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Abstract 
 

It is a known fact that renewables suffer from intermittency. This causes fluctuating energy generation 

which forces grid operators to encounter the problem of unbalanced power and frequency disturbances. 

Energy storage is always necessary if a high percentage of renewable energy sources are used. Therefore, 

the current study is quite significant as it introduces a new large-scale storage technique that happens to 

be sustainable in many ways and also encouraging as it forms an impressive combination of utility-scale 

renewable energy generation and energy storage. The ability to store power on a large scale will be an 

essential feature of any sustainable and reliable energy system. This can be accomplished by storing the 

energy in a local storage system with sufficient capacity. The Hydraulic Rock energy storage system is 

the solution to this ambitious level of self-sufficiency as it relies primarily on local resources and has an 

efficiency of over 80%.  
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Nomenclature 
 

GES  Gravity energy storage 

DSM   Demand-Supply management  
PHES   Pumped Hydro energy storage 
HRES   Hydraulic Rock energy storage 
EQPS   Elmhurst Quarry Pumped Storage Project 
ORES   Ocean renewable energy storage 
PAS   Pump accumulation station 
RES   Renewable energy sources 
LCOE   Levelized Cost of Energy  
LCOS   Levelized Cost of Storage 
ROI   Return on investment 
SOC   State of charge 
RMR   Rock Mass Rating 
PPA   Power Purchase Agreement  
OECD   Organisation for Economic Co-operation and Development 

Capex   Capital Expenditure 

GFCF   Gross Fixed Capital Costs 
EIA  Environment Impact Assessment 

ρZ  density of rock,  kg/m3 
g   acceleration due to gravity, 9.81 m/s2  
EZ             cylinder’s potential energy, J 
VZ             volume of the rock cylinder, m3  
hZ                    elevated height of the rock cylinder, m 

rZ  radius of the rock cylinder, m 

lZ            height of the rock cylinder, m 
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EW                   potential energy losses,  J 
ρW  density of water, 1000 kg/m3 

rS
→  center of gravity, m/s2    

VH             displaced volume, m3 
EZES  potential energy stored by the system, J 
PD  pressure at the seal level, Pa 
PZ  the pressure of the rock cylinder, Pa 
PW  the pressure of the water, Pa 
PT  total pressure, Pa 
AZ  surface area of the exposed cylinder, km2 

eZES  energy storage capacity, kWh/m2 
eGodisthal energy storage capacity of Godisthal PHES, kWh/m2 

wZES   energy density, kWh/m3 
wGodisthal  energy density of Godisthal PHES, kWh/m3 

Q  flow rate, m3/s 
ηT  efficiency of the transformer  

ηM,G  efficiency of the motor or generator  

ηP,T  efficiency of the pump or turbine  

ηR  efficiency of the piping  

ηC  combined efficiency  

1. Introduction 
 

The development of the renewable energy sector throughout the years has led to a clear enhancement 

in the research and development of control strategies and management [1],[2]. Electricity generated from 

renewable sources is predicted to increase exponentially in the next coming decades and hence variability 

in energy production and subsequent grid integration pose one of many impending challenges [2]. In this 

scenario, energy storage technologies play a vital role in having both technical and economic advantages 

while meeting the ends of energy generation and DSM thereby, enhancing the reliability of the utility grid 

[2],[3]. There are several benefits of using energy storage such as reducing energy costs, improving indoor 

air quality when using benign energy for heating or cooling, reducing energy consumption, increasing the 

operating flexibility, conserving and substituting fossil fuels by reducing their use, as well as decreasing  

greenhouse gas emissions and last but not least, reducing operating and maintenance costs. 
 

However, akin to many power systems, the energy storage system does pose certain challenges i.e. 

difficult to understand and cannot be investigated, demand for power in all of its forms is usually not 

steady, nor is the supply thus load management becomes crucial in the whole electric chain. Storage 

processes are not 100% fully efficient; therefore, some energy is lost while being stored [4]. The decision 

of adoption of energy storage systems, is basically made based on savings, except when policy regulations 

are imposed. Hence, economic viability and financial feasibility are one of the most important aspects that 

should be considered for commercializing energy storage systems. There are two main types of energy 

storage systems. The first category deals with distributed energy storage, whereas the second one is about 

bulk or utility-scale energy storage.  
 

 GES technology is considered as one of the most interesting storage concepts because it relies on the 

same concept of PHES [4]. However, the attractiveness of this system comes from the fact that it 

overcomes the constraints of site availability [5]. This technology is labeled as bulk storage as it can store 

large amounts of energy. GES has gained attention because it proved to be an environmentally friendly 

technology unlike batteries [5],[6]. 
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Under the broader concept of GES, Heindl Energy Inc. has come up with an original suggestion named 

HRES. Fig. 1 illustrates the operating principle of this energy storage system. The concept involves 

pressurizing the water using a big piston, unlike the idea of pumping water up or down depending on the 

geographic conditions. The implementation of this system is based on drilling a large circular area to 

create a rock piston, which is isolated from the surrounding rocks [31]. The surface water and the 

underground area must be connected using a tunnel. This system proposes an average energy storage 

capacity of 1600 GWh with the mass of rock as a piston having a radius of around 500m [7],[31]. A unique 

characteristic of this electricity storage system is that it uses a massive rock to store potential energy at a 

density many times higher than the energy density of water. This results in higher storage capacities [5].  

In this concept, water is used only as a hydraulic liquid. To charge the system, water under pressure is 

forced by pumps to displace the exposed rock cylinder. The hydraulic force raises the rock cylinder, 

storing electricity in the form of potential energy. The level of pressure required is determined by the mass 

of the exposed rock cylinder and typically ranges from 21 to 103 bar [6]. To discharge the facility or 

reconvert the energy to electricity, the rock cylinder is allowed to sink, and the water under pressure fed 

through a turbine connected to a generator. The electric energy produced is then fed into the electricity 

network using a transformer. 

 
 

Fig 1. A block diagram of Hydraulic Rock energy storage system 
 

Further, no chemicals or other hazardous substances are used in this technique, with water and rock 

being the key components required. The most likely business case of this storage technology is with 

photovoltaic or wind energy production as it can ensure reliable electricity supply at a levitated cost over 

a period of time [6],[7]. However, this technology is still in conceptual mode and various influential 

dimensions of this technique are in the process of validation [7]. Nevertheless, a number of aspects related 

to this storage technology are analyzed which includes the system feasibility, design, profitability, value, 

application, development, inherent risk, and policy measures. 

2. Problem statement 
 

More than 4300 mayors of European cities representing more than 170 million people have signed the 

declaration ‘Covenant of Mayors’. The Covenant contains a sustainable energy action plan which exceeds 

the EU’s 20% carbon dioxide (CO2) reduction target for 2030. To reach this plan, a series of measures 

have been proposed which include a change in electricity generation and a move to renewable sources like 

solar and wind power and augmentation of renewable energy storage capacity [26].  
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Renewable energy is now making a rapidly increasing contribution to global power supplies, with a 

growth rate of approximately 20% per year [10]. In order to ensure a continuous supply of electrical power 

based on such renewable energy sources, a highly efficient storage system is required to store the excess 

energy generated until it is required when the energy source is not available [11]. As these resources suffer 

from intermittency, considerable storage capacity is quintessential to thwart the spiraling threat of climate 

change. In the case of wind energy, this typically corresponds to storing energy at peak wind time to meet 

off-time energy demand [12],[13]. 

Energy storage systems provide several benefits to enhance the electric grid such as ancillary services, 

load following, price arbitrage, regulation, load leveling, and many others [14]. However, the current 

storage systems still face many challenges. The most prominent one is the technology optimal design, 

construction, and sizing [15]. Many energy experts have also predicted the extent of percolation of storage 

principles would actually fulfill the global obligations of meeting clean and sustainable energy on a large 

scale. In this scenario, the inclusion of state-of-the-art bulk energy storage technologies may widen the 

current research domain in the field energy storage sector [16]. 

 

3. Literature Review  
 

As PHES occupies lion’s share in bulk energy storage field, researchers and industrials are currently 

developing technologies that are similar to PHES mainly to overcome the demerits of geographical 

requirement and population displacement [16]. In this endeavor, a very interesting technology is 

underground PHES. The working principle of this technology is similar to that of PHES except that the 

elevation difference is achieved by digging underground [17]. The lower reservoir can be either 

constructed or it can make use of already existing cavern or mine. However, the technical and economic 

constraints such as legal permissions, construction risks, and long gestation of return on investment have 

made this technology less feasible in the current energy market scenario Nevertheless, many similar 

projects are being developed and are in various mode of conceivable stages. One such related technology 

is a conceptual underground PHES project in Illinois, the USA under the name of EQPS, which makes 

use of an abandoned mine and quarry [18] thus making the requirement of the huge geographical area an 

oblivious necessity. Similarly, Riverbank Wiscasset Energy Inc. is also working on a 1000 MW 

underground PHES with a depth of 2200 ft underground located in Wiscasset, Maine [19]. Delft 

University has reported its study on a new innovation, which is compressed air combined with PHES 

technology [20]. Here pressurized water container is used as a substitute for the upper reservoir. Thus, 

energy is being stored in compressed air instead of water at high elevation. The air gets pressurized when 

water is being pumped to the pressure container. Thus, compared to PHES, this technology does not 

depend on specific geographic locations [20]. Another technology called undersea PHES has been 

proposed by Subhydro AS Inc, which is a Norwegian company. The usefulness of this concept is seen in 

the case of offshore wind farms. It basically uses the pressure of water at the ocean bottom [21] and the 

obtained results of this study have shown that the system can generate economic profits at relatively low 

depths of around 200 m. This technology has many potential advantages although more research and 

investigation are needed when it comes to the construction of the sphere.  Apart from challenges, undersea 

storage technology is considered as a great innovation [20],[21].  

In 1999, the first seawater PHES was developed in Japan under the name of ‘Yanbaru’ [22]. The 

proposition came from Morishige at Mitsubishi Heavy Industries with the idea of large structures mounted 

at the sea bottom. Other researchers suggested PHES systems, mounted at the seafloor and coupled with 

offshore wind farms [21],[23]. Unfortunately, these projects could not be implemented due to technical 

difficulties. On the other hand, the Massachusetts Institute of Technology investigated another system 

named ORES, but the technical deliberations of this technology are still under the implementing stage 

[22]. Schmidt-Bocking and Luther [23], also worked on a similar ocean bottom storage system. They 

suggested a storage technology with a capacity of 58 GWh, a sphere of 280m in diameter, and a depth of 
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2 km underwater. Along with that, the researchers have suggested many solutions to enhance PHES 

technology such as improvements related to elevation difference, water pressure, and discharge rate of 

water [23][24]. In the Netherlands, two brothers [25] used a huge confined water area as PHES. This 

system is also called PAS, in which the fluid is being pumped to a certain elevation when there is excess 

generation and then released through turbines when energy is needed. This system has been implemented 

by Kibrit in the Netherlands. Another system called ‘Energy Island’ has been developed by Boer and is 

still under research [26]. This storage system operates by storing energy while lowering the water, unlike 

the previously mentioned systems which elevate it. A similar system named “The Eleventh Province” is 

being developed in Belgium. A study by Hanley inspected the possibility of constructing a similar system 

suggested by Gravity Power Inc. [22]. 

To solve the issue of elevation difference and other demerits associated with large scale energy storage 

techniques, Heindl’s idea of Hydraulic Rock energy storage is more significant [7]. As this energy storage 

technology is the prime focus of this study various nuances associated with this technique are vividly 

deliberated in the following sections.  

Hence, to shift away from fossil-based fuel resources, and the liability to enforce sustainable energy 

production, increased reliance on RES has become an indispensable part of an existing electricity value 

chain. The energy obtained from RES fluctuates on a temporary basis and reaches its maximum in certain 

hours during the day. Therefore, in order to meet the maximum energy demand, a flexible energy 

generation in combination with favorable energy storage would not only bridge the gulf between demand-

supply mismatch but also encourages the greater participation of sustainable energy storage technologies. 

 

4. Methodology 
 

6.1 Scope of the study 
 

6.1.1 Overview of utility scale wind energy 
 

In the previous study, the utility-scale onshore wind farm at the Bonavista peninsula, Newfoundland is 

designed [1]. The study mainly concentrated on a series of demerits of 824 MW Muskrat hydroelectric 

project, thus an equal capacity of alternative renewable energy is proposed with the detailed environment 

and economic benefits. Now this study deals with the storage aspect of wind energy.  

Proceeding further, this study tries to explore the best possible and satisfactory storage technique for 

utility-scale wind farms suitable for the province of Newfoundland and Labrador. The storage site 

selection includes the Predictive-specific model, which uses geospatial analysis in bringing out the multi-

dimensional selection patterns to extract the optimum storage capacity in the chosen areas [7],[10]. These 

approaches adopt both inclusionary and exclusionary principles to develop energy storage infrastructure 

and are very much in tandem with international energy storage standards.  

The predominant average hourly wind direction in Bonavista varies throughout the year. The wind is 

most often from the south from March to September, with a peak wind distribution percentage of 48% in 

the month of July and from the west with a peak percentage of 51% in the month of January [1],[11].            

Table I. presents a brief mention of site parameters extracted in the Bonavista region.  
 

    TABLE I. BONAVISTA PENINSULA 

Site Parameters 

Latitude and Longitude 48.62451°, -53.04989° 

(from the centre of the chosen area) 

Wind speed 9.75 m/s @ 100m height 

Power/Area 1051W/m2 

Nearest Weather Station Bonavista 
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Fig 2.  Aerial view of the selected region in the Bonavista peninsular region [1].                Fig 3.  Varying mean wind speed at Bonavista region [1]. 

The location of storage site obtained from the wind atlas is shown in fig 2., and fig 3 depicts varied 

wind distribution across Bonavista peninsula region. A preliminary analysis of wind  parameters such as 

energy density, LCOE, profit margin, the area taken, etc., and storage parameters such as energy storage 

capacity, LCOS, environmental benefits, incremental capital cost, etc., of HRES system, at the intended 

site location provides an encouraging picture about the scale of economics of this combined project. 

Further, the metrics show favorable results with over combined savings of 4.02 billion tons of CO2 and 

approximately 120 million USD in profit and over 20% ROI [1],[18]. These benefits can greatly be 

increased with an increase in the radius of the rock piston along with better efficiency measures [7]. Thus, 

the proposed combined project will cost around 30% less than the sole conventional PHES project besides 

negating the effect of environmental and social pressure [5],[7]. 
 

6.1.2 Innovative bulk energy storage technique 
 

A new option, HRES as unveiled by Eduard Heindl, professor of business informatics at Furtwangen 

University, Germany could be the potential replacement of PHES [3]. The basic idea is to lift a large rock 

mass and the store potential energy. In HRES the granite cylinders are said to be able to move up and 

down on an underground water column at one millimeter per second - up with electric pumps, down 

through the potential energy of their sheer mass [5]. Many approaches that try to move large masses by 

mechanical means, such as ropes or tracks failed due to the cost per stored kWh thus, lifting a large mass 

by hydraulic means becomes an interesting choice. The implementation of this system is based on drilling 

a large circle to create a rock piston, which is isolated from the surrounding rocks. The surface water and 

the underground area must be connected using methods known from mining and tunneling [4],[7]. 

In this arrangement, water is pumped into the bottom between the cylinder and the base, resulting in a 

lift of the heavy rock piston. The piston is sealed against the surrounding rock. The raised piston stores 

the electric pump energy in form of potential energy. To earn the energy back from the system, the 

pressurized water is fed into a turbine, connected with a generator to generate electricity. This is similar 

to the basic principle of a conventional hydro storage [6],[7]. 

The objective here, however, is not the removal of the raw materials (as in the case of mining) or the 

removal of the stone (as in the case of tunneling), but rather the preservation of the rocks [12]. In any 

event, tunnels or shafts must be installed in which vehicles and people can be transported to the bottom of 

the piston, so that they can setup the technical equipment [16]. 

The key advantage of this approach lies in the extraordinarily large amount of energy that could be 

stored and the relatively small investments compared to a similar hydro storage. The interesting point of 

this arrangement is the amount of energy grows by the fourth power of the radius while the production 

costs, mainly through the removal of the cylinder from its environment, grow only with the second power 
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of the radius. This means, in comparison to all other known forms of storage, almost arbitrary low costs 

per kilowatt hour can be achieved if the radius of the system is large enough [8]. 

The estimation shows that across Europe ranges from 15 to 480 TWh capacity of energy is needed for 

next few decades. Storage forms such as hydrogen, compressed air or batteries are still immature, offer 

too little capacity or are too expensive. Currently, on a large scale only PHES plants work reliably and 

economically. The efficiency is around 80 percent, the investment costs are around 70 euros per kilowatt 

hour [13],[19]. 

However, as [7] observed, there are hardly any new locations for PHES plants in Central Europe, 

because the valleys have to be flooded and forests have to be cut down. To illustrate, a new 1400 MW 

power plant with a capacity of 13 GWh is currently under construction at Schluchsee in the Black Forest, 

for which a 76m high dam must be built. The project is controversial among the local population [20]. This 

is why experts believe HRES technique can replace the role of PHES systems as former intervene less 

with nature. 
 

6.2 Design Considerations  
 

Compared against other storage technologies HRES system exhibits a direct correlation between 

maximum energy storage capacity and optimum enormity of the size of rock piston. The cost associated 

in building HRES also favors the construction of large storage plants rather than smaller ones. Therefore, 

a rock cylinder with radius of approximately 150 m or more is recommended for corresponding extraction 

of storage capacity in GWh terms. Thus, when used in combination with utility scale wind energy 

generation this storage facility can ensure stable, sustainable and highly competitive production costs for 

many years [9], [11].  

However, the cost of construction of a HRES plant is heavily dependent on the cost of separating the 

piston from the surrounding rock, it can be estimated that the increase in rock piston size only causes 

construction costs to increase by a factor of four [7]. In other words, HRES systems quickly becomes 

much more cost-effective as rock piston size increases. For example, if the radius doubles, the cost 

associated per kWh reduces by a factor of four i.e. to just 25%. Though HRES is not yet built to validate 

its theoretical capacity. However, the current study is focused on analyzing the potential benefit of 

augmenting this technology with wind energy while comparing storage parameters of PHES system. So 

as to effectively meet the design standards of large-scale energy technique. 

Fig 4. represents the crude design details of HRES system. In this system, the mass of the rock that 

forms the cylinder and the mass of water that can be pumped under the cylinder determine the quantity of 

energy that can be stored. [4],[7]. 
 

 
 

Fig 4. The design details of Hydraulic Rock energy storage system [7]. 
 

Assuming the stone density  ρZ  is  2600 kg/m3, i.e., equivalent to the conventional density of the 

earth’s continental crust and gravity at the earth’s surface is 𝑔 =  9.81 m/s2, then the potential energy, 

EZ of a rock cylinder with a volume, VZ  and elevated height, hZ is given by; 
 

EZ =  g ∗  ρZ ∗ VZ ∗ hZ                                       (1.1) 
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The volume, VZ  is determined by the radius, rZ and height, lZ of the rock cylinder; 
 

VZ = π ∗ rZ
2 ∗ lZ          (1.2) 

 

As the system floats on water, sustaining the center of gravity of the rock cylinder is crucial. Therefore, 

application of buoyancy principle helps to raise the sealing line of the cylinder through its middle level; 
 

hZ = 
lZ
2⁄                   (1.3) 

            

From (1.1), (1.2) and (1.3), the cylinder’s potential energy EZ  is given by: 
 

EZ =  g ∗ ρZ ∗ π ∗ rZ
2 ∗
lZ
2⁄              (1.4) 

 

Like all energy storage system, the stored energy EZ  is a dependable factor of potential energy losses 

EW  of the water with a density of  ρW=1000 kg/m3 , which is pumped from the surface water source to 

under the rock cylinder, and which has a center of gravity at a height,     
rS
→   and a volume, VH,: 

EW = 
rS
→ ∗ g ∗ ρW ∗ VH ∗ hZ            (1.5) 

 

The volume, VH of the displacement area is determined by the radius, rZ  and height, lZ of the cylinder, 

and is given by; 

VH = π ∗ rZ
2 ∗
lZ
2⁄                 (1.6) 

 

The water in the displacement area is between the depths of, lZ and lZ/2. Therefore, rock cylinder’s center 

of gravity is determined by the following formula; 
 

 rS
→  =  −

(lZ +
lZ
2⁄  )

lZ
                    (1.7) 

 

From (1.4), (1.5), (1.6) and (1.7), the potential energy losses of the water, EW is; 
 

EW =  −
(lZ +

lZ
2⁄  )

lZ
∗  g ∗  ρW ∗  π ∗ rZ

2 ∗  (
lZ
2⁄  )

2

                                  (1.8) 

 

From above equations, the potential energy stored by the storage energy system, EZES is;  

 

EZES =  [(g ∗ ρZ ∗ π ∗ rZ
2 ∗
lZ
2

2
⁄ ) −

(lZ +
lZ
2⁄  )

lZ
∗  (g ∗  ρW ∗  π ∗ rZ

2 ∗  (
lZ
2⁄  )

2

)]        (1.9) 

 

Therefore, the sum result is, 

EZES =  [(ρZ −
3

4
∗ ρW) ∗

g∗π∗rZ
2∗(

lZ
2

2
⁄ )

2
]              (2.0) 

 

 If the eq. (2.0) is used to calculate the energy capacity of the proposed storage system for the utility 

scale wind farm, in relation to design standards of  the rock cylinder  radius,   rZ =  250 m  and a height, 

lZ  =  500m, it is to be noted that a spectacular theoretical storage capacity of EZES =  125GWh  is 

obtained. Further, it is observed that if either the height or radius is doubled, then there is a four-fold 

increase in storage capacity, EZES and astonishingly, for every doubling of both radius and height would 

result in a 16-fold increase in the quantity of stored energy EZES which ultimately make the theoretical 
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storage capacity to oscillate in the terawatt hours scale. To testify the above claim, it can be seen in fig 5., 

for the given area, the storage capacity of the storage system exponentially rises for increased radius size 

of the rock cylinder. Further as observed in fig 6., the prominent storage facility parameters i.e. pressure, 

specific volume, energy density is proportional to the size of the cylinder 
 

      
Fig 5. The theoretical specific storage capacity, Area required v/s                Fig 6. The plot of various facility parameters v/s Radius of the rock cylinder.        

Radius of the rock cylinder.                                          
 

As [7] observed, even after taking into account the losses encountered in reconversion of electricity, 

comparatively speaking, the obtained storage capacity is enough to cover Germany’s electricity 

requirements for a day. However, in its downside, the current technology is not yet implemented in its 

current scale except a demonstrable prototype facility is built at the University of Innsbruck with a rock 

cylinder of diameter  2.3 𝑚, a height of 6 m, and a weight of 40 tons [5],[7]. 

The pressure level within a system vary concurrently with its size and SOC. A good indication of the 

maximum pressure level in the pump and turbine is the pressure 𝑃𝐷 at the seal level. Fig. 7, left shows the 

storage facility when fully charged as the pump or the turbine located at ground level and at the same 

elevation. 
 

 
 

Fig 7. A study on the effect of pressure parameter with pump and turbine placed at the ground level and below the ground level [7].  
 

 

The pressure of the rock cylinder on the water is given by; 

PZ =  g ∗ ρZ ∗ lZ      (2.1) 
 

The pressure of the water on the rock cylinder varies as the water column in the displacement area 

changes. It depends on the height hZ to which the rock cylinder is raised, and is given by; 

PW =  g ∗ ρW ∗ (lZ − hZ)      (2.2) 
 

The lower the position of the cylinder, the lower the pressure at the seal. This is because the water 

column working against the cylinder rises at the same time. The pressure resulting at the seal is   

PD = PZ − PW =  g ∗ (ρ
Z
∗ lZ − ρW ∗ (lZ − hZ))                      (2.3) 
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Therefore, the best approximations can be done if the pump and turbine are placed 50m below ground 

level (Fig. 7, right), then the corresponding total pressure PT  is given by; 
 

PT =  g ∗ (lZ ∗ ρZ + ρW ∗ (50 − hZ))      (2.4) 
 

The theoretical space requirements of a mechanical storage energy facility can be roughly determined 

by calculating the surface AZ of the exposed cylinder; 
 

 AZ = π ∗ rZ
2                     (2.5) 

 

Therefore, from above equations, a mechanical energy storage facility with a radius of rZ =  250m 

generates a capacity of around 125GWh requires a surface area of AZ =  0.1963 Km
2. By comparison, 

the upper reservoir of the largest existing German pumped-storage plant in Godisthal has a capacity of 

8.5GWh and a surface area of 0.55 km2 [7]. 

Further a better reference value for comparison is extrapolated in relation to surface area. This value 

expresses the amount of energy stored per square meter of surface area. The storage capacity eZES depends 

on the radius and height of the system, and is given by; 

 

eZES =
EZES

AZ
=  g ∗

lZ
2

2
∗ (ρG −

3

4
∗ ρW)   (2.6) 

 

From eq. (2.6), the capacity for a mechanical stored energy system with a theoretical radius of rZ =
250m and a height of lZ  =  500m would be eZES =  630kWh/m

2. By comparison, the real pumped-

storage plant in Goldisthal has a specific storage capacity of eGodisthal  = 15.5kWh/m
2 [7]. This means 

that the theoretical specific storage capacity for a mechanical energy storage system is 1.6 times higher 

than the pumped-storage plant in Godisthal, Germany. 

The storage facility requires a large water source nearby to supply water during charging, and to take 

in water during discharging. If not, an adequately sized reservoir must be built to handle the water 

exchange. This would dramatically increase the amount of space required. There is also little space 

available and few suitable locations for large storage lakes in densely populated countries [5],[7].  

The PHES systems often require large quantities of water. The volume of water required is determined 

by the volume of the displacement area VH which varies based on the radius and the height of the cylinder 

and is calculated using eq. (1.6). 

According to eq. (1.6) a theoretical mechanical energy storage system with a radius of  rZ = 250m and 

a height of lZ  = 500m requires 0.05 km3 of water when fully charged. Since this value is difficult to 

compare, the energy per cubic meter of water stored can be considered instead.  

The energy density of a mechanical energy storage system is determined by the volume of the 

displacement area filled with water and the total amount of energy stored; 
 

wZES =
EZES

VH
= g ∗ lZ ∗ (ρG −

3

4
∗ ρW)   (2.7) 

 

On applying the theoretical dimensions results in the energy density of wZES = 2.52kWh/m
3 (Fig 6). 

The pumped storage plant in Godisthal, Germany has an energy density of wGodisthal = 0.71kWh/m
3

 

[7]. This is equivalent to about two-sevenths of the energy density of HRES system. This difference is due 

to the fact that water is used only as a hydraulic liquid and not as a storage medium [3],[7]. The inflow 

and outflow quantities of water are determined by the power of the pump and turbine. Thus, for a radius 

of rZ = 250 m, a height of lZ  =  500 m, and a turbine power of 736MW would require Q = 81.2m3/s 
of water over an operating period of a week. The pumped storage plant in Godisthal, Germany with an 

installed turbine power of 1,060MW requires eight full load hours which amounts to a water-discharge of 

416.67m3s−1 [7].   The efficiency of HRES system is determined by the efficiency of the transformer ηT, 
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the motor or generator ηM,G ,the pump or turbine ηP,T, and the piping ηR; Hence, the combined efficiency 

ηC is given by; 
 

ηC = ηT ∗  ηM,G ∗  ηP,T ∗  ηR                       (2.8) 
 

With the help of eq. (2.8), it can be inferred that the efficiency parameter of HRES system is comparable 

with the efficiency of pumped-storage plant which stands approx.80%. This is because the machine 

components used in both the energy storage systems are more or less identical [7]. 
 

6.3 Geological considerations  
 

To construct HRES plants the geological attributes of the prospective region must first be assessed in 

detail by a team of geologists. In this regard, Heindl Inc. has carried out a study analyzing different types 

of magmatic, metamorphic, and sedimentary rock [7]. A total of 117 globally distributed sites were 

analyzed and a classification performed based on the internationally recognized RMR system. The 

outcome of the study finalized the suitability of the geological conditions for the construction of a HRES 

was found to be “very good” RMR I at 3% of the evaluated sites, and “good” RMR II at 43% [7],[10]. 

The remaining sites would require extensive, expensive rock stabilization measures. Interestingly, the 

proposed storage site falls in the RMR II category, satisfactorily meeting all rating standards. However, 

on-site inspection by geologists to know more about the localized seismicity issues and age of rock, etc. 

are much needed to avert constructional accident.  
 

    
 

Fig. 8 A representation of stratified granite rock (Left) [7], comparison of suitable cliff area of varying heights (Right) [10] 
 

In addition to the assessment of geological factors, a large volume of water depending on the size of 

the storage – in this case around 5.0 million cubic meters for a piston with a radius of 250𝑚 must be made 

available. This water is constantly re-used, and thus frequent redistribution of water as in PHES system is 

averted. 

According to [7], the best sites are the areas consists of solid sedimentary bedrock which are 

geomorphologically stable. These rocks are little-faulted and formed in compact layers of solid rock 

material as shown in fig 8 (left). The intended location in the Bonavista peninsula of Newfoundland is 

formed by stable rock morphology where a firm cylinder can be exposed to build this mechanical energy 

storage system [10]. As the region located at the coast of steep cliffs made up of compact layers of granite, 

sandstone or limestone (both are metamorphic rock of sedimentary type) rock with even layers and limited 

fissures. hence preferred region for safe construction and operation [28]. Granite rock is the most stable 

form of rock, and forms cliffs up to 1000 to 1200𝑚 high as shown in fig 8 (right).  

The facility construction would rely primarily on mining processes and the main construction steps 

involved are explained in brief in following segments. 
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 6.3.1 Construction of tunneling system 
 

The construction and operation of a mechanical storage energy system would be facilitated by an access 

of tunnel spiraling around the installation for providing access to heavy vehicles.  
 

        
 

Fig 9. With the use of reef miner cutting machines the piston can be separated from the surrounding rock [7]. 
 

 6.3.2 Sealing and installation of rolling membrane seal around the piston 
 

The solution to the key challenge of sealing the gap between the piston and the cylinder and retaining 

the highly pressurized water below is a “rolling membrane” which is securely connected to both piston 

and cylinder. The membrane elements, similar to conveyor belts as used in the mining industry consists 

of vulcanized rubber reinforced with steel cables or aramid fibers [31]. 

The seal is a critical component of mechanical stored energy construction. The seal gap must be as 

narrow as possible so that the force on the seal is not excessive. But the seal gap cannot be constructed 

with precise accuracy across a distance of several 100m [7]. In addition, the seal and surfaces must be 

accessible to workers and machines so that they can be properly maintained. Otherwise, even the smallest 

malfunction could result in a total loss of the facility [32]. Therefore, civil engineers recommend a rolling 

diaphragm technique where a seal inserted in a relatively narrow gap 20 cm wide as this diaphragm 

membrane material is similar to conveyer belt and can withstand forces resulting from pressures of 50 bar 
or more. Conveyer belts are additionally reinforced with steel cords running along their length. An 

advantage of this seal concept is that it automatically keeps the piston centered in the middle of the cylinder 

[30].  

        
 

Fig 10.  Rolling diaphragm seal placed in the narrow gap created when the cylinder rises efficiency [24]. 
 

 6.3.3 Construction of Cylinder Wall 
 
 

The separation of the piston base from the underlying rock is a particular challenge. It is based on the 

well-established “bord and pillar” method of mining/extraction [28]. Two access shafts are excavated, 

right down to the base level of the planned cylinder. Then the excavation of the ring-shaped space between 

the cylinder and the piston can be executed in parallel with the separation of the piston base from the rock 

beneath [32]. Separation of the piston’s side from the surrounding rock, downwards from the surface, can 
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be done using precise blasting to loosen the rock and through classical drilling, rock is excavated and 

transported to the surface cribbed chute technique [30]. 

 
 

Fig 11. Pictorial representation of process involved in carving rock cylinder [16] 

  
 6.3.4 Installation of machinery and electrical plant 
 

The turbines, pumps, generator and transformer can be located at the surface or underground in a 

specially constructed cavern [7]. In principle, these items of plant are used in very much the same way as 

they are used in pumped hydro storage plants. 
 

 
 

Fig 12. Mechanical and Electrical equipment [7]. 
[  

6.3.5 Construction of water reservoir and hydraulic lifting 
 

 

        
 

     Fig 13. Artificially built water reservoir (Left), Water used for Hydraulic lifting (Right) [7] 
 

Water is used as a hydraulic medium to lift the piston and, when routed through the turbines, to generate 

electricity, as shown in fig (13 right). For the proposed design capacity of 125GWh requires approx.           

5.0 million cubic meters of water. This is phenomenally less compared to pumped hydro storage plant of 

equal energy storage capacity [7]. In order to store the water, a reservoir must be constructed nearby – 

unless a natural basin or lake is situated in fig (13 left). Thus, construction of whole system expected to 

last approximately five years [32]. The operating life of the system is practically unlimited, since its main 
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component, the rock mass – is extremely durable. The operating equipment, such as pumps, turbines and 

generator, can be designed for a service life of 60 years or more, and can then be replaced as required [27].  
 

 

 
 

Fig 14. A Complete set up of Hydraulic Rock Energy Storage System [7]. 

5. Economic perspective of Hydraulic Rock energy storage 
 

The economic feasibility of HRES system primarily depends on the intended application of plant 

operator. Based on the market floating mechanism many energy experts have provided a set of peculiar 

energy economic models which augurs well for renewable storage projects. As this technology delivers 

all day electricity at a constant price for 20 years or more, amongst all, PPA is the best suited model for 

the combination of large-scale storage project with Solar PV or wind energy [30]. However, there exists 

a price arbitrage in which selling, and purchase of energy depends on lower or higher wholesale prices. 

Apart from that the operator can also accrue fees for provision of system services and other ancillary 

services [33].  

The construction cost of the plant depends primarily on the size of the piston and the geological 

conditions at the specific location [7]. Because of this reason, the business model does not overlap with 

neither pumped hydro storage (which needs elevation-Hydraulic Rock does not) nor with compressed air 

storage (because they need cavern and fissured rock). As can be seen in fig 15, the total investments costs 

decrease logarithmically with increased storage capacity and thus, marginal cost benefit is achieved. 

Further, the specific construction costs at various stages is shown in fig 16, amongst all, sealing and tunnel 

costs are major investments which involve many technological challenges.  

Nevertheless, for 250𝑚 radius and 10% gradient, assuming the cost of building a tunnel is 2,100 

USD/m, then the theoretical approximation of total costs would be 3.2 million USD [35]. However, this 

can be reduced drastically when constructed in tandem with power generation utility infrastructure in this 

case wind farm [17]. The conservative expectation on return ROI is more or less similar to PHS system 

i.e for at least 60 years, and maintenance costs should be very low akin to PHS system.  

It is also observed that the profit margin gained by having utility scale wind farm at Bonavista region, 

Newfoundland instead of Muskrat hydroelectric project stands 28.45 million USD with 12 cents/kWh grid 
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price [1]. Thus, the Wind-Hydraulic Rock combination outperforms PHS and conventional Hydro project 

in many ways economically. However, variability in cost structure may vary on practical considerations. 

   

 
 

Fig 15. Investments costs     Fig 16. Construction specific

 

7.1 Market potential of Hydraulic Rock energy storage 
 

In analysing the market potential of HRES, a satisfactory requirement such as large size renewable 

installations and demand for such large-scale market potential is expected to grow in fast emerging 

markets i.e. India, China and other Southeast Asian nations. The rate of energy consumption because of 

population pressure, increased penetration of renewable energy and geological constraints etc., are all 

certainty influences for adaption of this novel storage technology. Also, many European nations need a 

new bulk storage solution, especially for offshore and on shore wind energy generation around the North 

Sea [22]. Further, many OECD countries are in the process of constructing large-scale wind-plants of GW-

size, all of which forecasts an encouraging demand of energy storage in mid-term future [20]. The basic 

market model for HRES in the case of wind energy- excess power from wind farm is stored (purchased) 

and discharged (sold) in the light of varied wind distribution, satisfies the business case of large-scale 

production of energy from renewable sources [17],[18]. These models are ready for market listing as soon 

as a low-cost bulk storage solution is available.

The demand for storage is guaranteed by the requirement for utility companies and wind farm operators 

and this guarantee pact is established between these two stakeholders is fundamentally to meet the DSM. 

Grid operators also need bulk storage to balance out fast-changing loads in the system. Hence, the business 

model for HRES combined with wind power generation is proved to be analogous [18]. Apart from this, 

the return on investments from service and grid charges and other ancillary service agreements such as 

frequency regulation, voltage support, black start capability and spinning reserve capacity etc., as these 

services require storage solutions from few seconds up to several hours it can further increase the marginal 

profit for operators.  
 

7.2 Comparison of Levelized Costs of Storage 
 

Hydraulic Rock power will be the most economic utility energy storage. The large storage capacity and 

the high efficiency over 80% will makes it an unrivaled cost wise technology to shape renewables into a 
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24/7 source of power [7],[22]. The LCOS are calculated at only 9 cents/kWh for 10 GWh plant and nearly 

18 cents/kWh for a 1 GWh size [23].  

When comes to comparing the LCOS of HRES with other storage technologies it is all about the 

scalability factor [25]. As raw materials are cheap, the main cost drivers for HRES are equipment and 

construction. These costs are subject to scale effects and increase at a much lower rate than a respective 

increase in storage capacity. For example, doubling the radius of the rock cylinder increases the energy 

stored manifold, while construction costs only increase two-fold. In comparison, doubling the energy or 

power capacity of a lithium-ion storage system would increase costs by around 50% [20]. For the duration 

for 8 hrs and for 330 cycles p.a. adjusted to inflationary cost distribution, the LCOS analysis of HRES 

against various energy storage technologies is made in fig 17, it is observed that in almost all aspects, 

HRES yields better result especially w.r.t PHES systems.  
 

 
 

Fig 17. LCOS comparison in US $/KWh 
 

Further, the comparative study on LCOS by Imperial college has concluded that LCOS of HRES is 

lower than any other commercial bulk storage [5]. The study observed that based on a cost estimation, the 

total investment costs would vary from 160 USD/kWh of storage capacity for a 10 GWh size and 380 

USD/kWh for a 1 GWh size and the operational costs will be below 1% per year of capital expenditure 

(capex) [6], [7]. However, for all theoretical purposes the calculation costs for a size of 250m rock piston 

radius stands at 200 USD/kWh capacity. 

This explains why HRES is so competitive when it comes to their lifetime cost, Furthermore, gravity-

based storage concepts can make good use of existing infrastructure, such as old mine shafts, and mature 

equipment, such as water turbines, that has a long lifetime compared with electrochemical batteries which 

further reduces the GFCF exponentially. 

6. Results and Discussion 
 

Gravity Storage in general and Hydraulic Rock energy storage, in particular, has much to offer 

especially in regions where utility-scale energy generation is expanding, and large-scale storage is required 

to ensure continuous energy supply. These technologies act as a bright spot in areas where the traditional 

alternative PHES plants are not feasible due to many techno-economic-social concerns. Further, as 

discussed in the above sections the advantage of HRES over conventional one is the former’s fundamental 

ability to store more energy in a smaller area. However, on the question of the practicality of making a 

moveable heavy mass of rock cylinder, there are living examples of similar extant of rock excavation 

technology found in Brazilian granite quarries that fall under the RMR II category. Thus, technology for 

rock cutting is in principle, not an alien one. A simple calculation showed that if the piston height is twice 

the radius then the costs for sawing out the mountain are proportional to second power to the radius and 

the storage capacity grows with the fourth power of the piston radius. This means, if a system has two 
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times the radius, the capacity is 16 times higher. So, to put in a perspective the storage facility with a 

diameter of one kilometer could hold 1700 GWh of energy capacity – which is more than forty times the 

capacity of all pumped storage power plants installed in Germany! 

The flexibility of this storage technique as observed is instead of building a central storage facility with 

a diameter of one kilometer, the facility can also be three to five smaller systems that are distributed across 

the region or a country. Thus, a radius of a hundred meters too can make the granite storage cheaper than 

a PHES plant. 

Another aspect is the requirement of a large amount of water to displace the rock cylinder. The source 

can be a large water reservoir either natural or artificially built. In this study, the intended wind site is also 

a storage site located near shoreline which contributes mainly in two ways, optimal absorption of wind 

energy and seawater for uplifting the rock cylinder. Apart from energy storage capacity, the storage 

efficiency, response time, and circle efficiency of HRES resemble PHES plants hence a prospectus long-

term energy storage for photovoltaic and wind sources that need storage capacity of roughly the volume 

of one day’s demand for electricity. 

To sum up the discussion, many aspects of this storage technique has been studied, such as design and 

sizing, economic and risk analysis as well as structural stability. However, building an HRES is not trivial 

based on today’s electricity consumption and the dimension of long-term demand for bulk storage in 

Germany. It takes roughly the double of daily production to ensure supply at null times, this will be 60,000 

GWh per year. Even, if increasing power demand is not included this amount to cover only 5% of the 

demand, and it takes 375 HRES plants with a capacity of 8 GWh each.  

Nevertheless, this storage technique is a new opportunity to build grid-scale storage systems. Since this 

storage can be built virtually anywhere, many cities can reach a high level of self-sustainable energy 

supply. Unlike batteries, the HRES system is sustainable, eco-friendly, and carbon neutral. Another 

advantage lies in the reduced demand for long-distance power lines due to cheap storage capacity. As all 

technological solutions charted out so far are only theoretical and pilot projects can only demonstrate the 

viability of the system. Therefore, further research is needed to investigate the performance and the 

commercial development of this storage technology to well prove the credentials as described in this study. 
 

7. Uncertainty analysis 
 

The major uncertainty of HRES technology is that it is commercially unproven and pilot projects do 

not predict practical challenges i.e., undetected tectonic disturbances that might lead to water ingress at 

later times and cutting of the cylinder walls is challenging as it demands precision, otherwise, the piston 

movement is disturbed and cause tilting [31]. For low losses of water, the seal between the piston and the 

stroke volume should be near perfect. There is no EIA study associated with HRES [14]. Further, the key 

criteria for the HRES to accelerate the shift to an affordable low-carbon energy system and to become a 

serious contender to large-scale energy storage only when the theoretical cost estimates can live up to 

commercial scale construction and operation.  

8. Conclusions 
 

The fundamental objective of this study is to introduce a ‘state-of-the-art’ bulk energy storage system 

for utility-scale wind energy. In this regard, a brief introduction to the working mechanism of the proposed 

energy storage technique is presented. The basic motivation of this study is to address the concern of the 

‘Intermittency dilemma’ of renewable sources and other inhibiting factors associated with conventional 

energy storage technologies. Therefore, a preface of futuristic energy storage techniques is outlined with 

the help of relevant literature.  

The current work explored the possibilities of augmenting Hydraulic rock energy storage with the 

utility-scale wind farm at Bonavista, Newfoundland. This is achieved through optimally designing the 

storage structure while comparing the storage parameters with the Godisthal PHES system in Germany. 
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This is done mainly to highlight the potential of HRES as a replacement to PHES systems. Upon 

understanding the geological characteristics of the site and considering various influential modalities, a 

detailed analysis of the construction of the HRES system is made. The inclusion and acceptance of any 

new energy storage technology need to satisfy the established energy economies. In this regard, economic 

feasibility of HRES concerning its market potential and LCOS comparison with other energy storage 

options are carried out.  

Thus, to conclude the study, like all new technologies, the Hydraulic Rock energy storage system is 

also embedded with many uncertainties. However, sustained research for a better adaption of this novel 

technology can revolutionize the energy storage market besides addressing the profound negative effect 

of fossil-fueled climate change. 
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