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Abstract 

 

In this doctoral research dissertation, sizing, dynamic modeling, and simulation of 

a solar, wind and hydrogen power system of the MUN Explorer Autonomous Underwater 

Vehicle (AUV) have been explored, integrating a Polymer Electrolyte Membrane (PEM) 

fuel cell into an existing power system which uses a lithium ion battery as the main source 

of  its energy. Along with the batteries the integrated fuel cell was designed to power the 

MUN Explorer AUV to increase its hours of operation and reduce the number of batteries. 

The installation of hydrogen and oxygen gas tanks next to the batteries augmented the 

buoyancy force underwater. An electrolyzer powered by solar and wind energy, was used 

to produce hydrogen. The produced hydrogen was then stored in gas cylinders. A PEM fuel 

cell was used to consume the hydrogen gas inside the MUN Explorer AUV. The fuel cell 

was connected to a DC / DC Boost Converter to increase the output voltage from 24 to 48 

V, as required by the battery and DC motor. It was proposed that the renewable excess 

energy be stored and used for recharging a battery. The system design is based on MUN 

Explorer data sheets and system dynamic simulation results. The system sizing was 

performed using Hybrid Optimization Model for Electrical Renewable (HOMER) 

software. The dynamic model was then built in MATLAB / Simulink environment to give 

a better understanding of the system’s behaviour. A PI controller was applied in the 

dynamic model to maintain the operating conditions such as motor speed, DC bus voltage 

and the load torque. The simulation of dynamic models and experiment results in hydrogen 

production and consumption were compared and found to have an acceptable error. The 
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results from hydrogen production systems (solar and wind) were measured to be 7.0 

ml/min. The PI controller provided satisfactory results in terms of maintaining the same 

operating conditions of the MUN Explorer AUV with a fuel cell.  
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Introduction and Overview 

 

1.1. Introduction and motivation  

 

In the 1950s, the foundation of AUV technology was built and included several 

unmanned, unchained submersibles’ improvements that were remotely controlled. The 

applied physics laboratory, University of Washington, in the 1960s, developed Self 

Propelled Underwater Research Vehicles (SPURVs). An AUV can be defined as a self- 

powered vehicle with Lithium-ion (Li-ion) batteries and a self-controlled machine capable 

of underwater data collection and autonomous navigation. AUVs’ usage can be categorized 

as research, and includes industrial and military applications, due to its advantages of 

collecting richer data sets, compared to traditional point sampling methods, which drop 

cameras and sensor casts from surface ships [1].  

The purpose of the MUN Explorer AUV is to do underwater surveillance around the 

Newfoundland coast and surrounding areas. However, some problems of operating the 

existing power system of the MUN Explorer, which was done by the researcher at the 

Holyrood management facility, include mobilization costs, logistics and transport, and 

facility access, all of which must be considered. Furthermore, recharging the batteries for 

at least 8 hours is also very challenging and time consuming. There is also a risk of loss 

when the MUN Explorer is working in extreme environmental conditions.  The short life 
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of the batteries can lead to the loss of the vehicle. This loss can be costly because this 

vehicle is expensive.  

In  [1], work investigated how to locate a missing AUV during a particular mission. 

To bring the MUN Explorer back required more power than it had. In this research, a PEM 

fuel cell was sized (in HOMER), integrated and simulated (in MATLAB / Simulink) into 

the existing power system of the MUN Explorer to increase its power capacity and to run 

for a long period of time. The integrated system also maintained the same operating 

conditions in terms of motor speed, DC bus voltage and the load torque as the old energy 

system. Hydrogen and oxygen gases were generated by solar and wind energy to be used 

by the MUN Explorer for its operations. 

Renewable energy is considered as alternative energy sources as awareness of global 

warming increases and the fossil fuel starts to drain. Many researches and investments 

focus on renewable energy to eliminate the political issues related to the desirability of 

nuclear power. Many natural resources such as solar, wind, hydro, geothermal energies are 

named as renewable energy resources which have no major waste products and the 

resources are naturally reloaded. The advantages of these resources are environmentally 

friendly, low cost, low energy conversion efficiencies and alternating nature of energy 

sources reduces economic sustainability of the renewable energy against the fossil fuels. 

The support of renewables energy has involved by many governments in the last ten years. 

For example, the global electricity production is provided 15% of from large hydropower 

plants and 3.4% from new renewables (solar, wind, geothermal, biofuels, tidal) in 2006 

according to the Renewable Energy Policy Network. The capital investment on new 
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renewable energies,2008, has been expanded with respect to the year 2006 and the total 

energy generated capacity has been increased by 40% [2]. 

PEM electrolyzers have several improvements compared to alkaline ones. There is 

one advantages to be considered for PEM electrolyzer is that it can operate at high pressures 

up to 200 bar. This high pressure eliminates the compression stage of hydrogen storge when 

stored to the tanks. Furthermore, the process is an isothermal one and most efficient mothed 

of compressing hydrogen inside the electrolyzer. Alkaline electyrolyzers have higher 

parasitic losses and lower efficiency than PEM electrolyzers which lower the cost of 

hydrogen production. Because of the simple and compact design, the PEM electrolyzers 

are known as smaller sizes and mass. Yet, high initial cost of equipment such as the 

membrane cost and special alloys for the casings, supplied pure water to the electrolyzer, 

and low efficiency at high pressures due to the hydrogen diffusion are considered as 

drawback pints for operating PEM electrolyzer. Finally, safety concerns at low loads in 

case of hydrogen mixing with oxygen can be disadvantages as well. While PEM 

Electrolyzers and fuel cells have similar material construction and design, the improving 

technology made parallel to the electrolyzers [2]. Figure 1.1 illustrates the main 

components of the PEM electrolyzer.   
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Figure 1. 1: the schematics of PEM electrolysis [2]  

There are many types of fuel cells which are categorized corresponding to the 

electrolyte utilized. Proton exchange membrane fuel cells are known as polymer electrolyte 

membrane (PEM) fuel cells (PEMFC), also named the most popular type of fuel cells. A 

solid polymer is used in PEMFC as an electrolyte and porous carbon electrodes which 

included a platinum or platinum alloy catalyst and they operated with pure hydrogen form 

the storge systems. At the anode side in which electrons are split from protons on the 

surface of a platinum-based catalyst, hydrogen gas is generated. Whereas, on the cathode 

side of the cell the protons pass through the membrane allowing the electrons pass through 
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in an external circuit, generating the electrical output of the cell. The protons and electrons 

with oxygen mixes together by metal electrode to produce water, which is only the waste 

from the fuel cells. Two ways for providing an oxygen gas are in a distilled form or obtained 

at the electrode directly from the air [3].  

One of the most applications of the fuel cells are transportation and stationary 

applications. For example, fuel cells which used in passenger vehicles such as cars and 

buses, have fast start up time and promising power-to-weight ratio. One quarter of the world 

total energy is consumed by transportation sector where a large part of the fuel energy is 

dissipated as heat in internal combustion engines due to friction loss and exhaust gas. The 

production of fuel cell units has increased significantly in 2012 to reach a total of 45,700 

units, which have achieved substantial progress in the transport market. A massive progress 

was made in the transportation industry as additional fuel cell electric vehicles (FCEV) 

were built. For example, Hyundai established the I X 35 FCEV, while Toyota during that 

period also produced the Mirai 2015 [3]. Figure 1.2 shows the main components of the 

PEM Fuel Cell. 
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Figure 1. 2: The main components of the PEM Fuel Cell [http://hyperphysics.phy-

astr.gsu.edu/hbase/thermo/electrol.html] 

 

1.2. Research Objective and Contributions  

  As stated above, there are some operational problems related to the existing power 

system of the MUN Explorer AUV, such as mobilization costs, logistics and transport, 

recharging the batteries for at least 8 hours, and facility access, which have been addressed 

in this thesis. To eliminate these challenges and reduce the risk of loss a PEM Fuel Cell 
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(PEMFC) is studied and integrated into the existing power system of the AUV. The PEMFC 

requires hydrogen and oxygen gas in order to generate the power. Therefore, the hydrogen 

production is intended to be generated from renewable solar and wind energy sources, 

designed to be placed on shore along with PEM Electrolyzer and the hydrogen and oxygen 

tanks to facilitate the process of refueling.  

The objectives of this research are to integrate a PEM Fuel Cell into an existing system to: 

➢ Increase the energy capacity  

➢ Reduce the number of batteries 

➢ Help the buoyancy force in underwater depths.   

 The overall system components and research approach are shown in Figure 1.3. The 

research contributions are accomplished focusing on flowing: solar energy hydrogen 

production  is investigated experimentally and from simulation,  wind energy hydrogen 

production is investigated  experimentally and from simulation, a PEM Fuel Cell is 

integrated into an AUV existing power system, a new AUV power system is sized and 

created using HOMER and MTLAB / Simulink, and a PI controller is applied to maintain 

the MUN Explorer operating conditions for the MUN Explorer.  
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Figure 1. 3: Overall research approach components [Appendix No. 1] 

 

1.3. Thesis Structure 

This thesis is organized based on these areas. Chapter 1 is an introduction and 

overview of the AUV’s history and foundation. The MUN Explorer AUV challenges and 

improvements have also been discussed. Chapter 2 depicts the required hydrogen and 

oxygen production from a renewable energy source (solar energy) using a PEM 

Electrolyzer. The generated gases are also stored in the tanks. An experimental setup and 

MATLAB/ Simulink modeling are also developed and simulated to be compared and 

discussed. In chapter 3, a renewable energy source (wind energy) is used to power a PEM 

Electrolyzer to generate hydrogen and oxygen gases, which are stored in tanks. An 
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experimental setup and MATLAB/ Simulink model are also built and simulated to be 

compared and considered.  

Chapter 4 demonstrated the sizing technique of the power system of the MUN Explorer 

AUV using HOMER software. then the dynamic model of the system was built in 

MATLAB / Simulink to match the sizing results with the dynamic model. The proposed 

sizing was able to increase the power capacity of the system as well as eliminate some of 

the batteries. This chapter was also able to show the benefits of integrating the PEM fuel 

cell into the system by improving the underwater buoyancy force. Chapter 5 presented the 

dynamic model of the MUN Explorer AUV, including a fuel cell system to run under the 

same operating conditions as suggested by its manual. A PI controller was then applied to 

the dynamic model to maintain the operating conditions, such as motor speed, DC bus 

voltage and the load torque. Chapter 6 concluded the research with the key findings and 

contributions and suggested possible expansion ideas for this work.  

This thesis follows the objective classification as defined earlier. The chapters’ 

structure is discussed as below:  

❖ Chapter 1includes a brief introduction and overview of this thesis. The research 

objective and scope, along with the limitations, are also introduced.  A literature 

survey is included, and the dissertation’s structure is outlined.  

❖ Chapter 2 discusses the hydrogen production from solar renewable energy by 

powering a PEM Electrolayzer experimentally and by simulation. The DC /DC 

converter is used to regulate the voltage and current. All the simulation is done in 

MATLAB / Simulink.  
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❖ Chapter 3 demonstrates the hydrogen production from wind renewable energy by 

powering a PEM Electrolayzer experimentally and by simulation. The hydrogen 

amount is calculated to be 7.345 ml/min for the model and for the experimental set 

up. The DC /DC converter is used to regulate the voltage and current. 

❖  Chapter 4 studies the sizing technique using HOMER Software as well as the new 

dynamic model with a PEM fuel cell to study and check the system’s behaviour. 

The model is created in MATLAB / Simulink.   

❖ Chapter 5 presents the dynamic model of the MUN Explorer AUV, including a fuel 

cell system as well as a PI controller, to maintain the operating conditions such as 

motor speed, DC bus voltage and the load torque. 

❖  Finally, Chapter 6 concludes the research with the findings results and 

contributions and suggests possible expansion ideas for this work. This Chapter also 

discusses the learnings from this research work and its contribution toward the 

improvement of the design.  
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1.4.   Literature Review 

Shapiro et al. (2005) studied a solar electric power system which powered an 

electrolyzer to store energy in the form of hydrogen gas. This methodology used batteries 

as an alternative way for storing energy. Their system components included a PEM 

electrolyzer, high-pressure hydrogen and oxygen storage, and a PEM fuel cell, which was 

built as a prototype and tested experimentally. The goal of such a system was a proof- of- 

concept for general system feasibility, and electrolyzer performance characterization, with 

the current density of 1.0 A/cm2 at 2.0 V per cell. The power integration with a PV system 

was expected to be a reliable environmentally remote installation. However, the system 

provided high-quality power backup for critical systems, such as telecommunications and 

medical facilities, without PV  [4]. 

  Beainy et al. (2014) developed an electrical equivalent circuit for a PEM 

electrolyzer using a MATLAB / Simulink block diagram. The examination of I -V 

characteristic for a single PEM electrolyzer cell was shown under a steady state condition. 

Hydrogen production behaviour was studied based on power and current. The electrolytic 

hydrogen production rose with the input current in a linear manner; however, the variation 

of the input power was nonlinear. Some parameters such as temperature and pressure were 

considered for developing the model [5].   

 Lee et al. (2013) analytically and experimentally investigated temperature and flow 

rate’s effects on a PEM electrolyzer to develop their model. Five ancillaries, including an 

anode, cathode, membrane, voltage, and storage, were simulated by MATLAB/ Simulink 

to build the dynamic model for an electrolyzer. Some parameters such as power, flow rate, 
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and temperature controllers showed the PEM electrolyzer performance, to validate the 

analytical polarization curve. The evaluation of four circulating water flow fields took place 

experimentally, using the 25 cm2 active area of a small cell. The optimum temperature and 

flow rate for the electrolyzer were compared at different temperature regimes by analytical 

and experimental polarization curves. The hydrogen generation was also illustrated for 

different water flow rates[6].  

  Speranza et al. (2015) proposed hydrogen as a carrier gas to switch nitrogen and 

helium in Gas Chromatography (GC) applications and found many advantages, such as 

faster analysis, lower cost, and on-site generated hydrogen reliability. The carrier gas purity 

was critical for higher performance and lower maintenance. A proper evaluation of 

different hydrogen sources was produced for critical requirements of carrier gas 

applications [7].  

Joneidi et al. (2013) simulated a small PV- fuel cell -based hybrid energy system in 

MATLAB / Simulink, which was constructed using mathematical and electrical models. 

The system components included a PV, a PEM fuel cell, hydrogen storage tanks, and a 

power converter. The load demand was connected from the PV when there was enough 

sunlight. However, when there was insufficient sunlight, the fuel cell operated to meet the 

needed load. The PV was also used to convert the electrical energy into hydrogen using an 

electrolyzer and stored in the hydrogen tank for later use in fuel cells. To control the fuel 

cell model, a PID controller was applied [8].  

Al-Refai (2014) studied the energy storage system to improve the usage of 

renewable energy. An electrolyzer was used to produce the hydrogen gas from PV solar 

energy. The system components were demonstrated in MATLAB / Simulink environment. 
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The operations of photovoltaic array and electrolyzer were tested at different insulation 

levels. The results from both the PV and electrolyzer were determined, especially when the 

solar energy inputs varied continuously [9].  

Sopian et al. (2009) integrated a PV - wind - hydrogen energy production / storage 

system. The components of the system were a photovoltaic array, wind turbine, PEM 

electrolyzer, battery bank, and hydrogen tank. The system also had an automatic control 

system for battery charging and discharging. A hydrogen quantity of 130 ml/min to 140 

ml/min was generated for an average global solar radiation, between 200 W/m2 and 800 

W/m2, and wind velocities ranging from 2.0 m/s and 5.0 m/s. For each system component, 

a mathematical model was built and compared to the experimental results [10]. 

Uluoglu (2010) built a solar hydrogen Stand-Alone Power System (SAPS) for an 

emergency room of a hospital. The system also operated without any external power supply 

and provides off-grid continuous electricity throughout the year. Some components of the 

system were integrated and simulated in TRNSYS commercial software, including 

photovoltaic panels, PEM electrolyzer, PEM fuel cells, hydrogen tanks, batteries, and a 

control mechanism. Auxiliary equipment such as DC/AC converters, water pump, pipes, 

and hydrogen dryers were also integrated into the system. An investigation of the optimal 

system structure and sizing component with a good performance and a low cost for different 

users, and control strategies were tested [11]. 

Kim and Peng (2007) investigated a power management strategy of a fuel cell 

hybrid vehicle (FCHV) for achieving optimal fuel economy. For the performance 

optimization of FCHVs, they designed a combined power management and design 

optimization problem for model subsystem scaling in order to forecast the features of 
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system components. The controller was applied as a design variable in the system’s 

optimization problems, which was inspired by their Stochastic Dynamic Programming. The 

simulation results with an optimization approach delivered excellent fuel economy [12]. 

Ahmadi et al. (2013) generated hydrogen using an ocean thermal energy conversion 

(OTEC) system which was combined with a solar-enhanced PEM electrolyzer. Some 

system components, such as turbine, evaporator, condenser, pump, solar collector, and 

PEM electrolyzer, were integrated. The electricity from the turbine was used to power the 

PEM electrolyzer to produce hydrogen gas.  The models of the OTEC system and PEM 

electrolyzer were developed and simulated using MATLAB/ Simulink. The experimental 

data from the literature were used to validate the simulation model for the PEM 

electrolyzer. The exergy efficiency of the system performed as well as the exergy 

destruction of each component. The energy efficiency of the simulated OTEC system was 

3.6% and the exergy efficiency was 22.7%. The PEM electrolyzer exergy efficiency was 

calculated to be 56.5% and hydrogen production was 1.2 kg/h [13].   

Kumaraswamy and Quaicoe (2016) illustrated the nonlinear output characteristics 

of PEM fuel cells. These characteristics may cause low efficiency and low operation power. 

Some tracking techniques were used to track the maximum power point (MPP) which 

extracts maximum power and the maximum efficiency point (MEP). For portable 

applications, the output power and efficiency of the PEMFC were recommended to be high 

but were low at the maximum power point and maximum efficiency point. This work 

focused on an alternative tracking technique called midpoint tracking technique (MDT), to 

eliminate the MEP and MPP tracking techniques. The simulation results and the analysis 

of the tracking techniques model were studied and illustrated. The proposed MDT 
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technique was found to be an effective technique with high output power and high 

efficiency when compared to the MEP and MPP  [14]. 

Rigatos and Siano. (2016) demonstrated a nonlinear fuel cell control approach, 

utilizing differential flatness theory and a Kalman filter. The fuel cell dynamic model 

verified their differential flatness theory.  The state variables of the system and control 

inputs were expressed as differential functions of specific state variables called flat outputs.  

The design of a state-feedback controller of the dynamic system was successfully 

accomplished for uncertainties and external perturbations of the model. The extension of 

the PEM fuel cells state-space variables were measured as extra state variables to the 

derivatives of the total disturbance inputs. The linearization of extended fuel cell models 

was implemented by using a Kalman filter-based disturbance observer, to eliminate the 

disturbance effect and uncertainty of the system. A complementary control element that 

compensates for the perturbations’ effects was illustrated. Simulations and experiments 

were used to measure the control scheme efficiency [15].  

Raugel et al. (2010) developed an adapted fuel cell system for an AUV. It was 

difficult to fully optimize the integration because the fuel cell was in a separate vessel. The 

hybridization with Lithium-ion batteries was examined by performing another experiment 

using the fuel cell system. The fuel cell provided the necessary electrical energy on board 

and stored it in the batteries to meet the peak power supply. These fuel cells were classified 

as innovative power sources for underwater vehicles such as AUVs and submarines [16].  

Lewis et al. (2016) researched the potential of an AUV for operations in harsh naval 

environments. In 2005, Memorial University of Newfoundland authorized the construction 

of an International Submarine Engineering Explorer AUV, the management and operation 
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of which was led by the Marine Environmental Research Lab for Intelligent Vehicles 

(MERLIN). To ensure that a full service AUV research team can contend with harsh 

maritime and polar experiences, MERLIN’s programs have developed over the past decade. 

AUV research has progressed from dynamic vehicle trainings with basic sensor technology 

to develop advanced autonomous navigation [17].  

Lewis R. (2015) showed that with any operation of AUV technology, there is an 

actual risk of underwater loss. This risk is associated with the harsh environmental 

conditions under the ice, such as extreme cold and compromised visibility. The 

development of risk-based methodologies was to overcome the risk of loss for specific 

AUV stages prior to utilizations. This was a basic goal, to be aware of the overall risk of a 

specific task. There were successful AUV missions reported in previous studies with very 

little AUV loss  [1].  

Mebarki et al (2016) studied the ability of a hybrid power system of an electric 

vehicle to generate the needed energy. The system was constructed with a PEM fuel cell 

and a battery bank. A DC/DC converter connected to the PEMFC to adjust the voltage, and 

the excess energy was stored in the battery bank. The mathematical model of the system, 

along with the control supervision, were well studied to address each subsystem. 

Experimental and simulation results were collected and illustrated, and MATLAB / 

Simulink was used to run the simulation [18]. 

Motapon et al (2014) evaluated the fuel cell hybrid emergency power system of an 

electric aircraft that included new real-time hydrogen consumption and a minimizing 

energy management strategy. He compared two strategies (hydrogen consumption 

minimization strategy and less hydrogen consumption) based on equivalent fuel 
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consumption through simulations and experiments. The first was called a hydrogen 

consumption minimization strategy, which is well known as an equivalent consumption 

minimization strategy (ECMS). The sensitivity of the second strategy that he suggested was 

less hydrogen consumption compared to the load profile. The examination of equivalent 

fuel consumption has not considered the financial cost of improvement, which depended 

on the complete mission profile. This strategy was minimizing the hydrogen consumption 

for the load profile variations [19].     

Five different energy management schemes (the state machine control strategy, rule-

based fuzzy logic strategy, classical proportional–integral control strategy, frequency 

decoupling/fuzzy logic control strategy, and the equivalent consumption minimization 

strategy) for a fuel cell-based emergency power system of an electric aircraft were 

compared and analyzed by Motapon et al (2014). Their system had fuel cells, Li-ion 

batteries, and supercapacitors, as well as DC/DC and DC/AC converters. These energy 

management schemes were commonly used in fuel-cell vehicle applications. Hydrogen 

consumption, the state of charges of the batteries/ supercapacitors, and the overall system 

efficiency were compared as the main criteria of the system. All analyses and performances 

were validated and calculated using simulation models and an experimental bench test [20].  

From the above literature, there was not enough information for sizing and storage 

systems for the AUV and other applications. This thesis will be focusing and exploring 

what is missing from the literature. Hydrogen and oxygen storge system is studied and 

showed to increase the power capacity during the MUN Explorer AUV’s missions.   
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1.5. Constraints and Limitations  

 
There has been considerable work done by researchers in the area of using fuel cells 

with batteries to estimate and achieve a desired power for many different applications, yet 

the literature on the fuel cell integration of  the existing power system for the MUN Explorer 

Autonomous Underwater Vehicle has not been investigated by any researcher so far.  A 

few researchers have also done experimental work on fuel cell integration into AUVs, but 

there has been a lack of information about the dynamic models and control approaches. 

Some components were also missing from the literature, such as DC motor specification, 

batteries, and gas tanks. For this reason, this thesis investigated and studied the sizing and 

the proposed dynamic model of the MUN Explorer AUV by applying a PI controller to 

maintain the same operating conditions, such as motor speed, DC bus voltage and the load 

torque,  and to overcome some problems mentioned above.  

There was also a limitation regarding the integration of the MUN Explorer AUV 

proposed dynamic model into the actual one, because the vehicle is owned by another 

department and the access to it is limited. Therefore, the experiment cannot be done using 

the MUN Explorer AUV and the proposed work mainly focuses on the simulation.  

Finally, the simulation results were scheduled to be validated by experimental work 

in order to get basic results before integration into the AUV. However, the financial 

limitation prevented the completion of this work. 
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MATLAB / Simulink Modeling and Experimental Results of 

a PEM Electrolyzer Powered by a Solar Panel 

 

2.1.  Chapter Overview  

 
Solar panels are used to power an electrolyzer to separate the water into hydrogen 

and oxygen gas. The electrical equivalent circuit for the PEM electrolyzer was developed 

and implemented in MATLAB / Simulink, along with the hydrogen storage tank. The 

voltage (2V) and current (1A) were supplied from the DC/DC buck converter to the 

electrolyzer to compare simulation and experimental results. The hydrogen amount is 

calculated to be 7.345 ml/min for the model, as well as for the experimental set up. The 

experimental and simulation results were matched and validated against the Simulink 

model. The contribution of this chapter is to show the buck converter along with storage 

system (hydrogen and oxygen tanks)   

2.2.  Introduction  

 

World transport depends heavily on petroleum, as it supplies 95% of total energy and 

is responsible for almost a quarter of global energy-related emissions. Globally, marine 

shipping running on fossil fuels also causes many environmental issues. Over the past 

decade, transport emissions have increased at a faster rate than those of any other energy 
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sector. The transportation sector accounts for 28% of all US greenhouse gas emissions, 

34% of all carbon dioxide emissions, 36-78% of the main components of urban air 

pollution, and 68% of all oil consumption [1] and [2]. Global transport activity will 

continue to increase along with economic growth. International transportation has been 

dominated by ocean shipping, with ships continually increasing in size and number. Fossil 

fuel usage also raises many important concerns and challenges, such as climate change and 

supply cost increases. For example, in 2002, the use of fossil fuels was responsible for 86% 

of the world’s energy consumption. In 2003, US electrical energy demands also reached a 

higher value of 24% of the total demand for the planet [3]. It has become essential to seek 

alternative sources of renewable energy that can be easily captured by using waves, sun 

and wind. Statistics suggest that changing to fuel cell technology could save more than one 

million U.S. dollars per ship per year in fuel costs. The sun, wind and waves provide an 

unlimited source of renewable energy; solar energy is known as the most sustainable source 

of renewable energy. For example, 27.7 GW of PV (photovoltaic) systems were installed 

worldwide in 2011. Compared with 2010, there were also six countries where more than 1 

GW of PV has been installed by 2011[4]. 

Batteries are not the solution for energy storage; they provide short term solutions and 

their waste is comprised of significant and dangerous pollutants. Hydrogen remains the 

only valid source for energy storage, meaning the hydrogen gas can be stored for a long 

period of time without self-discharging when compared to batteries. Producing hydrogen 

can be achieved in large quantities from water electrolysis; water is a clean resource, 

available in large quantities everywhere. Electrolysis will be studied to be brought aboard 

vehicles such as cargo ships.  
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This chapter’s focus is to improve the results of modeling the electrolysis system and 

obtain experimental results. The set-up is powering the electrolyzer with a small PV solar 

panel that produces 2 V and 1 A. The hydrogen is produced and stocked in the tank. The 

mathematical and dynamic model of the electrolysis has been implemented in 

MATLAB/Simulink. In Section 2.3, the system’s components are detailed. In Section 2.3, 

the simulation and experimental set-ups are described. In Section 2.4, we examine and 

compare the simulation and experimental results. 

 

2.3.    Solar System Components       

 

2.3.1. Photovoltaic Solar Panel   

The solar energy is transferred directly into electrical energy in the PV panel 

through a basic physical process. The physical behaviour of any solar cell is very similar 

to the classical p-n junction diode. Two diode solar cell models are shown in Figure 2.1. 

The relationship between Output Current (I) and Output Voltage (V) is found using the 

formula below [5]:  

I=Iph-I𝑠 ∗ (𝑒(V+I*R𝑠)/(N*V𝑡)-1)-Is2 ∗ (𝑒(V+I*R𝑠)/(𝑁2*V𝑡)-1) − (V+I*R𝑠)/R𝑝                         (2.1)  

where phI  is the solar induced current equal to ( )0 0* /ph r RI I I , and where rI is the 

irradiance (light intensity) in W/m2  falling on the cell. 0phI  is the measured solar -

generated current for the irradiance 0RI . sI  is the saturation current of the first diode, 2sI

is the saturation current of the second diode, and tV  is thermal voltage that is equal to 
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KT/Q, where K is the Boltzmann constant. T is the device’s simulation temperature 

parameter value. Q is the elementary charge on an electron.  N and N2 are the quality factors 

of the first and second diodes, respectively.  V is the voltage across the solar cell [5]. The 

I-V and P-V characteristic curves of the PV module are shown under irradiance of 1000 

W/m2 at 25 C , as illustrated in Figure 2.2. For solar energy performance, temperature plays 

an important role because the four parameters (Ir, Is, Rs, and Vt) are functions of 

temperature. This proves that the lower temperature is the higher power obtained from the 

PV, and the greater the open circuit voltage [6].   

 

 

 

 

 

 

 

 
 

Figure 2. 1: Electrical equivalent circuit of the solar cell [28] 
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Figure 2. 2: I-V and P-V curves of the PV module 

 

 
2.3.2. DC/DC Buck Converter 

The buck converter is a step-down DC-DC voltage converter, where the average 

output voltage is always less than the input voltage. There are two operating modes for the 

buck converter in terms of diode circuits.  In the first mode, when the switch is on, the diode 

becomes reverse biased, so that the supplied energy is stored in an inductor. In the second 

mode, the diode becomes forward biased when the switch is off, due to the load; it receives 
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energy from the inductor. The input stays isolated from the output [7]. The purpose of the 

buck converter is to regulate DC power supplies. The duty cycle (D) is the ratio of the time 

power is switched on to the total time, and the ratio of output voltage to the input voltage. 

The duty cycle is also calculated by the following equation: 

   
o

s

s

o

I

I
D

V

V
==                                                                                                                             (2.2) 

where Vo and Vs are the output and input voltages, respectively, and Is and Io are 

input and output current, respectively [7]. The selection parameter of the buck converter is 

based on the voltage and current output of the PV, which is designed to be 5 V and 2 A. 

Since the electrolyzer load is designed for 2 V and 1 A, it becomes necessary to select a 

buck converter in order to regulate the voltage and current. The values of the buck converter 

parameters such as the inductor, capacitor, and duty cycle were obtained from the website1 

for desired input values for the electrolyzer, as shown in Table 2.1. The buck converter 

model is generated in MATLAB / Simulink to control the output and input between the PV 

and electrolyzer, as shown in Figure 2.3. The PID controller is used to check the error value 

as the difference between the desired set point and the measured variable voltage. The 

controller parameters are P = 3.04, I = 2866.4, and D = 0.000795.  

 

 

 

 

 

 
1 https://daycounter.com/Calculators/Switching-Converter-Calculator.phtml 
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Table 2. 1: Values of buck converter 

Item                   

 

Value       Units  

Volts In  5 V 

Volts Out                  2 V 

Load Current  1 A 

Irms 0.99 A 

Duty Cycle  36.11 % 

Frequency  40 KHz 

L 87e-6 H 

C 29.17e-6 F 

 

 
Figure 2. 3: Buck converter model in MATLAB/Simulink 
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2.3.3. PEM Electrolyzer Model  

 

2.3.3.1. Mathematical model  

 

        A PEM electrolyzer is defined as a device which separates water (H2O) into hydrogen 

(H2) and oxygen (O2). Water electrolysis may be classified as a reverse process of hydrogen 

that is fed into a fuel cell. An electro-chemical reaction happening in the fuel cell to 

generate DC electricity converts DC electrical energy into chemical energy, stored in 

hydrogen. An electrolyzer electrical circuit can be represented as a voltage sensitive 

nonlinear DC load, so that the higher voltage applied is the higher load current  circulating, 

and more H2 can be generated [3]. The equivalent circuit of a PEM electrolyzer is created 

in MATLAB / Simulink. Figure 2.4 shows the equivalent circuit of the single PEM 

electrolyzer [8] and [9].   

Figure 2. 4: Equivalent circuit for single PEM Electrolyzer [8] 
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In order to obtain the I-V and hydrogen production characteristics, some equations 

are developed for steady state conditions and implemented in MATLAB /Simulink. 

Equation 2.3 models the electrolysis process and is written as follows [8]: 

V= (
1

3.064
) *I+1.476=0.326I+1.476 ≅ IR𝑖+erev                                                              (2.3) 

Equation 2.3 indicates a simple equivalent circuit model for the PEM, which has an initial 

resistance of Ri, and reversible potential volte erev, which amounts to 1.476V. The ideal 

potential Vi (electro chemical) is calculated by equation 2.4, [8]:  

F

G
Vi

2


=

                                                                                                                                       (2.4) 

where ∆G is Gibbs free energy change (J/ mol) of hydrogen gas and F is the Faraday 

constant (96487 C/ mol). The hydrogen production rate is VH (ml/min) with respect to the 

input current I (A) and molar volume of hydrogen gas, Vm, is determined by equation 2.5. 

The electro chemical hydrogen energy per second PH2, which is equal to the VH, is 

calculated by equation 2.6 [9]. 

𝑉𝐻=V𝑚(103)(60)
𝐼

2F
                                                                                                                 (2.5) 

𝑃H2=V𝑚(103)(60)
𝐼

2F

2FV𝑖

𝑉𝑚(103)(60)
=V𝑖𝐼                                                                                   (2.6) 
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From the preceding equations, the useful power which is delivered from the 

electrolyzer cell relies on the electrolyzer input current I and ideal voltage Vi. The input 

electrical power P of the PEM electrolyzer cell, which is the function of the Vh, can be 

determined by equation 2.7 [8]. Figure 2.5 illustrates the static model for the PEM 

electrolyzer. 

P=VI=I2𝑅𝑖+Ierev                                                                                                                       (2.7) 

Figure 2. 5:  MATLAB/Simulink Mathematical Model for PEM Electrolyzer 

 

2.3.3.2.  Dynamic model  

 

A PEM elecrolyzer dynamic model was built in MATLAB / Simulink based on 

charge and mass balance and Butler-Volmer kinetics on the electrode surfaces to show the 

current and potential characteristics of electrolysis [10]. The hydrogen (𝐻2,𝑔)and oxygen 

(𝑂2,𝑔) reaction rates can be generated by equations 2.8 and 2.9, where the anode side of the 



32 
 

electrolyzer deals with oxygen production and the cathode side delivers the hydrogen gas 

with the water molar delayed, respectively [10]. 

𝐻2,𝑔 = 𝜂𝐹
𝑛𝐼

2𝐹
                                                                                                                   (2.8) 

𝑂2,𝑔 = 𝜂𝐹
𝑛𝐼

4𝐹
                                                                                                                                   (2.9) 

The Faraday Efficiency ( 𝜂𝐹) is defined as an internal current which allows the 

oxygen to move from the anode to the cathode or the hydrogen from the cathode to the 

anode, and it is assumed to be more than 90% [10]. Figure 2.6 shows the dynamic model 

for the PEM Electrolyzer in MATLAB / Simulink which consists of five main components: 

cathode, anode, membrane, storage, and voltage ancillary. For all these components, the 

mathematical details of the model are illustrated in the appendix number two (2).    

For the water transport phenomena, the membrane ancillary is used in the 

electrolyzer. Diffusion and electro-osmotic drag are the two most important water flows 

taking place through the membrane, which allow the protons to move and the water 

molecules to accompany them. The water transportation is known as the electro-osmotic 

drag phenomenon and water diffusion can be found, from Fick’s first law of diffusion, 

through the membrane, as illustrated in equations 2.10 and 2.11 [11].  

 

𝐹𝐻2𝑂𝑒𝑜𝑑
= 𝑛𝑑

𝑖

𝐹
𝑀𝐻2𝑂𝐴𝑛𝑒                                                                                                  (2.10) 

 

𝐹𝐻2𝑂𝑑
= 𝐷𝑤

(𝐶𝑤𝑐−𝐶𝑤𝑎)

𝑡𝑚
𝑀𝐻2𝑂𝐴𝑛𝑒                                                                                       (2.11) 
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Figure 2. 6: MATLAB/Simulink Dynamic Model for PEM Electrolyzer [11] 

 

 

2.3.4. Hydrogen Tank Modeling  

                           

Compressed gas or liquid hydrogen can be stored in tanks using different techniques, 

including physical hydrogen storage. To store hydrogen gas produced by the electrolyzer, 

a static model of the tank is created in MATLAB / Simulink and can be expressed by 

equation 2.12 [12]. 

bH

bH
bib

VM

RTN
CFPP

2

2=−                                                                                                         (2.12)     

where bP  is the pressure of the tank that is measured in Pascal, biP  is the initial pressure 

of the storage tank in Pascal, R is the universal gas constant J/ kmol· K, bT  is the operating 
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temperature K, bV  is the volume of the tank m3, T is the temperature, and CF is the 

compressibility factor as a function of the pressure, as shown in equation 2.13 [12]. 

RT

PV
CF m=                                                                                                                                  (2.13)                                                                        

where P and Vm are the pressure and molar volume, respectively. This model equation 

determines the tank pressure using the ratio of hydrogen flow rate to the tank. Equation 

2.12 is implemented in MATLAB / Simulink to store the hydrogen and deliver it to the fuel 

cell. Figure 2.7 shows the MATLAB / Simulink model of the hydrogen storage system.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. 7: MATLAB / Simulink model of the hydrogen storage system[12] 
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2.4. Simulation and Experimental Set-Up 

The simulation is done in MATLAB / Simulink environment by creating each 

component separately, so that the error can be easily controlled, and the simulation blocks 

debugged. Each system block is implemented and studied to ensure that each one is 

sufficiently precise to run the simulation and give adequate results. The models of the PV 

solar, DC / DC Buck convertor, electrolyzer, and the hydrogen tank are created and well 

matched with each other. The simulation model is valid to simulate different cases. Figure 

2.8 shows the Simulink model for the solar cells, DC / DC buck converter, electrolyzer, 

and hydrogen tank, and their mathematical model have shown in the previous sections. 

Figure 2.9 demonstrates the experimental set-up for the solar panel, DC / DC buck 

convertor, electrolyzer and hydrogen /oxygen tanks. The experiments are produced with a 

horizon kit. The reading of hydrogen production is reported in (ml/min). The PV has 

dimensions of 15.5 cm in length and 12.5 cm in width. Each component configuration is 

collected from the data sheets 
2
. 

 

 

 

 

 

 
 

 

                             

 

 

Figure 2. 8: Simulink model for the solar hydrogen production 

 
2http://www.horizoneducational.com/wp 

http://www.horizoneducational.com/wp
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Figure 2. 9: Experimental set-up for the solar hydrogen production 

 
 

2.5.  Results and Discussion 

The results from both simulation and experiments are now compared. The maximum 

voltage from the PV in the experimental set-up is designed to be 5V and the current reaches 

1 A; however, the maximum power of the PV cell depends on the weather, and includes 

clouds and rain, which can reduce the collected energy. The maximum voltage and current 

from the PV panel are obtained and the electrolyzer can generate hydrogen with maximum 

output. Figure 2.10 shows the hydrogen production (ml/min) versus the current (A), and 

the simulation results are in accordance with the experimental results. Note that the 

characteristic response is linear [8]. The amount of hydrogen obtained from the simulation 

is 7.461 ml/min, and the value from the experiments amounts to 7.0 ml/min. The 

discrepancy is due to the solar variability. Note that the hydrogen production increases 

linearly with the input electrical power; as, the power increases, the hydrogen production 

also increases. Figure 2.11 shows the efficiency versus current density for the PEM 
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electrolyzer. The Faraday’s efficiency decreases as the current density increases which can 

be defined as the relation between real hydrogen flow rate and its theoretical value.    

Figure 2.12 illustrates the pressure inside the hydrogen tank model. The hydrogen 

quantity increases with time. The experimental storage hydrogen cylinders relate to the 

electrolyzer to generate the hydrogen by taking the water from the cylinders and reversing 

it back as hydrogen / oxygen gas. To compare the pressure from the simulation, figure 3.13 

shows the hydrogen pressure tank from the experimental data as found in the literature. 

Table 2.2 shows the hydrogen production (ml/min) from the experiments, and the time, 

which was 2 min. Finally, hydrogen from the experimental results versus time is illustrated 

in figure 2.14; the hydrogen increases with time.  

 

 

 

 

 

 

 

 

 
                 

 

 

 

Figure 2. 10: Relationship between Current (A) verses hydrogen (ml/min) from the simulation 
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Figure 2. 11: Faraday’s efficiency in % vs current density in A/cm2 from the simulation  

 

Figure 2. 12: Pressure inside the hydrogen tank for the solar system from the simulation 
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Figure 2. 13: hydrogen Pressure tank form the literature for the comparison [11]   
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Figure 2. 14: Hydrogen production from experimental and simulation results versus time 

 

 

 

 

 

Table 2. 2: Experimental results 

Time (min) H2 production (ml) 

2  14 

1 7 

0 0 
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2.6.  Conclusion  

  
The solar energy hydrogen production and storage system were developed. The PV 

solar panels were arrayed to capture the sun as long as it was available. The electrolyzer 

consumed the power which generated from the PV panels. The DC/DC buck converter was 

used along with the system to regulate and maintain the current values, which were fed to 

the electrolyzer. The PID controller was used to check the error value, the difference 

between the desired set point and the measured variable voltage of the buck converter. It 

was assumed that all system components were in a steady state. The results from both the 

simulation and experimental trials corresponded (7.2 ml/min). MATLAB / Simulink 

provided the simulation environment, helping to integrate this system. The experiments 

confirm the results obtained from the model.  
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Comparison of Experimental Results with Simulation of a 

PEM Electrolyzer Powered by a Horizontal Wind Turbine 

 
3.1. Chapter Overview 

 

One small wind turbine was used to power an electrolyzer unit to separate the water 

into hydrogen and oxygen gases. Two-volt voltage and 1 A current were supplied to the 

electrolyzer to produce hydrogen through the fuel cell unit. The electrical equivalent circuit 

for the proton exchange membrane electrolyzer was developed and implemented in 

MATLAB / Simulink along with the atmospheric hydrogen storage tank. The hydrogen 

production was measured during the tests and evaluated, running the simulation in order to 

compare the simulated and experimental results. The novel work of this chapter is to 

integrate the buck converter to the wind turbine system along with the storage system. The 

hydrogen amount was measured as 6.99 ml/min A from the experimental set-up, along with 

the model 7.24 ml/min A.  The DC-DC buck converter was added to the Horizon kit to 

regulate the voltage to be 2 volts. The experimental and simulation results featured an error 

of 3.6 %.  
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3.2. Introduction 

      

         Over the past decade, transport emissions have increased at a faster rate than any other 

energy sector. The transportation division accounted for 34% of all carbon dioxide 

emissions, 28% of all US greenhouse gas emissions, 36%-78% of the main components of 

urban air pollution, and 68% of all oil consumption. Global transport activity will continue 

to increase along with economic growth [1]. Fossil fuel usage also involves many important 

concerns and challenges such as climate change and supply cost increases; for example, in 

2002, the use of fossil fuels was responsible for 86% of the world’s energy consumption 

[2]. It has become essential to seek alternative sources of renewable energy that can be 

easily captured by using wind, sun and waves. The need for renewable energy sources that 

will not damage the environment has increased significantly, as energy demands around 

the world increase. Many projections have suggested that the global energy demand will 

be doubled by 2050. Wind energy is a rapidly expanding field that includes many different 

sectors of engineering and science. The American Wind Energy Association (AWEA) 

showed that the installation capacity of wind expanded at an average rate of 29% per year. 

The worldwide installation capacity of the wind energy was approximately 159 MW at the 

end of 2009 [3]. The most worthen renewable generation technologies are wind and sun 

[4]. Statistics have suggested that changing to fuel cell technology could save more than 

one million U.S. dollars per ship per year in fuel costs, because wind, sun, and wave 

collectors provide unlimited sources of renewable energy [5].  

           Batteries are not the permanent solution for energy storage. They provide short term 

solutions, but also cause dangerous pollutants and significant waste concerns, which can 
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be amplified by the short life of many actual batteries’ packs. Hydrogen seems to be the 

only valid clean source for energy storage. Hydrogen can be produced in large quantities 

from water electrolysis; water is a clean resource available in large quantities everywhere. 

Electrolysis will be studied for its suitability to be generated onshore and store it into the 

tanks. This section of the work proposes on potential improvements for the Ferry running 

between Bell Island and Portugal Cove in Newfoundland, Canada. 

           This chapter includes the modeling results of the electrolysis system, comparing 

them with experimental results. The set-up powers the electrolyzer with a small horizontal 

wind turbine, which is then regulated at 2 Volts and 1 Ampere. The hydrogen is produced 

and stocked in the tank. The mathematical model of the electrolysis has been implemented 

in MATLAB/Simulink. In section 3.3, the system component models are described in 

detail. In section 3.4, the simulation and experimental set-ups are described. In the fourth 

section, we examine and compare the simulation and experimental results.  

 

3.3. Wind System Components  

       

3.3.1. Horizontal wind turbine 

 

The output power from the turbine can be determined by equation 3.1 [3]. 

𝑝𝑚 =
1

2
𝜌𝐴𝐶𝑝 ∗ 𝑉𝑤

3

   

                                                                                                             (3.1) 

 

where  𝜌 is the air density, A is the swept area, Vw is the wind velocity, and 
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𝐶𝑝 = (0.44 − 0.0167𝛽) 𝑠𝑖𝑛
𝜋(𝜆−3)

15−0.3𝛽
− 0.00184(𝜆 − 3)𝛽                                               (3.2) 

  

The wind turbine dynamic model is characterized by non-dimensional curves of the 

power coefficient (Cp) which is defined as the measure of wind turbine efficiency as, the 

ratio of actual electric power produced by a wind turbine, divided by the total wind power 

flowing into the turbine blades at a specific wind speed. It is also a function of both the tip 

speed ratio (𝜆) and the blade pitch angle (β). The value of (λ) must be kept at its optimum 

value in order to utilize the available wind energy. Therefore, the corresponding value of 

the power coefficient will become maximum too [3]. Figure 3.1 represents the mechanical 

power Pm as a function of the generator speed, for any different wind speeds and for the 

blade pitch angle of β = 0 degrees. This figure is also obtained with the specified parameters 

at a base wind speed = 9 m/s, maximum power at base wind speed = 0.9 pu (kp = 0.9) and 

base rotational speed = 0.9 pu3. The wind turbine is specified in MATLAB/Simulink to 

generate 18W with voltage from 8-12 volts. The per-unit system (pu) is commonly used in 

the power system industry to show values of voltages, currents, powers, and torques of 

power equipment. For a given quantity like torque, the per-unit value is the value related to 

a base quantity 4. 

 
3 S. Heier, "Grid Integration of Wind Energy Conversion Systems," John Wiley & Sons Ltd, 1998, ISBN 0-471-97143- 
4 Mathworks.com, “Documentation/ per-unit-and-international-systems-of-units” 2016a. 

 



48 
 

Base value in (pu) = Quantity expressed in SI units/Base value                                                    (3.3) 

 

 

Figure 3. 1: Power wind characteristics and beta 

 

3.3.2. DC/DC Buck Converter  

 

The Buck Converter (BC) values for an inductor, capacitor, and duty cycle were 

taken from the website for desired input values for the electrolyzer.  Table 3.1 shows the 

values of the selected buck converter which can be obtained by a special website5. The BC 

model was generated in MATLAB / Simulink to control the output and input between the 

wind turbine and electrolyzer, as shown in Figure 3.2. The calibration of the buck converter, 

which was powered by a DC power supply, was performed in the lab to ensure that the 

 
5  https://daycounter.com/Calculators/Switching-Converter-Calculator.phtml 
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output voltage and current were adjusted properly before the converter was connected to 

the wind turbine.  

 

 

Table 3. 1: Buck converter parameters 

Item                   

 

Value       Unit 

Input Voltage  12 V 

Output Voltage                2 V 

Load Current  1 A 

Irms 0.99 A 

Duty Cycle  12.2 % 

Frequency  40 KHz 

L 2851.4e-6 H 

C 76.65e-6 F 
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Figure 3. 2: Buck converter in MATLAB / Simulink 

 

 

3.3.3. PEM Electrolyzer 

 

3.3.3.1. Mathematical Equations and I-V curves 

 

In order to illustrate the I-V curves and hydrogen production characteristics in wind 

hydrogen production, some equations have been developed for steady and unsteady state 

conditions and implemented in MATLAB/Simulink. Equations 3.4 and 3.5 represent the 

unsteady and steady state conditions for the electrolysis process, respectively, and they are 

written as follows [6]: 

𝑉 = 1.4760 − 1.4760𝑒
5

0.02
𝐼 + 0.3264𝐼                                                                         (3.4) 
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𝑉(𝑇, 𝑃) = 𝐼𝑅𝑖 + 𝑒𝑟𝑒𝑣(𝑇, 𝑃)                                                                                           (3.5) 

 
 

Equation 3.5 is used to simplify and determine the input of the I-V model of the 

PEM electrolyzer cell as a function of pressure and temperature. The two equations are 

implemented in MATLAB / Simulink to plot the voltage and current in linear and nonlinear 

behaviour. From equations 3.4 and 3.5, it can be observed that there is a threshold voltage 

at which the current starts to flow. The characteristic shapes are nonlinear, but the curve of 

the current flow can be approximated and plotted as almost linear, with an error not 

exceeding 5% [6]. Figures 3.3 and 3.4 are illustrated linear and non-linear I-V curves in 

MATLAB / Simulink environment, respectively.  

   

 

 

 

 

 

Figure 3. 3: I-V Linear mode in Simulink 
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Figure 3. 4: I-V Nonlinear mode in Simulink 

 

3.3.3.2.  Hydrogen Production (Faraday Efficiency) 

 

In an electrolyzer cell, the hydrogen production rate (ml/min) is directly 

proportional to the transfer rate of electrons at the electrodes according to Faraday’s law, 

which is also equivalent to the electrical current in the circuit. Therefore, in any 

electrolyzer, the total hydrogen production which has many cells connected in a series can 

be determined, as shown in equation 3.6 [7].  

𝑃𝐻2 = 𝜂𝐹
𝑛𝑐𝐼

2𝐹
                                                                                                                                (3.6) 

 

 where PH2 is the hydrogen production in ml/min, 𝜂𝐹  is the Faraday’s efficiency, nc 

is the number of cells in series, and n is number of moles of electrons per moles of water, 

n=2. Faraday’s efficiency is known as the ratio between the actual and theoretical 

maximum amount of hydrogen that is produced in the electrolyzer. Faraday’s efficiency 

can be calculated by equation 3.7. Figure 3.5 illustrates the electrolyzer model in MATLAB 

/ Simulink to find the hydrogen production rate. Equations 3.6 and 3.7 are illustrated in 
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MATLAB / Simulink as functions of current, to calculate the efficiency and then the 

hydrogen production [8].  

 

𝜂𝐹 = 96.5 𝑒𝑥𝑝( 0.09/𝑖 − 75.5/𝑖2)                                                                                            (3.7) 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 3. 5: MATLAB/Simulink module for PEM electrolyzer 
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3.3.3.3. Dynamic model 

 

The dynamic model for the PEM electrolyzer is constructed in MATLAB / 

Simulink, as shown in Figure 3.6, and runs in two modes, current or voltage. The full 

mathematical model of each block is shown in the appendix number two. The voltage is 

supplied to the electrolyzer during the voltage mode, and it extracts the current from the 

source under operating conditions.  A steady state value can be reached after many transient 

cycles. Moreover, commercial electrolyzers operate in current mode and the operating 

voltage electrolyzer can be calculated by equation 3.8 [9]. 

 

𝑉𝑒𝑙 = 𝐸 + 𝑉𝑎𝑐𝑡 + 𝑉𝑜ℎ𝑚                                                                                                   (3.8) 

 

The Nernst equation is used to show an open circuit voltage for the electrolyzer, as 

shown in equation 3.9. The activation polarization can be found by equation 3.10 and the 

ohmic polarization is obtained by equation 3.11 [10]. 

 

𝐸 = 𝐸0 +
𝑅𝑇𝑒𝑙

2𝐹
[𝑙𝑛 (

𝑃𝐻2𝑃𝑂2

1
2⁄

𝑎𝐻2𝑂
)]                                                                                          (3.9) 

 

𝑉𝑎𝑐𝑡 =
𝑅𝑇𝑒𝑙

2∝𝐹
𝑙𝑛 (

𝑖

𝑖0
)                                                                                                          (3.10) 

 

𝑉𝑜ℎ𝑚 = 𝑖𝑅𝑜ℎ𝑚                                                                                                                 (3.11) 
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Figure 3. 6: MATLAB/Simulink dynamic Model for PEM Electrolyzer [10] 

 

3.3.4. Hydrogen Model Tank   

 

Liquid or compressed hydrogen can be stored in tanks using different techniques, 

such as the physical hydrogen storage of ideal gas [7]. To store the hydrogen gas, a dynamic 

model for the tank is created in MATLAB / Simulink, which is connected to the 

electrolyzer, as addressed by equation 3.12 [11]. 

bH

bH
bib

VM

RTN
zPP

2

2=−                                                                                                                       (3.12) 
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where  bP , biP , R, bT , bV , and T are the pressure of the tank in Pascals,  the  storage 

tank initial pressure in Pascals, the universal gas constant (J/kmol K), the operating 

temperature (K), the tank volume in (m^3), and  the temperature (T), respectively[11].  

 

3.4. Simulation and Experimental Set-Up 

 

Figure 3.7 shows the experimental set-up for the horizontal wind turbine, DC/DC 

buck converter, electrolyzer and hydrogen / oxygen tanks. The equipment for this 

experiment is provided by the Horizon kit6. The simulation is completed in MATLAB / 

Simulink environment by modeling each component individually. Each system block has 

been applied and studied to ensure that each one is sufficiently precise to run the simulation 

and give adequate results. The best error is less than 5%, which can be represented in terms 

of calibration, and losses. The models for wind turbine, DC/DC buck converter, 

electrolyzer, and the hydrogen tank are created and well matched with each other to run the 

simulation and validate the model with different cases. Figure 3.8 illustrates the Simulink 

model for the whole energy system. The hydrogen production is measured and reported in 

(ml/min). This is achieved experimentally by generating the power from the wind turbine 

and feeding it to the electrolyzer; and then storeing the energy as hydrogen gas to be used 

whenever needed.  Every component configuration is collected from the data sheets. The 

 
6 http://www.horizoneducational.com/wp 

 

http://www.horizoneducational.com/wp
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small wind turbine has three blades, a wind speed of around 12 (mph), output voltage of 

8.5 (V), and a rotor speed of 1550 (RPM). 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. 7: Experimental set-up for the wind hydrogen production 

 

 

 

 

 

 

 

 

 
 

Figure 3. 8: Simulink model for the wind hydrogen production 
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3.5. Results and Discussion  

  
The results from both experiments and simulation are examined and compared. The 

maximum voltage from the wind turbine is regulated to be 2V and the current is held at 1A 

in both experiments and simulation. However, the maximum power of the wind turbine is 

dependent on many factors such as wind speed and pitch angle. These factors can reduce 

the collected energy from the wind turbine if the converter is not included in the energy 

collection unit, but the converter ensures that no effects occur if the wind is sufficiently 

rapid to reach the selected thresholds. The maximum voltage and current from the wind 

turbine are obtained and supplied to the electrolyzer to generate hydrogen with maximum 

output. Figure 3.9 demonstrates the hydrogen production ml/min on the Y-axis and the 

current A on the X-axis, and the simulation and experimental results are in accordance with 

each other.  

 

 

 

 

 

 

Figure 3. 9: Linear relationship between current and hydrogen production from the simulation 
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The results of I-V curves are represented in both linear and non-linear behaviour, 

and they share close results, as shown in Figures 3.10 and 3.11, respectively.  The error 

ratio is acceptable, 3.4 % in the design application. The linear vs non-linear results are also 

confirmed by Atlam and Kolhe to yield an of error 2% [6]. The production of hydrogen 

obtained from the simulation is 7.23 ml/min, and the value from the experiments amounts 

to 6.99 ml/min. The discrepancy of the hydrogen production is due to the wind variability.  

 

 

 

 

 

 

 

 

Figure 3. 10: Relationship between current vs voltage linear behaviour for the electrolyzer (simulation) 

 

 

 

 

 

 

 

 

Figure 3. 11: Relationship between current vs voltage non-linear behaviour for the electrolyzer (simulation) 
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Figure 3.12 shows the input power w with the hydrogen production in ml /min. Note 

that the hydrogen production rises linearly with the input power; therefore, as the power 

increases, the hydrogen production will also increase. Table 3.2 illustrates the hydrogen 

production from the experiments. The time was 2 min. Figure 3.13 shows the current 

density A/cm2 with the Faraday efficiency percent. Figure 3.14 shows the pressure inside 

the hydrogen tank model. The hydrogen’s quantity increases with time. 

 

Table 3. 2: Experimental results for two minutes  

Time (min) H2 production (ml) 

2   14 

1 7 

0 0 
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Figure 3. 12: Experimental and simulation results for the hydrogen production 

 
 
 
 
 
 
 
 
 
 

 

 
 

 

 

 
 

 

 
 
 
 
 
 

 

Figure 3. 13: Electrical power (w) vs Hydrogen production from the simulation 

 

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5

Experimental Results Simulation Results

H
y
d

ro
g
en

 G
en

er
at

ed
(m

l)

Time (min)



62 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. 14: Current density vs Faraday efficiency form the simulation results 

 

 
Figure 3. 15: Pressure inside the hydrogen tank for wind system from the simulation 
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3.6. Conclusion  

  
The renewable energy system for hydrogen production and storage was created and 

simulated using MATLAB / Simulink. The horizontal wind turbine was used to generate 

the power from the wind as long as it was available at an acceptable wind speed. The 

electrolyzer consumed the electrical power, which was generated from the wind turbine. 

The DC / DC buck converter was also used along with the system, to maintain and regulate 

the voltage and current values which were fed to the electrolyzer. The I-V curves for linear 

and nonlinear behaviour were matched with an acceptable error of 3.4%. The results from 

both the experimental trials and simulation corresponded, 7.2 ml/min. MATLAB / 

Simulink provided the simulation environment, helping to integrate and implement this 

system. The experiments validate and confirm the results obtained from the model. 
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Sizing and Dynamic modeling of a Power System for the 

MUN Explorer Autonomous Underwater Vehicle using a 

Fuel Cell and Batteries 

 

4.1. Chapter Overview   

 

 
The combination of a fuel cell and batteries has promising potential for powering 

autonomous vehicles. The MUN Explorer Autonomous Underwater Vehicle (AUV) is built 

to do mapping- type missions for seabeds as well as survey missions. These missions 

require a great deal of power to reach underwater depths (i.e. 3000 meters). The MUN 

Explorer uses 11 rechargeable Lithium-ion (Li-ion) batteries as the main power source with 

a total capacity of 14.6 kWh to 17.952 kWh, and the vehicle can run for 10 hours. The 

drawbacks of operating the existing power system of the MUN Explorer, which was done 

by the researcher at the Holyrood management facility, include mobilization costs, logistics 

and transport, and facility access, all of which should be taken into consideration. 

Recharging the batteries for at least 8 hours is also very challenging and time consuming. 

To overcome these challenges and run the MUN Explorer for a long time, it is essential to 

integrate a fuel cell into an existing power system (i.e. battery bank). The integration of the 

fuel cell not only will increase the system’s power, but will also reduce the number of 
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batteries needed, as suggested by HOMER software. In this chapter, an integrated fuel cell 

is designed to be added into the MUN Explorer AUV along with a battery bank system to 

increase its power system. The system sizing is performed using HOMER software. The 

results from HOMER software show that a 1-kW fuel cell and 8 Li-ion batteries can 

increase the power system capacity to 36.8 kWh. The dynamic model is then built in 

MATLAB / Simulink environment to provide a better understanding of the system 

behaviour. The 1-kW fuel cell is connected to a DC / DC Boost Converter to increase the 

output voltage from 24 V to 48 V, as required by the battery and DC motor. A hydrogen 

gas tank is also included in the model. The advantage of installing the hydrogen and oxygen 

tanks beside the batteries is that it helps the buoyancy force in underwater depths. The 

design of this system is based on MUN Explorer data sheets and system dynamic simulation 

results.   

4.2.  Introduction 

 
The MUN Explorer AUV is an autonomous underwater vehicle used for missions 

such as mapping, surveillance, oceanographic data gathering, environmental monitoring, 

mine detecting and coastal defence [1]. One of the challenges facing the MUN Explorer is 

the power system’s capacity to complete its missions. To improve the system’s energy 

capacity, the MUN Explorer AUV is taken as a real example to do sizing and build a 

dynamic model. The MUN AUV has a length of 5.3 m, a diameter of 0.69 m and a dry 

weight of 820 kg. In water, the flooded front and back sections of the AUV make the mass 

around 1400 Kg, with an average speed of 1.5 m/s, graphing over 80 Km. Some 

components have also been integrated into the vehicle, such as computers and sensors. 
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 Hydrogen production by Proton Exchange Membrane (PEM) water electrolysis is a 

promising method that has been successfully developed and integrated into renewable and 

hydrogen energy-based systems. Renewable energy sources, such as solar and wind, are 

desirable for hydrogen production, due to random power variations and significant current 

density capabilities [2]. PEM water electrolysis technology that generates hydrogen 

primarily emits water moisture, nitrogen and oxygen [3]. Energy storage or backup power 

systems are needed for photovoltaic and wind energy systems, due to their discontinuous 

energy production. Batteries can be a good solution for daily storage but not for seasonal 

storage, due to self-discharge. Storing energy in the form of hydrogen gas that is generated 

from renewable sources is a possible solution for both daily and seasonal storage [4]. For 

example, Sopian et al. (2009) integrated a Photovoltaic- wind- hydrogen energy production 

/ storage system. The components of the system were a photovoltaic array, wind turbine, 

PEM electrolyzer, battery bank, and hydrogen tank. The system also had an automatic 

control system for battery charging and discharging. A hydrogen quantity of 130 ml/min to 

140 ml/min was generated for an average global solar radiation between 200 W/m2 and 800 

W/m2 and wind velocities ranging from 2.0 m/s to 5.0 m/s. For each system component, a 

mathematical model was built and compared to the experimental results [5]. 

 Lithium–ion (Li-ion) battery technology has improved in the past decade. Li-ion 

batteries have higher energy and power density, higher efficiency and lower self-discharge 

compared to other batteries (NiCd, NiMH, and Lead Acid). To ensure the Li-ion battery is 

operating at a proper temperature and state of charge (SOC), a battery management 

supervision system (BMSS) must be applied  [6]. Fuel cells’ high energy density, quiet 

operation, and high efficiency have allowed them to be used as a portable energy source. 
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The capacity of fuel cells increased worldwide from 65 MW in 2009 to 181 MW in 2014 

[7] and [8]. Many types of fuel cells, such as the proton exchange membrane fuel cell, 

alkaline fuel cell, and phosphoric acid fuel cell use hydrogen as fuel to produce electricity 

and water. Hydrogen-specific energy is high compared to other fuels’ specific energy. Fuel 

cells have many applications, such as stationary, transportation, and portable applications. 

Proton exchange membrane fuel cells have a higher efficiency compared to phosphoric acid 

fuel cells and alkaline fuel cells [9]. 

Using compressed hydrogen in composite cylinders for fuel cells is an alternative 

for underwater vehicles. Composite cylinders have a low weight and can increase the total 

performance of a deep-diving AUV. Furthermore, hydrogen cylinders may help buoyancy 

compensation in underwater depths. The design for underwater depths makes the weight of 

the pressure hull increase, and as a result, the amount of energy carried in a vehicle with 

neutral buoyancy is minimized with the design’s depth. Considering this, the batteries 

inside the vehicle should be as light as possible [10]. AUV energy supply powered by a 

fuel cell has been integrated on an IFREMER survey AUV called IDEFX by HELION, an 

AREVA Renewable subsidiary. Several experiments have demonstrated the interest in 

underwater power sources by installing a fuel cell along with a hydrogen gas tank. Figure 

4.1 shows the pressure parameters as well as a schematic drawing of the hydrogen, oxygen 

gases, and  produced water tank of real experimental set-up [11].  
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Figure 4. 1: Parameters of real experimental set-up using a fuel cell with storage system [11]  

This chapter aims to design, size, and integrate a fuel cell into an existing power system 

that uses a battery bank as the main energy source to power the MUN Explorer AUV. By 

adding a fuel cell into the MUN Explorer, the power system capacity will be increased. The 

weight and the number of batteries can be reduced accordingly, and the number of hours of 

operation will increase. In this chapter, the focus will be on the main four components: the 

oxygen and hydrogen tanks, PEM fuel cell, Li-ion battery, and DC motor (load). This 

chapter is divided into three sections: the first section illustrates the components and system 

sizing using Hybrid Optimization Model for Electrical Renewable (HOMER) software; the 

second section demonstrates the dynamic modeling, simulation and results; and the third 

section is the conclusion. 
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4.3. Components and System Sizing 

 

4.3.1. Hydrogen / Oxygen Tanks and PEM Fuel Cell 

 

The MUN Explorer Autonomous Underwater Vehicle, as shown in Figure 4.2, has 

plenty of vacant space that could be used to install the hydrogen and oxygen tanks as well 

as the fuel cell. 

 

Figure 4. 2: Hull structure of the MUN Explorer AUV 

 

The hydrogen consumed by the Proton Exchange Membrane Fuel Cell (PEMFC) 

can be generated directly from the electrolyzer. The hydrogen gas also depends on the 

relationship between the output power and the hydrogen needed for the PEMFC system. 

Excess hydrogen is directed to the storage tank. Due to the lack of an oxygen gas 

underwater surface, the fuel cell operation in underwater vehicles requires oxygen gas 

storage to complete the reaction between the cathode and the anode. By carrying the oxygen 

instead of atmospheric air into the AUV, the fuel cell performance is increased by 2 to 3 

times. To remove the produced water from the fuel cell during the operation, extra oxygen 
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must be brought into the vehicle. This should be measured when the sizing of the oxygen 

storage is completed [12]. There are many ways to store hydrogen and oxygen. For 

example, compressed gas or liquid hydrogen and oxygen can be applied. HOMER software 

is designed to deal with renewable / non-renewable energy components and to integrate 

them. HOMER works by providing inputs (i.e. capital cost and size to consider kW) and 

design information about any given power system. HOMER simulation will give the system 

configurations and then create a list of feasible system designs and sort that list according 

to cost-effectiveness. The electrolyzer efficiency which converts electricity into hydrogen, 

is equal to the energy of the hydrogen produced that based on higher heating value divided 

by electricity consumed. “For Example: The higher heating value of hydrogen is 142 

MJ/kg, which is equal to 39.4 kWh/kg. So, an electrolyzer that consumes 50 kWh of 

electricity to produce one kilogram of hydrogen has an efficiency of 39.4 kWh/kg divided 

by 50 kWh/kg, which is 79%” [HOMER Help Sources]. Finally, a sensitivity analysis can 

be performed. A real example for the calculation of the sensitivity is attached in the 

appendix number four. The complete HOMER block diagram is illustrated in Figure 4.3.  
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Figure 4. 3: HOMER block diagram 

This diagram consists of renewable energy sources such as solar and wind to 

generate electricity to power the electrolyzer and then charge the battery. Subsequently, the 

electrolyzer will generate the hydrogen and oxygen gases. Finally, the fuel cell and the 

battery will power the DC motor. It is understood that the wind energy, solar energy and 

electrolyzer will be onshore, and hydrogen and oxygen will be transferred to the AUV when 

it is docked. To run the HOMER software, the capital cost (i.e. commercial prices) of three 

different hydrogen tanks along with the sizes to consider (kg or kW) need to be entered into 

the hydrogen tank inputs. However, the reason for selecting three or more different 

hydrogen tanks is to give HOMER software more options to choose from so it can select 

the most optimal results. The same procedure is done for the fuel cell inputs, electrolyzer 

inputs, battery inputs, convertor inputs, PV inputs, and wind turbine inputs. The data sheet 

of each input and its price can be found in the attached appendix four. Figure 4.4 shows the 
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simulation result of HOMER software in terms of the hydrogen tank storage level (in kg) 

and monthly statistics as well as a frequency histogram.   

Figure 4. 4: Simulation results from HOMER software for the hydrogen tank 

Since HOMER software does not have an oxygen tank input, the sizing will only 

be performed analytically in the next sections. After the capital cost and sizes to consider 

(0.2kW, 0.3kW and 0.5kW) have been set for the fuel cell inputs, the simulation runs to 

give the results as shown in Figure 4.5. The values in the gray line have been chosen from 

HOMER software. The fuel cell results are shown in Figure 4.6.
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Figure 4. 5: Suggested results simulation by HOMER software 

Figure 4. 6:  HOMER software results for the fuel cell inputs 
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4.3.2. Lithium-Ion Battery and Converter  

The MUN Explorer uses Li-ion batteries as its main source of energy to power 

loads, which include all electronics onboard and the emergency lights. This is because these 

batteries have high energy density and efficiency compared to other types of batteries. A 

Li-ion battery is more attractive in portable applications such as automotive and 

autonomous vehicles.  The cost of the Li-ion batteries and sizes to consider (i.e. number of 

batteries) have been entered into HOMER software inputs. Figure 4.7 shows the battery’s 

characteristic results. The battery has a nominal voltage of 48 V and nominal capacity of 

34 Ah. The DC bus of the system is set to be 48 V, which means the battery also must be 

48 V. Those characteristics were provided by the battery’s data sheet as well. The DC / DC 

boost converter is well known as a step-up converter, which takes a lower voltage to a 

higher voltage. The HOMER results suggested that a 2 kW DC / DC converter should be 

used in the system. The efficiency of a DC / DC converter is always above 90%, and it has 

a lifetime of up to 15 years. 

Figure 4. 7: HOMER software results for the battery
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4.3.3. Permanent Magnetic DC Motor  

In this case, the PMDC motor represents the load in HOMER software, and it is 

powered by the fuel cell and the battery. Permanent magnetic direct current (PMDC) 

motors are electrical machines that convert direct current electrical energy into mechanical 

energy. They are commonly used in many industrial, residential, and commercial 

applications [13].  The MUN Explorer AUV runs for ten (10) hours, so that the load has 

been specified based on the hours of operations (i.e. 10 hours) to be 600 W, as illustrated 

in Figure 4.8. The load is also divided into two sections: a DC load, which represents the 

electronics on-board, and the AC load, which is a variable speed motor. The MUN Explorer 

has only DC components, so the reason for selecting AC in HOMER is to represent the 

motor drive in our sizing. 

 

 

 

 

 

Figure 4. 8:  Load for the DC motor in HOMER 
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4.4. System Dynamic Model  

 

4.4.1. Hydrogen / Oxygen Tank and PEM Fuel Cell model 

The storage system in the MUN Explorer could be challenging to install. As 

mentioned above, there are many ways to store compressed or liquid hydrogen and oxygen, 

especially for the MUN Explorer applications. Compressed or liquid hydrogen and oxygen 

storage gases can be implemented in terms of specific energies and energy densities. 

Effective storage systems that have higher energy density (ED) and specific energy (SE) 

are preferred [12].  

The advantages of compressed hydrogen include that it does not need preprocessing 

and is the easiest and cheapest solution for dealing with fuel storage. However, to maximize 

hydrogen content, high pressures (up to 700 bar) can be applied, due to the low energy 

density of hydrogen gas. Liquid hydrogen has a higher density than gas. Liquid hydrogen 

also needs a temperature that is less than 20.15 K, so the stored liquid hydrogen must be in 

cryogenic Dewars (multi-shell flasks using an evacuated interstitial space) to eliminate heat 

transfer throughout the flask and prevent gas from reaching the boiling stage. Table 4.1 

shows the specific energy and the energy density for compressed and liquid hydrogen 

storage systems, respectively [12]. 

Table 4. 1: Hydrogen storage system for SE and ED 

Hydrogen Specific Energy 

(kWh/kg) 

Energy Density  

(kW/L) 

Compressed 1.71- 1.82 0.56 - 0.82 

Liquid 2.05 1.86 
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 Lightweight tanks for transporting the compressed oxygen applications are more 

accessible than the hydrogen ones, because hydrogen tanks are used in automotive vehicle 

applications, while oxygen tanks are often used in medical applications. In short, hydrogen 

tanks can be modified for oxygen storage systems [14]. “Since high-pressure oxygen has a 

simple delivery mechanism, the desired oxygen tank wall thickness increases with pressure, 

which causes a reduction in the energy density advantages” [15]. Liquid oxygen storage 

can be a suitable solution for limited space applications. Some drawbacks of this storage 

system are its complexity, due to the safety concerns associated with the handling and 

refueling process[15]. A liquid oxygen storage system prototype has been designed by 

Sierra Lobo, Inc. with a diameter of 54 cm (21 inches)  [14]. This prototype can store 50 

kg of liquid oxygen at 452 k to run a 1-kW output PEM fuel cell. The system is 0.94-m 

long and 0.32 m in diameter. The weight is 13.6 kg when it is empty and 63.6 kg when it 

is full [16]. Table 4.2 shows the specific energy and the energy density for compressed and 

liquid oxygen storage systems, respectively [14]. 

Table 4. 2: Oxygen storage system for SE and ED 

Oxygen Specific Energy 

(kWh/kg) 

Energy Density  

(kW/L) 

Compressed 0.77 - 1.68 0.6 - 1.09 

Liquid 2.9 - 3.3 2.78 - 2.98 

 

In this chapter, the model for the compressed oxygen / hydrogen tank corresponds 

to the one used by [17] and [18]. The model of the oxygen / hydrogen tank was built based 

on equations 4.1 and 4.2 in the MATLAB / Simulink environment. The compressibility 

factor is defined as a function of temperature and pressure. Its value equals 1 when the 
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pressure is less than 2000 psi and is higher than 1 when the pressure is higher than 2000 

psi at room temperature[18].    

 

𝑃𝑏 − 𝑃𝑏𝑖 = 𝐶𝐹 ∗
𝑁𝐻2𝑅𝑇𝑏

𝑀𝐻2𝑉𝑏
                                                                                                         (4.1) 

 

𝐶𝐹 =
𝑃𝑉𝑚

𝑅𝑇
                                                                                                                                             (4.2) 

To evaluate the fuel cell in terms of specific energy and energy density, a 

commercial fuel cell (Horizon 1000W PEM Fuel Cell) is integrated into the storage 

systems. It is selected due to the effectiveness of the Horizon fuel cell and its recognised 

experience in AUV fuel cell applications. Table 4.3 shows the fuel cell parameters. 

 

Table 4. 3: Fuel cell parameters 

Weight 

(kg) 

Dimensions 

(cm)  

Volume 

(L) 

Specific 

Power 

(W/kg) 

Power 

Density  

(W/L) 

4 23.3*26.8* 12.3 7.68 250 130 

  

The calculation of the ED and SE of the complete storage system is represented as 

follows [12]:  

𝐸𝐷𝑠𝑠 =
𝐸𝐷𝐻2∗𝐸𝐷𝑂2

𝐸𝐷𝐻2+𝐸𝐷𝑂2
                                                                                                                   (4.3) 

𝑆𝐸𝑠𝑠 =
𝑆𝐸𝐻2∗𝑆𝐸𝑂2

𝑆𝐸𝐻2+𝑆𝐸𝑂2
                                                                                                                    (4.4) 
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These equations were applied for reactant storage combinations of liquid hydrogen 

/ liquid oxygen and compressed hydrogen / compressed oxygen. 

A polymer electrolyte membrane is an important component of a PEM fuel cell that 

is connected between the electrodes (anode and cathode). The cathode must be supplied by 

oxygen gas, whereas the anode must be supplied with hydrogen. The overall 

electrochemical dynamic can be represented by following equations[19]:  

 

 

Cathode:   𝑂2 + 4𝐻+ + 4𝑒− ↔ 2𝐻2𝑂                                                                              (4.5) 

Anode:      2𝐻2 ↔ 4𝐻+ + 4𝑒−                                                                                          (4.6) 

Overall:  2𝐻2 +  𝑂2 ↔ 2𝐻2𝑂 + 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 + ℎ𝑒𝑎𝑡                                                             (4.7) 

For any fuel cell, both the anode and cathode can be represented by the mole 

conservation equations, as follow [19]:  

𝑑𝑃𝐻2

𝑑𝑡
=

𝑅𝑇

𝑉𝑎
[𝐻2𝑖𝑛 − 𝐻2𝑢𝑠𝑒𝑑 − 𝐻2𝑜𝑢𝑡]                                                                                  (4.8) 

𝑑𝑃𝑂2

𝑑𝑡
=

𝑅𝑇

𝑉𝑐
[𝑂2𝑖𝑛 − 𝑂2𝑢𝑠𝑒𝑑 − 𝑂2𝑜𝑢𝑡]                                                                                   (4.9) 

The fuel cell dynamic is built in Simulink model, using a controlled voltage source 

in series with a constant resistance, as illustrated in Figure 4.9 [20].   
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Figure 4. 9: Fuel cell stack model [19] 

Equation (10) describes the controlled voltage source (E), so that 

𝐸 = 𝐸𝑜𝑐 − 𝑁𝐴𝑙𝑛 (
𝑖𝑓𝑐

𝑖0
) ∗

1

𝑠𝑇𝑑 3+1⁄
                                                                                   (4.10) 

𝑉𝑓𝑐 = 𝐸 − 𝑅𝑜ℎ𝑚 ∗ 𝑖𝑓𝑐                                                                                                    (4.11) 

 

Equation 4.10 shows the fuel cell stack voltage as a function of activation losses, 

because of the slowness of chemical reactions at the electrode surfaces [20]. A parallel RC 

branch is used to model the losses electrically. Thus, for the rapid changes in the fuel cell 

current, the stack voltage will demonstrate a delay response that can be 3 times to the time 

constant (𝜏 = 𝑅𝐶) prior to equilibrium. Equation 4.10 also illustrates a phenomenon which 

delays the activation losses with a first order transfer function (
1

𝑠𝑇𝑑 3+1⁄
) where Td is the 

stack settling time. Equation 4.11 represents the total fuel cell voltage by considering the 

losses due to electrodes and electrolyte resistances (ohmic losses). This model is a 

simplified model that can simulate a fuel cell stack at a nominal condition of pressure and 
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temperature operations. To eliminate the flow of negative current into the fuel cell, a diode 

is used [20]. Polarization curves (V-I and P-I) from the simulation and data sheet are 

presented in Figure 4.10 and Figure 4.11, respectively. The results from both MATLAB / 

Simulink and the manufacturer’s data sheet align well. The performance characteristics 

data of the stack are given for baseline operating conditions and defined at sea level and 

room ambient temperature. More information about the fuel cell is attached in the appendix. 

     

 

 

 

 

 

 

 

 

Figure 4. 10: Polarization curves, voltage vs current and power vs current from simulation results 
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Figure 4. 11:  Polarization curves, voltage vs current and power vs current from data sheet results 

 

4.4.2. Lithium-Ion Battery and Converter model 

 

MATLAB / Simulink already has a built-in dynamic model for a Li-ion battery that 

depends on a modified Shepherd curve-fitting model. The voltage polarization term was 

added to the battery discharge voltage expression to ensure the representation of the 

battery’s SOC effect on the battery performance. For the simulation stability, the filtered 

battery current is implemented instead of the actual battery current for the polarization 

resistance. 

 

 The model uses equations 4.12 and 4.13 for discharging and charging as follows 

[21]: 
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Discharge Model when 𝑖∗ is greater than Zero 

 

𝑉𝑏𝑎𝑡𝑡 = 𝐸0 − 𝐾
𝑄

𝑄−𝑖𝑡
⋅ 𝑖∗ − 𝐾 ⋅

𝑄

𝑄−𝑖𝑡
⋅ 𝑖𝑡 + 𝐴 ⋅ 𝑒𝑥𝑝(−𝐵 ⋅ 𝑖𝑡) − 𝑅𝑏 . 𝐼                                            (4.12) 

 

Charge Model when 𝑖∗ is less than Zero 

 

𝑉𝑏𝑎𝑡𝑡 = 𝐸0 − 𝐾.
𝑄

𝑖𝑡+0.1𝑄
⋅ 𝑖∗ − 𝐾 ⋅

𝑄

𝑄−𝑖𝑡
⋅ 𝑖𝑡 + 𝐴 ⋅ 𝑒𝑥𝑝(−𝐵 ⋅ 𝑖𝑡)                                              (4.13) 

Figure 4.12 illustrates the dynamic model for a Li-ion battery in MATLAB / 

Simulink. Table 4.4 also shows the battery model input parameters. The simulation 

discharge curves for the Li-ion battery system (i.e. 48 V and 34 Ah) are shown in Figure 

4.13.   

Figure 4. 12: Dynamic model for Li- ion battery [21] 
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Figure 4. 13: Simulation discharge curves for the Li-ion battery 

 

Table 4. 4: Battery model input parameters 

Battery Model Input Parameters Value 

Nominal Voltage  48 (V) 

Rated capacity  34 (Ah) 

Maximum capacity  34 (Ah) 

Fully charged Voltage  55.87 (V) 

Nominal Discharge Current  14.78 (A) 

Internal Resistance  0.014(Ohm) 

Capacity at Nominal Voltage  30.74 (Ah) 
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The average mode boost converter is used in this simulation, and its parameters are 

illustrated in Table 4.5. For the DC / DC converter parameters, some equations have been 

implemented to calculate the values for duty cycle (D), inductance (L), and capacitance (C) 

[22]: 

𝐷 = 1 −
(𝑉𝑖𝑛_𝑚𝑖𝑛∗𝑛)

𝑉𝑜𝑢𝑡
                                                                                                           (4.14) 

𝐿 =
(𝑉𝑖𝑛∗(𝑉𝑜𝑢𝑡−𝑉𝑖𝑛))

(𝐼𝑖𝑛∗𝑓𝑠∗𝑉𝑜𝑢𝑡)
, 𝑎𝑛𝑑                                                                                                   (4.15) 

𝐶 =
𝐼∗𝐷

𝑓𝑠∗𝑑𝑣
                                                                                                                           (4.16)

where D is the duty cycle, which equals the fraction of time when the switch is connected 

in position 1, and hence 0 ≤ D ≤ 1. Vin_min is the minimum input voltage; n is the efficiency 

set to 90%. The variable Fs is the switching frequency, Vout is the output voltage, Iin is the 

input current and dv is the output voltage ripple[23].  

 

Table 4. 5: Boost converter parameters 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters  Value  Units  

Switching freq.  F 20 kHz 

Inductance L 500 µH 

Capacitance C 7500 µF 

Load Resistor R  0.2 Ω 
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4.4.3. Permanent Magnetic DC Motor (PMDC) model 

 

The dynamic model for any PMDC motor can be represented by the following 

equations [24]:  

𝑑𝐼𝑎

𝑑𝑡
=

1

𝐿𝑎𝑎
∗ (𝑉𝑡 − 𝐼𝑎 ∗ 𝑅𝑎 − 𝐾𝑚 ∗ 𝜔𝑚)                                                                              (4.17) 

 
𝑑𝜔𝑚

𝑑𝑡
=

1

𝐽
∗ (𝑇𝑒 − 𝑇𝐿 − 𝐵𝑚 ∗ 𝜔𝑚)                                                                                   (4.18)                                

  Table 4.6 shows the parameters for the DC motor implemented in MATLAB / 

Simulink. Most of these values were collected from the DC motor datasheet. Figure 4.14 

shows the system dynamic flow rate regulators and flow rate selector. The blue and green 

blocks represent the hydrogen and oxygen tanks, respectively. They both enter the fuel cell 

stack in order to be powered. The fuel cell is connected to the boost converter to increase 

the voltage from 24 V to 48 V, which is required by the battery and the load (i.e. DC motor). 

The yellow block illustrates the MUN Explorer’s motor.  

 

Table 4. 6: PMDC motor parameters 

 

 

 

 

 

 

 

 

Parameters  Value  Unit 

Armature V 48 V 

Armature Ra 0.3 Ohms 

Armature La 0.00208 H 

Torque constant 0.099 N.m/A 

Total Inertia J 15e-5 Kg.m^2 
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Figure 4. 14: Dynamic model in MATLAB/Simulink Software 

 

4.5.  Results and Discussion 

 
The simulation in HOMER software was performed to obtain the sizing results for 

the integrated power system. The system component inputs were specified based on the 

cost and sizes to consider for each block. Figure 4.3 demonstrates that the components of 

the PV wind turbine and electrolyzer cannot be applied to the MUN Explorer, due to the 

lack of space available, and they will be used to generate the required oxygen and hydrogen 

gases to run the fuel cell. From Figure 4.5, the assumptions of the wind and PV energy are 

determined based on the wind speed directions and solar radiation of St. John’s, 

Newfoundland, which is where this technology will be integrated.  The oxygen / hydrogen 

tanks and fuel cell along with the batteries are planned to be installed in the MUN Explorer. 
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The gray line also shows the most optimal results. The results have shown the lowest 

operating cost and reduce the number of batteries from 11 to 8. The advantage of 

minimizing the number of batteries is that this leaves more space for installing the fuel cell 

and the tanks. The hydrogen stored in the cylinders can be generated from renewable energy 

sources as a step prior to running the MUN Explorer. Figures 4.15 and 4.16 show the 

pressure inside the oxygen and hydrogen tanks, respectively. They show the compressed 

pressure inside the cylinders which is increased exponentially. The oxygen gas is filled the 

tank until its pressure reaches the elecrolyzer anode pressure. Similarly, the hydrogen gas 

is filled the tank until its pressure reaches the electrolyzer cathode pressure [18].  

 

Figure 4. 15: Pressure of compressed oxygen tank 
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Figure 4. 16: Pressure of compressed hydrogen tank 

A 6-kg hydrogen tank needs to be installed inside the Explorer to run the fuel cell. 

The oxygen tank can be installed according to the hydrogen tank specifications, which was 

suggested in the literature. The oxygen tank size is considered to be the same as the one in 

[16]. The fuel cell has 1 kW of power to feed the DC motor and to charge the battery once 

it accumulates enough power. Firstly, the fuel cell is connected to the boost converter, 

which takes 24 V to 48 V, which is required by the battery and DC motor, as shown in 

Figure 4.17. The assumptions of the fuel cell model are that all gases are ideal, pressure 

drops across flow channels are negligible (maximum temperature 65 ºC and the pressure 

form 0.45 to 0.55 bar), and cell voltage drops are due to reaction kinetics and charge 

transport[19]. A PI controller is used to control the output voltage from the boost converter 
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to maintain the 48 V for the battery and DC motor. The PI coefficients are shown in Table 

4.7.  

 

 Table 4. 7: PI coefficients for boost converter 

 

 

 

From Figure 4.17, we can clearly see that after 20 seconds, the fuel cell started to 

run to power the DC motor. This starting time is recommended by the fuel cell manufacturer 

and controlled by the fuel cell regulator. The battery is set to 50% state of charge (SOC) to 

prevent any damage to the battery and this does not allow it to charge to 100%. The nominal 

discharge current is 14.78 A. Figure 4.18 shows the fuel cell power profile in HOMER 

through the year.  

Parameter  Value  

KP 0.0005 

Ki 0.15 
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Figure 4. 17: Voltage and current of fuel cell and Boost converter 
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Figure 4. 18: The fuel cell power profile 

There are 11 batteries connected in series inside the dry section of the MUN 

Explorer to power the AUV for 10 hours, as shown in the drawn Figure 4.19. The total 

weight of 11 batteries is 137.5 Kg (12.5*11). Figure 4.20 illustrates the battery behaviour 

in terms of SOC, current and voltage from the Simulink model, and Figure 4.21 shows the 

state of charge profile from HOMER sizing during a year. Figure 4.22 illustrates the PMDC 

motor, which runs at a constant speed. This constant speed is maintained by the AUV’s 

boost converter. Then the DC motor runs at its highest efficiency. The armature current is 

16, which is very close to the manufacturer’s data sheet value. Figure 4.23 demonstrates 

the DC motor’s power profile during the year in HOMER software. The energy 

consumption by the DC motor in kW is shown for each month.  
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Figure 4. 19: The dry section inside the MUN Explorer (dimensions in mm) 
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Figure 4. 20:  Battery characteristic SOC, current and voltage  
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Figure 4. 21:  Battery power profile form HOMER 
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Figure 4. 22: PMDC motor characteristics 
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Figure 4. 23:  DC motor power profile 

 



100 
 

The monthly average electric power production from the system (i.e. PV, wind and 

fuel cell) is shown in Figure 4.24. The solar and wind energy are used to produce oxygen 

and hydrogen gas by powering an electrolyzer as well as recharging the batteries. The fuel 

cell power production is low compared to the PV and wind power, due to the integration of 

the fuel cell into the battery system, which has a large amount of energy to power the DC 

motor. Table 4.8 shows the results for energy density and specific energy for the storage 

and total system with the fuel cell. The calculations are based on the total system’s mass 

and weight, which can be illustrated as summations of the storage and fuel cell systems. 

The estimated results are shown due to the main balance of plant components that were 

integrated into commercial fuel cells.  

 

Figure 4. 24: Monthly average electric production 
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Table 4. 8: SE and ED for storage and total fuel cell 

 Storage 

System 

 Total 

system  

 

 SE  

(kWh/kg) 

ED  

(kWh/L) 

SE 

(kWh/kg) 

ED  

(kWh/L) 

LO2/LH2 1.233 1.130 1.024 0.846 

CO2/CH2 0.792 0.379 0.701 0.339 

Lithium-Ion 

batteries 

0.18 0.36 -- -- 

 

Table 4.8 shows a significant improvement in terms of specific energy and energy 

density, especially for liquid oxygen and hydrogen storage options. In [12], Li-ion batteries 

have specific energies ranging from 0.165 kWh/kg to 0.207 kWh/kg and energy densities 

from 0.329 kWh/L to 0.490 kWh/L [12]. The largest improvements are in the specific 

energy of the fuel cell total systems, compared with the lithium-ion batteries. To show the 

buoyancy effect on the system, the density can be defined as energy density divided by 

specific energy, as represented by 4.19 equation [14]: 

 

𝐷 =
𝑚

𝑉
=

𝐸𝐷

𝑆𝐸
                                                                                                                     (4.19) 

 

Figure 4.25 shows the relationship between ED and SE, and the plotting of ED as 

functions of SE on the X and Y axes is the slope (i.e. X and Y intercept at any point) which 

is equivalent density at any point. The seawater density (1.03 kg/L) is shown by the dotted 

line. However, if there is any point above the line, it indicates negative buoyancy or a 
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density more than seawater. Any point below the line indicates positive buoyancy or less 

density than seawater. For any given fuel cell power system design that does not require 

buoyancy, as shown in Figure 4.25, some ballast or float material must be added to meet 

the buoyancy requirement [14].  

The power system’s capacity is increased by integrating the fuel cell power system 

into the MUN Explorer according to the following calculations, 4.20 and 4.21. From figure 

1.1 parameters, the assumption made based on these parameters and considered to our 

system, hydrogen stored at 300 bar equals to 100 litres and oxygen stored at 250 bar equals 

to 50 litres. The energy capacity of the new system can be calculated to be 36.8 kwh. The 

tanks to store hydrogen have different sizes, for example 30–40 liters storing 1.3 to 1.5 kg 

of hydrogen at 350 bars. Two pressure standards have been considered for automotive 

applications, which are 350 and 700 bars (5,000 and 10,000 psi) [25]. For more details and 

liquid hydrogen storge options more information can be found in the appendix number 4.   

  

Available Energy=Power*time                                                                                       (4.20) 

 

Watt-hour=Battery Volt*Ah                                                                                            (4.21) 

 

The energy capacity is increased by integrating the fuel cell into the system and the 

number of batteries is reduced by applying equations 4.20 and 4.21. Figures 4.26 and 4.27 

illustrate proposed drawing system of the fuel cell and hydrogen / oxygen tanks along with 

the 8 batteries. 

   



103 
 

   

 

Figure 4. 25: Buoyancy in terms of SE and ED[14] 
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Figure 4. 26: side view of batteries, fuel cell and tanks inside the dry section (dimensions in mm) 

Figure 4. 27: front view of hydrogen and oxygen tanks inside the dry section (dimensions in mm) 
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4.6. Conclusions 

The sizing and modeling of the MUN Explorer’s power system were studied and 

simulated in this chapter. The oxygen and hydrogen tanks were successfully studied in 

terms of specific energy and energy density. They were also implemented in MATLAB / 

Simulink as compressed gas storage. The results showed that a fuel cell with hydrogen and 

oxygen storage options has a higher energy density than batteries alone. The system sizing 

by HOMER was studied and implemented. The power profiles from HOMER software 

were illustrated for the fuel cell and DC motor. A 1-kW fuel cell and 8 Li-ion batteries can 

increase the power system capacity to 36.8 kWh. Installing these options will greatly 

increase the hours of operation and will help the buoyancy force. The system components 

are simulated in MATLAB / Simulink. 

Future work that builds on this chapter should improve the dynamic model in 

MATLAB / Simulink by including some controllers in the system. The existing power 

system for the MUN Explorer should be built and compared with this system (i.e. fuel cell 

with batteries).  
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 Dynamic Modeling and Simulation of the MUN Explorer 

Autonomous Underwater Vehicle with a Fuel Cell System 

 

5.1.  Chapter Overview   

 
The actual power system of the MUN Explorer Autonomous Underwater Vehicle 

(AUV) uses 11 Lithium-ion (Li-ion) batteries as a main energy source. The batteries are 

directly connected into the BLDC motor to run the MUN Explorer for the desired operating 

sequence. This chapter presents a dynamic model of the MUN Explorer AUV, including a 

fuel cell system, to run under the same operating conditions as suggested by its manual. A 

PI controller was applied in the dynamic model to maintain the operating conditions such 

as motor speed, DC bus voltage and the load torque, due to its advantages and simple tuning 

technique. The MUN Explorer AUV dynamic model with a fuel cell is a proposed system 

to increase the power capacity. It is advantageous to use a simple controller to observe the 

system’s behaviours. The simulation of the entire system dynamics model along with the 

proportional-integral (PI) controller is done in MATLAB / Simulink. The simulation results 

are included in the chapter. The DC bus voltage is measured at 48 V, and the motor speed 

is 20 (rad/s), which is equivalent to 190 (rpm). The power profile of the fuel cell and battery 
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are presented and plotted against time. The PI controller gives satisfactory results in terms 

of maintaining the same operating conditions of the MUN Explorer AUV with a fuel cell.  

 

5.2.  Introduction 

  

5.2.1. Background  

For the design and operations of AUVs, the control system is classified as one of the 

most important systems, especially when renewable energy systems are implemented on 

submarines, which include batteries, fuel cells, charging stations, and electrical loads. 

Management control schemes are used to deal with many issues, such as nonlinearities and 

the continuation of certain operating conditions, the number of production energy sources 

and load requirements[1].  

Renewable energy sources, storage systems (fuel cells and batteries) as well as the 

energy demand of many applications such as submarines and AUV applications are 

essential for sustainability and the reduction of CO2 emissions. To maximize the amount 

of energy generated by the fuel cell and batteries, a system controller plays a significant 

role in generating and consuming power precisely and effectively. The energy generation 

should be maximised, and it should be used directly by the motors and sensors as much as 

possible. The goal is to reduce losses during energy transfer and conversions in the batteries 

and fuel cell. Moreover, the energy consumption must be as low as possible to overcome 

the challenges of limited energy availability in submarines working underwater[2].  
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A classical Proportional Integral (PI) controller is used in the dynamic model 

systems to control the main performance parameters such as the fuel cell power, battery 

state of charge (SOC), motor speed and DC bus voltages. Using a PI feedback controller 

does not require advanced knowledge to implement, and the tuning can be done online for 

better tracking. A PI controller is linked to a PWM, especially for fuel cell current control 

[3], [4].  

The MUN Explorer AUV was constructed to do mapping missions of underwater 

depths as well as survey missions. These missions require a large amount of power in order 

to reach seabeds (i.e. 3000 meters). 11 rechargeable lithium-ion (Li-ion) batteries are 

carried by the MUN Explorer as the main power source, with a total capacity of 14.6 kWh 

to 17.952 kWh, and the Explorer can run for 10 hours [5].  

 Lithium-ion (Li-ion) batteries have been enhanced in the last ten years, and they 

now have higher efficiency, higher energy and power density, and lower self-discharge 

compared to other batteries such as NiCd, NiMH, and lead acid batteries. To ensure that 

the Li-ion battery is running at a suitable temperature and state of charge (SOC), a battery 

control system (BMS) must be implemented in the system [6].  

In this specific case, the Brushless DC motor includes a rotor position sensor as well 

as a commutation device that has a power inverter bridge and a control circuit. These 

features are used to accomplish the effective control performance of the motor speed as 

well as the motor rotations’ directions [7].  
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5.2.2. Literature review 

Wang et al. declared that there have been only a small amount of publications dealing 

with the power’s capability and the remaining capacity, concerning the power allocation 

strategy. They have developed a novel distributed energy management system based on the 

controller area network. They have also proposed a rule-based control strategy for the 

distributed energy management system to remain the capacity and the power capability of 

the energy storage devices. Furthermore, the Bayes Monte Carlo method is used to 

overcome the initial bias and noises and implemented for co-estimation of the remaining 

capacity and power capability of the batteries and supercapacitors [8].  

Wang et al. built an energy management system for an automobile system for fuel cell, 

battery, and supercapacitor hybrid source, to be more efficient and manage the energy 

storage devices. They established an adaptive PID controller to regulate the oxygen excess 

ratio for it to reach its ideal space. This controller, with a fast response speed, smaller 

steady-state error, and smaller overshoot, showed better traditional feedforward control in 

terms of transient behaviour. Moreover, the battery and fuel cell as well as battery, 

supercapacitor and fuel cell hybrid source for portable systems applied an energy 

management strategy using a new finite state machine [9]. 

 Wang et al. did a comparison between fuel cell, vehicle dynamics and ultracapacitor 

hybrid power system, along with suboptimal on-line power distribution strategies based on 

classical robotics and rules. They also used a dynamic programming algorithm as a 

benchmark to validate the effectiveness of the suggested strategies. Furthermore, the 

comparison was done by simulations and experiments under different working conditions, 
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using a semi-physical experimental platform to check the performance of the suggested 

power distribution approaches[10].  

Wang et al. studied three different hybrid propulsion systems, which are: 

1. Fuel cell and lithium-ion battery structure 

2. Fuel cell and supercapacitor structure, and 

3. Fuel cell, lithium-ion battery, and supercapacitor structure.  

Each structure has advantages as well as disadvantages; however, the Fuel cell, 

lithium-ion battery, and supercapacitor structure overcome the problems in systems 1 and 

2. This work improved the power dividing strategy for hybrid propulsion systems by using 

multiple-grained velocity prediction. In order to reach the optimal power divisions for 

different power sources, the dynamic programming strategy was introduced [11].  

 

5.2.3. Chapter outline and Contributions         

 

This chapter extends the work of the previous chapter [5] to study the dynamic model 

of the MUN Explorer AUV in more detail by applying a PI controller to the dynamic model 

with the fuel cell. This controller is implemented to achieve the operating conditions, 

including motor speed, DC bus voltage and the load torque, during the MUN Explorer’s 

missions. Since the MUN Explorer has challenges related to space in the dry section, this 

dynamic model with a fuel cell is used to eliminate the number of batteries inside the MUN 

Explorer body and help the buoyancy force. However, the implementation of a PI controller 

is a simple approach, to observe the behaviour of the new dynamic model with a fuel cell 

to verified  the values of the actual system of the MUN Explorer(lithium -ion batteries 
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only). More advanced controllers are proposed for future work. This chapter consists of 

four sections: The first section is the introduction. Then the second section describes the 

MUN Explorer power system construction and components, and the third section shows 

the system control with a PI controller. The fourth section is the results and discussion. The 

conclusion follows. 

 

 

5.3. MUN Explorer Power System Construction and Components 

 
The power system of the MUN Explorer Autonomous Underwater Vehicle is designed 

based on the energy and power necessities for mapping underwater depths. Figure 5.1 

illustrates the main components and the most advantages location of the fuel cell. Table 5.1 

shows the parameters to be implemented and achieved by using a PI controller. 

       

Figure 5. 1: Side view of the MUN Explorer AUV with its components 
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Table 5. 1: System designing parameters 

Design Parameters  Value  

Fuel cell power (Min. – Max.)  (600-1200) W 

Battery power ((Min. – Max.) (350- 850) W 

Battery state of charge (SOC) (Min. – Max.) (50-90) % 

DC bus voltage (Min. – Max) (47.5–50) VDC 

Fuel cell current maximum  (53)A 

Rotor speed (20) rad/s 

 

5.3.1 Hydrogen / Oxygen Tanks 

The oxygen and hydrogen tanks are connected to the fuel cell to feed the required 

amount of oxygen and hydrogen gases. Both dynamic models of oxygen and hydrogen 

tanks are built based on equations 5.1 and 5.2.

𝑃𝑏 − 𝑃𝑏𝑖 = 𝐶𝐹 ∗
𝑁𝐻2𝑅𝑇𝑏

𝑀𝐻2𝑉𝑏
                                                                                                                (5.1) 

𝐶𝐹 =
𝑃𝑉𝑚

𝑅𝑇
                                                                                                                                      (5.2) 
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All the variables in these equations are explained in the Nomenclature. The compressibility 

factor (CF) is equal to one when the pressure is less than 1.37e7 Pa (2000 psi). The CF is 

more than 1 when the pressure is higher than 1.37e7 Pa (2000 psi) at room temperature, 

which is well known as a function of temperature and pressure[12]. Equations 5.1 and 5.2 

are implemented in MATLAB / Simulink and then the pressure of each tank is measured, 

as presented in previous work [5].     

5.3.2 PEM Fuel Cell  

A polymer electrolyte membrane (PEM) is an important feature of the selected fuel 

cell that is connected between the electrodes: the anode and cathode. The oxygen gas is 

injected in the cathode, and the hydrogen gas is injected to the anode side of the fuel cell. 

The overall electrochemical dynamic can be characterized by equations 5.3, 5.4 and 5.5 

[13]:  

Cathode:𝑂2 + 4𝐻+ + 4𝑒− ↔ 2𝐻2𝑂                                                                                              (5.3)                                             

Anode:   2𝐻2 ↔ 4𝐻+ + 4𝑒−                                                                                                        (5.4)                                           

Overall: 2𝐻2 +  𝑂2 ↔ 2𝐻2𝑂 + 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 + ℎ𝑒𝑎𝑡                                                                   (5.5) 

The mole conservation equations can be applied for the anode and cathode in any 

fuel cell, as shown in equations 5.6 and 5.7 [13]:  

𝑑𝑃𝐻2

𝑑𝑡
=

𝑅𝑇

𝑉𝑎
[𝐻2𝑖𝑛 − 𝐻2𝑢𝑠𝑒𝑑 − 𝐻2𝑜𝑢𝑡]                                                                                             (5.6)                                                     

𝑑𝑃𝑂2

𝑑𝑡
=

𝑅𝑇

𝑉𝑐
[𝑂2𝑖𝑛 − 𝑂2𝑢𝑠𝑒𝑑 − 𝑂2𝑜𝑢𝑡]                                                                                              (5.7) 

In MATLAB/ Simulink, the dynamic model of the fuel cell stack was built using a 

controlled voltage source in series with a constant resistance, as shown in Figure 5.4, and 

it has 42 cells [14]. 
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Figure 5. 2: Fuel cell stack model [14] 

The controlled voltage source (E) can be shown by equation 5.8, so that 

𝐸 = 𝐸𝑜𝑐 − 𝑁𝐴𝑙𝑛 (
𝑖𝑓𝑐

𝑖0
) ∗

1

𝑠𝑇𝑑 3+1⁄
                                                                                                (5.8)  

𝑉𝑓𝑐 = 𝐸 − 𝑅𝑜ℎ𝑚 ∗ 𝑖𝑓𝑐                                                                                                                 (5.9) 

Equations 5.8 and 5.9 show the fuel cell voltage as a function of activation losses 

because of the slowness of chemical reactions at the electrode surfaces and the total fuel 

cell voltage, by taking into account the losses due to electrodes and electrolyte resistances 

(ohmic losses), respectively. To simulate the fuel cell at nominal conditions (pressure and 

temperature), a simplified model is used to represent a specific fuel cell stack and its 

parameters can be collected based on the polarization curve, which can be found in the 

manufacturer’s datasheet. Similarly, to prevent the negative current flow into the fuel cell, 

a diode must be applied to the circuit [14]. Figure 5.5 shows the polarization curves (V-I 

and P-I) from the simulation results, and Figure 5.6 illustrates the polarization curves (V-I 

and P-I) from the data sheet behaviour. Both curves, the simulations, and the 
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manufacturer’s data sheet results, are almost identical. The fuel cell polarization curves’ 

characteristics are defined at sea level and ambient room temperature as the baseline of 

operating conditions.  

  

 

 

 

 

 

 

 

 

 

 

Figure 5. 3: Polarization curves, voltage vs current and power vs current from simulation results [5] 
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Figure 5. 4: Polarization curves, voltage vs. current and power vs. current from data sheet results[5] 

5.3.3 Lithium-Ion Battery  

The dynamic model of a Li-ion battery is programmed in MATLAB / Simulink, 

based on a modified Shepherd curve-fitting model [4]. To ensure the better representation 

of the battery’s SOC effect on the battery performance, the voltage polarization term was 

added to the battery discharge voltage expression. The filtered battery current is applied as 

a replacement of the actual battery current for the polarization resistance, solely to improve 

the simulation stability. The model has two Equations for discharging and charging, as 

follows [4]: 

 

Discharge Model when 𝑖∗ is greater than Zero 

𝑉𝑏𝑎𝑡𝑡 = 𝐸0 − 𝐾
𝑄

𝑄−𝑖𝑡
⋅ 𝑖∗ − 𝐾 ⋅

𝑄

𝑄−𝑖𝑡
⋅ 𝑖𝑡 + 𝐴 ⋅ 𝑒𝑥𝑝(−𝐵 ⋅ 𝑖𝑡) − 𝑅𝑏 . 𝐼                                     (5.10) 
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Charge Model when 𝑖∗ is less than Zero 

𝑉𝑏𝑎𝑡𝑡 = 𝐸0 − 𝐾.
𝑄

𝑖𝑡+0.1𝑄
⋅ 𝑖∗ − 𝐾 ⋅

𝑄

𝑄−𝑖𝑡
⋅ 𝑖 + 𝐴 ⋅ exp(−𝐵 ⋅ 𝑖𝑡)                                                    (5.11) 

Figure 5. 5: Dynamic model for Li- ion battery [5] 

Figure 5.7 demonstrates the dynamic model for a Li-ion battery in MATLAB / 

Simulink. From the dynamic model, the discharge and charge mode has been calculated to 

obtain the output voltage from the battery. The variables in equations 5.10 and 5.11 are 

explained in the Nomenclature section. The simulation discharge curves for the Li-ion 

battery system (i.e. 48 V and 34 Ah) are shown in Figure 5.8. Some coefficients are 

calculated and known by the voltage and ampere-hour curve. This curve also represents the 
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discharge behaviour and the nominal area with exponential, to better understand the 

harmless operating strategy to increase the lifetime of the battery.   

 

 

 

Figure 5. 6: Simulation discharge curves for the Li-ion battery[5] 

 

5.3.4 Brushless DC Motor 

A brushless DC motor can be defined as a self-synchronous rotating motor; it has a 

rotor with a permanent magnet [7]. To control the electronic commutation and rotor 

position signal, the commutation circuit on the ontology of the motor can be installed 

independently or integrated into it. The main components of the BLDC motor are the stator 

with its armature winding and the rotor with a permanent magnet pole, which are very 

similar to the permanent magnet synchronous motor[7]. The electromagnetic torque model 
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for the BLDC motor can be represented by equation 5.12, and the dynamic motion can be 

obtained by equation 5.13  [15]. 

𝑇𝑒 =
1

𝜔𝑟
(𝑒𝑎𝑖𝑎 + 𝑒𝑏𝑖𝑏 + 𝑒𝑐𝑖𝑐)                                                                                          (5.12) 

𝑑

𝑑𝑡
𝜔𝑟 =

1

𝐽
∗ (𝑇𝑒 + 𝑇𝐿 + 𝐵𝜔𝑟)                                                                                         (5.13)     

The MUN Explorer uses a propulsion system that has two standard blades 

(Wageningen B-series propeller type that is 0.65 m in diameter). A BLDC motor is used to 

drive the propulsion system. Figure 5.9 shows the schematic of the BLDC motor for the 

MUN Explorer. Table 5.2 shows the parameters of the BLDC motor, which are entered into 

the brushless DC motor in a MATLAB /Simulink block. These parameters are collected 

and verified using the MUN Explorer AUV data sheet.   

Figure 5. 7: Schematic of the BLDC motor for the MUN Explorer 
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Table 5. 2 : BLDC motor parameters 

 

 

 

 

 

 

5.4. System Control with a PI Controller 

  The control system is important to maintain certain operating conditions, such as 

control of the motor speed, reduction of hydrogen gas consumption and improvement of 

overall system efficiency. These conditions can be maintained by controlling the power 

outcome of the PEM fuel cell and the battery to the BLDC motor through the convertors, 

using a PI controller.  

In [4], the PI controller is implemented based on the battery’s SOC behaviour, so 

the PI regulator output is defined (in this case) as the battery power by removing it from 

the load power to get the fuel cell reference power. When the power of the fuel cell is 

reduced, the battery’s state of charge is above the reference value, which means the battery 

reaches its full power. When the battery SOC is less than the reference value, the fuel cell 

delivers almost the entire load power. This controller can be tuned easily to get an 

acceptable response, compared to the other controller. The main function of this controller 

is to meet the parameters shown in Table 5.1. The dynamic model system using the PI 

controller is implemented and illustrated in MATLAB/Simulink, as shown in Figure 5.10. 

The output from the PI controller is the maximum current of the fuel cell that is fed into the 

Parameters  Value  Unit 

Voltage 48 V 

Resistance  0.2 Ohms 

Inductance 8.5e-3 H 

Friction Factor 0.005 N.m/A 

 Inertia J 0.089 Kg.m^2 

Back EMF  120 Degrees 
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convertor to maintain 48 VDC. The two blue boxes are the minimum voltage (47.5 V) and 

the maximum voltage (52 V) to give the controller more flexibility for maintaining the 

desired value (48 VDC).  

 

Figure 5. 8: The PI controller for the maximum fuel cell current[4] 
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Figure 5. 9: Complete system in MATLAB/ Simulink 

 

The minimum and maximum voltage value represent the allowable voltage range to 

charge the battery with less harmful effects. If the battery exceeds these values, an 

explosion and damage can occur. Finally, in MATLAB / Simulink, the complete system 

was created and modified to show the dynamic model system using the PI controller, as 

shown in Figure 5.11. The main components of the system are the fuel cell system with 

oxygen and hydrogen tanks, a Li-ion battery, the BLDC motor and the energy management 

block, which controls the output parameters of each block and maintains the parameters 

shown in Table 5.1. The auxiliary components are boost converters, buck converters, the 

universal bridge, the speed-torque curve, and the PI gain calculator.  
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5.5. Results and Discussion 

 

The integration of the fuel cell into the existing battery power system plays a significant 

role in running the MUN Explorer AUV under the desired and proper operating conditions.  

To maintain these conditions, an energy management system using a PI controller has been 

implemented into the dynamic model of the MUN Explorer. Figure 5.11 explains the block 

connections of the complete model with the PI controller energy management system in 

MATLAB/Simulink. Figure 5. 12 shows the relationship between the load torque and 

motor speed. This curve can be generated from the Speed-Torque block in Figure 5.11. The 

Y-axis shows the load torque applied to the motor, and the X-axis represents the speed of 

the motor. The limits of the operating region illustrate the maximum load torque by which 

the motor can maintain the desired speed at 20 (rad/s). The yellow region shows the load 

torque in acceleration, and the gray region illustrates the speed in steady-state operation.  
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Figure 5. 10: Load torque versus speed motor

 

The BLDC motor was able to achieve the operating conditions by controlling the 

torque and speed and maintaining them at the desired points. The curve between the load 

torque and speed is plotted to illustrate the operating point in the region. The input power 

of the BLDC motor is decreased when the power of the battery and fuel cell also decrease. 

Since the fuel cell and battery are directly connected to the BLDC motor, the dropping 

power causes the mechanical output torque to decrease too. Since the stator current is 
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proportional to the torque, the stator current is also decreased. The rotor speed is decreased 

when the input power decreases.  

Figure 5.13 shows the simulation results for the stator current, rotor speed, 

electromagnetic torque and DC bus voltage. From the results, the stator current value is 

varying between 10 and –10 A, and the rotor speed (wm) is 20 rad/s, which is equivalent to 

190 (rpm). These values are verified and confirmed by the MUN Explorer manufacturer’s 

data sheet. The electromagnetic torque (Tem) is also changing from (10 to -10) N-m. The 

DC bus voltage has 48 V, which verifies the motor drive voltage. Moreover, there is also a 

jump of the four physical quantities (stator current, rotor speed, electromagnetic torque and 

DC bus voltage) due to the fuel cell dynamics and starting points. As noted by the 

manufacturer of the fuel cell, it takes the cell up to 20 seconds to be turned on and generate 

the voltage.    

The power profile for the load, fuel cell and the battery are illustrated in Figure 5.14. 

The blue result shows the load power (W), which represents the BLDC motor load. 

Similarly, the red and yellow results show the power profile (W) for the fuel cell and battery, 

respectively. The results illustrate that the fuel cell and battery power follow the load 

demand, and then the battery power decreases to let the fuel cell generate the maximum 

power.  
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Figure 5. 11:  Simulation results for stator current, rotor speed, electromagnetic torque, and DC bus voltage 
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Figure 5. 12: Power profile for the load, fuel cell and the battery in (W)
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Figure 5. 13: Three-phase voltage and current measurements 
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Each power profile is plotted in a separate figure that can be seen in the appendix 

number five (Page number 153-154). From the figures, the changing in the power profile 

from 20 sec to 30 sec is caused by the fuel cell’s starting operating points, due to the 

dynamic characteristic behaviour. 

The simulation runs for 100 (seconds) to ensure the values of Table 5.1 are met and 

verified. It should have been run for 3600 seconds (1 hr) or at least 1800 seconds (30 min), 

but the lack of memory prevents it from achieving these times. Figure  5.15 shows the three-

phase voltage and current measurements of the model. As seen in Figure 5.15, the results 

show good agreement in terms of voltage and current measurements.  

The hydrogen fuel consumption is illustrated in Figure 5.16. It shows the fuel 

consumption increase over time. To meet the proposed values in Table 1, the control system 

using the PI controller is implemented and studied. The classical PI control results show 

that the battery discharges faster in order to reach the SOC reference point, whereas the 

fuel cell provides almost all the load power and recharges the battery. The PI controller 

provides a good result to meet the power requirements, but these results can be improved 

by implementing a different controller such as a Fuzzy-Logic Controller (FLC). An FLC 

will give better results, as documented in the literature.  
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Figure 5. 14: Hydrogen fuel consumption (g) 
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5.6. Conclusion 

 

The control system using a PI controller for the MUN Explorer Autonomous 

Underwater Vehicle’s power system was studied and implemented in this chapter. To 

ensure that the MUN Explorer ran efficiently and smoothly, some power requirements were 

imposed and studied, as shown in Table 1. The power profiles for the fuel cell and battery 

were presented and discussed, as well as the power load profile. All the data for the BLDC 

motor and battery were collected and applied from the manufacturer’s data sheet to meet 

the exact same operating conditions. The PI controller showed good results in terms of the 

response. The DC bus voltage was measured at 48 V, and the motor speed was 20 (rad/s), 

which is equivalent to 190 (rpm). The system components were simulated in MATLAB / 

Simulink. The PI controller is simple to be implemented into the proposed system and 

easily tuned.  

Future work that builds on this research should implement other types of controllers, 

such as Fuzzy logic controllers or state machine controllers. A Fuzzy controller would be 

the best choice for such a system. Other future work could experiment with this model to 

verify the simulation results.  
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Conclusion, Contributions and Future Work  

 

6.1.   Introduction  

Integration of the fuel cell with batteries is an important factor in portable power 

systems and applicable for many applications, such as electric cars and autonomous 

underwater vehicles. Two major challenges facing these applications are the limited spaces 

and heavy weights.  

 The significance of deploying the MUN Explorer AUV in many different locations 

to do surveying missions makes it an important topic for research. The need for integration 

to improve its power system and to overcome some of the limitations of the MUN Explorer 

AUV has motivated me to contribute to this application by developing a new sizing and 

dynamic model of the fuel cell with batteries.   

In this research, the integration of the PEM fuel cell into existing lithium- ion batteries and 

hydrogen / oxygen production are addressed by focusing on different areas such as solar 

energy hydrogen generation; wind energy hydrogen production; sizing the new power 

system for the Explorer; building the dynamic model for the new power system in 

MATLAB /Simulink; and maintaining the operating conditions for the MUN Explorer, 

including  motor speed, DC bus voltage and the load torque.   
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6.2.  Conclusion  

 

In this thesis, an investigation of a new dynamic model, approaches and integration 

have been studied to estimate and manage the MUN Explorer AUV power system. Some 

of the challenges of the existing MUN Explorer power system have been explored and 

mitigated. A Fuel Cell Energy / Power System (FCEPS) is used to power the propulsion 

system of an Unmanned Underwater Vehicle (UUV) application, which has the potential 

to significantly increase the energy storage in a UUV, compared to the use of rechargeable 

batteries [1].   

The significance of the data collection from the seabed motivates the Responsive 

AUV Localization and Mapping (REALM) project, which is supported by Memorial 

University and others, to invest in and improve advanced AUV navigation and performance 

by developing solutions and enhancements. This thesis is focused on the same direction, to 

improve the power system of the MUN Explorer by enhancing and increasing the power 

system capacity. The proposed power system is sized by HOMER software and the 

dynamic model is built in MATLAB / Simulink to observe the systems behaviour and 

shows close results between the old and the proposed system. This thesis is also focused 

on hydrogen / oxygen gas production from renewable energy sources, as well as battery 

recharge to complete a certain mission. The proposed system of the MUN Explorer has 

increased the power capacity from 17.952 kWh to 36.8 kWh. The results from hydrogen 

production systems (solar and wind) is measured to be 7.0 ml/min. 
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Finally, this thesis provides and contributes to the MUN Explorer AUV application 

by enhancing a variety of solutions in terms of power capacity and reducing some 

components as well as augmenting the industry applications. Yet, some of the challenges 

cannot be resolved, due to the lack of equipment and financial support, such as of 

implementation the proposed dynamic model system into the actual the MUN Explorer 

AUV. The information and data presented in this thesis are beneficial and can be used for 

similar applications.  

 

6.3.  Contributions  

This research contributions are achieved and listed as following,  

 

1. Solar energy hydrogen production  is investigated experimentally and from 

simulation.  

2. Wind energy hydrogen production is investigated  experimentally and from 

simulation. 

3. A PEM Fuel Cell is integrated into an AUV existing power system.  

4. A new AUV power system is sized and created using HOMER and MTLAB / 

Simulink. 

5. A PI controller is applied to maintain the MUN Explorer operating conditions 

for the MUN Explorer.  
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6.4. Recommendations for Future Research Work  

In this dissertation, the developments of new approaches and findings have been 

investigated and have enhanced / extended the MUN Explorer’s power and energy system 

capacity. Some of the recommendations and potential future work are discussed below:  

1. Hydrogen production was generated from small renewable energy sources’ 

equipment and the hydrogen and oxygen stored in small tanks. The model can be 

improved and extended by having a larger scale in order to obtain more results and 

run for a longer time.  

2. In this thesis, the proposed power system of the MUN Explorer AUV is sized and 

the dynamic model is built in MATLAB/ Simulink. However, the experimental set-

up is highly recommended to give more validated results.   

3. The MUN Explorer AUV is owned by the Responsive AUV Localization and 

Mapping (REALM) project, supported by the Atlantic Canada Opportunities 

Agency Atlantic Innovation Fund, Research & Development Corporation 

Newfoundland and Labrador, Fugro GeoSurvey’s Inc. and Memorial University of 

Newfoundland. It would be helpful to expand its availability, in order to apply this 

research to the actual MUN Explorer AUV.  

4. The AUV is working under specified operating conditions to complete its mission. 

In this thesis, the PI controller is implemented in the proposed dynamic model in 

order to maintain these conditions. However, it is highly recommended to 

implement other controllers such as Fuzzy logic.  
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Appendix -Chapter 1 
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id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%

26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D#id=4&iurl

=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-

icon-lithiumion-symbol-vector-vector-

id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%

26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D&action=cl

ick  

6) https://www.google.com/search?biw=1366&bih=657&tbm=isch&sa=1&ei=OxQ

WXtqCO6GvggfrgbeQDg&q=brushless+DC+motors+symbel+&oq=brushless+D

C+motors+symbel+&gs_l=img.3...9594.22419..23220...4.0..0.151.1438.9j5......0..

..1..gws-wiz 

img.......0i67j0i7i30j0i8i30j0i24j0i10i24j0i5i30j0i30.yVtvVbTPyPM&ved=0ahU

KEwiajICyxvTmAhWhl-

AKHevADeIQ4dUDCAc&uact=5#imgrc=7jPyYxcZYixoZM: 

 

 

https://www.google.com/search?q=wind+turbine+symbol&source=lnms&tbm=isch&sa=X&ved=2ahUKEwjigpfDupfnAhVRCM0KHX8ZBNwQ_AUoAXoECA0QAw&biw=1366&bih=608#imgrc=jq3_Fk7JCq403M:
https://www.google.com/search?q=wind+turbine+symbol&source=lnms&tbm=isch&sa=X&ved=2ahUKEwjigpfDupfnAhVRCM0KHX8ZBNwQ_AUoAXoECA0QAw&biw=1366&bih=608#imgrc=jq3_Fk7JCq403M:
https://www.google.com/search?q=wind+turbine+symbol&source=lnms&tbm=isch&sa=X&ved=2ahUKEwjigpfDupfnAhVRCM0KHX8ZBNwQ_AUoAXoECA0QAw&biw=1366&bih=608#imgrc=jq3_Fk7JCq403M:
https://www.google.com/search?biw=1366&bih=608&tbm=isch&sa=1&ei=02IoXq2yIou1tAa9z7TgDg&q=isolated+dc+dc+converter+symbol&oq=dc+dc+converter+symbol+&gs_l=img.1.1.0i30j0i5i30j0i8i30.11660.11660..21136...0.0..0.126.475.0j4......0....1..gws-wiz-img.......0j0i7i30.nV6cVc9nN3U#imgrc=aAosyB_M9LuutM:
https://www.google.com/search?biw=1366&bih=608&tbm=isch&sa=1&ei=02IoXq2yIou1tAa9z7TgDg&q=isolated+dc+dc+converter+symbol&oq=dc+dc+converter+symbol+&gs_l=img.1.1.0i30j0i5i30j0i8i30.11660.11660..21136...0.0..0.126.475.0j4......0....1..gws-wiz-img.......0j0i7i30.nV6cVc9nN3U#imgrc=aAosyB_M9LuutM:
https://www.google.com/search?biw=1366&bih=608&tbm=isch&sa=1&ei=02IoXq2yIou1tAa9z7TgDg&q=isolated+dc+dc+converter+symbol&oq=dc+dc+converter+symbol+&gs_l=img.1.1.0i30j0i5i30j0i8i30.11660.11660..21136...0.0..0.126.475.0j4......0....1..gws-wiz-img.......0j0i7i30.nV6cVc9nN3U#imgrc=aAosyB_M9LuutM:
https://www.google.com/search?biw=1366&bih=608&tbm=isch&sa=1&ei=02IoXq2yIou1tAa9z7TgDg&q=isolated+dc+dc+converter+symbol&oq=dc+dc+converter+symbol+&gs_l=img.1.1.0i30j0i5i30j0i8i30.11660.11660..21136...0.0..0.126.475.0j4......0....1..gws-wiz-img.......0j0i7i30.nV6cVc9nN3U#imgrc=aAosyB_M9LuutM:
https://www.google.com/search?biw=1366&bih=608&tbm=isch&sa=1&ei=02IoXq2yIou1tAa9z7TgDg&q=isolated+dc+dc+converter+symbol&oq=dc+dc+converter+symbol+&gs_l=img.1.1.0i30j0i5i30j0i8i30.11660.11660..21136...0.0..0.126.475.0j4......0....1..gws-wiz-img.......0j0i7i30.nV6cVc9nN3U#imgrc=aAosyB_M9LuutM:
https://www.google.com/search?biw=1366&bih=657&tbm=isch&sa=1&ei=c7UUXteWLIa5tQb54Jow&q=electrolyzer+symbol&oq=electrolyzer+symbol&gs_l=img.12..0.30635081.30643085..31424068...0.0..0.142.1610.0j13......0....1..gws-wiz-img.......0i67j0i7i30j0i7i10i30j0i10.Url130a-ykQ&ved=0ahUKEwiXnPTt9_HmAhWGXM0KHXmwBgYQ4dUDCAc#imgrc=0dfE9-lgmz5mfM:
https://www.google.com/search?biw=1366&bih=657&tbm=isch&sa=1&ei=c7UUXteWLIa5tQb54Jow&q=electrolyzer+symbol&oq=electrolyzer+symbol&gs_l=img.12..0.30635081.30643085..31424068...0.0..0.142.1610.0j13......0....1..gws-wiz-img.......0i67j0i7i30j0i7i10i30j0i10.Url130a-ykQ&ved=0ahUKEwiXnPTt9_HmAhWGXM0KHXmwBgYQ4dUDCAc#imgrc=0dfE9-lgmz5mfM:
https://www.google.com/search?biw=1366&bih=657&tbm=isch&sa=1&ei=c7UUXteWLIa5tQb54Jow&q=electrolyzer+symbol&oq=electrolyzer+symbol&gs_l=img.12..0.30635081.30643085..31424068...0.0..0.142.1610.0j13......0....1..gws-wiz-img.......0i67j0i7i30j0i7i10i30j0i10.Url130a-ykQ&ved=0ahUKEwiXnPTt9_HmAhWGXM0KHXmwBgYQ4dUDCAc#imgrc=0dfE9-lgmz5mfM:
https://www.google.com/search?biw=1366&bih=657&tbm=isch&sa=1&ei=c7UUXteWLIa5tQb54Jow&q=electrolyzer+symbol&oq=electrolyzer+symbol&gs_l=img.12..0.30635081.30643085..31424068...0.0..0.142.1610.0j13......0....1..gws-wiz-img.......0i67j0i7i30j0i7i10i30j0i10.Url130a-ykQ&ved=0ahUKEwiXnPTt9_HmAhWGXM0KHXmwBgYQ4dUDCAc#imgrc=0dfE9-lgmz5mfM:
https://www.google.com/search?biw=1366&bih=657&tbm=isch&sa=1&ei=c7UUXteWLIa5tQb54Jow&q=electrolyzer+symbol&oq=electrolyzer+symbol&gs_l=img.12..0.30635081.30643085..31424068...0.0..0.142.1610.0j13......0....1..gws-wiz-img.......0i67j0i7i30j0i7i10i30j0i10.Url130a-ykQ&ved=0ahUKEwiXnPTt9_HmAhWGXM0KHXmwBgYQ4dUDCAc#imgrc=0dfE9-lgmz5mfM:
https://www.google.com/search?biw=1366&bih=657&tbm=isch&sa=1&ei=c7UUXteWLIa5tQb54Jow&q=electrolyzer+symbol&oq=electrolyzer+symbol&gs_l=img.12..0.30635081.30643085..31424068...0.0..0.142.1610.0j13......0....1..gws-wiz-img.......0i67j0i7i30j0i7i10i30j0i10.Url130a-ykQ&ved=0ahUKEwiXnPTt9_HmAhWGXM0KHXmwBgYQ4dUDCAc#imgrc=0dfE9-lgmz5mfM:
https://ca.images.search.yahoo.com/search/images?p=lituim+ion+battery+symble&fr=mcafee&imgurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D#id=4&iurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D&action=click
https://ca.images.search.yahoo.com/search/images?p=lituim+ion+battery+symble&fr=mcafee&imgurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D#id=4&iurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D&action=click
https://ca.images.search.yahoo.com/search/images?p=lituim+ion+battery+symble&fr=mcafee&imgurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D#id=4&iurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D&action=click
https://ca.images.search.yahoo.com/search/images?p=lituim+ion+battery+symble&fr=mcafee&imgurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D#id=4&iurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D&action=click
https://ca.images.search.yahoo.com/search/images?p=lituim+ion+battery+symble&fr=mcafee&imgurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D#id=4&iurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D&action=click
https://ca.images.search.yahoo.com/search/images?p=lituim+ion+battery+symble&fr=mcafee&imgurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D#id=4&iurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D&action=click
https://ca.images.search.yahoo.com/search/images?p=lituim+ion+battery+symble&fr=mcafee&imgurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D#id=4&iurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D&action=click
https://ca.images.search.yahoo.com/search/images?p=lituim+ion+battery+symble&fr=mcafee&imgurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D#id=4&iurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D&action=click
https://ca.images.search.yahoo.com/search/images?p=lituim+ion+battery+symble&fr=mcafee&imgurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D#id=4&iurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D&action=click
https://ca.images.search.yahoo.com/search/images?p=lituim+ion+battery+symble&fr=mcafee&imgurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D#id=4&iurl=https%3A%2F%2Fmedia.istockphoto.com%2Fvectors%2Fliion-car-battery-icon-lithiumion-symbol-vector-vector-id995535630%3Fk%3D6%26m%3D995535630%26s%3D612x612%26w%3D0%26h%3D7k14r38ZUQ10Ru6orBCEDEg5WKi6vStrMcfftpt2PRQ%3D&action=click
https://www.google.com/search?biw=1366&bih=657&tbm=isch&sa=1&ei=OxQWXtqCO6GvggfrgbeQDg&q=brushless+DC+motors+symbel+&oq=brushless+DC+motors+symbel+&gs_l=img.3...9594.22419..23220...4.0..0.151.1438.9j5......0....1..gws-wiz%20img.......0i67j0i7i30j0i8i30j0i24j0i10i24j0i5i30j0i30.yVtvVbTPyPM&ved=0ahUKEwiajICyxvTmAhWhl-AKHevADeIQ4dUDCAc&uact=5#imgrc=7jPyYxcZYixoZM:
https://www.google.com/search?biw=1366&bih=657&tbm=isch&sa=1&ei=OxQWXtqCO6GvggfrgbeQDg&q=brushless+DC+motors+symbel+&oq=brushless+DC+motors+symbel+&gs_l=img.3...9594.22419..23220...4.0..0.151.1438.9j5......0....1..gws-wiz%20img.......0i67j0i7i30j0i8i30j0i24j0i10i24j0i5i30j0i30.yVtvVbTPyPM&ved=0ahUKEwiajICyxvTmAhWhl-AKHevADeIQ4dUDCAc&uact=5#imgrc=7jPyYxcZYixoZM:
https://www.google.com/search?biw=1366&bih=657&tbm=isch&sa=1&ei=OxQWXtqCO6GvggfrgbeQDg&q=brushless+DC+motors+symbel+&oq=brushless+DC+motors+symbel+&gs_l=img.3...9594.22419..23220...4.0..0.151.1438.9j5......0....1..gws-wiz%20img.......0i67j0i7i30j0i8i30j0i24j0i10i24j0i5i30j0i30.yVtvVbTPyPM&ved=0ahUKEwiajICyxvTmAhWhl-AKHevADeIQ4dUDCAc&uact=5#imgrc=7jPyYxcZYixoZM:
https://www.google.com/search?biw=1366&bih=657&tbm=isch&sa=1&ei=OxQWXtqCO6GvggfrgbeQDg&q=brushless+DC+motors+symbel+&oq=brushless+DC+motors+symbel+&gs_l=img.3...9594.22419..23220...4.0..0.151.1438.9j5......0....1..gws-wiz%20img.......0i67j0i7i30j0i8i30j0i24j0i10i24j0i5i30j0i30.yVtvVbTPyPM&ved=0ahUKEwiajICyxvTmAhWhl-AKHevADeIQ4dUDCAc&uact=5#imgrc=7jPyYxcZYixoZM:
https://www.google.com/search?biw=1366&bih=657&tbm=isch&sa=1&ei=OxQWXtqCO6GvggfrgbeQDg&q=brushless+DC+motors+symbel+&oq=brushless+DC+motors+symbel+&gs_l=img.3...9594.22419..23220...4.0..0.151.1438.9j5......0....1..gws-wiz%20img.......0i67j0i7i30j0i8i30j0i24j0i10i24j0i5i30j0i30.yVtvVbTPyPM&ved=0ahUKEwiajICyxvTmAhWhl-AKHevADeIQ4dUDCAc&uact=5#imgrc=7jPyYxcZYixoZM:
https://www.google.com/search?biw=1366&bih=657&tbm=isch&sa=1&ei=OxQWXtqCO6GvggfrgbeQDg&q=brushless+DC+motors+symbel+&oq=brushless+DC+motors+symbel+&gs_l=img.3...9594.22419..23220...4.0..0.151.1438.9j5......0....1..gws-wiz%20img.......0i67j0i7i30j0i8i30j0i24j0i10i24j0i5i30j0i30.yVtvVbTPyPM&ved=0ahUKEwiajICyxvTmAhWhl-AKHevADeIQ4dUDCAc&uact=5#imgrc=7jPyYxcZYixoZM:
https://www.google.com/search?biw=1366&bih=657&tbm=isch&sa=1&ei=OxQWXtqCO6GvggfrgbeQDg&q=brushless+DC+motors+symbel+&oq=brushless+DC+motors+symbel+&gs_l=img.3...9594.22419..23220...4.0..0.151.1438.9j5......0....1..gws-wiz%20img.......0i67j0i7i30j0i8i30j0i24j0i10i24j0i5i30j0i30.yVtvVbTPyPM&ved=0ahUKEwiajICyxvTmAhWhl-AKHevADeIQ4dUDCAc&uact=5#imgrc=7jPyYxcZYixoZM:
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 Appendix -Chapter 2 

 

Anode mathematical details in Electrolyzer 
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Cathode mathematical details in Electrolyzer 

Membrane mathematical details in Electrolyzer 
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Voltage ancillary mathematical details in Electrolyzer 
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Appendix -Chapter 4 

Sensitivity analysis  

“For example, image that a modeler doing a preliminary analysis of a wind-diesel system 

was uncertain about three variables: the annual average wind speed, the average fuel price 

over the life of the project, and the interest rate. To determine the sensitivity of the system's 

cost of energy to those three variables, she did a sensitivity analysis using HOMER. Her 

best estimate for the wind speed was 6 m/s, for the fuel price was $0.50/L, and for the 

interest rate was 8%. But she entered multiple values for each variable, covering the range 

of uncertainty of each. HOMER produced the spider graph shown below, showing that the 

cost of energy is most sensitive to the wind speed (the wind speed line is the steepest). As 

a result, the modeler chose to invest more time and money to obtain a more accurate 

estimate of the wind speed” [ Homer Help Sources]. 
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Components  Cost 

Fuel cell (500/1k) W $3084/ $4284 

Electrolyzer $1509 

Hydrogen Tank $915 

Battery $840 

Wind turbine  $800 

PV panel  $3600 

DC Motor $60 

 

 
https://www.mun.ca/engineering/research/facilities/centres/oerc/facilities/merlin/explorerauv.php 
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https://www.fuelcellstore.com/fuel-cell-stacks/high-power-fuel-cell-stacks/horizon-1000watt-fuel-cell-h-1000 

https://www.fuelcellstore.com/fuel-cell-stacks/high-power-fuel-cell-stacks/horizon-1000watt-fuel-cell-h-1000
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https://www.fuelcellstore.com/hydrogen-equipment/electrolyzer-230-e107 

https://www.alibaba.com/product-detail/cheapest-1000W-wind-alternator-48v-for_60158460072.html 
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https://www.alibaba.com/product-detail/48v-brushless-dc-motor-

nema34220w_60500232517.html?spm=a2700.7724838.2017115.96.57493907yRTCES 

 

-

 

https://www.fuelcellstore.com/bl-30-metal-hydride 
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https://www.fuelcellstore.com/hydrogen-equipment/hydrogen-storage/bl-20-metal-hydride 

https://www.fuelcellstore.com/bl-60-metal-hydride 

For the selection of the three hydrogen tanks, the cost of each one has entered HOMER 

Software inputs based on their sizes (kg) as listed in the table below. 

 

And the capacity and pressure are listed below: 

For 0.307 Kg 

Hydrogen Capacity of 20-21 standard liters (0.76-0.80 scf) 

Hydrogen Pressure when Charging or Discharging is 1-12 bar at room temperature 

 

 

 

https://www.fuelcellstore.com/hydrogen-equipment/hydrogen-storage/bl-20-metal-hydride
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For 0.400 Kg 

Hydrogen Capacity of 30-34 standard liters (1.14-1.3 scf) 

Hydrogen Pressure when Charging or Discharging is 1-12 bar at room temperature 

For 0.636 Kg 

Hydrogen Capacity of 60-69 standard liters (2.28-2.64 scf) 

Hydrogen Pressure when Charging or Discharging is 1-12 bar at room temperature 

Table for compressed hydrogen  
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