
Incremental Composition of Software
Components

W.M. Zuberek

Department of Computer Science, Memorial University,
St.John’s, NL, Canada A1B 3X5

and

Department of Applied Informatics, University of Life Sciences,
02-787 Warszawa, Poland

email: wlodek@mun.ca

Dependable Computer Systems (Advances in Intelligent and Soft Computing 97), pp.301–311.

6-th Int. Conf. on Dependability of Complex Systems, Brunow Palace, Poland, June 27 – July 1, 2011.
Copyright c© 2011 Springer-Verlag. The original publication is available at www.springerlink.com.
DOI 10.1007/978-3-642-21393-9 23.

Abstract In component-based systems, two interacting components are com-
patible if all sequences of services requested by one components can be pro-
vided by the other component. In the case of several components interacting
with a single provider, as is typically the case in client–server computing, the
requests from different components can be interleaved and therefore verify-
ing component compatibility must check all possible interleavings of requests
from all interacting components. Incremental composition of interacting com-
ponents eliminates this need for exhaustive combinatorial checking of the
interleavings by imposing some restrictions on the interleavings. The paper
introduces simple conditions which must be satified by the interacting com-
ponents for their composition to be incremental and illustrates the concepts
using simple examples of interactions.

1 Introduction

Component-base software engineering is one of promising approaches to the
development of large-scale software systems [2]. The success of this approach
relies, however, on the automated and easily verifiable composition of com-
ponents and their services [14]. While manual and ad hoc strategies toward
component integration have met with some success in the past, such tech-
niques do not lend themselves well to automation. A more formal approach
toward the assessment of component compatibility and interoperability is
needed. Such a formal approach would permit an automated assessment and
would also help promote the reuse of existing software components. It would
also significantly enhance the assessment of component substitutability when
an existing component is replaced by an improved one, and the replacement is
not supposed to affect the functionality of the remaining parts of the system
[4].

Components can be considered as the basic functional units and the fun-
damental data types in architectural design [27]. Components represent high-

301

302 Zuberek

level software models; they must be generic enough to work in a variety of
contexts and in cooperation with other components, but they also must be
specific enough to provide easy reuse.

Primary reasons for component production and deployment are [14]: sepa-
rability of components from their contexts, independent component develop-
ment, testing and later reuse, upgrade and replacement in running systems.
Component compositionality is often taken for granted. Compositionality,
however, is influenced by a number of factors. Component technologies are
not entirely independent of particular hardware and operating platforms,
programming languages or the specific middleware technology in which they
are based. Ideally, the development, quality control, and deployment of soft-
ware components should be automated similarly to other engineering do-
mains, which deal with the construction of large systems composed of well-
understood elements with predictable properties and under acceptable budget
and timing constraints [24]. For software engineering, such a situation does
not seem to belong to the forseeable future yet.

In this work, two interacting components are considered compatible if any
sequence of services requested by one component can be provided by the
other. This concept of compatibility can be easily extended to a set of inter-
acting components, then, however, the requests from different components
can be interleaved, so any verification of the behavior of the composed sys-
tem must check all interleavings which can be created by the interacting
components. These interleavings can be controlled by specific frameworks for
component compositions which can vary from simple syntactic expansions of
the GenVoca model [3], to models resembling higher-order programming [5]
and dynamic interconnections of distributed processes [22]. Despite signifi-
cant research efforts, a comprehensive model of software composition is still
to come [17].

Incremental composition of interacting components introduces a restric-
tion on the form of interleaving of requests coming from several components,
and eliminates the need for exhausting combinatorial checking of the behavior
of the composed system. In incremental composition, if a requesting and pro-
viding components are compatible, the requesting component can be added
to other interacting components without any adverse effect on the behavior
of the system. On the other hand, the performance of a system composed in
such a way may not be fully used.

Several formal models of component behavior have been proposed in the
literature. They include finite automata [9] [10] [28], predicates [29], process
calculi [8] [26] and especially labeled Petri nets [1] [12] [16] [19]. Some ap-
proaches are built on the concept of subtyping derived from object–oriented
programming. They use the interface type to define a subtyping relation be-
tween components [7] [21]. Various forms of those types exist, starting with
the classical interface type [11] and adding behavioral descriptions such as
automata [9]. Related research shows that the resulting approach may be too
restrictive for practical applications [29].

Petri nets [23] [25] are formal models of systems which exhibit concurrent
activities with constraints on frequency or orderings of these activities. In
labeled Petri nets, labels, which represent services, are associated with el-

Incremental composition of software components 303

ements of nets in order to identify interacting components. Well-developed
mathematical theory of Petri nets provides a convenient formal foundation
for analysis of systems modeled by Petri nets.

This chapter is a continuation of previous work on component compatibil-
ity and substitutability [12] [13] [30]. Using the same linguistic specification
of component behavior as before [30], the paper introduces icremental com-
ponent composition and shows that for such a composition, properties of the
composed systems can be verified without the exhaustive checking of all pos-
sible interleavings of component languages. Simple criteria for incremental
composition of components are also given and illustrated by a few examples.

Section 2 recalls the concept of component languages as a characterization
of component’s behavior. Component languages are used in Section 3 to define
component compatibility. Incremental composition is described in Section 4
while Section 5 concludes the chapter.

2 Petri net models od component behavior

The behavior of a component, at its interface, can be represented by a cyclic
labeled Petri net [12] [30]:

Mi = (Pi, Ti, Ai, Si,mi, ℓi, Fi),

where Pi and Ti are disjoint sets of places and transitions, respectively, Ai is
the set of directed arcs, Ai ⊆ Pi×Ti∪Ti×Pi, Si is an alphabet representing
the set of services that are associated with transitions by the labeling function
ℓi : Ti → Si∪{ε} (ε is the “empty” service; it labels transitions which do not
represent services), mi is the initial marking function mi : Pi → {0, 1, ...},
and Fi is the set of final markings (which are used to capture the cyclic nature
of sequences of firings).

Sometimes it is convenient to separate net structure N = (P, T,A) from
the initial marking function m.

In order to represent component interactions, the interfaces are divided
into provider interfaces (or p-interfaces) and requester interfaces (or r-interfaces).
In the context of a provider interface, a labeled transition can be thought of as
a service provided by that component; in the context of a requester interface,
a labeled transition is a request for a corresponding service. For example,
the label can represent a conventional procedure or method invocation. It
is assumed that if the p-interface requires parameters from the r-interface,
then the appropriate number and types of parameters are delivered by the r-
interface. Similarly, it is assumed that the p-interface provides an appropriate
return value, if such a value is required. The equality of symbols representing
component services (provided and requested) implies that all such require-
ments are satisfied.

304 Zuberek

For unambiguous interactions of requester and provider interfaces, it is
required that in each p-interface there is exactly one labeled transition for
each provided service:

∀ti, tj ∈ T : ℓ(ti) = ℓ(tj) 6= ε ⇒ ti = tj .

Moreover, to express the reactive nature of provider components, all provider
models are required to be ε–conflict–free, i.e.:

∀t ∈ T ∀p ∈ Inp(t) : Out(p) 6= {t} ⇒ ℓ(t) 6= ε

where Out(p) = {t ∈ T | (p, t) ∈ A}; the condition for ε–conflict–freeness
could be used in a more relaxed form but this is not discussed here for sim-
plicity of presentation.

Component behavior is determined by the set of all possible sequences of
services (required or provided by a component) at a particular interface. Such
a set of sequences is called the interface language.

Let F(M) denote the set of firing sequences in M such that the marking
created by each firing sequence belongs to the set of final markings F of M.
The interface language L(M), of a component represented by a labeled Petri
net M, is the set of all labeled firing sequences of M:

L(M) = {ℓ(σ) | σ ∈ F(M)},

where ℓ(ti1ti2 ...tik) = ℓ(ti1)ℓ(ti2)...ℓ(tik).
By using the concept of final markings, interface languages reflect the

cyclic behavior of (requester as well as provider) components.
Interface languages defined by Petri nets include regular languages, some

context–free and even context–sensitive languages [18]. Therefore, they are
significantly more general than languages defined by finite automata [10],
but their compatibility verification is also more difficult than in the case of
regular languages.

3 Component compatibility

Interface languages of interacting components can be used to define the com-
patibility of components; a requester component Mr is compatible with a
provider component Mp if and only if all sequences of services requested by
Mr can be provided by Mp, i.e., if and only if:

L(Mr) ⊆ L(Mp).

Checking the inclusion relation between the requester and provider lan-
guages defined by Petri nets Mr and Mp can be performed by systematic
checking if the services requested by one of the interacting nets can be pro-
vided by the other net at each stage of the interaction. In the case of bounded

Incremental composition of software components 305

nets, the checking procedure performs a breadth–first traversal of the reach-
ability graph G(Mr) verifying that for each transition in G(Mr) there is a
corresponding transition in G(Mp).

3.1 Bounded models

The following logical function CheckBounded can be used for compatibil-
ity checking if the requester and provider languages are defined by bounded
marked Petri nets (Nr,mr) and (Np,mp), respectively. The function per-
forms exhaustive analysis of the marking spaces of its two argument marked
nets checking, at each step, if all service that can be requested by the first
argument net are available in the second net. In the pseudocode below, New
is a sequence (a queue) of pairs of markings to be checked, head and tail are
operations on sequences that return the first element and remaining part of
the sequence, respectively, append(s, a) appends an element a to a sequence
s, Analyzed is the set of markings that have been analyzed, Enabled(N ,m)
returns the set of labels of transitions enabled in the net N by the marking m
(including ε if the enabled transitions include transitions without labels), and
next(N ,m, a) returns the marking obtained in the net N from the marking
m by firing the transition labeled by x):

proc CheckBounded(Nr,mr,Np,mp);
begin

New := (mr,mp);
Analyzed := {};
while New 6= {} do

(m,n) := head(New);
New := tail(New);
if m /∈ Analyzed then

Analyzed := Analyzed ∪ {m};
Symbols1 := Enabled(Nr, SkipEps(Nr,m));
Symbols2 := Enabled(Np, SkipEps(Np, n));
if Symbols1 ∩ Symbols2 = {} then return false fi;
for each x in Symbols1 do

if x ∈ Symbols2 then

append(New, (next(Nr,m, x), next(Np, n, x))
fi

od

fi

od;
return true

end;

The function SkipEps(m) advances the marking function m through all
transitions labeled by ε:

306 Zuberek

proc SkipEps(N ,m);
begin

while ε ∈ Enabled(N ,m) do m := next(N ,m, ε) od;
return m

end;

where the ε parameter of the function next refers to any transition enabled
by m that is labeled by ε.

The function CheckBounded returns true if the language of (Nr,mr) is a
subset of the language defined by (Np,mp); otherwise false is returned.

Example. Fig.1 shows a simple configuration of two (cyclic) requester
components and a single provider of two services named a and b. In both
requester components, the requested services are separated by some “local”
operations.

Provider

a

b

ba

a b

Requester−2

Requester−1

Fig.1. Two requesters and a single provider.

In this case, the languages of all components are the same, and are se-
quences of service a followed by service b. They can be described by a regular
exapression (ab)*.

For the Requester-1 and Provider nets shown in Fig.1, the steps performed
by the function CheckBounded can be illustrated in the following table:

m n Symbols1 Symbols2 x next(Nr,m, x) next(Np, n, x)
(1,0,0) (1,0) {a} {a} a (0,1,0) (0,1)
(0,1,0) (0,1) {b} {b} b (1,0,0) (1,0)

Since in each case, the (only) symbol of Symbols1 is also an element of
Symbols2, the returned result of checking is true.

3.2 Unbounbded models

For the unbounded case, compatibility checking must include checking the
unboundedness condition (a marked net (N ,m0) is unbounded if there exist

Incremental composition of software components 307

markings m′ and m′′ reachable from m0 such that m′′ is reachable from
m′ and m′′ is componentwise greater or equal to m′). This condition is
checked for the requester as well as for the provider nets by combining these
two markings together. More specifically, for each analyzed pair of mark-
ings (m,n), an additional check is performed if the set Analyzed contains
a pair of markings, which is componentwise smaller than (m,n) and from
which (m,n) is reachable; if the set Analyzed contains such a pair, analy-
sis of (m,n) is discontinued. This additional check is performed by a logical
function Reachable((m,n), Analyzed):

proc CheckUnbounded(Nr,mr,Np,mp);
begin

New := (mr,mp);
Analyzed := {};
while New 6= {} do

(m,n) := head(New);
New := tail(New);
if (m,n) /∈ Analyzed then

Analyzed := Analyzed ∪ {(m,n)};
Symbols1 := Enabled(Nr, SkipEps(Nr,m);
Symbols2 := Enabled(Np, SkipEps(Np, n);
if Symbols1 ∩ Symbols2 = {} then return false fi;
if not Reachable((m,n), Analyzed) then

for each x in Symbols1 do

if x ∈ Symbols2 then

append(New, (next(Nr,m, x), next(Np, n, x))
fi

od

fi

fi

od;
return true

end;

Example. Fig.2 shows a modified model of a provider which still requires
that each operation b is preceded by an operation a, but which also allows
several operations a to be performed before any of the corresponding b op-
erations is requested (which is not allowed in model shown in Fig.1). This
provider net is unbounded.

Checking the compatibility of Requester-1 and Provider in Fig.2, per-
formed by CheckUnboundedOne, can be illustrated by the following table:

m n Symbols1 Symbols2 x next(Nr,m, x) next(Np, n, x)

(1,0,0) (1,0) {a} {a} a (0,1,0) (1,1)
(0,1,0) (1,1) {b} {a, b} b (1,0,0) (1,0)

Again, since for each case the (single) element of Symbols1 is also an ele-
ment of Symbols2, the result of checking is true.

308 Zuberek

b

a

Provider

b

ba

a

Requester−1

Requester−2

Fig.2. Two requesters with a modified provider.

4 Incremental composition

Incremental composition of interacting components takes advantage of the
cyclic nature of component behavior, and allows the interleaving at the level
of cycles. So, taking this behavioral cyclicity into account, the condition of
compatibility of interacting components can be rewritten as:

L∗

r ⊆ L∗

p

where Lr is the single-cycle language of the requester component and Lp is the
single-cycle language of the provider component. These single-cycle languages
can be just sequences of services (requested or provided) but normally they
are more sophisticated and can even be infinite.

The above compatibility condition can be simplified to:

Lr ⊆ Lp.

For the case of k requester components interacting with a single provider,
for incremental composition the combined language of requesters becomes:

(Lr1 ∪ Lr2 ∪ · · · ∪ Lrk)
∗

and then the simplified compatibility condition is:

Lr1 ∪ Lr2 ∪ · · · ∪ Lrk ⊆ Lp

which is equivalent to

Lr1 ⊆ Lp ∧ Lr2 ⊆ Lp ∧ · · · ∧ Lrk ⊆ Lp

so, instead of checking the compatibility of interleaved requests, it is suffi-
cient to check if each requester component is compatible with the provider.
Consequently, the incremental composition eliminates the need for exhaustive
combinatorial checking of the behavior of the composed system.

Incremental composition of software components 309

It can be observed that a straightforward criterion for incremental compo-
sition is that the set First(Lr) of leading symbols of the single-cycle languge
Lr is disjoint with the set Follow(Lp) of non-leading symbols of the single-
cycle language Lp:

First(Lr) ∩ Follow(Lp) = {}

where (S is the set of services required and provided by the components):

First(L) = {a ∈ S | ∃x ∈ S∗ : ax ∈ L},

Follow(L) = {a ∈ S | ∃x ∈ S+, y ∈ S∗ : xay ∈ L}.

Example. The languages of Requester-1, Requester-2 and Provider shown
in Fig.1 are (ab)*, their single-cycle languages are (ab), so First(Lr) = {a},
Follow(Lp) = {b}, and First(Lr) ∩ Follow(Lp) = {}, so the composition is
incremental.

For Fig.2, the languages of Requester-1 and Requester-2 are also (ab)*,
but the language of Provider is nonregular. In this case, First(Lr) = {a},
Follow(Lp) = {a, b}, and First(Lr) ∩ Follow(Lp) 6= {}, so the composition
of these models is not incremental and requires a more detailed verification.

5 Concluding remarks

Incremental composition eliminates the exhaustive verification of the behav-
ior of the composed system by restricting the behavior of interacting compo-
nents. A simple criterion can be used to check if the interacting components
satisfy the requirement of incremental composition.

A different approach, called component adaptation is proposed in [6]. Its
main idea is to identify mismatches of interacting components and to generate
(on the basis of formal specification of components) component adaptors
which eliminate the identified mismatches. The formal foundation for such
an approach is provided in [28].

A similar approach is proposed in [20].
Different languages, tools, and environments that support some degree

of component–oriented development, support some kinds of components and
component composition, but no common model exists. Therefore it is difficult
to compare different approaches in a unifor way and is difficult to reason
about inteoperability between languages and platforms. More research in this
area is expected.

On the other hand, an interesting (and challenging) task that needs to be
addressed is the derivation of Petri net behavioral models of components. The
derivation should be automated using either component formal specifications
or component implementations.

310 Zuberek

Acknowledgements The Natural Sciences and Engineering Research Council of Canada

partially supported this research through grant RGPIN-8222. Helpful remarks of three
anonymous reviewers are gratefully acknowledged.

References

1. Aalst van der W M P, Hee van K M, Torn van der R A (2002) Component-based soft-
ware architecture: a framework based on inheritance of behavior. Science of Computer

Programming, vol.42, no.2-3, pp.129-171
2. Attiogbé C, André P, Ardourel G (2006) Checking component composability. Proc.

5-th Int. Symp. on Software Composition (Lecture Notes in Computer Science 4089),
pp.18-33

3. Batiry D, Singhal V, Thosmas J, Dasari S, Geract B, Sirkin M (1994) The Gen Voca
model of software system generators. IEEE Software, vol.11, n.5, pp.89-94

4. Belguidoum M, Dagnat F (2008) Formalization of component substitutability. Elec-
tronic Notes in Theoretical Computer Science, vol.215, pp.75-92

5. Bracha G, Cook W (1990) Mixin-based inheritance. Proc. Joint ACM Conf. on Object-
Oriented Pogramming, Systems, Languages and Applications and the European Conf.
on Object-Oriented Programming, pp.303-311

6. Bracciali A, Brogi A, Canal C (2005) A formal approach to component adaptations.
The Journal of Systems and Software, vol.74, n.1, pp.45-54

7. Brada P, Valenta L (2006) Practical verification of component substitutability using
subtype relation. Proc. Int. Conf. on Software Engineering and Advanced Applications

(SEAA’06), pp.38-45
8. Canal C, Pimentel E, Troya J M (2001) Compatibility and inheritance in software

architectures. Science of Computer Programming, vol.41, no.2, pp.105-138

9. Cerna I, Varekove P, Zimmerova B (2006) Component substitutability via equivalen-
cies of component-interaction automata. Proc. Int. Workshop on Formal Aspects of
Component Software (FACS’06), pp.115-130

10. Chaki S, Clarke S M, Groce A, Jha S, Veith H (2004) Modular verification of software

components in C. IEEE Trans. on Software Engineering, vol.30, no.6, pp.388-402
11. Costa Seco J, Caires L (2000) A basic model of typed components. Proc. 14-th Euro-

pean Conf. on Object-Oriented Programming, London, UK, pp.108-128
12. Craig D C, Zuberek W M (2006) Compatibility of software components – modeling

and verification. Proc. Int. Conf. on Dependability of Computer Systems, Szklarska
Poreba, Poland, pp.11-18

13. Craig D C, Zuberek W M (2007) Petri nets in modeling component behavior and

verifying component compatibility. Proc. Int. Workshop on Petri Nets and Software
Engineering, Siedlce, Poland, pp.160-174

14. Crnkovic I, Schmidt H W, Stafford J, Wallnau K (2005) Automated component-based
software engineering. The Journal of Systems and Software, vol.74, n.1, pp.1-3

15. Garlan D (2003) Formal modeling and analysis of software architecture: components,
connectors, and events. Proc. Third Int. School on Formal Methods for the Design
of Computer, Communication and Software Systems: Software Architectures (SFM

2003), Bertinoro, Italy (Lecture Notes in Computer Science 2804), pp.1-24
16. Hameirlain N (2007) Flexible behavioral comatibility and substitutability for compo-

nent protocols: a formal specification. Proc. 5-th Int. Conf. on Software Engineering
and Formal Methods, London, England, pp.391-400

17. Henrio L, Kammueller F, Khan M U (2009) A framework for reasoning on component
composition. Proc. 8-th Int. Symp. on Formal Methods for Components and Objects,
Eindhoven, The Netherlands (Lecture Notes in Computer Science 6286), pp.41-69

Incremental composition of software components 311

18. Hopcroft J E, Motwani R, Ullman J D (2001) Introduction to automata theory, lan-

guages, and computations (2 ed.). Addison-Wesley
19. Karlsson D, Eles P, Peng Z (2002) Formal verification on a component-based reuse

methodology. Proc. 15-th Int. Symp. on System Synthesis, Kyoto, Japan, pp.156-161

20. Leicher A, Busse S, Suess J G (2005) Analysis of compositional conflicts in component-
based systems. Proc. 4-th Int. Workshop on Software Composition; Edinburgh, UK
(Lecture Notes in Computer Science 3628), pp.67-82

21. Liskov B, Wing J (1994) A behavioral notion of subtyping. ACM Trans. on Program-

ming Languages and Systems, vol.19, no.6, pp.1811-1841
22. Magee J, Dulay N, Kramer J (1995) Specifying distributed software architectures.

Proc. 5-th European Software Engineering Conference, Sitges, Spain (Lecture Notes

in Computer Science 989), pp.137-153
23. Murata T (1989) Petri nets: properties, analysis, and applications. Proceedings of the

IEEE, vol.77, no.4, pp.541-580
24. Nierstrasz O, Meijler T (1995) Research directions on software composition. ACM

Computing Surveys, vol.27, no.2, pp.262-264
25. Reisig W (1985) Petri nets – an introduction (EATCS Monographs on Theoretical

Computer Science 4). Springer-Verlag
26. Suedholt M (2005) A model of components with non-regular protocols. Proc. 4-th

Int. Workshop on Software Composition; Edinburgh, UK (Lecture Notes in Computer
Science 3628), pp.99-113

27. Szyperski C (2002) Component software: beyond object-oriented programming (2 ed.).

Addison–Wesley Professional
28. Yellin D M, Strom R E (1997) Protocol specifications and component adaptors. ACM

Trans. on Programming Languages and Systems, vol.19, no.2, pp.292-333
29. Zaremski A M, Wang J M (1997) Specification matching of software components. ACM

Trans. on Software Engineering and Methodology, vol.6, no.4, pp.333-369
30. Zuberek W M (2010) Checking compatibility and substitutability of software compo-

nents. Models and Methodology of System Dependability, ch.14, pp.175-186, Oficyna

Wydawnicza Politechniki Wroclawskiej, Wroclaw

