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Abstract In multithreaded distributed memory architectures, long–latency mem-
ory operations and synchronization delays are tolerated by suspending
the execution of the current thread and switching to another thread,
which is executed concurrently with the long–latency operation of the
suspended thread. Timed Petri nets are used to model several mul-
tithreaded architectures at the instruction and thread levels. Model
evaluation results are presented to illustrate the influence of different
model parameters on the performance of the system.
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1. INTRODUCTION

The performance of microprocessors has been steadily improving over
the last two decades, doubling every 18 months. On the other hand, the
memory performance and the performance of the processor interconnect-
ing networks have not improved nearly as fast. The mismatch of perfor-
mance between the processor and the memory subsystem significantly
impacts the overall performance of both uniprocessor and multiprocessor
systems. Recent studies have shown that the number of processor cycles
required to access main memory doubles approximately every six years
[?]. This growing gap between the processing power of modern micro-
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Figure 16.1. Outline of a 16–processor system.

processors and the memory latency significantly limits the performance
of each node in multicomputer systems. Trends in processor technology
and memory technology indicate that this gap will continue to widen
at least for the next several years. It is not unusual to find that the
processor is stalled 60% of time waiting for the completion of memory
operations [?].

In distributed memory systems, the latency of memory accesses is
much more pronounced as memory access requests may need to be
forwarded through several intermediate nodes before they reach their
destination, and then the results need to be sent back to the original
nodes. Each of the ‘hops’ introduces some delay, typically assigned to
the switches that control the traffic between the nodes.

Instruction reordering is one of the approaches used to alleviate the
problem of divergent processor and memory performances. Multithread-
ing is another approach which combines software (compilers) and hard-
ware (multiple thread contexts) means [?, ?, ?].

Multithreading is an architectural approach to tolerating long–latency
memory accesses and synchronization delays in distributed memory sys-
tems. The general idea is quite straightforward. When a long–latency
memory operation occurs, the processor instead of waiting for its comple-
tion (which in distributed memory systems can easily require a hundred
or more processor cycles), switches to another thread if such a thread
is ready for execution. Switching to another thread can be performed
very efficiently because the threads are executing in the same address
space. If different threads are associated with different sets of processor
registers, switching from one thread to another can be done in one or
just a few processor cycles [?, ?].

A distributed memory system with 16 processors connected by a 2–
dimensional torus–like network is used as a running example in this
paper; an outline of such a system is shown in Fig.16.1.

It is usually assumed that the messages sent from one node to another
are routed along the shortest paths. It is also assumed that this routing
is done in a nondeterministic way, i.e., if there are several shortests paths
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Figure 16.2. Outline of a single multithreaded processor.

between two nodes, each of them is equally likely to be used. The average
length of the shortest path between two nodes, or the average number
of hops (from one node to another) that a message must perform to
reach its destination, is usually determined assuming that the memory
accesses are uniformly distributed over the nodes of the system.

Although many specific details refer to this 16–processor system, most
of them can easily be adjusted to other systems by changing the values
of a few parameters. Some of these adjustments are discussed in the
concluding remarks.

Each node in the network shown in Fig.16.1 is a multithreaded pro-
cessor which contains a processor, local memory, and two network in-
terfaces, as shown in Fig.16.2. The outbound switch handles outgoing
traffic, i.e., requests to remote memories originating at this node as well
as results of remote accesses to the memory at this node; the inbound
interface handles incoming traffic, i.e., results of remote requests that
‘return’ to this node and remote requests to access memory at this node.

Fig.16.2 also shows a queue of ready threads; whenever the processor
performs a context switch (i.e., switch from one thread to another),
a thread from this queue is selected for execution and the execution
continues until another context switch is performed.

Switching from one thread to another can take place:

(a) for each long–latency memory access [?] (a typical approach when
context switching can be done very quickly),

(b) for each long–latency remote memory access [?] (a typical approach
when the time of context switching is comparable with the memory
cycle; in this case the processor is stalled while the thread accessing
local memory waits for the result),
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(c) after every instruction [?] (this approach is advantageous for elimi-
nating data dependencies which slow–down the pipeline; since con-
secutive instructions are from different threads, they have no data
dependencies); typically the number of threads is equal to the num-
ber of pipeline stages, so no inter-instruction dependencies can stall
the pipeline.

For the first two cases, when a context switch is performed as a result
of long–latency memory access, the current thread becomes ‘suspended’,
its request is directed to the memory module (through the interconnect-
ing network), and when the result of this request is received, the thread
becomes ‘ready’ again and joins the queue of ready threads waiting for
another execution phase on the processor.

For case (c), the thread, after issuing a long–latency memory access
request, becomes ‘waiting’ for the result of the requested operation.
If a waiting thread is selected for execution, its ‘slot’ simply remains
empty (i.e., no instruction is issued), which is equivalent to a single–
cycle pipeline stall. Since the threads issue their instructions one ofter
another, only a few processor cycles are lost during a long–latency op-
eration of a single thread.

The average number of instructions executed between long–latency
operations (and context switches) is called the runlength of a thread,
ℓt, and is one of important modeling parameters. It is directly related
to the probability that an instruction requests a long–latency memory
operation.

Another important modeling parameter is the probability of long–
latency accesses to local, pℓ, (or remote, pr = 1 − pℓ) memory; as the
value of pℓ decreases (or pr increases), the effects of communication over-
head and congestion in the interconnecting network (and its switches)
become more pronounced; for pℓ close to 1, the nodes can be practically
considered in isolation.

The (average) number of available threads, nt, is yet another basic
modeling parameter. For very small values of nt, queueing effects can
be practically neglected, so the performance can be predicted by taking
into account only the delays of system’s components. On the other
hand, for large values of nt, the system can be considered in saturation,
which means that one of its components will be utilized in almost 100 %,
limiting the utilization of other components as well as the whole system.
Identification of this ‘limiting’ component (called the bottleneck) also
allows to estimate the performance of the system.

2. MODELS

Petri nets have become a popular formalism for modeling systems
that exhibit parallel and concurrent activities [?, ?]. In timed nets [?],
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Figure 16.3. Instruction–level Petri net model of a multithreaded processor; case (a).

deterministic or stochastic (exponentially distributed) firing times are
associated with transitions, and transition firings occur in real–time,
i.e., tokens are removed from input places at the beginning of the firing
period, and they are deposited to the output places at the end of this
period.

A timed Petri net model of a multithreaded processor at the level of
instruction execution is shown in Fig.16.3.

The execution of each instruction of the ‘running’ thread is modeled
by transition Trun. Place Proc represents the (available) processor (if
marked) and place Ready – the queue of threads waiting for execution.
The initial marking of Ready represents the average number of available
threads, nt. It is assumed that this number does not change in time.

If the processor is available (i.e., Proc is marked) and Ready is not
empty, a thread is selected for execution by firing the immediate tran-
sition Tsel. Execution of consecutive instructions of the selected thread
is performed in the loop Pnxt, Trun, Pend and Tnxt. Pend is a free–
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choice place with the choice probabilities reflecting the runlength, ℓt, of
the thread. In general, the free–choice probability assigned to Tnxt is
equal to (ℓt − 1)/ℓt, so if ℓt is equal to 10, the probability of Tnxt is
0.9; if ℓt is equal to 5, this probability is 0.8, and so on. The free–choice
probability of Tend is just 1/ℓt.

If Tend is chosen for firing rather than Tnxt, the execution of the
thread ends, a request for a long–latency access to (local or remote)
memory is placed in Mem, and a token is also deposited in Pcsw. Firing
the timed transition Tcsw represents the context switching. When it is
finished, another thread is selected for execution (if it is available).

Mem is a free–choice place, with a random choice of either accessing
local memory (T loc) or remote memory (Trem); in the first case, the re-
quest is directed to Lmem where it waits for availability of Memory, and
after accessing the memory, the thread returns to the queue of waiting
threads, Ready. Memory is a shared place with two conflicting tran-
sitions, Trmem (for remote accesses) and T lmem (for local accesses);
the resolution of this conflict (if both accesses are waiting) is based on
marking–dependent (relative) frequencies determined by the numbers of
tokens in Lmem and Rmem, respectively.

The free–choice probability of T loc, pℓ, is the probability of long–
latency accesses to local memory; the free–choice probability of Trem is
pr = 1− pℓ.

Requests for remote accesses are directed to Rem, and then, after a
sequential delay (the outbound switch modeled by Sout and Tsout), for-
warded to Out, where a random selection is made of one of the four (in
this case) adjacent nodes (all nodes are selected with equal probabilities).
Similarly, the incoming traffic is collected from all neighboring nodes in
Inp, and, after a sequential delay (the inbound switch Sinp and Tsinp),
forwarded to Dec. Dec is a free–choice place with three transitions
sharing it: Tret, which represents the satisfied requests reaching their
‘home’ nodes; Tgo, which represents requests as well as responses for-
warded to another node (another ‘hop’ in the interconnecting network);
and T local, which represents remote requests accessing the memory at
the destination node. In the last case, the remote requests are queued
in Rmem and served by Trmem when the memory module Memory
becomes available. The free–choice probabilities associated with Tret,
Tgo and T local characterize the interconnecting network [?].

The traffic outgoing from a node (place Out) is composed of requests
and responses forwarded to another node (transition Tgo), responses
to requests from other nodes (transition Trmem) and remote memory
requests originating in this node (transition Trem).

Instruction dependencies, within each thread, occasionally stall the
pipeline to delay the execution of an instruction until its argument is
available. Some dependencies can be removed by reordering the instruc-
tions or by renaming the registers (either by compiler or by hardware in
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Figure 16.4. Instruction–level Petri net model of a multithreaded processor;

case (a) with pipeline delays.

the instruction issue unit); the remaining dependencies are detected in
the pipeline, and they stall the pipeline for one or more processor cycles.
Pipeline stalls are not represented in Fig.16.3.

Fig.16.4 shows a modification of the model from Fig.16.3 in which
the transition Tnxt is augmented by a free–choice place Pcnt with three
choices: Tcnt which represents continuation without stalling, Tst1 which
introduces a single–cycle stall (timed transition Tsd1), and Tst2 which
introduces a two–cycle stall (timed transition Tsd2).

The choice probabilities associated with these three transitions char-
acterize the frequency and the durations of pipeline stalls. In evaluation
of this model, these choices are described by two probabilities, ps1 and
ps2, associated with Tst1 and Tst2, respectively (the probability asso-
ciated with Tcnt is simply 1 − ps1 − ps2). Although only two cases of
pipeline stalls are represented in Fig.16.4, other cases can be modeled in
a similar way.
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Figure 16.5. Instruction–level Petri net model of a multithreaded processor; case (b).

Fig.16.5 shows a processor’s model for the case when the context
switching is performed for remote memory accesses only (case (b)). In
this case, if the long–latency request is to local memory (T loc), the
processor ‘waits’ for the completion of the memory access and then con-
tinues the execution of the same thread. If the request is to remote
memory (Trem), the processor performs context switch and executes
another thread(s) concurrently with the remote memory access.

Fig.16.5 does not represent the pipeline stalls; if needed, they can be
added in the same way as in Fig.16.4.

Petri net model of fine–grain multithreading (case (c)), in which con-
secutive instructions are (cyclically) issued from consecutive threads, is
more elaborate because of the representation of the cyclic thread se-
lection. An outline of the model is shown in Fig.16.6, with a shaded
area that models the switching from one thread to another (and sus-
pending the threads during their long–latency operations). It should be
observed that this outline is basically the same as in Fig.16.3, Fig.16.4
and Fig.16.5.
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Figure 16.6. Instruction–level Petri net model of a multithreaded processor; case (c).

The detailed representation of the shaded area in Fig.16.6 (with the
adjacent elements), for a processor with four threads, is shown in Fig.16.7.
Fig.16.7 may seem to be a bit complicated, but it has a regular structure
that is repeated for each of the four threads (and would also be used for
additional threads).

This basic structure, for thread “2”, is shown in Fig.16.8. The idea
of this model is as follows. If the thread is “ready”, a token is waiting
in Pth2 for a “control token” to appear in Ps2 (the marking of Ps2
in Fig.16.8 indicates that an instruction from thread “2” is going to
be issued in the next processor cycle). Place Ps2 is an element of a
“thread ring” (in Fig.16.7 this ring connects Ps1, Ps2, Ps3, Ps4 and
back to Ps1, and there are several different ways connecting consecutive
threads). This “thread ring” contains a single token (Ps1 in Fig.16.7
and Ps2 in Fig.16.8).

If the selected thread is “ready”, the firing of Tth2 inserts a token in
Pnxt (the next instruction to be executed by Trun), and also a token
in Pr2. If the issued instruction does not perform long–latency memory
access, the free–choice transition Tnxt is fired (with the probability de-
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Figure 16.7. Thread switching in a fine-grain multithreaded processor.

pending upon the thread runlength ℓt), and a token is deposited in Pcnt.
This token (together with a token in Pr2) enables firing of Td2, which
regenerates a token in Pth2 and forwards the control token to Ps3.

If transition Tend is selected for firing rather than Tnxt, a long–
latency memory access (local or remote) is initiated, and a token is
deposited in Pwt. In this case Tm2 is enabled to fire, which inserts a
token in Pw2 (to indicate that the thread is waiting for termination of
its long-latency memory access), and also the control token is forwarded
to Ps3.

If a thread is “waiting” and a selection token appears in Ps2, the
timed transition Tw2 fires and, after a unit of time (one processor cycle),
deposits a control token in Ps3.
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Finally, when the long–latency memory operation (local or remote)
is completed, a token is deposited in Prd (Fig.16.6), and the “waiting”
thread becomes “ready” by firing Tr2.

3. PERFORMANCE

It is convenient to assume that all timing characteristics are expressed
in processor cycles (which is assumed to be 1 unit of time). The basic
model parameters and their values used in subsequent evaluations are
as follows:

symbol parameter values

nt the (average) number of threads 2,...,20
ℓt thread runlength 5,10,20
tcs context switching time 1,2,5
tm memory cycle time 10
ts switch delay 5,10

pℓ, pr probability of accesses to local/remote memory 0.1,...,0.9
ps1, ps2 probabilities of pipeline stalls 0.1,0.2

Fig.16.9 shows the utilization of the processor as a function of the
number of available threads, nt, and the probability of long–latency ac-
cesses to local memory, pℓ, for fixed values of other modeling parameters.
It can be observed that, for values of pℓ close to 1, the utilization in-
creases with the number of available threads nt, and tends to the bound
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Figure 16.9. Processor utilization; tcs = 1, ℓt = 10, ts = 10.

0.91 which is determined, in this case, by the ratio of ℓt/(ℓt + tcs) (the
context switching time, tcs, is an overhead of multithreading).

For smaller values of pℓ, the utilization of the processor ‘saturates’
very quickly and is practically insensitive to the number of available
threads nt. This is a clear indication that some other component of the
system is the bottleneck.

The bottlenecks can be identified by comparing service demands for
the different components and the system [?]; the component with the
highest service demand is the first to reach its ‘saturation’ (i.e., utiliza-
tion of almost 100%) which limits the performance of all other elements
of the system.

The service demands (per one long–latency memory access) are [?]:

component service demand

processor ℓt
memory tm
inbound switch 2 ∗ pr ∗ nh ∗ ts
outbound switch 2 ∗ pr ∗ ts

where nh is the average number of hops (in the interconnecting network)
that a request must perform to reach its destination (for a 16–processor
system, with a uniform distribution of accesses over the nodes, the value
of nh is close to 2 [?]; in general, for a system with p × p processors
connected by a 2–dimensional torus network, nh can be approximated
reasonably well by p/2).
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Figure 16.10. Inbound switch utilization; tcs = 1, ℓt = 10, ts = 10.

If ℓt = tm = ts, and nh = 2, the inbound switch becomes the bottle-
neck for pr > 0.25; for pr < 0.25 the processor and the memory are the
bottlenecks (their service demands are equal for tm = ℓt).

Fig.16.10 shows the utilization of the inbound switch (for the same
values of modeling parameters as in Fig.16.9); it should be noted that
in Fig.16.10 (as well as in Fig.16.11) the probability of accessing remote
memory, pr, is used instead of pℓ, so the ‘front part’ of Fig.16.10 corre-
sponds to the ‘back part’ of Fig.16.9 and vice versa.

Fig.16.10 shows that the inbound switch enters its saturation quite
quickly for increasing values of nt and pℓ. The delay introduced by the
inbound switch is simply too large if the probability of accesses to remote
memory, pr, can be greater than 0.25.

Fig.16.11 shows the utilization of the inbound switch for the switch
delay ts = 5. In this case the ‘saturated’ region is much smaller than
in Fig.16.10. The corresponding utilization of the processor is shown
in Fig.16.12; the utilization is significantly better than in Fig.16.9, but
the limiting effects of the inbound switch can still be observed for small
values of pℓ.

The influence of pipeline stalls is rather straightforward to predict;
since the stalled processor cycles are lost, the performance of the pro-
cessor must decrease when pipeline stalls are taken into account.

Fig.16.13 and Fig.16.14 show the utilization of the processor (as a
function of the number of threads, nt, and the probability of accesses to
local memory, pℓ, as before), for two different probabilities of pipeline
stalls. Fig.16.13 corresponds to the case when ps1 = ps2 = 0.1, i.e.,
for 10% of instructions the pipeline stalls for one cycle, and for another
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Figure 16.11. Inbound switch utilization; tcs = 1, ℓt = 10, ts = 5.
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Figure 16.13. Processor utilization; tcs = 1, ℓt = 10, ts = 10, ps1 = ps2 = 0.1.

10% of instructions the pipeline is stalled for two processor cycles. Con-
sequently, the processor is stalled approximately 25% of time, so its
utilization is expected to be approximately 25% lower than in the case
without pipeline delays (Fig.16.9). Indeed, a comparison of Fig.16.13
and Fig.16.9 shows such a difference for the values of pℓ close to 1. For
pℓ < 0.75 (or pr > 0.25), the inbound switch is the bottleneck, so there is
no significant difference between Fig.16.13 and Fig.16.9 because in both
cases the performance is determined by the delay of the inbound switch
(which is the same for both cases).

Fig.16.14 shows the utilization of the processor which is stalled ap-
proximately 40% of time (ps1 = ps2 = 0.2). It should be noted that, for
the values of pℓ close to 1, the utilization is further reduced, as expected,
while the utilization in the “saturated region” (i.e., for small values of
pℓ) is not affected by the pipeline stalls, and remains the same as in
Fig.16.13 and Fig.16.9.

The influence of the context switching time on the processor utiliza-
tion is shown in Fig.16.15 and Fig.16.14. Because the time of context
switching is an overhead for the thread execution, the upper bound
on the processor utilization is ℓt/(ℓt + tcs). For ℓt = 10 and tcs = 1
(Fig.16.9), this bound is 0.91. For ℓt = 10 and tcs = 2 (Fig.16.15), this
bound becomes 0.83, and for ℓt = 10 and tcs = 5 (Fig.16.16), the upper
bound decreases to 0.67. The influence of these upper bounds can easily
be observed in Fig.16.15 and Fig.16.16 for the values of pℓ close to 1.

Similarly to the probability of pipeline stalls, the context switching
time has little effect on processor utilization when the performance is
limited by the inbound switch (i.e., for small values of pℓ).
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Figure 16.14. Processor utilization; tcs = 1, ℓt = 10, ts = 10, ps1 = ps2 = 0.2.
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Figure 16.15. Processor utilization; tcs = 2, ℓt = 10, ts = 10.
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Figure 16.16. Processor utilization; tcs = 5, ℓt = 10, ts = 10.

The combined effect of pipeline stalls and the context switching time
is not difficult to predict. Since both factors reduce the number of pro-
cessor cycles used for execution of program instructions, their effects are
cumulative with respect to reducing the utilization of the processor.

If context switching is performed for long–latency remote memory
accesses (case (b)), the context switching time tcs (comparable to tm in
this case) introduces a considerable overhead, so the upper bound on the
utilization of the processor, for tcs = tm, is ℓt/(ℓt+tcs); for tcs = tm = ℓt,
this upper bound is equal to 0.5; for ℓt = 20 and tcs = tm = 10, the
bound increases to 0.67. Consequently, much lower values of processor
utilization are obtained in this case; to achieve a reasonable performance,
large values of the runlength, ℓt, are needed.

4. CONCLUDING REMARKS

All Petri net models of multithreaded distributed memory architec-
tures discussed in this paper have a common part that represents the
memory and the interconnecting network; the differences between mod-
els are in the context switching part and in the nature of context switch-
ing. Fig.16.6 shows the general ‘framework’ of models with the shaded
area either representing case (c), as in Fig.16.7, or case (a) which could
easily be extracted form Fig.16.3 or Fig.16.4; a few more model elements
should be included in the shaded area to also cover case (b).

For performance analysis of derived models, the interconnecting net-
work is characterized by the average number of hops, nh. Consequently,
different networks characterized by the same value of nh will yield the
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Figure 16.17. Outline of a 16–processor system.

same performance characteristics of the nodes. For example, Fig.16.17
shows a hypercube network for a 16–processor system that can be used
instead of a 2–dimension torus network shown in Fig.16.1. Since each
node in Fig.16.17 is connected to 4 neighbors (as is the case in Fig.16.1),
the average numbers of hops (with the same assumptions as before) for
the two networks are the same, and then the performance characteristics
for the two types of interconnecting networks are identical.

Moreover, models of systems with different numbers of processors
(e.g., 25, 36, etc.) require only minor adjustment of a few model pa-
rameters (the free–choice probabilities describing the traffic of messages
in the interconnecting network); otherwise the models are as presented
in this paper.

One of the assumptions of the derived models was that accesses to
memory are uniformly distributed over the nodes of the system. If this
assumption is not realistic and some sort of ‘locality’ is present, the only
change that needs to be made is an adjustment of the value of nh; for ex-
ample, if the probability of accessing nodes decreases with the distance
(i.e., nodes which are close are more likely to be accessed that the dis-
tant ones), the value of nh will be smaller than that determined for the
uniform distribution of accesses, and will result in improved performance
(especially for values of pr close to 1).

In many cases the presented models can be abstracted to a less de-
tailed form without any significant loss of accuracy. One of such trans-
formations replaces the instruction–level model of a processor by its
thread–level model; Fig.16.18 shows such a transformation applied to
the model shown in Fig.16.3. In Fig.16.18 the firing time of Trun is
exponentially distributed with the average value equal to the thread
runlength; it represents the (random) execution time of a thread (with
no individual instructions). It appears that this simplification does not
affect the results in any significant way, but it speeds up (several times)
the simulation of the model, eliminating many events which do not ac-
tually contribute to the performance characteristics.

Petri net models of multiprocessor systems contain many ‘regularities’
which can be used for model reduction in a more sophisticated modeling
formalism. For example, in colored Petri nets [?], tokens are associated
with attributes (called colors), so different activities can be associated
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Fig.16.18. Thread–level Petri net model of a multithreaded processor, case (a).

with tokens of different types. An immediate application of colors is to
represent the different processors (or nodes) by different colors within
the same processor model; consequently, a colored Petri net will need
only one processor model (for any number of processors). Similarly, the
thread sections in a model of multithreading shown in Fig.17.7 can also
be represented by colors, additionally simplifying the model. Some other
aspects of colored net models are discussed in [?].
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