors of different

users are asymptotically orthogonal when the BS antenna number is sufficiently large.

Although the large antenna arrays at the BSs will lead to high computational complexity,

iterative algorithms can be adopted to maintain it on an acceptable level [133–136]. It is

well known that one of the major goals of 5G is to reduce service delay, including both

1The presented work has been published in [J11]: Z. Gong, C. Li and F. Jiang, “Pilot Decontamination

in Noncooperative Massive MIMO Cellular Networks Based on Spatial Filter,” IEEE Trans. Wireless

Commun., vol. 18, no. 2, pp. 1419-1433, Feb. 2019.
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propagation delay and processing delay [137]. Last but not the least, because of the great

power gain of the BS antenna array, cheap power amplifiers working at the milli-Watt level

can be employed [73,74]. Despite the advantages discussed above, practical massive MIMO

applications still face many challenges, of which the pilot contamination is perceived as a

major one.

Most pilot decontamination research assumes that the desired signals are stronger than

the pilot contamination. However, it is very difficult to guarantee this condition for cell-

edge users in practical scenarios. Based on the channel model in (2.9), the received signal

strength decreases fast with distance, which leads to the following observations.

(a). First, the most significant pilot contamination must come from the adjacent cells.

Considering typical hexagonal cell arrangement, for the k-th user in the l-th cell,

there are only six neighbor cells and every cell only contains one interfering user.

Therefore, pilot contamination for a specific target user is sparse, compared with the

huge number of antennas at the BS.

(b). For users close to the BS, pilot contamination is not a big issue because their signals

will be much stronger than the interference. However, cell-edge users are vulnerable

to pilot contamination, because their signals may be overwhelmed by interfering

users.

Motivated by these observations, a pilot decontamination method will be presented in

the next section, aiming to improve the achieved SINR of cell-edge users [138]. As we

know, there are generally four phases in massive MIMO communication protocols: pilot

transmission, processing, uplink data transmission, and downlink data transmission. When
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a cell is in the pilot transmission phase, the BS will receive signals from both the desired

and interfering users. By employing the FFT algorithm, the BS can obtain the energy

distribution of the received signal in space. Then, during the processing phase, users in the

target cell will stay silent. The BS can monitor signals from interfering users in adjacent

cells and analyze their energy distribution in space. By comparing these two distributions,

the BS can identify the DoA of pilot contamination and construct the corresponding sub-

space. Finally, the channel estimate from the MF will be projected onto its complementary

subspace to eliminate the pilot contamination and improve channel estimation accuracy.

The fundamental idea behind this new method is that wireless channels are sparse in the

space domain, i.e., most energy of the desired signals concentrates on a small number of

paths (or directions, equivalently) [78, 79, 139–143]. This is especially true for massive

MIMO systems, because compared with the huge antenna quantity at the BS, the number

of significant paths is much smaller. In [79] and [78], the authors even assume that the

DOA spread of every terminal is limited to a narrow angle. Moreover, the propagation

model of millimeter wave, being viewed as the perfect match for massive MIMO [144],

tends to be LoS or near-LoS [97], which means the wireless channel for millimeter wave

will be even sparser.

7.2 Spatial Filter Based Channel Estimation

From previous discussions, pilot contamination mainly comes from adjacent cells, and the

received signal is generally sparse in space. Besides, cell-edge users are most vulnerable to

pilot contamination, because their signals are not necessarily stronger than the interference.
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Motivated by these observations, we will talk about how to identify and eliminate pilot

contamination in space.

The first step is to divide all cells into three groups, G1, G2 and G3, and make sure

that adjacent cells belong to different groups, as shown in Figure 7.1 (a). Then, we slightly

modify the widely employed TDD communication protocol by shifting the processing phase

of different groups, as illustrated in Figure 7.1 (b). The same pilot sequences are shared by

all cells.
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Figure 7.1: The geometrical distribution of cells and groups, and the shifted pilot schedule.

As shown in Figure 7.1 (b), all cells are synchronized. In the first phase, users in all cells

transmit pilots to their base stations. Then, cells in different groups perform the uplink

data detection and pilot signal processing in a shifted fashion. After all groups have finished

receiving uplink data, they transmit downlink data at the same time. In the conventional

researches, the processing phase is generally employed for channel estimation [144–147].

However, in the presented method, the BS has two tasks during the processing phase. The

first task is to perform lease square channel estimation, while the second one is to receive

signals from users in other cells. These signals can provide statistical information about

the inter-cell interference from adjacent cells, and help to mitigate pilot contamination in
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future processing.

It should be noted that when the BSs in one group are in the processing phase, the BSs

belong to the other two groups are receiving uplink data. We assume that the processing

phase lasts for one symbol duration, which is the minimum length required. As a matter

of fact, the length of the processing phase has two-fold impacts on system performance.

On one hand, longer processing phase leads to larger overhead, thus reducing the spectral

efficiency. On the other hand, longer processing phase allows the BS to obtain more

statistical information about pilot contamination, thus helping to improve the channel

estimation accuracy and boost spectral efficiency. However, the optimal choice of processing

phase length is a complicated problem, and is out of the scope of this chapter. Therefore, we

assume the processing phase lasts for one symbol duration, which helps to keep the analysis

simple and the overhead low. If we assume that the BS has very strong computational

capacity, which renders the processing time negligible, we can still insert an idle phase

of one symbol duration, so that the BS can collect the statistical information of inter-

cell interference. Although with this small increased cost, the presented method shows

much improved performance than the existing ones, as will be shown in simulations and

performance analysis.

Another issue worth noting is that the decoding of uplink data will be delayed. In the

presented protocol, after pilot transmission, the BS cannot obtain uncontaminated channel

estimates, and thus uplink data decoding cannot be performed. As a result, the BS will have

to buffer the received uplink signal, until the decontaminated channel estimate becomes

available. This is generally not a big problem, and it exists in many protocols. For example,

in [88], the authors proposed to obtain the CSI through eigenvalue decomposition of the
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received uplink signal matrix, which means uplink data cannot be detected immediately

upon receiving. Another example is the data-aided channel estimator [91], in which the

authors proposed to employ both uplink data and pilot for channel estimation. As a result,

the uplink data detection will be delayed.

Without loss of generality, we assume the l-th cell is the target cell, and it belongs to

G1. Then, by employing the MF channel estimator, we can obtain the channel estimate of

the k-th user in the l-th cell as

ĥ
(l,k)
mf =Y(l)p∗k/τ = h

(l)
l,k + ∑

cl′∉G1

h
(l)
l′,k + ∑

cl′∈G1,l′≠l
h
(l)
l′,k + nk, (7.1)

where cl denotes the l-th cell, and nk = Np∗k/τ . h
(l)
l′,k represents the channel vector from

the k-th user in the l′-th cell to the l-th BS. In (7.1), the first and last parts are the desired

CSI and white noise, respectively. The second part contains pilot contamination from the

k-th users in G2 and G3. It should be noted that only six of them are located in adjacent

cells for a typical hexagonal cell structure, which means there are at most six strong pilot

contamination components. The third part contains pilot contamination from users in G1,

which are all weak because they are at least three cell radius away from cl. Overall, there

are potentially seven strong components in ĥ
(l,k)
mf , and it is very sparse compared with the

number of BS antennas.

During the processing phase of cells in G1, all users in cl are silent (as we have mentioned

previously, we assume cl ∈ G1 without loss of generality), and the BS can receive signals

from users in active cells (cl′ ∈ G2 ∪G3 or cl′ ∉ G1) as

y(l)proc = ∑
cl′∉G1

h
(l)
l′,ksl′,k + ∑

k′≠k
∑

cl′∉G1

h
(l)
l′,k′sl′,k′ + nproc, (7.2)
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where sl′,k is the transmitted symbol of the k-th user in the l′-th cell during the processing

phase of cells in G1. In (7.2), the first part denotes signals from the k-th users in cells

belong to G2 and G3, and contains at most six strong components. The second part denotes

general inter-cell interference from active cells, which does not exist in (7.1), because none

of these interfering users in this part is using the k-th pilot sequence.

Based on the above discussion, we can see that ĥ
(l,k)
mf is sparse in space, and the major

components include both the desired signals and the pilot contamination. On the other

hand, y
(l)
proc is composed of pilot contamination and general inter-cell interference. The

spatial spectrums of these two vectors will overlap on those spatial signatures dominated

by pilot contamination, as shown in Figure 7.2. As a result, an intuitive idea is to eliminate

Processing PhasePilot Transmission Phase

U1-1

U2-1

Desired 
Signal

Inter-cell 
Interference

U2-1

BS2

BS1

BS2

U1-1

BS1

Figure 7.2: Illustration of pilot contamination.

pilot contamination by identifying their spatial signatures and constructing the complemen-

tary subspace. To achieve this goal, the first step is to identify the major spatial signatures

in ĥ
(l,k)
mf , where the pilot contamination from adjacent cells must exist. By doing this, we

only need to focus on a small number of spatial signatures when we try to identify pilot

contamination in future steps, which will cut down the complexity and processing time.
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In this chapter, we will develop this idea based on linear antenna arrays. However, it

should be noted that this method can also be applied to antenna arrays of nonlinear forms,

such as planar and lens antenna arrays. The only difference is that we need to calculate

the spatial spectrums of different antenna arrays in different ways.

7.2.1 Identification of the Spatial Signatures of the Desired Signals and

Pilot Contamination

As we have discussed, the third part in (7.1) is negligible. Besides, the maximum number

of strong components in the second part is six. Without loss of generality, we assume that

the indexes of these six adjacent cells are l1, l2,⋯, l6, and (7.1) can be reorganized as

ĥ
(l,k)
mf =

B

∑
b=1

a
(l,k)
b ⋅e[ω

(l,k)
b ]+

6

∑
i=1

B

∑
b=1

a
(li,k)
b ⋅e[ω

(li,k)
b ]+ ∑

l′∉{l,{li}6i=1}

B

∑
b=1

a
(l,k)
b ⋅e[ω

(l,k)
b ]+nk, (7.3)

where a
(l,k)
b =

√

ρ
(k,l)
b ejφ

(k,l)
b denotes the coefficient of the b-th path from the k-th user in

the l-th cell. ρ
(k,l)
b and ejφ

(k,l)
b are the path-loss coefficient and random phase, respectively.

To identify the spatial signatures of the desired signals and the pilot contamination, we

need to analyze the spatial spectrum of ĥ
(l,k)
mf through IDFT as ĥ

(l,k)
ω = FM ĥ

(l,k)
mf , which

indicates the energy distribution of ĥ
(l,k)
mf on different directions and the m-th component

of ĥ
(l,k)
mf is given by

ĥ(l,k)ω [m] =
B

∑
b=1

a
(l,k)
b ⋅ f (ω

(l,k)
b −mω0) +

6

∑
i=1

B

∑
b=1

a
(li,k)
b ⋅ f (ω

(li,k)
b −mω0)+

∑
l′∉{l,{li}6i=1}

B

∑
b=1

a
(l′,k)
b ⋅ f (ω

(l′,k)
b −mω0) + nk[m].

(7.4)

For l′ ∉ {l, {li}6i=1}, a
(l′,k)
b is negligible because users in these cells are at least three

cell-radius away from the target BS. According to the Central Limit Theorem, the third
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part in (7.4) can be viewed as Gaussian noise 2. Therefore, we define ñk[m] to replace the

last two parts:

ñk[m] = ∑
l′∉{li}6i=1

B

∑
b=1

a
(l′,k)
b ⋅ f (ω

(l′,k)
b −mω0) + nk[m]. (7.5)

As we have mentioned, most of the received energy concentrates on a few directions;

therefore, the received signal will be much stronger than noise on those directions. Moti-

vated by this observation, we define the following metric to identify the spatial signatures

of the desired signals or pilot contamination:

λ(l,k)m = ∣ĥ(l,k)ω [m]∣
2
. (7.6)

In this equation, λ
(l,k)
m indicates the received energy of the l-th BS on the m-th spatial

signature (or direction). When ĥ
(l,k)
ω does not have a strong component on mω0 or the

signal is substantially weaker than the noise, λ
(l,k)
m is generally small and follows the ex-

ponential distribution. On the other hand, λ
(l,k)
m will be much larger if ĥ

(l,k)
ω has a strong

component on mω0, and the probability density function (PDF) of λ
(l,k)
m is very close to

normal distribution. The empirical distribution of λ
(l,k)
m is shown in Figure 7.3.

In Figure 7.3, H0 = 1 means that neither the desired signal nor the pilot contamination

exists on mω0, while H1 = 1 represents the opposite situation. Given that H0 = 1 on mω0,

the value of λ
(l,k)
m is very small. On the contrary, when H1 = 1, the received signal strength

on mω0 will be much larger. As a result, we can set a threshold to identify these strong

components and their spatial signatures. Here, we just assume that the threshold has been

2If we consider interference from cells within a distance of eight cell diameters, there will be 192 interfering

users, and every user has up to B detectable paths. That is to say, the third part is a composition of around

200B components, which is quite a huge number. Therefore, it can be accurately modeled by Gaussian

distribution.
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Figure 7.3: Probability density function of λ
(l,k)
m for SNR=10 dB on mω0.

obtained as λth, and further details on threshold selection will be discussed in the next

section. Then, the subspace of the desired signals or pilot contamination of the k-th user

in the l-th cell can be represented by the following matrix:

U
(l,k)
S,P = [e [m1ω0] ,e [m2ω0] ,⋯,e [mQω0] ] , (7.7)

where mq satisfies λ
(l,k)
mq > λth.

7.2.2 Selection of λth

Define h
(l,k)
S,P [m] as follows

h
(l,k)
S,P [m] =

B

∑
b=1

a
(l,k)
b ⋅ f(ω

(l,k)
b −mω0) +

6

∑
i=1

B

∑
b=1

a
(li,k)
b ⋅ f(ω

(li,k)
b −mω0), (7.8)

which represents the desired signal (or pilot contamination) on mω0. Then, combining

(7.4), (7.5), and (7.8), (7.6) can be reorganized as

λ(l,k)m = ∣h
(l,k)
S,P [m] + ñk[m]∣

2
. (7.9)
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Let f0(λ
(l,k)
m ) and f1(λ

(l,k)
m ) denote the PDFs of λ

(l,k)
m in H0 = 1 and H1 = 1 scenarios.

When H0 = 1, noise dominates in λ
(l,k)
m , and f0(λ

(l,k)
m ) can be approximated as exponential

distribution, which is given by

f0 (λ
(l,k)
m ) =

1

σ2
o

⋅ exp (−λ(l,k)m /σ2
o), (7.10)

where σ2
o = E {∣ñk[m]∣

2
}. On the other hand, when H1 = 1, the desired signal (or pi-

lot contamination) is much stronger than the noise. By ignoring the second order noise

components, f1(λ
(l,k)
m ) is very close to the normal distribution, which is given by

f1 (λ
(l,k)
m ) =

1
√

4π ∣h
(l,k)
S,P [m]∣

2
σ2
o

⋅ exp

⎛
⎜
⎜
⎜
⎝

−

(λ
(l,k)
m − ∣h

(l,k)
S,P [m]∣

2
− σ2

o)
2

4 ∣h
(l,k)
S,P [m]∣

2
σ2
o

⎞
⎟
⎟
⎟
⎠

. (7.11)

The detailed discussions can be found in Appendix D.2.

Based on signal detection theory, the false alarm rate and the miss rate can be defined

as:

RFA = Pr (λ(l,k)m > λth∣H0 = 1) ,

RM = Pr (λ(l,k)m ≤ λth∣H1 = 1) ,

(7.12)

and they are demonstrated in Figure 7.3. To minimize the sum of false alarm and miss

rates, λth should satisfy f0(λth) = f1(λth). As a result, we have

λth = [ −
√

2SNRo ⋅ (4SNRo + 2 − ln (4πSNRo)) + 3SNRo + 1] ⋅ σ2
o , (7.13)

where SNRo indicates the ratio of signal (or pilot contamination) strength to σ2
o , given by

SNRo = ∣h
(l,k)
S,P [m]∣

2
/σ2
o . (7.14)
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The miss rate (RM ) and the false alarm rate (RFA) are exclusively dependent on SNRo,

as shown in the following equations

RM = 0.5 ⋅ erfc (−
√
SNRo +

√
2SNRo + 1 − 0.5 ⋅ ln (4πSNRo)) (7.15a)

RFA = exp (−3SNRo − 1 +
√

2SNRo ⋅ (4SNRo + 2 − ln (4πSNRo))), (7.15b)

where erfc(⋅) denotes the complementary error function. The proof can be found in Ap-

pendix D.2. Besides, we can prove that both RM and RFA decrease as SNRo grows.

In practical scenarios, both SNRo and σo are unknown. Therefore, we need to estimate

them from the MF channel estimate, i.e., ĥ
(l,k)
mf . As we have mentioned, the desired signals

and the pilot contamination only exist on a small fraction of the components in ĥ
(l,k)
ω . As a

result, we can sort the components in ĥ
(l,k)
ω based on their strength, and choose the weakest

ones of them to estimate σ2
o . On the other hand, the strongest ones can be employed to

estimate signal (or pilot contamination) strength. Then, SNRo can be estimated as the

ratio of signal strength to σ2
o .

7.2.3 The Isolation of Pilot Contamination in yproc

During the processing phase, the received signal is given by (7.2), which is composed of

signals from all cells in G2 and G3. However, only six of them are adjacent to the target

BS and generate strong interferences. Therefore, we can rewrite (7.2) as (7.16),

y(l)proc =
6

∑
i=1

h
(l)
li,k
sli,k + ∑

k′≠k

6

∑
i=1

h
(l)
li,k′

sli,k′ + ∑
cl′∉{G1⋃{li}6i=1}

∑
k′

h
(l)
l′,k′sl′,k′ + nproc, (7.16)
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and the spatial spectrum of y
(l)
proc can be obtained through IDFT as y

(l)
ω = FMy

(l)
proc. The

m-th element will be

y(l)ω [m] =
6

∑
i=1

B

∑
b=1

a
(li,k)
b ⋅ f (ω

(li,k)
b −mω0) sli,k + ñproc[m], (7.17)

where ñproc indicates the IDFT of the last three parts in (7.16) combined. Due to the large

number of users, ñproc can be treated as the Gaussian noise.

The strong components in y
(l)
ω fall in two categories: pilot contamination and general

inter-cell interferences. It should be noted that both these two categories come from adja-

cent cell users that are located close to the edge of cl. Our major objective is to identify

the spatial signatures of the pilot contamination through the following metric:

φ(l,k)m =
∣y
(l)
ω [m]∣

2

∣ĥ
(l,k)
ω [m]∣2

, (7.18)

where y
(l)
ω [m] is given by (7.17). It should be noted that we only need to compute φ

(l,k)
m

for m =mq (q = 1,2,⋯,Q), because spatial signatures of the pilot contamination of the k-th

user in the l-th cell must be among the columns of U
(l,k)
S,P .

Depending on whether the desired signal or pilot contamination exists on mω0, the

conditional PDFs of φ
(l,k)
m can be represented as fds(φ

(l,k)
m ) or fpc(φ

(l,k)
m ), respectively. The

closed-form representations of these two functions will be discussed in the next section.

Then, we can identify the pilot contamination components through the maximum likelihood

estimator. As a result, the subspace of pilot contamination for the k-th user in the l-th

cell can be represented by

U
(l,k)
P = [e [m′1ω0] ,e [m

′
2ω0] ,⋯,e [m

′
Pω0] ] , (7.19)

where m′p satisfies λ
(l,k)
m′p

> λth and fpc (φ
(l,k)
m′p
) > fds (φ

(l,k)
m′p
). The last step is to project
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the MF-based channel estimate onto the null space of U
(l,k)
P to eliminate strong pilot

contamination as

ĥ
(l,k)
sf = (I −U

(l,k)
P U

(l,k)
P

H
) ĥ
(l,k)
mf , (7.20)

where ĥ
(l,k)
sf is the new channel estimate of the k-th user in cl based on spatial filter. The

presented algorithm is briefly summarized in Algorithm 2.

Algorithm 2 Channel estimate for the k-th user in the l-th cell based on spatial filter.

Require:

Received pilot, Y(l);

Received signal on processing phase, y
(l)
proc;

The k-th pilot sequence, pk.

Ensure:

Channel estimate

1: Obtain MF channel estimate through (7.1), i.e., ĥ
(l,k)
mf ;

2: Compute the spectrum of ĥ
(l,k)
mf through IDFT as ĥ

(l,k)
ω = FM ĥ

(l,k)
mf ;

3: Find threshold (λth) through (7.13);

4: Construct U
(l,k)
S,P through (7.7);

5: Compute the spectrum of y
(l)
proc through IDFT as y

(l)
ω = FMy

(l)
proc;

6: Construct the subspace of pilot contamination (i.e., U
(l,k)
P ) through (7.19);

7: Pilot contamination elimination by subspace projection

ĥ
(l,k)
sf = (I −U

(l,k)
P U

(l,k)
P

H
)ĥ
(l,k)
mf ;

8: return ĥ
(l,k)
sf ;
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7.2.4 Conditional PDF of φ
(l,k)
m

As we have mentioned, φ
(l,k)
m tends to be smaller when pilot contamination exists on mω0.

On the other hand, φ
(l,k)
m will be larger when the desired signals come from mω0. There-

fore, φ
(l,k)
m follows different distributions in these two scenarios. To employ the maximum

likelihood estimator, we need to first analyze the statistical properties of φ
(l,k)
m in different

situations.

We will first analyze the distribution of φ
(l,k)
m when pilot contamination exists on mω0.

Without loss of generality, we assume that the pilot contamination on mω0 comes from the

b-th path of the k-th user in the li-th cell. In other words, ω
(li,k)
b is close to mω0, and there

will be strong pilot contamination components in both y
(l)
ω [m] and ĥ

(l,k)
ω [m], presented as

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ĥ(l,k)ω [m] = a
(li,k)
b ⋅ f (ω

(li,k)
b −mω0) + ñk[m]

y(l)ω [m] = a
(li,k)
b ⋅ f (ω

(li,k)
b −mω0) sli,k + ñproc[m],

(7.21)

where ñproc ∼ N(0, σ
2
proc ⋅ IM). In this case, we have

φ(l,k)m =
∣rpcsli,k + ñproc[m]∣

2

∣rpc + ñk[m]∣
2

, (7.22)

where rpc = a
(li,k)
b ⋅ f (ω

(li,k)
b −mω0). ñk[m] is much weaker than rpc, and by ignoring

ñk[m], we can approximate (7.22) as

φ(l,k)m 2∣rpc∣
2
/σ2
proc =

RRRRRRRRRRR

R{rpc} +R{ñproc[m]s
∗
li,k
}

σproc/
√

2

RRRRRRRRRRR

2

+

RRRRRRRRRRR

I{rpc} + I{ñproc[m]s
∗
li,k
}

σproc/
√

2

RRRRRRRRRRR

2

. (7.23)

Noticing that the right hand side of (7.23) follows the noncentral chi-square distribution,

we can obtain the approximate PDF of φ
(l,k)
m as

fpc(φ
(l,k)
m ) =

∣rpc∣
2

σ2
proc

exp(−
∣rpc∣

2

σ2
proc

(φ(l,k)m + 1)) ⋅ I0 (
2∣rpc∣

2

σ2
proc

√

φ
(l,k)
m ) , (7.24)
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where I0(⋅) denotes the modified Bessel function of the first kind given by

Iv(y) = (y/2)
v
∞
∑
j=0

(y2/4)j

j!Γ(v + j + 1)
. (7.25)

This result is justified in Appendix D.4.

On the other hand, when a specific path of the desired signals is close to mω0, there

will be strong signal component in ĥ
(l,k)
ω [m]. Without loss of generality, assume that the

index of that path is b and we have the following approximation:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ĥ(l,k)ω [m] = a
(l,k)
b ⋅ f(ω

(l,k)
b −mω0) + ñk[m]

y(l)ω [m] = ñproc[m].

(7.26)

In this case,

φ(l,k)m =
∣ñproc[m]∣

2

∣rds + ñk[m]∣
2
≈
∣ñproc[m]∣

2

∣rds∣
2

, (7.27)

where rds = a
(l,k)
b ⋅f (ω

(l,k)
b −mω0). ñk[m] can be neglected because it is much weaker than

rds. Therefore, the PDF of φ
(l,k)
m can be approximated by the exponential distribution,

given by

fds(φ
(l,k)
m ) =

∣rds∣
2

σ2
proc

exp(−
∣rds∣

2

σ2
proc

⋅ φ(l,k)m ). (7.28)

In practical scenarios, ∣rpc∣
2 and ∣rds∣

2 can be approximated by ∣ĥ
(l,k)
ω [m]∣2, because

they are much stronger than ñk[m]. Besides, ∣ñproc[m]∣
2 can be estimated from those

components in y
(l)
ω , where neither the desired signal nor the pilot contamination exists.

When the number of users increases in adjacent cells, the spatial spectrum in the second

phase is almost white. Intuitively, it seems impossible to estimate the DoA of the pilot

contamination, because they are overwhelmed by general inter-cell interference. However,

the spectrums in the pilot transmission phase and processing phase are highly correlated on
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those directions, where pilot contamination exists. On the other hand, if the desired signals

exist, the received signal strength in these two phases will be independent. Therefore, we

can still extract some information. As a matter of fact, even when the number of users is

very large, the results in (7.24) and (7.28) are still valid.

7.2.5 The Probability that the Main Lobes of the Desired Signal and

Pilot Contamination Overlap

In previous discussion, we assume that the main lobes of the desired signals and the pilot

contamination from adjacent cells do not overlap. As a matter of fact, it is possible for

them to overlap in space, and we will analyze the probability in this section. To simplify

notations, we define the following symbols:

DSm =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1, ∃b ∶ ∣ω
(l,k)
b −mω0∣ < ω0,

0, otherwise;

PCm =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1, ∃b, i ∶ ∣ω
(li,k)
b −mω0∣ < ω0.

0, otherwise.

(7.29)

Given that a strong component of the desired signals exists on mω0, the probability that

a strong pilot contamination component coexists is Pr(PCm = 1∣DSm = 1). On the other

hand, given that a strong component of pilot contamination exists on mω0, the probability

that a strong desired signal coexists is Pr(DSm = 1∣PCm = 1). Then, we have the following

theorem.

Theorem 2. When the number of BS antennas is very large, both Pr(PCm = 1∣DSm = 1)

and Pr(DSm = 1∣PCm = 1) are inversely proportional to the BS antenna number. To be
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specific, we have

Pr(PCm = 1∣DSm = 1) = 12B/M + o(1/M),

P r(DSm = 1∣PCm = 1) = 2B/M + o(1/M),

(7.30)

where o(1/M) indicates a component much smaller than 1/M .

The proof of Theorem 2 can be found in Appendix D.3. For massive MIMO systems,

M is generally very large, and it is safe for us to assume that the desired signals do not

overlap with the pilot contamination in space.

7.2.6 Computational Complexity

Due to the large number of antennas at the BSs, it is important to maintain the computa-

tional complexity of the channel estimators at an acceptable level. The proposed channel

estimation algorithm contains three parts: the MF channel estimation, pilot contamination

identification and SF channel estimation. The complexity of the MF channel estimator is

O{Mτ2}. The second part contains two steps: the first step is to identify the spatial signa-

tures of both the desired signals and the pilot contamination from the MF-based channel

estimate, while the second step is to pick out the pilot contamination from the compo-

nents identified in step one. For every user, the complexity of spatial spectrum analysis is

O{M log2M} through FFT. Considering K users per cell and the spatial spectrum analysis

of y
(l)
proc, the overall complexity of the second part is O{(K + 1)M log2M}. In the third

part, we can reorganize (7.20) as

ĥ
(l,k)
sf = ĥ

(l,k)
mf −U

(l,k)
P (U

(l,k)
P

H
ĥ
(l,k)
mf ) . (7.31)
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The complexity of U
(l,k)
P

H
ĥ
(l,k)
mf is O{MP}, where P is the number of detected pilot con-

tamination components in space. Considering K users per cell, the complexity of the third

part will be O{KMP}.

Generally, we have log2M < τ = K, while P should be smaller than 10. Therefore, the

overall complexity of these three parts combined will be O{MK2}, almost identical to that

of the MF estimator.

7.3 Performance Evaluation

In this section, simulations will be conducted to evaluate the performance of the presented

algorithm, in terms of normalized channel estimation error, achieved SINR and achievable

rate. Results will be compared with other existing methods. Besides, simulations will be

conducted in different communication scenarios, where the intensity of pilot contamination

varies.

7.3.1 Performance Comparison Under Different SNRs

To start with, we will first investigate the impact of SNR. The presented method will be

compared with the MF [72], SVD [87], and data-aided schemes [91]. The channel model in

(2.9) will be employed with B = 3. The simulation parameters are almost identical to those

employed in [72], as shown in Table 7.1. Same to [72], we consider interference from all

cells whose distance to the target cell is less than eight cell-diameters. Therefore, there are

totally 199 cells in the simulations. We assume a coherence time of 0.5 millisecond, which

is equivalent to the length of seven OFDM symbols in LTE systems, while the frequency
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Table 7.1: Simulation Parameters

Path Loss Exponent 3.8

Cell Radius 500 m

Cell-Hole Radius 50 m

User Number / Cell 10

Antenna Number / BS 400

Pilot Length (τ) 10

Frequency Smooth Interval 14 Carriers

Coherence Time 0.5 ms

Standard Deviation of Shadowing 8 dB

Modulation QPSK
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smooth interval is equal to 14 sub-carriers. Therefore, the channel remains stationary over

98 time-frequency resource blocks. The simulation results are presented in Figure 7.4 and

7.5.
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Figure 7.4: The normalized channel estimation error of different channel estimators.

In Figure 7.4, we present the CDF of the normalized channel estimation error of users in

the target cell. From the figure, for all the estimators, there always exists a small proportion

of users experiencing “bad” channels, and these users are most probably located far away

from their BSs (or equivalent, close to cell edges). Due to the long distance between the user

and the BS, the desired signal will be weaker, and the pilot contamination will be relatively

stronger. By employing the proposed method, as shown in Figure 7.4, the proportion of

users experiencing “bad” link conditions will be much reduced.

For the normalized channel estimation error in Figure 7.4, the data-aided channel es-
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timator shows the worst performance. By utilizing both the pilot and data for channel

estimation, the data-aided channel estimator can suppress the pilot contamination to some

extent, and eliminate the intra-cell interference by using the zero-forcing algorithm. How-

ever, the general inter-cell interference will be inevitable, because user data from adjacent

cells are not orthogonal with that of the desired users, and the target BS does not have

the uplink CSI from adjacent cells. Moreover, the general inter-cell interference will be

stronger than the pilot contamination. For example, the maximum number of strong pilot

contamination sources is six, while all the users in adjacent cells contribute to the general

inter-cell interference, which is much larger. The SVD-based and the proposed estimators

have similar performance in terms of the NMSE of the channel estimate. However, for

cell-edge users, the presented channel estimator demonstrates slight advantage over the

SVD-based estimator. For example, 95 percent of the users will experience an NMSE less

than 9.5 dB when the proposed estimator is employed, whereas the value for the SVD-based

estimator will be 10.5 dB. In general, both the presented channel estimator and the SVD-

based one have a significant performance gain over the MF-based channel estimator. For

example, only around 5% of the users will experience an NMSE larger than 10 dB for the

first two algorithms, whereas this number is doubled for the MF-based channel estimator.

From Figure 7.4, we also notice that the performance of channel estimators under

different SNRs is very consistent. This is not surprising because the large antenna arrays at

the BSs can provide significant gains and boost actual SNR. Therefore, system performance

will be mainly affected by the pilot contamination because noise is negligible. Similar results

can be observed in Figure 7.5 for the achieved SINR performance.

In Figure 7.5, we employ the zero-forcing estimator for data detection and compare the
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Figure 7.5: The achieved SINR comparison of different channel estimators.

achieved SINRs of different channel estimators. Due to the asymptotical orthogonality of

different users’ channel vectors, the zero-forcing estimator is asymptotically optimal [72].

It is clear that the proposed method outperforms the existing ones. For example, for an

SNR of 0 dB, only 7% of the users will experience an SINR less than 0 dB. However, this

number will be more than doubled for other three algorithms. These users are experiencing

low SINR because they are located at cell edges, and as a result, suffer from attenuated

signal strength and strong pilot contamination. As observed from the figure, the SVD-

based channel estimator has the worst performance, which seems to be contradictory to

the results in Figure 7.4. As a matter of fact, the SVD-based algorithm assumes that the

desired signals are always stronger than the pilot contamination. However, it is not always

the case for cell edge users. Therefore, the CSI for some users may be completely lost and
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these users will experience very low SINR. However, the NMSE of their channel estimation

results may not be necessarily large, which we will demonstrate through a simple example.

Assume that we are trying to estimate a specific channel vector h, while the pilot

contamination is presented as hpc. Besides, the pilot contamination is much stronger than,

but orthogonal to the desired signal, i.e., ∥hpc∥
2 > ∥h∥2 and ∥hHpch∥ = 0. When we ignore the

noise, the original MF-based channel estimator will give ĥmf = hpc+h. On the other hand,

for the SVD-based estimator, the channel estimate will be ĥsvd = hpc. The normalized

channel estimation error of these two estimators are given by NMSEsvd = ∣ĥsvd−h∣2/∣h∣2 =

1+∣hpc∣
2/∣h∣2 and NMSEmf = ∣hpc∣

2/∣h∣2, respectively. However, if we compare the achieved

SINR, we have SINRmf = ∣h∣
2/∣hpc∣

2 and SINRsvd = 0, respectively. As we can see, the

SVD-based and MF-based channel estimators have comparable performance in terms of the

normalized channel estimation error. Intuitively, they should have similar performance in

the achieved SINR. However, the gap in the achieved SINR (expressed in dB) between these

two estimators will be infinitely large, because the SVD-based channel estimator lost all the

channel state information. From this example, we can see that a smaller channel estimation

error does not always lead to a larger achieved SINR (or achievable rate, equivalently). This

helps to explain why the SVD-based estimator behaves differently for the achieved SINR

and the NMSE.

By removing the assumption that the desired signals are always stronger than the

pilot contamination, the presented algorithm becomes more applicable to practical use.

A noticeable gain is achieved because it can effectively identify the spatial signatures of

the pilot contamination and then eliminate them. When the pilot contamination becomes

stronger, our proposed algorithm has a better chance to find it. That is, the two PDFs of
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φ
(l,k)
m (i.e., fpc(φ

(l,k)
m′p
) and fds(φ

(l,k)
m′p
)) can be better separated when the pilot contamination

is strong on mω0.

7.3.2 Impact of K, M and B on the Proposed Method

As we have explained, spatial sparsity is very important to the proposed method. Intu-

itively, as the number of users per cell and the number of paths per user increase, the

proposed method will see performance degradation. Besides, if the antenna number at the

BS decreases, it will impose challenges for the proposed method to effectively identify the

pilot contamination, which also leads to performance degradation. In this section, we in-

vestigate how these three factors influence the presented method. As shown in the previous

subsection, the SNR is not a major impact factor in massive MIMO systems. Therefore, a

constant SNR of 0 dB will be considered here. Having shown that the MF-based channel

estimator has comparable performance to the presented one, while the performance of the

other two existing methods is much inferior in sparse channels, we will only compare the

proposed method with the MF-based one.

First, we conduct simulations for M ∈ {100, 200, 400}, while K = 20 is fixed. Intuitively,

when the number of BS antennas increases, the presented method should have better per-

formance, because it is more capable of detecting the pilot contamination. From Figure

7.6 (a), we can see that the results are consistent with our intuitions. Besides, we also see

that the MF-based estimator will have better performance for a larger M . As the num-

ber of antennas decreases, the performance gap between the presented and the MF-based

estimators will become smaller. When M = 100, superior performance of the presented

method will no longer exist. It is because the pilot contamination will become too crowded
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to be detected by the proposed method.

SF Channel
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MF Channel
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SF Channel
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MF Channel Estimation,
three curves

overlap

(a) M varies in {100, 200, 400} (b) K varies in {5, 10, 20} (c) B varies in {3, 5, 7}

Figure 7.6: The achievable rate for different M , K and B.

For a fixed M = 400, we present the performance of different estimators for K ∈

{5, 10, 20}, as shown in Figure 7.6 (b). When the number of users per cell increases, pilot

contamination will become more intensive, and the achievable rates of both methods will

decrease. However, the presented method still have a perceivable gain over the MF-based

method.

In Figure 7.6 (c), the path number per user varies from 3 to 5 and then to 7, while M

and K are fixed to 400 and 10, respectively. The three curves of the MF-based estimator are

almost overlapped, because the strength of the desired signals and the pilot contamination

increases at the same time, leading to almost constant achieved SINR for different B values.

However, for the proposed method, the increased number of paths per user will make it

more difficult to isolate the pilot contamination from the desired signals. Therefore, we

can see the performance of the proposed method will degrade for larger B. Nevertheless,

the proposed method still outperforms the MF-based estimator.
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From Figure 7.6, it is clear that the proposed method is more sensitive to the change

of the BS antenna number and the user number per cell. The number of paths per user

also has some impact, but slightly less significant. Overall, the proposed method always

outperforms the conventional MF-based estimator for a reasonably large M to K ratio.

7.4 Summary

In this chapter, we presented an innovative channel estimation scheme for massive MIMO

systems. The key idea is to identify the spatial signatures of the pilot contamination from

adjacent cells and eliminate them by constructing a spatial filter. The stronger the pi-

lot contamination is, the better chance we have to identify it. Such estimation method

is especially helpful to cell-edge users, because their signals can be overwhelmed by pi-

lot contamination from adjacent cells. Compared with the existing pilot decontamination

methods, the proposed scheme has two major advantages: 1) no a priori statistical infor-

mation is required; and 2) no need for the assumption that the desired signals are always

stronger than the pilot contamination to perform effective estimation. As a matter of fact,

the probability that the second condition cannot be fulfilled for cell-edge users is too large

to be ignored. This algorithm is evaluated through simulations in the normalized chan-

nel estimation error, the achieved SINR and the achievable rate. Both simulation results

and theoretical analysis show that the proposed spatial filter-based approach provides a

promising technique to battle the pilot contamination problem in future 5G massive MIMO

systems.
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Chapter 8

Channel Tracking for Millimeter

Wave Communications

In the previous chapter, we introduced the massive MIMO and the pilot contamination

issue. Another very important enabling technology of 5G is the millimeter wave communi-

cations. As we know, the current cellular spectrum is becoming more and more crowded.

To explore more available bandwidth, researchers have been talking about the possibility of

moving the cellular system to millimeter wave frequency band, from 30 to 300 GHz, which

is less occupied. However, the high carrier frequency brings some problems, one of them is

the huge attenuation. To solve this problem, large antenna arrays should be installed on

base stations. Then, the BS can generate a narrow beam directly pointing to the user. To

achieve this goal, the CSI is indispensable. Intuitively, the BS needs to know the direction

of the user, before a proper beam can be generated. 1

1The work presented in this chapter has been published in [J5]: Zijun Gong, Fan Jiang, and Cheng

Li, “Angle Domain Channel Tracking with Large Antenna Array for High Mobility V2I Millimeter Wave
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8.1 Introduction

As has been mentioned, the antenna array form is very important for mmWave communica-

tion systems, and the linear or planar arrays are the most common choices. In recent years,

lens antenna array provides another solution [148–152]. In [148], the authors conducted

experimental measurements with a prototype system, and the measurements demonstrated

the utility of this new array form. In [149], the authors derived the array response of lens

antenna arrays. They also showed that compared to the conventional unitary planar ar-

rays in millimeter wave communications, the new system based on lens achieved similar

spectral efficiency with significantly reduced signal processing complexity and much less

RF chains. Generally, lens antenna arrays have the following advantages. First of all,

beamforming can be performed with only a few antennas, which means less RF chains are

required. Second, due to the small number of active antennas, the computational complex-

ity of beamforming is reduced to great extent, leading to small delay. These properties are

important in many real-time and high-rate applications, for example, the modern vehicu-

lar applications. A few literatures have talked about the channel estimation for millimeter

wave massive MIMO systems with lens arrays. For instance, in [153], an adaptive selecting

network was constructed for antenna selection. Based on the antenna selection, the authors

formulated the channel estimation issue as a sparse signal recovery problem, and a support

detection (SD)-based channel estimation scheme was proposed. The authors showed that

the proposed algorithm worked great even in low SNR regime. However, the proposed

framework cannot be easily extended to broadband frequency selective channels [150]. By

Communications,” IEEE J. Sel. Topics Signal Process., vol. 13, no. 5, pp. 1077-1089, Sept. 2019.
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employing the energy focusing property of the lens arrays, jointly with the spatial sparsity,

the authors in [150] transformed the millimeter wave massive MIMO channel estimation

into reduced-size MIMO channel estimation.

In millimeter wave communications, channel estimation consumes many resources, in

terms of time, bandwidth, and hardware. This is especially true for high mobility user

equipment. Because the channel is varying fast, and the CSI should be updated frequently.

However, the good news is that the millimeter wave channels are generally sparse in space

and channel states at consecutive time slots are highly correlated in angle domain. There-

fore, it is possible to track the channel state with less resources, instead of re-estimating it

for every time slot. For millimeter wave communications, the antenna array form is impor-

tant, and a lens antenna array will be employed in later discussions, because it has much

lower complexity and it allows the BS to use only a few RF (Radio Frequency) chains for

beamforming. Based on the lens antenna array and the spatial sparsity of the millimeter

wave channels, a data-aided channel tracking scheme will be presented for drone-to-BS

communications. The basic idea is to employ the channel estimate from the previous time

slot for the data detection at the current one. After data detection, the detected data

sequence can be used for channel update, and this process iterates. By doing this, the

overhead of channel estimation can be reduced to great extent. Due to the high correlation

of channels between adjacent time slots, the channel variation is negligible. Therefore, as

long as the inducted channel estimation error is within the data detection capacity (ef-

ficient data detection schemes discussed in [133, 134, 154, 155]), the data symbols can be

successfully recovered.

The presented method has the following major advantages. First, there is no overhead
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for channel tracking, and the block length can be adaptively changed to cope with fast

movement and narrow beams. Even for low-speed situations, the presented method still

outperforms the existing ones in terms of achievable rate, because the training overhead is

eliminated. Secondly, it can work in very low SNR regime, because the data sequences can

be much longer than pilot sequences, which helps to suppress noise. Thirdly, even if the

moving direction and speed of the user change fast, this algorithm still works great and

no calibration is required. As comparison, the channel tracking scheme proposed in [151]

requires periodical calibration.

8.2 System Model

For millimeter wave communications, large antenna arrays are always indispensable, and

many different array forms have been proposed and investigated. Among them, the discrete

lens antenna arrays (DLAs) are very popular, because they require very few RF chains and

allow easy antenna selection. To be specific, for signals coming from an arbitrary direction,

most of the energy concentrates on two or three antennas, which means we can transmit

and receive signals on only a small number of antennas with negligible performance loss.

Therefore, we will introduce the system model based on the DLAs.

8.2.1 Channel Model

Assume that every BS has M antenna elements, and serves up to K users simultaneously.

The channel vector of the k-th user is given as

hk = β
(0)
k a (φ

(0)
k ) +

L

∑
l=1

β
(l)
k a (φ

(l)
k ) , (8.1)
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where φ
(l)
k is the DoA of the l-th path from the k-th user, while β

(l)
k is the complex channel

gain. Without loss of generality, let β
(0)
k a(φ

(0)
k ) denote the LoS component. In [149], the

authors proved that the array response can be approximated by a scaled sinc function. To

be specific, for signal coming from φ, a(φ) is the array response, and the m-th element is

given as

a(φ)[m] = sinc (m −D (1 + cosφ)) (0 ≤m ≤M − 1)2, (8.2)

where M denotes antenna number at the BS. D is the normalized dimension of the lens, and

it should satisfy M = 1+⌊2D⌋. To simplify the mathematical notation, let α =D(1+cosφ),

and (8.2) can be rewritten as

a(φ)[m] = sinc (m − α) . (8.3)

It should be noted that α has a one-to-one relationship with the DoA of the received signal.

Based on (8.3), it is clear that the received energy will be distributed on all M antennas

for signals coming from a specific direction. However, only a small number of them are

very strong, while the others are much weaker. As has been discussed in [151, 156, 157],

more than 80% of the received energy concentrates on the two antennas in the main lobe

of the sinc function. As a matter of fact, if we only collect energy from Q antennas with

strongest channel gains, the energy loss will be a function of α, and the worst case scenario

will be discussed in latter part of this section.

2Throughout this paper, sinc(⋅) denotes the normalized sinc function, and is give as sinc(x) = sin(πx)

πx
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8.2.2 Channel Estimation

For initial channel estimation, we employ the method from [150]. Due to the limited

number of RF chains, every user will be served by V antennas, and the total number of RF

chains will be KV . Besides, users served by the same BS will be assigned orthogonal pilot

sequences. For every time slot, we can only estimate the channel gains of KV antenna

elements at the BS. As a result, the pilot sequence will be repeatedly transmitted for

⌈M/(KV )⌉ time slots. By stacking all the received signals, the BS has

Yp =
K

∑
k=1

hkp
T
k +N, (8.4)

where pk denotes the pilot sequence of the k-th user and N is additive complex Gaussian

noise. The elements in N are i.i.d. zero-mean circularly symmetric complex Gaussian

random variables. The least square estimate of hk will be

ĥk =Ypp
∗
k/ ∣pk∣

2
= hk + nk, (8.5)

where nk =Np∗k/ ∣pk∣
2. By doing this, the initial estimate of the CSI can be obtained.

As we can see, if we conduct channel estimation for every data block independently, it

will consume many resources. To reduce the overhead, channel tracking scheme should be

carefully designed.

8.2.3 Truncated Channel Vector

Suppose every user is served by up to V active antennas. Intuitively, we should choose the

V antennas with the strongest channel gains. By doing this, we will lose some energy for

both the uplink and the downlink, but the performance degradation is negligible. In this
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section, we introduce the concept of truncated channel vector, and analyze the concomitant

energy loss. Without loss of generality, we take the uplink as example, and the analysis

for downlink is very similar.

For notational simplicity, we will ignore the user index k and focus on the single-user

scenario in this section. Assume the channel vector is h, and the transmitted data sequence

is x ∈ CN , where N denotes the sequence length. If all antennas are active, the received

signal at the BS will be Y ∈ CM×N :

Y = hxT +N. (8.6)

On the other hand, if we only use V consecutive antennas with strongest channel gains for

data detection, the received signal will be Yt ∈ CV ×N :

Yt = htx
T
+Nt, (8.7)

where ht = h[v0 ∶ v0 + V − 1] is the truncated channel vector, and the active antennas are

indexed from v0 to v0 + V − 1. Nt ∈ CV ×N denotes additive Gaussian noise on the active

antennas.

Intuitively, if we only collect energy from V antennas with the strongest channel gains,

a small portion of the energy will be lost. However, this is not a big issue, as has been

discussed in many papers [151, 156, 157]. In [156] and [157], it has been proven that more

than 80% energy of a sinc function concentrates on the two samples in the main lobe. As a

result, we can use a very small number of antennas for beamforming, and the performance

degradation is negligible. As a matter of fact, the received energy for most antennas is at

noise level, and they will not contribute to system performance in low SNR regime [157].
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To investigate how energy loss varies with the number of RF chains, we define R(α −

⌊α⌋, V ) to represent the energy loss ratio, which is dependent on V and the fractional

part of α. In V2I millimeter wave communications, if we only consider the predominant

LoS signal, we approximately have h[m] = βsinc(m − α). By sorting the elements of h

based on their amplitudes in the descending order, a new vector can be obtained as hs

(∣hs[m]∣ ≥ ∣hs[m + 1]∣). Given that we only employ the V antennas with the strongest

channel gains for uplink data detection, the energy loss ratio is given by

R(α − ⌊α⌋, V ) = 1 −
∑
V −1
v=0 ∣hs[v]∣

2

∑
M
m=0 ∣hs[m]∣

2
. (8.8)

The numerical results are presented in Figure 8.1. It should be noted that the energy loss

ratio is not dependent on the total antenna number based on (8.2). When we increase

antenna number and maintain the RF chain number, the energy loss will increase, but

energy loss ratio stays the same because the energy loss is normalized by total energy.

0 0.2 0.4 0.6 0.8 1
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0.1
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Figure 8.1: Energy loss caused by channel truncation.

As we can see in Figure 8.1, by using two antennas for beamforming, the energy loss

ratio is less than 20%. When we increase the active antenna number to four, the worst

case energy loss ratio will be reduced to 10 percent. However, if we keep increasing active
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Figure 8.2: The data flow of the proposed channel tracking scheme.

antenna number, the improvement will be negligible.

From Figure 8.1, it is clear that lens antenna arrays with truncated channel vectors

provide a very promising solution for millimeter wave communications. However, similar

to other millimeter wave communication systems, the overhead of channel estimation is

significant. As a result, we will present a low-complexity data-aided channel tracking

scheme for the system discussed in the following section.

8.3 Data-Aided Channel Tracking

In this section, we will talk about the channel tracking method by only considering the

single-user scenario for the following reasons. First, by isolating inter-user interference,

we can better analyze the impacts of different parameters on channel tracking accuracy.

Secondly, millimeter wave communication systems are generally assumed to work in low

SNR regime, which means that noise is much stronger than inter-user interference, as we

will see in the simulation results. Moreover, the large antenna arrays provide very good

angular resolution. As long as the main lobes of two users’ signals do not overlap, the

interference will be negligible. When two users’ signals do overlap in space, the BS can
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still isolate them by allocating orthogonal time-frequency resources to them, which is a

very mature technique in LTE. As a result, we will focus on the single-user scenario for

theoretical analysis, while the multi-user scenario will be numerically evaluated in the

simulation results.

The TDD communication protocol is shown in Figure 8.2. Due to channel reciprocity,

only uplink channel is estimated, and the channel estimate will be used for uplink data

detection and downlink beamforming. At the very beginning, to setup the communication

link, the mobile user transmits an uplink training sequence to the BS. In the following

communications, there are three phases in every block: processing, downlink data trans-

mission and uplink data detection. During the processing phase of the first block, the BS

can estimate the channel state information (signal strength, direction, and phase) based

on the received pilot signals. The channel state information will be used for downlink data

transmission and uplink data detection. At the end of the first block, the BS employs

the decoded data to update channel estimate, which is referred to as channel tracking.

The channel tracking result will be used for downlink data transmission and uplink data

detection at the second block. This process iterates, and as long as the channel tracking is

executed frequently (or fast, equivalently) enough, the mobile user will not need to trans-

mit training sequence for channel estimation in the following communications. By doing

this, the overhead can be significantly reduced.

The system diagram is depicted in Figure 8.3. Assume that the truncated channel

vector of the n-th block has been estimated as ĥ
(n)
t , and the active antennas are indexed

from v
(n)
0 to v

(n)
0 +V −1. At the (n+1)-th block, the received uplink signal is Y

(n+1)
ul ∈ CV ×N ,

where N is the number of symbols transmitted on uplink during one block.
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Figure 8.3: System diagram.

As we can see in Figure 8.3, the data detector will use the truncated channel estimate

at the n-th block for data detection of the (n + 1)-th block. In the data detector, symbols

are detected independently. Due to the inaccurate channel state information and noise,

the detected data sequence (i.e., x̃(n+1)) may have some errors. However, most errors will

be corrected by the decoder through powerful channel coding schemes. As a result, x̂(n+1)

should be fairly accurate, and it can be used for channel tracking. The updated truncated

channel estimate of the (n + 1)-th block can then be obtained through data-aided channel

tracking, and buffered for data detection of the next time slot. This process will iterate,

and as long as the channel state information is updated fast enough, channel estimation

based on pilot will be unnecessary in following communications. In the remaining part of

this section, we will mathematically formulate the problem.

The received uplink signal at the (n + 1)-th block is

Y
(n+1)
ul = h

(n+1)
d (x(n+1)

)
T
+N

(n+1)
ul , (8.9)

where we have h
(n+1)
d = h(n+1) [v(n)0 ∶ v

(n)
0 + V − 1], and v

(n)
0 represents the index of the first

active antenna at the n-th block. The elements in N
(n+1)
ul are i.i.d. zero-mean circularly
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symmetric complex Gaussian random variables, with a variance of σ2. Suppose we already

have the truncated channel estimate of the n-th block, given as

ĥ
(n)
t = ĥ(n) [v(n)0 ∶ v

(n)
0 + V − 1] , (8.10)

and our target is to track the channel state at the (n + 1)-th block.

The multi-path effect is not severe in millimeter wave channels, which leads to much

longer coherence time. As a result, we can safely assume that the channel vectors at two

consecutive blocks are very close. As a result, we have ĥ(n) ≈ h(n+1), which means

ĥ
(n)
t ≈ h

(n+1)
d . (8.11)

By employing the matched filter for data detection based on ĥ
(n)
t , the result is given as

x̃(n+1)
= (Y

(n+1)
ul )

T
(ĥ
(n)
t )

∗
/∥ĥ

(n)
t ∥

2. (8.12)

x̃(n+1) is subject to detection error, caused by both noise and inaccurate CSI. However,

with powerful channel coding algorithms, most errors can be corrected, and we can obtain

a much more accurate estimate of the data sequence, i.e., x̂(n+1). This result can then be

used to estimate h
(n+1)
d :

ĥ
(n+1)
d =Y

(n+1)
ul (x̂(n+1)

)
∗
/∥x̂(n+1)

∥
2. (8.13)

The last step of the channel tracking scheme is transition. In lens antenna arrays, by

activating specific antennas, a beam pointing to the corresponding direction can be gen-

erated. If we are not able to activate the ‘right’ antennas, the user equipment can only

receive very weak signals. The user mobility makes this even more challenging, because we
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need to adaptively change the active antennas to track the user and guarantee reliable com-

munications. Although the channel variation of adjacent blocks is very small, this change

will increment and become very large for a long period of time. If the channel tracking

algorithm fails to adjust the direction of the mainlobe, the BS will see a huge loss of energy.

The purpose of the transition process is to adaptively change active antennas to guarantee

good performance, and it is illustrated in Figure 8.4, where V = 3. The horizontal axis

indicates the index of antennas while the vertical axis represents the normalized channel

gains of different antennas. α(n) = D (1 + cosφ(n)), and φ(n) is the DoA of the LoS path

at the n-th block.

v
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0

v
(n)

0

v
(n+1)

0

®(n)

®(n+1)

(a)

(b)

(c)

®(n+1)

Figure 8.4: The transition process from the n-th block to the (n + 1)-th block.
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As we can see in Figure 8.4 (a), there are three antennas activated at the n-th block,

and their indexes are v
(n)
0 , v

(n)
0 +1, and v

(n)
0 +2. The (v

(n)
0 +1)-th antenna has the strongest

channel gain. At the (n+1)-th block, these three antennas are used to receive uplink signal

and data detection is conducted, as shown in Figure 8.4 (b). We can then employ the

detected uplink data for the data-aided channel tracking, and ĥ
(n+1)
d can be obtained. Due

to the relative movement between the mobile user and the BS, the (v
(n)
0 + 2)-th antenna has

the strongest channel gain at this moment, and we should re-select the active antennas. To

achieve this goal, we will recover the whole channel vector, and select the three consecutive

antennas with strongest channel gains. As we can see in Figure 8.4 (c), after the antenna

selection, the active antennas are indexed from v
(n+1)
0 = v

(n)
0 + 1. By introducing the

transition phase, the active antennas are periodically adjusted to steer the beam and make

sure the mobile user is properly covered.

Generally, to complete the transition from the n-th to the (n+ 1)-th block, we need to

reconstruct the whole channel vector, i.e., ĥ(n+1). Equivalently, we need to estimate the

α(n+1) and β(n+1) based on ĥ
(n+1)
d . In the following sections, we will first try to formulate

the problem mathematically, and then present a low-complexity algorithm.

8.3.1 Maximum Likelihood Estimate

As we know, the maximum likelihood estimator is asymptotically consistent and efficient

[158]. Therefore, we will formulate the estimation problem and estimate the parameters

with maximum likelihood estimator.

Assume that the estimation error of ĥ
(n+1)
d follows zero-mean Gaussian distribution.
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To be specific, we have

E {(ĥ
(n+1)
d − h

(n+1)
d ) (ĥ

(n+1)
d − h

(n+1)
d )

H
} = σ2

dIV , (8.14)

where σ2
d is the variance of ĥ

(n+1)
d [v]. The justification of (8.14) and the expression of σ2

d

will be presented in later discussions. As we have mentioned, the LoS path is predominant

in millimeter wave communications, given that it exists. Besides, for reasonable SNRs, the

noise is generally stronger than non-line-of-sight (NLoS) paths. As a result, by ignoring

the NLoS paths, h
(n+1)
d is approximately a function of α(n+1) and β(n+1):

h
(n+1)
d [v] ≈ β(n+1) sinc (v

(n)
0 + v − α(n+1)

) . (8.15)

Based on (8.14), we have the likelihood density function of ĥ
(n+1)
d as

f (ĥ
(n+1)
d ∣α(n+1), β(n+1)

)

=
1

(πσ2
d)
V

exp{−∥ĥ
(n+1)
d − h

(n+1)
d ∥

2
/σ2
d} .

(8.16)

The maximum likelihood estimate of α(n+1) and β(n+1) can then be given as

[α̂
(n+1)
ml , β̂

(n+1)
ml ] = arg max

α(n+1),β(n+1)
f(ĥ

(n+1)
d ∣α(n+1), β(n+1)

)

= arg min
α(n+1),β(n+1)

∥ĥ
(n+1)
d − h

(n+1)
d ∥

2.

(8.17)

It is difficult to obtain the closed-form expression of the optimal solution, but we can

generally employ iterative algorithms to obtain a close approximation, as will be discussed

in the following section.

8.3.2 Low Complexity LS Estimate

In this section, we will present a least square (LS) solution for the channel tracking problem

in (8.17). To simplify the mathematical representations, we define hr, hi, ĥr, ĥi, βr, βi,
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β̂r and β̂i as follows

hr =R{h
(n+1)
d }, hi = I{h

(n+1)
d },

ĥr =R{ĥ
(n+1)
d }, ĥi = I{ĥ

(n+1)
d },

βr =R{β
(n+1)

}, βi = I{β
(n+1)

},

β̂r =R{β̂
(n+1)

}, β̂i = I{β̂
(n+1)

}.

(8.18)

Let θ = [α(n+1), βr, βi]T , and we have the MLE of θ as

θ̂ml =arg min
θ
∥ĥr − hr∥

2
+ ∥ĥi − hi∥

2

=arg min
θ
∥ĥs − hs∥

2,

(8.19)

where ĥs and hs are defined as

ĥs = [ĥ
T
r , ĥ

T
i ]
T , hs = [h

T
r ,h

T
i ]
T . (8.20)

Note that (8.19) is equivalent to (8.17).

Generally, (8.19) can be solved by the Newton’s method. Assume that we have obtained

the estimate of θ in the j-th iteration as θ̂(j), and the (j+1)-th iteration can be performed

as

θ̂(j+1)
= (SHS)

−1
SH (ĥs − s(θ̂(j))) + θ̂(j), (8.21)

where s(θ) = [sTr , s
T
i ]
T is given as

sr(θ)[v] = βr sinc (v
(n)
0 + v − α(n+1)

) ,

si(θ)[v] = βi sinc (v
(n)
0 + v − α(n+1)

) ,

(8.22)

and S ∈ R2V ×3 is the Jacobi matrix at θ = θ̂(j):

S = [
∂hTr
∂θ

,
∂hTi
∂θ
]

T RRRRRRRRRRRRθ=θ̂(j)
. (8.23)
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For this iterative algorithm, the initial estimate should be carefully chosen to guarantee

fast convergence. As we have mentioned, the channel does not vary much between two

adjacent time slots, i.e., α(n) ≈ α(n+1) and β(n) ≈ β(n+1). As a result, we can use the

estimated channel parameters of the n-th time slot as the initial estimate of the channel

parameters at the (n + 1)-th block, i.e., θ̂(0) = [α̂(n),R{β̂(n)}, I{β̂(n)}].

After several iterations, the result should converge to the solution of (8.17). Let the

final estimate of θ be θ̂ = [α̂(n+1), β̂r, β̂i], and we have the MLE of β(n+1) as β̂(n+1) = β̂r+iβ̂i.

Based on α̂(n+1) and β̂(n+1), the complete channel vector can then be reconstructed as

ĥ(n+1)
[m] = β̂(n+1)sinc (m − α̂(n+1)

) . (8.24)

With the updated channel estimate, we should re-select antennas with the strongest channel

gains, and construct the truncated channel estimate, which is given as

ĥ
(n+1)
t = ĥ(n+1)

[v
(n+1)
0 ∶ v

(n+1)
0 + V − 1] . (8.25)

The active antennas are indexed from v
(n+1)
0 to v

(n+1)
0 + V − 1. When V is odd, we have

v
(n+1)
0 =m(n+1)

p − (V − 1)/2, (8.26)

where m
(n+1)
p is given by

m(n+1)
p = arg max

m
∣ĥ(n+1)

[m]∣ . (8.27)

When V is even, v
(n+1)
0 should be chosen as

v
(n+1)
0 =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

m
(n+1)
p − (V /2 − 1), m

(n+1)
p ≤ α̂(n+1)

m
(n+1)
p − V /2, m

(n+1)
p > α̂(n+1).

(8.28)

The presented data-aided channel tracking algorithm is briefly summarized in Algorithm

3.
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Algorithm 3 Data-aided channel tracking algorithm.

Require:

Truncated channel estimate at the n-th block, ĥ
(n)
t ;

Received signal at the (n + 1)-th block, Y
(n+1)
ul ;

Ensure:

Truncated channel estimate at the (n + 1)-th block

1: Data detection of the (n + 1)-th block through (8.26);

2: Data-aided channel tracking through (8.13), ĥ
(n+1)
d ;

3: The estimate of α(n+1) and β(n+1) through the Newton iteration algorithm in (8.21);

4: Construct ĥ(n+1) through (8.24);

5: Find v
(n+1)
0 through (8.26) and (8.28), and update ĥ

(n+1)
t through (8.25);

6: return ĥ
(n+1)
t ;

8.3.3 Multi-User Scenario

In previous discussions, we presented the data-aided channel tracking scheme in the single

user case. In this section, we will talk about how to apply it to multi-user scenario. Without

loss of generality, we assume the BS serves two users with six RF chains simultaneously.

The first step is initial channel estimation. Each user is assigned a pilot sequence and two

pilot sequences are orthogonal. The initial channel estimate can be obtained through the

method in [150]. Then, if these two users are well separated, i.e., the main lobes of their

signals do not overlap in space, three RF chains will be used to serve each user. After

initial channel estimation, the BS will keep the communications with user one with the

first three RF chains, and follow the TDD communication protocol in Figure 8.2. The
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second user will be served by the other RF chains. Theoretically, joint precoding and

decoding should be conducted at the BS to eliminate the interference between two users.

However, when they are well separated, the inter-user interference is very weak and can

be ignored. As a result, data-aided channel tracking will be conducted at the BS for both

users independently. That is to say, data detection and channel tracking for user one will

be conducted only based on signals received from the first three RF chains. When users

cannot be separated in space, they will be assigned with different time-frequency resources,

and they can then work with their RF chains independently. In later simulations, results

are presented for scenarios where users are well separated.

8.4 Performance Analysis

8.4.1 The Data-Aided Channel Tracking Error

As we have mentioned, the channel tracking result in (8.13) is subject to noise and data

detection error. To be specific, the data-aided channel estimate of the (n + 1)-th block is

given by

ĥ
(n+1)
d =Y

(n+1)
ul (x̂(n+1)

)
∗
/∥x̂(n+1)

∥
2

=(h
(n+1)
d (x(n+1)

)
T
+N

(n+1)
ul )

(x̂(n+1))
∗

∥x̂(n+1)∥2
.

(8.29)

In (8.29), x̂(n+1) is the detected data of the (n + 1)-th block, and the error pattern is

e(n+1) = x̂(n+1) − x(n+1). Thanks to the powerful forward error correction coding, we can

safely assume that ∥e(n+1)∥ ≪ ∥x(n+1)∥. Therefore, we can take the first-order Taylor

expansion, and (8.29) can be approximated by

188



ĥ
(n+1)
d ≈ h

(n+1)
d + h

(n+1)
d

eHx(n+1)

∥x(n+1)∥2
+ n
(n+1)
ul , (8.30)

where n
(n+1)
ul = N

(n+1)
ul (x̂(n+1))

∗
∥x̂(n+1)∥2. In (8.30), the estimation error originates from

both data detection error and noise. However, we will see that noise dominates in estima-

tion error.

For the v-th element in ĥ
(n+1)
d , we have

ĥ
(n+1)
d [v] ≈ h

(n+1)
d [v] + h

(n+1)
d [v]

eHx(n+1)

∥x(n+1)∥2
+ nv, (8.31)

where nv = n
(n+1)
ul [v]. On the right hand side of (8.31), the first part is the desired

information, while the second and third parts are channel estimation error caused by date

detection error and noise, respectively. We can compute and compare their strength.

To start with, we can prove that when N is very large, the limit of ∥eHx(n+1)∥2/∥x(n+1)∥4

is given as p2
e, i.e.,

lim
N→∞

∥eHx(n+1)∥2

∥x(n+1)∥4
= p2

e. (8.32)

As a result, the strength of estimation error caused by symbol detection error is

σ2
e ∼ ∣h

(n+1)
d [v]∣2p2

e. (8.33)

On the other hand, the strength of noise-incurred channel estimation error is

σ2
n =E

⎧⎪⎪
⎨
⎪⎪⎩

∥N
(n+1)
ul [v, ∶](x̂(n+1))∗∥2

∥x̂(n+1)∥4

⎫⎪⎪
⎬
⎪⎪⎭

=E {
∥x̂(n+1)∥2σ2

∥x̂(n+1)∥4
} = E {

σ2

∥x̂(n+1)∥2
} .

(8.34)

We can prove that the asymptotic limit of 1/∥x̂(n+1)∥2 is 1/N . To be specific, we have

E {
1

∥x̂(n+1)∥2
} =

1

N
+O{1/N2

}. (8.35)
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As a result, the asymptotic limit of σ2
n is

σ2
n ∼ σ

2
/N, (8.36)

noticing that σ2 is the strength of uplink noise. The ratio of σ2
n to σ2

e is

σ2
n

σ2
e

≈
1

Np2
eSNRv

, (8.37)

where SNRv = ∣h
(n+1)
d [v]∣2/σ2 is the uplink SNR on the v-th active antenna at the (n+1)-

th data block. To guarantee system performance, we generally have SNRv around several

dB, N varies from one hundred to one thousand, while pe is less than 10−3. As we can see,

for reasonable SNR and pe ranges, we have σ2
n ≫ σ2

e , which means that noise dominates in

data-aided channel tracking error. Therefore, (8.30) can be approximated by

ĥ
(n+1)
d ≈h

(n+1)
d + n

(n+1)
ul , (8.38)

and the covariance matrix of n
(n+1)
ul is σ2

nIV . Note that we have σ2
d ≈ σ

2
n from (8.14) and

(8.38).

8.4.2 Error Analysis of the Transition Process

In the transition process, due to the tracking error in ĥ
(n+1)
d , α̂(n+1) and β̂(n+1) will also

have errors, which further propagate to ĥ
(n+1)
t . In this section, we will analyze the error

propagation in this process.

Considering the scenarios in which the LoS path predominates, h
(n+1)
d is approximately

a function of θ. The noise in (8.38) will cause estimation error in θ, and this noise is

generally much weaker than h
(n+1)
d when N is very large. Stack the real and imaginary
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parts of n
(n+1)
ul as

ns = [R{n
(n+1)
ul }

T ,I{n
(n+1)
ul }

T
]
T
, (8.39)

and we can then employ the first order Taylor expansion to approximately describe the

relation of estimation error and observation noise as

ns ≈ ĥs − hs ≈Heθ, (8.40)

where eθ is the estimation error of θ, and H is the Jacobian matrix given by

H = [
∂hTr
∂θ

,
∂hTi
∂θ
]

T

. (8.41)

Equivalently, we have

eθ ≈ (H
TH)

−1
HTns, (8.42)

and the covariance matrix of eθ will be

Rθ ≈
σ2
n

2
(HTH)

−1
. (8.43)

As we can see, the estimation error of θ is also inversely proportional to N and is very

small. Therefore, when we use α̂(n+1) and β̂(n+1) for channel update, the induced error can

be closely approximated by the first order Taylor expansion as

eht ≈

⎡
⎢
⎢
⎢
⎢
⎣

∂R{h
(n+1)
t }

∂θ
+ i
∂I{h

(n+1)
t }

∂θ

⎤
⎥
⎥
⎥
⎥
⎦

eθ, (8.44)

where eht is the estimation error in ĥ
(n+1)
t . The MSE of the truncated channel update will

be

∥eht∥
2
≈ tr

⎧⎪⎪
⎨
⎪⎪⎩

∂R{h
(n+1)
t }T

∂θ
R−1
θ

∂R{h
(n+1)
t }

∂θ

⎫⎪⎪
⎬
⎪⎪⎭

+ tr

⎧⎪⎪
⎨
⎪⎪⎩

∂I{h
(n+1)
t }T

∂θ
R−1
θ

∂I{h
(n+1)
t }

∂θ

⎫⎪⎪
⎬
⎪⎪⎭

. (8.45)
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Normalize it by the channel strength, and we have the NMSE of truncated channel update

as

∥eht∥
2
/∥h

(n+1)
t ∥

2
≈∥eht∥

2
/∣β(n+1)

∣
2. (8.46)

It should be noticed that the NMSE of truncated channel estimation is inversely pro-

portional to the sequence length, which means we can improve channel tracking accuracy

by using longer data sequences.

8.4.3 CRLB of Channel Estimation Error

In this section, we will discuss the CRLB of the estimation error in the transition prcess.

To be specific, from the PDF of ĥ
(n+1)
d , we can derive the Fisher information matrix to

quantify the amount of information that can be extracted. To simplify the notations, we

ignore the block index for now. To be specific, we use α, β, ĥd, hd, ht and v0 to represent

α(n+1), β(n+1), ĥ
(n+1)
d , h

(n+1)
d , h

(n+1)
t and v

(n)
0 , respectively.

The probability density function of ĥd is

f(ĥd∣α,β) =
1

(πσ2
d)
V

exp{−
1

σ2
d

(∥ĥd − hd∥
2)} , (8.47)

while the likelihood function is

l(ĥd∣α,β) = ln(f) = −V ln(πσ2
d) − ∥ĥd − hd∥

2
/σ2
d. (8.48)

The partial derives of l with respect to α, βr and βi are given as

∂l

∂α
=

2

σ2
d

[(ĥr − hr)
T ∂hr
∂α
+ (ĥi − hi)

T ∂hi
∂α
] ,

∂l

∂βr
=

2

σ2
d

(ĥr − hr)
T ∂hr
∂βr

,

∂l

∂βi
=

2

σ2
d

(ĥi − hi)
T ∂hi
∂βi

,

(8.49)
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where we implicitly use the fact that ∥ĥd − hd∥
2 = ∥ĥr − hr∥

2 + ∥ĥi − hi∥
2. The Fisher

information matrix is given as

F = E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( ∂l
∂α
)

2 ∂l
∂α

∂l
∂βr

∂l
∂α

∂l
∂βi

∂l
∂βr

∂l
∂α ( ∂l

∂βr
)

2
∂l
∂βr

∂l
∂βi

∂l
∂βi

∂l
∂α

∂l
∂βi

∂l
∂βr

( ∂l∂βi
)

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (8.50)

and the expectations of the quadratic terms are given by

E {(
∂l

∂α
)

2

} =
2

σ2
d

(∣
∂hr
∂α
∣

2

+ ∣
∂hi
∂α
∣

2

) ,

E {(
∂l

∂βr
)

2

} =
2

σ2
d

(∣
∂hr
∂βr
∣

2

) ,

E {(
∂l

∂βi
)

2

} =
2

σ2
d

(∣
∂hi
∂βi
∣

2

) ,

E {
∂l

∂α

∂l

∂βr
} =

2

σ2
d

(
∂hTr
∂α

∂hr
∂βr
) ,

E {
∂l

∂α

∂l

∂βi
} =

2

σ2
d

(
∂hTi
∂α

∂hi
∂βi
) ,

E {
∂l

∂βr

∂l

∂βi
} =

2

σ2
d

(
∂hTr
∂βr

∂hr
∂βi
) .

(8.51)

Through tedious but straight forward derivations, the Fisher information matrix can be

rewritten as

F =
2

σ2
d

(
∂hTr
∂θ

∂hr
∂θ
+
∂hTi
∂θ

∂hi
∂θ
) =

2

σ2
d

HTH. (8.52)

The Jacobian Matrixes are

∂hr
∂θ
= [

∂hr
∂α

,
∂hr
∂βr

,
∂hr
βi
] ,

∂hi
∂θ
= [

∂hi
∂α

,
∂hi
∂βi

,
∂hi
βi
] ,

(8.53)
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and the partial derives are given by

∂hr[v]

∂α
=
βr (sinc(v + v

(n)
0 − α) − cos(v + v

(n)
0 − α)π)

v + v
(n)
0 − α

,

∂hi[v]

∂α
=
βi (sinc(v + v

(n)
0 − α) − cos(v + v

(n)
0 − α)π)

v + v
(n)
0 − α

,

∂hr[v]

∂βr
=
∂hi[v]

∂βi
= sinc(v + v

(n)
0 − α),

∂hr[v]

∂βi
=
∂hi[v]

∂βr
= 0.

(8.54)

Considering that σ2
d ≈ σ

2
n, the Fisher information matrix should be very close to the inver-

sion of Rθ in (8.43). That is to say, the estimation errors of α and β are very close to the

CRLBs. Specifically, the CRLBs of estimation errors of α and β are given as

∣∆α∣2 ≥ F−1
[1,1]∝ σ2

d,

∣∆β∣2 ≥ F−1
[2,2] +F−1

[3,3]∝ σ2
d.

(8.55)

As we can see, the lower bounds of estimation errors of α and β are both proportional to

σ2
d. As a result, they are inversely proportional to N , which means longer data sequence

helps to reduce channel tracking error.

Due to the dominance of the LoS path, the truncated channel vector is approximately

related to α and β as

ht[v] ≈ β sinc(v + v0 − α) (8.56)

and estimation errors in β̂ and α̂ lead to estimation error of ĥt. The first order estimation

error can be approximated by

∆ht ≈ [
∂R{ht}

∂θ
+ i
∂I{ht}

∂θ
]∆θ. (8.57)
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The lower bound of the estimation error of ĥt can be approximated by

∣∆ht∣
2
≥ tr{

∂R{ht}
T

θ
F−1∂R{ht}

θ
} + tr{

∂I{ht}
T

θ
F−1∂I{ht}

θ
} . (8.58)

Similar to (8.55), we can see that estimation error of ht is inversely proportional to N , and

longer sequences help to reduce estimation error.

8.4.4 Computational Complexity

The channel tracking scheme presented in this paper involves two steps. The first one is to

use the currently detected data for channel estimation given by (8.13), whose complexity

is at the order of O(NV ). The second step is the transition process and the complexity is

at the order of O(V ), which is negligible. As a result, we can see the overall complexity

mainly comes from the data-aided channel estimation, and it grows linearly with the data

block length and the number of RF chains per user.

At first sight, the iteration process may introduce huge delay. However, we believe

this is not a huge problem for the following reasons. First, the algorithm will converge

very fast because of the accurate initial estimate. Generally, two or three iterations are

more than enough for reasonable SNR range. Secondly, when the channel is not varying

fast, we do not need to conduct channel tracking for every block. Thirdly, we can further

reduce the delay by using part of the uplink data for channel tracking, instead of the whole

sequence. There is a trade-off between complexity and channel tracking accuracy. Last but

not the least, the channel tracking process can be conducted simultaneously with downlink

data transmission. Based on these discussions, we can cut off the delay by reducing channel

tracking frequency, reducing data sequence length used for channel tracking, and employing
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a pipeline architecture.

8.5 Numerical Evaluations

For the presented system, there are several parameters of great importance, including the

data block length, number of RF chains per user, SNR, antenna number at the BS, etc. In

this section, we will conduct simulations to evaluate the impacts of these parameters on

system performance. The vehicle is moving at 360 km per hour, which is the typical speed

for the Chinese high-speed railway system. We assume that block length is one thousand

symbols and the rate is 106 symbols per second. That is to say, every data block has a

duration of 1 ms. The default modulation scheme is QPSK, if not specified. The length of

pilots is 10 symbols for initial channel estimation. Due to the existence of the LoS path,

the path loss exponent is chosen as 2. Also, we conduct simulations for the multi-user

scenario, and compare the presented method with that of [151] in terms of normalized

channel estimation error.

8.5.1 Channel Tracking of High-Mobility Vehicle

In this first part, we will apply the presented method to the high-speed railway systems and

conduct simulations. The number of antennas at the BS is 128, and V = 3. The train moves

at 360 km per hour for 200 data blocks. The results are show in Figure 8.5 for SNR = 5 dB.

In Figure 8.5, we have the NMSE of truncated channel estimate, MSE of the estimates

of α and β. As we can see, for the simulated 200 blocks, the NMSE of the presented

algorithm is very close to the CRLB. As we have mentioned, both data-detection error
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Figure 8.5: Channel tracking error.
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and noise contribute to channel estimation error, while the CRLB is derived by ignoring

the data-detection error. That is to see, the impact of data detection error is negligible on

channel estimation accuracy, as we have proven.

In Figure 8.5, we have two important observations: first, the channel tracking error

oscillates; second, the overall channel tracking error decreases from a long-term perspec-

tive. As we have mentioned previously, by using limited RF chains and truncated channel

vectors, there will be energy loss, and the energy loss ratio is related to the fractional part

of α. In Figure 8.5, the user’s movement leads to periodical variation of the fractional part

of α, and thus causes periodically changing SNR. Then, the channel tracking accuracy

will vary accordingly, and we can observe the fast fluctuation. The long-term decrease of

estimation error can be explained by the fact that the user is moving towards the base

station in our simulation setup, which leads to increased SNR. The long-term decrease of

channel estimation error is subtle, because the total distance travelled by the vehicle is

only 20 meters for 200 blocks, which does not cause significant change of signal strength.

8.5.2 How to Choose V

In the presented system, the number of active antennas should be carefully chosen. On one

hand, V cannot be too large because the RF chains are expensive. On the other hand, V

should at least be equal to three, so that the transition process can be completed. As has

been proven in [156] and [157], more then 80% of the energy concentrates on two antennas

in the main lobe of a sinc function. That is to say, three active antennas should be enough

to achieve comparable performance with respect to that with M active antennas.
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Figure 8.6: Impact of V on channel tracking error.

In Figure 8.6, we have the channel tracking results at the 20-th block, in terms of the

normalized channel estimation error. V varies in {4,8,16}, and the performance improve-

ment is negligible every time we double V . Also, it should be noted that the presented

algorithm can closely approach the CRLB.

8.5.3 The Trade-off of the Block Length

There is a trade-off concerning the block length of the presented channel tracking scheme.

On one hand, longer block means longer data sequence, which helps to improve channel

tracking accuracy by suppressing noise. On the other hand, we are using the CSI of the

previous block for the data detection of the current block, by assuming that the channel

is almost constant for consecutive blocks. As a result, longer blocks may lead to channel

variation and data detection errors, which will propagate and deteriorate system perfor-
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mance. In Figure 8.7, we have the simulation results for N ∈ {200,400,800,1600}. As we
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Figure 8.7: Impact of block length on channel tracking error.

can see, for the simulated values of N , every time we double the data sequence length, the

NMSE of channel estimation will be reduced by a factor of two, which is consistent with

the previous theoretical analysis.

8.5.4 Impact of Antenna Number

The number of antennas at the BS definitely has an important impact on the presented

system, both positively and negatively. On one hand, more antennas help to concentrate

energy better and thus improve energy efficiency. On the other hand, larger antenna arrays

lead to narrower main lobes and faster channel variations. Intuitively, when the beam is

narrower, channel tracking will be more challenging, because the user can easily move out

of the beam and lose communication with the BS.
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Figure 8.8: Impact of antenna number on truncated channel estimation error.

As we can see in Figure 8.8, as we double or triple the number of antennas at the

BS, the NMSE of truncated channel estimate decreases proportionally, noticing that the

number of RF chains is constant in this process.

8.5.5 Channel Tracking of Multiple Users

In this section, we consider multiple users served by the same BS. To be specific, the BS

will serve four well separated users with the same time-frequency resource. The users are

distributed in a line along a road, and the minimum distance between any two users is

large enough to guarantee that they will be served by different active antennas. Users are

assigned with orthogonal pilot sequences, and each pilot sequence has ten QPSK symbols.

Based on pilots, initial channel estimation can be conducted for users. In the following

communications, V RF chains will be used to serve one user, every user will experience

interference from the others, and data-aided channel tracking will be conducted for all
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users independently. That is to say, data detection and channel tracking for an arbitrary

user will be conducted only based on signals received from the corresponding RF chains.

The results are presented in Figure 8.9.

Channel Tracking in [22]

The Proposed Scheme

Figure 8.9: Truncated channel estimation for multiple users served by the same BS.

In Figure 8.9, we also have the results from [151], and the pilot length is 100 symbols.

As we can see, the channel estimation errors of different users decrease monotonically

with the increase of SNR. Different users have different channel tracking errors, because

their distances to the BS are different, leading to different signal strength. Also, the

presented scheme outperforms that from [151] by more than one order of magnitude in

terms of channel estimation error. This can be explained by two reasons. First, the

data sequence is ten times longer than the pilot sequence, which means the noise will be

suppressed by ten times. Second, the correlations of different antenna gains in the truncated

channel vector are considered in the presented method, while [151] does not. Basically, the
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presented approach exploits the fact that the channel response can be approximated by a

sinc function, and thus can further suppress noise. Moreover, it should be noted that the

overhead of the presented scheme is almost zero, because no training sequence is required

except for the initial channel estimation.

When it comes to achievable rate, it is true that smaller channel estimation error

does not necessarily lead to larger achievable rate. However, our case is quite special.

There are two parameters contributing to the achievable rate: the achieved SINR and

the overhead. Assume the overall block length is N , out of which Np is used for channel

tracking. Therefore, the achievable rate is

AR =
N −Np

N
log2(1 + SINR). (8.59)

For the presented scheme, Np = 0, which means no overhead. As to SINR, because the

presented method shows smaller channel tracking error, it will have better SINR. As a

result, the presented scheme will outperform that in [151] in terms of achievable rate.

8.6 Summary

In this chapter, a data-aided channel tracking scheme for TDD millimeter wave communi-

cations is presented. Due to the channel reciprocity, the uplink channel tracking results can

be used for down-link beamforming. The fundamental idea is that millimeter wave chan-

nels are sparse, and the LoS component dominates, leading to high correlation between

channels in adjacent time slots. From the angle domain perspective, the DoA of the desired

signal does not vary much between two consecutive data blocks. As a result, we can employ

the channel estimate from the previous time slot for the data detection of the current one.

203



Then, the detected data sequence can be used to update the channel estimate. Due to

the iterative process, one might be concerned with the error propagation issue. However,

we proved that for reasonable SNR range, the channel estimation error is dominated by

noise, and the data detection error from the previous data block has a negligible impact on

the channel estimation of the current block. As a result, the error propagation issue can

be ignored. Through both theoretical analysis and numerical simulations, we show that

channel tracking is possible without consuming any time-frequency resource in millimeter

wave communications, as long as the LoS path dominates.
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Chapter 9

Conclusions and Future Work

This dissertation has presented the modeling, algorithm design and performance analysis

on mobile node-aided localization and communications in large-scale WSNs. Simulations

and experiments are conducted to verify the theoretical results.

9.1 Summary of Contributions

The main contributions of this research are summarized as follows:

• The Drone-Assisted Zero-Configuration Localization System

A new localization framework has been proposed to replace the conventional archi-

tecture based on fixed anchors. A drone serves as a mobile anchor for localization

in large-scale WSNs. The channel parameters are viewed as extra unknowns, and

the Newton’s method is employed to jointly estimate the location of sensors and

the channel parameters. Therefore, no off-line training is required. It has also been

shown that the variance of positioning error will decreases linearly with the number of
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measurements. Extensive analysis and numerical evaluations are conducted to show

that the proposed system is not only more accurate, but also more stable.

• ToA-based Joint Localization and Time Synchronization

A two-phase low complexity linear algorithm has been proposed for the joint local-

ization and time synchronization for large scale underwater acoustic sensor networks.

An AUV is employed as a mobile anchor to broadcast beacon signals, and all the

sensors are silent. This system has been shown to provide better coverage and im-

poses very low communication burden for the network. The closed-form positioning

and time synchronization errors are derived and prove to be almost identical to the

CRLBs. The theoretical analysis is supported by the simulation results.

• Doppler-based Underwater Localization

A Doppler-based underwater localization system has been proposed and comprehen-

sively analyzed. Compared with ToA or TDoA based system, this new system does

not demand communication capability from the target. The target only needs to

transmit a sinusoidal wave at a constant frequency, and the AUV can localize the

target in its communication range. A low-complexity Doppler estimation algorithm

has been presented and the closed-form estimation error is given. Based on the

Doppler estimates, the Newton’s method is employed for localization. The variance

of positioning error is inversely proportional to the cube of sampled sequence length,

which means we can easily improve system performance by prolonging the sampling

time.

• Machine Learning-Assisted Target Detection
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A machine learning-assisted proactive target detection and tracking system based

on underwater acoustic networks has been proposed. The active nodes periodically

broadcast LFM signals, which will hit the target, get reflected and received by the

other nodes. Based on the received signals, the FrFT can be used to get the 2D

spectrum. The CNN is employed to automatically scan the spectrum and detect the

existence of targets. If targets are detected, over-sampling will be conducted on the

spectrum to get more accurate estimate of target’s distance and radial velocity. Such

an architecture has been shown to significantly reduce the computational complexity

and achieve real-time scanning of the surveillance area.

• Pilot Decontamination based on the Spatial Filter

A pilot decontamination method has been proposed for massive MIMO systems. The

key idea is to identify the spatial signatures of the pilot contamination from adjacent

cells and eliminate them by constructing a spatial filter. The stronger the pilot

contamination is, the better chance we have to identify it. Such estimation method is

especially helpful to cell-edge users, because their signals can be overwhelmed by pilot

contamination from adjacent cells. Compared with the existing pilot decontamination

methods, the proposed scheme has two major advantages: 1) no a priori statistical

information is required; and 2) no need for the assumption that the desired signals

are always stronger than the pilot contamination to perform effective estimation.

• Data-Aided Channel Tracking

A data-aided channel tracking scheme for TDD mmWave communications has been

presented. Due to the channel reciprocity, the up-link channel tracking results can
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be used for down-link beamforming. The fundamental idea is that millimeter wave

channels are sparse, and the LoS component dominates, leading to high correlation

between channels in adjacent time slots. As a result, we can employ the channel

estimate from the previous time slot for the data detection of the current slot. Then,

the detected data sequence can be used to update the channel estimate. Due to the

iterative process, one might be concerned with the error propagation issue. However,

we proved that for reasonable SNR range, the channel estimation error is dominated

by noise, and the data detection error from the previous data block has a negligi-

ble impact on the channel estimation of the current block. As a result, the error

propagation issue can be ignored.

9.2 Further Work

In the thesis, various application scenarios are modeled and analyzed for mobile node

assisted large-scale WSNs. As future work, the following problems should be investigated.

Firstly, the trajectory of mobile nodes should be carefully designed. As we have men-

tioned, the geometrical distribution of nodes in a network has significant impact on posi-

tioning accuracy. Therefore, if a random trajectory is chosen, some nodes may have very

poor localization accuracy, while the others may experience small positioning error. There-

fore, the trajectory should be designed to minimize the maximum GDOP in the network.

Also, we also need to consider the limited battery life and the maximum acceleration of

the mobile nodes during the design process.

Secondly, the data-association problem should be considered in Chapter 6. To be
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specific, suppose two objects are located in the surveillance area. Every listening node will

see two bright “X” patterns on their spectrum. At the server sides, after receiving the data

from the listening nodes, the sever needs to figure out what pattern corresponds to which

target. This is the data-association issue in space domain, and similar problem should

be solved in the time domain. An effective solution will help to address the simultaneous

localization of the multiple targets problems in the network.

Thirdly, the Doppler effect is assumed to be compensated on the RF chain in Chapter

8. However, this can be quite challenging, and demands complicated hardware design. A

better solution is to eliminate the Doppler shift on the baseband signal. To achieve this

goal, an accurate channel model is required for the RF band, but is still absent. Besides, the

near-field effect should be considered for large antenna arrays, because the array dimension

is no longer negligible.
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Appendix A

Appendix for Drone-Assisted

Localization Framework

A.1 Proof of the Lower Bound of GDOP

In this appendix, we will try to find the lower bound of GDOP given by Equation (3.27),

and show that this bound can be achieved under the conditions of Equation (3.28). To

begin with, we need to develop the following lemma.

Lemma 1: Given a symmetric and positive definite matrix A ∈ RM×M , we have the

following inequality:

tr{A−1
} ≥

M2

tr{A}
. (A.1)

The equality holds when A = λ ⋅ IM , where λ is a positive real number.

Proof. Assuming the M eigenvalues of A are λm’s (m = 1,2,⋯,M), 1/λm’s will be the

eigenvalues of A−1. Therefore, traces of A and A−1 are ∑Mm=1 λm and ∑Mm=1 1/λm, respec-
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tively. Because A is positive definite, its M eigenvalues are all positive. According to the

well known Inequality of Arithmetic and Geometric Means, we have

M

∑
m=1

1/λm ≥
M

(∏
M
m=1 λm)

1/M ≥
M2

∑
M
m=1 λm

, (A.2)

where the equalities hold if and only if λm = λ for any m. Through eigenvalue decomposi-

tion, A can be decomposed as A =WΛWT, where W is an orthogonal matrix and Λ =

diag{[λ1, λ2, ⋅ ⋅ ⋅, λM]}. When λm = λ for any m, we have A =WΛWT = λWWT = λ ⋅ IM.

On the other hand, given A = λ ⋅ IM , we have λm = λ(∀ 1 ≤m ≤M).

Then, we can try to find the lower bound of the trace of [(FTF)−1]2×2. Through SVD,

we can obtain

F2 =UΣV, (A.3)

where U and V are two orthogonal matrixes. Σ has the form of

Σ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Λ

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.4)

where 0 ∈RN−2×2 is a zero matrix and Λ is a diagonal matrix. The right side of Equation

(3.11) can be reorganized as

FT
1 (IN −F2(F

T
2 F2)

−1FT
2 )F1

=FT
1 (IN −UΣ(ΣTΣ)−1ΣTUT )F1

=FT
1 U (IN −Σ(ΣTΣ)−1ΣT )UTF1.

(A.5)

Then, IN −Σ(ΣTΣ)−1ΣT can be further simplified to the following form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

02 02×N−2

0N−2×2 IN−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A.6)
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Define U = [UL, UR], in which UL is the left two columns of U while UR consists of the

right side N − 2 columns. Continue with Equation (A.5),

FT
1 U (IN −Σ(ΣTΣ)−1ΣT )UTF1

=FT
1 [UL, UR]

⎡
⎢
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02 02×N−2
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UT
L

UT
R
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⎥
⎥
⎥
⎥
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F1

=FT
1 URUT

RF1.

(A.7)

As a result, the trace of FT
1 (IN −F2(F

T
2 F2)

−1FT
2 )F1 is

tr{FT
1 (IN −F2(F

T
2 F2)

−1FT
2 )F1} = (∥F

T
1 UR∥2

)
2
. (A.8)

On the other hand,

FT
1 F1 = FT

1 UUTF1 = FT
1 [UL, UR]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

UT
L

UT
R

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

F1 = FT
1 ULUT

LF1 +FT
1 URUT

RF1, (A.9)

and the trace of FT
1 F1 will be

tr{FT
1 F1} = tr{FT

1 ULUT
LF1} + tr{FT

1 URUT
RF1}

= ∥FT
1 UR∥

2

F
+ ∥FT

1 UL∥
2

F
.

(A.10)

Therefore, we have the following inequality

tr{FT
1 (IN −F2(F

T
2 F2)

−1FT
2 )F1} ≤ tr{FT

1 F1} , (A.11)

and the equality holds when FT
1 UL = 0, or FT

1 F2 = 0, because Span{F2} = Span{UL}.

Based on the previous discussions, the lower bound of the trace of [(FTF)−1]2×2 can
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be given as

tr{[(FTF)−1
]2×2} (A.12a)

= tr{[FT
1 F1 −FT

1 F2 (F
T
2 F2)

−1
FT

2 F1]
−1
} (A.12b)

≥
4

tr{FT
1 (IN −F2(FT

2 F2)
−1FT

2 )F1}
(A.12c)

≥
4

tr{FT
1 F1}

(A.12d)

=
4

β2 ⋅∑
N
i=1 r

2
i /d

4
i

. (A.12e)

Based on Equation (A.11), the equality in step (A.12d) holds if FT
1 F2 = 0. Meantime,

according to Lemma 1, the equality in step (A.12c) holds given FT
1 F1 = c ⋅ I2.

A.2 Proof of the Asymptotic Orthogonality between Differ-

ent Columns of F

In this part, we assume that the projections of virtual anchors are uniformly distributed

in the communication range of the target node. Based on this assumption, we will try to

prove the asymptotic orthogonality between different columns of F mentioned in end of

Section 3.4-B. For convenience, set the origin on target node’s location and establish a

reference frame, with the x axis and y axis pointing to the Ease and the North, respectively.

Then, we can obtain the PDF of virtual anchors’ coordinates as

fXi,Yi(xi, yi) =
1

πR2
, (A.13)
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where (xi, yi) is the coordinate of the i-th anchor’s projection, as shown in Figure 3.2.

Transform the Cartesian coordinates into polar coordinates:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

xi = ri ⋅ cos θi

yi = ri ⋅ sin θi,

(A.14)

where ri and θi are the distance and azimuth of the i-th anchor’s projection, with respect to

the target node. As a result, it can be easily proved that the θi follows uniform distribution

in [0, π], while the PDF of ri is

fRi(ri) =
2ri
R2

. (A.15)

The expectation of r2
i /d

4
i is

E {r2
i /d

4
i } = ∫

R

0

r2
i

(r2
i + h

2)2
⋅
2ri
R2

dri =
1

R2
⋅ [ln(

R2 + h2

h2
) −

R2

R2 + h2
] . (A.16)

Define F ≜ [f1, f2, f3, f4], where fi is the i-th column of F. Then, we can obtain

lim
N→∞

fT1 f2

N
=β2
⋅ lim
N→∞

1

N

N

∑
i=1

sin θi cos θi ⋅ r
2
i /d

4
i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

.
(A.17)

Because all the virtual anchors are independently and identically distributed, the limit of

A is actually the expectation of sin θi cos θi ⋅ r
2
i /d

4
i for arbitrary integer i ∈ [1,N], which

leads to

lim
N→∞

fT1 f2

N
= β2

⋅E{sin θi cos θi ⋅ r
2
i /d

4
i } = β

2
⋅E{sin θi cos θi} ⋅E{r

2
i /d

4
i } = 0. (A.18)

Besides, the expectation of the norm of f1/
√
N is

lim
N→∞

∥f1∥
2

N
= lim
N→∞

β2
⋅

1

N

N

∑
i=1

cos θi
2
⋅r2
i /d

4
i = β

2
⋅E{cos θi

2
⋅r2
i /d

4
i } = β

2
/2 ⋅E {r2

i /d
4
i } . (A.19)
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Similarly, we have

lim
N→∞

∥f2∥
2

N
= lim
N→∞

∥f1∥
2

N
, (A.20)

and thus, we can conclude that

lim
N→∞

FT
1 F1

N
=
c

N
⋅ I2. (A.21)

Similar to the above discussions, we can prove that F1 and F2 are asymptotically

orthogonal. To be specific,

lim
N→∞

FT
1 F2

N
= 0. (A.22)

As a result, the conditions in Equation (3.28) are asymptotically fulfilled.
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Appendix B

Appendix for the Doppler-Based

Localization Framework

B.1 Statistics of nω

The covariance matrix of nω is E{nωnHω } = σ
2/N ⋅ IN . The real part of nω[k] is

R{nω[k]} =
1

N

N−1

∑
n=0

ns[n] cos(knω0), (B.1)

while the imaginary part is

I{nω[k]} =
1

N

N−1

∑
n=0

ns[n] sin(knω0). (B.2)

237



We can prove that they are uncorrelated:

E{R{nω[k]}I{nω[k]}} =E

⎧⎪⎪
⎨
⎪⎪⎩

1

N2

N−1

∑
n1=0

N−1

∑
n2=0

ns[n1]ns[n2] cos(kn1ω0) sin(kn2ω0)

⎫⎪⎪
⎬
⎪⎪⎭

=
1

N2

N−1

∑
n1=0

N−1

∑
n2=0

E{ns[n1]ns[n2]} cos(kn1ω0) sin(kn2ω0)

=
1

N2

N−1

∑
n=0

σ2 cos(knω0) sin(knω0)

=0.

(B.3)

Similarly, for any two elements in nω (e.g., nω[k] and nω[k
′], k ≠ k′), we can prove that

E{R{nω[k
′
]}I{nω[k]}} = E{R{nω[k

′
]}R{nω[k]}} = E{I{nω[k

′
]}I{nω[k]}} = 0. (B.4)

B.2 Proof of CRLB in (5.69)

Define θp as the p-th element in θ, i.e., θp = θ[p]. The partial derivative of l(fD ∣x, c), with

respect to θp is given in (B.5). As we can see, ∂l
∂θp

contains three components, Bp,1, Bp,2,

and Bp,3.

∂l

∂θp
= −

1

2
(
∂µT

∂θp
Σ−1
(µ − fD) + (µ − fD)

T
(
∂Σ−1

∂θp
(µ − fD) +Σ−1 ∂µ

∂θp
) +

∂ ln ∣Σ∣

∂θp
)

= −
∂µT

∂θp
Σ−1
(µ − fD)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Bp,1

−
1

2
(µ − fD)

T ∂Σ−1

∂θp
(µ − fD)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Bp,2

−
1

2

∂ ln ∣Σ∣

∂θp
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
Bp,3

(B.5)

The (p, q)-th element in F is

F[p, q] = E {
∂l

∂θp
⋅
∂l

∂θq
} =

1

4
E

⎧⎪⎪
⎨
⎪⎪⎩

3

∑
i=1

3

∑
j=1

Bp,iBq,j

⎫⎪⎪
⎬
⎪⎪⎭

. (B.6)
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We have

E{Bp,1Bq,1} = 4
∂µT

∂θp
Σ−1 ∂µ

∂θq

E{Bp,1Bq,2} = E{Bp,1Bq,3} = 0

E{Bp,2Bq,3} = Bp,3E{Bq,2} = − tr{Σ−1 ∂Σ

∂θp
} tr{Σ−1 ∂Σ

∂θq
}

E{Bp,3Bq,3} = Bp,3Bq,3 = tr{Σ−1 ∂Σ

∂θp
} tr{Σ−1 ∂Σ

∂θq
} ,

(B.7)

and E{Bp,2Bq,2} is derived in (B.8).

E{Bp,2Bq,2} = E {(µ − fD)
T ∂Σ−1

∂θp
(µ − fD)(µ − fD)

T ∂Σ−1

∂θq
(µ − fD)}

= E {diag{Σ−2 ∂Σ

∂θp
}(µ − fD) ○ (µ − fD)(µ − fD) ○ (µ − fD)diag{Σ−2 ∂Σ

∂θq
}}

= diag{Σ−2 ∂Σ

∂θp
}E {(µ − fD) ○ (µ − fD)(µ − fD) ○ (µ − fD)}diag{Σ−2 ∂Σ

∂θq
}

= diag{Σ−2 ∂Σ

∂θp
}(σσT + 2Σ2

)diag{Σ−2 ∂Σ

∂θq
}

= diag{Σ−2 ∂Σ

∂θp
}σσT diag{Σ−2 ∂Σ

∂θq
} + 2 diag{Σ−2 ∂Σ

∂θp
}Σ2 diag{Σ−2 ∂Σ

∂θq
}

= tr{Σ−1 ∂Σ

∂θp
} tr{Σ−1 ∂Σ

∂θq
} + 2 tr{

∂Σ

∂θp
Σ−2 ∂Σ

∂θq
}

= tr{Σ−1 ∂Σ

∂θp
} tr{Σ−1 ∂Σ

∂θq
} + 2{

∂σT

∂θp
Σ−2 ∂σ

∂θq
}

(B.8)

Therefore, F[p, q] is given by

F[p, q] =
∂µT

∂θp
Σ−1 ∂µ

∂θq
+

1

2
{
∂σT

∂θp
Σ−2 ∂σ

∂θq
} , (B.9)

where we implicitly use the fact that ∂Σ−1

∂θp
= −Σ−2 ∂Σ

∂θp
, and Bp,3 = tr{Σ−1 ∂Σ

∂θp
}. (B.9) can

then be reorganized as (5.69).
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B.3 Proof of (5.70)

Let µm = [µm,1, µm,2,⋯, µm,K]
T , and we have µ = [µT1 ,µ

T
2 ,⋯,µ

T
M ]

T , where µm,k is given

as

µm,k = E{f
(m,k)
D ∣x, c} =

(x − xm,k)
Tvm

dm,k
⋅
fc
c
. (B.10)

As a result, we have

∂µ

∂θ
=H. (B.11)

For the (m,k)-th sample, the variance of Doppler estimate is

σ2
m,k =

2f2
s σ

2

N3A2
m,k

⋅ r(βm,k). (B.12)

The partial derivative of σ2
m,k with respect to θ is

∂σ2
m,k

∂θ
=

2f2
s σ

2

N3A2
m,k

⋅
dr

dβm,k
⋅
∂βm,k

∂θ
=

2fsσ
2

N2A2
m,k

⋅
dr

dβm,k
⋅
∂fm,k(θ)

∂θ
. (B.13)

dr/dβ is given by

dr

dβ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[a1(β)cos
2(βπ) + b1(β)π sin (2βπ)]π2/ cos4 (βπ) β ∈ [0,0.25)

[a2(β) sin
2 (βπ) + b2(β)π sin (2βπ)]π2/ sin4 (βπ) β ∈ (0.25,0.75)

[a3(β) cos2(βπ) + b3(β)π sin (2βπ)]π2/ cos4 (βπ) β ∈ (0.75,1).

(B.14)
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where we have

a1(β) = (2β
2
− 0.5)(6β3

+ 0.5β)

b1(β) = (β
2
− 0.25)2(2β2

+ 0.5)

a2(β) = 2(1 − 2β)(3β2
− 3β + 1)β(1 − β)

b2(β) = −(2β
2
− 2β + 1)(β2

− β)2

a3(β) = (β − 1)(2β2
− 4β + 1.5)(6β2

− 12β + 6.5)

b3(β) = (β
2
− 2β + 0.75)2(2β2

− 4β + 3.25).

(B.15)

Because

βm,k = (fc + f
(m,k)
D )N/fs − ⌊(fc + f

(m,k)
D )N/fs⌋, (B.16)

we have

∂βm,k

∂θ
=
N

fs
⋅
∂fm,k(θ)

∂θ
. (B.17)

Let p = [pT1 ,p
T
2 ,⋯,p

T
M ]

T , and the k-th element of pm is given as

pm[k] =
2fsσ

2

N2A2
m,k

⋅
dr

dβm,k
. (B.18)

Then, we can organize the results and conclude

∂σ

∂θ
= PH. (B.19)

where P = diag(p).

241



Appendix C

Appendix for the FrFT-Based

Signal Analysis

C.1 FrFT and MLE

In this section, we will show that finding the MLE of f0 and k is equivalent to finding the

peak in the FrFT of r(t).

The maximum likelihood estimate of f0 and k should be

[f̂0, k̂, Â] = arg min
f̄0,k̄,Ā

∫

T

t=0
∣r(t) − Āej(2πf̄0+k̄πt

2)
∣
2
dt. (C.1)

The component inside the can be expanded as

∣r(t) − Āej(2πf̄0+k̄πt
2)
∣
2

=∣r(t)∣2 + ∣Ā∣2 − 2R{Ā∗r(t)e−j(2πf̄0+k̄πt
2)
} .

(C.2)

Define ∆ as

∆ = ∫
T

t=0
r(t)e−j(2πf̄0+k̄πt

2)dt, (C.3)
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and we have

[f̂0, k̂, Â] =arg min
f̄0,k̄,Ā

∫

T

t=0
∣r(t)∣2dt + ∣Ā∣2T − 2R{Ā∗∆}

=arg min
f̄0,k̄,Ā

∣Ā∣2T − 2R{(Ār − iĀi)(∆r + i∆i)}

=arg min
f̄0,k̄,ā

TĀ2
r + TĀ

2
i − 2(∆rĀr +∆iĀi).

(C.4)

Here, we have

Ār =R{Ā}, Āi = I{Ā},

∆r =R{∆}, ∆i = I{∆}.

(C.5)

Apparently, for an arbitrary given ∆, to minimize the target function, we should have

Ār =∆r/T and Āi =∆i/T, (C.6)

leading to

min
f̄0,k̄,Ā

∫

T

0
∣r(t)∣2dt + ∣Ā∣2T − 2R{Ā∗∆}

=∫

T

0
∣r(t)∣2dt + min

f̄0,k̄,Ā
TĀ2

r + TĀ
2
i − 2(∆rĀr +∆iĀi)

=∫

T

0
∣r(t)∣2dt +min

f̄0,k̄
∣∆∣2/T − 2∣∆∣2/T

=∫

T

0
∣r(t)∣2dt +min

f̄0,k̄
−∣∆∣2/T.

(C.7)

Therefore, the MLE of f0 and k can be obtained by

[f̂0, k̂] =arg min
f̄0,k̄

−∣∆∣2/T

=arg max
f̄0,k̄

∣∫

T

t=0
r(t)e−j(2πf̄0t+k̄πt

2)dt∣ .

(C.8)

Now we can safely conclude that the MLE of the initial frequency and frequency rate is

equivalent to finding the peak in the spectrum of the LMF signal contaminated by white

Gaussian noise.
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Appendix D

Appendix for the Pilot

Decontamination Scheme

D.1 Proof of the Upper Bound of the Residual Error

In this section, we will justify the upper bound of the residual error in (2.22). To begin

with, we have

∣αmodM (l+1−r)∣
2
≤

1

4(β − 1 + r)2
, (D.1)

where we use the inequality

1 ≥ sin2 x ≥
4

π2
x2
(∣x∣ ≤ π/2). (D.2)

Similarly, we have

∣αmodM (l+r)∣
2
≤

1

4(r − β)2
. (D.3)

Then, define

βr = ∣αmodM (l+1−r)∣
2
+ ∣αmodM (l+r)∣

2 (D.4)
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and

f(β) =
1

(r − β)2
+

1

(r − 1 + β)2
. (D.5)

We can prove that f(β) decreases with β, leading to f(β) < f(0) and

βr ≤
1

4
(

1

r2
+

1

(r − 1)2
) . (D.6)

When M = 2F , we have

Res[R ] = 1 −
R

∑
r=1

βr =
F

∑
r=R+1

βr. (D.7)

Given that M is very large, we can obtain the following inequality:

Res[R ] = lim
M→∞

F

∑
r=R+1

βr

≤
1

4
[ lim
M→∞

F

∑
r=R+1

1

r2
+ lim
M→∞

F

∑
r=R+1

1

(r − 1)2
]

=
π2

12
+

1

4R2
−

R

∑
r=1

1

2r2
,

(D.8)

in which we employed the well acknowledged limit

lim
M→∞

M

∑
r=1

1/r2
=
π2

6
. (D.9)

When M = 2F + 1, we have

Res[R ] =
F

∑
r=R+1

βr + ∣αmodM (l−F )∣
2, (D.10)

where ∣αmodM (l−F )∣
2 ≤ 1/F 2. When M approaches infinity, this component is negligible and

the result is identical to that of M = 2F .

As a result, regardless of whether M is odd or even, if we take the closest 2R components

to re-establish e [ω], the upper bound of the residual error can be given by (2.22).
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D.2 Justification to the Distribution of λ
(l,k)
m

Here, we justify the results concerning the distributions of λ
(l,k)
m in (7.10) and (7.11).

When DSm = 0 and PCm = 0, ∣f(ω
(li,k)
b −mω0)∣ and ∣f(ω

(l,k)
b −mω0)∣ will be very small

because ∣ω
(li,k)
b −mω0∣ > ω0 and ∣ω

(l,k)
b −mω0∣ > ω0 hold for any given i and b. Therefore,

the absolute value of h
(l,k)
S,P [m] will be very small in this case, and we have λ

(l,k)
m ≈ ∣ñk[m]∣

2.

Then, we can conclude that λ
(l,k)
m follows the exponential distribution as

f0 (λ
(l,k)
m ) = 1/σ2

o ⋅ exp (−λ(l,k)m /σ2
o), (D.11)

where σ2
o = E {∣ñk[m]∣

2
}.

On the other hand, when DSm = 1 or PCm = 1, ∣h
(l,k)
S,P [m]∣ cannot be neglected, and

λ
(l,k)
m can be approximated by

λ(l,k)m = ∣h
(l,k)
S,P [m]∣

2
+ 2R{h

(l,k)
S,P [m] ⋅ ñk[m]

∗
} + ∣ñk[m]∣

2 . (D.12)

Given that signal is much stronger than the noise, ∣ñk[m]∣
2 can be neglected and we have

λ(l,k)m ≈ ∣h
(l,k)
S,P [m]∣

2
+ 2 (R{h

(l,k)
S,P [m]} ⋅R{ñk[m]} + I{h

(l,k)
S,P [m]} ⋅ I{ñk[m]}) . (D.13)

In (D.13), the first part is a constant for a given realization of the channel, while the

second part follows a zero-mean Gaussian distribution. Therefore, the PDF of λ
(l,k)
m in this

scenario is given in (7.11).

In our case, λth is chosen to minimize the sum of false alarm and miss rates, which

means f0(λth) = f1(λth). Define

SNRo = ∣h
(l,k)
S,P [m]∣

2
/σ2
o , (D.14)
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and λth can be given as (7.13). The false alarm rate will be

RFA = ∫
∞

λth
f0(λ)dλ = e−λth/σ

2
o , (D.15)

while the miss rate is

RM = ∫
λth

−∞
f1(λ)dλ. (D.16)

Replace λ with t =
λ−(SNRo+1)σ2

o

2
√
SNRoσ2

o
, and we have (7.15a).

D.3 Proof of Theorem 2

Given that a strong component of the desired signals exists on mω0, the probability that

a strong pilot contamination component coexists is bounded by

Pr(PCm = 1∣DSm = 1) = 1 − (1 −
2

M
)

6B

, (D.17)

and the right hand side can be expanded as

1 − (1 −
2

M
)

6B

=
12B

M
+

3B

∑
i=1

[(
6B

2i + 1
)(

2

M
)

2i+1

− (
6B

2i
)(

2

M
)

2i

] − (
2

M
)

6B

=
12B

M
+

3B

∑
i=1

(
6B

2i
)(

2

M
)

2i

(
2(6B − 2i − 1)

(2i + 1)M
− 1) − (

2

M
)

6B

.

(D.18)

In (D.18),
2(6B−2i−1)
(2i+1)M − 1 decreases monotonically with i for 1 ≤ i ≤ 3B − 1, which gives

2

(6B − 1)M
≤

2(2i + 1)

(6B − 2i − 1)M
≤

4B − 2

M
≪ 1. (D.19)

Therefore, we can decide that

Pr(PCm = 1∣DSm = 1) <
12B

M
. (D.20)

Similarly, we can obtain

Pr(PCm = 1∣DSm = 1) >
12B

M
(1 −

6B − 1

M
) . (D.21)
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Following similar procedure, we can prove that Pr(PCm = 1∣DSm = 1) is bounded by

2B

M
(1 −

B − 1

M
) < Pr(DSm = 1∣PCm = 1) <

2B

M
. (D.22)

Hence, Theorem 2 is proven.

D.4 Conditional PDF of φ
(l,k)
m

Based on (7.22), we define a random variable y as

y = φ(l,k)m 2∣rpc∣
2
/σ2
proc =

RRRRRRRRRRR

R{rpc} +R{ñproc[m]s
∗
li,k
}

σproc/
√

2

RRRRRRRRRRR

2

+

RRRRRRRRRRR

I{rpc} + I{ñproc[m]s
∗
li,k
}

σproc/
√

2

RRRRRRRRRRR

2

(D.23)

The PDF of ñproc[m]sli,k is identical to ñproc[m]. Therefore, the right hand side of (D.23)

follows a non-central chi-square distribution given by

fY (y) =
1

2
exp (−

y + η

2
)I0 (
√
ηy) , (D.24)

where η = 2∣rpc∣
2/σ2

proc, and I0(⋅) is given in (7.25). The PDF of φ
(l,k)
m will be

fpc(φ
(l,k)
m ) = ηfY (ηφ

(l,k)
m ). (D.25)
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