Sizing, Dynamic Modeling and Simulation of a
Solar-Wind-Hydrogen Power Systemof the MUN

Explorer Autonomous Underwater Vehicle

By
Mohamed Musbah Albarghot

A thesis submitted to the School of Graduate Studies

in partialfulfillment of the requirementtr the degree of

Doctor of Philosophy

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

May - 2020
St . JNevifourddkindand Labrador

Canada



Abstract

In this doctoral researdatissertationsizing, dynamic modelingandsimulationof
a solar, wind and hydroggrowersystemof the MUN Explorer Autonomous Underwater
Vehicle (AUV) have been explorethtegraing a Polymer Electrolyte Membrane REM)
fuel cell into an existing power system which uaéthium ion batteryasthemain source
of its energy Along with the batteries the integratéuel cellwasdesigned to power the
MUN Explorer AUV to increase its hours of operatenmd reduceéhe numter of batteries
The installation of hydrogerand oxygengas tank next b the batterieaugmentedhe
buoyancy force underwatekn electrolyzerpowered by solar and wind energyasused
to producenydrogenThe produced hydrogemasthen stored in gas cylinders. A PEM fuel
cell wasused to consume the hydrogen gas insidévt®l Explorer AUV. The fuel cell
wasconnected to a DC / DC Boost Converter to increase the output voltage from 24 to 48
V, as required by the battery and DC motbwas proposed that the renewable excess
energybe stored and usddr recharging a battgr The system desigs basedon MUN
Explorer data sheets and system dynamic simulation results. The systemwssing
performed usingHybrid Optimization Model for Electrical Renewable (HOMER)
software The dynamic modelasthen built in MATLAB / Simulirk environment to give
a better undstanding of the systeindehavour. A Pl controller was applied in the
dynamic model to maintain the operating conditions such as motor speed, DC bus voltage
and the load torqué&hesimulationof dynamic models and expaent results in hydrogen

production and consumption wetempared and found to have an acceptable erft.



results from hydrogen production systems (solar and wind) were measured to be 7.0
ml/min. The PI controlleprovidedsatisfactory results in tesnof maintaining the same

operating conditions of the MUN Explorer AUV with a fuel cell.
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Chapter 1

| ntroduction and Overview

1.1.Introduction and motivation

In the 1950s, the foundatioof AUV technology wasbuilt and includedseveral
unmannedunchainedsubmersibleSimprovementghat were remotely controlled’he
applied physics laboratory, University of Washingtonn the 1960s developed Self
PropelledUnderwater Research Vehicl€SPURVS) An AUV can be defined as a self
powered vehiclevith Lithium-ion (Li-ion) béteriesanda self-controlled machineapable
of underwatedata collection andutonomous navigatioAUVsoOusage can beategorized
as researchand includesndustrial and militaryapplicatiors, due to its advantages of
collecting richer data setsompared to traditional point sampling methodgich drop
cameras and sensor casts from surface §hjps

Thepurpose of thitMUN Explorer AUV is to daunderwatesurveillancearound the
Newfoundlandcoast andsurrounding aresa However,some problems of operating the
existing paver system of the MUN Explorer, which was done by the researcher at the
Holyrood managment facility, include mobilization costs, logistics and transport, and
facility access, all of whicimustbe consideredFurthermore, recharginipe batteries for
at least 8 hours is also very challenging and time consunihgre is also a risk of loss

whenthe MUN Exploreris working in extremeenvironmersl conditions. The short life



of the batteriescan lead to the loss of the vehicléhis los can be costly becaeghis
vehicle isexpensive

In [1], work investigated how to locage missingAUV during a particular mission.
To bringthe MUN Explorembackrequiral more powethan it hadlIn this researche PEM
fuel cell wassized (in HOMER, integratedandsimulated (in MATLAB / Simulnk) into
the existingpower system of the MUMRXplorer to increasés power capacity and to run
for a long period of time.The integrated system alsoaintaired the sameoperating
conditionsin terms of motor speed, DC bus voltage and the load t@s|ie oldenergy
system Hydrogenand oxygergaesweregenerated by solar and wind energy taubed
by the MUN Explorer for its operations.

Renewable energg considered as alternative energy sources as agsgef global
warming increases and the foskikl starts to drainMany researches and investments
focuson renewable energy to eliminate the political issues reladtie desirability of
nuclear power. Many natural resources such as solar, wind, hydro, geothermal energies are
named as renewable engy resourceswhich have no major waste products and the
resources are naturaligloaded The advantages of these resourceseargronmentally
friendly, low cost,low energy conversion efficiencies aatternating nature of energy
sourceseducesecononic sustainability of the renewablenergy against the fossil fuels.
The support of renewables energy m®Ilved bymany governments in the last ten years.
For example the global electricity production is provided 15% of from large hydropower
plants and3.4% from new renewables (solar, wind, geothermal, biofuels, tidal) in 2006

according to the Renewable Energy Policy Netwdrke capital investment on new



renewable energs?008,has been expanded with respexcthte year 2006 and the total
energygenergedcapacity has been increased4®@s[2].

PEM electrolyzers haveeveralimprovementcompared talkaline onesThere is
one advantages to be considered for Rittrolyzer is that it can operatenggh pressures
up to 200 bar. This high pressure ehates the compression stage of hydragfenge when
storedo the tanks. Furthermore, the procesan isothermal one amdost efficient mothed
of compressing hydrogen inside the electrolyzdkaline electyrolyzers have higher
parasitic losses and lowefficiency than PEM electrolyzenshich lower the cost of
hydrogenproduction. Because of the simple and complasign, he PEM electrolyzers
are known as smaller sizes and ma¥®t, high initial cost of equipment such as the
membrane cost and specadlioys for the casings, supplied pure water to the electrolyzer,
and low efficiency at high pressures due to the hydrogen diffusi@consideredas
drawback pints for operatingeM electrolyzer. Finally, safety concerns at ltvadsin
case of hydrogen ixing with oxygen can be disadvantages as wkhile PEM
Electrolyzers and fuel cellsave similammaterial construction and design, ihgroving
technology made parallel to theelectrolyzers[2]. Figure 1.1 illustrates the main

components of the PEM eligolyzer.
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Figure 1.1: the schematics of PEM electroly§

There are many types ddiel cells which arecategorizedcorresponding to the
electrolyteutilized. Proton exchange membrane fuel calis known apolymerelectrolyte
membrane (PEM) fuel cells (PEMFQ)Iso named the most popular type of fuel célls.
solid polymeris used iInPEMFC as an electrolyte angborous carbon electrod&ghich
includeda platinum or platinum alloy catalyahd theyoperatedvith pure hydrogen form
the storge system#\t the anodeside in whichelectrons are split from protons on the
surface ofa platinumbased catalyshydrogen ga is generated. Whereas, on the cathode

side of the celthe protons pass through tmembranellowing the electronpass through



in an external circuit, generating the electrical outpuhefcell. The protons and electrons
with oxygenmixestogether bymetal electrod¢éo produce water, which is only the waste
from the fuel cells. Two ways for providiragn oxygen gas are a distilled formor obtained

at the electroddirectly from the aif3].

One of the mostapplications of the fuel cells ateansportationand stationary
applications For example, fuel cells which usedpassenger vehiclesuch ascars and
buseshave fast start up time and promispoyverto-weight ratio One quarteof the world
total energyis consumed by transportationcts where a larggart of the fuel energis
dissipated akeatin internal combustioengines due tériction loss and exhaust gd$he
production offuel cell units hasncreased significantlin 2012to reach a total of 45,700
units, whichhave achievé@substantiaprogress in the transport mark&tmassive progress
was made in the transportation industryadslitional fuel cellelectric vehicles (FCEV)
were built.For exampleHyundaiestablishedhe | X 35 FCEV, while Toyota during that
period alsoproducedthe Mirai 2015[3]. Figure 1.2 shows the main components of the

PEM Fuel Cell
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Figure 1.2: The main components of the PEM Fuel Cedb[//hyperphysics.phy
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1.2.Research Objective andContributions
As stated above, there aaemeopemtionalproblemsrelated tathe existing power
sysem of the MUN ExplorelAUV, such asmobilization costs, logistics and transport,
recharging the batteries for at least 8 hpansl facility accessvhich have been addressed

in this thesisTo eliminatethese challenges and reduce tis& of loss a PEMFuel Cell



(PEMFCQC)is studied and integrated irttee existing power systeai the AUV.The PEMFC
requires hydrogen and oxygen gas in order to generate the power. Therefore, the hydrogen
production is intended to be generated freenewablesolar and winderergy sources
designed to be placed on shore along with PEM Electroywkthe hydrogen and oxygen

tanks to facilitate therocesof refueling

The objectives of this research are to integrate a PEM Fuel Cell into an existing system to:

U Increase the emgy capacity

U Reduce the number of batteries

U Help the buoyancy force in underwater depths.

The overall system componerg#sdresearchapproachareshown in Figure B. The
researchcontributionsare accomplishedfocusing on flowing: solar energy hydrogn
productionis investigatedexperimentally and from simulatipnwind energy hydrogen
productionis investigatedexperimentally and from simulatipra PEM Fuel Cellis
integratedinto an AUV existing power system new AUV power systenis sized and
creadedusingHOMER and MTLAB / Simulink, anda PI controlleris appliedto maintain

the MUN Explorer operating conditions for the MUN Explorer.
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1.3.Thesis Structue
This thesis isorganized based on theareas. Chapter 1 iagn introduction and

overviewof t he AUVO6s history and foundation.
improvements have also been discussed. Chapter 2 depicts the required hydrogen and
oxygen poduction from a @&newable energy source (solar energy) using a PEM
Electrolyzer. The generated gases are also stored in the tanks. An experimental setup and
MATLAB/ Simulink modeling are also developed and simulated to be compared and
discussedin chapte 3, a renewablernergy sourcewind energy) is used to power a PEM

Electrolyzer to generate hydrogen and oxygen gasbgh are stored in tank#&\n



experimental setup and MATLABSiIimulink model are also built and simulated to be
compared and considered.

Chapter 4 demonstted the sizing technique of the power system of the MUN Explorer
AUV using HOMER software. then the dynamic model of the system was built in
MATLAB / Simulink to match the sizing results with the dynamic model. The proposed
sizing was hle to increase thpower capacity of the system as well as eliminate some of
the batteries. This chapter was also able to show the benefits of integrating the PEM fuel
cell into the system by improving the underwater buoyancy force. Chapter 5 presented th
dynamic model othe MUN Explorer AUV, including a fuel cell system to run under the
same operating conditions as suggested by its manual. A PI controller was then applied to
the dynamic model to maintain the operating conditions, such as motor speduisDC
voltage andtie load torqueChapter 6 concluded the research with the key findings and
contributions and suggested possible expansion ideas for this work.

This thesis follows the objective classification dsfined earlier. Thechapteré
structureis discussed as below:

x Chapter includesa brief introductionand overview of this thesis. The research
objective and scope, along with thmnitations are also introducedA literature
surveyis includedand the dissertati@nstructureis outlined

x Chapter 2 discusses thgydrogen production from solar renewable energy by
powering a PEM Electrolayzer experimentally and by simulation. The DC /DC
converter is used to regulate the voltage and current. All the simulation is done in

MATLAB / Simulink.



Chapter 3 demonstratethe hydrogen production from wind renewable energy by
powering a PEM Electrolayzer experimentally andsbyulation.The hydrogen
amount is calculated to be 7.345 ml/mam the modeknd forthe experimental set
up.The DC/DC conveter is used to regulate the voltage and current.

Chapter4 studiesthe sizing technique using HOMER Software as well as the new
dynamic model with a PEM fuel cell to study and check the systeahaviour.

The model is created MATLAB / Simulink.

Chapte 5 presers thedynamic model of the MUN Explorer AUVhcluding a fuel

cell systemas well asa Pl controller to maintain the operating conditions such as
motor speed, DC bus voltage and the load tarque

Finally, Chapter 6concludes the researctith the findings results and
contributionsandsuggests possible expansion ideas for this work. This Chapter also
discusses the learnings from this research work and its contribution ttiveard

improvement othe design.
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1.4. Literature Review

Shapiro etal. (2005) studied a solar electric power system which powered an
electrolyzer to store energy iheform of hydrogen gas. This methodology used batteries
as an alternative way for storing energy. Their system componaitaled a PEM
electrolzer, highpressure hydrogen and oxygen storage, and a PEM fuelvbath was
built as a prototype and tested experimentally. The goal of such a system was afproof
concept for general system feasibiliand electrolyzer performance characterizgtvaith
thecurrent density of 1.0 A/lcm2 at 2.0 V per cell. The power integration with a PV system
was expected to be a reliable environméytegmote installation. However, the system
provided highquality power backup for critical systenssich as telecomunications and
medical facilitieswithout PV [4].

Beainy et al. (2014) developk an electrical equivalent circuit for a PEM
electrolyzer using a MATLAB / Simulink block diagram. The examination oWV |
characteristic for a single PEM electrolyzer cell was shown under a steady state condition.
Hydrogen productio behaviar wasstudiedbased on power and current. The electrolytic
hydrogen productionosewith the input current in a linear mannpbowever, the variation
of the input power was nonline&@ome parameters suchtemperature and pressure were
consideed for developing the adel[5].

Lee et al. (2013) analytically and experimentally investida¢mperature and flow
rated sffecson a PEM electrolyzer to develop their model. Five ancillamedudingan
anode, cathode, membrane, voltage, and stpvegye simulated by MATLAB/ Simurnk

to build the dynamic model for an electrolyzer. Somerpatars such as power, flow rate,
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and temperature controllers showed the PEM electrolyzer perforpmaneealidate the
analytical polarization curve. The evaluation of four circulating waterfilelds took place
experimentallyusingthe 25 cnt active ara of a small cellThe optimum temperature and
flow rate for the electrolyzer were compared at different temperature regimes by analytical
and experimental polarization curves. The hydrogeneation was also illustrated for
different water flow ratd$)].

Speranza et al. (2015) propodsgirogen as a carrier gas to switch nitrogen and
helium in Gas Chromatogphy (GC) applications and found many advantagesh as
faster analysis, loweaost,and onsite generated hydrogen reliability. The carrier gas purity
was critical for higher perfomance and lower maintenance. A proper evaluation of
different hydrogensources was produced for critical requirements of carrier gas
applicationd7].

Joneidi et al. (2013) simulatedsmall PV fuel cell-based hybrid energy system in
MATLAB / Simulink, which was constructed using mathematical and electrical models.
The system componeniscludeda PV, a PEM fuel cell, hydrogen storage tanks, and a
power converter. The load demandsa@nnected from the PV when there was enough
suright. However, when there was insufficient Bght, the fuel cell operated to meet the
needed load. The PV was alseed to convert the electrical enemto hydrogen using an
electrolyzerandstored in the hydrogentank for later use in fuel cells. To control the fuel
cell model, a PID controller was appliff].

Al-Refai (2014) studied the energy storagetssm to improve the usage of
renewable energy. An electrolyzer was used to produce the hydrogen gas from PV solar

energy. The system components were demonstrated IRLB / Simulink environment.
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The operatios of photovoltaic array and electrolyzeewetested at different insulation
levels. The results from both the PV and electrolyzer were deterpasigecially when the
solar energy inputgariedcontinuously{9].

Sopianet al. (2009) integrated a P\Wvind - hydrogen energy production / storage
system. The components of the system were a photovoltaic array, wind turbine, PEM
electrolyzer, battery bank, and hydrogen tank. The system also had an automatic control
system fo battery charging and discharging. A hygeo quantity of 130 ml/min to 140
ml/min was generated for an average glamahr radiationbetween 200//m? and 800
W/m?, and wind velocities ranging from 2.0 m/s and 5.0 m/s. For each system component,
a mathenatical model was built and compared to élxperimental resultsL0].

Uluoglu (2010) builta solar hydrogen Stardllone Power System (SAPS) for an
emergency room of a hospitdlhe system also operated without any external pswmsly
andprovides offgrid continuous electrity throughout the year. Some components of the
system were integratednd simulated in TRNSYS commercial softwanecluding
photovoltaic panels, PEM electrolyzd?EM fuel cells, hydrogen tanks, batteries, and
control mechanismAuxiliary equipment suclas DC/AC converters, water pump, pipes,
and hydrogen dryers were alistegrated into the system. An investigation of the optimal
system structure and sizing componeith agoodperformancend dow cost for different
users, and control strategies warsted 11].

Kim and Peng (2007) investigated a power management strategy of a fuel cell
hybrid vehicle (FCHV) for ehieving optimal fuel economy. For the performance
optimization of FCHVs, they designed a combined power management and design

optimization problem for model subsystem scaling in order to forecast the features of
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system components. The controller was agplas a design variable in the systéns
optimization problemswvhich wasnspired by their Stochastic Dynamic Programming. The
simulation results witlanoptimization approach delivered excellent fuel econ§tay.

Ahmadi et al. (2013) generated hydrogen using an ocean thermal energy conversion
(OTEC) system which was combinedtlwva solarenhanced PEM electrolyzer. Some
system componentsuch as turbine, evaporator, condenser, pump, solar collector, and
PEM electrdyzer, were integrated. The electricity from the turbine was used to power the
PEM electrolyzer to produce hydroggas. The modes of the OTEC system and PEM
electrolyzer were developed and simulated using MATLAB/ Simulink. The experimental
data from theliterature were used to validate the simulation model for the PEM
electrolyzer. The exergy efficiency of the systgerformed as well as the exergy
destruction of each component. The energy efficiency of the simulated OTEC system was
3.6% and the exergyffeciency was 22.7%. The PEM electrolyzer exergy efficiency was
calculated to be 56.5% and hydrogen productionwagg/h[13].

Kumaraswamy and Quaic@2016) illustrated the nonlinear output characteristics
of PEM fuel cells. Thse characteristics may cause low efficiency anddperatiorpower.

Some trackingechniques were used to track the maximum power point (MPP) which
extracts maximum power anthe maximum efficiency point (MEP). For portable
applicationsthe output power and efficiency of the PEMWErerecommended to dagh

but were low atthe maximum power point and maximum efficiency point.isiork
focused on an alternative tracking teciug called midpoint tracking technique (MpPio
eliminate the MEP and MPP tracking techniques. The simulation results and the analysis

of the tracking techniques model were studied and illustrated. The proposed MDT
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technique was found to ban effective technique with high output power and high
efficiency when compared to the MEP and MBR].

Rigatosand Siana (2016) demonstrated r@onlinearfuel cell control approagh
utilizing differential flatness theory anal Kalman filter. The fuel cell dynamic model
verified their differential flatnesstheory. The state variables of the system and control
inputs were expressed as differential functions of specific state variables calledtilas o
The design of a stafeedback controller of the dynamic system was successfully
accomplished for uncertainties and external perturbations of the model. The extension of
the PEM fuel cells statgpace variablesvere measured as extra state vargablto the
derivatives of the total disturbance inputs. The linearization of extended fuelamisn
was implemented by using a Kalman filtexsed disturbance observer, to eliminate the
disturbance effect and uncertainty of the system. A complementatsocelement that
compensates for the perturbatiomnxmsmesf fects
were used to measure the control scheme efficigrigy

Raugel et al. (2010) developed an adapted fuel cell system for an AUV. It was
diffi cult to fully optimize the integration because the fuel cell was in a separate vessel. The
hybridization with Lithiumion batteries was examined by performing another expatime
using the fuel cell system. The fuel cell provided the necessary electicglyam board
and stored it in the batteries to meet the peak power supply. These fuel cells were classified
as innovative power sourstor underwater vehicles such as AUMglasubmarinefL6].

Lewis et al. (2016) researeth thepotentialof an AUV for operations in harsh naval
environmers. In 2005, Memorial Uversity of Newfoundland authorized the constron

of an International SubmaerEngineering Explorer AUV, the management and operation
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of which was led by the Marine Environmental Research Lab for Intelligent Vehicles
(MERLIN). To ensurethat a full sevice AUV research team can contend with harsh
maritime and polar experiences, MER N6s programs have devel op:¢
AUV research haprogressedrom dynamic vehicle trainings with basic sensor technology

to developadvanced autonomous ngation[17].

Lewis R. (2015) showed that with any operation of AUV technology, there is an
actual risk of underwater loss. This rigk associated with the harsh envirosmbal
conditions under the igcesuch as extreme cold and compromised visibility. The
development ofisk-based methodologies was to overcome the risk of loss for specific
AUV stages prior to utilizations. This was a basic gtuabe aware of the overalkk of a
specific task. There were successful AUV missions reported in previous studies with very
little AUV loss [1].

Mebarki et al (2016) studied the ability of a hybrid power system of an electric
vehicle to generate the needed energy. The system was conswitbteadPEMfuel cell
and a battery bank. A DC/DC converter connected to the PEMFC to adjust the voltage, and
the excess energy was stored in the battery bank. The mathematical model of the system,
along with the control supervisiprwere well studied to address eadubsystem.
Experimental and simulation results were collected and illustrated, and MATLAB /
Simulink was used to run the simulatifir8].

Motapon et al (2014) evaluated the fuel cell hybrid emergency power system of an
electric aircraft that included neweakltime hydrogen consumption aradminimizing
energy management strategy. He compared two strategi@gogen consumption

minimization strategy and less hydrogen consumption) based on equivalent fuel
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consumptionthrough simulations and experimeniBhe first was calleda hydrogen
consumption minimization strategwhich is well known as an equivalent cangption
minimization strategy (ECMS). The sensitivity of the second strategy that he suggested was
less hydrogen consumption compared to the load profthe examination of equivalent

fuel consumption has not considered the financial cost of improvembict) depended

on the complete mission profile. This strategy was minimizing the hydrogen consumption
for theload profile variation$19].

Five different energy management schentias ¢tate machine control strategy, fule
based fuzzy logicstrategy, classical proportiofi@itegral control strategy, frequency
decoupling/fuzzy logic control strategy, and thguivalent consumption minimization
strategy)for a fuel cellbased emergency power system of an electric airgvafe
compared and angled by Motapon et al (2014). Their system liael cells, Li-ion
batteries, and supercapacitors, as well as DC/DCDEYAC converters. These energy
management schemes were commonly used incklelehicle applications. Hydrogen
consumptionthe state ¢ charges of the batteries/ supercapacitors, and the overall system
efficiency were compared as the main criterighefgystem. All analyses and performances
were validated and calculated using simulation models and an experimental bdi€h. test

From the above literature, there was not enough information for sizing and storage
systems for the AUV and other applications. This thesis will be focusing and exploring

what is missing from the literaturélydrogen and oxygen storge system is studied and

showed to increase the power capacity duri
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1.5.Constraints and Limitations

Therehas beeronsiderablevork doneby researchers in the areausing fuel cells
with batteriego estimate and achieve a desired power for many different applicagieins
the literature othe fuel celintegration ofthe existing power system for the MUN Explorer
Autonomous Underwatevehicle has not been investigated by any reseasiéar A
few researchers hawdsodone experimental work on fuel cell integration into AURSt
therehas beera lack of informatioraboutthe dynamic models and control approaches.
Some components were also missing from the literasuieh as DC motor specification,
batteries, and gas tank=or thisreason, thishesisinvestigatel and studied the sizing and
the proposedlynamic modkeof the MUN Explorer AUV by applying a Riontrollerto
maintain the same operating conditiosisch as motor speed, DC bus voltage and the load
torque andto overcomesomeproblems mentioned above.

There was also a limitation regardirige integrationof the MUN Explorer AUV
proposeddynamic modelnto the actual onebecause the vehicle mvnedby another
departmentaindthe access tib is limited. Therefore, thexperiment cannot be donsing
the MUN Explorer AUVandthe proposed work mainly focusen the simulation.

Finally, the simulation results weseheduledo be validated by experimental work
in order to get basic results before inteigratinto the AUV. However the financial

limitation preventedhe completion othis work
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Chapter 2
MATLAB / Simulink Modeling and Experimental Results of

a PEM Electrolyzer Powered by a SolaPanel

2.1. Chapter Overview

Solar panels are used to power an electrolyzer to separate the water into hydrogen
and oxygen gas. The electrical equivalent circuit for the PEM electrolyzer was developed
and implemented in MATLAB / Simulink, along with the/drogen storage tank. The
voltage (2V) and current (1A) were supplied from the DC/DC buck converter to the
electrolyzerto compare simulation and experimental results. The hydrogen amount is
calculated to be 7.345 ml/mior the modelas well agor the experimental set up. The
expermental and simulation results were matched and validated against the Simulink
model. The contributionof this chapter is to show the buck converter along with storage
system (hydrogen and oxygen tanks)

2.2. Introduction

World transport depends heavily on petroleum, as it supplies 95% of total energy and
is responsible for almost a quarter of global eneajgted emissionsslobally, marine
shipping running on fossil fuels also caas many environmental issues. Over thesip

decade, transport emissions have increased at a faster rate than those of any other energy
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sector. The transportation sector accounts for 28% of all US greenhouse gas emissions,
34% of all carbon dioxide emissions,-38% of the main components of urbar
pollution, and 68% of all oil consumptiofl] and [2]. Global transport activity will
continue to increase along with economic growth. Internatittaakportatiorhas been
dominated by ocean shipping, with ships continually increasing in size and number. Fossil
fuel usage also raises manypiatant concerns and challengssch as climate change and
supply cost increaselBor example, in 2002, the use of fossil fuels was responsible for 86%
of the worl ddés energy consumption. etlan 2003
higher value 024% of thetotal demandor the planet[3]. It has beome essential to seek
alternative sources of renewable energy that can be easily captured by using waves, sun
and wind. Statistics suggest that changing to fuel cell technology could save mayag¢ha
million U.S. dollarsper ship per year in fuel costBhe sun, wind and waves provide an
unlimited source of renewable energglar energy is known as the most sustainable source
of renewable energy. For example, 2G6W of PV (photovoltaic)systemswere installed
worldwide in 2011. Compared with 2010, teevere also six countries where more than 1
GW of PV has been installdxy 20114].

Battaies are not the solution fenergy storagehey provideshort term solutions and
their wask is comprisel of significant and dangerous pollutants. Hydrogen remains the
only valid source for energy storggeeaning the hydrogen gas can be store fong
period of time without selflischarging when comparéd batteries Producing hydrogen
can be achieved in large quantities from water electrolygager is a clean resource
available in large quantities everywhere. Electrolysis will be studied todoglitaboard

vehicles such as cargo ships.
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This chapted ®cus isto improve the results of modeling the electrolysis system and
obtain experimental results. The-sgtis powering the electrolyzer with a small PV solar
panel that produces 2 V and 1 Pae hydrogens produced and stocked in the tank. The
mahematical and dynamic model of the electrolysis has been implemented in
MATLAB/Simulink. In Section2.3, the syste somponerg are detailed. IfSection2.3,
the simulation and experimental -sgis are described. lisection2.4, we examine and

compare the simulation and experimental results.

2.3. Solar System Components

2.3.1. Photovoltaic Solar Panel

The solar energy is transferred directly irectrical energy in the PV panel
through a basic ptsical process. The physical behariof any solar cell is very similar
to the classical 4o junction diode. Two diode solar cell models are shown in Figure 2.1.
The relationship between Output Currehtgnd Output VoltageM) is found using the

formulabelow[5]:

) Jol 2 Q° P78 D Zop 0° FT ® 7 6 Pel2 (2.1)

where |, is the solar induced current equallggo*(l A RO) , and wherdl , is the
irradiance (light intensity) in W/ falling on the ceII.|ph0 is the measured solar
generated current for the irradianbﬁo . |S Is the saturation current of the first diobsga,

is the saturation ctent of the second diode, aM§ is thermal voltage that is equal to

24



KT/Q, whereK is the Boltzmann constant is the deviced simulation temperature
parameter valu& is the elementary charge on an electron. N arat@&lthe qualityactors

of the first and secd diodes, respectivelyV is the voltage across the solar ¢Bll. The

I-V and P-V characteristic curves of tHeV module are shown under irradiance of 1000
W/m?at 25C, as illustrated in Figure 2.Eorsolar energyperformancetemperature plays
an important role because the foparameters (| Is, Rs, and W) are functions of
temperatureThis proves that the lower temperature is the higher polined from the

PV, and the greater the open circuit volt@je

B

AAA- | @

i Is l Is2 Rs +

@

Figure 2.1: Electrical equivalent circuit of the solar cell [28]
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Figure 2.2: 1-V and RV curves of the PV module

2.3.2. DC/DC Buck Converter

The buck converter is stepdown DGDC voltage converter, where the average
output voltage is always less than the input voltage. There are two operating modes for the
buck converter in terms of diode cirauitin the first mode, when the switch is on, the diode
becomes reverd@ased, so that the supplied energy is stored in an inductor. In the second

mode, the diode becomes forward biased when the switch is off, due to the load; it receives
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energy from thenductor. The input stays isolated from the ouf@lit The purpose of the
buck converter is to regulate DCwer suppliesThe dity cycle (D) is the ratio of the time
power isswitched on to the total time, and the ratio of output voltage to the input voltage.

The duty cycle is also calculated by the following equation:

\i:D:I_S (22)
Vs Io

where \b and \s are the output and input voltages, respectively, aadd b are
input and output current, respectivgl]. The selection parameter of the buck converter is
based on the voltage and current output of the PV, whidesgned to be ¥ and 2A.
Since the electrolyzer load is designed for 2nd 1A, it becomes necessary to select a
buck converter in order to regulate the voltage and current. The values of the buck converter
parameters such as the inductor, capagitod,duty cycle were obtained from the welsite
for desired input values for the electrody, as shown in Table 2.1. The buck converter
model is generated in MATLAB / Simulink to control the output and input between the PV
and electrolyzer, as shown irgkre 2.3. The PID controller is used to check the error value
as the difference betweenetlilesired set point and the measured variable volidge.

controller parameters are P = 3.04, | = 2866.4, ardO®00795.

! https://daycounter.com/Calculators/Swaitag-ConverterCalculator.phtml
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Item

Volts In
Volts Out
Load Current
I rms

Duty Cycle
Frequency

L

C

’—b

F? ?

Table 2.1: Values of buck converter

Value Units
5 Vv

2 Vv

1 A
0.99 A
36.11 %

40 KHz
87e6 H
29.17e6 F

Diode 4 In
T

PWM generstr
(0C-0C)

i
J

Constant Display5

Saturafion

PID controller

)

Figure 2.3: Buck converter model in MATLAB/Simulink
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2.3.3. PEM Electrolyzer Model

2.3.3.1. Mathematicd model

A PEM electrolyzer is defined as a device which separates waf®} {iito hydrogen
(H2) and oxygen (@). Water electrolysis may be classified as a reverse process of hydrogen
that is fed into a fuel cellAn electrechemical reaction lpgpening in the fuel cell to
generate DC electricity converts DC electrical energy into chemical engayed in
hydrogen An electrolyzer electrical circuit can be represented as a voltage sensitive
nonlinear DC load, so that the higher voltage app8dte higher load currerdirculating
and more Hcan be generatd@]. The equivalent circuit of a PEM electrolyze created
in MATLAB / Simulink. Figure 2.4 shows the equivalent circuit of the single PEM

electrolyzer{8] and[9].

Excess potential loss ={I){erev-17)

-+

-—
o«

| Heat loss due to resistance

.
b

€.

Hydrogen production fm!fm.fnj:P.'-rZ:ﬂ} Wi

Q.

Figure 2.4: Equivalent circuit for single PEM Electrolyzf3]
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In order toobtain the 4V and hydrogen production characteristics, some equations
are developed for steady state conditions and implemented in MMSTLSimulink.

Equation 2.3 models the electrolysis process and is written as f¢8pws

6 ) PBTIX® TMB8EROIar®BTXO (2.3)

o8mMOT

Equation 2.3 indicates a simple equivalent circuit model for the PEM, which has an initial
resistance of Rand reversible gtential volteerey, which amounts tol.476V. The ideal
potential \ (electro chemical) is calculated by equation B,

DG

- 2F (2.4)

where &G is Gi bbs f oflkydrogengasrary ytised-dramlayg e ( J/
constant (8487 C/ mol). The hydrogen production rate is(whl/min) with respect to the
input current | (A) and molar volum@ hydrogen gasvm, is determined by equation 2.5.
The electro chemical hydrogen energy gecond B., which is equal to the V4, is

calculated by equation 2[8].

w 6 pm ¢ M, (2.5)

O 6 pm @m——2

—<2% __ 60 (2.6)
C& pm QT
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From the precedingequations, the useful power which delivered from the
electrolyzer cell relies on the electrolyzer input current | and ideal voltagen¥ input
electrical power P othe PEM electrolyzer cell, which is the function of thehcan be

determined by eauion 2.7[8]. Figure 2.5 illustrates the static model for the PEM

electrolyzr.
0 6)Y Rvro 2.7)
[
"0 Power VS Hydrogen production
opev o =
W Current V'S Woltage Source i
™ = B ) Ve

Pressure | |
RiT,P) ! erev
| =
Ir] ] filw) *

| | erev(T.P) Add the potential loss

'»\_—:l-. > f{u) Tm »1 )

—[ | f(u) —»I I H2

20 = |
—_—

Temp. fi{u) fiu) | Hydrogen mi/min
(i
T |
Wi

> @ Lt @ Ideal potential

Current WS Hydrogen production

Voltage WS Hydrogen production

Figure 2.5: MATLAB/Simulink Mathematical Model for PEM Electrolyzer

2.3.3.2. Dynamic model

A PEM elecrolyzer dynamic model was built in MATLAB / Simulink based on
charge and mass balance and BeNlelmer kinetics on the electrode surfaces to show the

current and potential characteristics of electrolys§. The hydrogen© )and oxygen

(0 ) reaction rates can be generated by equations 2.8 anwth2:/@® the anode side dfet
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electrolyzer deals with oxygen production and the cathode side delivers the hydrogen gas

with the water molar delayed, respectivElQ].

O - — (2.8)
Op - — (2.9)

The Faraday Efficiency € ) is defined as rainternal current which allows the
oxygen to move from the anode to the cathode or the hydrogen from the cathode to the
anode, and it is assumed to be more than B@} Figure 2.6 shows the dynamic model
for the PEM Electrolyzer in MATLAB / Simulink which consists of five main components:
cathode, anode, membramstorageand voltage anliary. For all these components, the
mathematical details of the model are illustrated in the appendix number two (2).

For the water transport phenomena, the membrane ancillary is used in the
electrolyzer. Diffusion andlectro-osmotic drag are the two most importantevalows
taking placethrough the membranevhich allow the protons to move and the water
moleculesto accompany them. The water transportation is knowthedectro-osmotic
drag phenomem and water diffision can be found r om Fi c k 6 s u$ianr st | a

through the membranas illustrated in equations 2.10 and 211].

o) ¢ -0 6&0Q (2.10

o) 0O—0 6:&0Q (2.19)
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Figure 2.6: MATLAB/Simulink Dynamic Model for PEM Electrolyzgii 1]
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Cument_Density Camode PEM1

2.3.4. Hydrogen Tank Modeling

Compressed gas or liquid hydien can be stored in tanks using different technjques
including physical hydrogen storage. To store hydrogen gas produced by the electrolyzer,
a static model of the tank is created in MATLAB / Simulink and can be expressed by
equation 2.1212].

N.,RT
Pb- Pbi :CFBLb

(2.12)
M H 2Vb

where P, is the pressure of the tank tiemeasured in Pascd, is the initial pressure

of the storage tank in Pascal, R is the universal gas constant J/ kniglisthe operating
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temperature K\V, is the volume of the tank InT is the temperature, ar@dF is the

compressibility factor as a function of the pressaseshown in equatich13[12].

PV,
RT

CF = (2.13)

where P and ¥ are the pressure and molar volume, eesipely. This model equation
determines the tank pressure using thtio of hydrogen flow rate to the tank. Equation
2.12isimplemented in MATLAB / Simulinko storethe hydrogen and delivérto the fuel

cell. Figure 2.7 shows the MATLAB / Simulink rdel of the hydrogen storage system.

Rydberg ideal gas constant

2314 472 ‘L

CO - >

Electrolyzer temp. ® KTs
) > o r(D
® J" e

10 I___r" . Y P intial
- 1

[

!

H & ® Volume
- SE ]
m
g,/ maol
5 T Muoleculer mass H2

20
201588

Figure 2.7: MATLAB / Simulink model of the hydrogen storage sysf&#j
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2.4.Simulation and Experimental SetUp

The simulation is done in MATLAB / Simulink environment by creating each
component separately, so that the error loa easilycontrolled,and the simulation blocks
debugged. Each system blockimplemented and studied to ensuhat each one is
sufficiertly precise to run the simulation and give adequate results. The models of the PV
solar, DC / DC Buck convertor,egdtrolyzer, and the hydrogen taake created and well
matched with each other. The simulation model is valid to simulate different cage®. Fi
2.8 shows the Simulink model for the solar cells, DC / DC buck converter, electrolyzer,
and hydrogertank andtheir mathematical model have shownthe previous sections
Figure 2.9demonstrategshe experimental setp for the solar panelDC / DC buck
convertor electrolyzer and hydrogen /oxygen tanks. The experiments are produced with a
horizon kit. The readm of hydrogen productioms reported in (ml/min). The PV has
dimensions of 15.5 cm ilength and 12.5 cm in width. Each component configurason

collected from the data sheéts

Disrete,
T =1e08s.

power gui

1000

Constants Scope

PV array Buck convertor Electrolyzer Hydrogen tark

Figure 2.8: Simulink model for the solar hydrogen production

2http://www.horizoneducational.com/wp
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Figure 2.9: Experimental setip for the solar hydrogen production

2.5. Results and Discussion

The results from both simulation and experiments are now ceap@he maximum
voltage from the PV itheexperimental setip is designed to be 5V and the current reach
1 A; however the maximum power of the PV cell depermh the weatherand includes
clouds and rainwhich can reduce the collected energy. The mmaxn voltage and current
from the PV panedreobtained and the electrolyzesngenerate hydrogen with maximum
output. Figure 2.10 shows the hydrogen production (ml/min) versus the current (A), and
the simulation results are in accordance with the expetaheesults. Note that the
characteristicesponse is lined8]. The amounbdf hydrogen obtained from the simulation
is 7.461 ml/min, and the value from the experiments amounts to 7.0 ml/min. The
discrepancy is due to theolarvariability. Note that the hydrogen production increases
linearly with the input electrical poweas the power increasethe hydrogen production

also increass. Figure 2.1 shows the efficiency versus current density for the PEM
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electrolyzer. Thé& a r a @fficiericysdecreases as the current density increesies can
be defined as the relation betweeal hydrogen flowate and its theoretical value
Figure 2.2 illustratesthe pressure inside the hydrogen tank model. The hydrogen

guantity increases with time. The experimental storage hydrogemersrelate tothe
electrolyzer to generate the mgden by taking thevater from the cylinders and reverg

it back as hydrogen / oxygen gas.compare the pressure from the simulatiogure3.13
shows the hydrogen pressure tdrikn the experimentadataas found m theliterature
Table 2.2 shows thhydrogen production (ml/min) from the experiments, and the time
whichwas2 min. Finally, hydrogen frontheexperimental results versus tinsallustrated

in figure 2.4; the hydrogen increases with time

/

rd

/

8

Hydrogan (ml/min)
A o

[

v

0 1 2
Current (A)

o

Figure 2.10: Relationship betwee@urrent(A) verseshydrogen(ml/min) from the simulation
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Figure 2.12: Pressure inside the hydrogen tank for the solar systamthe simulation

38



Bottle Pressure (Pascal)
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H. Goirgtin / International Journal of Hydrogen Energy 31 (2000) 29-38
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Figure 2.13: hydrogenPressurdank fom theliteraturefor the comparisori11]
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—e— Experimental Results Simulation Results
16
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Hydrogen Generatginl)
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Figure 2.14: Hydrogenproduction fromexperimentabnd simulatiorresults versus time

Table 2.2: Experimental results

Time (min) H2 production (ml)
2 14

1 7

0 0
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2.6. Conclusion

The solar energy hydrogen production atorage system ave developed. The PV
solar panels werarrayedto capture the sun as long asvidsavailable. The electrolyzer
consumed the power which generated from the PV panels. The DC/DC buck comasrter
used along with the system to regulate araintain the current valugshich werefed to
the electrolyzer. The PID controller was used to check the error, uhkiaifference
between the desired set point and the measured variable voltdgebuck caverter It
was assumed that all system gmnentswvere in asteady state. The results from both the
simulation and experimental trials correspedd?7.2 ml/min). MATLAB / Simulink
provided the simulation environmethtelping to integratehis system. Theexperiments

confirm the results obtainedoim the model.
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Chapter 3
Comparison of Experimental Results with Simulation of a

PEM Electrolyzer Powered by a Horizontal Wind Turbine

3.1.Chapter Overview

One small wind turbinevasused to power aslectrolyzer unit to separate the water
into hydrogen and oxygen gases. Fwait voltage and 1 A current were supplied to the
electrolyze to produce hydrogen through the fuel cell unit. The electrical equivalent circuit
for the proton exchange membraskectrolyzer was developed and implemented in
MATLAB / Simulink along with the atmospheric hydrogen storage tank. The hydrogen
production vas measured during the tests and evalyateding the simulation in order to
compare the simulated and experimentaults. The novel work of this chapter is to
integrate the buck converter to the wind turbine system along with the storage 3ystem.
hydrogen amounvasmeasure@s6.99 ml/min A from the experimental segp, along with
the model 7.24 ml/min A. The BDC buck converter was added to the Horizon kit to
regulate the voltage to be 2 volts. The experimental and simulation results featemnexd an

of 3.6 %.
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3.2.Introduction

Over the past decade, transport emissions have increased at a faster rate than any other
energy sector. The transportaticlivision accountedfor 34% of all carbon dioxide
emissions, 28% of all US gneleouse gas emissions, 3688% of the mairtomponents of
urban air pollution, and 68% of all oil consumption. Global transport activity will continue
to increase along with economic groth. Fossil fuel usagalsanvolvesmany important
concerns and challenges such as climate change and supply cost increases; for example, in
2002, the wuse of fossil fuels was responsi
[2]. It has become essential to seek alternativercasuof renewable energy thaan be
easily captured by using wind, sun and waves. The need for renewable energy sources that
will not damage the environment hagreasedsignificantly, as energy demands around
the world increaseMany projectionshavesuggested that the global energy demand will
be doubled by 2050Vind energy israpidly expandindield that includes many different
sectors of engineering and science. The American Wind Energy AssodiaWdBA)
showed that the installation capacity of wind exxgad at an average rate of 29% per year.

The worldwide installation capacity of the wind enewpsapproximately 15MW at the
end of 20093]. The mostworthenrenewale generation technologies are wind and sun
[4]. Statisticshavesuggeted that changing to fuel cell technology coséadve more than
one million U.S. dollarsper ship per year in fuel costsecause wind, sun, and wave
collectors provide unlimited soursef renewable energp].

Batteries are not the permanent solution for energy storagg provide short term

solutions but also causdangerous pollutants and significant waste carg:@vhich can
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be amplified by the shortlifeohany act ual batteriesd packs.

only valid clean source for energy storabggdrogen can beroducedn large quantities
from water electrolysisvater is a clean resource available in large quantities everywhere.
Electrolysis will e studiedor its suitabilityto begenerated onshore and store it into the
tanks This sectionof thework proposen potentiaimprovements forthe Ferryrunning
betveen Belllsland and Portugal Cove in Newfoundla@a@nada.

This chapterincludesthe modeling results of the electrolysis systemmparing
them with experimental results. The-s@tpowes the electrolyzer with a small horizontal
wind turbine which is then regulated at 2 Volts and 1 Ampere. The hydrzganoduced
and stockedn the tank. The mathematigabdel of the electrolysis has been implemented
in MATLAB/Simulink. In section3.3, the system component models described in
detail. Insection3.4, the simulation and experimental-aps are described. In the fourth

section, we examine and compare the simulation and experimental results.

3.3.Wind System Components

3.3.1. Horizontal wind turbine

The output power from the turbine can be determined by equati¢d]3.1

ver

R B zo (3.1)

where ” is the air density, A is the swept area,i¥the wind velocity, and
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0 ™ T Tdip P Q£—8 TMInp Wt of (3.2)

The wind turbine dynamic model is characterizedhog-dimensional curves of the
power coefficient (¢) which is defined athe measure of wind turbine effency asthe
ratio of actual electric power produced by a wind turpaingded by the total wind power
flowing into the turbine blades atspecific wind speed. It is also a function of both the tip
speedratio() and the bl ade usd tacth (asn)glmu s(thb)he Tkep
value in order to utilize the avable wind energyTherefore, the corresponding value of
the power coefficient will become maximum §&). Figure 3.1 represents the mechanical
powerPm as a function of the generator speed, for any different winedspand fothe
blade pitch anglefb = 0 s. Thés figure is also obtained with the specified parameters
at abase wind speed = 9 m/s, maximum power at base wind speed = @3-fug) and
base rotational speed = 0.9°plihe wind turbine ispecified in MATLAB/Simulink to
generate 18W with voltage fromI12 volts. The peunit system (pu) is commonly used in
the power system industry to show values of voltages, currents, oaveet torques of
power equipment. For a given quantity like torghe perunit value is the value related to

a base quantit$,

3 S. Heier, "Grid Integration of Wind Energy Conversion Systems," John Wiley & Son$998, ISBN 8471-97143
“Mat h wo r k scumentation/ peddit-andinterndionatsystemsof-uni t sd 2016 a.
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Base value in (pu) = Quantity expressed in Sl units/Base value (3.3)
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Figure 3.1: Power wind characteristics and beta

3.3.2. DC/DC Buck Converter

The Buck Converter (BC) values for an inductor, capacitor, and duty wgcke
takenfrom the website for desired input values for the electrolyzer. Tablsh®ws the
values of the selected tkiconvertewhich can be obtained by a special weBisithe BC
model was generated in MATLAB / Simulink to control the output and input between the
wind turbine and electrolyzeais shown in Figure 3.2. The calibaatiof the buckonverter,

which was powered by a DC power supplywas performedin the labto ensure that the

5 https://daycounter.com/Calculators/SwitchiGgnverterCalculator.phtml
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output voltage and curremtere adjusted properly before the convenasconnected to

the wind turbine.

Iltem

Input Voltage
Output Voltage
Load Current
Irms

Duty Cycle

Frequency
L

C

Value

12

2

1

0.99

12.2

40
2851.4e6

76.65e6
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Table 3.1: Buck converter parameters

Unit

%

KHz



&l

Figure 3.2: Buck converter in MATLAB / Simulink

3.3.3. PEM Electrolyzer

3.3.3.1.Mathematical Equations and-V curves

In order to illustrate the'V curves and hydrogen production characteristics in wind
hydrogen production, some equations have been developsttémly and unsteady state
conditions andmplemented in MATLAB/Simulink. Equations 3.4 and 3.5 represent the
unsteadyandsteady state contithns for the electrolysis process, respectively, and they are

written as followd6]:

w p8 X ¢Tp& X W T ¢ {Or (3.4)
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~

oY O Q Y (3.5)

Equation 3.5 is used to simplify and determine the imgbdhe I-V model of the
PEM electrolyzer cell aa function of pressure and temperature. The two equatomns
implemented in MATLAB / Simulink to plot the voltage and current in linear and namline
behaviar. From equations 3.4 and 3.5, it can be observed thatitetareshold voltage
at which the crrent starts to flow. The characteristic shapes are nonlinear, but the curve of
the current flow can be approximated and plotted as almost linéar an error not
exceeding 5%6]. Figures 3.3 and 3.4areillustrated lin@r and nofinearI-V curves in

MATLAB / Simulink environment, respectively.

o

|
e

| -V linear

1

Pressure

erev

20

Temp.

Figure 3.3: 1-V Linear mode in Simulink
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- | |V Nominear

Figure 3.4: 1-V Nonlinear mode in Simulink

3.3.3.2. Hydrogen Production(Faraday Efficiency)

In an electrolyzer cell, the hydrogen production rate (ml/min) is directly
proportional to the transfer rate of electrons at the electrodes accordtagt@ d ay 6 s | a\
which is also equivalent to the electrical current in the circliterefore, in any
electrolyzer, the total hydrogen productiaich has many cells connectedaseries can

be determinedas shown in equation 3[8].

(R (3.6)

where R is the hydrogen production in ml/min, istheFar aday 6s cef fi ci
is the number of cells in series, and n is number of moles of electrons per moles of water,
n=2. Faradayods efficiency is known as t he
maximum amount of hydrogenhat i s produced in tigney el ect
can be calculated by equation 3.7. FigurdlRiStratesthe electrolyzer model in MATLAB

/ Simulink tofind the hydrogen production rate. Equasd6 and 3.7areillustrated in
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calculate the efficieycand then the

MATLAB / Simulink as functios of current to

hydrogen productiof8].
(3.7)

W@ Qo BQ x dTQ

@S e
2]
e 2

H2 prodhrfion

Carre=t Vs efficaency

e
Lo

Figure 3.5: MATLAB/Simulink module for PEM electrolyzer
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3.3.3.3.Dynamic model

The dynamic model for the PEM electrolyzés constructed in MATLAB /
Simulink, as shown in Figure 3.@&nd runs in two modesurrent or voltageThe full
mathematical model of each block is shown in the appendix numbeil hgovoltage is
supplied to theelectrolyzer during the voltage mode, and it extracts the cunremtthe
source under operating conditions. A steady state value can be reached after many transient
cycles. Moreover, commercial electrolyzers operate in current mode and the operating

voltage electrolyzer can be calculated by equatior{.8

® 0 o o (3.8)

The Nernst equation is used to show an open circuit voltage for the electraf/zer

shown in equation 3.9. The activation polarization can be found by equatiom8. 1§ea

ohmic polarization is obtained by equation 3}1Q].

0 © & (3.9)
A — (3.10)
) Y (3.11)
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3.3.4. Hydrogen Model Tank

Liquid or compressed hydrogen can be stored in tanks using different techniques
such ashephysical hydroge storage of ideal g48]. Tostorethe hydrogen gas, a dynamic
model for the tank is created in MATLAB / Simulinkvhich is connected to the
electrolyzeras addressed by equation 3[12].

N, RT
P - Pi —z3_H2 Db (3'12)
g ° MHZVb
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where B, R, R, T,, Vi, and T are the pressunéthe tank in Pascg! the storage

tank initial pressure in Pasealthe universal gas constant (J/kmol K), the operating

temperature (K), the tank volume in (m”3), and the temperéIjreespectiveljll].

3.4. Simulation and Experimental SetUp

Figure 3.7 shows the experimental-gptfor the horizontal wind turbine, DC/DC
buck converter, electrolyzer and hydrogen / oxygen tanks. The equidoretitis
experiment is provided by the Horizon%iThe simulatio is completed in MATLAB /
Simulink environment by modeling each component individually. Each system block has
been applied and studied to ensure that each one is sufficiently precise®sumtlation
and give adequatesults. The begtrroris lessthan 5% which carbe represented ierms
of calibration, and lossesThe moded for wind turbine, DC/DCbuck converter,
electrolyzer, and the hydrogen taanecreated and well matched wiglach other to run the
simulation and validate the model withfdifent cases. Figure 3.8 illustrates the Simulink
model for the whole energy system. The hydrogen produistimeasured and reported in
(ml/min). Ths is achieved experimentally by generatithg power from the wind turbine
and feethg it to the electrolyger; and then stoireg the energy as hydrogen gas to be used

whenever neestl Every component configuratios collected from the data sheets. The

6 http://www.horizoneducational.com/wp
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small wind turbine has three bladesyind speedf around 12 (mph), output voltagé

8.5 (V), andarotor speedf 1550 (RPM).

Figure 3.7: Experimental setip for the wind hydrogen production

+dc

e

Wind tubine  DC/DC convertor  Electrolyzer  Hydrogen tank

Scope2

Figure 3.8: Simulink model for the wind hydrogen production
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3.5.Results ard Discussion

The results from both experiments and simulation are examined and compared. The
maximum voltage from the wind turbineregulated to be 2V and the current is held at 1A
in both experiments and simulation. However, the maximum power @¥itfteturbine is
depenénton many factors such as wind speed and pitch angéseTiactors can reduce
the collected energy from the wirdrbine if the converter is not included in the energy
collection unit, but the convert@nsureshat no effects oceuf the wind is sufficiently
rapid to reach the selected thresholds. The maximum voltage and current from the wind
turbineareobtainedand supplied to the electrolyzer to generate hydrogen with maximum
output. Figure 3.@lemonstrateshe hydrogen produicn ml/min on theY-axis and the

current Aon theX-axis, and the simulation and experimental results are in accordance with

each other.
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Figure 3.9: Linear relationship betweementandhydrogen productiofrom the smulation
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The results of-M curves are represented in both lineadnonlinear behaviar,
and theyshareclose results, as shown in Figei®10 and 3.11, respectively. The error
ratiois acceptable3.4 % inthedesign application. The linear vs nbmear resultarealso
confirmed by Atlam and Kolhe to yield af error 2%[6]. The production of hydrogen
obtaned from the simulation is 7.23 ml/min, and the value from the experiments amounts

to 6.99 ml/min. The discrepancy of the hydrogen production is due to the wind variability.

o (1 =] 0.4 0.6 0.8 1
current (A)

Figure 3.10: Relationship betweeruerentvs voltage linear behawio for the electrolyze(simulation)

1.5

Voltage(V)

[=]
o

0 02 0.4 0.6 08 1
Current (A}

Figure 3.11: Relationship betweecurrent vs voltage noelinear behaviar for the electrolyzefsimulation)
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Figure 3.12 shows the input power w with tlyellogen productiom ml /min. Note
that the hydrogen production rises linearly with the input power; therefstkee power
increasesthe hydrogen production wilalsoincrease Table 3.2 illustrates the hydrogen
production from the experiment$he time was 2 min. Figure 3.13 shows the current
density Aenm? with the Faraday efficiencyercent Figure 3.14 shows the pressure inside

the hydrogen tank model. Thgdroger® gquantity increasewith time.

Table 3.2: Experimental esultsfor two minutes

Time (min) H2 production (ml)
2 14

1 7

0 0
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Hydrogen Generatenl)

—&— Experimental Results —#—Simulation Results
16
14
12
10

o N A O ©

0 0.5 1 1.5 2 25
Time (min)

Figure 3.12: Experimental and simulatiaiesults for the hydrogen production
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Figure 3.13: Electrical power (w) vs Hydroggproduction from the simulation
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Hydrogen Pressure (Pascal)

Figure 3.14: Current density vEaraday efficiencyorm the simulation results
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Figure 3.15: Pressure inside theytirogen tank for wind systefrom thesimulation
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