
Service Renaming in Component
Composition

W.M. Zuberek

Department of Computer Science, Memorial University,
St.John’s, NL, Canada A1B 3X5

and

Department of Applied Informatics, University of Life Sciences,
02-787 Warszawa, Poland

email: wlodek@mun.ca

Dependable Computer Systems (Advances in Intelligent and Soft Computing 97), pp.319–330.

7-th Int. Conf. on Dependability of Complex Systems, Brunow Palace, Poland; 25-29 June 2012.
Copyright c© 2012 Springer-Verlag. The original publication is available at www.springerlink.com.
DOI 10.1007/978-3-642-30662-4 21.

Abstract In component-based systems, the behavior of components is usu-
ally described at component interfaces and the components are characterized
as requester (active) and provider (reactive) components. Two interacting
components are considered compatible if all possible sequences of services
requested by one component can be provided by the other component. This
concept of component compatibility can be extended to sets of interacting
components, however, in the case of several requester components interacting
with one or more provider components, as is typically the case of cleint–server
applications, the requests from different components can be interleaved and
then verifying component compatibility must take into account all possible
interleavings of requests. Such interleaving of requests can lead to unexpected
behavior of the composed system, e.g. a deadlock can occur. Service renaming
is proposed as a method of systematic eliminating of such unexpected effects
and streamlining component compositions.

1 Introduction

In component-based systems, components represent high-level software ab-
straction which must be generic enough to work in a variety of contexts and in
cooperation with other components, but which also must be specific enough
to provide easy reuse [9].

Primary reasons for using components are [8]: separability of components
from their contexts; independent component development, testing and later
reuse; upgrade and replacement in running systems. Component composabil-
ity is often taken for granted, while it actually is influenced by a number of
factors such as operating platforms, programming languages or the specific
middleware technology in which the components are based. Ideally, the de-
velopment, quality control, and deployment of software components should
be automated similarly to other engineering domains, which deal with the
construction of large systems composed of well-understood elements with

319



320 Zuberek

predictable properties and under acceptable budget and timing constraints
[14]. For this to happen, automated component-based software engineering
must resolve a number of issues, including efficient verification of component
compatibility.

The behavior of components is usually described at component interfaces
[16] and the components are characterized as requester (active) and provider
(reactive) components. Although several approaches to checking component
composability have been proposed [1] [4] [10] [12], further research is needed
to make these ideas practical [8]. Usually two interacting components are con-
sidered compatible if all sequences of services requested by one component
can be provides by the other component. In the case of several components
interacting with a single provider, as is typically the case of internet appli-
cations (e.g., client-server systems), the requests from different components
can be interleaved and then verifying component compatibility must check
all possible interleavings of requests from all interacting components for pos-
sible conflicts. Such interleaving of service requests can lead to unexpected
behavior of the composed system; e.g., a deadlock can occur. Service renam-
ing is proposed as a systematic method of eliminating request conflicts and
streamlining component composition.

The idea of service renaming for the elimination of conflicting requests
can be illustrated by the following simple example. Let the languages of
two requester components be specified by regular expressions “(abc)*” and
“(bac)*” (“a”, “b” and “c” are services requested by the components),
and let the language of the corresponding provider component be “((ab +

ba)c)*”. It can be easily checked that both requester components are com-
patible with the provider [20], however, one of possible interleavings of the
requests is ”(ab(bc + ac))*”, which - if allowed - results in a deadlock. Ser-
vice renaming which eliminates this deadlock replaces, for example, ”a” by
”A” in the sequence “bac” and “b” by “B” in the sequence “abc”, and then
any interleaving of “(aBc)*” with “(bAc)” is compatible with the provider
“((aB + bA)c)*”.

The paper is continuation of previous work on component compatibility
and substitutability [7] [19] [20] [21]. Using the same formal specification of
component behavior in the form of component languages, the paper proposes
an approach to identify component conflicts in component composition and
systematic renaming of services as a conflict removal method.

Since component languages are usually infinite, their compact finite speci-
fication is needed for effective verification, comparisons and other operations.
Labeled Petri nets are used as such specification.

Petri nets [13] [15] are formal models of systems which exhibit concurrent
activities with constraints on frequency or orderings of these activities. In
labeled Petri nets, labels, which represent services, are associated with el-
ements of nets in order to identify interacting components. Well-developed
mathematical theory of Petri nets provides a convenient formal foundation
for analysis of systems modeled by Petri nets.

Section 2 recalls the concept of component languages as a characterization
of component’s behavior. Component languages are used in Section 3 to define



Service renaming in component composition 321

component compatibility. Service renaming is described in Section 4 while
Section 5 concludes the chapter.

2 Modeling component behavior

The behavior of a component, at its interface, can be represented by a cyclic
labeled Petri net [6] [20]:

Mi = (Pi, Ti, Ai, Si,mi, ℓi, Fi),

where Pi and Ti are disjoint sets of places and transitions, respectively, Ai is
the set of directed arcs, Ai ⊆ Pi×Ti∪Ti×Pi, Si is an alphabet representing
the set of services that are associated with transitions by the labeling function
ℓi : Ti → Si∪{ε} (ε is the “empty” service; it labels transitions which do not
represent services), mi is the initial marking function mi : Pi → {0, 1, ...},
and Fi is the set of final markings (which are used to capture the cyclic nature
of sequences of firings).

Sometimes it is convenient to separate net structure N = (P, T,A) from
the initial marking function m.

In order to represent component interactions, the interfaces are divided
into provider interfaces (or p-interfaces) and requester interfaces (or r-interfaces).
In the context of a provider interface, a labeled transition can be thought of as
a service provided by that component; in the context of a requester interface,
a labeled transition is a request for a corresponding service. For example,
the label can represent a conventional procedure or method invocation. It
is assumed that if the p-interface requires parameters from the r-interface,
then the appropriate number and types of parameters are delivered by the r-
interface. Similarly, it is assumed that the p-interface provides an appropriate
return value, if such a value is required. The equality of symbols representing
component services (provided and requested) implies that all such require-
ments are satisfied.

For unambiguous interactions of requester and provider interfaces, it is
required that in each p-interface there is exactly one labeled transition for
each provided service:

∀ti, tj ∈ T : ℓ(ti) = ℓ(tj) 6= ε ⇒ ti = tj .

Moreover, to express the reactive nature of provider components, all provider
models are required to be ε–conflict–free, i.e.:

∀t ∈ T ∀p ∈ Inp(t) : Out(p) 6= {t} ⇒ ℓ(t) 6= ε

where Out(p) = {t ∈ T | (p, t) ∈ A}; the condition for ε–conflict–freeness
could be used in a more relaxed form but this is not discussed here for sim-
plicity of presentation.



322 Zuberek

Component behavior is determined by the set of all possible sequences of
services (required or provided by a component) at a particular interface. Such
a set of sequences is called the interface language.

Let F(M) denote the set of firing sequences in M such that the marking
created by each firing sequence belongs to the set of final markings F of M.
The interface language L(M), of a component represented by a labeled Petri
net M, is the set of all labeled firing sequences of M:

L(M) = {ℓ(σ) | σ ∈ F(M)},

where ℓ(ti1ti2 ...tik) = ℓ(ti1)ℓ(ti2)...ℓ(tik).
By using the concept of final markings, interface languages reflect the

cyclic behavior of (requester as well as provider) components.
Interface languages defined by Petri nets include regular languages, some

context–free and even context–sensitive languages [11]. Therefore, they are
significantly more general than languages defined by finite automata [5], but
their compatibility verification is also more difficult than in the case of regular
languages.

3 Component compatibility

Interface languages of interacting components can be used to define the com-
patibility of components; a requester component Mr is compatible with a
provider component Mp if and only if all sequences of services requested by
Mr can be provided by Mp, i.e., if and only if:

L(Mr) ⊆ L(Mp).

Checking the inclusion relation between the requester and provider lan-
guages defined by Petri nets Mr and Mp can be performed by systematic
checking if the services requested by one of the interacting nets can be pro-
vided by the other net at each stage of the interaction.

3.1 Bounded case

In the case of bounded nets, checking compatibility of a single requester
with a single provider components performs a breadth–first traversal of the
reachability graph G(Mr) verifying that for each transition in G(Mr) there is
a corresponding transition in G(Mp), which is described in detail in [20]. For
the case of several requester components Mi, i = 1, ..., k, interacting with
a single provider component Mp, first the compatibility of each requester
with the provider is checked in [20]. Then the interleaving of requests are
checked for progress, and is a deadlock is discovered, the set of interacting



Service renaming in component composition 323

components cannot be compatible. For simplicity, the family of requester
components is represented by a vector Nr with individual components Nr[1],
Nr[2], ... Nr[k]. Similarly, the markings for Nr are denoted be a vector mr

with individual marking functions mr[1], mr[2], ... mr[k].
The following logical function CheckProgressB is used when all requester

and provider languages are defined by bounded marked Petri nets (Ni,mi),
i = 1, ..., k, and (Np,mp), respectively. The function performs exhaustive
analysis of possible interleavings of requests, checking the progress of the
composed model; if there is no progress (which means, a deadlock has been
created), false is returned. In the pseudocode below, New is a sequence (a
queue) of markings to be checked, head and tail are operations on sequences
that return the first element and remaining part of the sequence, respectively,
append(s, a) appends an element a to a sequence s, Analyzed is the set of
markings that have been analyzed, Enabled(N ,m) returns the set of labels of
transitions enabled in the net N by the marking m (including ε if the enabled
transitions include transitions without labels), and next(N ,m, a) returns the
marking obtained in the net N from the marking m by firing the transition
labeled by x):

proc CheckProgressB(Nr,mr,Np,mp);
begin

New := (mr,mp);
Analyzed := {};
while New 6= {} do

(m, n) := head(New);
New := tail(New);
if (m, n) /∈ Analyzed then

Analyzed := Analyzed ∪ {(m, n)};
noprogress := true;
for i := 1 to k do

Symbols1 := Enabled(Nr[i], SkipEps(Nr[i],m[i]));
Symbols2 := Enabled(Np, SkipEps(Np, n));
if Symbols1 ∩ Symbols2 6= {} then

noprogress := false;
m′ := m;
for each x in Symbols1 ∩ Symbols2 do

m′[i] := next(Nr[i],m[i], x)
append(New, (m′, next(Np, n, x))

od

fi

od;
if noprogress return false fi

fi

od;
return true

end;



324 Zuberek

The function SkipEps(m) advances the marking function m through all
transitions labeled by ε:

proc SkipEps(N ,m);
begin

while ε ∈ Enabled(N ,m) do m := next(N ,m, ε) od;
return m

end;

where the ε parameter of the function next refers to any transition enabled
by m that is labeled by ε.

Example. Fig.1 shows a simple configuration of two (cyclic) requester
components and a single provider of three services named a, b and c.

1

2 3

4

a

b

b

a

c

PROVIDER

1

2 3

a b c

REQUESTER−1

ab

2

1

3

c

REQUESTER−2

Fig.1. Two requesters and a single provider.

In this case, the languages of the requesters are described by regular
expressions “(abc)*” and “(bac)*” and the language of the provider by
“((ab+ba)c)*”. It can be easily checked that both requesters are compatible
with the provider; the languages “(abc)*” and “(bac)*” are subsets of the
language “((ab+ba)c)*”.

As indicated in the introduction, the combined requests from both re-
quester components are not compatible with the provider shown in Fig.1.
For example, if the first request from requester-1 (i.e., “a”) is followed by
the first request from requester-2 (i.e., “b”), the composed system becomes
deadlocked because further requests are “b” (from requester-1) and “a” (from
requester-2) while the only provided service at this stage is “c”.

The steps performed by the function CheckProgressB for the nets shown
in Fig.1 are illustrated in a table, in which the first column, “conf”, iden-
tifies the configuration of the model, while the last column, “ℓ”, indicates



Service renaming in component composition 325

the next configuration, reached in effect of the requested/provided service
shown in column “x”; columns m and n show the markings of the requester
and provider nets, respectively; i indicates the requester component (used
for interleaving), as in function CheckProgressB, similarly to the remaining
columns of the table:

conf m n i Symbols1 Symbols2 x next(Nr[i],m[i], x) next(Np, n, x) ℓ

0 [(1,0,0),(1,0,0)] (1,0,0,0) 1 {a} {a, b} a (0,1,0) (0,1,0,0) 1
2 {b} {a, b} b (0,1,0) (0,0,1,0) 2

1 [(0,1,0),(1,0,0)] (0,1,0,0) 1 {b} {b} b (0,0,1) (0,0,0,1) 3

2 {b} {b} b (0,1,0) (0,0,0,1) 4

2 [(1,0,0),(0,1,0)] (0,0,1,0) 1 {a} {a} a (0,1,0) (0,0,0,1) 4

2 {a} {a} a (0,0,1) (0,0,0,1) 5

3 [(0,0,1),(1,0,0)] (0,0,0,1) 1 {c} {c} c (1,0,0) (1,0,0,0) 0

2 {b} {c} –

4 [(0,1,0),(0,1,0)] (0,0,0,1) 1 {b} {c} –
2 {a} {c} –

5 [(1,0,0),(0,0,1)] (0,0,0,1) 1 {a} {c} –
2 {c} {c} c (1,0,0) (1,0,0,0) 0

No component can progress in configuration 4, so this is a deadlock config-
uration. Consequently the components shown in Fig.1 cannot be compatible.
It can be observed that this deadlock configuration can be reached from
configuration 0 by requesting service “a” (by requester-1) and then in config-
uration 1, requesting service “b” (by requester-2). Configuration 4 can also be
reached from configuration 0 by first requesting service “b” (by requester-2)
and then, in configuration 2, service “a” (by requester-2).

It should also be noted that in configurations 3 and 5, only one of the re-
quester components does not progress, so these configurations are not dead-
locks.

3.2 Unbounded case

For the unbounded case, compatibility checking must include checking the
unboundedness condition (a marked net (N ,m0) is unbounded if there exist
markings m′ and m′′ reachable from m0 such that m′′ is reachable from m′

and m′′ is componentwise greater or equal to m′). This condition is checked
for the requesters as well as for the provider nets by combining the mark-
ings together. More specifically, for each analyzed pair of markings (m, n),
an additional check is performed if the set Analyzed contains a pair of mark-
ings, which is componentwise smaller than (m, n) and from which (m, n)
is reachable; if the set Analyzed contains such a pair, analysis of (m, n)
is discontinued. This additional check is performed by a logical function
Reachable((m, n), Analyzed), in which the first argument is a vector of mark-
ing functions (which - in this particular case - can be considered as a single
marking function obtained by concatenation of all consecutive elements of



326 Zuberek

m). As in the bounded case, Nr is a vector of requester nets [N1,N2, ...,Nk],
also denoted Nr[i], i = 1, ..., k, and mr is a vector of marking functions for
nets Nr[i], i = 1, ..., k:

proc CheckProgressU(Nr,mr,Np,mp);
begin

New := (mr,mp);
Analyzed := {};
while New 6= {} do

(m, n) := head(New);
New := tail(New);
if (m, n) /∈ Analyzed then

Analyzed := Analyzed ∪ {(m, n)};
noprogress := true;
if not Reachable((m, n), Analyzed) then

for i := 1 to k do

Symbols1 := Enabled(Nr[i], SkipEps(Nr[i],m[i]));
Symbols2 := Enabled(Np, SkipEps(Np, n));
if Symbols1 ∩ Symbols2 6= {} then

noprogress := false;
m′ := m;
for each x in Symbols1S†m⌊≀l∫∈ do

m′[i] := next(Nr[i],m[i], x)
append(New, (next(m′, next(Np, n, x))

do

fi

od;
if noprogress return false fi

fi

fi

od;
return true

end;

As in the bounded case, the function CheckProgressU returns false if there
is a sequence of service requests which cannot be satisfied by the provider
component.

Example. Fig.2 shows another model composed of two requester compo-
nents with languages “(abc)*” and “(ab*c)*” and an unbounded provider
which accepts any sequence of requests of services “a”, “b” and “c” such that
any prefix of this sequence (including the whole sequence) contains not less
requests for service “a” than for service “c”; the language of this provider is
nonregular.

Both requester components are compatible with the provider as their lan-
guages are subsets of the provider’s language.

The steps used by the function CheckProgressU for the components shown
in Fig.2 are illustrated in the following table:



Service renaming in component composition 327

1

2 3

a b c

REQUESTER−1

a

b

c

1

2

REQUESTER−2

b

a
c

PROVIDER

1

2

Fig.2. Two requesters with an unbounded provider.

It can be easily checked that both requester components shown in Fig.2
are compatible with the provider. The steps used by CheckProgressU for the
components shown in Fig.2 are illustrated by the following table:

conf m n i Symbols1 Symbols2 x next(Nr[i],m[i], x) next(Np, n, x) ℓ

0 [(1,0,0),(1,0)] (1,0) 1 {a} {a, b} a (0,1,0) (1,1) 1
2 {a} {a, b} a (0,1) (1,1) 2

1 [(0,1,0),(1,0)] (1,1) 1 {b} {a, b, c} b (0,0,1) (1,1) 3

2 {a} {a, b, c} a (0,1) (1,2) 4

2 [(1,0,0),(0,1)] (1,1) 1 {a} {a, b, c} b (0,1,0) (1,2) 4

2 {b, c} {a, b, c} b (0,1) (1,1) 2
c (1,0) (1,0) 0

3 [(0,0,1),(1,0)] (1,1) 1 {c} {a, b, c} c (1,0,0) (1,0) 3

2 {a} {a, b, c} a (0,1) (1,2) 4

4 [(0,0,1),(0,1)] (1,2) 1 {c} {a, b, c} c (1,0,0) (1,1) 2
2 {b, c} {a, b, c} b (0,1) (1,2) 4

c (1,0) (1,1) 3

Since there is no deadlock configuration, the components shown in Fig.2
are compatible.

4 Service renaming

The progress of interactions for the model shown in Fig.1 can be illustrated by
a “request graph” shown in Fig.3, in which the nodes are configurations of the
model (from the column “conf” of the table following Fig.1 and the edges are
labeled by the services requested/provided by the interacting components in



328 Zuberek

the form “x/i” where “x” is the service and “i” is the index of the requester
component. It should be observed that Fig.3 is a graphical representation of
the table following Fig.1 with node 4 representing the deadlock.

c/1 c/2

a/1

b/1 b/2

b/2

a/2a/1

0

1 2

3 4 5

Fig.3. Request graph for Fig.1.

There are two paths leading (from the initial node 0) to the deadlock
node; one is “(a/1,b/2)” and the second is “b/2,a/1)”, as discussed in the
example in Section 3.1. Moreover, the cycles including nodes 0–1–3–0 and
0–2–5–0 represent the compatibility of single requester components with the
provider.

For the renamed services, the steps performed by the function CheckPro-
gressB are illustrated in the following table:

conf m n i Symbols1 Symbols2 x next(Nr[i],m[i], x) next(Np, n, x) ℓ

0 [(1,0,0),(1,0,0)] (1,0,0,0) 1 {a} {a, b} a (0,1,0) (0,1,0,0) 1
2 {b} {a, b} b (0,1,0) (0,0,1,0) 2

1 [(0,1,0),(1,0,0)] (0,1,0,0) 1 {B} {B} B (0,0,1) (0,0,0,1) 3

2 {b} {B} –

2 [(1,0,0),(0,1,0)] (0,0,1,0) 1 {a} {A} –

2 {A} {A} A (0,0,1) (0,0,0,1) 4

3 [(0,0,1),(1,0,0)] (0,0,0,1) 1 {c} {c} c (1,0,0) (1,0,0,0) 0
2 {b} {c} –

4 [(1,0,0),(0,0,1)] (0,0,0,1) 1 {a} {c} –
2 {c} {c} c (1,0,0) (1,0,0,0) 0

The deadlock node from Fig.3 has been eliminated, so the components –
after service renaming – are compatible and can be composed into a deadlock–
free system.

It can be observed that there are several other service renamings which
result in the same behavior of composed system, for example “(Abc)*”,
“(Bac)*” and “(Ab+Ba)c)*” as well as “(ABc)*”, “(bac)*” and “(AB+ba)c)*”,
so some other criteria can be taken into account in using service renaming
for eliminating conflicting requests.



Service renaming in component composition 329

5 Concluding remarks

In component–based systems, when several requester components are inter-
acting with one or more provider components, the requests from different
components can be interleaved and then the properties of the composed sys-
tem can differ significantly from the properties of components. As shown
in Section 3.1, the compatibilities of pairs of interacting components are not
sufficient – in general case – for the compatibility of composed system. Conse-
quently, the compatibility of each composition must be verified independently
of the compatibility of interacting pairs of components. Straightforward al-
gorithms for such verifications are outlined in Section 3.

In the case of incompatibilities (represented by deadlocks in the composed
system), service renaming has been proposed as a systematic approach to
eliminating conflicting requests.

Practical service renaming can be performed by connectors [2] or compo-
nent adaptors [3] [17].

The discussion (in Section 3) was restricted to systems of several requester
components interacting with a single provider component because it can be
shown that systems with several provider components can be decomposed
into several systems, each with one provider component, and analyzed one
after another.

It can be observed that the proposed service renaming can be used for
restricting request interleaving that may be required for incremental compo-
sition [20].

Acknowledgements The Natural Sciences and Engineering Research Council of Canada
partially supported this research through grant RGPIN-8222.

References

1. Attiogbe C, Andre P, Ardourel G (2006) Checking component composability. Proc.
5-th Int. Symp. on Software Composition (LNCS 4089), pp.18-33

2. Baier C, Klein J, Klueppenholz S (2011) Modeling and verification of components and

connectors. In: ”Formal Methods for Eternal Networked Software Systems” (LNCS
6659), pp.114-147

3. Bracciali A, Brogi A, Canal C (2005) A formal approach to component adaptations.

The Journal of Systems and Software, vol.74, no.1, pp.45-54
4. Broy M (2006) A theory of system interaction: components, interfaces, and services.

In: ”Interactive Computations: The New Paradigm”, Springer-Verlag, pp.41-96
5. Chaki S, Clarke S M, Groce A, Jha S, Veith H (2004) Modular verification of software

components in C. IEEE Trans. on Software Engineering, vol.30, no.6, pp.388-402
6. Craig D C, Zuberek W M (2006) Compatibility of software components – modeling

and verification. Proc. Int. Conf. on Dependability of Computer Systems, Szklarska
Poreba, Poland, pp.11-18

7. Craig D C, Zuberek W M (2007) Petri nets in modeling component behavior and
verifying component compatibility”. Proc. Int. Workshop on Petri Nets and Software
Engineering, Siedlce, Poland, pp.160-174



330 Zuberek

8. Crnkovic I, Schmidt H W, Stafford J, Wallnau K (2005) Automated component-based

software engineering. The Journal of Systems and Software, vol.74, no.1, pp.1-3
9. Garlan D (2003) Formal modeling and analysis of software architecture: components,

connectors and events. Proc. Third Int. School on Formal Methods for the Design of

Computer, Communication and Software Systems: Software Architectures (SFM 2003)
(LNCS 2804), pp.1-24

10. Henrio L, Kammueller F, Khan M U (2009) A framework for reasoning on component
composition. Proc. 8-th Int. Symp. on Formal Methods for Components and Objects

(LNCS 6286), pp.41-69
11. Hopcroft J E, Motwani R, Ullman J D (2001) Introduction to automata theory, lan-

guages, and computations (2 ed.). Addison–Wesley

12. Leicher A, Busse S, Suess J G (2005) Analysis of compositional conflicts in component-
based systems. Proc. 4-th Int. Workshop on Software Composition; Edinburgh, UK
(LNCS 3628), pp.67-82

13. Murata T (1989) Petri nets: properties, analysis, and applications. Proceedings of the

IEEE, vol.77, no.4, pp.541-580
14. Nierstrasz O, Meijler T (1995) Research directions on software composition. ACM

Computing Surveys, vol.27, no.2, pp.262-264
15. Reisig W (1985) Petri nets – an introduction (EATCS Monographs on Theoretical

Computer Science 4). Springer-Verlag
16. Szyperski C (2002) Component software: beyond object-oriented programming (2 ed.).

Addison–Wesley Professional

17. Yellin D M, Strom R E (1997) Protocol specifications and component adaptors. ACM
Trans. on Programming Languages and Systems, vol.19, no.2, pp.292-333

18. Zaremski A M, Wang J M (1997) Specification matching of software components. ACM
Trans. on Software Engineering and Methodology, vol.6, no.4, pp.333-369

19. Zuberek W M (2010) Checking compatibility and substitutability of software compo-
nents. In: Models and Methodology of System Dependability, Oficyna Wydawnicza
Politechniki Wroclawskiej, ch.14, pp.175-186

20. Zuberek W M (2011) Incremental composition of software components. In: Dependable
Computer Systems (Advances in Intelligent and Soft Computing 97), Springer-Verlag,
pp.301-311

21. Zuberek W M, Bluemke I, Craig D C (2010) Modeling and performance analysis of

component-based systems. Int. Journal of Critical Computer-Based Systems, vol.1,
no.1-3, pp.191-207


