
Advances in Petri Nets 1985 (Lecture Notes in Computer Science 222), pp.478-498.

Copyright c© 1986 Springer–Verlag. The original publication is available at www.springerlink.com.

DOI 10.1007/BFb0016227.

M–TIMED PETRI NETS, PRIORITIES, PREEMPTIONS,

AND PERFORMANCE EVALUATION OF SYSTEMS

W.M. Zuberek

Department of Computer Science
Memorial University of Newfoundland

St.John’s, Canada A1C 5S7

Abstract

In M–timed Petri nets, firing times are exponentially distributed random variables associated
with transitions of a net. Several classes of M–timed Petri nets are discussed in this paper to
show increasing “modelling power” of different nets. Conflict–free nets can model M and Ek–type
queueing systems. Free—choice nets can also represent Hk–type systems. Systems with several
classes of users and with service priorities assigned to user classes require nets with inhibitor arcs.
Preemption of service can be represented by extended nets with escape (or generalized inhibitor)
arcs. Finally, to provide flexible modelling of scheduling and decision strategies, enhanced Petri nets
are introduced with two classes of transitions, immediate and timed ones, and with (exponentially
distributed) firing times associated with the timed transitions. It is shown that the behaviour
of bounded M–timed Petri nets can be represented by finite “state” graphs which are finite-state
continuous-time homogeneous Markov processes. Stationary probabilities of states can thus be
obtained by standard techniques used for analysis of Markov chains, and then operational analysis
can be applied for performance evaluation. Simple models of interactive systems are used as an
illustration of modelling.

1. INTRODUCTION

A Petri net [1,6,23] is an abstract, formal model of systems with interacting, concurrent or
parallel components. Petri nets have been successfully used in modelling, validation and analysis of
systems in which it is possible for some events to occur concurrently but there are constraints on the
concurrence, precedence, or frequency of these occurrences [6,9,11,14,15,22]. Petri nets, however,
are not complete enough for the study of performance issues since no assumption is made on the
duration of systems activities. Several different concepts of “timed” Petri nets [5,8,19,24,25,26,27,28]
and stochastic Petri nets [3,4,20,21] have been proposed by assigning (deterministic or stochastic)
firing and/or enabling times to the transitions and/or places of Petri nets.

The approach described in this paper is a continuation of the approach originated by Ramchan-
dani [24] and used to model the performance of digital systems at the register transfer level [27]
and to study communication protocols [25] when fixed (or deterministic) firing times can be used.
In M–timed Petri nets, similarly as in stochastic nets [20,21], the firing times are exponentially dis-
tributed random variables, and their rates are assigned to transitions of a net. In inhibitor Petri nets,
inhibitor arcs [1,2,6,23] are used to represent priorities of simultaneous events. In extended Petri
nets, escape (or break) arcs are introduced to interrupt firing transitions and to model preemptions
of busy servers. In enhanced Petri nets [29,30], the transitions are partitioned into two classes, the
immediate and timed transitions, and the firing rates of exponentially distributed firing times are as-
signed to timed transitions, as in generalized stochastic nets [3]. However, in (basic and generalized)
stochastic nets the firings of transitions are instantaneous events, and the tokens actually remain in
the input places of firing transitions. The “state” space is thus conveniently determined by the set
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of reachable markings, but multiple simultaneous events cannot be directly represented in such a
model, and this introduces some restrictions on modelling of even quite simple systems [28]. More-
over, the stochastic approach cannot be applied to models in which the set of “states” (or discrete
behaviour of the model) is only loosely related to the set of reachable markings. In M–timed Petri
nets, the tokens are removed from corresponding places at the beginning of transition firings and
remain in transitions for the whole period of firing. The “state” describes the distribution of tokens
in places as well as transitions, and this removes many restrictions of the stochastic approach. For
different classes of M–timed nets, a uniform discrete–state continuous–time description is introduced
which represents the behaviour of nets by equivalent continuous–time homogeneous Markov chains
that can be generated directly from net specifications. For bounded nets, stationary probabilities
of system states can thus be obtained by standard techniques, and this provides many performance
measures such as utilization of systems components, average queue lengths, average waiting times,
etc.

This paper is organized in 6 main sections. Section 2 contains definitions of general concepts for
conflict-free M–timed Petri nets. Free–choice M–timed Petri nets are discussed in section 3. Section
4 introduces inhibitor free–choice M–timed Petri nets, and section 5 extended free–choice M–timed
Petri nets. Enhanced free–choice M–timed Petri nets are described in section 6. Several simple
models of interactive computer systems are used as an illustration of performance evaluation.

2. CONFLICT–FREE M–TIMED PETRI NETS

A basic Petri net N is a triple N = (P, T,A) where:

P is a finite, nonempty set of places,

T is a finite, nonempty set of transitions,

A is a set of directed arcs which connect places with transitions and transitions with places,
A ⊂ P × T ∪ T × P , such that:

∀(t ∈ T ) ∃(pi, pj ∈ P ) (pi, t) ∈ A ∧ (t, pj) ∈ A.

A place p is an input (or an output) place of a transition t iff there exists an arc (p, t) (or (t, p),
respectively) in the set A. The sets of all input and output places of a transition t are denoted by
Inp(t) and Out(t), respectively. Similarly, the sets of input and output transitions of a place p are
denoted by Inp(p) and Out(p). The notation is extended in an obvious way to sets of places and
transitions, e.g., Inp(Pi), Out(Tj), etc.

A place p is shared iff it is an input place for more that one transition. A net is conflict-free if
it does not contain shared places.

A marked Petri net M is a pair M = (N,m0) where:

N is a Petri net, N = (P, T,A),

m0 is an initial marking function which assigns a nonnegative number of so called tokens to
each place of the net, m0 : P → {0, 1, ...}.

Let any function m : P → {0, 1, ...} be called a marking in a net N.

A transition t is enabled by a marking m iff every input place p ∈ Inp(t) contains at least
one token, m(p) > 0. The set of transitions enabled by a marking m is denoted by T (m). Every
transition enabled by a marking m can fire. When a transition t fires, a token is removed from each
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of t’s input places and a token is added to each of t’s output places. This determines a new marking
in a net, a new set of enabled transitions, and so on.

A marking mj is directly reachable from a marking mi in a net N iff there exists a transition t
enabled by the marking mi, t ∈ T (mi), such that:

∀(p ∈ P ) mj(p) =







mi(p)− 1, if p ∈ Inp(t)−Out(t),
mi(p) + 1, if p ∈ Out(t)− Inp(t),
mi(p), otherwise.

A firing sequence of a marking m is any sequence of transitions (tj1 , tj2 , ...) such that for k =
1, 2, ..., and for mi0 = m, tjk ∈ T (mik−1

) and mik is directly reachable from mik−1
by firing tjk .

A marking mj is reachable from a marking mi in a net M iff there exists a firing sequence which
transforms mi into mj , i.e., if there exists a sequence of markings (mi0 ,mi1 ,mi2 , ...,min) such that
mi0 = mi, min = mj , and each marking mik is directly reachable from the marking mik−1

for
k = 1, ..., n.

A set M(M) of reachable markings of a Petri net M is the set of all markings which are reachable
from the initial marking m0.

A net M is bounded if there exists a positive integer k such that each marking in the set M(M)
assigns at most k tokens to each place of the net

∃(k > 0) ∀(m ∈ M(M)) ∀(p ∈ P ) m(p) ≤ k.

If a netM is bounded, its reachability setM(M) is finite. Only bounded Petri nets are considered
in this paper.

A marking graph G of a marked Petri net M is a labeled directed graph G(M) = (W,D, u) where:

W is a set of vertices which is equal to the set of reachable markings of the net M, W = M(M),

D is a set of directed arcs, D ⊂ W ×W , such that (mi,mj) is in D iff mj is directly reachable
from mi in M,

u is a labeling function which assigns a subset of the set of transitions to each arc (si, sj) in the
set D, u : D → 2T , in such a way that u(mi,mj) contains all those transitions tij ∈ T (mi),
firing of which transforms mi into mj .

In timed Petri nets [24,25,26,27,28], each transition t takes a “real” time to fire. When a transition
t is enabled, a firing can be initiated by removing tokens from t’s input places. The tokens remain
in the transition t for the “firing time”, and then the firing terminates by adding tokens to each of
t’s output places. Each of the firings is initiated in the same instant of time in which it is enabled.
If a transition is enabled while it fires, a new, independent firing can be initiated.

The firing times of transitions can be described in several ways. In D–timed Petri nets [8, 24, 25,
26, 27] they are deterministic (or constant), i.e., there is a positive (rational) number assigned to
each transition of a net which determines the duration of transition’s firing. In M–timed Petri nets
[28,29] (or stochastic Petri nets [3,4,20,21]), the firing times are exponentially distributed random
variables, and the corresponding firing rates are assigned to transitions of a net. The memoryless
property of the exponential distribution is the key factor in analysis of M–timed Petri nets.

A conflict-free M–timed Petri net T is a pair T = (M, r) where:

M is a conflict-free bounded Petri net, M = (N,m0), and N = (P, T,A),
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r is a firing–rate function which assigns a positive real number r(t) to each transition t of the net,
r : T → R+, and R+ denotes the set of positive real numbers; the firing time of a transition t
is a random variable v(t) with the distribution function

Prob(v(t) > x) = e−x∗r(t), x > 0.

The memoryless property of exponential distributions means that if the duration v of a certain
activity (e.g., a firing time) is distributed exponentially with parameter r, and if that activity is
observed at time y after its beginning, then the remaining duration of the activity is independent of
y and is also distributed exponentially with parameter r:

Prob(v > y + x | v > y) = Prob(v > x) = e−x∗r.

The exponential distribution is the only continuous distribution with the memoryless property.

A state s of an M–timed Petri net T is a pair s = (m, f) where:

m is a marking function, m : P → {0, 1, ...},

f is a firing function which indicates (for each transition of the net) the number of active firings,
i.e., the number of firings which have been initiated but are not yet terminated (i.e., are
“in progress” in the state s), f : T → {0, 1, ...}.

The initial state s1 of a conflict-free net T is a pair s1 = (m1, f1) where:

∀(t ∈ T ) f1(t) = min
p∈Inp(t)

(m0(p)),

∀(p ∈ P ) m1(p) = m0(p)−
∑

t∈Out(p)

f1(t).

A state sj = (mj , fj) is directly tk–reachable from a state si = (mi, fi) iff the following conditions
are satisfied:

(1) fi(tk) > 0,

(2) ∀(p ∈ P ) mik(p) = mi(p) +

{

1, if p ∈ Out(tk),
0, otherwise,

(3) ∀(t ∈ T ) eℓ(t) = min
p∈Inp(t)

(mik(p)),

(4) ∀(p ∈ P ) mj(p) = mik(p)−
∑

t∈Out(p)

eℓ(t),

(5) ∀(t ∈ T ) fj(t) = fi(t) + eℓ(t)−

{

1, if t = tk,
0, otherwise.

The state sj which is directly tk–reachable from the state si, is thus obtained by the termination
of a tk firing (1), updating the marking of a net (2), and then initiating new firings (if any) which
are determined by the function eℓ (3, 4 and 5).

Similarly as for reachable markings, a state sj is reachable from a state si if there is a sequence
of directly reachable states from the state si to the state sj . Also, a set S(T) of reachable states is
defined as the set of all states of a net T which are reachable from the initial states. For bounded
conflict–free nets the sets of reachable states are finite.

A state graph G of an M–timed Petri net T is a labeled directed graph G(T) = (V,D, u) where:
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V is a set of vertices which is equal to the set of reachable states of the net T, V = S(T),

D is a set of directed arcs, D ⊂ V × V , such that (si, sj) is in D iff sj is directly reachable
from si in T,

u is a transition–rate function which assigns the rate of transitions from si to sj to each arc
(si, sj) in the set D, u : D → R+, in such a way that if sj is directly tk–reachable from
si = (mi, fi), then

u(si, sj) = r(tk) ∗ fi(tk).

It should be noticed that state graphs of conflict–free bounded timed Petri nets are finite
continuous–time homogeneous Markov chains [13,16]. The stationary (or equilibrium) probabili-
ties x(s) of the states s ∈ S(T) are thus obtained from the state–transition rates by solving a system
of simultaneous linear equations [12,16]















∑

1≤j≤N

u(sj , si) ∗ x(sj) = x(si)
∑

1≤j≤N

u(si, sj); i = 1, ..., N − 1

∑

1≤i≤N

x(si) = 1

where N is the number of states in the set S(T).

Example. For a simple conflict–free M–timed Petri net T1 shown in Fig.1a (as usual, places are
represented by circles, transitions by bars, the initial marking is represented by dots inside circles,
and the firing rate functions is given as an additional description of transitions), the derivation of
the set S(T1) of reachable states is shown in Tab.1 which also contains the stationary probabilities
of the states, x(s), s ∈ S(T1).

t3

1

p1

t1

5

t2

2

p4

2

5

7

4

1

3

6

(a)
(b)

p2 p3

Fig.1. Conflict-free M–timed net T1 (a) and its state graph (b).

The Petri net from Fig.1a is a model of a simple interactive computer system with a finite popu-
lation of users (or terminals — transition t3) and with a central server composed of two consecutive
stages (transitions t1 and t2). The place p2 models the queue of waiting jobs, and the place p1
controls the number of server’s channels (the marking of p1 models the number of idle channels
which can be equal to 0 or 1 in this example). The number of users (or terminals) in the system
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mi fi eℓ
si x(si) 1 2 3 4 1 2 3 tk 1 2 3 sj u(si, sj)
1 0.127 0 0 0 0 1 0 2 1 0 1 0 2 5.0

3 0 0 0 3 2.0
2 0.158 0 0 0 0 0 1 2 2 0 0 1 4 2.0

3 0 0 0 5 2.0
3 0.108 0 1 0 0 1 0 1 1 0 1 0 5 5.0

3 0 0 0 6 1.0
4 0.105 1 0 0 0 0 0 3 3 1 0 0 1 3.0
5 0.285 0 1 0 0 0 1 1 2 1 0 1 1 2.0

3 0 0 0 7 1.0
6 0.022 0 2 0 0 1 0 0 1 0 1 0 7 5.0
7 0.196 0 2 0 0 0 1 0 2 1 0 1 3 2.0

Tab.1. The set of reachable states for T1.

is represented by the total number of initial tokens assigned to places p2, p3 and p4. All service
times are assumed to be exponentially distributed, and the corresponding service (or firing) rates are
equal to r(t1)=5, r(t2)=2, and r(t3)=1. The net T1 is thus a model of a queueing system described
in Kendall’s notation as M/E2/1//3 (in this notation x/y/m/ℓ/n describes a central server system
with x–distributed interarrival times, y–distributed service times, m channels of the central server,
with capacity of the system determined by ℓ (default ∞) and with n sources; for x and y parame-
ters, M denotes exponential distribution, Ek Erlang k–stage distribution, and Hk hyperexponential
k-stage distribution [13]).

Performance analysis is based on stationary probabilities x(s) of the states s ∈ S(T1), and on
general laws of operational analysis [7,10,18]. Since the system is idle only in the state s4 (m4(p1) = 1,
i.e., the only channel of the server is idle), the stationary probability that the system is idle is equal
to x(s4) = 0.105, and then the utilization of the system is equal to 1 − x(s4) = 0.895. Since the
average service time is equal to (1/r(t1) + 1/r(t2)) = 0.7 time units, the average throughput rate
of this system is equal to 0.895/0.7=1.279 jobs per time unit, and the average turnaround time
(which can be determined using the response time law [10,18]) is equal to 3/1.279 = 2.346 time
units. Since the average terminal time is equal to 1 time unit, the average waiting time is equal to
2.346− 1.0− 0.7 = 0.646 time units.

If the system has two identical service channels (i.e., for initial marking m0 = [2, 1, 2, 0] instead of
m0 = [1, 1, 2, 0]), the set S(T) contains 9 states, and the same performance measures are as follows:

the equilibrium probability that the system is idle 0.194
the utilization of the system 0.806
the equilibrium probability that 1 channel is busy 0.414
the equilibrium probability that 2 channels are busy 0.392
the average throughput rate 1.711
the average turnaround time 1.753
the average waiting time 0.053 �

3. FREE-CHOICE M–TIMED PETRI NETS

Conflict–free Petri nets cannot represent systems in which some events are random and their
(nondeterministic) occurrences are described by corresponding probabilities. Free–choice Petri nets
[6,15] provide a simple random “choice” mechanism which can be used in such cases.
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A shared place p is free–choice (or extended free–choice [6]) iff the input sets of all transitions
sharing p are identical. A Petri net N is free–choice iff all its shared places are free–choice.

In free–choice nets, free–choice places imply an equivalence relation in the set of transitions T ,
and determine a partition of T into a set of free–choice equivalence classes of transitions denoted
by Free(T ) = {T1, T2, ..., Tk}. In a free–choice marked net M, for each marking m and for each
“free–choice” equivalence class Ti, either all transitions of Ti are enabled simultaneously, or none of
them. Moreover, free–choice nets are nonpersistent [6], i.e., the firing of one of enabled transitions
may disable other enabled transitions (in the same free–choice equivalence class). Therefore, it is
convenient to define all possibilities of transition firings as a function of an actual marking. The set
of selection functions is introduced to describe all such possibilities.

A selection function of a marking m in a free–choice net N is any such function e : T → {0, 1, ...}
that:

(1) there exists a sequence of transitions w = (ti1 , ti2 , ..., tik) in which tij ∈ T (mij−1
) for j = 1, ...k

and for mi0 = m, where

∀(p ∈ P ) mij (p) = mij−1
(p)−

{

1, if p ∈ Inp(tij ),
0, otherwise,

(2) the set of transitions enabled by mik , T (mik), is empty,

(3) for each transition t ∈ T , the number of occurrences of t in the sequence w is equal to e(t).

The set of all selection functions of a marking m is denoted by Sel(m).

It is assumed that the “choices” within free–choice equivalence classes are random and can
be described by a “choice function” c : T → [0, 1] in such a way that for each equivalence class
Ti ∈ Free(T ), the sum of probabilities c(t) is equal to 1. Then, the probability associated with a
selection function e ∈ Sel(m) is equal to

∏

Ti∈Free(T )

a(Ti, e)
∏

t∈Ti

c(t)e(t)

where the coefficient a(Ti, e), i = 1, ...k, describes the number of different ways in which the (random)
choices can be made within the free–choice class Ti. It can be determined as follows. Let an n–
argument function z be defined recursively:

(1) z(0, 0, ..., 0) = 1,

(2) z(k1, k2, ..., kn) =
∑

1≤i≤n

{

z(k1, ..., ki−1, ki − 1, ki+1, ..., kn), if ki > 0,
0, if ki = 0.

Then, for the class Ti = {ti1 , ti2 , ..., tin}:

a(Ti, e) = z(e(ti1), e(ti2), ..., e(tin)),

and, for any marking m:

∑

e∈Sel(m)

∏

Ti∈Free(T )

a(Ti, e)
∏

t∈Ti

c(t)e(t) = 1.

In fact, the values of a(Ti, e) are coefficients of a multinomial expansion when the variables
correspond to the transitions in Ti, and the exponents of variables are determined by the selection
function e.
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ei

i 1 2 3 a(Tj , ei)
∏

t∈Tj

c(t)ei(t)

1 2 0 0 1 q21
2 0 2 0 1 q22
3 0 0 2 1 q23
4 1 1 0 2 q1q2
5 1 0 1 2 q1q3
6 0 1 1 2 q2q3

Tab.2. The set of selection functions and their probabilities.

Example. For a free–choice place p with a free–choice class of transitions Out(p) = Tj = {t1, t2, t3},
let the probabilities of “free choices” be equal to c(t1) = q1, c(t2) = q2 and c(t3) = q3. For a marking
m such that m(p) = 2, there are 6 selection functions (with respect to t1, t2 and t3) shown in Tab.2
together with corresponding probabilities. Since q1+q2+q3 = 1, the sum of all selection probabilities
is equal to (q1 + q2 + q3)

2 = 1. �

A free–choice M–timed Petri net T is a triple T = (M, c, r) where:

M is a free–choice marked Petri net, M = (N,m0), and N = (P, T,A),

c is a choice function which assigns a “free–choice” probability to each transition of a net in such
a way that:

∀(Ti ∈ Free(T ))
∑

t∈Ti

c(t) = 1,

r is a firing–rate function, r : T → R+.

A state s of a free–choice M–timed Petri net T is a pair s = (m, f), as before. An initial state si
of a net T is a pair si = (mi, fi) where fi is a selection function from the set Sel(m0), fi ∈ Sel(m0),
and the marking mi is determined by

∀(p ∈ P ) mi(p) = m0(p)−
∑

t∈Out(p)

fi(t).

A free–choice M–timed net T may have several different initial states.

A state sj = (mj , fj) is directly (tk, eℓ)–reachable from a state si = (mi, fi) iff the following
conditions are satisfied:

(1) fi(tk) > 0,

(2) ∀(p ∈ P ) mik(p) = mi(p) +

{

1, if p ∈ Out(tk),
0, otherwise,

(3) eℓ ∈ Sel(mik),

(4) ∀(p ∈ P ) mj(p) = mik(p)−
∑

t∈Out(p)

eℓ(t),

(5) ∀(t ∈ T ) fj(t) = fi(t) + eℓ(t)−

{

1, if t = tk,
0, otherwise.
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The state sj which is directly (tk, eℓ)–reachable from the state si, is thus obtained by the termi-
nation of a tk firing (1), updating the marking of a net (2), and then initiating new firings (if any)
which are determined by a selection function eℓ from the set Sel(mik) (3, 4 and 5).

A state graph G of a free–choice M–timed Petri net T is a labeled directed graph G(T) = (V,D, u)
where:

V is a set of vertices which is equal to the set of reachable states of the net T, V = S(T),

D is a set of directed arcs, D ⊂ V × V , such that (si, sj) is in D iff sj is directly reachable from si
in T,

u is a transition–rate function which assigns the rate of transitions from si to sj to each arc (si, sj) in
the set D, u : D → R+, in such a way that if sj is directly (tk, eℓ)–reachable from si = (mi, fi),
then

u(si, sj) = r(tk) ∗ fi(tk)
∏

Tn∈Free(T )

a(Tn, eℓ)
∏

t∈Tn

c(t)e
ℓ(t).

Similarly as for conflict-free nets, the state graphs of free–choice bounded M–timed Petri nets
are finite continuous–time homogeneous Markov chains, and the stationary probabilities x(s) of the
states s ∈ S(T) are obtained from the state-transition rates in exactly the same way.

Example. A simple free–choice M–timed Petri net T2 shown in Fig.2a (the choice function is given
as an additional description of transitions) contains two free–choice places, p1 and p2. The derivation
of the set S(T2) of reachable states is given in Tab.3 which also shows the stationary probabilities
of the states, x(s).

(b)

0.4
t1

p1

t2

4

2

1

0.6

p3p2

(a)

t3

1

4

6

3

2

5

7

Fig.2. Free–choice M–timed net T2 (a) and its state graph (b).

The Petri net from Fig.2a is a model of another interactive computer system with a finite pop-
ulation of users (t3 models the “thinking” or terminal times) who submit two types of jobs, “short”
jobs (with probability 0.4) which require 0.25 time units of processor time on average, and “long”
ones (with probability 0.6) requiring on average 0.5 time units of processor time. The central server
is thus composed of two alternate stages (transitions t1 and t2) which are selected with probabilities
0.4 and 0.6, respectively. The place p2 models the queue of waiting jobs, while the place p1 controls
the number of server’s channels, as before. The number of terminals in the system is represented
by the total number of initial tokens assigned to places p2 and p3. All service times are assumed to
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m(si) f(si)
si x(si) 1 2 3 1 2 3 tk 1 2 3 sj u(si, sj)
1 0.228 0 0 0 0 1 2 2 0 0 1 3 2.0

3 0 0 0 4 2.0
2 0.101 0 0 0 1 0 2 1 0 0 1 3 4.0

3 0 0 0 5 2.0
3 0.287 1 0 0 0 0 3 3 0 1 0 1 1.8

1 0 0 2 1.2
4 0.205 0 1 0 0 1 1 2 0 1 1 1 1.2

1 0 1 2 0.8
3 0 0 0 6 1.0

5 0.062 0 1 0 1 0 1 1 0 1 1 1 2.4
1 0 1 2 1.6

3 0 0 0 7 1.0
6 0.103 0 2 0 0 1 0 2 0 1 1 4 1.2

1 0 1 5 0.8
7 0.015 0 2 0 1 0 0 1 0 1 1 4 2.4

1 0 1 5 1.6

Tab.3. The set of reachable states for T2.

be exponentially distributed, and the corresponding service (or firing) rates are equal to r(t1) = 4,
r(t2) = 2, and r(t3) = 1. The net T2 is thus a model of an M/H2/1//3 queueing system.

Performance evaluation uses (again) the stationary probabilities of the states. The stationary
probability that the system is idle is equal to x(s3) = 0.287 (m3(p1) = 1, i.e., the server is idle), and
then the utilization of the system is equal to 1−x(s3) = 0.713. Since the average service time is equal
to (c(t1)/r(t1) + c(t2)/r(t2)) = 0.4 time units, the average throughput rate of this system is equal
to 0.713/0.4 = 1.783 jobs per time unit, and the average turnaround time is equal to 3/1.783=1.683
time units. Since the average terminal time is equal to 1 time unit, the average waiting time is equal
to 1.683− 1.0− 0.4 = 0.283 time units.

If the system has two identical (two-stage) service channels (i.e., for initial marking m0 = [2, 1, 2]
instead of m0 = [1, 1, 2]), the set S(T) contains 9 states, and the same performance measures are as
follows:

the equilibrium probability that the system is idle 0.361
the utilization of the system 0.639
the equilibrium probability that 1 channel is busy 0.432
the equilibrium probability that 2 channels are busy 0.209
the average throughput rate 2.115
the average turnaround time 1.418
the average waiting time 0.018 �

4. INHIBITOR M–TIMED PETRI NETS

It is well–known [2,17,23] that Petri nets without inhibitor arcs (or an equivalent extension)
cannot represent priorities of simultaneous events. The inhibitor arcs [1,2,23] provide a “test if zero”
condition which appears to be a convenient mechanism for different priority schemes.

An inhibitor Petri net N is a quadruple N = (P, T,A,B) where:
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(P, T,A) is a basic Petri net,

B is a set of inhibitor arcs, B ⊂ P × T , and A and B are disjoint sets.

A place p is an inhibitor place of a transition t iff there exists an inhibitor arc (p, t) in the set B.
The set of all inhibitor places of a transition t is denoted by Inh(t).

A marked inhibitor Petri net M is defined as a pair M = (N,m0), similarly as before.

In inhibitor nets, a transition t is enabled by a marking m iff every input place of this transition
contains at least one token and every inhibitor place of t contains zero tokens. The set of all
transitions enabled by a marking m is denoted by T (m), as before.

A shared place p is guarded iff for each two different transitions ti and tj sharing p there is
another place pk such that pk is in the input set of one and in the inhibitor set of another of these
two transitions

∀(ti ∈ Out(p)) ∀(tj ∈ Out(p)− {ti}) ∃(pk ∈ P − {p})

((pk, ti) ∈ A ∧ (pk, tj) ∈ B) ∨ ((pk, tj) ∈ A ∧ (pk, ti) ∈ B),

i.e., no two transitions from the set Out(p) can be enabled by the same marking m. An inhibitor
net is conflict-free iff all its shared places are guarded.

A shared place p is free–choice (or extended free–choice [6]) iff the input sets and inhibitor sets
of all transitions sharing p are identical, i.e., iff

∀(ti, tj ∈ Out(p)) Inp(ti) = Inp(tj) ∧ Inh(ti) = Inh(tj).

An inhibitor net is free–choice iff all its shared places are either guarded or free–choice.

It should be noticed that in inhibitor M–timed Petri nets, there is no direct relationship between
the number of reachable markings and the number of reachable states. For many M–timed nets
with finite sets of reachable states, the underlying ordinary nets (i.e., the nets “without” time)
are unbounded (an example is shown in Fig.3a), and there are also bounded (ordinary) nets which
(augmented by a firing rate function) have infinite sets of reachable states (an example is shown in
Fig.3b).

t3t2t1

p1

p2

t5

p3

p4

t4

p1

t1 p3 t2t3

p2

(a) (b)

Fig.3. Bounded M–timed net T with unbounded ordinary net M (a) and
unbounded M–timed net T with bounded ordinary net M (b).

An inhibitor M–timed Petri net T is bounded if there exists a positive integer k such that for
each state s = (m, f) from the set of reachable states, s ∈ S(T), the number of tokens assigned to
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each place p ∈ P , m(p), and the number of active firings for each transition t ∈ T , f(t), are not
greater than k. Only bounded M–timed Petri nets are discussed in this paper.

All the remaining concepts for inhibitor nets are defined in the same way as for free–choice nets
with the only correction that instead of “free–choice” property, “inhibitor free–choice” should be
used.

Example. An inhibitor free–choice M–timed Petri net T3 shown in Fig.4a (inhibitor arcs have small
circles instead of arrowheads) contains one guarded place (p1). The derivation of the set S(T3) of
reachable states is given in Tab.4 which also shows the stationary probabilities of the states, x(s).
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Fig.4. Inhibitor M–timed Petri net T3 (a) and its state graph (b).
mi fi eℓ

si x(si) 1 2 3 4 5 1 2 3 4 tk 1 2 3 4 sj u(si, sj)
1 0.157 0 0 0 1 0 0 1 0 0 2 1 0 1 0 2 2.0
2 0.225 0 0 0 0 0 1 0 1 0 1 0 0 0 0 3 1.0

3 0 0 0 1 4 4.0
3 0.056 0 1 0 0 0 0 0 1 0 3 0 1 0 1 5 4.0
4 0.404 1 0 0 0 0 1 0 0 1 1 0 1 0 0 5 1.0

4 0 0 1 0 2 2.0
5 0.157 0 0 0 0 0 0 1 0 1 2 1 0 0 0 4 2.0

4 0 0 0 0 1 2.0

Tab.4. The set of reachable states for T3.

The M–timed Petri net T3 from Fig.4a is a simple model of an interactive system with 2 classes
of users (and jobs) and nonpreemptive priority scheduling. The system contains one central server
(p1, t2 and t3) with two queues of waiting jobs (p2 and p4) for class–1 and class–2 jobs, respectively,
n1 terminals in class 1 and n2 terminals in class 2. All class–1 jobs have “higher” priority than the
class–2 ones, i.e., if class–1 and class–2 jobs are waiting for the central server, the class–1 jobs will
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receive the service first (the inhibitor arc (p2, t3) disables t3 if p2 contains at least one token). For
n1 = n2 = 1 there are 5 states of the system, as shown in Tab.4.

Since there are two classes of jobs, performance analysis can be done with respect to each class
as well as for the whole system. The stationary probability that the system is idle is equal to
x(s4) = 0.404, and then the utilization of the system is equal to 0.596 which is composed of 0.314 for
class–1 jobs (x(s1) + x(s5) since f1(t2) = f5(t2) = 1) and 0.282 for class–2 jobs (x(s2) + x(s3)). The
throughput rates are equal to 0.314/0.5=0.628 for class–1 and 0.282/0.25=1.128 for class–2 jobs; the
average throughput rate for the whole system is thus 0.628+1.128=1.756 jobs per time unit. The
average turnaround times are equal to 1.592 and 0.887 for class–1 and class–2 jobs, respectively,
and then the average waiting times are equal to 0.092 and 0.137 time units for class–1 and class–2,
respectively.

The differences between these two classes of jobs are more significant for increased “traffic” in
the system. For n1 = n2 = 3, the same performance measures are as follows:

the equilibrium probability that the system is idle 0.017
the utilization of the system 0.983
the average throughput rate 2.470
the class-1 utilization of the system 0.731
the average class-1 throughput rate 1.462
the average class-1 turnaround time 2.052
the average class-1 waiting time 0.552
the class-2 utilization of the system 0.252
the average class-2 throughput rate 1.008
the average class-2 turnaround time 2.976
the average class-2 waiting time 2.226 �

5. EXTENDED M–TIMED PETRI NETS

Inhibitor arcs provide a flexible mechanism for modelling priorities of simultaneous events, how-
ever, the priorities are taken into account only during initiating new firings. In order to allow
“dynamic” priorities of events, yet another mechanism must be introduced to “interrupt” firing
transitions in order to preempt the resources used by lower priority activities. The escape arcs, an
extension of inhibitor arcs, are used for this purpose.

An extended Petri net N is a 5–tuple N = (P, T,A,B,C) where:

(P, T,A,B) is an inhibitor Petri net,

C is a set of escape arcs which is a subset of the set of inhibitor arcs, C ⊆ B.

A place p is an escape place of a transition t iff (p, t) ∈ C. The set of all escape places of
t is denoted by Esc(t), and the set of transitions connected by escape arcs with p by Esc(p),
Esc(p) = {t | p ∈ Esc(t)}. The notation is generalized in usual way for sets of places and transitions.

In Petri nets without time, escape arcs are equivalent to inhibitor arcs. In extended M–timed
Petri nets, escape arcs may “interrupt” firing transitions. If, during a firing period of a transition
t, at least one of t’s escape places becomes nonempty (i.e., a token is deposited to it), the firing of t
ceases and the tokens removed from t’s input places at the beginning of firing, are returned to their
original places.

An extended Petri net N = (P, T,A,B,C) is simple iff input sets of transitions with nonempty
escape sets do not contain escape places, i.e.
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∀(t ∈ T ) Esc(t) = ∅ ∨ Esc(Inp(t)) = ∅

where ∅ denotes the empty set.
Simple nets do not allow “propagation” of interrupts (which simplifies the description of state

transitions). Nonsimple extended nets must take into account sequences of “indirect” interrupts
when an interrupted transition, through its input places, interrupts other transitions.

For extended nets, the definition of an M–timed Petri net, a state and an initial state is the same
as for inhibitor nets (with “extended” property replacing “inhibitor” one), but the description of
state transitions requires another refinement.

In extended M–timed Petri nets, a state sj = (mj , fj) is directly (tk, eℓ)–reachable from a state
si = (mi, fi) iff the following conditions are satisfied:

(1) fi(tk) > 0,

(2) ∀(p ∈ P ) mik(p) = mi(p) +

{

1, if p ∈ Out(tk),
0, otherwise,

(3) ∀(t ∈ T ) fik(t) = fi(t)−

{

1, if t = tk,
0, otherwise,

(4) ∀(t ∈ T ) dn(t) = min(fik(t),
∑

p∈Esc(t)

mik(p))

(5) ∀(p ∈ P ) mikn(p) = mik(p) +
∑

t∈Out(p)

dn(t),

(6) eℓ ∈ Sel(mikn),

(7) ∀(p ∈ P ) mj(p) = mikn(p)−
∑

t∈Out(p)

eℓ(t),

(8) ∀(t ∈ T ) fj(t) = fik(t)− dn(t) + eℓ(t).

The state sj which is directly (tk, eℓ)–reachable from the state si, is thus obtained by the termi-
nation of a tk firing (1), updating the marking and firing of a net (2, 3), performing all escapes of
the firing transitions (if any) as indicated by the function dn which transforms the marking mik into
mikn (4 and 5), and then initiating new firings (if any) which are determined by a selection function
eℓ from the set Sel(mikn) (5, 7 and 8).

Example. A simple extended free–choice M–timed Petri net T4 shown in Fig.5a (escape arcs
are marked by dots instead of arrowheads) is a simple modification of the net T3 from Fig.4a; the
inhibitor arc (p2, t3) is replaced by the escape arc which changes a nonpreemptive priority scheduling
of jobs into a preemptive one. The derivation of the set S(T4) and the stationary probabilities of
the states are shown in Tab.5.
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Fig.5. Extended M–timed Petri net T4 (a) and its state graph (b).

mi fi eℓ
si x(si 1 2 3 4 5 1 2 3 4 tk 1 2 3 4 sj u)si, sj)
1 0.231 0 0 0 1 0 0 1 0 0 2 1 0 1 0 2 2.0
2 0.256 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1.0

3 0 0 0 1 3 4.0
3 0.410 1 0 0 0 0 1 0 0 1 1 0 1 0 0 4 1.0

4 0 0 1 0 2 2.0
4 0.103 0 0 0 0 0 0 1 0 1 2 1 0 0 0 3 2.0

4 0 0 0 0 1 2.0

Tab.5. The set of reachable states for T4.

The same performance indices as in the previous section, for n1 = n2 = 1 and n1 = n2 = 3, are
as follows:

n1 = n2 = 1 n1 = n2 = 3
the equilibrium probability that the system is idle 0.410 0.018
the utilization of the system 0.590 0.982
the average throughput rate 1.691 2.348
the class-1 utilization of the system 0.334 0.790
the average class-1 throughput rate 0.667 1.580
the average class-1 turnaround time 1.500 1.899
the average class-1 waiting time 0.000 0.399
the class-2 utilization of the system 0.256 0.192
the average class-2 throughput rate 1.024 0.768
the average class-2 turnaround time 0.977 3.906
the average class-2 waiting time 0.227 3.156 �
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6. ENHANCED M–TIMED PETRI NETS

Enhanced Petri nets combine two different classes of Petri nets, “immediate” nets which are
in fact ordinary (i.e., without time) inhibitor free–choice “straight” Petri nets, and “timed” nets
which are extended simple free–choice bounded M–timed Petri nets. The resulting nets are more
powerful than other classes of M–timed Petri nets since the only restriction on the complexity of
conditions associated with timed transitions is that the “immediate” subnets modelling them must
be “straight”, i.e., must guarantee finite firing sequences (to provide effective evaluations).

A net Ni = (Pi, Ti, Ai, Bi, Ci) is a Ti–implied subnet of an extended net N = (P, T,A,B,C) iff:

(1) Ti ⊆ T ,

(2) Ai = A ∩ (P × Ti ∪ Ti × P ),

(3) Bi = B ∩ (P × Ti),

(4) Ci = C ∩ (P × Ti), and

(5) Pi = Inp(Ti) ∪Out(Ti) ∪ Inh(Ti) ∪ Esc(Ti).

Also, a net N is straight iff for all initial markings m0, the marking graph G(M,m0) is acyclic. In
straight nets all firing sequences of (finite) markings are finite. If a graph of a net N = (P, T,A,B,C)
does not contain cycles, i.e., if a directed graph (P ∪ T,A) is acyclic, the net is obviously straight,
but many cyclic nets are also straight.

An enhanced Petri net H is a 6-tuple H = (P, Tt, T0, A,B,C) where:

(P, Tt ∪ T0, A,B,C) is an extended free–choice Petri net,

Tt is a set of timed transitions,

T0 is a set of immediate transitions such that the T0–implied subnet of (P, Tt ∪ T0, A,B,C) is
straight, the sets Tt and T0 are disjoint, and

∀(Ti ∈ Free(Tt ∪ T0)) Ti ⊆ Tt ∨ Ti ⊆ T0,

i.e., each free–choice equivalence class of transitions must belong either to the timed or to
the immediate set of transitions.

The set of all transitions is denoted by T , T = Tt ∪ T0.

An enhanced marked Petri net M is a pair M = (H,m0), as before. Similarly, the set of
transitions enabled by a marking m is denoted by T (m). Moreover, T0(m) denotes the set of
immediate transitions enabled by m, and Tt(m) the set of timed transitions enabled by m.

An enhance function of a marking m in a net M is any function h : T → {0, 1, ...} such that:

(1) there exists a finite (possibly empty) firing sequence of immediate transitions v = (ti1 , ti2 , ..., tik)
which transforms the marking m into a marking mk, and the set of immediate transitions
enabled by mk, T0(mk), is empty, and

(2) for each immediate transition t− inT0 the number of occurrences of t in the sequence v is equal
to h(t), while for each timed transition t ∈ Tt, h(t) = 0.

The set of all enhance functions of a marking m is denoted by Enh(m). Since the immediate
subnet (i.e., the T0–implied subnet) is straight, for each marking m the set Enh(m) is finite.

In enhanced nets, selection functions are defined similarly as in extended (inhibitor or free–choice)
nets but with respect to timed transitions only. A selection function of a marking m in an enhanced
net H is thus any such function e : T → {0, 1, ...} that:
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(1) there exists a sequence of timed transitions w = (ti1 , ti2 , ..., tik) in which tij ∈ Tt(mij−1
) for

j = 1, ..., k and for mi0 = m, where:

∀(p ∈ P ) mij (p) = mij−1
(p)−

{

1, if p ∈ Inp(tij ),
0, otherwise,

(2) the set of timed transitions enabled by mik , Tt(mik), is empty,

(3) for each timed transition t ∈ Tt the number of occurrences of t in the sequence w is equal to
e(t), while for each immediate transition t ∈ T0, e(t) = 0.

It should be observed that there are two basic differences between enhance and selection functions:

(1) enhance functions are (in fact) defined for immediate transitions while selection functions for
timed transitions,

(2) enhance functions describe sequences of (complete) firings while selection functions indicate
initiations of (timed) firings.

An enhanced timed Petri net T is a triple T = (M, c, r),

M is a marked enhanced simple free–choice bounded Petri net, M = (H,m0), and H =
(P, Tt, T0, A,B,C),

c is a choice function, c : Tt ∪ T0 → [0, 1] such that

∀(Ti ∈ Free(T ))
∑

t∈Ti

c(t) = 1,

r is a firing–rate function which assigns firing rates to timed transitions of the net, r : Tt → R+.

A state s of an enhanced M–timed Petri net T is defined as a pair s = (m, f), as before. An
initial state si of a net T is a pair si = (mi, fi) where fi is a selection function from the set Sel(mij),
fi ∈ Sel(mij), the marking mij is determined by an enhance function hj from the set Enh(m0),
hj ∈ Enh(m0),

∀(p ∈ P ) mij(p) = m0(p)−
∑

t∈Out(p)

hj(t) +
∑

t∈Inp(p)

hj(t),

and the marking mi is defined as

∀(p ∈ P ) mi(p) = mij(p)−
∑

t∈Out(p)

fi(t).

An enhanced free–choice net T may have several different initial states.

A state sj = (mj , fj) is directly (tk, hℓ, en)–reachable from a state si = (mi, fi) iff the following
conditions are satisfied:

(1) fi(tk) > 0,

(2) ∀(p ∈ P ) mik(p) = mi(p) +

{

1, if p ∈ Out(tk),
0, otherwise,

(3) ∀(t ∈ T ) fik(t) = fi(t)−

{

1, if t = tk,
0, otherwise,

(4) hℓ ∈ Enh(mik),
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(5) ∀(p ∈ P ) mikℓ(p) = mik(p)−
∑

t∈Out(p)

hℓ(t) +
∑

t∈Inp(p)

hℓ(t),

(6) ∀(t ∈ T ) dikℓ(t) =

{

min(fik(t),
∑

p∈Esc(t) mikℓ(p), if t ∈ Tt,

0, otherwise,

(7) ∀(p ∈ P ) mikℓj(p) = mikℓ(p) +
∑

t∈Out(p)

dikℓ(t),

(8) en ∈ Sel(mikℓj),

(9) ∀(p ∈ P ) mj(p) = mikℓj(p)−
∑

t∈Out(p)

en(t),

(10) ∀(t ∈ T ) fj(t) = fik(t)− dikℓ(t) + en(t).

The state sj which is directly (tk, hℓ, en)–reachable from the state si, is thus obtained by the
termination of a tk firing (1), updating the marking and firing functions (2, 3), performing all
immediate firings (if any) which correspond to an enhance function hℓ from the set Enh(mik), and
which results in an intermediate marking mikℓ (4 and 5), then performing all escapes of the firing
timed transitions (if any) as indicated by the function dikℓ, which transforms the marking mikℓ into
mikℓj (6 and 7), and finaly initiating new timed firings (if any) which are determined by a selection
function en from the set Sel(mikℓj) (8, 9 and 10).

A state graph G of an enhanced M–timed Petri net T is a labeled directed graph G(T) = (V,D, u)
where:

V is a set of vertices which is equal to the set of reachable states of the net T, V = S(T),

D is a set of directed arcs, D ⊂ V × V , such that (si, sj) is in D iff sj is directly reachable
from si in T,

u is a transition–rate function, u : D → R+, such that if sj is directly (tk, hℓ, en)–reachable
from si = (mi, fi), then:

u(si, sj) = r(tk) ∗ fi(tk)
∏

Tg∈Free(T )

a(Tg, hℓ + en)
∏

t∈Tg

c(t)hℓ(t)+en(t).

Example. A simple enhanced free–choice M–timed Petri net T5 shown in Fig.6a (timed transitions
are represented by solid bars while immediate transitions by bars) contains one guarded place (p1)
and one free–choice place (p6). The immediate subnet is implied by t6 and t7, and it includes p1, p2,
p4, p5, p6 and p7 with all arcs connecting these places with t6 and t7; the subnet is obviously acyclic,
so it is straight. The derivation of the set S(T5) of reachable states and the stationary probabilities
of the states are shown in Tab.6.
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Fig.6. Enhanced M–timed Petri net T5 (a) and its state graph (b).

mi fi hℓ en
si x(si) 1 2 3 4 5 6 7 1 2 3 4 5 tk 6 7 1 2 3 4 5 sj u(si, sj)
1 0.157 0 0 0 1 0 0 0 0 1 0 0 0 2 1 0 1 0 0 1 0 2 1.5

1 0 1 0 0 3 0.5
2 0.141 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 4 1.0

4 0 1 0 0 0 0 1 5 5.0
3 0.080 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 6 1.0

3 0 1 0 0 0 0 1 5 2.5
4 0.028 0 1 0 0 0 0 0 0 0 0 1 0 4 0 1 0 1 0 0 1 7 5.0
5 0.406 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 7 1.0

5 1 0 0 0 0 1 0 2 1.5
0 0 1 0 0 3 0.5

6 0.032 0 1 0 0 0 0 0 0 0 1 0 0 3 0 1 0 1 0 0 1 7 2.5
7 0.157 0 0 0 0 0 0 0 0 1 0 0 1 2 0 0 1 0 0 0 0 5 2.0

5 0 0 0 0 0 0 0 1 2.0

Tab.6. The set of reachable states for T5.

The timed Petri net T5 is also a model of an interactive system with 2 classes of users and
a nonpreemptive priority scheduling (compare with T3) but there are two types of class–2 jobs,
“short” (requiring on average 0.2 time units of central processor time) and “long” ones (with the
average service time equal to 0.4 time units), with probabilities 0.75 and 0.25, respectively, while all
class–1 jobs are statistically identical. Central processor is thus modelled by three timed transitions
(t2, t3 and t4) with firing rates equal to 2, 2.5 and 5 for class–1, long class–2 and short class–2 jobs,
respectively; the remaining two timed transitions model class–1 (t1) and class–2 (t5) terminals.

The average service time for class–2 jobs is equal to (c(t3)/r(t3) + c(t4)/r(t4) = 0.25 time units,
and it is equal to the average service time for class–2 jobs in T3. Consequently, it can be verified
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that the performance results for the net T5 are almost the same as for the net T3. �

Many other results can be derived in a similar way.

7. CONCLUDING REMARKS

The widespread acceptance that Petri nets have gained in modelling of queueing systems is due
to very natural representation of concurrency, synchronization and precedence of events. Places
represent systems queues, transitions servers, directed arcs model flow of jobs (or transactions),
and inhibitor as well as escape arcs are used to indicate priorities and to model preemptions. It
has been shown that the class of finite M , Ek and Hk–type queueing systems with priority and
preemptive scheduling disciplines can be represented by enhanced free–choice bounded M–timed
Petri nets. In fact, for each finite–state continuous–time Markovian queueing system there exists an
enhanced simple free–choice bounded M–timed Petri net with the state space isomorphic to that of
the queueing system [30]. These two classes of models are thus equivalent.

The M–timed Petri net models are usually much simpler than the state representations (or chains)
of the modelled Markovian systems, and Petri net parameters correspond directly to components or
activities of the modelled systems (e.g., the number of terminals, the number of processors, etc.).
The state space can be automatically generated from model specifications, and also many “standard”
performance evaluations can be built into software tools for analysis of timed Petri nets.

In M–timed Petri nets, the states describe the distribution of tokens in places as well as in (firing)
transitions. In general case, there is no direct relationship between the set of reachable markings
and the set of reachable states (Fig.3a and b). It also means that the class of M–timed nets properly
contains the class of stochastic (and generalized stochastic) models [3,4,20,21], in which state graphs
are isomorphic images of graphs of reachable markings. In fact, it is quite straightforward to restrict
an M–timed Petri net in such a way that its state graph is isomorphic to the graph of reachable
markings, and then to “follow” the stochastic approach. On the other hand, the stochastic approach,
based on the set of reachable markings, cannot represent an infinite state space when the set of
reachable markings is finite (Fig.3b).

The most general class of M–timed Petri nets discussed in this paper, i.e., the class of enhanced
M–timed Petri nets, is restricted in several ways (simple free–choice bounded nets), some of the re-
strictions, however, can be removed easily by appropriate extensions of the formalism. In particular,
nets with more general conflicts (or “random switches” [3]) can be described in a very similar way
provided the probabilities of conflicting firings are known and included in the state description, and
nonsimple (extended) nets with sequences of possible escapes, can be conveniently handled by “es-
cape” functions defined similarly to enhance functions. Also, since the immediate subnets can model
all the “decisions” required for firing the timed transitions, the timed subnets can be restricted to
very simple forms, and this can simplify the (general) description of enhanced nets. For example, in
[29] an additional requirement was introduced that each of timed transitions can have only a single
input and a single output place, and that input places of timed transitions cannot be shared; it can
be shown that this restriction does not change the “modelling power” of enhanced M–timed Petri
nets.
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