
Models and Methodology of System Dependability, ed. W. Zamojski et.al., pp.175–184;

5-th Int. Conf. on Dependability of Computer Systems, Brunow, Poland, June 29 - July 1, 2010.

Copyright c© 2010 Springer-Verlag. The original publication is available at www.springerlink.com.

DOI 10.1007/978-83-7493-5260-5.

Checking Compatibility and Substitutability of Software
Components

W.M. Zuberek

Department of Computer Science and Department of Applied Informatics
Memorial University University of Life Sciences

St.John’s, Canada A1B 3X5 02-787 Warsaw, Poland

Abstract

In component-based systems, two components are compatible if all possible se-
quences of services requested by one component can be provided by the other compo-
nent. It has been recently shown that for verification of compatibility, the behavior of
interacting components, at their interfaces, can be modeled by labeled Petri nets with
labels representing the requested and provided services. Such component models are
then composed and the composition operation is designed in such a way that compo-
nent incompatibilities are manifested as deadlocks in the composed model. Compati-
bility verification is thus performed through deadlock analysis of the composed models.
Component compatibility is also used for the verification of component substitutabil-
ity; if the new component is compatible with all components that interact with the old
component, it can safely replace the old one.

Keywords: software components, component-based systems, component compat-
ibility, compatibility verification, component substitutability, Petri nets.

1. INTRODUCTION

In complex software architectures, the need to assess the compatibility and interoper-
ability of the individual software components is becoming increasingly important during
the integration phase of the software production process. While manual and ad hoc strate-
gies toward component integration have met with some success in the past, such techniques
do not lend themselves well to automation. A more formal approach toward the compat-
ibility and interoperability assessment is needed. Such a formal approach would permit
an assessment based on automated techniques and would also help promote the reuse of
existing software components. It would also significantly enhance the assessment of com-
ponent substitutability when an existing component is replaced by an improved one, and
the replacement is not supposed to affect the functionality of the whole system.

Petri nets [15] [14] are formal models of systems which exhibit concurrency or syn-
chronizations of activities. Examples of such systems include multiprocessor systems, dis-
tributed databases, manufacturing and transportation systems, and many others. One
important aspect of such systems is the existence (or absence) of deadlocks, i.e., a possi-
bility of reaching a state in which no activity can be continued. Absence of deadlocks is
critical in systems which are expected to operate in a continuous way, such as life-support
systems, supervisory control systems (e.g., in a nuclear plant), transportation control sys-
tems, and so on. A systematic and efficient method of deadlock detection is of primary
importance for such systems [2].



Checking compatibility and substitutability of software components 176

In component–based systems, two interacting components are compatible if any se-
quence of services requested by one component can be provided by the other. This concept
of compatibility can be easily extended to a set of interacting components. Recently, an ap-
proach to verification of component compatibility has been proposed in which the behavior
of individual components (at component interfaces) was modeled by labeled Petri nets [9].
Moreover, the composition of interacting components was designed in such a way that all
component incompatibilities were manifested by deadlocks in the composed model. Con-
sequently, the verification of component compatibility is performed by deadlock analysis
of the composed net model.

Several techniques exist to ensure substitutability between components [17]. All these
approaches are built on the concept of subtyping derived from object–oriented program-
ming. They use the interface type to define a subtyping relation between components [3].
Various forms of those types exist, starting with the classical interface type [7] and adding
behavioral descriptions such as automata [4]. Related research shows that the resulting
approach may be too restrictive [17].

This chapter extends the approach proposed earlier for component compatibility to
study component substitutability. Two types of substitutability are defined. Strong sub-
stitutability guarantees that a replacement of a compatible component is also compatible
with its environment. Contextual substitutability requires the compatibility verification of
the new component in the original setting.

Section 2 introduces Petri net models of component behavior. These models are used in
Section 3 to discuss component compatibility and in Section 4 to characterize component
substitutability. Section 5 concludes the chapter.

2. PETRI NET MODELS OF COMPONENT BEHAVIOR

The behavior of a component, at its interface, can be represented by a cyclic labeled
Petri net [8] [9]:

Mi = (Pi, Ti, Ai, Si,mi, ℓi, Fi),

where Pi and Ti are disjoint sets of places and transitions, respectively, Ai is the set of
directed arcs, Ai ⊆ Pi × Ti ∪ Ti × Pi, Si is an alphabet representing the set of services
that are associated with transitions by the labeling function ℓi : Ti → Si ∪ {ε} (ε is the
“empty” service; it labels transitions which do not represent services), mi is the initial
marking function mi : Pi → {0, 1, ...}, and Fi is the set of final markings (which are used
to capture the cyclic nature of sequences of firings).

In order to represent component interactions, the interfaces are divided into provider
interfaces (or p-interfaces) and requester interfaces (or r-interfaces). In the context of a
provider interface, a labeled transition can be thought of as a service provided by that
component; in the context of a requester interface, a labeled transition is a request for
a corresponding service. For example, the label can represent a conventional procedure
or method invocation. It is assumed that if the p-interface requires parameters from the
r-interface, then the appropriate number and types of parameters are delivered by the
r-interface. Similarly, it is assumed that the p-interface provides an appropriate return
value, if such a value is required. The equality of symbols representing component services
(provided and requested) implies that all such requirements are satisfied.

For unambiguous interactions of requester and provider interfaces, it is required that
in each p-interface there is exactly one labeled transition for each provided service:



Checking compatibility and substitutability of software components 177

∀ti, tj ∈ T : ℓ(ti) = ℓ(tj) 6= ε ⇒ ti = tj .

Moreover, to express the reactive nature of provider components, all provider models must
be ε–conflict–free, i.e.:

∀t ∈ T ∀p ∈ Inp(t) : Out(p) 6= {t} ⇒ ℓ(t) 6= ε

where Out(p) = {tT | (p, t) ∈ A}; the condition for ε–conflict–freeness could be used in a
more relaxed form but this is not discussed here for simplicity of presentation.

Component behavior is determined by the set of all possible sequences of services
(required or provided by a component) at a particular interface. Such a set of sequences
is called the interface language.

Let F(M) denote the set of firing sequences in M such that the marking created by
each firing sequence belongs to the set of final markings F of M. The interface language
L(M), of a component represented by a labeled Petri net M, is the set of all labeled firing
sequences of M:

L(M) = {ℓ(σ) | σ ∈ F(M)},

where ℓ(ti1ti2 ...tik) = ℓ(ti1)ℓ(ti2)...ℓ(tik).
Interface languages defined by Petri nets include regular languages, some context–free

and even context–sensitive languages [14]. Therefore, they are significantly more general
than languages defined by finite automata [5], but their compatibility verification is also
more difficult than in the case of regular languages.

3. COMPONENT COMPATIBILITY

Interface languages of interacting components can be used to define the compatibility
of components; a requester component Mi is compatible with a provider component Mj

if and only if all sequences of services requested by Mi can be provided by Mj , i.e., if and
only if:

L(Mi) ⊆ L(Mj).

If the languages of interacting requester and provider components are regular, checking
the compatibility is relatively straightforward because the compatibility relation can be
expressed as:

L(Mi) ∩ L(Mj) = ∅,

where ∅ denotes the empty set, and A is the complement of the set A. Since the class
of regular languages is closed under the operations of complementation and set intersec-
tion, compatibility can be verified by performing the corresponding operations on finite
automata representing the requester and provider languages [12]. Since the interface au-
tomata can be quite large, the product operation should be performed in a way that elim-
inates all inessential pairs of states (i.e., pairs of states which cannot be reached from the
initial state). This can easily be done as a straightforward modification of the “standard”
product operation.



Checking compatibility and substitutability of software components 178

For compatibility verification of components with non-regular behavior, the direct ver-
ification of the compatibility relation cannot be used because the class of non-regular
languages is not closed under complementation. In such cases the compatibility of inter-
acting components can be verified by composing the component models into one model
and checking the properties of this model. The composition, however, can be performed
in several ways, resulting in models with different properties.

The COSY–style composition [13] uses the fusion of transitions labeled by the same
services (with some additional elements to distinguish repeated requests of the same ser-
vice). The consequence of such an approach is that the composition corresponds to the
intersection of languages of the provider and requester interfaces:

L(Mi) ∩ L(Mj).

Compatibility is thus verified by checking the equality:

L(Mi) ∩ L(Mj) = L(Mi)

which is as difficult as the verification of the original compatibility relation.
The idea behind the CORD (compatible or deadlocked) composition [8] is to make

the language of composed interfaces equal to the language of the requester, or to create a
deadlock if the requested sequence of services cannot be provided by the other component.
The verification of component compatibility is thus equivalent to deadlock detection in the
composed model.

Known methods of deadlock detection in Petri net models include reachability analy-
sis which systematically explores all possible states that can be reached from the initial
state(s), looking for deadlock states, and structural analysis which analyzes the structure
of Petri net models to predict deadlock existence (or absence). Reachability analysis is
quite straightforward, but can be used only for models with finite and reasonably small
state spaces [14]. Structural analysis uses siphons for deadlock detection [6] [11] [16].

Siphon–based analysis does not depend upon the number of reachable markings and
can be used for deadlock detection in nets with infinite state spaces, but it can easily
become quite inefficient if the number of siphons is large (for some net models, the number
of siphons grows exponentially with the net size). It appears, however, that instead of
analyzing all siphons, only a small set of minimal siphons provides the same information
about the absence (or existence) of deadlocks. Moreover, the large number of siphons
can be significantly reduced by simple reductions of net models which do not affect the
existence (or absence) of deadlocks, making the siphon-based deadlock detection quite
attractive from a practical point of view [10].

Example. Fig.1 shows a simple configuration of two (cyclic) requester components
and a single provider of two services named a and b. In both requester components, the
requested services are separated by some “local” operations.

Provider

a 25

5

ba

a

2b

b

Requester−1

Requester−2

Fig.1. Two requesters and a single provider.



Checking compatibility and substitutability of software components 179

The composed model is shown in Fig.2. Since the composed net is free from deadlocks,
the components are compatible. Indeed, it can be observed that the provider as well as
both requester languages in this particular case can be described by a regular expression
(ab)*. The provider simply performs the requested sequence of services on the “first
come first served” basis or randomly choses the requester if the two requests for “a” occur
simultaneously.

a

5

5

b

22

Fig.2. Composition of two requesters and a single provider.

4. COMPONENT SUBSTITUTABILITY

Component substitutability is usually defined as the possibility of replacing a compo-
nent Cold of a system by another component Cnew without disrupting the operation of the
system [1].

Substitutability of a provider component depends upon the relationship between the

language of the original component, L
(r)
old and the language of the new component, L

(r)
new.

If

L
(p)
old ⊆ L(p)

new

the new component is substitutable for the old one, and can replace it without any adverse
effect on the whole system. Sometimes such a substitutability is called strict substitutabil-
ity [1].

On the ther hand, if

L(p)
new ⊂ L

(p)
old

the compatibility of the new component must be verified with the set of all interacting
requester components. Sometimes this is called contextual substitutability [1].

For requester components the relations are different. If

L(r)
new ⊆ L

(r)
old

the new component is substitutable for the old one, and it can replace it without any
adverse effect on the whole system.

If, however,

L
(r)
old ⊂ L(r)

new

the compatibility of the new component must be verified with the set of all interacting
requester components.



Checking compatibility and substitutability of software components 180

Example. Fig.3 shows a model of a component which still requires that each operation
b is preceded by an operation a, but which also allows the operations a of several requesters
to be performed before any of the corresponding b operations (which is not allowed in model
shown in Fig.1). Consequently, the language of the provider in Fig.3 is a superset of the
provider’s language in Fig.1, so the provider in Fig.3 is substitutable for the one in Fig.1.

Provider

2b

a 2

b

ba

5

5

a

Requester−1

Requester−2

Fig.3. Two requesters with a modified provider.

The composed system is shown in Fig.4; it can be checked that the net in Fig.4 is free
from deadlocks.

5

5

ba

2 2

Fig.4. Composition of two requesters and a modified provider.

Fig.5 shows another (simple) configuration of two requesters and a single provider in
which requester-2 is modified in a way which removes the requirement that any request
of service b is always preceded by a request of service a - the language of the modified
requester is (a|b)*.

a

ba

a

b

b

Provider

5Requester−1

Requester−2

Fig.5. Modified requester-2 as well as provider.

In this case, the composed net is not free from deadlocks, as shown in Fig.6.

a b

5



Checking compatibility and substitutability of software components 181

Fig.6. Composed net for modified requester and provider;

the deadlock is indicated by the marking function.

5. SUBSTITUTABILITY CHECKING

It is known that the languages defined by Petri nets include regular language, some
context-free languages and even some context-sensitive languages [14]. Therefore checking
the inclusion relation between two languages defined be Petri nets may not be a straight-
forward task.

The following logical function CheckBounded can be used if the compared languages
are nonregular, but are defined by bounded Petri nets N1 and N2 (m1 andm2 are the initial
marking functions of the two nets, New is a sequence (a queue) of markings to be checked),
head and tail are operations on sequences that return the first element and remaining part
of the sequence, respectively, append(s, a) appends an element a to a sequence s, Analyzed
is a set of markings that have been analyzed, Enabled(N ,m) returns the set of labels of
transitions enabled in the net N with the marking m, next(N ,m, a) returns the marking
obtained in the net N from the marking x by firing the transition labeled by x):

proc CheckBounded(N1,m1,N2,m2);
begin

New := (m1,m2);
Analyzed := {};
while New 6= {} do

(m,n) := head(New);
New := tail(New);
if m /∈ Analyzed then

Analyzed := Analyzed ∪ {m};
Symbols1 := Enabled(N1,m);
Symbols2 := Enabled(N2, n);
for each x in Symbols1 do

if x ∈ Symbols2 then

append(New, (next(N1,m, x), next(N2, n, x))
else

return false

fi

od

fi

od;
return true

end;

The function returns true if the language of N1 is a subset of the language defined by
N2; otherwise false is returned.

For the provider nets shown in Fig.1 and Fig.3, the steps performed by the function
Check can be illustrated in the following table:

m n Symbols1 Symbols2 x next(N1,m, x) next(N2, n, x)

(1,0) (1,0) {a} {a} a (0,1) (1,1)
(0.1) (1,1) {b} {a, b} b (1,0) (1,0)



Checking compatibility and substitutability of software components 182

If the net N1 is unbounded, the procedure is a bit more complex the detection of
unboundedness needs to be built into it. For each analyzed marking m, an additional check
is performed if the set Analyzed contains a marking, which is componentwise smaller than
m and from which m is reachable; if the set Analyzed contains such a marking, analysis
of m is discontinued because it is one of an infinite sequence of reachable markings:

proc CheckUnbounded(N1,m1,N2,m2);
begin

New := (m1,m2);
Analyzed := {};
while New 6= {} do

(m,n) := head(New);
New := tail(New);
if m /∈ Analyzed then

cont := true;
for each r in Analyzed do

if reachable(r,m) ∧m ≥ r then cont := false fi

od;
if cont then

Analyzed := Analyzed ∪ {m};
Symbols1 := Enabled(N1,m);
Symbols2 := Enabled(N2, n);
for each x in Symbols1 do

if x ∈ Symbols2 then

append(New, (next(N1,m, x), next(N2, n, x))
else

return false

fi

od

fi

fi

od;
return true

end;

6. CONCLUDING REMARKS

Component compatibility and substitutability are closely related; a component Cnew
is substitutable for a component Cold only if it is compatible with all components that
interact with Cold. Sometimes a strict substitutability relation can be established between
Cnew and Cold and then Cnew remains compatible with any environment in which Cold is
compatible. If strict substitutability cannot be established, the compatibility of Cnew must
be verified in any specific configuration of components interacting with Cold.

Strict substitutability is based on the relation between languages of the two com-
ponents. Sometimes this relation can be derived from the extensions or modifications
performed during the development of Cnew. If this is not the case, component meta-
representations can be used for component comparisons.

Although open questions remain (i.e., how to get interface models of components), it is
believed that the linguistic characterization of interacting components constitutes a simple,
intuitive and interesting approach to analysis of component-based systems.



Checking compatibility and substitutability of software components 183

Acknowledgement

The Natural Sciences and Engineering Research Council of Canada partially supported
this research through grant RGPIN-8222.

References

[1] BELGUIDOUM M., DAGNAT F., Formalization of component substitutability; Electronic
Notes in Theoretical Computer Science, vol.215, pp.75-92, 2008.

[2] BORDBAR B., OKANO K., Testing deadlock-freeness in real-time systems: a formal ap-
proach; Formal Approaches to Software Testing (Lecture Notes in Computer Science 3395)
pp.95-109, 2004.

[3] BRADA P., VALENTA L., Practical verification of component substitutability using subtype
relation; Proc. Int. Conf. on Software Engineering and Advanced Applications (SEAA’06),
pp.38-45, 2006.

[4] CERNA I., VAREKOVA P., ZIMMEROVA B., Component substitutability via equivalencies
of component-interaction automata; Proc. Int. Workshop on Formal Aspects of Component
Software (FACS’06), pp.115-130, 2006.

[5] CHAKI S., CLARKE S.M., GROCE A., JHA S., VEITH H., Modular verification of software
components in C; IEEE Trans. on Software Engineering, vol.30, no.6, pp.388-402, 2004.

[6] CHU F., XIE X., Deadlock analysis of Petri nets using siphons and mathematical programming;
IEEE Trans. on Robotics and Automation, vol.13, no.6, pp.793-804, 1997.

[7] COSTA SECO J. , CAIRES L., A basic model of typed components; Proc. 14-th European
Conf. on Object-Oriented Programming, London, UK, pp.108-128, 2000.

[8] CRAIG D.C., Compatibility of software components – modeling and verification; Ph.D. Thesis,
Department of Computer Science, Memorial University, St.John’s, Canada A1B 3X5, 2006.

[9] CRAIG D.C., ZUBEREK W.M., Compatibility of software components – modeling and veri-
fication; Proc. Int. Conf. on Dependability of Computer Systems, Szklarska Poreba, Poland,
pp.11-18, 2006.

[10] CRAIG D.C., ZUBEREK W.M., Petri nets in modeling component behavior and verifying
component compatibility; Proc. Int. Workshop on Petri Nets and Software Engineering, Siedlce,
Poland, pp.160-174, 2007.

[11] EZPELETA J., COLOMBO J.M., MARTINEZ J., A Petri net based deadlock prevention
policy for flexible manufacturing systems; IEEE Trans. on Robotics and Automation, vol.11,
no.2, pp.173-184, 1995.

[12] HOPCROFT J.E., MOTWANI R., ULLMAN J.D., Introduction to automata theory, lan-
guages, and computations (2 ed.); Addison-Wesley 2001.

[13] JANICKI R., LAUER P.E., Specification and analysis of concurrent systems – the COSY
approach; Springer-Verlag 1992.

[14] MURATA T., Petri nets: properties, analysis, and applications; Proceedings of the IEEE,
vol.77, no.4, pp.541-580, 1989.

[15] REISIG W., Petri nets – an introduction (EATCS Monographs on Theoretical Computer
Science 4); Springer-Verlag 1985.

[16] SILVAM., TERUEL E., COUVREUR J., Linear algebra in and linear programming techniques
for the analysis of place/transition net systems; Lectures on Petri nets – basic models (Lecture
Notes in Computer Science 1491), pp.309-373, Springer-Verlag 1998.



Checking compatibility and substitutability of software components 184

[17] ZAREMSKI A.M., WANG J.M., Specification matching of software components; ACM Trans.
on Software Engineering and Methodology, vol.6, no.4, pp.333-369, 1997.


