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Abstract  

 Gene transfer agents (GTAs) are bacteriophage-like particles produced by several 

bacterial and archaeal lineages that contain small pieces of the producing cells’ genomes 

that can be transferred to other cells in a process similar to transduction. One well-studied 

GTA is RcGTA, produced by the -proteobacterium Rhodobacter capsulatus. RcGTA 

gene expression is regulated by several cellular regulatory systems, including the CckA-

ChpT-CtrA phosphorelay. A previous study on CtrA, a DNA-binding response regulator 

protein, showed that transcription of multiple other regulator-encoding genes was affected 

by its loss. These included genes encoding proteins predicted to be involved in the 

synthesis and hydrolysis of the second messenger bis-(3’-5’)-cyclic dimeric guanosine 

monophosphate (c-di-GMP). In this thesis, I investigated these genes and found that 

disruption of four of them (rcc00620, rcc00645, rcc02629, rcc02857) affected RcGTA 

production and flagellar motility. I performed site-directed mutagenesis of key catalytic 

residues in the functional domains responsible for diguanylate cyclase (DGC) and 

phosphodiesterase (PDE) activities involved in synthesizing and hydrolysing cyclic-di-

GMP, respectively, and analysed the activities of the wild type and mutant proteins. 

Through this work, I demonstrated that c-di-GMP acts to inhibit RcGTA production and 

motility. I subsequently demonstrated that the enzymatic activity of one of the proteins, 

Rcc00620, is regulated through the phosphorylation status of its REC domain, which is 

controlled by a cognate histidine kinase protein, Rcc00621. In this system, the 

phosphorylated form of Rcc00620 is active as a PDE enzyme and stimulates gene transfer 

and motility. Interestingly, the rcc00620/rcc00621 genes were acquired via horizontal 

gene transfer from a distantly related -proteobacterium. I also explored a potential 
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mechanistic link between c-di-GMP and RcGTA regulation via the CckA-ChpT-CtrA 

phosphorelay and confirmed that c-di-GMP binds to CckA and this shifts its activity from 

kinase to phosphatase and thereby affects CtrA phosphorylation. All these results add c-

di-GMP signaling to the collection of cellular regulatory systems controlling gene transfer 

in this bacterium and add gene transfer to the diverse list of activities affected by c-di-

GMP in bacteria. 
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CHAPTER 1- Introduction and overview 

1.1 Horizontal gene transfer 

Gene transfer refers to the movement of genetic information from one cell to 

another. Horizontal gene transfer (also known as lateral gene transfer) is the movement of 

genetic information between genetically distinct cells, and this process plays an important 

role in bacterial evolution. It is believed that horizontal gene transfer (HGT) is the main 

force behind the acquisition of new, adaptive traits and genetic variation across bacterial 

strains (Raz and Tannenbaum 2010). It is a common and pervasive evolutionary 

mechanism occurring in prokaryotes (Gogarten 2003; Soucy, Huang, and Gogarten 2015) 

and evidence of HGT has also been reported for eukaryotes (Boto 2014; Soucy, Huang, 

and Gogarten 2015). Using a wide range of techniques to detect HGT events occurring in 

genomes, several studies have reported that an average of 12% of genes in bacterial 

genomes have been subjected to HGT (Nakamura et al. 2004; Zhaxybayeva et al. 2006), 

and other studies suggested that approximately 81% of genes in 181 sequenced 

prokaryotic genomes have been horizontally transferred in the long history of prokaryotic 

evolution (Dagan, Randrup, and Martin 2008). 

The three traditional mechanisms by which bacterial DNA exchange occurs are 

transformation, conjugation and transduction, corresponding to uptake of free DNA, cell-

cell transfer of plasmid DNA, and phage-mediated DNA transfer, respectively. The first-

discovered method of HGT was transformation (Griffith 1928), where cells uptake naked 

DNA directly from the environment and it can be integrated into the genome. In 

conjugation, DNA transfer occurs because of cell-to-cell contact between a donor cell and 
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a recipient cell (Tatum and Lederberg 1947). Transduction is a process in which the 

genetic material from one bacterial cell is carried to another bacterium by a bacteriophage 

(Zinder and Lederberg 1952). 

In addition to these mechanisms, novel processes are continually being identified 

such as gene transfer via nanotubes (Dubey and Yehuda 2011) and membrane vesicles 

(Mashburn and Whiteley 2006; Chiura et al. 2011). Another type of genetic exchange 

process, which has some commonalities with transduction, is mediated through 

bacteriophage-like particles called gene transfer agents (GTAs) (Lang, Zhaxybayeva, and 

Beatty 2012). 

1.2 Bacteriophages 

Viruses that infect bacteria are known as bacteriophages or phages. They are the 

most abundant biological entities on the planet, with a global phage count estimate of 

~1031 (Suttle 2007), and therefore serve as an enormous nutrient and genetic reservoir 

(Wilhelm and Suttle 1999). They depend on the cellular machinery of bacteria to replicate 

and produce their progeny. It is believed that phages and their hosts have co-evolved by 

competing in a powerful “arms race”, which has involved the development of novel 

defense mechanisms by bacteria and the strategic methods of phages to overcome these 

and successfully infect the cells. 

The genetic makeup of phages can be single-stranded (ss) or double-stranded (ds) 

RNA or DNA and can be linear or circular, segmented or contiguous. However, phages 

with dsDNA genomes are the most common. The sizes of phage genomes range widely, 

e.g. from the 3.5-kb ssRNA in phage MS2 that infects Escherichia coli to the 500-kb 
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dsDNA in the Bacillus phage G. Phages also display diversity in their structures, although 

tailed phages are the most common type. A typical tailed phage consists of an icosahedral 

or prolate capsid head, which contains the dsDNA genome, and a tail that varies in length 

and structure depending on the phage family. The International Committee on Taxonomy 

of Viruses (ICTV) classifies phages taxonomically based on their genome and 

morphology (Ackermann 2009; Lefkowitz et al. 2018). More than 95% of identified 

phages have dsDNA genomes, possess tails, and belong to the order Caudovirales. The 

three families in this order are the Myoviridae, which have long, rigid, contractile tails, 

Podoviridae, which have short, non-contractile tails, and Siphoviridae, which have long, 

non-contractile, flexible tails (Ackermann 2007). 

 As mentioned earlier, phages depend on bacteria to replicate and produce their 

progeny. Phage recognize specific receptors on the bacterial cell surface, which partly 

determines phage specificity for particular host cells. Attachment to the cell is referred to 

as adsorption and this results in conformational changes in the phage virion that facilitate 

the transfer of the phage genetic material into the host cell (Young 1992; Karlsson et al. 

2003; Puck and Lee 1955; Rakhuba et al. 2010). The exact mechanism of getting the 

phage genome into the cell varies depending on the phage type. 

Phages are differentiated as lytic or temperate based on their life cycle options. 

Lytic phages replicate within infected cells and are then released into the environment by 

lysis of the infected cell. Temperate phages, such as phage λ that infects E. coli, can enter 

the lytic replication pathway after infection, or enter into the lysogenic pathway where 

they exist in a non-replicating prophage state. This can involve integration of their genetic 

material into the host genome (e.g. λ) or being maintained as an independent replicon 
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(e.g. P1 (Lobocka et al. 2004) and N15 (Ravin 2011), which both infect E. coli). In the 

lysogenic sate the phage genome is passed to daughter cells during bacterial cell division. 

Prophages can subsequently be activated to enter the lytic pathway, with replication and 

release of progeny viruses. In addition to these two “life-cycles” there is pseudo-

lysogeny, an unstable stage in which the phage genome fails to replicate or become 

established as a prophage. Instead, the phage genome remains as a non-integrated 

“preprophage” for an extended period of time. Pseudolysogeny occurs mostly under 

nutrient-deprived conditions (Feiner et al. 2015). 

 It is believed that microbial communities are greatly influenced by phages because 

they are involved in controlling cell numbers and physiological states (Hennes, Suttle, 

and Chan 1995; Winter et al. 2004). Both narrow host range (restricted to specific 

species) and broad host range (capable of infecting multiple species) phages exist and 

they play a key role in mediating HGT. The abundance of phage-derived genetic 

information found in bacterial genomes (Canchaya et al. 2003; Casjens 2003) and the 

number of bacterial genes found in viral metagenomic studies (Rosario and Breitbart 

2011) show the active role of phages in the evolution of prokaryotic genomes and their 

effects on microbial diversity. 

1.3 Phage-like gene transfer agents (GTAs) and their distribution 

An unusual mechanism of gene transfer, where bacteriophage-like particles transfer 

random pieces of DNA from one cell to another, was first identified in the -

proteobacterium Rhodobacter capsulatus (Marrs 1974), at that time known as 

Rhodopseudomonas capsulata. The process was similar to generalized transduction 
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(Figure 1.1), with DNase-resistant genetic exchange of antibiotic resistance markers that 

was not dependent on cell-cell contact (Marrs 1974). However, the particle responsible 

for the gene transfer differed from the transducing phages known at that time so it was 

referred to as a “gene transfer agent” (Marrs 1974). Each R. capsulatus GTA (now 

 

Figure 1.1. Comparison between a typical phage infection and GTA induction. A. 

Phage infection and transduction B. GTA production and gene transfer. Figure from 

(Redfield, Beatty, and Lang 2019). 

known as RcGTA) particle is capable of packaging ~4 kb of dsDNA in its ~30 nm 

diameter capsid head and has a tail of ~50 nm in length (Yen, Hu, and Marrs 1979; Solioz 

and Marrs 1977). The ability to produce GTA and also to take up the DNA carried by 

GTA is found for most R. capsulatus strains, however there are some strains which can 

only either produce GTA or receive DNA from GTA, and some do neither (Marrs 1974; 
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Wall, Weaver, and Gest 1975). GTA functions similar to generalized transduction ( 

Figure 1.2) but gene transfer events occur with much greater frequency, and all the 

genetic markers tested were readily transferred from donor cells to recipients (Yen, Hu, 

and Marrs 1979; Solioz, Yen, and Marrs 1975; Solioz and Marrs 1977). The main 

features which differentiate GTAs from bacteriophages are: 1) the DNA packaged within 

the capsid head is insufficient to encode the GTA structural proteins; 2) only the random 

parts of the producing cells’ genome is packaged by GTA; and 3) GTA production is 

controlled by bacterial regulatory systems (Lang and Beatty 2007; Lang, Zhaxybayeva, 

and Beatty 2012). 

Isolation of a GTA overproducer mutant strain that produces approximately three 

orders of magnitude more GTAs than wild type strains (Yen, Hu, and Marrs 1979) greatly 

aided GTA research. This made it possible to obtain an electron micrograph of purified 

GTA particles and to visualize the 4-kb packaged DNA directly on an agarose gel (Yen, 

Hu, and Marrs 1979). 

Various prokaryotic species were subsequently shown to be producing GTAs. The 

-proteobacterium Desulfovibrio desulfuricans produces a GTA named Dd1 that 

packages approximately 14-kb fragments of dsDNA (Rapp and Wall 1987). The 

spirochete Brachyspira hyodysenteriae produces a GTA named VSH-1 that packages 

approximately 7.5 kb of dsDNA (Humphrey et al. 1997). The methanogenic archaeon 

Methanococcus voltae produces VTA (Voltae Transfer Agent) that packages 

approximately 4 kb of dsDNA (Eiserling et al. 1999). Lastly, the -proteobacterium 

Bartonella henselae produces BaGTA that packages approximately 14 kb of dsDNA 
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(Québatte and Dehio 2019). There are structural differences among these different GTAs 

and it is now known that they are genetically unrelated and presumably originated from 

independent evolutionary events (Lang, Zhaxybayeva, and Beatty 2012; Lang, Westbye, 

and Beatty 2017). These discoveries of genetically unrelated GTAs arising independently 

in different lineages suggest they might have a beneficial role for the producing 

organisms (Lang, Westbye, and Beatty 2017; Stanton 2007). 

1.4 Rhodobacter capsulatus and RcGTA 

Rhodobacter capsulatus is a purple non-sulphur bacterium that is classified within 

the order Rhodobacterales of the class -proteobacteria. Purple non-sulfur bacteria are 

typically found in stagnant or eutrophic aquatic environments and can grow under both 

aerobic and anaerobic conditions using various sources of organic carbon and terminal 

electron acceptors (Madigan and Jung 2009; Wall, Weaver, and Gest 1975). R. capuslatus 

is a very versatile organism and can grow phototrophically with either CO2 or organic 

carbon as a carbon source, or in darkness by aerobic or anaerobic respiration, 

fermentation or chemolithotrophy (Pemberton, Horne, and McEwan 1998; Tabita and 

Govindjee 1995; Dubbs and Tabita 2004). Because of this metabolic diversity, R. 

capsulatus has been extensively used as a model organism for studying different bacterial 

physiological processes, especially anoxygenic photosynthesis (Imhoff 2006; Madigan 

2006; Haselkorn et al. 2001; Pemberton, Horne, and McEwan 1998). R. capsulatus has 

also become a model organism for studying GTAs. The genome of R. capsulatus consists 

of a single 3.7-Mb chromosome and a 134-kb circular plasmid, both having relatively 

high GC content (66%) (Strnad et al. 2010; Haselkorn et al. 2001). In total, there are 3685 

open reading frames (ORFs) with a coding density of 91%. Throughout the genome, there 
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are several large regions containing functionally related genes, such as the 45-kb 

photosynthesis gene cluster. It also contains 8 clustered regularly interspaced short 

palindromic repeat (CRISPR) regions and more than 200 phage-related genes (Strnad et 

al. 2010). 

Although RcGTA was discovered in the early 1970s, it was only in 2000 that the 

genetic basis of its production started to be deciphered (Lang and Beatty 2000). Screening 

of a transposon insertion library for mutants that had lost RcGTA production identified 

three insertions within an approximately 14-kb gene cluster where several genes had 

homology with phage structural genes (Lang and Beatty 2000). This gene cluster was 

surrounded by cellular “housekeeping”-type genes and none of the genes had homology 

with phage genes associated with replication or lysis. Instead, the gene cluster appeared to 

represent a phage-like head-tail gene module. In addition to this main GTA structural 

cluster, there are two additional loci that encode proteins associated with RcGTA 

particles in the form of head spikes and tail fibers that are involved in attachment to 

recipient cells (Westbye et al 2016, Hynes et al 2016) and another locus encoding holin 

and lysin proteins for cell lysis and RcGTA release (Hynes et al 2012, Westbye et al 

2013) (Figure 1.3). 

Phylogenetic studies and advancements in bacterial genomics allowed a description 

of the evolutionary relationships between species carrying complete or incomplete 

versions of similar GTA gene clusters (Lang and Beatty 2007; Lang, Taylor, and Beatty 

2002). It was found that the GTA-encoding genes are widespread among -proteobacteria 
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and are especially well conserved within the order Rhodobacterales (Biers et al. 2008; Fu 

et al. 2010; Lang and Beatty 2007).  

 

Figure 1.2. Diagrammatic representation of gene transfer agent production and release in 

R. capsulatus. All of the genes responsible for GTA production are present within the 

producing cell’s genome (represented in yellow). Each GTA particle packages random 
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fragments of host cell DNA (black) and is released by the lysis of cell. Once released, the 

GTA particles may transfer the DNA to a recipient cell and it can then recombine into the 

recipient’s genome. 

The Roseobacter lineage in Rhodobacterales constitutes >25% of marine prokaryotic 

communities (Fu et al. 2010). Several of these bacteria have been found to make GTAs 

(Biers et al. 2008; Tomasch et al. 2018). The presence of GTA-encoding genes among a 

large number of bacterial species suggests that GTAs might play an important role in 

gene transfer in nature and evolution of bacterial genomes. 

1.5 Regulation of RcGTA gene expression 

It was observed during early work on RcGTA that its production varied according 

to growth conditions and culture growth phase (Solioz 1975; Solioz, Yen, and Marrs 

1975), but molecular details on why this variation occurred were not determined until 

much later. The original transposon mutant screen that identified the RcGTA structural 

gene cluster also led to the discovery that transcription of these genes was dependent on a 

cellular two-component system (TCS) involving the histidine kinase CckA and response 

regulator CtrA (Lang and Beatty 2000). This TCS is now known to be a histidyl-aspartyl 

phosphorelay that also involves the intermediate histidine phosphotransferase ChpT 

(Mercer et al 2012). Additional cellular regulators and regulatory systems were also 

subsequently discovered that affect production and release of RcGTA. These include 

quorum sensing via N-acyl-homoserine lactone (AHL) synthase (GtaI) and LuxR-like 

AHL receptor (GtaR) proteins (Leung et al. 2012; Schaefer et al. 2002), a partner 

switching phosphorelay involving the RbaVWY proteins (Mercer and Lang 2014), and 

the SOS regulator protein LexA (Kuchinski et al. 2016). 



11 
 

Recent studies on a phage-derived regulatory gene, gafA, showed it to be essential 

for the production of RcGTA (Hynes et al. 2016) and it acts as a transcription factor by 

binding directly to the GTA promoter (Fogg 2019). Loss of the neighbouring gene, 

rcc01866, also caused impaired GTA production (Hynes et al. 2016). It has become clear 

that the regulation of RcGTA production and release is quite complex and linked with 

various aspects of R. capsulatus physiology, and many aspects of this still requires more 

investigation to be fully understood. 

 

Figure 1.3. RcGTA genes in Rhodobacter capsulatus. The ORFs/genes along with 

known or predicted encoded protein functions are indicated. The major structural cluster 

genes are in orange and additional genes involved in RcGTA production (lysis, head 

spikes and tail fiber) located at different loci are in blue. Not to scale. 
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1.6 Two-component signalling systems 

In bacteria, two component systems (TCSs) perceive diverse signals and convert 

them into appropriate cellular responses. These systems are widely distributed and 

integrated into a broad range of cellular signalling circuits. They are considered a major 

signal transducing system in prokaryotes and are also found in some eukaryotes (Jung et 

al. 2012; West and Stock 2001). A typical TCS is composed of sensory histidine kinase 

(HK) and response regulator (RR) proteins working to couple the stimulus-response 

functions (Shiro and Yamada 2008). These systems function by transfer of a phosphate 

group between the HK and RR, either directly or with the involvement of other proteins 

(Jung et al. 2012). 

1.6.1 Histidine kinase (HK) proteins 

In response to a specific stimulus, HK proteins, which are active as homodimers, 

autophosphorylate at a conserved histidine residue and then transfer the phosphoryl group 

to an aspartate residue in the cognate RR. In most cases, phosphorylation of the RR 

activates its output domain to deliver a cellular response. Sometimes, an intermediate 

protein called a histdine phosphotransferase (Hpt) is required to mediate the transfer, and 

such systems are known as two-component phosphorelays. In both TCS and 

phosphorelays, a phosphoryl group is transferred from the transmitter domain of the HK 

to a conserved aspartate in the receiver (REC) domain of the RR for signal transduction 

(Bhate et al. 2015; Casino, Rubio, and Marina 2010; Jung et al. 2012). 

There is some variability and diversity in domain architectures among HKs, but a 

minimal HK consists of a sensory domain and a transmitter domain. The kinase activity 

for class-I HKs resides in two conserved domains, the C-terminal catalytic and ATP 
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binding (CA) domain and an N-terminal dimerization and histidine phosphotransfer 

(DHp) domain (together referred to as HK-type ATPase catalytic-HATPase_C domain) 

and these form the transmitter domain. ATP binds to the CA domain and the phosphoryl 

group of the ATP is transferred to a conserved histidine residue within DHp domain. The 

DHp domain is formed by two large antiparallel α-helices from each peptide in the 

homodimer and creates a four-helical bundle. This bundle provides the dimerization 

interface and it contains the conserved catalytic histidine residue. In some HKs, the 

membrane-distal part of the DHp domain forms an interface directly with the RR protein 

(Tomomori et al. 1999; Bhate et al. 2015). The CA domain binds ATP and has ATPase 

activity. For autophosphorylation to occur, a conformational change must happen in the 

CA domain so that it gets closer to the acceptor histidine residue in the DHp domain 

(Yamada et al. 2009). Each CA domain binds to a single ATP molecule and forms a tight 

loop known as the “ATP lid”, and it has been found that at least one of the CA domains 

contains ATP or ADP at any given time (Bhate et al. 2015). Depending upon the linker 

between the two α-helices of the DHp domain, phosphorylation can occur in two different 

ways, either on the histidine residue of the DHp domain in the same polypeptide (cis-

autophosphorylation) or in the dimer partner (trans-autophosphorylation) (Ashenberg, 

Keating, and Laub 2013; Podgornaia et al. 2013). Once the histidine residue gets 

phosphorylated, the aspartate of the receiver domain attacks His~P and results in the 

formation of Asp~P. This phosphorylation reaction occurs much faster (20-100 min-1) 

than the autophosphorylation reaction (0.1-5 min-1) (Bhate et al. 2015; Casino, Rubio, and 

Marina 2010). 
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Class-II HKs are not as common and are structurally different than class I-HKs. In 

this type, the histidine is part of a histidine phosphotransfer (Hpt) domain that is not 

located adjacent to the CA domain (Jung et al. 2012). Some HKs are “hybrid” and contain 

both a transmitter and a REC domain and perform intramolecular phosphotransfer. The 

phosphate is then transferred to the histidine residue of an additional HPt protein and 

finally passed to an aspartate residue on the RR. 

HKs can also act as phosphatase enzymes and dephosphorylate the cognate RR 

(Dutta and Inouye 1996; Huynh, Noriega, and Stewart 2010), but there is no evidence of 

the phosphoryl group from the REC domain transferring back to the DHp domain to 

indicate that phosphatase activity is just the reversal of its kinase activity (Yamada et al. 

2009). However, studies have shown that the dephosphorylation reaction is catalyzed by 

the DHp domain and does not require the histidine residue but requires the specific stretch 

of amino acid sequence next to the acceptor histidine residue (Dutta and Inouye 1996; 

Huynh, Noriega, and Stewart 2010; Chen et al. 2009). The signals that cause HKs to 

switch from kinase to phosphatase activity are still unclear and poorly understood. Recent 

studies in Caulobacter crescentus showed that binding of the secondary messenger bis-

(3’-5’)-cyclic dimeric guanosine monophosphate (c-di-GMP) switches the HK CckA 

from kinase to phosphatase activity. Based on some in vitro studies, it has been shown 

that ADP might be acting as an activator for the phosphatase activity, but still needs to be 

confirmed in vivo (Lori et al. 2015). 

1.6.2 Response regulator (RR) proteins 

In most cases, RR proteins contain an output domain in addition to the REC 

domain. Phosphorylation of the REC domain by the cognate HK or Hpt protein regulates 
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the activity of the output domain. Output domain functions vary but helix-turn-helix DNA 

binding and GGDEF or EAL c-di-GMP-related enzymatic domains are some of the most 

common (Perry, Koteva, and Wright 2011; Galperin 2010; Krell et al. 2010). Indeed, 

more than 6% of RR proteins with enzymatic output domains are involved in c-di-GMP, 

indicating TCS represent a common mechanism for controlling c-di-GMP levels. There 

are also single domain RR proteins that lack an output domain that can modulate 

downstream targets by protein-protein interactions (Hecht and Newton 1995; Jenal and 

Galperin 2009). The CheY protein involved in chemotaxis is one of the best-studied 

examples of a single domain RR (Stock et al. 1989; Silversmith and Bourret 1999). 

Phosphorylation of RRs promotes dimerization and makes them active (Gao and 

Stock 2010). The architecture of the REC domain consists of a central five-stranded β-

sheet surrounded by a total of five α-helices. The C-terminal end of the central β-sheet 

harbours the conserved aspartate residue that gets phosphorylated. Phosphorylation of the 

aspartate residue results in a conformational change in the domain that triggers the 

formation of a homodimerization interface (Bourret 2010; Gao and Stock 2010). REC 

domains are believed to exist in equilibrium between two conformational states (active 

and inactive) and studies have also shown that RRs can exhibit autophosphorylation and 

autodephosphoryaltion activity (in vitro) when incubated with an appropriate 

phosphodonor, such as acetyl phosphate, in addition to being phosphorylated or 

dephosphorylated by a cognate HK or Hpt protein (Bourret 2010). 

Overall, the diversity of stimuli and responses of TCSs is showcased by the 

number of different HK input and RR output domains. In addition, some HKs have 

multiple phosphotransfer targets and some RRs can be phosphorylated by multiple 
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kinases. This many-to-one and one-to-many pattern for TCSs differs from instances 

where RRs are accidentally phosphorylated by a non-cognate HK, which is considered to 

be very rare (Laub and Goulian 2007). 

1.7 The CckA-ChpT-CtrA phosphorelay 

The phosphorelay system involving the HK CckA, Hpt ChpT, and RR CtrA is 

widely conserved in -proteobacteria (Brilli et al. 2010), and the functioning of this 

system is best understood from research with the developmental microbiology model 

bacterium Caulobacter crescentus, where it was also first discovered as an essential 

regulator of the cell cycle (Quon, Marczynski, and Shapiro 1996). CckA is a hybrid HK 

protein located at the cytoplasmic membrane and contains both HK and REC domains 

(Jacobs et al. 1999). Upon receiving an unknown signal, CckA autophosphorylates its HK 

domain and transfers the phosphate group from the histidine residue to the conserved 

aspartate residue in its REC domain. This allows phosphorylation of the cognate histidine 

on ChpT, which can then phosphorylate CtrA’s REC domain aspartate residue (Biondi et 

al. 2006; Chen et al. 2009). All three of these proteins are required for C. crescentus 

viability. Phosphorylated CtrA (CtrA~P) binds directly to the chromosomal origin of 

replication and inhibits initiation of DNA replication (Quon et al. 1998). It also binds in 

the upstream regulatory regions of many genes and acts as a transcription factor. The 

CtrA-regulated genes in C. crescentus include genes involved in flagellar motility and 

cell division (Laub et al. 2000; 2002).  

In C. crescentus, the kinase activity of CckA is regulated in at least two different 

ways. One is through the activity of the membrane protein DivL, which stimulates 
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CckA’s kinase activity. The primary activity of CckA is as a phosphatase, which is 

observed in the absence of DivL and also when cckA is over-expressed (Chen et al. 2009; 

Tsokos, Perchuk, and Laub 2011). But the ability of DivL to stimulate CckA kinase 

activity is inhibited by phosphorylated DivK, whose phosphorylation state is dependent 

on PleC and DivJ (Childers et al. 2014; Tsokos and Laub 2012). The second is through 

the secondary messenger signaling molecule c-di-GMP. C-di-GMP binds to CckA and 

inhibits its kinase activity and stimulates its phosphatase activity (Lori et al. 2015). 

Disruptions of the R. capsulatus cckA, chpT and ctrA genes affect the production 

and release of RcGTA particles and flagellar motility (Mercer et al. 2012; Lang and 

Beatty 2000; Lang and Beatty 2002). The R. capsulatus genes are not essential for 

viability as in C. crescentus, but site-directed mutational analysis of the R. capsulatus 

CckA protein showed that an increase in CtrA phosphorylation results in cell 

filamentation (Westbye et al. 2013), suggesting the possible involvement of this 

phosphorelay system in cell division in this bacterium also. Although there are some 

commonalities between the R. capsulatus and C. crescentus systems, there are also 

clearly differences. For example, homologs of DivK, PleC and DivJ are absent in R. 

capsulatus. 

A common theme for CtrA function in -proteobacteria is the regulation of genes 

involved in flagellar motility (Mercer et al. 2010). This was first observed in C. 

crescentus (Leclerc, Wang, and Ely 1998) and subsequently shown in other organisms 

such as R. capsulatus (Lang and Beatty 2002) and Ruegeria (previously known as 

Silicibacter) (Miller and Belas 2006). Transcriptomic and proteomic analyses of wild type 
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and ctrA mutant strains of R. capsulatus showed that more than 225 genes were 

dysregulated by the loss of CtrA (Mercer et al. 2010). This included all 73 predicted 

flagellar motility-associated genes and genes predicted to be involved in pilus synthesis 

and gas vesicle production. This gene set also included more than 20 genes encoding 

proteins predicted to be involved in signal transduction pathways or transcriptional 

regulation, and among these were nine predicted to be involved in signaling via the 

second messenger c-di-GMP. This suggested there might be a connection between c-di-

GMP signaling and RcGTA production. 

1.8 Cyclic dimeric guanosine monophosphate (c-di-GMP)  

1.8.1 History 

In 1987, researchers discovered a novel nucleotide molecule they initially thought 

was acting as an allosteric activator of cellulose biosynthesis in the fruit-degrading 

bacterium Gluconacetobacter xylinus (Ross et al. 1987). They determined its molecular 

structure as bis-(3’-5’)-cyclic dimeric guanosine monophosphate (c-di-GMP). They 

subsequently found that c-di-GMP also affects cellulose synthesis in another -

proteobacterium, Agrobacterium tumefaciens (Amikam and Benziman 1989), showing 

that c-di-GMP was not specific for G. xylinus but had wider involvement in bacterial 

physiology. 

The same group identified and sequenced the genes responsible for the 

metabolism of c-di-GMP (Tal 1998). These genes encode diguanylate cyclase (DGC) 

enzymes, which catalyse the synthesis reaction, and phosphodiesterase (PDE) enzymes, 

which break down c-di-GMP. Eventually, sequence analysis of several genes encoding 

these enzymes revealed conservation of a multi-domain architecture, with the Per-Arnt-
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Sym (PAS) domain and GGDEF (named after conserved Gly-Gly-Asp-Glu-Phe amino 

acid sequence) and EAL (named after conserved Glu-Ala-Leu amino acid sequence) 

motifs, which has turned out to be the most common architecture in c-di-GMP-

metabolizing proteins (Römling, Galperin, and Gomelsky 2013). The GGDEF motif is 

associated with all known DGC domains and its function was first defined in a response 

regulator protein, PleD, in C. crescentus (Hecht and Newton 1995). The EAL motif is 

associated with PDE function and its activity was first defined in a transcriptional 

repressor protein, BvgR, in Bordetella pertussis (Merkel, Barros, and Stibitz 1998). 

Studies involving the heterologous expression of genes containing only the EAL domain 

resulted in the decrease of c-di-GMP levels and also affected biofilm formation 

phenotypes (Simm et al. 2004; Tischler and Camilli 2004). These results indirectly 

supported the role of EAL domain in c-di-GMP degradation. Shortly after, biochemical 

evidence of EAL domain-associated PDE activity was shown in Yersinia pestis where the 

EAL domain protein HmsP was shown to hydrolyze the non-specific phosphodiesterase 

substrate bis-p-nitrophenyl phosphate (Bobrov, Kirillina, and Perry 2005). Similar 

evidence was also found using the EAL domain proteins YahA and DosP from E. coli 

(Schmidt, Ryjenkov, and Gomelsky 2005). 

These findings revealed that c-di-GMP metabolism genes were common among 

bacteria and that this molecule regulated functions beyond cellulose synthesis. Now, after 

many more years of research, c-di-GMP is recognised as one of the most common 

bacterial second messengers, and it has been shown to regulate bacterial physiology in 

many ways (Römling, Galperin, and Gomelsky 2013; Jenal, Reinders, and Lori 2017). 
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1.8.2 Synthesis and degradation of c-di-GMP 

In response to internal and environmental signals, the cellular levels of c-di-GMP 

are regulated by the actions of two opposing enzyme families: DGCs and PDEs. These 

two types of enzymes represent the largest known families of signalling proteins in 

bacteria and are found in all major bacterial phyla. The DGC enzymes catalyse the 

synthesis reaction by combining two GTP molecules (Chan et al. 2004; A J Schmidt, 

Ryjenkov, and Gomelsky 2005; Hickman, Tifrea, and Harwood 2005), whereas PDEs 

catalyse the degradation of cyclic-di-GMP into linear intermediate pGpG or two 

molecules of GMP. DGCs are characterised by the presence of a GGDEF motif as its 

functional domain, while PDEs contain either EAL or HD-GYP motifs (Figure 1.4). 

These proteins are found as single-domain enzymes or as dual-domain proteins that can 

have one or both of the domains active, as discussed in more detail below 
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Figure 1.4. Schematic representation of synthesis and degradation of c-di-GMP. Two 

GTP molecules are used to synthesize c-di-GMP, catalysed by diguanylate cyclase (DGC) 

enzymes with GGDEF domains. C-di-GMP is hydrolysed into 2 GMP molecules or 

pGpG by phosphodiesterase (PDE) enzymes having HD-GYP or EAL domains, 

respectively. Dashed lines indicate feedback inhibition of these enzymes by their 

respective products. Examples of well-studied physiological process affected by c-di-

GMP levels are given. 

1.8.3 Diguanylate cyclases (DGCs): GGDEF motif-containing proteins 

Structural and biochemical studies performed over the course of a decade on 

PleD, a DGC from C. crescentus, were fundamental for understanding the mechanistic 

aspects of DGC functioning (Hecht and Newton 1995; Chan et al. 2004). It was found 

that DGCs show similarity with adenylate cyclases in their structural fold (Pei and 

Grishin 2001). Each GTP molecule involved in synthesis of c-di-GMP is arranged in an 

antiparallel manner with the catalytic GGDEF domain to facilitate their condensation into 

c-di-GMP (Schirmer 2016). The first two glycine residues of the motif participate in GTP 

binding and the glutamate helps in metal ion coordination. The third amino acid residue 

of the signature motif, usually aspartate but occasionally a glutamate, also plays an 

important role in metal coordination and is crucial for DGC activity (Chan et al. 2004; 

Wassmann et al. 2007). Analysis of the GGDEF domain structures in PleD from C. 

crescentus and WspR from Pseudomonas aeruginosa by X-ray crystallography 

(Wassmann et al. 2007; De et al. 2009) indicated the presence of two sites: an active site 

(A-site) with the GGDEF motif and an allosteric or inhibitory site (I-site) with an RXXD 

motif (Christen et al. 2006; Schirmer and Jenal 2009). These two proteins also possess N-
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terminal RR REC domains that facilitate dimerization upon phosphorylation (Paul et al. 

2007; De et al. 2009). In PleD and WspR, the I-site acts as a receptor site for c-di-GMP to 

mediate feedback inhibition (Chan et al. 2004; Christen et al. 2006), with binding of c-di-

GMP leading to immobilisation of the GGDEF domains into non-catalytic states. In this 

case, c-di-GMP acts as a non-competitive inhibitor of cyclase activity to maintain its 

levels at a defined concentration. However, this feature is not conserved in all DGCs. An 

alternative mechanism of DGC regulation was observed for the DgcZ protein from E. 

coli. DgcZ is a constitutive dimer and does not have an I-site. Instead, it contains an N-

terminal chemoreceptor zinc-binding (CZB) domain in addition to the catalytic GGDEF 

domain, and this CZB domain functions in allosteric regulation of DgcZ activity 

(Zähringer et al. 2013). The binding of zinc to the CZB domain leads to a conformation 

change that affects the dimerization of the catalytic GGDEF site and turns it into an 

inactive form, whereas in the absence of zinc, the GGDEF residues remain in the proper 

positions as required for dimerization and synthesis of c-di-GMP. 

1.8.4 Phosphodiesterases (PDEs): EAL or HD-GYP motif-containing proteins 

Phosphodiesterase enzymes that carry out c-di-GMP hydrolysis contain either 

EAL or HD-GYP motifs in their PDE domains. EAL-containing PDEs degrade c-di-GMP 

into the linear 5’-phosphoguanylyl-(3’-5’)-guanosine (pGpG) dinucleotide (Ross et al. 

1986), whereas PDEs with HD-GYP motifs hydrolyse c-di-GMP into two GMP 

molecules (Ryan et al. 2006). Recent studies on EAL-containing PDEs demonstrated that 

the hydrolysis product pGpG is later processed to GMP by nanoRNA-degrading 

oligoribonuclease (Orn) (Orr et al. 2015; Cohen et al. 2015). Biochemical studies and 

structural analysis of PDEs have shown that the glutamic acid (E) in the EAL motif is 
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crucial for catalysis. The active site activates a water molecule that attacks and results in 

breakage of the P-O bond of c-di-GMP to generate a linear molecule. The reaction is 

affected by divalent cations, with Mg2+ or Mn2+ enhancing and Ca2+ and Zn2+ inhibiting 

PDE activity (Schmidt, Ryjenkov, and Gomelsky 2005). 

Unlike DGCs, which are active as homodimers, EAL-containing proteins can 

retain PDE activity as monomers (Schmidt, Ryjenkov, and Gomelsky 2005). However, 

the EAL domain proteins characterized so far act as dimers or higher order oligomers 

(Tarutina, Ryjenkov, and Gomelsky 2006; Barends et al. 2009; Rao et al. 2008; 

Tchigvintsev et al. 2010). It also appears that the dimeric state is critical for PDE 

activation by environmental stimuli (Bai et al. 2012) and the dimeric state is thought to be 

the most probable functional form for hydrolysing c-di-GMP in vivo (Romling, Galperin, 

and Gomelsky 2013). 

Another class of PDEs that are structurally and catalytically different from the 

EAL-containing enzymes have conserved HD-GYP motifs in their PDE domains. As 

mentioned earlier, these type of PDEs hydrolyse c-di-GMP into two GMP molecules 

without any intermediate steps (Bellini et al. 2014). HD-GYP is a subset of larger HD 

family displaying hydrolytic activity (Ryan et al. 2006). The c-di-GMP-specific PDE 

activity of the HD-GYP domain was originally predicted due to its frequent occurrence in 

proteins that also possessed DGC domains, similar to the tandem GGDEF-EAL motif-

containing proteins (Galperin et al. 1999; Galperin, Nikolskaya, and Koonin 2001). 

Several HD-GYP-containing PDEs were identified in different bacteria such as 

Xanthomonas (Ryan et al. 2006), Pseudomonas (Ryan et al. 2009) and Borrelia (Sultan et 

al. 2011), but there were no clear mechanistic or biochemical insights about these proteins 
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until more recently. The first crystal structure of an active HD-GYP-containing PDE with 

its c-di-GMP substrate revealed the presence of a novel tri-nuclear catalytic binding site 

involving Fe2+ or Mn2+ (Bellini et al. 2014). 

1.8.5 Tandem GGDEF and EAL or HD-GYP proteins 

The first DGCs and PDEs identified in G. xylinus showed the presence of both 

GGDEF and EAL domains in a single protein (Tal et al. 1998; Chang et al. 2001). 

Genomic studies have revealed that such multidomain proteins are very common in 

bacteria, with approximately one-third of all GGDEF domains and two-thirds of all EAL 

domains found in this organization (Seshasayee, Fraser, and Luscombe 2010). The 

presence of these antagonistically functioning domains in the same protein raises an 

enzymatic conundrum about what determines the overall activity of the protein. This is 

elaborated further below. 

1.8.5.1 Bifunctional enzymes and their regulation  

One possible scenario for tandem GGDEF/EAL proteins is that both domains are 

enzymatically active, but they are differentially regulated with only one domain 

functioning at a given time depending upon external or internal signals. Such potentially 

bifunctional proteins have been well studied and include proteins that are the REC 

domain-containing RR part of TCSs that are regulated by HK proteins. Even though the 

number of tandem GGDEF/EAL proteins is large, only a few cases of truly bifunctional 

proteins have been described. 

The Rhodobacter sphaeroides BphG1 is one of the examples of a bifunctional 

protein with tandemly arranged GGDEF-EAL domains. BphG1 is a bacteriophytochrome 
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protein with a photosensory module of PAS-GAF-PHY domains linked to GGDEF-EAL 

domains. Despite the presence of the photosensory module that is sensitive to light, this 

protein showed constitutive PDE activity irrespective of light (Tarutina, Ryjenkov, and 

Gomelsky 2006; Romling, Galperin, and Gomelsky 2013). However, when a truncated 

version of the protein lacking the C-terminal EAL domain was expressed in E. coli it 

displayed strong DGC activity in response to light (Tarutina, Ryjenkov, and Gomelsky 

2006). In Legionella pneumophilla, the Lp10329 protein contains active DGC and PDE 

domains, with the activities regulated based upon the phosphorylation state of its REC 

domain (Levet-Paulo et al. 2011). The cognate histidine kinase, Lp10330, phosphorylates 

the conserved aspartate residue of Lp10329, which results in lower DGC activity of 

Lp10329 without affecting the PDE activity. 

Protein-protein interactions can also modulate DGC and PDE activities. In Vibrio 

parahaemolyticus, the scrC gene which belongs to the scrABC operon, regulates the 

switch between motile and sessile cell forms (Boles and McCarter 2002). ScrC contains 

functional DGC and PDE domains linked to an N-terminal periplasmic sensor domain 

(Ferreira et al. 2008). When scrC is expressed alone, the protein shows DGC activity, 

whereas in the presence of ScrA and ScrB its activity is switched to PDE. At high cell 

densities, binding of ScrB to ScrC triggers the switch of its activity from DGC to PDE 

(Trimble and McCarter 2011). 

1.8.5.2 Active and inactive domains 

Another explanation for the enzymatic conundrum in some c-di-GMP signaling 

proteins is that one of the two domains is enzymatically inactive. However, the 
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enzymatically inactive domain can display other functions that affect the function of the 

other domain (Römling, Galperin, and Gomelsky 2013). The well-studied C. crescentus 

protein CC3396 is one of the best examples for a c-di-GMP protein carrying one active 

and one inactive domain. The DGC A-site in this protein contains an altered motif 

(GEDEF) and is not enzymatically active. However, this site displays very high affinity 

for GTP and binding of GTP at this inactive A-site leads to activation of the C-terminal 

EAL domain and increased c-di-GMP hydrolysis (Christen et al. 2005). The FimX protein 

from P. aeruginosa has similar properties, with an inactive DGC domain that acts as a 

receptor for GTP and activates the EAL domain (Kazmierczak, Lebron, and Murray 

2006). Identification of an inactive EAL domain that binds to c-di-GMP and activates a 

GGDEF domain has not yet been reported, but studies on DgcA1 from G. xylinus showed 

that deletion of its enzymatically inactive EAL domain eliminated the protein’s DGC 

activity, suggesting the potential importance of such degenerate EAL domains in the 

overall protein activity (Römling, Galperin, and Gomelsky 2013). Evaluation of EAL 

domain sequences from different bacterial genomes suggested that approximately 85% 

are enzymatically active (Seshasayee, Fraser, and Luscombe 2010). 

1.8.6 Regulation of DGC and PDE activities by additional signalling domains 

In most c-di-GMP signalling proteins found so far, the GGDEF, EAL and HD-

GYP domains are linked with other N-terminal domains that are presumably involved in 

regulation of the enzymatic activities of the protein. These presumptive regulatory 

domains are often associated with the cytoplasmic membrane and can contain periplasmic 

loops that interact with small ligands or other periplasmic proteins. These domains 

include PAS, GAF, REC, CHASE (cyclases/histidine kinases associated sensory 
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extracellular), HAMP (present in histidine kinases, adenylate cyclases, methyl accepting 

proteins and phosphatases), the light sensing BLUF (blue light using flavin adenine 

dinucleotide) and various bacteriophytochrome domains. These N-terminal domains 

modulate the DGC and PDE enzyme activities in response respect to the specific stimuli 

they receive, but for most of these proteins the sensory input signals involved have not 

been identified. The most common domain architectures known are the combinations of 

REC, PAS, and/or GAF domains with GGDEF, EAL or HD-GYP domains (Römling, 

Galperin, and Gomelsky 2013). Indeed, the first-identified DGC/PDE of G. xylinus 

showed the association of GGDEF and EAL domains with an oxygen-sensing PAS 

domain (Tal et al. 1998; Chang et al. 2001). The PAS and GAF domains are involved in 

sensing various signals such as oxygen (O2), nitric oxide (NO), carbon monoxide (CO), 

light, and quorum sensing molecules, and employ various bound ligands such as heme, 

flavin nucleotides, and different chromophores (Henry and Crosson 2010; Ho 2000; Deng 

et al. 2012). As discussed above, REC domains are regulated through their 

phosphorylation by cognate HKs, which are responsible for sensing the ultimate signal 

that controls the RR’s output functionality. 

In P. aeruginosa, two proteins, MucR and NbdA, each of which contain an N-

terminal MHYT (methionine, histidine, tyrosine) domain followed by GGDEF and EAL 

domains, showed NO-induced PDE activity and promoted biofilm dispersal (Li et al. 

2013). MHYT is a transmembrane domain predicted to possess the sensory function for 

diatomic gases like O2, CO or NO through protein-bound copper ions. Addition of NO in 

this bacterium lead to the transcriptional activation of nbdA and thereby activated PDE 
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activity. MucR displayed both DGC and PDE activity in vitro but increased PDE activity 

with NO exposure (Li et al. 2013). 

There have been multiple reports showing the importance of light-sensing (ranging 

from blue to far red) domains such as BLUF and LOV (light-oxygen-voltage sensing) 

controlling GGDEF/EAL domain proteins. In Synechocystis sp., the Cph2 protein consists 

of a GAF-GAF-GGDEF-EAL-CBCR (cyanobacteriochrome)-GGDEF multi-domain 

architecture and responds to blue light via the CBCR domain, which activates the DGC 

by stimulating the C-terminal GGDEF domain. The EAL domain’s PDE activity is 

predicted to be controlled by the N-terminal GGDEF or GAF domains (Savakis et al. 

2012). In other proteins, a novel membrane-integrated sensory domain containing a CSS 

(Cys-Ser-Ser amino acids) motif that is redox-regulated controls the activity of EAL 

domains (Hengge et al. 2016; Herbst et al. 2018). In E. coli there are five PDEs with 

CSS-EAL combinations that are all inactive due to the formation of a disulphide bond 

between the cysteine residues of the CSS motif. Mutations of the CSS motif to ASS 

resulted in high PDE activity in these proteins (Herbst et al. 2018). 

Even though we have gained a large amount of knowledge on the structures and 

functions of DGCs and PDEs, testing and validating the physiological roles of individual 

enzymes under laboratory conditions can be a difficult task. The success rate for genetic 

studies to reveal a clear phenotype relevant for c-di-GMP signalling proteins is low. One 

main reason for this is difficulty with identification of specific signals that activate these 

enzymes. One good example for this was the study of PDEs in E. coli. Among 13 PDEs 

encoded in the genome, only one PDE protein, PdeH, was shown to hydrolyze c-di-GMP 

and act as a key regulator of motility (Reinders et al. 2016; Schmidt, Ryjenkov, and 
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Gomelsky 2005). However, gain-of-function mutants showed that other PDEs are active 

and substituted for the loss of pdeH in the stimulation of motility. This suggested that the 

specific input signals to activate these other PDEs in this organism were simply missing 

under the laboratory conditions used in the experiments (Reinders et al. 2016). 

It is also important to note that DGCs and PDEs are not only working to maintain 

the homeostasis of c-di-GMP, but some DGCs and PDEs can also interact directly with 

effector molecules to participate in downstream signalling cascades (e.g. via protein-

protein interactions) and thereby control various cellular processes (Tal et al. 1998; 

Lindenberg et al. 2013). In this case, these proteins are also acting as c-di-GMP sensors 

and controlling the activity of the interacting proteins. This activity is not limited to the so 

called “degenerate proteins” that have lost their catalytic abilities and act as receptors but 

is also observed in some active DGCs and PDEs. For example, PdeR (formerly known as 

YciR) in E. coli is an active PDE whose primary role is not to hydrolyse c-di-GMP but to 

sense it and affect the transcription of a downstream cascade of genes involved in 

amyloid curli fiber production via protein-protein interactions (Lindenberg et al. 2013). 

1.9 Research goals and questions addressed 

The initial hypothesis that c-di-GMP signaling might affect RcGTA production in 

R. capsulatus was based on the fact that CtrA is required for RcGTA production, at the 

level of RcGTA gene transcription, and that loss of CtrA affected the expression of 

multiple genes encoding predicted c-di-GMP signalling proteins (Mercer et al. 2010). 

Therefore, my primary research goal was to determine if some or all of these predicted c-

di-GMP signalling genes that are dysregulated by the loss of CtrA are involved in 

regulating RcGTA production. I also evaluated the role of these genes in flagellar 
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motility. Furthermore, I evaluated the enzymatic activities of the relevant c-di-GMP 

signalling proteins. Related to this, I also investigated the effects of changing the 

intracellular concentrations of c-di-GMP on RcGTA production and motility. The results 

from this work are presented in Chapter 2. Revelations on the enzymatic activities of one 

of these proteins, Rcc00620, led me to investigate its involvement as part of a potential 

TCS, which is presented in Chapter 3. In the model bacterium C. crescentus, where the 

CtrA phosphorelay has been extensively studied, it was shown that c-di-GMP binds to the 

histidine kinase CckA and modulates its function and thereby the phosphorylation status 

of CtrA (Lori et al. 2015). I have investigated whether c-di-GMP also binds to CckA in R. 

capsulatus and thereby in turn also affects the CckA-ChpT-CtrA phosphorelay and 

regulation of RcGTA production in R. capsulatus. This work is presented in Chapter 4. 
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CHAPTER 2- Cyclic-di-GMP-mediated regulation of gene transfer and motility in 

Rhodobacter capsulatus 

2.1 Introduction 

 Gene transfer between cells plays an important role in bacterial evolution, with 

horizontal gene transfer (HGT) being the main force behind the acquisition of new, 

adaptive traits and genetic variation among bacterial strains (Raz and Tannenbaum 2010). 

In addition to the three canonical mechanisms by which bacterial DNA exchange occurs, 

i.e. transformation, conjugation and transduction, a different type of genetic exchange 

process is mediated through bacteriophage-like particles called gene transfer agents 

(GTAs). This gene transfer mechanism resembles the process of transduction, but GTAs 

are distinct from transducing bacteriophages (Lang and Beatty 2007; Stanton 2007). 

Similar to prophages, GTAs are encoded by genes within the producing organisms’ 

genomes. However, GTAs are distinct from induced transducing prophages because all 

GTA particles contain only DNA from the cells’ genomes. They also package less DNA 

than required to encode the particles, making them incapable of self-transmission 

(Stanton 2007; Lang and Beatty 2007). 

 Gene transfer agents are known to be produced by multiple bacteria and one 

archaeon (Lang, Westbye, and Beatty 2017; Tomasch et al. 2018). The first-discovered 

GTA (now known as RcGTA) is produced by Rhodobacter capsulatus (Marrs 1974), a 

purple non-sulfur α-proteobacterium that has been used as a model organism for various 

aspects of physiology such as anoxygenic photosynthesis (Strnad et al. 2010). Each 

RcGTA particle packages approximately 4 kb of double-stranded DNA (Yen, Hu, and 
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Marrs 1979) while the main gene cluster encoding the particles spans approximately 14 

kb (Lang and Beatty 2000). Additional genes required for RcGTA production, function 

and release are located at distinct locations in the genome (Hynes et al. 2012; 2016; 

Westbye et al. 2016). Expression of the RcGTA genes is regulated by several cellular 

signaling systems as well as phage-related regulators (Fogg 2019; Lang, Westbye, and 

Beatty 2017). The cellular regulators include the CckA-ChpT-CtrA phosphorelay (Lang 

and Beatty 2000; Mercer et al. 2012), the GtaI-GtaR quorum sensing system (Schaefer et 

al. 2002; Leung et al. 2012), the Rba partner-switching phosphorelay (Mercer and Lang 

2014), the SOS regulator LexA (Kuchinski et al. 2016), and the PAS domain protein 

DivL (Westbye et al. 2018). 

 The CtrA response regulator protein was first characterized in Caulobacter 

crescentus (Quon, Marczynski, and Shapiro 1996), where it acts as a master regulator of 

the cell cycle (Skerker and Laub 2004). Among all cellular RcGTA regulators identified 

to date, only loss of CtrA causes a complete loss of RcGTA production, which is caused 

by loss of transcription of most genes in the RcGTA gene cluster (Lang and Beatty 2000; 

Mercer et al. 2010). Loss of a phage-derived regulator (Hynes et al. 2016), which has 

been renamed gafA (Fogg 2019), also causes a complete loss of GTA production and this 

gene is also regulated by CtrA. Transcriptomic studies in R. capsulatus revealed that 

more than 225 genes are dysregulated in the absence of CtrA (Mercer et al. 2010), 

including more than 20 genes predicted to encode proteins involved in signal transduction 

or regulation of gene expression. This included proteins predicted to be involved in 

signaling via the second messenger bis-(3’-5’)-cyclic dimeric guanosine monophosphate 

(c-di-GMP) based on the presence of conserved domains for c-di-GMP synthesis or 

degradation. 
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 Cyclic di-GMP is an ubiquitous second messenger that controls various aspects of 

bacterial physiology (Romling, Galperin, and Gomelsky 2013; Jenal, Reinders, and Lori 

2017). Cyclic di-GMP binds to a range of targets, including riboswitches and proteins, 

and affects diverse processes including motility, biofilm formation, virulence, and cell 

cycle progression. Inhibition of motility and promoting a sessile lifestyle and biofilm 

formation are the most widely conserved behaviors in bacteria in response to elevated 

levels of c-di-GMP. Two GTP molecules are used for the synthesis of c-di-GMP, 

catalyzed by diguanylate cyclase (DGC) enzymes that contain GGDEF motifs in their 

active sites (A-sites) (Paul et al. 2004; Chan et al. 2004; Ryjenkov et al. 2005). In addition 

to an A-site, many DGCs also carry an inhibitory site (I-site) motif, RxxD, which is 

involved in feedback inhibition (Christen et al. 2006; Schirmer and Jenal 2009). Cyclic 

di-GMP-specific phosphodiesterases (PDEs), characterized by EAL (Schmidt, Ryjenkov, 

and Gomelsky 2005; Christen et al. 2005; Tamayo, Tischler, and Camilli 2005) and HD-

GYP (Ryan et al. 2006) domains, break down c-di-GMP into 5’-phosphoguanylyl-(3’-5’)-

guanosine (pGpG). Some proteins contain both GGDEF and EAL domains and can be 

bifunctional (Tarutina, Ryjenkov, and Gomelsky 2006; Levet-Paulo et al. 2011). It is also 

possible that only one domain is enzymatically active in such dual-domain proteins and 

enzymatically inactive domains can often bind former substrates, c-di-GMP (EAL) (Qi et 

al. 2011) or GTP (GGDEF) (Christen et al. 2005), and serve as regulatory sites (Wolfe 

and Visick 2010). The GGDEF and EAL domains are often present within proteins that 

contain additional periplasmic, membrane-embedded or cytoplasmic ligand-

binding/signaling domains. These include the response regulator receiver (REC) domain 

and ligand-binding domains such as Per-ARNT-Sim (PAS) and cGMP-specific 

phosphodiesterases/adenylyl cyclases/FhlA (GAF) (Wolfe and Visick 2010). 
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Table 2.1. Properties of eight chromosomal c-di-GMP signaling genes whose transcript 

levels are affected by loss of CtrA. 

Gene Transcript 

fold-change 

in ctrA null 

mutanta 

Protein 

accession 

number 

Size of 

protein (aa) 

C-di-GMP 

domains 

Additional 

domainsb 

rcc00346 -7.6 ADE84111.1 514 GGDEF, EAL  

rcc00620 -14.0 ADE84385.1 610 GGDEF, EAL REC 

rcc00645 -7.7 ADE84410.1 1245 GGDEF, EAL PAS 

rcc02539 -8.1 ADE86269.1 641 GGDEF, EAL  

rcc02629 -8.1 ADE86359.1 353 GGDEF  

rcc02857 -12.5 ADE86586.1 1158 GGDEF, EAL PAS 

rcc03177 -19.5 ADE86901.1 280 EAL  

rcc03301 -4.5 ADE87025.1 1284 GGDEF, EAL PAS 

a From (Mercer et al. 2010) 

b REC, response regulator receiver; PAS, Per-ARNT-Sim 

 

 The R. capsulatus genome (Strnad et al. 2010) carries 20 genes predicted to 

encode proteins containing GGDEF or EAL domains and the transcript levels of nine of 

these genes were significantly decreased in a ctrA null mutant (Mercer et al. 2010). Based 

on this observation we hypothesized that c-di-GMP signaling might affect the production 

of RcGTA. We have investigated the possible roles of the eight chromosomally encoded 

putative c-di-GMP signaling proteins from this group in R. capsulatus gene exchange 

(Table 2.1). We evaluated the potential enzymatic activities of four of these proteins that 

were implicated in RcGTA production via phenotypic assays in Escherichia coli. We also 

investigated the effects of changes in cellular levels of c-di-GMP on R. capsulatus gene 
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exchange. In addition, we investigated the roles of these four genes and c-di-GMP in R. 

capsulatus flagellar motility and conclude that elevated c-di-GMP levels inhibit RcGTA 

production and flagellar motility in this bacterium. 

2.2 Materials and methods 

2.2.1 Bacterial strains, media and culture conditions 

 All the experimental strains and plasmids used in this study are listed in Table 2.2 

R. capsulatus was grown either anaerobically under photoheterotrophic conditions in 

complex YPS medium (Wall, Weaver, and Gest 1975) or aerobically in defined RCV 

medium (Beatty and Gest 1981) at 35°C. Appropriate antibiotics were used when 

required at the following concentrations: kanamycin (10 μg ml−1), gentamycin (3 μg 

ml−1), spectinomycin (10 μg ml−1) and tetracycline (0.5 μg ml−1). E. coli was grown at 

37°C in LB medium supplemented with appropriate antibiotics when necessary: 

ampicillin (100 μg ml−1), kanamycin (25 μg ml−1), gentamycin (10 μg ml−1), 

spectinomycin (50 μg ml−1) and tetracycline (10 μg ml−1). 

 

Table 2.2. List of bacterial strains and plasmids used in this study. 

Strains and plasmids Description Reference or source 

R. capsulatus strains 

SB1003 Genome-sequenced strain (Strnad et al. 2010; 

Yen and Marrs 1976) 

DW5 SB1003 ∆puhA (Wong et al. 1996) 
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SB346 SB1003 with KIXX insertion in 

rcc00346 

This study 

SB620a SB1003 with KIXX insertion in 

rcc00620 

This study 

SB620 SB1003 with 1068-bp deletion in 

rcc00620 replaced by KIXX 

This study 

SB620.645 SB620 with 2469-bp deletion in 

rcc00645 replaced by gentamycin 

resistance gene 

This study 

SB645 SB1003 with 2469-bp deletion in 

rcc00645 replaced by KIXX  

This study 

SB645.2629.2857 SB2629 with 2469-bp deletion in 

rcc00645 replaced by gentamycin 

resistance gene and 909-bp deletion in 

rcc02857 replaced by spectinomycin 

resistance gene 

This study 

SB2539 SB1003 with KIXX insertion in 

rcc02539 

This study 

SB2629a SB1003 with KIXX insertion in 

rcc02629 

This study 

SB2629 SB1003 with 541-bp deletion in 

rcc02629 replaced by KIXX 

This study 
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SB2857a SB1003 with KIXX insertion in 

rcc02857 

This study 

SB2857 SB1003 with 909-bp deletion in 

rcc02857 replaced by KIXX 

This study 

SB3177 SB1003 with KIXX insertion in 

rcc03177 

This study 

SB3301 SB1003 with KIXX insertion in 

rcc03301 

This study 

E. coli strains 

MG1655 Wild type; motility indicator strain for 

DGC activity 

(Blattner 1997) 

MG1655 ∆yhjH Motility indicator strain for PDE 

activity 

(Ryjenkov et al. 

2006; Simm et al. 

2004) 

BL21(DE3) Curli fimbriae indicator strain for DGC 

activity 

New England 

Biolabs; (Christen et 

al. 2006) 

C600(pDPT51) Plasmid-mobilizing strain (Taylor et al. 1983) 

S17-1 Plasmid-mobilizing strain (Simon, Priefer, and 

Pühler 1983) 

Plasmids 

pGEM-T Easy TA PCR product cloning vector Promega 
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pCM62 Broad host range vector; expression of 

genes in E. coli driven by lac promoter 

(Marx and Lidstrom 

2001) 

pRR5C Expression of genes in R. capsulatus 

driven by puf promoter 

(Young, Reyes, and 

Beatty 1998) 

p620 rcc00620 and 440 bp of 5’ sequence in 

KpnI site of pCM62 

This study 

p620GGAAF p620 with mutation in DGC domain This study 

p620AAL p620 with mutation in PDE domain This study 

p620GGAAF/AAL p620 with mutations in both DGC and 

PDE domains 

This study 

p645 rcc00645 and 467 bp of 5’ sequence in 

KpnI site of pCM62 

This study 

p645GGAAF p645 with mutation in DGC domain This study 

p645AVL p645 with mutation in PDE domain This study 

p645GGAAF/AVL p645 with mutations in both DGC and 

PDE domains 

This study 

p2629 rcc02629 and 771 bp of 5’ sequence in 

KpnI site of pCM62 

This study 

p2629GGAAF p2629 with mutation in DGC domain This study 

p2857 rcc02857 and 99 bp of 5’ sequence in 

KpnI site of pCM62 

This study 

p2857GGAAF p2857 with mutation in DGC domain This study 

p2857ATL p2857 with mutation in PDE domain This study 
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p2857GGAAF/AAL p2857 with mutations in both DGC 

and PDE domains 

This study 

pDGC Heterologous diguanylate cyclase gene 

from R. sphaeroides (RSP_3513) 

cloned into pCM62 

This study 

pRRDGC Heterologous diguanylate cyclase gene 

from R. sphaeroides (RSP_3513) 

cloned into pRR5C 

This study 

pPDE Heterologous phosphodiesterase gene 

from G. xylinus (pdeA1) cloned into 

pCM62 

This study 

pRRPDE Heterologous phosphodiesterase gene 

from G. xylinus (pdeA1) cloned into 

pRR5C 

This study 

pX3 RcGTA orfg3’::’lacZ fusion (Hynes et al. 2012) 

pX3NP RcGTA orfg3’::’lacZ fusion with no 

promoter 

(Hynes et al. 2012) 

 

2.2.2 Insertional mutagenesis, trans-complementation plasmids, and site-directed 

mutants 

 PCR amplifications were done using genomic DNA from R. capsulatus SB1003 

as the template and the appropriate primers for each gene (Appendix 1, Table S2.1). The 

amplified products were cloned into pGEM-T Easy (Promega) according to the 
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manufacturer’s guidelines. Gene disruptions were made by the insertion of the 

approximately 1.4-kb SmaI fragment of the kanamycin resistance-encoding KIXX 

fragment (Barany 1985) at specific restriction enzyme cut sites within the cloned PCR 

products, as detailed below. 

 The rcc00346 open reading frame (ORF) was disrupted at the BsaBI site 319 bp 

from the start of the 1545-bp ORF; rcc00620 at the EcoRI site 793 bp from the start of the 

1833-bp ORF; rcc00645 at the ClaI site 83 bp from the start of 3738-bp ORF (there is 

also a second ClaI site in this ORF, which results in a 2469-bp deletion); rcc02539 at the 

StuI site 469 bp from the start of the 1926-bp ORF; rcc02540 at the HindIII site 300 bp 

from the start of the 2757-bp ORF; rcc02629 at the MscI site 517 bp from the start of the 

1062-bp ORF; rcc02857 at the BamHI site 422 bp from the start of the 3477-bp ORF; 

rcc03177 at the BstEII site 102 bp from the start of the 843-bp ORF; and rcc03301 at the 

StuI site 526 bp from the start of the 3855-bp ORF. Gene disruptions were confirmed by 

restriction enzyme digestions and conjugated to R. capsulatus from E. coli C600 

(pDPT51) (Taylor et al. 1983). RcGTA transfer of the disrupted genes into the 

chromosome of recipient SB1003 cells was then performed to generate R. capsulatus 

mutant strains (Hynes and Lang 2013). The resulting kanamycin-resistant strains were 

confirmed to contain only the disrupted versions of the genes by PCR using the original 

amplification primers. 

 Deletion mutants for the genes rcc00620, rcc02629 and rcc02857 were 

subsequently made by replacing portions of the ORFs with the KIXX fragment. For 

rcc00620, 1068 bp was deleted between two AvaI sites (deletion starts 144 bp into the 

ORF). For rcc02629, 541 bp was deleted between two BamHI sites (deletion starts 8 bp 
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into the ORF). For rcc02857, 909 bp was deleted between two BsaBI sites (deletion starts 

2296 bp into the ORF). Chromosomal disruptions and subsequent confirmations were 

done as described above. For rcc00645, 2469 bp was already deleted between two ClaI 

sites when the original disruption was made. In addition to these individual mutants with 

KIXX insertions, additional mutants were made for rcc00645 and rcc002857 using 

different antibiotic resistance genes. A gentamycin resistance gene was inserted at the 

ClaI deletion site for rcc00645 and a spectinomycin resistance gene was inserted into 

rcc002857 at the BsaBI deletion site. These constructs were used to create double 

(rcc00620 and rcc00645) and triple (rcc00645, rcc02629 and rcc02857) mutants by 

RcGTA transfer into the chromosome of the appropriate recipient mutant strains, as 

described above. 

 Trans-complementation constructs were made using the plasmid pCM62 (Marx 

and Lidstrom 2001) as a vector. The structural genes and their upstream regulatory 

regions were amplified using gene-specific complementation primers (Appendix 1, Table 

S2.1). The amplified fragments were cloned into pCM62 as KpnI fragments. The four 

knockout strains containing the empty plasmid were subsequently used as the reference 

strains. 

 To alter the c-di-GMP levels in R. capsulatus cells, plasmids carrying genes from 

other bacteria with known DGC (dgcA from Rhodobacter sphaeroides) (Ryjenkov et al. 

2005) and PDE (pdeA1 from Gluconacetobacter xylinus) (Chang et al. 2001) activities 

were constructed. The dgcA and pdeA1 genes were amplified using gene-specific primers 

(Appendix 1, Table S2.1) and cloned into pRR5C (Young, Reyes, and Beatty 1998), 

which leads to transcription in R. capsulatus under the control of the puf promoter. These 
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genes were also cloned into pCM62 (Marx and Lidstrom 2001) to allow transcription in 

E. coli from the lac promoter. 

To create point mutations in the predicted DGC and PDE domains, site-directed 

mutagenesis was performed using the QuickChange Lightning Site-Directed Mutagenesis 

kit (Agilent Technologies) as per the manufacturer’s instructions. Briefly, the pCM62-

based clones described above were used as templates for PCR with PfuUltra High-

Fidelity DNA polymerase and gene-specific primers (Appendix 1,Table S2.1) designed to 

change the critical residues of the GGDEF (GGDEF to GGAAF) and EAL (EAL, EVL 

and ETL to AAL, AVL and ATL, respectively) domains. These substitutions were chosen 

as they were previously shown to disrupt the function of these domains (Newell et al. 

2011; Kuchma et al. 2007). The methylated template DNA was then digested by 

incubation with DpnI for 10 min at 37°C and the remaining DNA was transformed into E. 

coli. Mutations were confirmed by sequencing. These pCM62 constructs allow the genes 

to be transcribed from their native upstream sequences in R. capsulatus and from the 

plasmid’s lac promoter in E. coli. 

Plasmids were conjugated into R. capsulatus using E. coli S-17 (Simon, Priefer, 

and Pühler 1983). 

2.2.3 Gene transfer bioassays 

 RcGTA-mediated gene transfer activity was measured as described (Hynes and 

Lang 2013), with quantification of the transfer of an essential photosynthesis gene, puhA, 

to a ∆puhA mutant strain, DW5 (Wong et al. 1996). Aerobically grown overnight cultures 

of test strains were normalized for density and used to inoculate anaerobic phototrophic 

cultures. These cultures were grown for approximately 48 hours, filtered using 0.45-µm 
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PVDF syringe filters and filtrates were assayed for RcGTA gene transfer activity. RcGTA 

activities for the mutant strains were measured as ratios relative to the parental strain 

SB1003 in at least three replicate experiments. For assaying the RcGTA production under 

aerobic conditions, the GTA donor cultures (SB1003 and SB645) were grown aerobically 

(shaken at 220 RPM) for approximately 48 hours at 35°C and then assayed for RcGTA 

gene transfer activity as described above. One-way analysis of variance (ANOVA) 

followed by Tukey HSD post-hoc analysis in R (Hesterberg, Chambers, and Hastie 1993) 

was used to identify statistically significant differences in RcGTA activities. 

2.2.4 Quantification of c-di-GMP 

 The quantification of c-di-GMP levels in cells was done using a protocol adapted 

from Roy, Petrova, and Sauer (2016). Aerobically grown overnight cultures of the 

different R. capsulatus strains were normalized for cell density and used to inoculate 

anaerobic photoheterotrophic cultures. These cultures were grown for approximately 48 

hours and 3 ml of each culture was removed and the cells pelleted by centrifugation at 

4°C. The supernatant was discarded, and the pellet was washed twice with 1 ml of ice-

cold phosphate-buffered saline (PBS). The cell pellet was then resuspended in 100 l ice-

cold PBS and incubated at 100°C for 5 minutes. Ice-cold 100% ethanol (186 l, final 

concentration 65%) was added and the mixture was vortexed for 15 seconds followed by 

centrifugation at 4°C. The supernatant containing the extracted c-di-GMP was then 

collected and transferred to a new microfuge tube. This extraction procedure was repeated 

twice more for each cell pellet and the supernatants were pooled into a single tube. The 

pellets were saved for protein quantification. The combined supernatants were dried in a 
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centrifugal evaporator at 30°C for 4-5 hours. The resulting dried extracts were 

resuspended in 100 l ultrapure water, briefly vortexed and then centrifuged at 16000 x g 

for 5 minutes. The supernatants were then transferred to 250-l glass micro-inserts which 

were placed into high-performance liquid chromatography (HPLC) vials for analysis. C-

di-GMP was detected using a Hewlett Packard 1050 HPLC system consisting of an 

autosampler, a quaternary pump and a multiple wavelength detector (Agilent 

Technologies). HPLC was performed with mobile phase parts A (10 mM ammonium 

acetate in H2O) and B (10 mM ammonium acetate in methanol), with elution using a 

gradient of 5% B for the first 6 minutes, to 15% B at 11 minutes, 25% B at 25 minutes 

and 90% B at 17 minutes and a flow rate of 0.5 ml minute-1. The backpressure of the 

system was 100 ± 5 bar. The injection volume was 20 l and detection was at 253 nm. 

The runtime was 19 minutes with a post time of 11 minutes and the retention time of c-di-

GMP was 13.0 ± 0.1 minutes. The “Chemstation” software (Agilent Technologies) was 

used to control the instrument and collect the data. Analytical separations were performed 

using a Luna 3m C18 100 x 4.6 mm column (Phenomonex). A standard curve was made 

using solutions of c-di-GMP (BIOLOG) in H2O (80, 40, 20, 10, 5, 2.5, 1.25, and 0 g l-1). 

Standards were measured from triplicate injections. Culture samples were prepared in 

triplicate and each replicate was quantified from triplicate injections. 

 For protein quantification, the cell pellets from the c-di-GMP extractions were 

resuspended by adding 500 l TE buffer and sonicated for a total of 2 minutes using 20-

second bursts on ice. The protein concentration was determined using the Bradford assay 

(He 2011). Briefly, 60 l of 10-fold diluted sample in TE buffer was added to a 

polystyrene cuvette containing 3 ml of Bradford reagent [0.005% (w/v) Coomassie 
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Brilliant Blue G-250, 8.5% (w/v) H3PO4]. The mixture was incubated for 5 minutes and 

the absorbance at 595 nm was measured. A standard curve was constructed using bovine 

serum albumin solution standards (25, 50, 100, 200, 500 and 1000 g ml-1). The 

concentration of c-di-GMP was then normalized to protein levels in the cells. One-way 

ANOVA followed by Tukey HSD post-hoc analysis in R was used to identify statistically 

significant differences in c-di-GMP levels. 

2.2.5 Western blotting 

 Western blotting to detect the RcGTA major capsid protein (approximately 32 

kDa) was carried out to quantify RcGTA protein levels within cells and released into the 

extracellular environment. This was performed on the same cultures that were used for 

gene transfer assays, as described (Mercer et al. 2012). Briefly, 0.5 ml of each culture was 

centrifuged at >14000 x g and a 0.2-ml sample was collected from the supernatant. The 

remaining supernatant was carefully removed from the cell pellet and 0.5 ml of TE buffer 

was added to resuspend the cells. Samples for SDS-PAGE were prepared by mixing 5 µl 

of cells and 10 µl of supernatant with SDS-PAGE sample loading buffer (NEB) and 

heating at 98°C for 5 minutes. Ten percent SDS-PAGE gels were used to separate the 

proteins followed by transfer onto nitrocellulose membranes by electroblotting in transfer 

buffer [48 mM Tris base, 39 mM glycine, 20% Methanol (v/v)]. The membranes were 

blocked with 5% (w/v) skim milk solution in TBST [20 mM Tris, 137 mM NaCl, 0.1% 

Tween-20 (v/v); pH 7.5] and incubated with the primary antibody, anti-Rhodobacterales 

GTA major capsid protein (Agrisera) (Fu et al. 2010), overnight at 4°C. After washing 

with TBST, membranes were incubated with secondary antibody, peroxidase-conjugated 
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anti-rabbit IgG (Santa Cruz Biotechnology), at room temperature for 1 hour. The 

SuperSignal West Femto Reagent Kit (Thermo Fisher Scientific) was used to detect the 

bands by chemiluminescence and images were captured using an Agilent ImageQuant 

LAS 4000 imaging system. Images were inverted and adjusted for brightness and 

contrast, and band intensities were quantified using ImageJ (Schneider, Rasband, and 

Eliceiri 2012). 

2.2.6 β-galactosidase assays 

 A plasmid carrying an in-frame fusion of orfg3 of the RcGTA structural gene 

cluster, along with upstream sequences including the cluster’s promoter region, to lacZ 

(Hynes et al. 2012) was used to quantify RcGTA gene expression. A version lacking the 

promoter region was used as a negative control. The R. capsulatus strains were grown 

under the same conditions and for the same time as for RcGTA gene transfer activity 

assays and assayed for β-galactosidase activity as described (Miller 1992). Briefly, the 

cell density of each culture was measured via absorbance at 600 nm and 0.1 ml of each 

was centrifuged and resuspended in 1 ml of Z buffer [60 mM Na2HPO47H2O, 40 mM 

NaH2PO4, 1 mM MgSO47H2O, 10 mM KCl, 50 mM β-mercaptoethanol; pH 7]. The cells 

were permeabilized by adding two drops of chloroform and one drop of 0.1% SDS 

followed by incubation at 28°C for 5 minutes. Ortho-nitrophenyl-β-galactoside was added 

(0.67 mg/ml final concentration) and the reactions were incubated at room temperature 

until visible yellow color developed and then stopped by addition of 1 M Na2CO3. Cell 

material was pelleted by centrifugation and the supernatants measured for absorbance at 

420 nm. β-galactosidase activities were calculated in Miller units (Miller 1992). 
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2.2.7 Bioinformatic analyses 

 Protein sequence analyses, for identification of functional domains, were done 

using the SMART (Letunic 2004; Schultz et al. 1998) and Expasy-Prosite (de Castro et al. 

2006) databases. Sequence alignments were done using Clustal Omega (Larkin et al. 

2007). 

2.2.8 E. coli motility assays 

 Swimming assays in E. coli MG1655 and E.coli MG1655 ∆yhjH, to detect DGC 

and PDE activities, respectively, were performed as described previously (Chen et al. 

2014). The pCM62-based clones of rcc00620, rcc00645, rcc02629, and rcc02857 genes, 

their respective site-directed mutants, and controls (dgcA from R. sphaeroides and pdeA1 

from G. xylinus) were transformed into the E. coli strains. Five μl of overnight cultures 

were inoculated onto semi-solid (0.25% agar) LB plates containing 0.25 mM IPTG and 

0.5% NaCl and the plates were incubated at 37°C for 4-6 hours and photographed. The 

images were manipulated for brightness and contrast to help improve the visibility of the 

bacterial growth zones. 

2.2.9 In-cell DGC activity assays 

 The same pCM62-based plasmids used for motility assays were also transformed 

into E. coli BL21(DE3) to perform Congo red binding assays as described previously 

(Chen et al. 2014). Briefly, 3 µl from overnight cultures for all the strains were streaked 

on LB agar containing 25 μg ml−1 Congo red and 0.1 mM IPTG and the plates were 

incubated at 28°C for 48 hours and photographed. 
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2.2.10 R. capsulatus motility assays 

 Aerobically grown overnight cultures were used to inoculate YPS agar (0.35%) 

stabs in test tubes that were incubated at 35°C under phototrophic conditions for 16-24 

hrs. The tubes were photographed and the diameters of the zones of growth were 

measured using ImageJ. The stab motility assays were performed in three independent 

growth experiments. One-way ANOVA followed by Tukey HSD post-hoc analysis in R 

was used to identify statistically significant differences in the measured stab swim zones. 

2.3 Results 

2.3.1 Disruptions of four genes encoding predicted c-di-GMP signaling proteins 

affect RcGTA production 

 Insertional disruptions were made in the eight chromosomal genes predicted to 

encode c-di-GMP signaling proteins whose mRNA levels were affected by loss of CtrA 

(Table 1), which is a key regulator required for RcGTA gene expression. The strains with 

disruptions in four genes, rcc00620, rcc00645, rcc02629 and rcc02857, showed 

appreciable differences in RcGTA production relative to the parental strain, whereas the 

other four gene disruptions did not (Appendix 1, Figure S2.1). Disruption of rcc00620 

decreased RcGTA production, whereas disruptions in rcc00645, rcc02629 and rcc02857 

increased it. 

 Evaluation of the protein sequences for the four genes showed that Rcc00620, 

Rcc00645, and Rcc02857 contained both GGDEF and EAL domains, while Rcc02629 

contained only a GGDEF domain (Figure 2.1A). Amino acid sequence analysis revealed 

that the GGDEF domains of all four proteins have all conserved residues required for 
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DGC activity (Figure 2.1B) (Romling, Galperin, and Gomelsky 2013). Similarly, the 

EAL domains of Rcc00620, Rcc00645 and Rcc02857 contain all conserved residues 

required for PDE activity (Figure 2.1C) (Romling, Galperin, and Gomelsky 2013). 

Therefore, Rcc02629 may possess DGC activity, while the three remaining proteins, 

Rcc00620, Rcc00645, and Rcc02857, may possess either DGC or PDE activity, or both 

activities. 

 

 

Figure 2.1. Predicted domains of four putative c-di-GMP signaling proteins that affect 

RcGTA gene transfer activity. A. Locations and organizations of predicted domains 
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identified in the four proteins. The domains are: REC, response regulator receiver; DGC, 

GGDEF (diguanylate cyclase); PDE, EAL (phosphodiesterase); PAS, Per-ARNT-Sim. B. 

Amino acid sequence alignments for the four proteins indicating A (active site: GGDEF, 

indicated by blue line) and I (inhibitory site: RXXD, indicated by red line) sites for the 

DGC domains. C. Amino acid sequence alignments for three of the proteins indicating the 

EAL motifs, which represent the PDE domains. 

 

 To eliminate the possibility that truncated proteins encoded by the disrupted 

versions of the rcc00620, rcc02629 and rcc02857 genes affected the results, we 

constructed deletion-insertion (as opposed to insertion only) mutations, where a large 

portion of each ORF was replaced with the KIXX fragment. The newly generated 

deletion-insertion mutants in rcc00620, rcc02629 and rcc02857 showed essentially the 

same phenotypes as the original insertion knockouts (Figure 2.2A). The original rcc00645 

disruption already featured a large deletion of the coding region, therefore obviating the 

need for a new mutant construction. Trans-complementation of all four mutants restored 

the RcGTA production to the parental strain levels (Figure 2.2A). Expression of plasmid-

borne rcc00645, rcc02629 and rcc02857 in the parental strain reduced RcGTA 

production (Figure 2.2A). These results are consistent with the inhibitory role of 

Rcc00645, Rcc02629 and Rcc02857 in RcGTA production. Expression of rcc00620 

complemented the rcc00620 mutation and increased RcGTA production in the parental 

strain, consistent with a stimulating role for Rcc00620 in RcGTA production. 

Quantification of gene expression for the RcGTA major structural gene cluster via a 

reporter fusion showed the changes in gene transfer activities in the four mutant strains 

matched with changes in RcGTA gene expression (Figure 2.3). Quantification of the 
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amounts of RcGTA major capsid protein within cells and released into the extracellular 

environment (Appendix 1, Figure S2.2) also indicated that the observed patterns in 

RcGTA activities in the mutant strains could be explained by changes in production and 

release of RcGTA for all four genes. Also, the relative RcGTA activities and capsid 

protein levels matched well when these genes were present in either mutant or parental 

strains. One exception was for rcc02629, where the decreased RcGTA activity observed 

when rcc02629 was present on plasmid in SB1003 (Figure 2.2A) did not match with 

lower capsid protein levels (Appendix 1, Figure S2.2), although this strain also showed 

the largest standard deviation in this assay. 
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Figure 2.2. Effects of gene disruptions, trans-complementation, and site-directed 

mutagenesis of enzymatic domains on RcGTA gene transfer activity. The gene transfer 

activities for mutants and strains containing plasmid-borne copies of the genes (A) and 

strains containing site-directed mutant versions of the genes (B) are presented as averages 

from 3 replicates relative to the parental strain, SB1003, carrying the empty vector, 

pCM62. Bars represent the standard deviations and statistically significant differences (p 

< 0.05) compared to the control, identified using one-way ANOVA followed by Tukey 

HSD post-hoc analysis, are indicated by asterisks. 

  

2.3.2 Analysis of GGDEF and EAL domains for the proteins affecting RcGTA 

production 

 To investigate which activities are involved in stimulating and inhibiting RcGTA 

production, we introduced site-directed mutations in the ‘GGDEF’ and ‘EAL’ motifs 

(Figure 2.1) of the proteins of all four proteins to generate GGAAF, AAL/AVL/ATL and 

GGAAF+AAL/AVL/ATL derivatives. The site-directed mutant derivatives were 

introduced into the respective knockout strains and RcGTA gene transfer activities were 

assayed. The GGAAF mutation in Rcc00620 had no effect on gene transfer activity, 

while mutation in the EAL domain (and both GGDEF and EAL domains) abolished the 

ability of Rcc00620 to complement the rcc00620 mutation (Figure 2.2B). This 

observation suggests that Rcc00620 has PDE activity that stimulates RcGTA production. 

The GGAAF mutations in Rcc00645, Rcc02629, and Rcc02857 abolished their ability to 

complement their respective mutations, while mutations in the EAL domains in Rcc00645 

and Rcc02629 had little to no effects on complementation (Figure 2.2B). These results 
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suggest that Rcc00645, Rcc02629, and Rcc02857 have DGC activities that inhibit 

RcGTA production in R. capsulatus. 

 

 

Figure 2.3. Effects of gene disruptions on RcGTA gene expression. β-galactosidase 

activities were measured for the indicated strains carrying the RcGTA orfg3’::’lacZ 

fusion construct, pX3. SB1003 (pX3NP) is the promoter-less negative control. The results 

are the average of three biological replicates with bars representing the standard 

deviations. Statistically significant differences (p < 0.0001) compared to the control, 

SB1003 (pX3), were identified using one-way ANOVA followed by Tukey HSD post-

hoc analysis and are indicated by asterisks. 

 

 To test the cumulative effect of losses of the suspected DGC-encoding genes on 

GTA production, a rcc00645.02629.02857 triple knockout mutant was constructed and 

tested for RcGTA activity. This strain did show an increase in RcGTA activity relative to 

the individual mutants (Appendix 1, Figure S2.3). Disruption of both rcc00620 and 
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rcc00645 resulted in gene transfer activity comparable to the wild type strain (Appendix 

1, Figure S2.3), indicating the loss of these two genes had compensatory effects. 

2.3.3 Effects of changing intracellular c-di-GMP levels on RcGTA production 

 The above analyses supported the notion that the DGC activities of these R. 

capsulatus proteins are responsible for the reduction of RcGTA production, while PDE 

activity is responsible for stimulating RcGTA production. To test the effects of c-di-GMP 

levels on RcGTA production more directly, we expressed heterologous DGC- (R. 

sphaeroides dgcA) and PDE-encoding (G. xylinus pde1) genes in R. capsulatus. RcGTA 

gene transfer assays showed that expression of the PDE caused an approximately 50% 

increase in RcGTA production whereas expression of the DGC caused an approximately 

40% decrease (Figure 2.4). 

 

 

Figure 2.4. Expression of genes encoding known DGC and PDE enzymes affects RcGTA 

gene transfer activity. The gene transfer activities for R. capsulatus SB1003 carrying the 

expression plasmid pRR5C (pRR), pRR5C with pdeA from G. xylinus (pRRPDE), and 

pRR5C with dgcA from R. sphaeroides (pRRDGC) are presented as average ratios 
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relative to SB1003 carrying no exogenous plasmid. The data come from 3 replicates with 

bars showing the standard deviations and statistically significant differences (p < 0.05) 

compared to the control, identified using one-way ANOVA followed by Tukey HSD 

post-hoc analysis, are indicated by asterisks. 

 

 To confirm the disruptions or expression of the different genes were leading to 

changes in intracellular c-di-GMP levels, we quantified these in the different strains. The 

mutant strains and the parental strain with and without the heterologous DGC and PDE 

genes were cultured under the same conditions as used for the GTA bioassay experiments 

and subjected to c-di-GMP quantification. Expression of the heterologous PDE resulted in 

lower levels of c-di-GMP, as did loss of the rcc00645, rcc02629 and rcc02857 genes 

(Figure 2.5). Expression of the heterologous DGC increased the c-di-GMP levels, as did 

disruption of rcc00620 (Figure 2.5) although the difference was not statistically 

significant for this strain. 
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Figure 2.5. Quantification of intracellular c-di-GMP levels in R. capsulatus strains. C-di-

GMP levels were measured by HPLC and normalized to protein content of the 

corresponding cell samples. The data come from 3 replicates with the bars representing 

the standard deviations and statistically significant differences (p < 0.05) compared to the 

control, identified using one-way ANOVA followed by Tukey HSD post-hoc analysis, 

are indicated by asterisks. 

2.3.4 Assaying R. capsulatus proteins for DGC and PDE activities in E. coli 

 To gain a better understanding of the DGC or PDE activities of the R. capsulatus 

proteins, we expressed them in the E. coli c-di-GMP reporter strain MG1655, where 

expression of an active heterologous DGC that increases the intracellular c-di-GMP levels 

inhibits swimming motility on semi-solid agar (Chen et al. 2014). Expression of 

rcc00620, rcc02629 and rcc02857 in MG1655 decreased the swim zones compared to the 
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empty vector control (Figure 2.6A), indicative of their DGC activities in E. coli. 

Expression of rcc00645 had a small inhibitory effect the swim zone. We also assessed a 

second c-di-GMP-dependent E. coli phenotype, fimbriae production in strain BL21(DE3), 

which can be detected by Congo red staining (Christen et al. 2006). The pattern was the 

same as for the motility assays, with expression of rcc00620, rcc02629, and rcc02857 

increasing Congo red staining compared to the vector control and expression of rcc00645 

having no effect (Figure 2.6B). 

 

 

Figure 2.6. Evaluation of R. capsulatus proteins for potential DGC and PDE activities in 

E. coli. A. Motility of E. coli MG1655 on semi-solid agar (0.25%), which is reduced by 

DGC activity, when containing the indicated plasmids. B. Congo red binding by E. coli 

BL21(DE3), where DGC activity increases fimbriae production and Congo Red binding, 

when containing the indicated plasmids. C. Motility of E. coli MG1655 ∆yhjH on semi-

solid media (0.25%), which is increased by PDE activity, when containing the indicated 

plasmids. In all experiments, transcription of the genes from the plasmid’s lac promoter 

was induced with IPTG. 
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 We next assessed the effects of the site-directed mutations in the GGDEF and 

EAL domains in these E. coli DGC assays. The GGAAF mutations in Rcc00620, 

Rcc02629, and Rcc02857 decreased or abolished their presumed DGC activities in the 

motility (Appendix 1, Figure S2.4A) and Congo red binding (Appendix 1, Figure S2.4B) 

assays, which is consistent with these three proteins possessing DGC activities in E. coli. 

The EAL domain mutations did not affect the activities of the Rcc00620 and Rcc02857 

proteins (Appendix 1, Figure S2.4AB). The GGAAF mutation in Rcc00645 had no effect 

in either assay, but mutation of the EAL domain resulted in increased DGC activity in 

both assays (Appendix 1, Figure S2.4AB). These results are consistent with Rcc00645 

having modest levels of both DGC activity and PDE activity, with the DGC activity only 

evident when the PDE activity is abolished. 

 The wild type and mutant genes were also tested in E. coli MG1655 ∆yhjH, where 

a drop in intracellular c-di-GMP levels caused by expression of an active PDE restores 

swimming motility on semi-solid agar (Ryjenkov et al. 2006). Expression of rcc00645, 

rcc00620 and rcc02857 had little or no observable effect on the swimming phenotype 

(Figure 2.6C). However, the GGAAF mutations in Rcc00620, Rcc00645 and Rcc02857 

increased the PDE activities of all three, as indicated by the larger swim zones (Appendix 

1, Figure S2.5). Mutation of the EAL domains in these GGAAF mutants reduced or 

abolished this evidence of PDE activity (Appendix 1, Figure S2.5). As expected, 

Rcc02629 did not exhibit PDE activity, nor did its GGAAF mutant version (Appendix 1, 

Figure S2.5). 

 Taken together, these assays indicated that, in E. coli, Rcc02629 acts as a DGC 

while Rcc00620, Rcc00645 and Rcc02857 possess both DGC and PDE activities. 
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2.3.5 Effect of aerobic versus anaerobic growth on Rcc00645 and RcGTA 

production 

 The Rcc00645 protein contains several PAS domains, one of which (aa 142-244) 

is predicted to bind heme, a common moiety involved in oxygen sensing. Since both its 

GGDEF and EAL domains appear to be enzymatically active based on our assays, it is 

possible that this bifunctional protein switches from acting as a DGC under anaerobic 

conditions, which were used for the RcGTA production assays, to a PDE under aerobic 

conditions, which were used for the E. coli motility assays. To test this hypothesis, we 

assayed GTA production by SB645 when grown under aerobic versus anaerobic 

conditions. Interestingly, there was no significant difference in gene transfer activity for 

this mutant compared to the parental strain under aerobic conditions, compared to the 

large increase observed in this strain under anaerobic conditions (Appendix 1, Figure 

S2.6). This suggests oxygen does affect Rcc00645 such that it is more active as a DGC 

under anaerobic conditions. However, there is no evidence from this result that the 

protein acts as a PDE under aerobic conditions in R. capsulatus as gene transfer activity 

was not lower in the mutant strain. 

2.3.6 C-di-GMP and R. capsulatus flagellar motility 

 Intracellular c-di-GMP concentrations are commonly involved in regulating 

flagellar motility in bacteria (Romling, Galperin, and Gomelsky 2013). We therefore 

conducted flagellar motility assays to look for effects of the gene disruptions and 

expression of the heterologous PDE and DGC genes on this phenotype in R. capsulatus. 

The parental strain, SB1003, and its non-motile ctrA mutant derivative, SBRM1, served 



73 
 

as controls. Expression of the heterologous DGC caused a significant decrease in motility 

while the heterologous PDE significantly increased the swim diameter (Figure 2.7). 

Therefore, c-di-GMP inhibits flagellar motility in R. capsulatus. With this in mind, the 

phenotypes of the mutant strains (Figure 2.7) were all as predicted based on the results of 

the experiments presented above (e.g. Figure 2.4), although the difference was only 

statistically significant for SB645. 

 

Figure 2.7. Effects of gene disruptions and alterations of c-di-GMP levels on R. 

capsulatus flagellar motility. A. Motility assays of the four mutant strains and the parental 

strain, SB1003, carrying the heterologous PDE and DGC expression plasmids. The 
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parental strain without any manipulation and its non-motile ctrA null mutant derivative, 

SBRM1, are included as reference strains. The distance of growth away from the center 

of the stab lines in 0.35% agar reflects the relative motility of the strain. B. The 

swimming diameters were measured from three replicate assays and plotted as relative to 

SB1003. The bars represent the standard deviation and statistically significant differences 

(p < 0.05) compared to the control, identified using one-way ANOVA followed by Tukey 

HSD post-hoc analysis, are indicated by asterisks. 

2.4 Discussion 

 The genome of R. capsulatus is predicted to encode 2 EAL, 2 GGDEF and 16 

tandem GGDEF/EAL domain-containing proteins (Strnad et al. 2010). Several of these 

genes were identified in a previous transcriptomic study as having significantly changed 

transcript levels in the absence of the response regulator CtrA (Mercer et al. 2010), which 

is absolutely required for the production of RcGTA (Lang and Beatty 2000). This led us 

to hypothesize that these proteins potentially involved in c-di-GMP signaling might affect 

RcGTA production. Indeed, disruptions of four of the genes were found to affect RcGTA 

gene transfer activity, as did increasing their copy number, which presumably increased 

their expression, in the parental strain (Figure 2.2; Table 2.3). Disruptions of rcc00645, 

rcc02629 and rcc02857 resulted in similar RcGTA phenotypes with increases in RcGTA 

production compared to the parental strain, and loss of all three of these genes showed a 

slightly larger effect than for any one individual gene (Appendix 1, Figure S2.3). 

Disruption of rcc00620 lowers RcGTA production compared to the parental strain. Both 

reporter fusion assays and western blotting showed that loss of the four genes affected 

RcGTA gene expression (Figures 3 and Appendix 1, S2.2). Importantly, increasing the 
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intracellular concentration of c-di-GMP by expression of a heterologous DGC inhibited 

gene transfer activity, while decreasing the c-di-GMP levels by expression of a 

heterologous PDE stimulated gene transfer activity (Figure 2.4; Table 3). The 

intracellular c-di-GMP levels in the studied R. capsulatus strains matched the 

expectations based on the phenotypic experiments (Figure 2.5) and these results establish 

that c-di-GMP acts as an inhibitor of RcGTA production and that, with respect to effects 

on RcGTA, the Rcc00645, Rcc02629 and Rcc02857 proteins act as DGCs in R. 

capsulatus whereas Rcc00620 acts as a PDE. Furthermore, c-di-GMP levels and these 

specific signaling proteins are also implicated in regulating flagellar motility (Figure 2.7), 

further entwining the co-regulation of RcGTA production and motility in R. capsulatus 

(Lang and Beatty 2002; Mercer et al. 2012). 

 

Table 2.3. Summary of phenotypes from R. capsulatus and E. coli assays. 

Strain/plasmid R. capsulatus 

phenotype 

(RcGTA 

activity)a 

E. coli phenotype 

Fimbriae 

production 

(Congo red 

binding)b 

MG1655 

motilityb 

MG1655 ∆yhjH 

motilityc 

SB620 ↓    

SB1003 (p620) ↑    

SB645 ↑    

SB1003 (p645) ↓    

SB2629 ↑    

SB1003 (p2629) ↓    

SB2857 ↑    
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SB1003 (p2857) ↑    

SB620.645. =    

SB645.2629.2857 ↑    

SB1003 (pRRDGC) ↓    

SB1003 (pRRPDE) ↑    

pDGC  ↑ ↓ = 

pPDE  = = ↑ 

p620  ↑ ↓ = 

p620GGAAF = = = ↑ 

p620AAL ↓ ↑ ↓ = 

p620GGAAF/AAL ↓ = = = 

p645  = = = 

p645GGAAF ↑ = = ↑ 

p645AVL = ↑ ↓ = 

p645GGAAF/AVL ↑ = = = 

p2629  ↑ ↓ = 

p2629GGAAF ↑ = = = 

p2857  ↑ ↓ = 

p2857GGAAF ↑ = = ↑ 

p2857ATL = ↑ ↓ = 

p2857GGAAF/ATL ↑ = = = 

a From Figures 2, 4, S2.1 and S2.3 

b From Figures 6 and S2.4 
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c From Figures 6 and S2.5 

 

 Disruptions of the different DGC-encoding genes affect gene transfer to different 

degrees (Figure 2.2A). This could be due to differences in the expression levels of the 

different genes or enzymatic activities of the encoded proteins or some combination of 

both these factors. Examination of the transcript levels for these genes (Mercer et al. 

2010) from the same growth conditions as used for the experiments here indicated 

rcc00645 has the highest transcript levels of the three genes, possibly explaining some of 

our results. However, rcc02857 transcript levels are more than three-fold higher than 

those of rcc02629, yet loss of rcc02629 had a bigger effect on gene transfer activity. 

Increasing the copy number for all three genes in the wild type background resulted in 

similar effects (Figure 2.2A) and the c-di-GMP levels in the three different mutants are 

quite similar (Figure 2.5). Therefore, there does not seem to be an easy explanation in 

terms of transcript levels or magnitude of effects on intracellular c-di-GMP levels for the 

differences in the observed effects for the different genes. 

 Bifunctional DGC-PDE proteins are fairly common (Tarutina, Ryjenkov, and 

Gomelsky 2006; Romling, Galperin, and Gomelsky 2013), and three of the proteins 

implicated in RcGTA production contain intact versions of both GGDEF and EAL 

domains while one contains only a GGDEF domain (Figure 2.1). Site-directed mutations 

in these domains (Figure 2.2B) validate the interpretations based on the null mutant 

(Figure 2.2A) and heterologous gene expression results (Figure 2.4). The functionality of 

these domains and the enzymatic activities of the proteins were further interrogated in E. 

coli c-di-GMP reporter strain assays. These confirmed that Rcc02629 possesses DGC 

activity and revealed that the other three proteins display both DGC and PDE activities 
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(Figures 6, 7, S2.4, and S2.5; Table 3). From the E. coli assays, for Rcc00620 and 

Rcc02857 the DGC activity dominates and PDE activity is only evident when the 

GGDEF domain is mutated, whereas for Rcc00645 the PDE activity dominates and the 

DGC activity is enhanced by mutation of the EAL domain. These results confirm the 

functionality of these domains, but the activities of the proteins in E. coli and how this 

relates to their activities in R. capsulatus needs to take into consideration that the three 

bifunctional proteins contain additional signaling/regulatory domains that likely regulate 

their enzymatic activities (Wolfe and Visick 2010). Indeed, a preliminary investigation of 

a possible effect of oxygen on the activity of Rcc00645, which contains a PAS domain 

predicted to bind heme, suggests this bifunctional protein shows higher DGC activity 

under anaerobic conditions (Appendix 1, Figure S2.6). It is possible that this differential 

activity of Rcc00645 with respect to RcGTA might be part of the explanation for the 

observation made more than 40 years ago that much less RcGTA production occurs when 

cultures are grown aerobically versus anaerobically (Solioz 1975). Rcc00620 displays 

DGC activity in E. coli, whereas it acts as a PDE in R. capsulatus. We speculate that the 

switch between DGC and PDE activities may depend on the phosphorylation status of its 

N-terminal REC domain (Levet-Paulo et al. 2011; Ryjenkov et al. 2005). The 

phosphorylation status may differ in R. capsulatus and E. coli due to the lack of a cognate 

kinase/phosphatase protein(s) in E. coli. 

 How c-di-GMP is connected to RcGTA production mechanistically is unknown at 

present. One possible link may involve CckA, the sensor kinase component of the CckA-

ChpT-CtrA histidyl-aspartyl phosphorelay. This regulatory system has been extensively 

characterized in C. crescentus (Curtis and Brun 2010; Tsokos and Laub 2012), where it 

was also first discovered (Quon, Marczynski, and Shapiro 1996; Jacobs et al. 1999; 
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Biondi et al. 2006). It is almost universally conserved within the class -proteobacteria 

(Brilli et al. 2010), although its functions vary among lineages within this group (Barnett 

et al. 2001; Bellefontaine et al. 2002; Curtis and Brun 2010; Kim, Heindl, and Fuqua 

2013; Greene et al. 2012; Miller and Belas 2006; Mercer et al. 2010). Kinase and 

phosphatase activities of CckA are regulated directly by c-di-GMP in C. crescentus 

(Mann et al. 2016; Lori et al. 2015). Binding of c-di-GMP by CckA favors phosphatase 

activity, thus resulting in CtrA existing primarily in the non-phosphorylated state. The C. 

crescentus CckA c-di-GMP binding sites are conserved in the R. capsulatus protein 

sequence, suggesting that a similar regulation might also occur in this bacterium and the 

effects of disrupting or overexpressing the four genes studied here could therefore be 

mediated in part by CckA. The dysregulation of these genes in the absence of CtrA, 

including evidence for direct regulation of rcc00645 by CtrA due to the presence of an 

upstream consensus binding site (Mercer et al. 2010), would then also suggest there is 

some sort of feedback loop at work, with these proteins potentially modulating CtrA 

phosphorylation state and CtrA directly and/or indirectly affecting transcript levels of 

these genes. A similar feedback situation may also exist in the -proteobacterium 

Dinoroseobacter shibae, where CtrA also affects the transcript levels of c-di-GMP 

signaling genes (Koppenhöfer et al. 2019). Indeed, there are many commonalities in the 

interconnections of GTA-regulating systems (quorum sensing, LexA, etc.) with other 

aspects of biology (e.g. flagellar motility) in the two species. 

 The production and release of RcGTA particles is not as straightforward as once 

believed. Most of the particle structure is encoded in an approximately 14-kb gene cluster 

(Lang and Beatty 2000), but additional essential genes for the structure (Hynes et al. 
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2016) and particle release (Hynes et al. 2012) are encoded elsewhere. Genes encoding 

head spike proteins (Westbye et al. 2016), which are not essential but that improve the 

particles’ binding to recipient cells (Westbye et al. 2016; Hynes et al. 2016), are also 

encoded elsewhere. Importantly, some of these genes are transcribed in the presence of 

unphosphorylated CtrA, such as the main structural cluster (Mercer et al. 2012), while 

others require phosphorylated CtrA and are not expressed in the absence of CckA or 

ChpT, such as the lysis and head spike genes (Westbye et al. 2013;  Westbye et al. 2016). 

It is also important to note that CckA is required for proper function and release of 

RcGTA independent of CtrA and CtrA~P (Mercer et al. 2012) and therefore, if c-di-GMP 

is affecting CckA activity, some of the effects seen in this study could also be due to this 

CtrA-independent pathway. 

 A previous network-based gene co-expression analysis of R. capsulatus 

microarray transcriptomic data from 23 different strains and/or growth conditions sorted 

the R. capsulatus genes into 40 distinct modules (Peña-Castillo et al. 2014). The rcc00645 

gene falls within the same gene module as the RcGTA structural cluster (Lang and Beatty 

2000), lysis (Hynes et al. 2012), head spike (Westbye et al. 2016; Hynes et al. 2016), 

putative tail spike (Hynes et al. 2016; Lang, Westbye, and Beatty 2017), and phage-

related regulatory (Fogg 2019; Hynes et al. 2016) genes. The rcc00620, rcc02629 and 

rcc02857 genes are within a different gene module that also contains the RcGTA-

regulatory partner-switching phosphorelay genes, rbaVWY (Mercer and Lang 2014). 

Therefore, in addition to the connections of these c-di-GMP signaling genes with respect 

to CtrA, RcGTA production and motility, they show linkages in regulation that are 

maintained through analysis of diverse transcriptomic datasets. 
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 To the many bacterial processes known to be affected by c-di-GMP signaling 

(Romling, Galperin, and Gomelsky 2013; Jenal, Reinders, and Lori 2017) this study adds 

one more, gene transfer. Our experiments showed that elevated c-di-GMP concentrations 

inhibit RcGTA gene transfer and flagellar motility in R. capsulatus. Of the four proteins 

implicated in affecting RcGTA production and motility, three contain both GGDEF and 

EAL domains, all of which appear enzymatically functional. Regulation of the activities 

of these proteins, most likely involving their additional signaling domains (Figure 2.1), is 

therefore expected to be an important aspect of their functioning with respect to these 

behaviors. Indeed, oxygen appears to be an important factor for the activity of Rcc00645. 

Additional research is also required to evaluate the possible connection between c-di-

GMP signaling uncovered here and the CckA-ChpT-CtrA regulatory pathway. 
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CHAPTER 3- A two-component system acquired by horizontal gene transfer 

modulates gene transfer and motility via cyclic dimeric GMP 

3.1 Introduction 

 Two-component systems (TCS) are widely used by bacteria to sense and respond 

to various internal and external stimuli (Stock, Robinson, and Goudreau 2000; Gao and 

Stock 2009; Zschiedrich, Keidel, and Szurmant 2016). A classic TCS comprises a sensor 

histidine kinase and a response regulator, proteins that are multidomain in nature, and 

cognate pairs are often encoded by neighbouring genes (Shiro and Yamada 2008). The 

chemistry of the TCS involves the sequential phosphorylation of two different amino 

acids that, for the majority, are a histidine within the kinase and an aspartic acid within 

the response regulator, and they are therefore also referred to as histidyl-aspartyl 

phosphorelay systems. In response to a specific signal, the kinase becomes activated and 

autophosphorylates on the histidine residue using ATP as the phosphodonor. The 

phosphate is subsequently transferred to the aspartic acid in the N-terminal receiver 

(REC) domain of the cognate response regulator, causing a conformational change that 

activates a C-terminal output/effector domain for the appropriate cellular response (Stock, 

Robinson, and Goudreau 2000). Different response regulators contain different types of 

output domains, such as helix-turn-helix DNA-binding, enzymatic, or protein/ligand-

binding domains, and the activities of these domains are regulated based on the 

phosphorylation state of the REC domain (Perry, Koteva, and Wright 2011; Galperin 

2010; Krell et al. 2010). Many response regulators trigger adaptive responses through the 

direct alteration of gene expression (Casino, Rubio, and Marina 2010), but >5% are 

predicted to be involved in cyclic dimeric guanosine monophosphate (c-di-GMP) 
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biosynthesis and/or degradation, indicating extensive TCS regulation of the cellular levels 

of this important signaling molecule (Romling, Galperin, and Gomelsky 2013). 

 C-di-GMP acts as a second messenger in bacteria, with changes in its levels 

affecting various processes in different organisms, such as motility, aggregation 

behaviors, and developmental transitions (Romling, Galperin, and Gomelsky 2013; Jenal, 

Reinders, and Lori 2017; Hengge 2009). Diguanylate cyclase (DGC) and 

phosphodiesterase (PDE) enzymes mediate the synthesis and degradation of c-di-GMP, 

respectively. Diguanylate cyclases contain a GGDEF motif in their active site, which 

catalyzes the cyclization of c-di-GMP from two GTP molecules (Paul et al. 2004). 

Phosphodiesterases contain EAL or HD-GYP motifs and break c-di-GMP into 5’-

phosphoguanylyl-(3’-5’)-guanosine (5’-pGpG) or two GMP, respectively (Simm et al. 

2004; Tischler and Camilli 2004; Römling and Galperin 2017). Proteins containing both 

GGDEF and EAL domains are also common. In some of these proteins, one of the two 

domains is enzymatically inactive and serves as a regulatory site by binding to the GTP or 

c-di-GMP substrates (Hengge 2009). Others are bifunctional enzymes, such as BphG1 in 

Rhodobacter sphaeroides (Tarutina, Ryjenkov, and Gomelsky 2006), MSDGC-1 in 

Mycobacterium smegmatis (Kumar and Chatterji 2008), and ScrC in Vibrio 

parahaemolyticus (Ferreira et al. 2008), but it is still not completely clear if/how these 

two activities are reciprocally regulated and what determines the overall activity of such 

proteins. However, these proteins typically also contain additional sensory/signaling 

domains, such as Per-ARNT-Sim (PAS) or REC, that can affect the c-di-GMP-related 

domains in response to various stimuli (Romling, Galperin, and Gomelsky 2013). 

 Rhodobacter capsulatus is a purple non-sulfur photosynthetic bacterium that 

belongs to the class Alphaproteobacteria. It has been studied with respect to various 
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cellular functions (Strnad et al. 2010), especially phototrophy, and it is also known for 

being the first organism found to exchange DNA via a gene transfer agent (GTA) (Marrs 

1974). GTAs, which are now known to be produced by multiple species of bacteria and 

one archaeon, resemble bacteriophages but they package small fragments of the 

producing cell’s genome (4-14 kb, depending on the GTA) that is transferred to other 

cells (reviewed in (Lang, Beatty, and Rice 2017; Lang, Zhaxybayeva, and Beatty 2012; 

Lang and Beatty 2007; Stanton 2007)). Production of the R. capsulatus GTA (RcGTA) is 

affected by two regulators with clear evolutionary connections to phages (Hynes et al. 

2016; Fogg 2019) as well as multiple cellular regulatory systems [reviewed in (Lang, 

Beatty, and Rice 2017)], including quorum sensing via the GtaI-GtaR proteins (Schaefer 

et al. 2002; Leung et al. 2012) and the CckA-ChpT-CtrA histidyl-aspartyl phosphorelay 

(Lang and Beatty 2000; Mercer et al. 2012). A transcriptomic study focused on CtrA 

showed that more than 20 genes encoding predicted signal transduction and transcription-

regulating proteins were affected by the loss of this response regulator (Mercer et al. 

2010). These included nine proteins predicted to be involved in c-di-GMP signaling, and 

four of these were subsequently shown to affect RcGTA production as well as flagellar 

motility by altering c-di-GMP levels (Pallegar et al. 2020). One of these four proteins, 

Rcc00620, possesses a response regulator REC domain and both GGDEF and EAL 

domains and was shown to act as a positive regulator of RcGTA production by acting as a 

PDE enzyme (Pallegar et al. 2020). However, this protein acted as a DGC in Escherichia 

coli (Pallegar et al. 2020). This differential activity in the two bacteria led us to speculate 

that the activity of one or both domains might be regulated by the phosphorylation status 

of the N-terminal REC domain and through the action of a cognate histidine kinase 

protein. 
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 In this study, we used genetic manipulations, site-directed mutagenesis, and in 

vitro phosphorylation assays to determine if the c-di-GMP-modulating protein Rcc00620 

acts as a response regulator in a TCS with a putative cognate histidine kinase, Rcc00621. 

We evaluated the role of the Rcc00620 REC domain and Rcc00621 in regulating the 

enzymatic activity of Rcc00620 in R. capsulatus by quantifying RcGTA production, cell 

motility, and c-di-GMP levels in relevant strains, and via E. coli c-di-GMP indicator 

assays. We also investigated the evolutionary history of the two genes and their protein 

motif conservation across alphaproteobacterial species. We show that these genes were 

horizontally acquired by an ancestral Rhodobacter from within the alphaproteobacterial 

order Sphingomonadales and encode a functional TCS where the c-di-GMP-related 

enzymatic activity of Rcc00620 is regulated through phosphorylation of its REC domain 

by the histidine kinase Rcc00621. 

 

3.2 Methods and materials 

3.2.1 Sequence and phylogenetic analyses 

 The SMART (Letunic 2004; Schultz et al. 1998) and Expasy-Prosite (de Castro et 

al. 2006) databases were used to identify functional domains in the protein sequences and 

TMpred (Hofmann and Stoffel 1993) and Phobius (Käll, Krogh, and Sonnhammer 2007) 

were used to predict transmembrane domains. 

 rcc00620 and rcc00621 homologs were identified using the BLASTn (Altschul et 

al. 1990) online tool with adjusted scoring parameters (Match/Mismatch Scores: 1/-1; 

Gap Costs: Existence 2, Extension 1) and searches were performed within the “non-

redundant” and “whole-genome shotgun contigs” (wgs) databases using the genomic 

sequence of R. capsulatus SB1003 that contains both genes (accession number 
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CP001312, nt 666094-669794) as query. Only hits that showed >89% continuous 

coverage were considered. For nucleotide sequences that lacked annotations, protein 

sequence predictions and annotations were performed in Geneious R11 (Biomatters). 

Accession numbers of sequences used in this study are available in the supplementary 

material (Appendix 2, Table S3.1, Figures S3.2, S3.3 and S3.4). 

 Phylogenetic analyses were performed using either 16S rDNA reference 

sequences obtained from the NCBI 16S RefSeq database 

(https://www.ncbi.nlm.nih.gov/refseq/targetedloci/16S_process/) or with sequences 

identified with BLASTn. Sequence alignments were produced with MAFFT (Katoh and 

Standley 2013), alignments were polished with TrimAl (Capella-Gutiérrez, Silla-

Martínez, and Gabaldón 2009) through the online tool Phylemon (Sánchez et al. 2011), 

and trees were built with MEGA7 (S. Kumar, Stecher, and Tamura 2016) using the 

neighbor-joining (Saitou and Nei 1987) and maximum-likelihood (Felsenstein 1981) 

methods for large and small datasets, respectively. The best model for distance 

estimation, identified by a model test analysis, was used to calculate distances between 

sequences and a bootstrap analysis was performed to evaluate cluster robustness 

(Felsenstein 1985). Sequence identities (1–p-distance) were calculated with MEGA7. 

3.2.2 Bacterial strains, media and growth conditions 

 All bacterial strains and plasmids used in this study are listed in Table 3.1. R. 

capsulatus was grown at 35 °C under either photoheterotrophic anaerobic conditions in 

YPS medium (Wall, Weaver, and Gest 1975) or aerobically in RCV medium (Beatty and 

Gest 1981), supplemented with appropriate antibiotics when required: kanamycin (10 μg 

ml−1), gentamycin (3 μg ml−1), and tetracycline (0.5 μg ml−1). E. coli was grown in LB 

https://www.ncbi.nlm.nih.gov/refseq/targetedloci/16S_process/


92 
 

medium supplemented with appropriate antibiotics when required: kanamycin (25 μg 

ml−1), gentamycin (10 μg ml−1), and tetracycline (10 μg ml−1). 

 

Table 3.1. List of bacterial strains and plasmids used in this study. 

Strains and plasmids Description Reference or source 

R. capsulatus strains 

SB1003 Genome-sequenced strain (Strnad et al. 2010; 

Yen and Marrs 1976) 

DW5 SB1003 ∆puhA (Wong et al. 1996) 

SB620 SB1003 with 1068-bp deletion in 

rcc00620 replaced by KIXX fragment 

(Pallegar et al. 2020) 

SB620.621 SB1003 with 3379-bp deletion in 

rcc00620.rcc00621 replaced by 

spectinomycin resistance-encoding 

Omega fragment 

This study 

SB621 SB1003 with 2469-bp deletion in 

rcc00621 replaced by spectinomycin 

resistance-encoding Omega fragment 

This study 

E. coli strains 

NEB5 Cloning strain New England Biolabs 

MG1655 Wild type; motility indicator strain for 

DGC activity 

(Blattner et al. 1997) 
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MG1655 ∆yhjH Motility indicator strain for PDE 

activity 

(Ryjenkov et al. 2006; 

Simm et al. 2004) 

BL21(DE3) Curli fimbriae indicator strain for DGC 

activity 

New England 

Biolabs; (Christen et 

al. 2006) 

C600(pDPT51) Plasmid-mobilizing strain (Taylor et al. 1983) 

S17-1 Plasmid-mobilizing strain (Simon, Priefer, and 

Pühler 1983) 

Plasmids 

pGEM-T Easy TA PCR product cloning vector Promega 

pCM62 Broad host range vector; expression of 

genes in E. coli driven by lac promoter 

(Marx and Lidstrom 

2001) 

pET-28a Expression vector for purifying 6X-

His-tagged proteins 

Novagen (USA) 

p620 rcc00620 and 440 bp of 5’ sequence in 

KpnI site of pCM62 

(Pallegar et al. 2020) 

p620D86A p620 with mutation in REC domain This study 

p620D86E p620 with mutation in REC domain This study 

p621 rcc00621 and 1049 bp of 5’ sequence 

in EcoRI site of pCM62 

This study 

p621H361N p621 with mutation in H-box of HK 

domain 

This study 
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p620.621 rcc00620.rcc00621 and 440 bp of 5’ 

sequence in KpnI site of pCM62 

This study 

pET-28a.620 Expression vector for C-terminal 6X-

His-tagged Rcc00620 

This study 

pET-28a.621TM Expression vector for C-terminal 6X-

His-tagged Rcc00621TM 

This study 

pDGC Heterologous diguanylate cyclase gene 

from Rhodobacter sphaeroides 

(RSP_3513) cloned into pCM62 

(Pallegar et al. 2020) 

pPDE Heterologous phosphodiesterase gene 

from Gluconacetobacter xylinus 

(pdeA1) cloned into pCM62 

(Pallegar et al. 2020) 

 

3.2.3 Construction of gene disruptions and trans-complementation plasmids 

 The rcc00621 gene was amplified by PCR using R. capsulatus SB1003 genomic 

DNA as template with corresponding primers (Appendix 2, Table S3.2). The amplified 

product was then cloned into pGEM-T Easy (Promega). Gene disruptions were made by 

insertion of the approximately 2-kb SmaI fragment of the spectinomycin resistance-

encoding Omega fragment (Prentki and Krisch 1984) at specific restriction enzyme sites. 

rcc00621 was disrupted by digestion with SrfI and MscI, resulting in the deletion of 1222 

bp from the gene. The double knockout mutant of both rcc00620 and rcc00621 was made 

by digestion with NruI, resulting in a deletion of 3379 bp across the two genes. Mutation 

constructs were confirmed by restriction enzyme mapping and the disrupted genes were 
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transferred into the R. capsulatus SB1003 chromosome by RcGTA for generation of the 

mutant strains as described previously (Hynes and Lang 2013). Chromosomal gene 

disruptions were confirmed by PCR. 

 Trans-complementation of mutants was done with the relevant genes and their 

upstream regulatory regions, amplified using gene-specific primers (Appendix 2, Table 

S3.2), cloned into pCM62 (Marx and Lidstrom 2001). The amplified fragments were 

cloned into pCM62 using EcoRI for rcc00621 and KpnI for rcc00620.rcc00621. The 

knockout strains containing the empty vector were used as the respective reference 

strains. 

3.2.4 Gene transfer bioassays and quantification of the RcGTA major capsid 

protein 

 A gene transfer bioassay quantifying the transfer of an essential photosynthesis 

gene, puhA, to a ∆puhA mutant strain (DW5) (Wong et al. 1996) was used to measure the 

production and release of RcGTA particles (Hynes and Lang 2013). Briefly, R. 

capsulatus strains were grown under photoheterotrophic conditions in YPS medium for 

approximately 48 hours, filtered using 0.45-µm PVDF syringe filters, and the filtrates 

assayed for RcGTA gene transfer activity. RcGTA activities were calculated as ratios 

relative to the parental wild type strain, SB1003, in three replicate experiments. 

Statistically significant differences in RcGTA gene transfer activities were identified 

using one-way analysis of variance (ANOVA) followed by Tukey HSD post-hoc analysis 

in R (Hesterberg, Chambers, and Hastie 1993). RcGTA major capsid protein levels were 

quantified within the cells and in the culture medium by performing western blots on 

samples from the same cultures that were used for gene transfer assays, as described 

previously (Pallegar et al. 2020). 
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3.2.5 Site-directed mutagenesis of Rcc00620 and Rcc00621 

 Substitutions in the REC domain of Rcc00620 and of the phosphoryl acceptor 

histidine in Rcc00621 were created by performing site-directed mutagenesis using the 

QuickChange Lightning Site-Directed Mutagenesis kit (Agilent Technologies) as per the 

manufacturer’s instructions. Briefly, rcc00620 cloned in pCM62 was used as a template 

for PCRs with PfuUltra High-Fidelity DNA polymerase and primers (Appendix 2, Table 

S3.2) designed to change the aspartic acid within the REC domain (position 86) to alanine 

(D86A) or glutamate (D86E) to mimic the permanently unphosphorylated or 

phosphorylated state, respectively (Scharf 2010). Similarly, rcc00621 cloned in pCM62 

was used as template for SDM PCRs using primers (Appendix 2, Table S3.2) to change 

the conserved histidine residue within the predicted H-box (position 361) to asparagine 

(H361N). The methylated template DNAs were then digested by incubation with DpnI for 

10 min at 37 °C and the remaining DNA was transformed into E. coli. Mutations were 

confirmed by sequencing and plasmids were subsequently conjugated into R. capsulatus 

using E. coli S-17 (Simon, Priefer, and Pühler 1983). 

3.2.6 Expression and purification of recombinant proteins from E. coli 

 To create recombinant C-terminal 6X-His-tagged proteins, rcc00620 and 

rcc00621 were amplified using gene-specific primers (Appendix 2, Table S3.2) and 

cloned as NcoI/HindIII fragments into pET-28a (Novagen). rcc00621 was amplified and 

cloned such that only the predicted soluble cytoplasmic portion of the protein would be 

present and the N-terminal region of the protein (283 amino acids) containing the two 

predicted trans-membrane domains was not included (Rcc00621TM). The resulting 

plasmids were confirmed to be as expected by sequencing and transformed into E. coli 
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BL21(DE3) (New England Biolabs). For protein purification, overnight cultures were 

used to inoculate 200 ml of LB broth with appropriate antibiotics followed by incubation 

at 30 °C with shaking at 220 rpm. After one hour, isopropyl-β-D-thiogalactopyranoside 

(IPTG) was added to a final concentration of 1 mM to induce expression and the cultures 

were incubated at 30 °C for another 5-6 hours with shaking at 220 rpm. The cells were 

harvested by centrifugation (5000 x g for 10 minutes at 4 °C) and the pellets resuspended 

in lysis buffer [50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, 0.1% Benzonase® 

nuclease (Qiagen), 1 mg ml-1 lysozyme; pH 8] and incubated on ice for 30 minutes. The 

suspension was then centrifuged at 10000 x g for 30 minutes at 4 °C. The supernatant was 

then collected and mixed 4:1 (v/v) with Ni-NTA agarose slurry (Qiagen) and incubated at 

4 °C for 1 hour. After incubation, the mix was loaded into a polypropylene column and 

washed twice with wash buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole; pH 

8) and the recombinant proteins were eluted in four 0.5-ml aliquots of elution buffer [50 

mM NaH2PO4, 300 mM NaCl, 250 mM imidazole; pH 8]. The eluted proteins were 

analysed by SDS-PAGE followed by Coomassie Brilliant Blue staining. The appropriate 

eluted protein fractions were pooled and dialyzed against dialysis buffer (50 mM 

NaH2PO4, 300 mM NaCl; pH 8) and the final protein concentrations determined using the 

Bradford method (He 2011). 

3.2.7 In-vitro phosphorylation assays 

 Phosphorylation assays were performed in phosphorylation reaction buffer [100 

mM Tris-HCl, 50 mM KCl, 5 mM MgCl2; pH 8]. Acetyl phosphate-dependent 

phosphorylation of Rcc00620 (5 µM) was tested in this buffer supplemented with 40 mM 

acetyl phosphate with incubation at 30 °C for 30 minutes. Phosphotransfer from 

Rcc00621 to Rcc00620 was tested by incubation of Rcc00621TM (5 µM) in the reaction 
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buffer with 10 mM ATP at 30 °C for 30 minutes, followed by addition of Rcc00620 (5 

µM). For both assays, aliquots were removed at T=0 and 60 minutes and 3X SDS-PAGE 

loading buffer was immediately added. Samples were boiled at 100 °C for 5 minutes and 

analyzed by electrophoresis on 8% PhosTagTM (APExBIO) SDS-PAGE gels with 

Coomassie Brilliant Blue staining. 

3.2.8 Assays for DGC and PDE enzymatic activities in E. coli 

 DGC and PDE enzymatic activities in E. coli were assayed by swimming and 

Congo red binding assays as described previously (Chen et al. 2014). Briefly, the pCM62-

based clones of rcc00620 and its site-directed mutants, rcc00620.621, and control DGC- 

and PDE-encoding genes (Table 1) were transformed into E. coli MG1655, MG1655 

∆yhjH, and BL21(DE3). The MG1655 strain is highly motile on semi-solid medium and a 

decrease in its swim zone due to the expression of a heterologous gene is taken as 

indication of DGC activity by the encoded protein (Chen et al. 2014). Similarly, the 

MG1655 ∆yhjH strain is non-motile on semi-solid medium and was used to test for 

evidence of PDE activity, which is indicated by an increase in swim zone diameter (Simm 

et al. 2004; Girgis et al. 2007). With the BL21(DE3) strain, an increase in the intracellular 

level of c-di-GMP causes an increase in fimbriae production that can be visualized by 

Congo red staining (Chen et al. 2014). 

For swimming assays, 5 µl from each overnight culture was spotted on semisolid 

LB medium (0.25% agar) supplemented with 0.25 mM IPTG and 0.5% NaCl. The plates 

were incubated at 37 °C for 4 to 6 hours and photographed. Images were subsequently 

adjusted for brightness and contrast for better visibility. Congo red binding assays were 

done by streaking from overnight cultures onto LB agar plates containing 25 µg ml-1 
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Congo red and 0.25 mM IPTG. The plates were incubated at 28 °C for 48 hours, 

photographed and adjusted for brightness and contrast for better visibility. 

3.2.9 R. capsulatus motility assays 

 Aerobically grown overnight cultures were used to inoculate YPS agar (0.3%) 

stabs, which were then incubated at 35 °C under phototrophic conditions for 10-12 hours 

and photographed. The pictures were adjusted for brightness and contrast and the 

diameters of the zones of growth were measured using ImageJ (Schneider, Rasband, and 

Eliceiri 2012). Statistically significant differences in the swim zones were identified by 

one-way ANOVA followed by Tukey HSD post-hoc tests. 

3.2.10 Quantification of c-di-GMP 

 The quantification of c-di-GMP levels in cells was performed as described 

previously (Pallegar et al. 2020). Briefly, aerobically grown overnight cultures of the 

different R. capsulatus strains were normalized for cell density and used to inoculate 

anaerobic photoheterotrophic cultures. These cultures were grown for approximately 48 

hours and 3 ml of each culture was removed and the cells pelleted by centrifugation at 4 

°C. The cells were boiled in phosphate-buffered saline (PBS) and subjected to three 

rounds of extraction with 65% ethanol. The three extraction supernatant fractions were 

pooled, dried and resuspended in ultrapure water for quantification of c-di-GMP by high-

performance liquid chromatography (HPLC). Culture samples were prepared in triplicate 

and each replicate was quantified from triplicate injections. A standard curve was made 

using solutions of c-di-GMP (BIOLOG) that were measured from triplicate injections. 

The cell pellets were resuspended in 500 l TE buffer followed by sonication on ice in 

20-second bursts for a total of 2 minutes. The protein concentrations were determined 
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using the Bradford assay (He 2011). The concentration of c-di-GMP was then normalized 

to protein levels. One-way ANOVA followed by Tukey HSD post-hoc analysis was used 

to identify statistically significant differences in c-di-GMP levels. 

3.3 Results 

3.3.1 Rcc00620 and Rcc00621 functional domains 

 The previously studied Rcc00620 protein is encoded in a two-gene operon with a 

gene (rcc00621) predicted to encode a histidine kinase protein (Figure 3.1A). We 

performed a detailed analysis of the conserved domains in the two proteins (Figure 3.1A). 

Rcc00620 contains an N-terminal REC domain, a central GGDEF (DGC) domain, and a 

C-terminal EAL (PDE) domain. For Rcc00621, all typical histidine kinase domains were 

identified: the HAMP domain, the H-box that contains the histidine autophosphorylation 

site (Kim and Forst 2001; Grebe and Stock 1999), and the ATP-binding catalytic domain 

(HATPase_C), as well as a periplasmic CHASE4 sensory domain located between two 

predicted transmembrane segments. The HAMP domain is a cytoplasmic helical linker 

domain in histidine kinase and methyl-accepting chemotaxis proteins and the CHASE4 

domain is commonly found in various classes of transmembrane receptors that are part of 

signal transduction pathways (Zhulin, Nikolskaya, and Galperin 2003). 

 Characteristic sequence motifs within the domains were identified and analyzed 

using full-length alignments obtained with all identified Rcc00620 and Rcc00621 

homologs (N=205; a subset is shown in Figure 3.1B). The REC (including the phosphoryl 

acceptor aspartic acid, D), GGDEF, and EAL domains in the response regulator proteins 

were highly conserved among the homologs (Figure 3.1B). Within the histidine kinase 

proteins, the H-box contained a highly conserved sequence (HNxRNxLxP), which 

showed characteristics of both type I and type II kinases, as defined by Kim and Forst 
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(Kim and Forst 2001). Specifically, considering the histidine as position 1 in the H-box, 

the presence of a positively charged amino acid (arginine, R) at position 4 would be 

indicative of a type I kinase, but the lack of the type I-associated proline (P) at position 6 

and the presence of an asparagine (N) at position 5 are typical of a type II kinase. Within 

the HTPase_C catalytic domain, we identified orthodox N-box (NLxxNA), D/G-box 

(D/G1-box: DxGxG), F-box (FxxG), and G-box (G4-box: GxGxG) motifs, and two 

potential additional G-boxes (G2-box, G3-box) (Kim and Forst 2001; Grebe and Stock 

1999). 

 

Figure 3.1. Domain architectures of the Rcc00620 and Rcc00621 proteins of R. 

capsulatus and their homologs in -proteobacteria. A. The organization of the main 

domains in the Rcc00620 response regulator (RR) (REC: receiver; DGC: diguanylate 

cyclase; PDE: phosphodiesterase) and Rcc00621 histidine kinase (HK) (CHASE4: 
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sensory domain; HAMP: cytoplasmic helical linker domain; H: H-box; HATPase_c: 

ATP-binding catalytic domain) proteins. The numbers on the top indicate the amino acid 

positions. B. Alignments showing the conservation of functional domains in the proteins. 

All of the individual component of the HATPase_C domain are shown for the histidine 

kinases (the canonical N-Box, D/G1 Box, F-Box, G4-Box and two other putative G-

Boxes indicated by “?”). The alignments include the three Rhodobacter species and the 

sole Novosphingobium species known to contain the genes, plus additional representative 

members of the order Sphingomonadales. The histidine kinase alignments also include 

prototypical type I and II (Kim and Forst 2001) representatives from E. coli. Amino acids 

conserved in >199 of the 205 total analyzed sequences (Appendix 2, Table S3.1) are 

indicated with a dot, with residues that characterize the motifs indicated with red dots. 

 

3.3.2 Both rcc00620 and rcc00621 are required for normal RcGTA production 

 Since it is known from a previous study that loss of rcc00620 results in decreased 

RcGTA gene transfer activity (Pallegar et al. 2020), we disrupted rcc00621 and 

performed RcGTA gene transfer bioassays to determine if a similar phenotype resulted 

and potentially indicating the proteins encoded by these two genes work in conjunction to 

regulate RcGTA. Disruption of rcc00621 showed a similar phenotype, with decreased 

RcGTA activity compared to the parental strain (Figure 3.2A). Similar to the individual 

mutants, a double knockout strain (SB620.621) also showed a decrease in RcGTA 

activity (Figure 3.2B). Trans-complementation of the SB621 and SB620.621 strains with 

plasmids carrying the respective genes reversed the effects of the mutations to wild type 

levels or higher (Figure 3.2AB). The presence of the plasmid-borne rcc00621 and 

rcc00620-621 in the parental strain also showed opposite effects compared to the 
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respective mutants, with increased RcGTA activity (Figure 3.2A,B). Quantification of the 

amounts of RcGTA major capsid protein, within the cells and released into the 

extracellular environment, matched the patterns observed for the RcGTA activities of the 

tested strains (Appendix 2, Figure S3.1). 

3.3.3 Rcc00620 phosphorylation is required for its PDE activity 

 We wanted to determine if the enzymatic activity of Rcc00620 was regulated 

through its REC domain. To test this, we investigated the effects of different 

phosphorylation states of Rcc00620 on RcGTA production by creating point mutations at 

the predicted phosphorylation site in the REC domain (aspartic acid, D86). The D86 

residue was changed to alanine (D86A) and glutamate (D86E) to mimic the 

unphosphorylated and phosphorylated states, respectively (Scharf 2010). Plasmids 

carrying these mutants were introduced into the SB620.621 double mutant strain and 

RcGTA activity was assayed (Figure 3.2C). The unphosphorylated state mimic  
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Figure 3.2. Effects of gene disruptions, trans-complementation, and site-directed 

mutagenesis of functional domains on RcGTA gene transfer activity. A gene transfer 

bioassay quantifying the transfer of puhA, an essential photosynthesis gene, to a ∆puhA 

mutant strain was used to measure the production and release of RcGTA particles. A. The 
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gene transfer activities of the rcc00621 null mutant strain SB621(pCM), its complement 

SB621(p621), and the parental strain carrying rcc00621 on a plasmid SB1003(p621). B. 

Gene transfer activities in the rcc00620-621 double knockout null mutant 

SB620.621(pCM), its complement SB620.621(p620.621), and the parental strain carrying 

both genes on a plasmid SB1003(p620.621). C. Trans-complementation in the double 

mutant with the Rcc00620 REC domain site-directed mutants, SB620.621(p620.D86A), 

SB620.621(p620.D86E) and of the SB621 strain with the Rcc00621 kinase active site 

histidine site-directed mutant SB621(p621H361N). The data are the average values from 

3 replicates, relative to the parental strain, SB1003 carrying the empty vector, pCM62. 

Error bars represent the standard deviations, and statistically significant differences 

(p<0.05) compared to the control, identified using one-way ANOVA followed by Tukey 

HSD post-hoc analysis, are indicated by asterisks. 

 

resulted in a decrease in RcGTA activity similar to the knockout strain, whereas the 

phosphomimetic version reversed the effect of the loss of both genes (Figure 3.2C). These 

results indicate that it is the phosphorylated version of Rcc00620 that is active as a 

positive regulator of RcGTA production, presumably as a consequence of its PDE 

activity. 

 We also made a substitution at the predicted autophosphorylation site (histidine, 

H361) within the H-box of Rcc00621 and changed this residue to an asparagine (H361N) 

to prevent autophosphorylation. The presence of this mutated version in the SB621 

mutant strain did not complement the reduction in RcGTA activity (Figure 3.2C), unlike 

the presence of the native rcc00621. This indicates that this predicted 
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autophosphorylation site in Rcc00621 is essential for its activity with respect to RcGTA 

regulation, which is presumably mediated via the phosphorylation of Rcc00620. 

3.3.4 Rcc00621 phosphorylates Rcc00620 in vitro 

 To confirm that Rcc00620 can be phosphorylated on its REC domain, we 

performed an in vitro phosphorylation assay using acetyl phosphate as a phosphodonor 

(Lukat et al. 1992; Kinoshita-Kikuta et al. 2015). We tested if this occurred with purified 

Rcc00620 using PhosTagTM SDS-PAGE, where phosphorylated proteins migrate more 

slowly than non-phosphorylated versions (Barbieri and Stock 2008). Incubation of 

Rcc00620 with acetyl phosphate for 60 mins resulted in the appearance of an additional, 

more slowly migrating band representing phosphorylated Rcc00620 (Figure 3.3). We then 

performed an in vitro phosphorylation assay using the purified Rcc00620 and 

Rcc00621TM proteins to determine whether Rcc00621 can phosphorylate Rcc00620. 

Incubation of Rcc00621TM with ATP followed by addition of Rcc00620 and continued 

incubation showed that Rcc00620 was phosphorylated (Figure 3.3). 

 

Figure 3.3. In vitro phosphorylation assays. A. The purified 6X-His-Rcc00620 protein 

was incubated at 30 °C with 40 mM acetyl phosphate with samples collected from the 

reaction mix at T=0 and 60 minutes. B. 6X-His-Rcc00621TM was incubated with ATP 

for 30 minutes at 30 °C, followed by addition of 6X-His-Rcc00620 and incubation at 30 

°C for 60 minutes with samples collected from this reaction mix at T=0 and 60 minutes. 
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Samples were analyzed by 8% PhosTagTM SDS-PAGE followed by Coomassie Brilliant 

Blue staining. 

3.3.5 Assessment of Rcc00620-Rcc00621 activity via Escherichia coli phenotypic 

assays 

 In order to indirectly assess the potential DGC and PDE activities associated with 

the Rcc00620-621 TCS, we used three c-di-GMP-sensitive E. coli phenotypic assays to 

evaluate the role of the Rcc00620 REC domain’s enzymatic activity. These assays are 

commonly used to indirectly assess the c-di-GMP-related enzymatic activities of proteins 

from different bacteria (Christen et al. 2006; Chen et al. 2014). C-di-GMP inhibits 

motility of E. coli MG1655 on semi-solid medium such that a reduction of the swim zone 

when the strain expresses a foreign gene is taken as evidence that the gene encodes an 

enzyme with DGC activity. DGC activity was also detected by performing a second 

assay, where an increase in c-di-GMP levels in E. coli BL21(DE3) leads to an increase in 

fimbriae production and increased Congo Red staining. Similarly, E. coli MG1655 

∆yhjH, which lacks a key PDE (Simm et al. 2004) and is non-motile on semi-solid 

medium (Girgis et al. 2007), was used to test for evidence of PDE activity as indicated by 

an increase in the swim zone diameter. The native and D86A mutant versions of 

Rcc00620 reduced the swim zone of  
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Figure 3.4. Evaluating enzymatic activities of R. capsulatus proteins in E. coli. A. 

Motility of E. coli MG1655 on semi-solid medium, which is reduced by DGC activity, 

when containing the indicated plasmids. B. Congo Red binding by E. coli BL21(DE3), 

where DGC activity increases fimbriae production and Congo red binding, when 

containing the indicated plasmids. C. Motility of E. coli MG1655 ∆yhjH on semi-solid 

agar, which is increased by PDE activity, when containing the indicated plasmids. In all 

experiments, the pCM62 plasmid vector is used and the transcription of the genes from 

the plasmid’s lac promoter was induced with IPTG. 

 

strain MG1655 (Figure 3.4A) and increased Congo red staining by strain BL21(DE3) 

(Figure 3.4B), indicating an increase in intracellular c-di-GMP levels that is presumably 

due to DGC activities of the proteins. In contrast, the phosphomimetic D86E version did 

not show any evidence of DGC activity in these assays (Figure 3.4A,B) but showed an 

increase in the swim zone in the MG1655 ∆yhjH motility assay (Figure 3.4C), indicating 

a decrease in c-di-GMP levels that is presumably due to PDE activity of this protein. The 

presence of both rcc00620 and rcc00621 produced the same results as when only 
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rcc00620 or its D86A mutant was present (Figure 3.4A,B,C), indicating the presence of 

Rcc00621 was not able to make Rcc00620 act as a PDE in E. coli. 

3.3.6 The Rcc00620-621 TCS affects R. capsulatus flagellar motility and 

intracellular c-di-GMP levels 

 As it is known that increased intracellular c-di-GMP levels decrease R. capsulatus 

flagellar motility (Römling, Galperin, and Gomelsky 2013), we performed flagellar 

motility assays in tubes containing semi-solid agar and compared the swim zones of 

various mutants to evaluate the role of the Rcc00620-621 TCS in this behavior. The 

strains where rcc00620, rcc00621, or both genes were disrupted showed decreased 

motility compared to the parental strain (Figure 3.5), although the difference was not 

significant for SB621 (p=0.08). The Rcc00620 D86E mutant restored motility to the 

double knockout whereas the D86A mutant did not. 
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Figure 3.5. Role of the Rcc00620-Rcc00621 TCS in R. capsulatus flagellar motility. A. 

Representative motility assay results for the rcc00620 null mutant strain (SB620), 

rcc00621 null mutant strain (SB621), rcc00620-621 double knockout null mutant 

(SB620.621), and trans-complementation in the double mutant with the Rcc00620 REC 

domain site-directed mutants SB620.621(p620.D86A) and SB620.621(p620.D86E). The 
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cells are inoculated into the tubes containing soft agar from a liquid culture and the 

subsequent distance of growth away from the center of the stab line shows the relative 

flagellar motility of the strain. The parental strain, SB1003, and its non-motile ctrA null 

mutant derivative, SBRM1, are included as references. B. The swimming diameters were 

measured from three replicate assays and plotted relative to SB1003. The bars represent 

the standard deviations and statistically significant differences (p<0.05) compared to the 

control, identified using one-way ANOVA followed by Tukey HSD post-hoc analysis, 

are indicated by asterisks. 

 

 We also evaluated the role of Rcc00620-621 TCS in contributing to the 

intracellular levels of c-di-GMP by quantifying c-di-GMP within the different strains. 

Loss of both genes resulted in significantly higher levels of c-di-GMP (Figure 3.6). 

Although the differences were not statistically significant, the trends for the D86A and 

D86E mutants in the double knockout strain (Figure 3.6) were as expected based on all 

previous results that indicated phosphorylation at this site causes the Rcc00620 protein to 

be active as a PDE. 
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Figure 3.6. Quantification of intracellular c-di-GMP levels in R. capsulatus strains. C-di-

GMP levels for rcc00620 null mutant (SB620), rcc00620-621 double knockout null 

mutant (SB620.621), and SB620.621 trans-complemented with the Rcc00620 REC 

domain site-directed mutants, SB620.621(p620.D86A) and SB620.621(p620.D86E) were 

measured by HPLC and normalized to the protein content of the cells. Quantification was 

performed from 3 replicates with the bars representing the standard deviations and the 

strain with a statistically significant difference (p<0.05) compared to the control, 

identified using one-way ANOVA followed by Tukey HSD post-hoc analysis, is 

indicated by an asterisk. 

 

3.3.7 The rcc00620 and rcc00621 genes were acquired by horizontal gene transfer 
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To evaluate the importance of this Rcc00620-621 TCS throughout the evolution of the 

class Alphaproteobacteria, we performed a BLAST search using the genomic region of R. 

capsulatus SB1003 containing both rcc00620 and rcc00621 (accession number 

CP001312, nt 666094-669794) to identify genomes containing contiguous homologs of 

both genes. Within the 82 complete or almost complete Rhodobacter genomes, homologs 

were found in all sequenced strains belonging to three species, R. capsulatus (N=13), R. 

maris (N=1), and R. viridis (N=1), but not in the other 10 species and 28 strains without 

species designations for which the complete genomes were available (Table S3.1). Since 

most of the complete genome projects were identified within the whole-genome shotgun 

contigs database, we tested whether the undetectability of homologs was the result of low 

sequencing coverage by evaluating the presence of 6 other genetic markers in these 

genomes. Most genomes contained all or most of the investigated markers, which 

included rpoB (DNA dependent RNA polymerase subunit beta), gyrB (DNA gyrase 

subunit B), and four ORFs flanking 620/621 in R. capsulatus (Figure 3.7A; see below) 

(Table S1). This strengthened the conclusion that these genes were not present in the 

genomes of most species within the genus Rhodobacter. 

 While the genes were positioned at the same genomic location in R. capsulatus 

and R. viridis, between genes for an ATP-binding cassette (ABC) transporter protein and 

a molybdopterin biosynthesis protein (MoeA), they were located at a different position in 

R. maris, between genes for glycerate 2-kinase (GckA) and conserved hypothetical 

proteins (Figure 3.7A).  
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Figure 3.7. Evolutionary history of rcc00620 and rcc00621. A. Genomic contexts of the 

genes within Rhodobacter spp. The rcc00620.621 genes are indicated in blue, while the 

various neighboring ORFs are indicated in different colors corresponding to the 

predicted/annotated encoded proteins (ABC: ATP-binding cassette transporter proteins; 

MoeA: molybdopterin biosynthesis protein; RpiR: RpiR family transcriptional regulator; 

EAL: EAL domain-containing protein; GckA: glycerate 2-kinase; PucG: alanine-

glyoxylate aminotransferase family protein; YgfZ: folate-binding protein; hp: 

hypothetical protein). B. Maximum-likelihood phylogenetic analysis (GTR +G +I model) 
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of representative members of the class Alphaproteobacteria based on rpoB, which 

encodes the DNA-dependent RNA polymerase subunit beta. Branches of the Rhodobacter 

clade derived from the ancestor that was likely the receiver of the genes are colored in 

orange. C. Maximum-likelihood phylogenetic analysis (JTT +G model) of the 

concatenated response regulator and histidine kinase protein sequences of representative 

members of the Alphaproteobacteria that contain the genes. In panels B and C, the 

Rhodobacter spp. that contain the genes are indicated by blue dots (the shade of blue 

corresponds to the different genomic localizations, as shown in panel A), while 

Novosphingobium naphthalenivorans, which contains the most closely related homologs 

of the Rhodobacter genes, is indicated by a yellow dot. 

 

This suggested that these genes could be a movable element that was either gained 

or lost during the evolution of Rhodobacter species since they diverged from a common 

ancestor. To explore this possibility, the relationships among Rhodobacter strains were 

studied using three genetic markers commonly used for phylogenetic inference in bacteria 

(16S rDNA, rpoB, and gyrB; Appendix 2, Figure S3.2) (Ogier et al. 2019; Liu et al. 

2012). In all cases, R. capsulatus, R. viridis and R. maris were included within one highly 

supported clade, suggesting common ancestry (summarized in Figure 3.7B). Matching 

what we observed for genomic structure (Figure 3.7A), R. capsulatus and R. viridis were 

phylogenetically more closely related, while R. maris was in a different sub-clade with 

two other Rhodobacter species, R. aestuarii and another yet-unnamed strain 

(Rhodobacter sp. JA431), in which the TCS genes were not found. There were three 

additional Rhodobacter species for which only 16S sequences were available that were 

also included in this clade (Appendix 2, Figure S3.2). Two were close relatives of R. 
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viridis (R. sediminis and R. azollae) and one of R. maris (R. lacus) and it is possible they 

also possess these genes, but genomic sequence data are not currently available for these 

species. 

 To identify whether other bacteria within the class Alphaproteobacteria contained 

these genes, a further BLASTn analysis was performed. This led to the identification of 

homologs in 190 sequenced strains, all belonging to the order Sphingomonadales 

(accession numbers provided in Appendix 2, Table S3.1). Phylogenetic analyses 

performed with all identified homologs revealed that the closest relatives to the 

Rhodobacter proteins were those found in Novosphingobium naphthalenivorans, a 

naphthalene-degrading bacterium (Zuzuki and Hiraishi 2007) (Figure 3.7C; Appendix 2, 

Figures S3.3 and S3.4). Interestingly, among the 95 Novosphingobium complete genome 

projects that contained a complete rpoB, only this species contained these genes. 

 As shown in the phylogenetic analysis of rpoB sequences from representative 

members of the class Alphaproteobacteria (Figure 3.7B), the two genera Rhodobacter 

(order Rhodobacterales) and Novosphingobium (order Sphingomonadales) are clearly not 

monophyletic, but their versions of these TCS proteins are closely related (Figure 3.7C). 

Indeed, on average, the Rcc00620 and Rcc00621 homologs from within the genus 

Rhodobacter were 54.3% and 39.5% identical to those of N. naphthalenivorans and 

48.1% and 32.8% identical to those of other Sphingomonadales, respectively. 

Interestingly, the N. naphthalenivorans protein sequences were only as similar to those of 

other Sphingomonadales (52.6% and 33%, respectively) as they were to the ones from 

Rhodobacter. 
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3.4 Discussion 

3.4.1 Rcc00620 and Rcc00621 form a two-component system involved in the 

regulation of c-di-GMP levels, RcGTA production, and flagellar motility 

 In R. capsulatus, Rcc00620 and Rcc00621 contain all of the conserved domains 

and residues required to act as TCS response regulator and histidine kinase, respectively 

(Figure 3.1). These domains in both proteins have been well conserved throughout 

evolution, suggesting this is an important regulatory system in multiple species and 

genera within the class Alphaproteobacteria. The disruption of rcc00621 and both 

rcc00620-621 resulted in decreased gene transfer activity (Figure 3.2), with the changes 

in gene transfer activity accompanied by corresponding changes in production and release 

of the RcGTA capsid protein (Appendix 2, Figure S3.1), as reported previously for 

rcc00620 (Pallegar et al. 2020). Therefore, these two genes are both involved in 

positively regulating RcGTA production. Mutations of the predicted phosphoryl receptor 

residue in the REC domain of Rcc00620, made to mimic the different phosphorylation 

states, showed this site and its phosphorylation status modulate the enzymatic activity of 

Rcc00620. The REC-GGDEF-EAL domain architecture is one of the most commonly 

found in c-di-GMP-metabolizing proteins (Romling, Galperin, and Gomelsky 2013), and 

approximately 8% of all GGDEF/EAL proteins also contain a REC domain (Seshasayee, 

Fraser, and Luscombe 2010). Our data show that phosphorylation of Rcc00620 makes it 

act as a PDE in R. capsulatus, which thereby positively affects RcGTA production and 

motility (Figures 3.2, 3.5 and 3.6). Surprisingly, none of the assays show any evidence 

that Rcc00620 acts as a DGC in R. capsulatus in the unphosphorylated form as the D86A 

mutant gave phenotypes undistinguishable from the null mutant (Figures 3.2, 3.5 and 

3.6). This contrasts with the results from E. coli, where the unphosphorylated protein 
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appears to function as DGC because the assays showed it resulted in lower c-di-GMP 

levels in the cells (Figure 3.4). It is possible that under different conditions, factors other 

than its phosphorylation state could cause Rcc00620 to act as a DGC. Although the D86E 

version did act as a PDE in E. coli, the presence of both rcc00620 and rcc00621 only 

yielded DGC activity in this bacterium. This suggests the Rcc00621 histidine kinase is 

not active for Rcc00620 phosphorylation in E. coli, at least under the conditions used in 

these experiments. This is could be due to lack of the appropriate stimulus or other 

factor(s) required to activate its kinase activity. Unfortunately, there does not appear to be 

any information available about the signal sensed for any other CHASE4 domain and so 

this represents a need for future research. It is also possible that another factor, such as 

improper folding, insolubility, or a lack of insertion into the cytoplasmic membrane, 

prevented Rcc00621 from being active in E. coli. 

 As mentioned above, there are many known examples of RR proteins possessing 

DGC and PDE domains. However, to the best of our knowledge, only one other RR 

protein containing both DGC and PDE domains has been characterized with respect to its 

regulation (Levet-Paulo et al. 2011). In that system, phosphorylation of the REC domain 

causes a switch from DGC to PDE activity (Levet-Paulo et al. 2011). This is similar to 

our Rcc00620-621 TCS, where the Rcc00621-mediated phosphorylation of the Rcc00620 

REC domain results in PDE activity and a reduction of intracellular c-di-GMP levels. 

 We were able to identify a typical H-box for Rcc00621, which contains the 

conserved histidine residue that is the site of autophosphorylation (Figure 3.1). 

Substitution of this residue (H361N) prevented trans-complementation of the null mutant 

(Figure 3.2) and incubation of the purified native protein with Rcc00620 and ATP 
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resulted in phosphorylation of Rcc00620 (Figure 3.3). Overall, the phenotypic and in 

vitro data validate our initial hypothesis about the two proteins acting as a TCS. 

 C-di-GMP plays a vital role in bacterial signaling and controls diverse 

physiological processes by binding to various targets (Romling, Galperin, and Gomelsky 

2013). Besides RcGTA production, flagellar motility is also regulated by c-di-GMP levels 

in R. capsulatus (Pallegar et al. 2020), and we show here that both members of this 

Rcc00620-621 TCS affect this process (Figure 3.5), as expected from previous results 

with Rcc00620. Similarly, the trends for the intracellular levels of c-di-GMP (Figure 3.6) 

matched expectations based on the other experiments. 

3.4.2 The rcc00620 and rcc00621 genes were acquired by horizontal gene transfer 

 While homologs of the R. capsulatus rcc00620/621 genes were absent from most 

Rhodobacter species, they were identified within the genomes of two additional closely 

related species (R. viridis and R. maris; Figure 3.7A). Interestingly, these three bacteria 

are part of a clade that also includes two other species, R. aestuarii and another unnamed 

strain or species, that seem to be lacking the genes (Figure 3.7B) and three other species 

(R. sediminis, R. azollae, and R. lacus; Appendix 2, Figure S3.2) for which sufficient 

genomic sequence data were not available to conclude whether they contain homologs or 

not. Since most species within the order Rhodobacterales lack these genes, we can 

hypothesize that they were acquired during the evolution of Rhodobacter by an ancestor 

of the species within the one clade and subsequently lost by R. aestuarii and related 

species. However, the genomic sequences available for R. aestuarii and the related 

species were identified in the whole-genome shotgun contigs database and it is possible 

that genomic regions containing these genes were not sequenced or not included in the 

available scaffolds. 
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 Within the class Alphaproteobacteria we found Rcc00620 and Rcc00621 

homologs encoded in the genomes of 190 bacteria within the order Sphingomonadales, 

most of which belonged to the genus Sphingomonas. They were also found in one of the 

95 complete genomes available from bacteria in the genus Novosphingobium within the 

Sphingomonadales, and our data indicate that the genes found in this species (N. 

naphthalenivorans) are the closest known relatives to that of Rhodobacter (Figure 3.7B). 

Since these two genera are clearly not monophyletic (Figure 3.7C), as they belong to 

different orders, the fact that their genes are monophyletic reflects an unexpected 

evolutionary link. The genes were found in multiple Sphinogmonas spp. but only once in 

Novosphingobium and the genes found in N. naphthalenivorans were phylogenetically 

located between those from Rhodobacter and those from the other Sphingonomadales. 

We postulate therefore that the genes could have been acquired at a certain point by an 

ancestral Rhodobacter strain from an ancestral Novosphingobium, which in turn had 

acquired them from an ancestral Sphingomonas, or that they both acquired them in a 

similar time-frame from a similar source, and the genes then diverged over time. 

Interestingly, the genomic locations in which the genes are found varies considerably 

among members of both the Rhodobacter (Figure 3.7) and Sphingomonas (data not 

shown) genera, suggesting these genes move around together as lineages diverge. 

Unfortunately, only a limited number of genomes from members of the genus 

Rhodobacter closely related to R. capsulatus are available and further complete genome 

sequencing efforts are required to fully elucidate this aspect. Although further studies will 

be required to experimentally confirm whether GTA-mediated horizontal gene transfer 

can occur between these distantly related bacteria, it is possible that the transfer of the 

genes was GTA-mediated because members of the order Sphingomonadales possess the 
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genes to produce GTAs (Shakya, Soucy, and Zhaxybayeva 2017; Lang and Beatty 2007; 

Lang, Zhaxybayeva, and Beatty 2012; Biers et al. 2008). 

 This TCS is just one of multiple regulatory systems that contribute to the control 

of RcGTA production (Lang, Westbye, and Beatty 2017). Some of these other systems, 

such as quorum sensing and the CckA-ChpT-CtrA phosphorelay, also regulate GTA 

production in another bacterium, Dinoroseobacter shibae (Koppenhöfer et al. 2019; 

Tomasch et al. 2018; Wang et al. 2014). D. shibae lacks this particular TCS, but c-di-

GMP does affect expression of its GTA genes (Koppenhöfer et al. 2019). 

 

Figure 3.8. Proposed model for the Rcc00620-621 TCS controlling c-di-GMP 

synthesis in R. capsulatus. The HK Rcc00621 gets activated upon sensing an unknown 

stimulus and undergoes autophosphorylation at a conserved histidine residue and transfers 

the phosphoryl group to a conserved aspartate residue of its cognate RR protein, 

Rcc00620. The phosphorylated form of Rcc00620 acts as PDE and promotes c-di-GMP 

hydrolysis. The decrease in c-di-GMP levels promotes RcGTA production and motility. 

The TCS-encoding genes are only present in a few phylogenetically related Rhodobacter 
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species and they appear to have been acquired horizontally by an ancestral Rhodobacter 

from a member of the Sphingomonadales. 

3.5 Concluding remarks 

 In this study, we delineated the role of a TCS involved in the regulation of c-di-

GMP levels in R. capsulatus, and the consequent effects on gene transfer and flagellar 

motility. The Rcc00620 protein possesses a REC-DGC-PDE multidomain architecture, 

which is one of the most common domain architectures among c-di-GMP signaling 

proteins. Here, by assaying RcGTA production, motility and c-di-GMP levels in R. 

capsulatus and using c-di-GMP indicator assays in E. coli, we show that the enzymatic 

activity of Rcc00620 is modulated by phosphorylation of its REC domain by the cognate 

histidine kinase Rcc00621. Very few potentially bifunctional proteins have been 

characterized to date so this study adds important new information about how such 

proteins can be regulated, in this case via phosphorylation as part of a TCS. Intriguingly, 

this TCS that ultimately affects gene transfer activity in R. capsulatus seems to have been 

horizontally acquired from another genus and order within the class Alphaproteobacteria. 

Bacteria in this other genus also have the genetic capacity to produce GTAs, although 

such production has not been documented to our knowledge. What processes this TCS 

regulates in other organisms (e.g. GTA gene expression and/or motility?) and to which 

stimuli it responds are questions that future studies will have to answer to help clarify the 

role of this conserved TCS in different lineages. A graphical summary of the findings for 

this chapter is shown above (Figure 3.8). 
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CHAPTER 4- Investigating c-di-GMP binding to CckA and its effects on the CckA-

ChpT-CtrA phosphorelay system in Rhodobacter capsulatus 

4.1 Introduction 

Bacteria are very versatile and can be found in diverse environmental niches. 

Many bacteria are able to adapt to changes in their environment and employ specific 

signal transduction mechanisms to adapt their intracellular environment to an appropriate 

state in response to these changes. These signal transduction systems most often function 

through regulatory proteins that can sense environmental stimuli and trigger a particular 

response. For example, some proteins bind to particular metabolites or ions and this 

increases the affinity of the protein for specific DNA sequences, resulting in changes in 

gene expression. Two-component systems (TCSs) are specialized signal transduction 

systems found in bacteria that couple stimulus-response functions (Stock, Robinson, and 

Goudreau 2000; Gao and Stock 2009). Multiple TCSs are typically found within each 

bacterium, with each particular TCS specialized to respond to a specific stimulus, such as 

pH, temperature, osmotic pressure, or specific chemical compounds, and trigger the 

appropriate cellular response. Stimuli can be environmental or intracellular. 

A classic TCS comprises a sensor histidine kinase (HK) protein and a response 

regulator (RR) protein. The transfer of a phosphoryl group from a conserved histidine 

residue in the transmitter domain of the HK to a conserved aspartate residue in the 

receiver (REC) domain of the RR protein forms the basis of this signalling system (Stock, 

Robinson, and Goudreau 2000) (Figure 4.1A). Phosphorylation of the RR alters the 

activity of its output domain. Some TCSs are more complex and include additional 

phosphotransfer steps. These are known as histidyl-aspartyl phosphorelays or 

multicomponent systems. These phosphorelays involve a “hybrid” HK that contains a C-
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terminal REC domain, which is an intermediary phosphoacceptor between the transmitter 

domain and an additional histidine phosphotransferase (HPT) protein that phosphorylates 

the cognate RR (Gao and Stock 2009) (Figure 4.1B). Hybrid HKs are fairly common and 

examples in Escherichia coli include ArcB, BarA, EvgS and RcsC (Mizuno 1997). 

 

 

Figure 4.1. Schematic representation of two-component signalling systems. A. A classic 

TCS involving HK and RR proteins. In response to a stimulus received at the sensory 

domain (grey), a conserved histidine residue in the transmitter domain (blue) of the HK 

autophosphorylates and then transfers the phosphate to a conserved aspartate residue in 

the receiver domain (REC, beige) of the RR. This affects the activity of the RR output 

domain (green). B. A histidyl-aspartyl phosphorelay system involving hybrid HK and 

intermediate HPT (purple) proteins. 

 

A phosphorelay system involving the CckA, ChpT and CtrA proteins (hybrid HK, 

HPT and RR, respectively) is widely conserved in the class Alphaproteobacteria (Brilli et 

al. 2010). It has been best characterized in Caulobacter crescentus where it functions to 

regulate cell cycle and developmental processes (Jacobs et al. 1999; Laub et al. 2002; 
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Chen et al. 2009; Lori et al. 2015). CckA contains two N-terminal Per-ARNT-Sim (PAS) 

sensory domains and, in response to an unknown signal, it causes the phosphorylation of 

CtrA via ChpT (Jacobs et al. 1999; Biondi et al. 2006), as described above for this type of 

phosphorelay. In C. crescentus, CtrA acts as a “master regulator” and controls at least 

25% of total cell cycle regulated genes (Skerker and Laub 2004). It acts at more than 100 

promoters, thereby directly regulating the expression of genes involved in diverse cellular 

processes including flagellar motility and chemotaxis (Laub et al. 2002). 

Like other HKs, CckA also acts as a phosphatase and can cause the 

dephosphorylation of CtrA. In C. crescentus, the activity of CckA is controlled in part by 

another sensor kinase protein, DivL, which stimulates the kinase activity of CckA. In the 

absence of DivL, or when over-expressed, CckA primarily acts as a phosphatase (Chen et al. 

2009; Tsokos, Perchuk, and Laub 2011). The ability of DivL to stimulate CckA kinase 

activity is inhibited by phosphorylated DivK, whose phosphorylation state is dependent on 

PleC and DivJ (Childers et al. 2014; Tsokos and Laub 2012). Interestingly, it was recently 

discovered that CckA’s activity is also controlled by the dinucleotide molecule cyclic-

dimeric-guanosine monophosphate (c-di-GMP) (Lori et al. 2015; Dubey et al. 2016; 

Kaczmarczyk et al. 2020). Increased levels of c-di-GMP during the G1-S transition phase 

cause CckA to switch from kinase to phosphatase mode. C-di-GMP binds to CckA and 

activates its phosphatase activity, which results in the dephosphorylation of CtrA upon 

entry into S-phase (Lori et al. 2015). CckA ligand affinity assays also showed that c-di-

GMP binding to CckA is seen only in the presence of adenosine diphosphate (ADP) and 

these two molecules appear to synergistically stabilize CckA phosphatase activity (Dubey 

et al. 2016). 
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As mentioned above, homologs of these proteins are widespread in the 

Alphaproteobacteria, but only a few of these have been studied. However, these studies 

have shown that the regulatory functions of this system vary among species (Mercer et al. 

2010; Greene et al. 2012; Francez-Charlot, Kaczmarczyk, and Vorholt 2015; Bird and 

MacKrell 2011; Bellefontaine et al. 2002). For example, while the C. crescentus CckA-

ChpT-CtrA system regulates cell cycle processes and is essential for viability, the 

homologs found in Rhodobacter capsulatus are not essential (Lang and Beatty 2000; 

Mercer et al. 2012). In this bacterium, the CckA-ChpT-CtrA phosphorelay regulates 

flagellar motility (Lang and Beatty 2002; Mercer et al. 2012), which appears to be the 

most commonly shared trait among alphaproteobacteria, and the production of its gene 

transfer agent, RcGTA (Lang and Beatty 2000). A DivL homolog was also identified in 

R. capsulatus and, although it is truncated compared to the C. crescentus protein, it was 

shown to affect CtrA phosphorylation by stimulating the kinase activity of CckA 

(Westbye et al. 2018). Loss of DivL corresponded with reduced CckA kinase activity and 

increased phosphatase activity, thereby affecting the expression of genes activated by 

CtrA~P. However, homologs of DivK, PleC and DivJ that control the activity of DivL in C. 

crescentus are absent in R. capsulatus. 

In the previous chapters of this thesis (Chapters 2 and 3), I showed that the second 

messenger c-di-GMP affects flagellar motility and RcGTA production in R. capsulatus. 

In this chapter, I have attempted to link the c-di-GMP effects with the CckA-ChpT-CtrA 

phosphorelay. I investigated the binding of c-di-GMP to CckA in vitro and also tested the 

effects of ADP on this interaction. Key amino acids in CckA, chosen on the basis of their 

conservation with identical residues that affect the activity of the C. crescentus protein, 

were mutated and the effects of these mutations on c-di-GMP binding were also tested. 
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These CckA constructs were shared with J.T. Beatty’s research group (at University of 

British Columbia) for them to evaluate the functionality of these proteins via in vitro 

phosphotransfer experiments as part of a larger collaborative study. Additionally, it is 

known that allosteric or inhibitory site (I-site) RXXD motifs that are present in 

diguanylate cyclase enzymes can act as receptors for c-di-GMP to carry out feedback 

inhibition (Christen et al. 2006; Schirmer and Jenal 2009). Therefore, I also mutated I-site 

motifs in CckA to test their potential roles in c-di-GMP binding. 

4.2 Materials and methods 

4.2.1 Bacterial strains and growth conditions 

All the plasmids used in this study are listed in Table 4.1. E. coli strains NEB5α and 

BL21(DE3) (New England Biolabs) were used for cloning and protein overexpression, 

respectively. E. coli strains were grown at 37 °C or 30 °C for protein expression in LB 

medium supplemented with kanamycin (25 μg ml−1) when necessary. 

 

Table 4.1. List of plasmids used in this study. 

Strains and plasmids Description Reference or source 

Plasmids 

pGEM-T Easy TA PCR product cloning vector Promega 

pET28-a Expression vector for expressing 6X-

His-tagged proteins 

Novagen 

pCckAΔTM Expression vector for C-terminal 6X-

His-tagged CckA without 

transmembrane region 

This study 
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pG395T pCckAΔTM with mutation at position 

395 aa residue to substitute glycine to 

threonine  

This study 

pG396E pCckAΔTM with mutation at position 

396 aa residue to substitute glycine to 

glutamate 

This study 

pH399A pCckAΔTM with mutation at position 

399 aa residue to substitute histidine to 

alanine 

This study 

pV443P pCckAΔTM with mutation at position 

443 aa residue to substitute valine to 

proline 

This study 

pY589D pCckAΔTM with mutation at position 

589 aa residue to substitute tyrosine to 

aspartate 

This study 

pI-1 pCckAΔTM with mutation at 1st 

predicted I-site motif starting at 

position 166  

This study 

pI-2 pCckAΔTM with mutation at 2nd 

predicted I-site motif starting at 

position 212 

This study 
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pI-3 pCckAΔTM with mutation at 3rd 

predicted I-site motif starting at 

position 317 

This study 

pI-4 pCckAΔTM with mutation at 4th 

predicted I-site motif starting at 

position 341 

This study 

pI-5 pCckAΔTM with mutation at 5th 

predicted I-site motif starting at 

position 458 

This study 

4.2.2 Protein domain analysis 

 Protein sequence analyses for identification of functional domains were done 

using the SMART (Letunic 2004; Schultz et al. 1998) and Expasy-Prosite (de Castro et al. 

2006) databases. Sequence alignments were done using ClustalW Omega (Larkin et al. 

2007). Transmembrane regions were predicted using TMHMM Server 2.0 (Krogh et al. 

2001) and the TM Pred database (Hofmann and Stoffel 1993). 

4.2.3 Expression and purification of recombinant proteins from E. coli 

To create a recombinant C-terminal 6X-histidine tagged protein, the cckA gene 

(rcc01749) excluding the region encoding the N-terminal transmembrane portion was 

amplified using gene-specific primers (Appendix 3, Table S4.1) and cloned as a 

NcoI/HindIII fragment into the pET28-a vector. The resulting plasmid was sequence-

confirmed and transformed into E. coli BL21 (DE3). It was also used for mutagenesis 

(described below). For protein expression, overnight cultures were used to inoculate 200 

ml of LB broth with kanamycin and incubated at 30 °C with shaking at 220 rpm. After 

one hour, isopropyl-β-D-thiogalactopyranoside (IPTG) was added at a final concentration 
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of 1 mM to induce gene expression and cells were incubated for a further 5-6 hours. Cells 

were harvested by centrifugation (5000 X g for 10 minutes at 4 °C) and cell pellets were 

resuspended in lysis buffer [50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, 0.1% 

(v/v), Benzonase® nuclease (Qiagen), 1 mg ml-1 lysozyme (w/v); pH 8] and incubated on 

ice for 30 minutes. The suspended mix was centrifuged at 10000 X g for 30 minutes at 4 

°C. The supernatant was collected and mixed 4:1 (v/v) with Ni-NTA agarose slurry 

(Qiagen) and incubated at 4 °C for 1 hour. After incubation, the mix was loaded into a 

polypropylene column and washed twice with wash buffer [50 mM NaH2PO4, 300 mM 

NaCl, 20 mM imidazole; pH 8.0] and the recombinant proteins were eluted in four 0.5-ml 

aliquots of elution buffer [50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole; pH 8.0]. 

The eluted proteins were analysed by SDS-PAGE and Coomassie Brilliant Blue staining. 

The eluted protein fractions were pooled as appropriate, dialyzed against dialysis buffer 

[50 mM NaH2PO4, 300 mM NaCl; pH 8] and quantified using a Bradford protein assay 

(He 2011). 

4.2.4 Amino acid substitutions 

 The above-mentioned CckAΔTM construct in the pET28-a vector was used as a 

template for performing site-directed mutagenesis (SDM) using the QuickChange 

Lightning SDM kit (Agilent Technologies) as per the manufacturer’s instructions. Key 

amino acid residues in the CckA protein that affect kinase and phosphatase activities and 

in predicted I-site motifs that might act as c-di-GMP binding sites were chosen and 

mutated to test their potential involvement in c-di-GMP binding. Mutagenesis PCRs were 

done using PfuUltra High-Fidelity DNA polymerase and site-specific primers ((Appendix 

3, Table S4.1) designed to create point mutations to change glycine 395 to threonine 

(G395T), glycine 396 to glutamate (G396E), histidine 399 to alanine (H399A), valine 443 
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to proline (V443P), tyrosine 589 to aspartate (Y589D) and five predicted I-site motifs, 

RXXD, to GXXG. The methylated template DNAs were then digested by incubation with 

DpnI for 10 minutes at 37 °C and the remaining DNA was transformed into E. coli. 

Plasmids carrying mutations were confirmed by sequencing and later transformed into E. 

coli BL21 (DE3) for protein expression and purification. 

4.2.5 C-di-GMP binding assays 

In vitro pull-down assays using streptavidin beads and biotinylated c-di-GMP 

were performed to assay c-di-GMP binding by CckA as described previously (Chambers 

and Sauer 2017), with minor modifications. Briefly, a 20-µl reaction mix containing the 

purified CckAΔTM protein (10 µM), with or without 1 µl of biotinylated c-di-GMP (200 

pmoles), 2 µl of 10X reaction buffer (100 mM Tris, 1M KCl, 10 mM DTT; pH 7.5), 2 

mM EDTA, and with or without 5 mM ADP was incubated at room temperature for 1 

hour. The reaction mixture was then mixed with streptavidin beads (blocked with 5% 

skim milk) in 250 µl TBST [20 mM Tris, 137 mM NaCl, 0.1% Tween-20 (v/v); pH 7.5] 

and incubated at room temperature on a vortex mixer shaking at 1400 rpm for 1 hour. The 

beads were collected using a magnetic strand and the supernatant was removed. The 

beads were washed 4-5 times by adding 1 ml of TBST and incubating on the vortex mixer 

for 15 minutes at room temperature. The beads were resuspended in 15 µl of sterile 

distilled water and mixed with 5 µl of 3X SDS-PAGE loading buffer. 

4.2.6 Western blotting 

 The streptavidin bead suspensions were analysed to detect and quantify the His-

tagged proteins by western blotting. The samples were heated at 98 °C for 5 minutes, 

followed by collection of the beads on a magnetic stand, and the supernatant was 

collected and run on a 10% SDS-PAGE gel. The proteins were transferred onto 
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nitrocellulose membranes by electroblotting in transfer buffer [48 mM Tris base, 39 mM 

glycine, 20% methanol (v/v)]. The membranes were blocked with 5% (w/v) skim milk 

solution in TBST and incubated with the primary antibody, anti-HisTag protein (Thermo 

Fisher Scientific), overnight at 4 °C. After washing with TBST, membranes were 

incubated with secondary antibody, peroxidase-conjugated anti-rabbit IgG (Santa Cruz 

Biotechnology), at room temperature for 1 hour. The SuperSignal West Femto Reagent 

Kit (Thermo Fisher Scientific) was used to detect the bands by chemiluminescence and 

images were captured using an Agilent ImageQuant LAS 4000 imaging system. Images 

were inverted and adjusted for brightness and contrast, and band intensities were 

quantified using ImageJ (Schneider, Rasband, and Eliceiri 2012). 

4.3 Results 

4.3.1 Comparison of the R. capsulatus and C. crescentus CckA proteins 

The C. cresenctus cckA homolog found in R. capsulatus encodes a 767 amino acid 

(aa) protein that shares 44% overall identity with C. crescentus CckA. The functional 

domain organisations of the R. capsulatus and C. crescentus proteins showed the same 

pattern (Figure 4.2A). Both proteins contain two predicted transmembrane regions (aa 10-

32 and 39-58 of the R. capsulatus protein) and 2 PAS domains (aa 174-239 and 266-328 

of the R. capsulatus protein) in their N-terminal regions and a HisKA domain (aa 389-

455), an HATPase_c domain (aa 496-619), and a response regulator receiver (REC) 

domain (aa 644-767) in their C-terminal regions (Figure 4.2A). There is a high level of 

sequence conservation in the C-terminal regions of the proteins (aa 323-767 of the R. 

capsulatus protein) and the HisKA, HATPase_c and REC domains share 67%, 50% and 

44% identity, respectively (Figure 4.2B), while the N-terminal regions have much lower 

identity. Key aa residues identified in C. crescentus CckA that are the sites of 
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phosphorylation, H322 and D623, were conserved in the R. capsulatus protein (H399 and 

D696, respectively) (Figure 4.2B). 

 

A 
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Figure 4.2. Comparison of the R. capsulatus and C. crescentus CckA proteins. A. 

Locations and organizations of predicted domains: TM, transmembrane; PAS, Per-

ARNT-Sim; HisKA, histidine kinase; HATPase_c, ATP-binding catalytic domain; REC, 

response regulator receiver. B. Amino acid sequence alignments for R. capsulatus and C. 

crescentus CckA proteins indicating the HisKA (highlighted in yellow), HATPase_c 

(highlighted in blue), and REC (highlighted in grey) domains. Key amino acid residues 

mutated in this study are in red and boxed, except for the I-site motifs that do not fall 

within this region. 

4.3.2 C-di-GMP binds to R. capsulatus CckA in vitro 

Binding assays showed that the R. capsulatus CckAΔTM protein binds to c-di-

GMP and that addition of ADP increased the binding (Figure 4.3). Quantification of the 
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western blot band intensities showed that the binding in the absence of ADP was 

significantly higher than the negative control (CckA + beads in the absence of 

biotinylated c-di-GMP) and binding in the presence of ADP was significantly higher than 

without (Figure 4.3). 

 

Figure 4.3. C-di-GMP binding assays with CckAΔTM. The protein was incubated with 

the molecules indicated above the lanes (biotinylated c-di-GMP, (B-c-di-GMP); 

adenosine diphosphate, (ADP)) at room temperature for 1 hour followed by addition of 

streptavidin beads. The eluted samples were analyzed by western blotting using anti-His-

tag primary antibody. The band intensities are presented as an average of three replicates 
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relative to negative control (no B-c-di-GMP or ADP). The p-value above each bar 

represents the difference compared to the negative control while the p-value above the 

line represents the difference between the results with and without ADP (one-way 

analysis of variance followed by Tukey’s HSD post-hoc test). 

4.3.3 The Y589D mutation eliminates c-di-GMP binding 

 The tyrosine at position 589 in the R. capsulatus CckA corresponds with that at 

position 514 in C. crescentus, which was shown to be required for binding to c-di-GMP. 

The Y589D substitution showed a decrease in c-di-GMP binding, regardless of the 

presence or absence of ADP (Figure 4.4). 

 

Figure 4.4. C-di-GMP binding assays with the Y589D version of CckAΔTM. The protein 

was incubated with the molecules indicated above the lanes (biotinylated c-di-GMP, B-c-

di-GMP; adenosine diphosphate, ADP) at room temperature for 1 hour followed by 
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addition of streptavidin beads. The eluted samples were analyzed by western blotting 

using anti-His-tag primary antibody. The band intensities are presented as an average of 

three replicates relative to negative control (no B-c-di-GMP or ADP). No significant 

difference was identified compared to the negative control for either experimental sample 

(one-way analysis of variance followed by Tukey’s HSD post-hoc test). 

4.3.4 Effects of other mutations on c-di-GMP binding 

 In addition to the wild type and Y589D CckAΔTM proteins, I also performed 

binding assays on the other mutants that were constructed for the purpose of in vitro 

phosphotransferase assays. These were mutations at key aa residues corresponding to 

those that are involved in the normal functioning of CckA kinase and phosphatase 

activities in C. crescentus, made to test the conservation of the function of these residues 

in the two distantly related bacteria. My preliminary experiments did not provide any 

indication that c-di-GMP binding was affected by these substitutions (Figure 4.5). 
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Figure.4.5. Effect of additional point mutations on c-di-GMP binding. Key amino acid 

residues predicted to be involved in kinase and phosphatase activities were selected and 

mutated. The different proteins were incubated with the molecules indicated above the 

lanes (biotinylated c-di-GMP, B-c-di-GMP; adenosine diphosphate, ADP) at room 

temperature for 1 hour followed by addition of streptavidin beads. The eluted samples 

were analyzed by western blotting using anti-His-tag primary antibody to detect the His-

tagged protein. 

 

4.3.5 Effects of I-site motif mutations on c-di-GMP binding 

The R. capsulatus CckA sequence contains 5 I-site motifs (RXXD), which are 

sites involved in c-di-GMP binding in c-di-GMP signaling proteins. However, none of the 

mutations created in these motifs showed any observable difference for c-di-GMP 

binding compared the wild type protein in my initial experiments (Figure 4.6). 
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Figure 4.6. Effects of I-site mutations on c-di-GMP binding. The 5 I-site (RXXD) motifs 

were mutated (to GXXG) and each protein was assayed for c-di-GMP binding. The 

proteins were incubated with the molecules indicated above the lanes (biotinylated c-di-

GMP, B-c-di-GMP; adenosine diphosphate, ADP) at room temperature for 1 hour 

followed by addition of streptavidin beads. The eluted samples were analyzed by western 

blotting using anti-His-tag primary antibody to detect the His-tagged protein. 

 

4.4 Discussion 

In a previous chapter, I showed that c-di-GMP levels affect RcGTA production, 

but how c-di-GMP is connected to RcGTA production mechanistically was unknown. 

Recent findings in another bacterium, C. crescentus, showed that c-di-GMP binds to 

CckA to modulate its function and thereby regulates the CckA-ChpT-CtrA phosphorelay. 

Based on these findings, we hypothesized that c-di-GMP likely binds to the R. capsulatus 

CckA and thereby regulates RcGTA production in R. capsulatus. The c-di-GMP binding 

assays performed using the purified CckAΔTM protein confirmed that c-di-GMP binds to 

R. capsulatus CckA in vitro (Figure 4.3). The Y589D mutation resulted in loss of c-di-

GMP binding (Figure 4.4). For the Y589D mutation, the tyrosine residue at position 589 

corresponds to the residue found in C. crescentus (Y514) and A. tumefaciens (Y674) 

known to be involved in the formation of hydrogen-bonding with guanosine in c-di-GMP 

(Lori et al. 2015; Dubey et al. 2016). In both species, these residues are crucial for c-d-

GMP binding and mutations of those residues also showed diminished phosphatase 

activity (Lori et al. 2015). 

I also tested the other CckA mutants I constructed for phosphotransfer 

experiments, which contain substitutions predicted to affect kinase (G395T, G396E & 
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H399A) and phosphatase (V443P) activities. None of these appeared to be affected for c-

di-GMP binding (Figure 4.5) as observed for the Y589D protein (Figure 4.4). However, I 

was not able to perform enough replicates and the assays with these mutants need to be 

repeated to obtain properly quantitative data. An X-ray crystallographic structural study 

of the C. crescentus CckA revealed that the amino acid residues responsible for binding 

of both c-di-GMP and ATP are mostly confined to the catalytic region (CA domain) of 

the protein, although several residues in the dimerization histidine phosphotransfer (DHp) 

domain also help with this function (Dubey et al. 2016). These additional mutations 

created are mostly confined to the DHp region of the protein except for V443P, where it 

lies near the linker that connects DHp and CA domain and therefore it will be interesting 

to obtain quantitative data for these mutants to see if there are any intermediate effects on 

c-di-GMP binding. 

The I-site motif (RXXD) present in diguanylate cyclase enzymes is involved in 

feedback inhibition by acting as a receptor for c-di-GMP (Christen et al. 2006; Schirmer 

and Jenal 2009). I hypothesized that the five I-site motifs present in the R. capsulatus 

CckA protein might be acting as binding sites for c-di-GMP. Although I was not able to 

complete all the replicates for this experiment and the data presented must be considered 

preliminary, none of the mutants created to inactivate those five motifs showed any 

obvious effect on c-di-GMP binding in the assays I performed (Figure 4.6), suggesting 

that not all RXXD motifs act as binding sites for c-di-GMP and that there are other amino 

acids involved in the functioning of these sites. 

 In C. crescentus, it was initially reported that c-di-GMP binds CckA only in the 

presence of ADP (Dubey et al. 2016). However, the results in my experiments show that 

ADP is not required for binding to occur, although the addition of ADP does increase the 
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binding (Figure 4.3). These results correspond with more recent findings from C. 

crescentus where the c-di-GMP inhibition of kinase activity in the presence of ADP was 

mainly seen as an additive effect rather than cooperative (Mann and Shapiro 2018). 

Interestingly, the in vitro phosphotransfer assays performed to test the effect of ADP on 

c-di-GMP-mediated phosphatase stimulation did not show a difference in the presence or 

absence of ADP (Calderon 2020). 

Previous genetic manipulations and the resulting phenotypic effects on flagellar 

motility and RcGTA production support the notion that CckA, ChpT and CtrA function as 

a phosphorelay in R. capsulatus (Lang and Beatty 2000; Lang and Beatty 2002; Mercer et 

al. 2012). However, direct biochemical evidence for this has not been provided. 

Therefore, the construct for the His-tagged CckATM protein that I made was sent to 

collaborators (at the University of British Columbia) for in vitro phosphotransfer assays. 

The individual protein components were purified and used for in vitro phosphorylation 

and dephosphorylation assays in the presence and absence of c-di-GMP, which allowed 

the evaluation of CckA- and ChpT-dependent CtrA phosphorylation and the potential role 

of c-di-GMP in CtrA dephosphorylation (Calderon 2020). In the absence of c-di-GMP, 

those assays confirmed the occurrence of autophosphorylation of CckA and that 

phosphotransfer between CckA and CtrA was mediated by ChpT. Addition of c-di-GMP 

resulted in CckA-dependent dephosphorylation of CtrA, suggesting that c-di-GMP is 

acting as a stimulator for CckA phosphatase activity in R. capsulatus, analogous to the C. 

crescentus system. 

The G395T, G396E, H399A, V443P and Y589D mutants that I created were also 

tested for their kinase and phosphatase activities in vitro (Calderon 2020). The Y589D 
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mutant showed normal kinase activity and reduced phosphatase activity, corresponding 

with no c-di-GMP binding observed in c-di-GMP binding assays (Figure 4.4). The G395T 

and G396E mutations were predicted to affect the kinase activity based on the C. 

crescentus model and both displayed high kinase activity and reduced phosphatase 

activity. The H399A mutation showed a decrease in kinase activity but displayed normal 

phosphatase activity, also matching expectations based on the analogous C. crescentus 

H322A mutant. However, the V443P mutant displayed neither kinase nor phosphatase 

activity, which does not match the results observed in the analogous V366P C. crescentus 

mutant that showed increased kinase activity (Chen et al. 2009). 

In C. crescentus, the levels of c-di-GMP are regulated by the diguanylate cyclase 

PleD and mutation of pleD directly impacts the CtrA phosphorelay via c-di-GMP (Abel et 

al. 2013; Paul et al. 2004). The R. capsulatus genome contains 20 genes encoding 

proteins with domains associated with the synthesis and/or degradation of c-di-GMP. 

Eight of these genes were identified as having lower transcript levels in a ctrA null mutant 

strain (Mercer et al. 2010), suggesting possible interactions between the CtrA 

phosphorelay system and signaling via c-di-GMP. Indeed, I subsequently showed that 

four of these genes affect RcGTA gene expression and production and flagellar motility 

(Chapter 2), which are two processes also regulated by CtrA. I found that c-di-GMP 

inhibits RcGTA production and flagellar motility in R. capsulatus. The results presented 

in this chapter strengthen the initial findings  and suggest that the link between c-di-GMP 

and these processes is likely, at least in part, due to switching CckA from kinase to 

phosphatase mode and thereby affecting the phosphorylation of CtrA. 
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CHAPTER 5- Summary and future directions 

 
Over the past two decades, c-di-GMP-mediated regulation in bacteria has become 

a widely studied topic. It is now clear that this universal secondary messenger molecule 

controls a plethora of cellular activities in bacteria and the list keeps growing (Romling, 

Galperin, and Gomelsky 2013). The results presented in this thesis now add gene transfer 

to this growing list. In R. capsulatus, gene transfer between cells is mediated by 

bacteriophage-like particles called gene transfer agents (GTAs) (Marrs 1974; Yen, Hu, 

and Marrs 1979). The regulation of production of this GTA, called RcGTA, is complex as 

multiple regulatory systems affect RcGTA gene expression and release. These include the 

CckA-ChpT-CtrA phosphorelay (Lang and Beatty 2000; Mercer et al. 2012), the GtaI-

GtaR- quorum sensing system (Leung et al. 2012; Schaefer et al. 2002) and additional 

regulators that either directly or indirectly affect the production of GTA (Mercer and 

Lang 2014; Hynes et al. 2016; Fogg 2019; Kuchinski et al. 2016; Westbye et al. 2018). 

Among all of the regulators that were identified, CtrA was particularly important because 

it remained for a long time the only regulator whose absence resulted in a complete loss 

of RcGTA production. It was subsequently determined that this is because CtrA is 

required for the transcription of another regulatory gene (Hynes et al. 2016) that acts at 

the RcGTA structural gene cluster promoter (Fogg 2019). CtrA also has other regulatory 

roles in R. capsulatus and its loss affects the transcript levels of more than 200 genes 

(Mercer et al. 2010). As part of the investigation to unravel and understand the complex 

downstream signalling pathways connecting CtrA and RcGTA production, I studied the 

eight chromosomally encoded c-di-GMP signalling genes that were identified in a 

transcriptomic study as having lowered transcripts in the absence of CtrA (Mercer et al. 
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2010). In my research I established a definitive link between c-di-GMP and RcGTA 

production in R. capsulatus, identified specific mechanisms that control the functioning 

of c-di-GMP signaling proteins in this bacterium, and began to explore a mechanistic link 

between c-di-GMP and RcGTA regulation via the histidine kinase CckA. 

The first and major part of my thesis involved investigating the roles of genes 

encoding putative c-di-GMP signaling proteins in RcGTA production. Among the eight 

putative c-di-GMP signalling genes that were investigated by genetic approaches, I found 

four genes (rcc00620, rcc00645, rcc02629, and rcc02857) that were affecting RcGTA 

production. Mutations of the genes had differing effects on RcGTA production, but the 

issue of whether the proteins might be responsible for increasing or lowering c-di-GMP 

levels in cells was complicated by the fact that three of them have both DGC and PDE 

domains, which are involved in the synthesis and degradation of c-di-GMP, respectively. 

The fourth protein, Rcc02629, only has a DGC domain. Expression of heterologous genes 

encoding established DGC and PDE enzymes, site-directed mutagenesis of key catalytic 

residues in the R. capsulatus proteins, quantification of c-di-GMP levels in various 

experimental strains, and phenotypic assays in E. coli strains expressing the R. capsulatus 

genes allowed me to determine the enzymatic activities of the different proteins, with 

respect to RcGTA regulation, and that c-di-GMP inhibits RcGTA production. For the 

putatively bi-functional proteins, two act as DGCs and inhibit RcGTA production 

whereas the third acts as a PDE and positively regulating RcGTA production. For 

Rcc00645, which has a specific type of PAS domain predicted to be involved in binding 

to heme, I found that the availability of oxygen affects its activity. Furthermore, these c-

di-GMP signalling genes also affected flagellar motility and I showed that increased c-di-
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GMP levels decreases motility in R. capsulatus, which has been commonly observed in 

other bacteria (Romling, Galperin, and Gomelsky 2013). 

In Chapter 3, I characterized a predicted two-component signalling system (TCS), 

where the histidine kinase (HK) protein Rcc00621 phosphorylates the cognate response 

regulator (RR) protein Rcc00620, which switches this putatively bifunctional protein to 

act as a PDE. This was done using a combination of site-directed mutagenesis of key 

catalytic residues in the R. capsulatus proteins, quantification of c-di-GMP levels in 

various experimental strains, in vitro phosphotransfer assays with purified recombinant 

proteins, and phenotypic assays in E. coli strains expressing the R. capsulatus genes. We 

derived the evolutionary history of the genes encoding the TCS proteins using 

phylogenetic analysis and documented key motif conservation across alphaproteobacterial 

species. This showed that these genes are only present in a few phylogenetically related 

Rhodobacter species and that they have likely been acquired horizontally by an ancestral 

Rhodobacter from a bacterium in the Sphingomonadales, a different order within the 

class Alphaproteobacteria. Members of this order also possess GTA gene clusters, raising 

the possibility that the HGT event was mediated by a GTA. In addition to the effects of 

this TCS on RcGTA production, I also showed that it is regulating motility in R. 

capsulatus via c-di-GMP.  

The CckA-ChpT-CtrA phosphorelay system is widespread in alphaproteobacteria 

and best-studied in C. crescentus (Brilli et al. 2010). It is now known from work in C. 

crescentus that the binding of c-di-GMP to CckA causes it to switch from kinase to 

phosphatase activity and this thereby modulates the phosphorylation state of CtrA (Lori et 

al. 2015; Dubey et al. 2016). In the last chapter I confirmed that c-di-GMP binds to CckA  
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Figure 5.1. Overall model for the proposed c-di-GMP-mediated regulation of motility 

and RcGTA production in R. capsulatus. The response regulator CtrA affects the 

transcription of four genes encoding predicted c-di-GMP signalling proteins: Rcc00620, 

Rcc00645, Rcc02629 and Rcc02857. Three of the proteins act as DGCs and synthesize c-

di-GMP and thereby act as negative regulators of RcGTA production and motility. 

Rcc00620 act as PDE and promotes c-di-GMP hydrolysis, RcGTA production and 

motility. Rcc00620 is regulated by the histidine kinase protein Rcc00621, which gets 

activated upon sensing an unknown stimulus and undergoes autophosphorylation at a 

conserved histidine residue and transfers the phosphoryl group to a conserved aspartate 

residue of Rcc00620. The levels of c-di-GMP affect the CckA-ChpT-CtrA phosphorelay, 
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where c-di-GMP binds to CckA and modulates its kinase versus phosphatase activities 

and leads to the dephosphorylation of CtrA. 

 

in R. capsulatus. Constructs that I made were also used by another research group for 

collaborative work to study in vitro phosphotransfer among the CckA, ChpT and CtrA 

proteins. These assays confirmed the occurrence of CckA to ChpT to CtrA 

phosphotransfers, and also showed that c-di-GMP stimulates CtrA dephosphorylation 

(Calderon 2020). Assays performed using the CckA mutants I created in this study 

showed that the Y589D mutant showed decreased phosphatase activity and normal kinase 

activity and confirmed the Y589 residue is crucial for c-di-GMP binding. I also tested the 

possible role of CckA I-site motifs in c-di-GMP binding because of their role in this 

activity in other proteins, however my preliminary data did not support this as a function 

for these sites in CckA. 

Overall, the findings from my thesis provide some new insights towards 

understanding the connection of various regulatory systems and RcGTA production and 

motility in R. capsulatus. However, further research will still need to be done to address 

some additional questions related to these findings. Are there other c-di-GMP-binding 

proteins besides CckA that are directly or indirectly involved in RcGTA and motility 

regulation? Another key question is about the stimuli that are controlling these signaling 

proteins. I found that oxygen is likely a key regulator of one of the DGC enzymes 

(Rcc00645), but what activates the Rcc00621 HK protein and triggers the reduction of c-

di-GMP levels through the activity of Rcc00620? How did a regulatory unit acquired by 

horizontal gene transfer come to regulate gene transfer activity in the new “host” 

organism? There is a clear connection between c-di-GMP and the functioning of the 
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CckA-ChpT-CtrA phosphorelay, but it is not fully clear yet if this is the only way that c-

di-GMP might be connected to regulation of the affected cellular behaviors. Among the 

various important bacterial activities such as motility, biofilm formation, and cell cycle 

processes, I now added gene transfer as a new behavior affected by c-di-GMP. 
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Appendix 1: Supplementary figures and tables for chapter 2 

Table S2.1. List of primers used in this study. 

Primer Sequence (5’-3’)a 

346-F CGCGCGGTGTCCGGAATGA 

346-R CCGTCCTGCCCGACTTCCTGA 

620-F CGGCGATCTATGTGGTGGCGG 

620-R TTGCAGCGCCATCGTGTCGAA 

645-F TAGGTACCTTTCCAAGGCGACGAC 

645-R TAGGTACCTTTGTGTTCGCTCTCTTGC 

2539-F TTCCATGCCGAAATAGGCCGC 

2539-R GGCGCCGTCGTCGATCTGAAT 

2540-F AAAGGCGCGGTGCAGCATGAA 

2540-R ACCGCGGAAGAACGTGAAGCC 

2629-F ATGCCCCGGCCGCGCCAGCA 

2629-R CCTTGGCCCCGAGGGGTTCG 

2857-F CACAGGATGCGGAACACCCCG  

2857-R CGAACCAGCACACCGAGGCAT  

3177-F CAGCCGCACCGACAGATAGCC 

3177-R CCGCATCGCCAAGCTGGATGT 

3301-F GGCCCGATGGGCTTTGCCAT 

3301-R CCCGAGGCCGAGGAATGGGA 

620-CompF TAGGTACCGGCTCGCTTTGGCT 

620-CompR TAGGTACCCAAGCACCACCGCA 

645-CompF TAGGTACCTTTCCAAGGCGACGAC 

645-CompR TAGGTACCTTTGTGTTCGCTCTCTTGC 

2629-CompF TAGGTACCGACAGGGACACGGTCTCG 

2629-CompR TAGGTACCCCAGAAGGCCGATG 

2857-CompF TAGGTACCCGAAATCGTCTCGGT 

2857-CompR TAGGTACCGCAATGTGCTGACCT 

DGC-F AGGAGGGCCATGATGCAGGACTGCGAGAAACT 
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DGC-R TGGTCCGCAGAAGGCG 

PDE-F AGGAGGACGACGATGCCCGACATCACAGCCCTC 

PDE-R TGGCTCCATCTATCCCGTAGCA 

620-GGAAF-F CGGCTGGGCGGCGCCGCATTCGGCGTGCTG 

620-GGAAF-R CAGCACGCCGAATGCGGCGCCGCCCAGCCG 

645-GGAAF-F CGGCTTGGCGGCGCCGCATTCTGCCTGCTG 

645-GGAAF-R CAGCAGGCAGAATGCGGCGCCGCCAAGCCG 

2629-GGAAF-F CGGCTGGGCGGCGCCGCATTCATCATCCTG 

2629-GGAAF-R CAGGATGATGAATGCGGCGCCGCCCAGCCG 

2857-GGAAF-F CGTCTTGGCGGCGCCGCATTCTCGGTGATC 

2857-GGAAF-R GATCACCGAGAATGCGGCGCCGCCAAGACG 

620-AAL-F GTGGTGGGTTATGCGGCGCTCTTGCGCTGG 

620-AAL-R CCAGCGCAAGAGCGCCGCATAACCCACCAC 

645-AVL-F CTGGCCGGGGTCGCGGTTCTGGTACGCTGG 

645-AVL-R CCAGCGTACCAGAACCGCGACCCCGGCCAG 

2857-ATL-F CTGACCGGGGTCGCGACGCTGCTGCGCTGG 

2857-ATL-R CCAGCGCAGCAGCGTCGCGACCCCGGTCAG 

a Underlined sequences indicate restriction sites or ribosome binding sites added for 

cloning or protein translation purposes, respectively. 
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Figure S2.1. Effects of disruptions of genes encoding putative c-di-GMP signaling 

proteins on RcGTA gene transfer activity. The gene transfer activities for eight predicted 

cyclic-di-GMP gene mutants are presented as averages from three replicates relative to 

the parental strain, SB1003, and the bars represent the standard deviations. Statistically 

significant differences (p < 0.05) compared to the control, identified using one-way 

analysis of variance (ANOVA) followed by Tukey HSD post-hoc analysis, are indicated 

by asterisks. 
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Figure S2.2. Western blots for the RcGTA major capsid protein in cells and culture 

supernatants. Blots were performed on all replicate gene transfer bioassay cultures 

(Figure 2A) and one representative set of blots is shown for each. Graphs represent the 

average band intensities from the replicate blots relative to the parental strain, SB1003, 

calculated using ImageJ, and bars represent the standard deviations. 
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Figure S2.3. Effects of multiple gene disruptions on RcGTA gene transfer activity. The 

gene transfer activities for a double mutant (SB620.645) and a triple mutant 

(SB645.2629.2857) are compared to each of the single gene mutants (data from Figure 

2A). The data are presented as averages from three replicates relative to the parental 

strain, SB1003, and the bars represent the standard deviations. Statistically significant 

differences (p < 0.05) compared to the control, identified using one-way ANOVA 

followed by Tukey HSD post-hoc analysis, are indicated by asterisks. 
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Figure S2.4. Effect of GGDEF and EAL domain mutations on DGC activity in E. coli. A. 

Motility of E. coli MG1655 on semi-solid agar (0.25%), which is reduced by DGC 

activity, when containing the indicated plasmids. Transcription from the plasmid’s lac 

promoter was induced with IPTG. B. Congo red binding by E. coli BL21(DE3), where 

DGC activity increases fimbriae production and Congo red binding, when containing the 

indicated plasmids. Transcription from the plasmid’s lac promoter was induced with 

IPTG. 

 



164 
 

 
 

Figure S2.5. Evaluation of R. capsulatus proteins with point mutations in GGDEF and 

EAL domains for potential PDE activities in E. coli. Restoration of motility to E. coli 

MG1655 ΔyhjH on semi-solid media (0.25%) indicates PDE activity. Transcription from 

the plasmid’s lac promoter was induced with IPTG. 
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Figure S2.6. Effect of oxygen on gene transfer activity in strain SB645. The R. 

capsulatus strains SB1003 and SB645 were grown under both aerobic heterotrophic and 

anaerobic photoheterotrophic conditions and assayed for RcGTA production. Data for 

SB645 are presented as averages from three replicates relative to the parental strain and 

the bars represent the standard deviations. The asterisk indicates a statistically significant 

difference (p < 0.05) compared to the control, identified using one-way ANOVA 

followed by Tukey HSD post-hoc analysis. 
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Appendix 2: Supplementary figures and tables for chapter 3 

Table S3.1. rcc00620/rcc00621 accession numbers. (xls.file) 

Table S.3.2. List of primers used in this study. 

Primer Sequence (5’-3’)a 

620-F CGGCGATCTATGTGGTGGCGG 

620-R TTGCAGCGCCATCGTGTCGAA 

620-KpnI-F TAGGTACCGGCTCGCTTTGGCT 

620-KpnI-R TAGGTACCCAAGCACCACCGCA 

621-KpnI-R TAGGTACCCGGCGTCACGGGACACGATG 

620-D86A-F AAGGTCGCCTTCGTCGCTGTGCGGATGCCG 

620-D86A-R CGGCATCCGCACAGCGACGAAGGCGACCTT 

620-D86E-F AAGGTCGCCTTCGTCGAGGTGCGGATGCCG 

620-D86E-R CGGCATCCGCACCTCGACGAAGGCGACCTT 

621-H361N-F ACCGGGCTTTTGAACAATCTGCGCAACAGT 

621-H361N-R ACTGTTGCGCAGATTGTTCAAAAGCCCGGT 

621-H326N-F ATCGGCGCCCTGAACCGGGATTTCAACGAG 

621-H326N-R CTCGTTGAAATCCCGGTTCAGGGCGCCGAT 

pET_620-F TATACCATGGATGACCATTCTCGTCATTGATGAC 

pET_620-R TATAAGCTTGCCCGCGGCACTGCGGCCGGGTTC 

pET_621-F TATACCATGGCGGCGGCTGTCGACGCAGGT 

pET_621-R TATAAGCTTGCCCGCCGGGCGCAACC 

621_ML-F CTTGCGCTGCTGGGCCTGCTGGCGGCG 

621_ML-F1 CCCGGGACCGGGGCGCCCGACCCCGAT 

620_ML-F GCAGTTTCATCGAGGGGATGGACCGC 

a Underlined sequences indicate restriction sites added for cloning purposes. 
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Figure S3.1. Western blotting quantification of the RcGTA major capsid protein. Blots 

were perfomed on all replicate gene transfer bioassay cultures and one representative set 

of blots is shown for each strain. Graphs show the average band intensities from the 

replicate blots relative to parental strain, SB1003, calculated using ImajeJ. The bars 

represent standard deviations. 

  



168 
 

 
 

Figure S3.2. Phylogenetic relationships among members of the genus Rhodobacter. 

Phylogenetic trees based on the RNA polymerase beta subunit gene (rpoB), 16S rDNA, 

and DNA gyrase B gene (gyrB) were obtained with the maximum-likelihood method with 

MEGA 7. The General Time Reversible (rpoB and gyrB) and Tamura 3-parameters (16S) 

models, identified as the best fitting models after a model test analysis, were used to 

estimate genetic distances between sequences, a discrete Gamma distribution was used to 

model evolutionary rate differences among sites, and the rate variation model allowed for 

some sites to be evolutionarily invariable. The outcome of the bootstrap analysis is shown 

next to the nodes. Strains in which rcc00620-621 homologs were identified are labelled 

with a dot whose color corresponds to the genomic organizations surrounding these genes 
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(Figure 7 in the main text). The clade including descendants of the receiver of the two 

genes is highlighted in orange. 

 
 

Figure S3.3. Phylogenetic analysis of the Rcc00620 protein homologs found in 

Alphaproteobacteria. The phylogenetic trees was built with MEGA 7 with the neghbor-

joining method using the JTT model , identified as the best fitting model after a model 

test analysis. A discrete Gamma distribution was used to model evolutionary rate 
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differences among sites (+G=0.6) and the outcome of the bootstrap analysis is shown next 

to the nodes. Rhodobacter strains in which the two genes were identified are labelled with 

a black or red dot whose color corresponds to the genomic organizations (Figure 7 in the 

main text), while the Novosphingobium strain is indicated by a blue dot. The clade 

including Rhodobacter and Novosphingobium strains is highlighted in orange. 
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Figure S3.4. Phylogenetic analysis of the Rcc0621 homologs found in 

Alphaproteobacteria. The phylogenetic trees was built with MEGA 7 with the neghbor-

joining method using the JTT model, identified as the best fitting model after a model test 

analysis. A discrete Gamma distribution was used to model evolutionary rate differences 

among sites (+G=0.75) and the outcome of the bootstrap analysis is shown next to the 

nodes. Rhodobacter strains in which the two genes were identified are labelled with a 

black or red dot whose color corresponds to the genomic organizations (Figure 7 in the 
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main text), while the Novosphingobium strain is indicated by a blue dot. The clade 

including Rhodobacter and Novosphingobium  strains is highlighted in orange. 

Appendix 3: Supplementary tables for chapter 4 

Table S4.1. List of primers used in this study 

Primer Sequence (5’-3’) 

CckA_ΔTM-F TATACCATGGCGGGGGCGATTTCCGCC 

CckA_ΔTM-R TATAAGCTTGGCCCGCGCCCGGCGG 

CckA_G395T-F GGCCAGCTTGCGACCGGGGTTGCGCATGATTTC 

CckA_G395T-R GAAATCATGCGCAACCCCGGTCGCAAGCTGGCC 

CckA_G396E-F GGCCAGCTTGCGGGCGAGGTTGCGCATGATTTC 

CckA_G396E-R GAAATCATGCGCAACCTCGCCCGCAAGCTGGCC 

CckA_H399A-F GGCGGGGTTGCGGCTGATTTCAACAACTTG 

CckA_H399A-R CAAGTTGTTGAAATCAGCCGCAACCCCGCC 

CckA_V443P-F GCGGCCTCGCTGCCCGGGCAGCTTCTGGCG 

CckA_V443P-R CGCCAGAAGCTGCCCGGGCAGCGAGGCCGC 

CckA_Y589D-F CTGGGGCTCTCGACCGCCGACGGGATCGTCAAG 

CckA_Y589D-R CTTGACGATCCCGTCGGCGGTCGAGAGCCCCAG 

CckA_1st_Isite-F TTCCTGTGGGGGCTGGAGCACATGGCGGAA 

CckA_1st_Isite-R TTCCGCCATGTGCTCCAGCCCCCACAGGAA 

CckA_2nd_Isite-F GAGCGTGTCGGCACGCTCGGCCGGATCTTC 

CckA_2nd_Isite-R GAAGATCCGGCCGAGCGTGCCGACACGCTC 

CckA_3rd_Isite-F GGGCTGGGCGGTCCGGTGCATGACTGGGTT 

CckA_3rd_Isite-F AACCCAGTCATGCACCGGACCGCCCAGCCC 

CckA_4th_Isite-F GTGCTGCGGGCGGGGCGCGGCGGCCGCGAGGTC 

CckA_4th_Isite-R GACCTCGCGGCCGCCGCGCCCCGCCCGCAGCAC 

CckA_5th_Isite-F CTGAAGCCGGGGATCATCGGTCTGCGCGAC 

CckA_5th_Isite-R GTCGCGCAGACCGATGATCCCCGGCTTCAG 

CckA_ML_FP1 GGCGTCGAAATCGGGCACGATC 

CckA_ML_FP2 GCAGCTGAAGACGCTGGAAGGCC 

 


