
Timed Petri Net Models of ATM LANs

M. Reid and W.M. Zuberek

Department of Computer Science, Memorial University
St.John’s, NL, Canada A1B 3X5

Application of Petri Nets to Communication Networks (LNCS 1605), pp. 150–175.

Copyright c© 1999 Springer. The original publication is available at www.springerlink.com.

DOI 10.1007/BFb0097776.

Abstract. The Asynchronous Transfer Mode (ATM) is a fast packet–
switching communication method using small fixed-length cells. A model
of an ATM LAN is presented which provides a realistic representation
of data transmission by modeling both the ATM network and the appli-
cations running over it. Colored Petri nets are used to create a compact
model that is capable of representing a variety of different protocols at a
high level of detail. The model is designed to allow easy reconfiguration
or addition of details at different levels of the system. Simulation is used
to evaluate the performance of the modeled system, and some results are
compared to actual data gathered from the campus network at Memorial
University.

1 Introduction

The basic premise of ATM (Asynchronous Transfer Mode) [8] is that information
of all types (i.e., video, audio, data) is divided into small fixed-length data units
(cells), which can then be sent across switching networks to be recombined at the
receiving end. The challenge for an ATM communication system designer is to
ensure that this cell–based communication system can provide correct behavior
for a video stream as well as a phone call.

Since many of the performance promises of ATM depend on its ability to
transmit cells at high rates with little or no loss, much of the research has focused
on switch design [4], with the input data represented by fairly simple models.
However, ATM systems are now starting to appear as data network backbones.
One particular method of using ATM to transmit data is LAN emulation, which
attempts to simulate an Ethernet in such a way that the user is unaware that the
ATM network exists. There has not been a great deal of study on how such an
ATM backbone will behave under a real network load, or how ATM will affect
the applications using it.

This paper presents a model of an ATM LAN that provides a realistic model
of data transmission over ATM. It does so by modeling the applications that are
running over the ATM LAN, as well as the ATM network itself. Most current
research uses simple stochastic state–based models or queueing models to de-
scribe an ATM network; such approaches, however, ignore the synchronization
aspects of network protocols. This synchronization can easily be represented in
Petri net models [21, 14]. Furthermore, Petri net models can also represents the
applications directly in terms of different protocols and numbers of active users,



151

and this permits the designer to estimate the impact of these variables on an
ATM backbone.

An analysis of network behavior on the campus of Memorial University has
shown that while network protocols can exhibit quite complex behavior under
specific situations, much of this behavior does not appear on a LAN in rela-
tively non–congested periods of operation. If the net behavior under congested
conditions is less important than detecting when congestion might occur, then
many elements of protocol behavior can be ignored. The remaining behavior is
remarkably similar across a set of protocols carried at Memorial’s network.

To capture this similarity of behavior while still permitting the individual
protocols to act independently, the model is based on timed Petri nets with
deterministic and exponentially distributed firing times [25]. For modeling sys-
tems that contain similar components, colored Petri nets are quite convenient
because similar components can essentially be superimposed on one another, and
distinguished by token attributes (called colors). The colored tokens can operate
independently from one another or interact, as required by the modeled system.
The structure of a colored net model represents the basic behavior common to
all components (in this case, protocols), while the different colors are used to
model the differences from the common model, such as temporal characteristics
or packet sizes of individual protocols.

The model presented in this paper is modular, with well defined boundaries
between modules, and with modules corresponding to easily identifiable enti-
ties of the modeled LAN. The modules can be modified independently from
each other, and re–configured into different network models to reflect different
structures of physical entities and protocol stacks in the modeled networks. The
modular structure of the model can also be used to obtain approximate, prelim-
inary results from a simplified model, in which some of the modules are replaced
by simple elements with ‘typical’ or ‘average’ properties.

The approach to building the resulting composite model, the attention paid
to modularity, and the focus on capturing interactions between applications and
protocols become visible and important only when the entire network, not just
its component entities, is considered. This composite model provides a very
useful template for simple modeling of communication networks. Following this
template will require only minor modeling effort, while the returns in terms
of results can be significant if the model is validated properly and the results
interpreted thoughtfully.

Although analytical solutions are possible for many classes of Petri nets, the
model uses a number of extensions which prevent such analysis. Therefore, sim-
ulation is used to evaluate the performance of the model [26]. Once the model is
validated (by comparing its performance to the real data collected by monitoring
the campus network), it can be used for different performance studies, including:

– investigation of the effect of an increased load of a particular protocol on the
network load by other protocols,

– investigation of the effects of additional network elements (bridges, switches)
on the performance of the network,



152

– identification of network bottlenecks,
– optimization of network structure to maximize its performance, and so on.

Some simple results are included as an illustration of such studies.
The description of the proposed net model is rather informal as the emphasis

of this paper is on a structured modeling approach rather than on the derivation
of a specific model. Consequently, some more detailed aspects of the model are
not addressed here; more details and other simulation results can be found in
[20].

The paper is organized in five sections. Section 2 describes the modeled en-
vironment which corresponds to the campus network at Memorial University.
Section 3 recalls basic concepts of timed Petri nets and then discusses the Petri
net model of the network. Some performance results are presented in Section
4, while Section 5 contains a short discussion of the proposed approach and a
number of concluding remarks.

2 Modeled Environment

The protocols and data used in this model correspond to the communication
network implemented on the Memorial University campus. The protocols can be
represented by the protocol stack shown in Fig.2.1.

TELNET X

TCP Layer
UDP

HTTPFTP NNTP

Physical Layer

DL Layer
LLC
MAC

IP Layer

CU−
SeeMe

Layer

Fig.2.1. Protocol stack.

The protocols (from top) include:

– Application protocols, which usually act as the direct point of contact be-
tween the user and the network; these protocols include:

• telnet, providing a remote terminal connection from one host to an-
other; telnet is normally used for text–based interactive computing;
rlogin, which performs a similar function as telnet, is combined with
telnet in this study;



153

• FTP, probably the most commonly used application for transferring files
from one host to another;

• nntp, used for transferring usenet articles from host to host;

• http, used to transmit most of the information on www, although some
other protocols are used as well;

• X windows: X is a client–server based system for the management of
remote graphics displays;

• CU–SeeMee, a video conferencing application designed (at Cornell Uni-
versity) to work over the Internet.

– TCP/IP, a suite of networking protocols that have gained wide acceptance
as the basis for the global Internet. The TCP protocol is built on a con-
nectionless datagram service (the Internet Protocol, IP) with primarily two
higher level services – UDP, which offers a connectionless service, and TCP,
which provides a reliable connection–oriented service. Most higher–layer ap-
plications use one of these two services to transmit data between hosts.

– Ethernet, a Data Link (DL) layer Media Access Control (MAC) system
designed for Local Area Networks (LANs), based on a bus topology with
control of the medium distributed among the stations attached to the bus.
Access to the transmission medium is by a method commonly known as
CSMA/CD (Carrier Sensing Multiple Access / Collision Detection); each
station can detect if another station is transmitting, and if so, it refrains
from attempting to send the packet for a random period of time and then
tries again. The Logical Link Control (LLC) sublayer is the other part of the
divided Data Link Layer [8].

ATM is a method of transferring information (data, voice, video) using small
fixed–length cells. ATM is connection–oriented; a data transfer between two
entities over an ATM network will follow a path determined (by a signaling
protocol) before the transfer begins. Each data connection represents a different
virtual path. Although cells are always in sequence on any given virtual channel,
the channels are multiplexed together through switching devices and underlying
media. The ATM protocol stack is shown in Fig.2.2.

Physical Layer

ATM Layer

AAL−1 AAL−3/4 AAL−5

Higher Layer Applications

Fig.2.2. ATM protocol stack.



154

A number of higher–level protocols, called the ATMAdaptation Layer (AAL),
provide different classes of service to upper level applications [8]. For example,
AAL–1 provides a constant bit rate time division multiplexor service suitable for
voice transmission, while AAL–5 provides variable rate service for data blocks
of varying size for LAN traffic. In all cases, the information is eventually broken
into 53–byte cells (5–byte header and 48–byte payload) at the ATM layer. The
use of small fixed–length cells permits the design of very fast ATM switching
devices.

The ATM Adaptation Layer is divided into two sublayers, the Segmentation
And Reassemly (SAR) sublayer and the Convergence sublayer (CS). The SAR
sublayer brakes down the original frame or other data unit into cells to be sent
by the ATM Layer, and also reconstructs the original data unit from a sequence
of cell at the other side of the connection. The CS provides the mechanism for
mixing the different requirements of voice, video and data by defining a number
of classes of service, each with appropriate parameters for the service. These are
used to provide the proper quality of service (QoS) parameters on the connection.

Most existing applications do not interface directly with the ATM. Since they
are designed to use more traditional protocols such as IP or IPX, there has been
a considerable amount of work in designing interfaces that allow these protocols
to operate over ATM. The IP–over–ATM standards of the IETF and MPOA [2]
are examples of work in this area.

Another attempt to interface traditional protocols and communication sys-
tems with ATM is LAN emulation [8], which simulates a MAC layer (either
Ethernet or Token Ring) over an ATM network. Any application or protocol
that would normally operate over an Ethernet or a Token Ring network can
work without modification on a LAN emulation network; the presence of ATM
is hidden from the upper level applications.

Each host that is a part of an emulated LAN performs certain services for
the emulated LAN. Most of these services are activated when a client (which can
be a single computer or a bridge between an ATM and another type of network)
first joins an emulated LAN or sends a broadcast packet. A data transfer between
two hosts is usually carried over a single ATM VC (virtual circuit) without the
involvement of the LAN emulation services.

At Memorial University campus, the new backbone replaces the Ethernet and
routers with an emulated LAN built on ATM. The end–point LANs attach to
ATM/Ethernet bridges which act as LAN emulation clients. If the two end–point
LANs are in the same virtual LAN (i.e., several separate LANs that ‘look’ like
one big LAN), then the data path is as shown in Fig.2.3; the data flows between
the two ATM/Ethernet bridges via a direct ATM VC. However, if traffic is
between two end–point LANs that are not in the same virtual LAN, then the
data path is as shown in Fig.2.4; the path includes a router as an intervening
device. An increasing number of (new) hosts are connected directly to the ATM
medium.

A considerable variety of modeling and analysis methods have been applied
to ATM, the main focus being the representation of input traffic to a switch or



155

OC−3c
optical
fiber

OC−3c

fiber
optical

ATM SwitchBridge Bridge

End−point
Ethernet

End−point
Ethernet

SRC Host DST Host

Fig.2.3. Typical data path – same virtual LAN.

OC−3c
optical
fiber

OC−3c

fiber
optical

ATM SwitchBridge Bridge

End−point
Ethernet

End−point
Ethernet

SRC Host DST Host

Router

Fig.2.4. Typical data path – different virtual LANs.

network of switches. A summary of such methods can for instance be found in
[23].

A popular input model used in ATM analysis is the MMPP (Markov Modu-
lated Poisson Process) [17]. This and related models are used in [24] and [7] to
estimate cell loss probabilities in ATM networks. Queueing models are used to
study transmission delays in ATM networks [15, 16], and also buffer allocation
within an ATM switch [12].

Discrete–event simulation has also been used to analyze ATM performance.
A simulation comparison of ATM, Frame Relay, and DQDB is given in [19]. A
simulator, specifically developed for ATM–based systems, is described in [1].

The issues involved in operating traditional protocols over ATM have gen-
erated a number of studies of IP performance over ATM. The issue of protocol
overhead has been examined in [3, 17], while [18] analyzes the effect of TCP/IP
and system design on IP–ATM performance. [22] evaluates two strategies for ef-
fective discard of packets in an ATM environment, while [13] examines in detail
a deadlock situation that can occur with TCP over ATM.

The approach presented in this paper uses a simple behavioral model of ATM.
A good conformance of simulation results and real measurements indicates that
even this simple model is quite satisfactory for many performance studies.

3 Petri Net Model

This section first briefly recalls basic concepts of timed Petri nets, and then
describes the timed net model of an ATM network.



156

3.1 Basic concepts of timed Petri nets

The inhibitor (place/transition) Petri net is usually defined as a system com-
posed of a finite, nonempty set of places P , a finite, nonempty set of transitions
T , a set of directed arcs A, connecting places with transitions and transitions
with places, A ⊂ P × T ∪ T × P , a set of inhibitor arcs B, connecting places
with transitions, B ⊂ P × T , and an initial marking function m0 which assigns
nonnegative numbers of so called tokens to places of the net, m0 : P → {0, 1, ...}.
Usually the set of places connected by (directed) arcs to a transition is called
the input set of a transition, and the set of placed connected by (directed) arcs
outgoing from a transition, its output set. Similarly, the set of places connected
by inhibitor arcs to a transition is called its inhibitor set.

A place is shared if it belongs to the input set of more than one transition.
A net is conflict–free if it does not contain shared places. A shared place is
(generalized) free–choice if all transitions sharing it have the same input sets and
inhibitor sets. Each free–choice place determines a class of free–choice transitions
sharing it. It is assumed that selection of a transition for firing in a free–choice
class of transitions is a random process which can be described by (free–choice)
probabilities assigned to transitions in each free–choice class. Moreover, it is
usually assumed that the random choices in different free–choice classes are
independent one from another.

A shared place is guarded if for any two transitions sharing it there exists
another place which belongs to the input set of one of these two transitions, and
the inhibitor set of the other transition. If a place is guarded, at most one of the
transitions sharing it can be enabled by any marking function.

A shared place which is not free–choice and is not guarded, is a conflict
place. The class of enabled transitions sharing a conflict place depends upon the
marking function, so the probabilities of firing conflicting transitions must be
determined in a dynamic (i.e., marking–dependent) way. A simple but usually
satisfactory approach is to use relative frequencies of transition firings assigned
to conflicting transitions [9]; the probability of firing an enabled transition is
then determined by the ratio of transition’s (relative) frequency to the sum
of (relative) frequencies of all enabled transitions in a conflict class. Another
generalization is to make such relative frequencies (and probabilities of firings)
dynamic, depending upon the marking function, for example, by using the num-
ber of tokens in a place rather than a fixed, constant number as the relative
frequency.

In ordinary nets the tokens are indistinguishable, so their distribution can be
described by a simple marking function m : P → {0, 1, ...}. In colored Petri nets
[11], tokens have attributes called colors. Token colors can be quite complex, for
example, they can describe the values of (simple or structured) variables or the
contents of message packets. Token colors can be modified by (firing) transitions
and also a transition can have several different occurrences (or variants) of its
firings, for different combinations of colored tokens.

The basic idea of colored nets is to ‘fold’ an ordinary Petri net. The original
set of places is partitioned into a set of disjoint classes, and each class is replaced



157

by a single place with token colors indicating which of the original places the
tokens belong to. Similarly, the original set of transitions is partitioned into
a set of disjoint classes, and each class is replaced by a single transition with
occurrences indicating which of the original transitions the firing corresponds to.

In order to study performance aspects of Petri net models, the duration of
activities must also be taken into account and included into model specifica-
tions. Several types of Petri nets ‘with time’ have been proposed by assigning
‘firing times’ to the transitions or places of a net. In timed nets, firing times
are associated with transitions (or occurrences), and transition firings are ‘real–
time’ events, i.e., tokens are removed from input places at the beginning of the
firing period, and they are deposited to the output places at the end of this
period (sometimes this is called a ‘three–phase’ firing mechanism as opposed to
a ‘one–phase’, instantaneous firings of nets without time or stochastic nets).

In timed nets, all firings of enabled transitions are initiated in the same
instants of time in which the transitions become enabled (although some enabled
transition cannot initiate their firings). If, during the firing period of a transition,
the transition becomes enabled again, a new, independent firing can be initiated,
which will ‘overlap’ with the other firing(s). There is no limit on the number of
simultaneous firings of the same transition (sometimes this is called ‘infinite firing
semantics’). Similarly, if a transition is enabled ‘several times’ (i.e., it remains
enabled after initiating a firing), it may start several independent firings in the
same time instant.

The firing times of transitions can be constant (or deterministic), or can be
random variables described by a probability distribution function. Exponentially
distributed firing times (sometimes also called stochastic or Markovian firing
times) are particularly popular because of the memoryless property of models
with such firing times.

The firing times of some transitions may be equal to zero, which means that
the firings are instantaneous; all such transitions are called immediate (while
the other are called timed). Since the immediate transitions have no tangible
effect on the (timed) behavior of the model, it is convenient to first fire the (en-
abled) immediate transitions, and then (still in the same time instant), when no
more immediate transitions are enabled, to start the firings of (enabled) timed
transitions. It should be noted that such a convention introduces the priority
of immediate transitions over the timed ones, so the conflicts of immediate and
timed transitions should be avoided. Similarly, the free–choice classes of tran-
sitions must be ‘uniform’, i.e., all transitions in each free–choice class must be
either immediate or timed.

There are three basic approaches to analysis of timed Petri net models. For
some classes of nets, structural methods, and in particular invariant analysis, can
provide performance characteristics. In other cases, when the model is bounded
and not excessively complex, the (exhaustive) reachability analysis can be used
to find the stationary probabilities of states, and to derive performance charac-
teristics from these stationary probabilities. Finally, the most general (but also
the least flexible) approach to analysis of net models is to use discrete–event sim-



158

ulation. The last approach is used to obtain some performance characteristics of
net models developed in this paper.

3.2 Complete Model

The system modeled in this paper is described in the reference model shown in
Fig.3.1; this model can be thought of as a “cross–section” through the backbone
configuration (Fig.2.3).

ATM Layer

SAR SAR

Bridge Bridge

Ethernet

Application
Protocol

TCP/IP
Protocol

User

Ethernet

Application
Protocol

TCP/IP
Protocol

Server

Fig.3.1. Reference model.

The model follows the layered structure of the reference model. Each layer is
represented by a module of the net, which allows to change a particular layer in-
dependently of the other layers. Moreover, it was decided to originate all transfers
from one side of the network, which is a typical pattern for much of Memorial’s
traffic (personal computers and workstations requesting various services from
central servers).

The complete model is shown in Fig.3.2, with sections corresponding to the
layers of the reference model. The user and application protocols from Fig.3.1
are represented by single transitions with corresponding delays.

The complete colored model can be considered as a stack of identical nets
superimposed one upon another, with different nets representing different appli-
cation protocols. The superimposed nets are independent at the SRC (source)
and DST (destination) processes at each end, but dependencies exist between
the layers at the intervening network sections, representing resources such as
an Ethernet which can only transmit one frame at a time. In each layer, each
transition should be regarded of as a collection of occurrences corresponding to
different application protocols. Again, each transmission is independent of the
others at the User/Application and TCP/IP layers, but the transmissions must
be serialized at the network level.

3.3 User/Application Level

The basic model at this level is a user running an upper level application (such
as telnet or FTP). The user is assumed to spend some time thinking, after



159

K

K

KK

K

K

K K

User TCP/IP ATM User TCP/IPEthernet EthernetSAR SARBridge Bridge

F
ig
.3
.2
.
C
o
m
p
lete

m
o
d
el.



160

which a request is sent to the remote computer. This causes a data transmission
from the originating host (SRC) to the destination host (DST). The SRC host
then waits for a reply from the DST host, and when it is received, the SRC host
returns to the thinking state.

Fig.3.3 sketches the net model at the User/Application level (as usual, timed
transitions are represented by ‘thick’ bars, and immediate transitions by bars;
moreover, inhibitor arcs have small circles instead of arrowheads). The think
time is represented by the (firing time of) transition S_TNK, while the “Net-
work” transitions (with the dashed arcs) model data transmissions. The DST
process (transition D_TNK) introduces certain delay (to process the request) be-
fore replying with a data transmission back to the SRC process.

S_TNK

Network

Network

S_SEND

S_WDAT D_SEND

D_WDAT

D_TNK

SRC DST

Fig.3.3. User/Application level model.

The token in S_WDAT represents the initial marking of the model, with each
protocol represented by a token of different color.

3.4 TCP/IP Level

Fig.3.4 shows a net model of the User/Application level with a TCP/IP model.
The model assumes that packets cannot be lost, and that SRC and DST pro-
cesses will always respond fast enough to prevent re–transmissions. It is quite
straightforward to add timeout mechanisms [25] which would retransmit the lost
or distorted packets. On the other hand, very low probability of such events re-
sults in quite insignificant influence of these events on the performance of the
network, so they are not represented in Fig.3.4.

While the User/Application level is only concerned with the data flowing
between the SRC and DST processes, the TCP/IP level deals with data and
acknowledgements, since TCP provides guaranteed delivery. The packets trans-
mitted between SRC and DST can be broadly characterized into four types:

– SRC to DST: data packets;
– SRC to DST: acknowledgement packets;
– DST to SRC: data packets;
– DST to SRC: acknowledgement packets.



161

Most network applications send a group of data packets, wait for a group
of packets in reply, send another group, and so on. Tab.3.1 shows typical data
group sizes for various protocols.

Tab.3.1. Mean size of data groups (in packets).

direction telnet FTP nntp X
SRC to DST 1.06 11.6 1.02 1.70
DST to SRC 1.46 9.8 5.75 1.72

For real network processes, the end of a group can be detected through the
data contained in the packets. A telnet session, for example, echoes keystrokes
until it recognizes the end of the line, at which point it processes the command.
The model does not have any information about the content of the packets, so a
different mechanism is provided to signal the end of a data group; this is done by
creating special packet types, LST, to represent the last packet in a data group
(one in each direction). The ‘regular’ data packets are denoted as MID packets.

So, each process sends a certain number (possibly zero) of MID packets,
followed by a single LST packet (it is assumed that the receiving process is
sending back an acknowledgement packet, ACK, for each data packet received).
When the receiving process detects an LST packet, it knows that the sender has
finished the data group and is now ready to receive data packets in reply.

In the model, one color is used for the User/Application level, and further six
colors are used for the six packet types (i.e., MID (type ‘1’), LST (type ‘2’) and
ACK (type ‘3’) packets in the direction from SRC to DST, and another three
types, MID (type ‘4’), LST (type ‘5’) and ACK (type ‘6’), for packets in the
opposite direction). This distinguishing of packet types also allows the model to
represent behavior based on packet type. For example, the transmission delay
of a packet through the network, which is often dependent on the size of the
packet, can be based on the packet size for each type rather than the overall
average packet size.

In Fig.3.4, the control tokens cycling through places S_IDLE, S_SEND and
S_WDAT represent the User/Application level sketched in Fig.3.3. When the con-
trol token is in place S_SEND, both transitions S_SMD and S_SLT are enabled. This
(generalized) free–choice structure is described by choice probabilities assigned
to the two transitions; for example, by assigning choice probability 0.8 to S_SMD

(which represents sending MID(1) packets) and 0.2 to S_SLT (which represents
sending LST(2) packets), each firing of S_SLT will correspond (on average) to 4
firings of S_SMD. Data in Tab.3.1 are used to determine the values of these choice
probabilities for different protocols.

When S_SMD fires, a token (representing a MID(1) packet) enters N_SEND_S,
which models the host that transmits a data packet through the next layer of
the reference model. A control token is also removed from place S_WIND. If no
tokens are present in S_WIND, the number of unacknowledged packets in the
sliding window is at maximum, and no more data packets can be transmitted
until some acknowledgements arrive. Tokens are also deposited in places S_WACK



162

S_TNK

S_IDLE

S_MSNT

S_PTR

S_SMD

N_SEND_S

N_RECV_S

S_WDAT

S_SEND

S_WIND S_WACK

S_LAK

S_WMD

S_KAK

S_SLT S_WAK

S_LPB

Fig.3.4. TCP/IP source (SRC) model.

and S_MSNT. The token in S_WACK waits until an acknowledgement packet (ACK)
arrives from the DST process, and then transition S_WAK fires and deposits a
control token back in place S_WIND (i.e., the sliding window moves forward by
one packet). The firing of transition S_PTR returs a token to place S_SEND (after
a delay representing the time needed for assembling a new packet of data). This
cycle continues sending MID(1) packets to the DST process until S_SLT fires and
sends an LST(2) packet (which indicates the end of data group).

The size of the data group is determined by the probability assigned to S_SLT
(this probability can be different for each protocol); if p is the choice probability
of S_SLT, then the size of the data group is a (discrete) random variable X with
geometric probability density function, so:

Prob{X = k} = (1− p)k−1p, k = 1, 2, ...

When S_SLT fires (sending an LST(2) packet), a token is deposited into
S_WDAT. This represents the User/Application level in “wait” mode; a command
or request has been sent to the DST process and a reply should arrive (after
some delay) in place N_RECV_S as a sequence of MID(4) packets followed by an
LST(5) packet.

ACK(6) packets are accepted by transition S_KAK. The inhibitor arc from
S_WACK to S_KAK enforces the priority for ACK(6) tokens.

A MID(4) packet arriving in place N_RECV_S is accepted by transition S_WMD.
Its firing deposits a token (an ACK(3) packet) in place N_SEND_S to acknowledge
the arrival of a MID(4) packet. An arriving LST(5) packet indicates the end of



163

the data group. At this point, the SRC process can either return an acknowl-
edgement or start the transmission of the next data group, which implies that
the acknowledgement is piggybacked onto the first data packet. This is modeled
by a free–choice structure of transitions S_LPB and S_LAK. Piggybacking is de-
scribed by the choice probability of S_LPB; this probability can be different for
each protocol.

Once an arriving MID(4), LST(5) or ACK(6) packet is handled by the SRC
process, SRC returns to the start state, either through the transition S_TNK

(which indicates that the User/Application level requires some ‘thinking’ time),
or directly to place S_SEND, starting transmitting the next data group.

The DST process is a mirror image of the SRC process. However, it typi-
cally has different timing properties (the responses of the DST process represent
software replies to a command or request).

3.5 UDP model

UDP provides connectionless service between two hosts. Much of the function-
ality required in a TCP model is not needed for UDP; UDP leaves reliability
of service to the higher layers of the protocol stack. As a result, a UDP model
does not need the windowing, acknowledgements or piggybacking described in
the previous section.

S_TNK

S_IDLE

S_MSNT

S_PTR

S_SMD

N_SEND_S

N_RECV_S

S_WDAT

S_SEND

S_WIND S_WACK

S_LAK

S_WMD

S_KAK

S_SLT S_WAK

S_LPB

Fig.3.5. UDP source (SRC) process.

A UDP process is modeled as a subnet of the TCP process. Fig.3.5 shows
a UDP model, with the unused TCP portions showed by dashed lines. The
UDP model basically exchanges data groups, with the SRC process sending a



164

series of MID(1) packets followed by a single LST(2) packet (UDP does not use
acknowledgements, so the timing between packets depends on the application).
As for the TCP protocol, the size of the data group is modeled by a geometrically
distributed random variable.

For UDP, once the DST process receives an LST(2) packet, it begins trans-
mitting its own data groups, finishing with an LST(5) packet. The SRC process
then begins again.

3.6 LAN level

The Ethernet level of the reference model is described by a simple net (Fig.3.6)
that performs two basic functions: (i) it adds a transmission delay to each packet,
and (ii) it introduces ‘serialization’ (and blocking) as only one packet of one
protocol can be transmitted at the same time.

It should be noticed that with the exception of the windowing mechanism
at the TCP/IP level, each session of each protocol has, until now, been able to
operate independently of the other sessions.

E_IDLE

E_SE_IN E_OUT

Fig.3.6. Ethernet model.

This Ethernet model assumes that all sessions are on unique hosts. That
is, interactions between sessions on the same host are not represented. This is
reasonably accurate for the SRC processes if these processes originate on PCs
or workstations. It is less accurate for the DST processes, since these typically
represent a smaller number of servers. However, delays caused by buffering on
the hosts are included by default in the timing parameters used in the model.
The collision mechanism of Ethernet is not modeled.

The controlling place E_IDLE in Fig.3.6 contains one token which assures
that only one occurrence of transition E_S can fire at the same time. The actual
transmission times are modeled by deterministic transitions, with different firing
times for each packet type of each protocol. The occurrence probabilities of E_S
are marking–dependent [26], so the relative frequencies of chosing a color are
determined by the numbers of tokens of that color in place E_IN of the Ethernet
model.

3.7 ATM level

The ATM level of reference model has two subsections: the AAL layer which
provides the segmentation and reassembly (SAR) functionality (i.e., dividing



165

packets into cells and combining cells into packets), and the cell switching func-
tionality of the ATM layer itself.

The AAL layer is modeled in two sections. The first (Fig.3.7) shows the
segmentation part of the layer – it takes a token (in the input place) representing
the arrival of a packet, and generates a series of tokens representing a number
of cells for transmission over an ATM switching network. The second section
(Fig.3.8) represents the reverse process; it inputs a number of cells and re–creates
the original packet for transmission to the next layer.

SAR_IN_T1

SAR_IN_P1
SAR_IN_P3

SAR_IN_CELL

SAR_IN_T3
SAR_IN_PDU

SAR_IN_T2
K

K

SAR_IN_P2

Fig.3.7. AAL (SAR) level – segmentation.

These SAR layer models take advantage of the fact that ATM is connection–
oriented – cells for a particular packet must arrive in order, and there cannot
be any interleaving of cells. Because of very low probability of cell losses and
misinsertions, and insignificant influence of such events on the performance of
the network, these very infrequent events are not represented here.

In the segmentation section, a token deposited in place SAR_IN_PDU repre-
sents the arrival of a packet at the AAL level. Place SAR_IN_P1, containing
one control token, ensures that only one packet is segmented at a time. Place
SAR_IN_P3 controls the number of cells that are generated for each individual
packet type. For example, if packet MID(1) of the telnet protocol is, on average,
divided into 5 cells, then 5 tokens of the color representing the telnet MID(1)
packets are placed in SAR_IN_P3. When a token is deposited in SAR_IN_P2 (place
SAR_IN_P2 is guarded), transition SAR_IN_T3 will fire a number of times corre-
sponding to the color of the token in place SAR_IN_P2, generating a specific
number of cells for each packet type. When the last cell has been generated, all
tokens of this color have been removed from SAR_IN_P3, so transition SAR_IN_T2

can fire, which removes the token from SAR_IN_P2, replaces the required number
of tokens in SAR_IN_P3 (to allow segmentation of another packet of this type),
and returns the control token to place SAR_IN_P1, to start the segmentation
of the next packet (of any type). It should be noticed that the values of K

are associated with colors, so the numbers of cells can be different for different
application protocols.

The reassembly section (Fig.3.8) re–creates a packet form a stream of cells.
Tokens, which represents the arrival of cells at the SAR level, are received in
place SAR_OUT_CELL. Place SAR_OUT_P1 contains a number of colored tokens
(for each packet type) equal to the number of cells the packet is divided into.



166

As cells arrive, they are accepted by transition SAR_OUT_T1. Place SAR_OUT_P2

(also a guarded place) contains one control token to ensure that only one cell is
processed at a time. When all cells of a packet have arrived (which is indicated
by removal of all tokens of the corresponding color from place SAR_OUT_P1),
transition SAR_OUT_T2 fires, depositing a single token of the reassembled packet’s
color in place SAR_OUT_PDU. SAR_OUT_T2 also deposits the required number of
tokens into place SAR_OUT_P1 in preparation for the next stream of cells of that
color.

K K

SAR_OUT_P1

SAR_OUT_PDU

SAR_OUT_T2
SAR_OUT_T1

SAR_OUT_CELL
SAR_OUT_P2

Fig.3.8. AAL (SAR) level – reassembly.

The color of the token arriving to SAR_OUT_PDU indicates the type of the
application protocol the cell belongs to, and it selects the matching color of
tokens in SAR_OUT_P1, so, cells of different application protocols can be re–
assembled in different ways (consistent with the segmentation process in Fig.3.7).

3.8 ATM switch

The ATM switching fabric is modeled by a series of delays as shown in Fig.3.9.
The delays represent the latencies of the two OC-3c SONET links and the ATM
switch (Fig.2.3). The use of these three delays rather than one longer delay repre-
sents the concurrency of the stream of incoming cells (transition LINK1_T1), out-
going cells (transition LINK2_T1) and the switching process (transition SW_T1).

LINK_IN

LINK1_T1

LINK1_IDLE LINK2_IDLESW_IDLE

SW_T1

LINK_OUTSW_IN SW_OUT

LINK2_T1

Fig.3.9. ATM switch fabric.

3.9 Other considerations

An important aspect of the model is that it should be able to represent multiple
simultaneous interactions of a set of protocols. The model does not represent



167

the contents of the packets being transmitted, so it is not obvious that the
multi–session versions, obtained by simply using multiple control tokens in the
corresponding modules, provide accurate representations of the real behavior.
With multiple control tokens, it may be difficult to match a particular control
token with the other tokens it generates. For example, when S_SLT fires (Fig.3.4)
sending an LST(2) packet to the DST process and placing a control token in
S_WDAT, there is no difference between an arriving LST(5) packet caused by this
particular control token, and caused by an earlier or later firing of S_SLT.

In order to verify that such a multi–session model is valid, a different model
was developed, in which unintensional interference of different sessions was elim-
inated by assigning a different set of colors to each session. The single protocol
with n concurrent sessions (multi–session model) was compared to a multi–
protocol model, i.e., a model with n unique single–session protocols, each with
parameters identical to the multi-session model. The multi–protocol model more
closely resembles the reality, since the unique protocols completely separate the
n sessions in the same way that connection ID’s and sequence numbers separate
packets on a real network (the multi–protocol model uses many colors and is not
feasible for large number of session). It was found that the multi–session model
gave slightly higher results for the numbers of packets and bytes per second,
but the results were not statistically significant when compared using standard
hypothesis testing [10].

Another consideration is the priority of acknowledgements. In Fig.3.4, an
ACK(6) packet deposited in place N_RECV_S is acknowledging either a previously
transmitted MID(1) packet, or an LST(2) packet. TCP normally uses sequence
numbers to differentiate between these two cases. However, since the model does
not reflect that level of detail, a simpler mechanism is needed. In a single–
session case, where there is only one user per protocol, so the location of the
control packet determines which data packet is being acknowledged. That is, if
the control token is in place S_WACK, representing a transmitted MID(1) packet,
then the acknowledgement is for that packet. Otherwise, if the control token is
in place S_WDAT, then the model accepts the acknowledgement for a transmitted
LST(2) packet.

In the multi–session version of the model, however, there is no simple way
to match a particular ACK(6) packet with the MID(1) or LST(2) packet that
generated it. Two solutions were developed to address this. The first was to
introduce an inhibitor arc from S_WACK to S_KAK, which effectively gives MID(1)
packets a priority over any arriving ACK(6) packet. The other option was to add
an additional packet type, ACK(7), and use an ACK(6) as acknowledgements
for MID(1) packets, and ACK(7) as acknowledgements for LST(2) packets. The
second solution, while somewhat more realistic, also adds two colors per protocol
and two occurrences per transition for the intervening layers in the reference
model.

The simulation results for the first option showed slightly higher values for
throughput and average burst rate. When compared using hypothesis testing



168

[10], the difference was not found to be significant. Therefore it was decided to
use the first option.

4 Model Performance

Many parameters of the model (firing times of transitions, probabilities of firings
in free-choice classes, relative frequencies of firings for conflict classes of transi-
tions) can be established on the basis of real, physical data characterizing the
Memorial’s network. The Ethernet backbone of the campus network was moni-
tored for a week (the data were collected using the TCPDUMP public domain
TCP/IP monitoring program), and packet and byte counts per protocol (as de-
termined by TCP/IP port numbers) were recorded. Tab.4.1 shows the relative
frequencies for the most common protocols.

Tab.4.1. Packet and byte counts for the most common protocols.

Protocol packets bytes
shell 13.8 % 33.7 %
telnet 40.2 % 11.5 %
nntp 5.99 % 12.1 %
nfs 7.75 % 9.72 %
smtp 3.80 % 9.37 %
X 11.1 % 7.21 %
login 8.25 % 3.97 %
FTP (data) 1.46 % 3.76 %
http 1.43 % 1.59 %
other 6.24 % 4.14 %

Since many of the model parameters are estimated from timing data taken at
the network level, it was necessary to take two trace sets for each protocol; one
for the source processes and one for the destination processes (the “Monitor”
boxes in Fig.4.1 show the data collection points in the analyzed system).

OC−3c
optical
fiber

OC−3c

fiber
optical

ATM SwitchBridge Bridge
SRC Host DST Host

End−point
Ethernet

MonitorMonitor

End−point
Ethernet

Fig.4.1. Data collection configuration.



169

The parameters for the SRC and DST processes were estimated by analyzing
the pairs of adjacent packets in the recorded traces. An example of a matrix de-
scribing the “next packet” probability density for the telnet protocol is shown
in Tab.4.2 (for example, entry [2,4] is the probability that a packet of type “2”
is followed by a packet of type “4”, in the same user session).

Tab.4.2. “Next packet probability” matrix for telnet protocol.

telnet 1 2 3 4 5 6

1 0.105 0.035 0.009 0.000 0.000 0.851
2 0.000 0.000 0.004 0.106 0.707 0.183
3 0.016 0.585 0.012 0.200 0.186 0.001
4 0.000 0.000 0.860 0.066 0.074 0.000
5 0.006 0.367 0.627 0.000 0.000 0.000
6 0.102 0.096 0.002 0.506 0.294 0.000

A similar matrix was generated for timing information. Other parameters,
also extracted from the recorded traces for the telnet protocol, are shown in
Tab.4.3.

Tab.4.3. Values of model parameters for telnet protocol.

parameter average value units

SRC group size 1.051 packets
DST group size 1.456 packets
SRC window size 1.173 packets
DST window size 1.117 packets
packet size (1) 60.74 bytes
packet size (2) 60.04 bytes
packet size (3) 60.00 bytes
packet size (4) 401.8 bytes
packet size (5) 167.9 bytes
packet size (6) 60.00 bytes
thinking time 2.456 sec
reply delay 0.047 sec
packet interarrival time 0.8188 sec

The results obtained by simulation of the developed model [26] correspond
quite well to the recorded data. For example, Fig.4.2 compares the latency val-
ues reported in [5] (the solid line) with the simulated results (the dashed line);
both plots exhibit linear relationship between the frame sizes and the average
latencies, and both plots are quite close one to another.

Fig.4.3 compares the distribution of packet sizes for FTP protocol; the solid
line shows the distribution of the data collected from the network, with two
‘peaks’, one for the very short frames, and another one for long frames.



170

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600

A
ve

ra
ge

 la
te

nc
y 

[m
ic

ro
se

c]

Ethernet Frame Size [B]

measured
simulated

Fig.4.2. Simulated vs real ATM latency.

The simulated results also have a characteristic peak for very short frames,
but there is a double peak for long frames; this double peak should be converted
into a single peak, similar to the measurement data, by tuning model parameters.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 200 400 600 800 1000 1200 1400

Pr
ob

ab
ili

ty

Ethernet Frame Size [B]

measured
simulated

Fig.4.3. Packet size distribution for FTP protocol.



171

Fig.4.4 shows an example of information that can be obtained from the model
[20]; it compares the maximum ATM burst rate for two protocols, using a 10
msec window. The figure indicates that even a low impact protocol like telnet
(the solid line) can create short bursts of cells at high speed, far above the
average behavior. It also shows that the load of protocols can be limited by
activities of other protocols – in this case, increasing (with the number of users)
load generated by telnet restricts the effective load of FTP (represented by
the dashed line).

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000

A
T

M
 D

at
a 

B
u
rs

t 
R

at
e 

[K
b
it

s/
se

c]

Number of Users

TELNET

FTP

Fig.4.4. Network load by protocol – max ATM data rate.

Fig.4.5 shows the effect of telnet and FTP protocols on CU–SeeMe; as
the number of users in the system increases (it is assumed that all users have the
same network traffic characteristics), the average delay of CU–SeeMe packets
initially increases very slowly, but after certain number of users, this average
delay grows rather quickly. The ‘critical’ number of users is equal to 64 (the
“knee” point of the delay curve), so the limit on the number of users in order to
avoid excessive delays should be 64 (for the assumed traffic characteristics).

The model can be extended in a number of ways by very simple modifications.
For example, multiple Ethernets (at one or both sides of the ATM link) can be
represented by increasing the number of (initial) tokens in E_IDLE (Fig.3.6); this
allows multiple simultaneous firings of transition E_S, up to the number of tokens
in E_IDLE. Fig.4.6 shows that as the number of Ethernets increases, the average



172

load per network decreases. The ATM load initially increases but then stabilizes,
which indicates a bottleneck in the system (a bridge could be this bottleneck).

0

1

2

3

4

5

0 20 40 60 80 100 120

A
v
er

ag
e 

lo
ad

 d
el

ay
 p

er
 p

ac
k
et

 [
m

se
c]

Number of Users

TELNET

FTP

Fig.4.5. Load delay per packet – CU–SeeMe and telnet/FTP.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

N
et

w
o
rk

 l
o
ad

 (
%

)

Number of Ethernets

Ethernet

ATM (Send)

ATM (Receive)

Fig.4.6. Effect of multiple Ethernets on ATM load.



173

5 Concluding Remarks

A timed Petri net model of an ATM LAN provides a reasonably accurate rep-
resentation of the behavior of the original system, so the model can be used
for detailed investigations of various parts of the system. The model can easily
be extended by introducing additional elements, for example, bridges or routers
between bridges. The ability to represent multiple distinct protocols can be ex-
tended past the basic concept to study the interactions between protocols, timing
delays and where those delays occur.

The proposed model provides good conformance to protocol behavior under
normal load, it directly represents network traffic in terms of users and protocols,
its structure can easily be modified, and it allows to study properties of different
network configurations (without actually implementing them).

Although only a very simple model of the workload has been used for ob-
taining the results presented in this paper, the simulation results conform to
the real, measured quantities quite well. Moreover, more elaborate models of the
workload can easily be introduced by adding a few additional net elements to
the model [6].

The model has some limitations. It becomes less accurate when it passes the
point of congestion because it does not represent many effects which affect the
behavior of the network if congestion is taken into account (a more complex
Ethernet model would be needed and retransmission of lost packets would be
required).

In extending the proposed model, some additional constructs would be of
benefit. The ATM layer is complicated by the requirement that cells remain in
strict order, yet can be buffered at various points in the system. As well, current
work on hierarchical net structures would be beneficial to this model, simplifying
the introduction of mechanisms that cannot be layered easily (e.g., lost packet
mechanism).

The complete model is quite complicated but it has a very modular struc-
ture. It would be interesting to check if structural methods could be successfully
applied to analysis of this type of net models.

Acknowledgments

A number of interesting comments and constructive remarks of two anonymous
referees are gratefully acknowledged.

The Natural Sciences and Engineering Research Council of Canada partially
supported this work through Research Grant A8222.

References

1. Ajmone Marsan, M., Cigno, R.L., Munafo, M., Tonietti, A., “Simulation of ATM
computer networks with CLASS”; in: “Computer Performance Evaluation: Mod-
elling Techniques and Tools”, pp.159–179, Springer Verlag 1994.



174

2. Alles, A., “ATM internetworking”; Technical Report, CISCO Systems Inc. 1995.
3. Armitage, G.J., Adams, K.M., “How inefficient is IP over ATM anyway?”; IEEE

Network, vol.9, no.1, pp.18–26, 1995.
4. Awdeh, R.Y., Mouftah, H.T., “Survey of ATM switch architectures”; Computer

Networks and ISDN Systems, vol.27, no.12, pp.1567–1613, 1995.
5. Bradner, S., “ Bradner Reports – Catalyst 5000 switch”; Technical Report, Cisco

Systems Inc, Sept. 1995.
6. Chen, P-Z., Bruell, S.C., Balbo, G., “Alternative methods for incorporating non–

exponential distributions into stochastic timed Petri nets”; Proc. 3-rd Int. Work-
shop on Petri Nets and Performance Models (PNPM’89), Kyoto, Japan, pp.187–
196, 1989.

7. Descloux, A., “Stochastic models for ATM switching networks”; IEEE Journal on
Selected Areas in Communications, vol.9, no.3, pp.450–457, 1991.

8. Goralski, W.J., “Introduction to ATM networking”; McGraw Hill 1995.
9. Holliday, M.A., Vernon, M.K., “Exact performance estimates for multiprocessor

memory and bus interference”; IEEE Trans. on Computers, vol.36, no.1, pp.76-85,
1987.

10. Huntsberger, D.V., Billingsley, P., “Elements of statistical inference” (5-th ed.),
Allyn and Bacon 1981.

11. Jensen, K., “Coloured Petri nets”; in: “Advanced Course on Petri Nets 1986” (Lec-
ture Notes in Computer Science 254), Rozenberg, G. (ed.), pp.248-299, Springer
Verlag 1987.

12. Lin, A.Y.M., Silvester, J.A., “Queueing analysis of an ATM switch with multi-
channel transmission”; Performance Evaluation Review, vol.18, no.1, pp.96–105,
1990.

13. Moldeklev, K., Gunningberg, P., “How a large ATM MTU causes deadlocks in
TCP data transfers”; IEEE-ACM Trans. on Networking, vol.3, no.4, pp.409–422,
1995.

14. Murata, T., “Petri nets: properties, analysis and applications”; Proceedings of
IEEE, vol.77, no.4, pp.541–580, 1989.

15. Ohba, Y., Murata, M., Miyihara, H., “Analysis of interdeparture processes for
bursty traffic in ATM networks”; IEEE Journal on Selected Areas in Communica-
tions, vol.9, no.3, pp.468–476, 1991.

16. Onvural, R.O., “On performance characteristics of ATM networks”; Proc. Super-
Comm/ICC ’92, pp.1004–1008, 1992.

17. Onvural, R.O., “Asynchronous Transfer Mode Networks: Performance Issues”;
Artech House 1994.

18. Perloff, M., Reiss, K., “Improvements to TCP performance in high–speed ATM
networks”; Communications of the ACM, vol.38, no.2, pp.91–109, 1995.

19. Petr, D.W., Frost, V.S., Neir, L.A., Demirtjis, S., Braun, C., “Simulation compar-
ison of broadband networking technologies”; SIMULATION 64, pp.42–50, 1995.

20. Reid, M., “Modeling and performance analysis of ATM LANs”; M.Sc. Thesis, De-
partment of Computer Science, Memorial University of Newfoundland, St. John’s,
Canada A1B 3X5, 1997.

21. Reisig, W., “Petri nets – an introduction”; Springer Verlag 1985.
22. Romanow, A., Floyd, S., “Dynamics of the TCP traffic over ATM networks”; IEEE

Journal on Selected Areas in Communications, vol.15, no.4, pp.633–641, 1995.
23. Stamoulis, G.D., Anagnostou, M.E., Georgantas, A.D., “Traffic source models for

ATM networks: a survey”; Computer Communications, vol.17, no.6, pp.428–438,
1994.



175

24. Yamada, H., Sumita, S., “A traffic measurement method and its application for
cell loss probability on ATM networks”; IEEE Journal on Selected Areas in Com-
munications, vol.9, no.3, pp.305–314, 1991.

25. Zuberek, W.M., “Timed Petri nets – definitions, properties and applications”; Mi-
croelectronics and Reliability (Special Issue on Petri Nets and Related Graph Mod-
els), vol.31, no.4, pp.627–644, 1991.

26. Zuberek, W.M., “Modeling using timed Petri nets – event–driven simulation”;
Technical Report #9602, Department of Computer Science, Memorial University
of Newfoundland, St. John’s, Canada A1B 3X5, 1996.


