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Abstract. In timed Petri nets, temporal properties are associated with
transitions as transition firing times (or occurrence times). For net mod-
els which can be decomposed into a family of place invariants, perfor-
mance analysis can be conveniently performed on the basis of its com-
ponents. The paper presents an approach to finding place invariants of
net models and proposes an incremental method which, for large models,
can significantly reduce the required amount of computations.
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1 Introduction

Petri nets [7], [8], [12], [13] have been proposed as a formalism for modeling and
analysis of discrete–event systems with asynchronous, interacting components.
Computer and communication networks, manufacturing systems and transporta-
tion networks are just a few examples of such systems. Popularity of net models
is due to a simple and ‘natural’ representation of concurrent and asynchronous
activities, typical for many discrete–event dynamical systems, that, however,
cannot be modeled easily using queueing theory or other traditional modeling
and evaluation techniques. Moreover, a well–developed mathematical founda-
tions exists for the description and analysis of net models.

In order to study the performance aspects of Petri net models, the duration of
activities must also be taken into account. Several types of Petri nets ‘with time’
have been proposed by assigning ‘firing times’ to transitions or ‘enabling times’ to
places [1], [9], [14]. In timed Petri nets [11], [3], [15], [16], the events occur in ‘real
time’, i.e., there is a (deterministic or stochastic) duration associated with each
transition’s firing, and different (concurrent) firings of transitions correspond
to (concurrent) activities in the modeled systems. For timed Petri nets, the
concept of ‘state’ and state transitions can be formally defined, and used to
derive different performance characteristics of the model [16].

For a class of Petri net models, structural analysis, based on place invariants
[13], is an attractive approach because it provides an analytical characterization
of the model’s performance, and also it eliminates the exhaustive analysis of the
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state space (which can be huge for large models). Structural analysis is based on
the set of place invariants, which – for complex models – can be difficult to find.
Incremental approach reduces the process of finding basic place invariants by first
finding the invariants for very simple submodels of the original models, and then
combining the submodels into more complex ones with invariants determined in
a way that eliminates many steps of the direct approach to finding the invariants.

Section 2 recalls basic concepts of Petri nets and timed nets, their place invari-
ants and (structural) performance analysis. Finding place invariants is discussed
in Section 3 while Section 4 introduces the incremental approach and compares
it with the direct approach of Section 3. Section 5 provides some concluding
remarks.

2. Nets, net invariants, timed nets and performance analysis

A place/transition (ordinary, i.e., with no arc weights) net N is a triple
N = (P, T,A) where P is a finite, nonempty set of places, T is a finite, nonempty
set of transitions, and A is a set of directed arcs, A ⊆ P × T ∪ T × P , such that
for each transition there exists at least one place connected with it. For each
place p (and each transition t) the input set, Inp(p) (or Inp(t)), is the set of
transitions (or places) connected by directed arcs to p (or t). The output sets,
Out(p) and Out(t), are defined similarly.

A marked Petri net M is a pair M = (N,m0) where N is a Petri net,
N = (P, T,A), and m0 is an initial marking function, m0 : P → {0, 1, ...} which
assigns a (nonnegative) integer number of tokens to each place of the net.

Let any function m : P → {0, 1, ...} be called a marking in a net N =
(P, T,A).

A transition t is enabled by a marking m iff m assigns at least one token to
every input place of this transition. Every transition enabled by a marking m
can fire (or occur). When a transition fires, a token is removed from each of its
input places and a token is added to each of its output places. This determines
a new marking in a net, new set of enabled transitions, and so on. The set
of all markings that can be derived from the initial marking is called the set
of reachable markings. If this set if finite, the net is bounded, otherwise it is
unbounded.

A place p is shared iff it is an input place for more than one transition.
A net is (structurally or statically) conflict–free if it does not contain shared
places. A marked net is (dynamically) conflict–free if for any marking in the
set of reachable markings, and for any shared place, at most one of transitions
sharing the place is enabled. Only bounded conflict–free nets are considered in
this paper.

Each place/transition net N = (P, T,A) can be represented by a connectivity
(or incidence) matrix C : P × T → {−1, 0,+1} in which places correspond to
rows, transitions to columns, and the entries are defined as:
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∀ p ∈ P ∀ t ∈ T : C[p, t] =

{

−1, if t ∈ Out(p)− Inp(t),
+1, if t ∈ Inp(p)−Out(p),
0, otherwise.

If a marking mj is obtained from another marking mi by firing a transition tk
then (in vector notation) mj = mi + C[k], where C[k] denotes the k-th column
of C, i.e., the column representing tk.

Connectivity matrices disregard ‘selfloops’, that is, pairs of arcs (p, t) and
(t, p); any firing of a transition t cannot change the marking of p in such a
selfloop, so selfloops are neutral with respect to token count of a net. A pure net
is defined as a net without selfloops [13].

A P–invariant (place invariant) of a net N is any nonnegative, nonzero integer
(column) vector I which is a solution of the matrix equation

CT × I = 0,

where CT denotes the transpose of matrix C. It follows immediately from this
definition that if I1 and I2 are P–invariants of N, then also any linear (positive)
combination of I1 and I2 is a P–invariant of N.

A basic P–invariant of a net is defined as a P–invariant which does not contain
simpler invariants. All basic P–invariants I of ordinary nets are binary vectors
[13], I : P → {0, 1}.

A net Ni = (Pi, Ti, Ai) is a Pi-implied subnet of a net N = (P, T,A), Pi ⊂ P ,
iff:

(1) Ai = A ∩ (Pi × T ∪ T × Pi),
(2) Ti = {t ∈ T | ∃ p ∈ Pi : (p, t) ∈ A ∨ (t, p) ∈ A}.

It should be observed that in a (pure) net N, each P–invariant I of N de-
termines a PI -implied (invariant) subnet of N, where PI = {p ∈ P | I(p) > 0};
PI is sometimes called the support of the invariant I; all nonzero elements of I
select rows of C, and each selected row i corresponds to a place pi with all its
input (+1) and all output (–1) arcs associated with it.

For the Petri net shown in Fig.1, the connectivity matrix is:

C t1 t2 t3 t4 t5 t6
p1 −1 +1 0 0 0 0
p2 +1 −1 0 0 0 0
p3 0 −1 +1 0 0 0
p4 0 +1 −1 0 0 0
p5 +1 0 0 −1 0 0
p6 0 0 −1 +1 0 0
p7 0 0 +1 0 0 −1
p8 0 0 0 0 −1 +1
p9 −1 0 0 0 +1 0
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Fig.1. Petri net.

It can be easily observed that the sum of rows 1 and 2, as well as 3 and 4
are equal to zero, so {p1, p2} and {p3.p4} are basic place invariants. Similarly,
{p5, p6, p7, p8, p9} is also a basic place invariant. Subnets implied by these invari-
ants are shown in Fig.2.

p1 p2

t1

t2

p3 p4

t3

t2

p5

p6

p7

p8

p9

t4

t5

t6

t1

t3

(a) (b) (c)

Fig.2.Invariant implied subnets.

The net shown in Fig.1 has two more place invariants: {p1, p3, p5, p6} and
{p2, p4, p7, p8, p9}.

In timed Petri nets each transition takes a ‘real time’ to fire, i.e., there is
a ‘firing time’ associated with each transition of a net which determines the
duration of transition’s firings.

A conflict–free timed Petri net T is a pair T = (M, f) where:

M is a conflict–free marked Petri net, M = (N,m0), N = (P, T,A),
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f is a firing time function which assigns the nonnegative (average) firing time
f(t) to each transition t of the net, f : T → R⊕, and R⊕ denotes the set of
nonnegative real numbers.

The behavior of a timed Petri net can be represented by a sequence of ‘states’
and state transitions where each ‘state’ describes the distribution of tokens in
places as well as firing transitions of the net; detailed definitions of states and
state transitions are given in [16]. The states and state transitions can be com-
bined into a graph of reachable states; this graph is a semi–Markov process de-
fined by the timed net T. For cyclic conflict–free timed nets, such state graphs
are simple cycles which represent the cyclic behavior of such nets. Each such
timed Petri net contains a basic invariant subnet with the cycle time equal to
the cycle time of the whole net. All other subnets, with smaller cycle times, will
be subjected to some synchronization delays, imposed by the ‘slowest’ subnet
that determines the cycle time of the whole net.

The cycle time of the net, τ0, is thus equal to the maximum cycle time if its
invariant subnets [14]:

τ0 = max(τ1, τ2, ..., τk)

where k is the number of subnets covering the original net, and each τi, i =
1, ..., k, is the cycle time of the subnet i, equal to the sum of occurrence times
associated with the transitions divided by the total number of tokens assigned
to the subnet:

τi =

∑

t∈Ti
f(t)

∑

p∈Pi
m(p)

.

In many cases, the number of basic P–invariants can be reduced by removing
from the analyzed net all these elements which do not affect the performance of
models. Some of such reductions are discussed in [17].

3. Finding place invariants

Finding place invariants can be done in several ways [5] [6]. A polynomial
algorithm for finding all place invariants can be derived from the property that
the sum of rows of the connectivity matrix corresponding to a place invariant
is equal to zero. For each place pi, the algorithm starts with the i-th row of a
connectivity matrix and uses other rows to eliminate nonzero elements in the
original row. This is performed by a recursive procedure “Eliminate” with three
parameters, “w” which is the current working vector (initialized to the i-th row
of the connectivity matrix), “u” which is a set of places constituting the invariant
and “r” which is a set of columns of the connectivity matrix (i.e., transitions)
used for reductions of “w”:
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fun Eliminate (w : array [1..nt] of int, u : set of int, r : set of int);
begin

if w = 0 then

add(u,Inv)
else

for i := 1 to nt do

if w[i] 6= 0 then

for j := 1 to np do

if w[i] + M[j,i] = 0 ∧ check(r,w+M[j,*]) then

Eliminate(w + M[j,*],u ∪ { j },r ∪ { i })
fi

od

fi

od

fi

end

“Inv” is the set of invariants and “add(u,Inv)” adds the invariant “u” to the set
“Inv” if it is not there; nt is the number of transitions and np is the number
of places. The logical function “check(r,x)” returns true if the set of indices of
nonzero elements of the vector “x” contains any element of the set “r”.

“Eliminate” is invoked for consecutive places of the net model:

program Invariants1;
Inv := {};
for i := 1 to np do

w := M[i,*];
u := { i };
r := {};
Eliminate(w,u,r)

od

end

The initial steps of finding place invariants for the model shown in Fig.1 are
presented in Tab.1; the table shows the vector “w”, the set “u” and the set “r”
for consecutive invocations of “Eliminate”).

The complete set of basic place invariants for the net shown in Fig.1 is:

i place invariant implied transitions
1 {p1, p2} t1, t2
2 {p3, p4} t2, t3
3 {p5, p6, p7, p8, p9} t1, t3, t4, t5, t6
4 {p1, p3, p5, p6} t1, t2, t3, t4
5 {p2, p4, p7, p8, p9} t1, t2, t3, t5, t6

so the cycle time is:
τ0 = max(τ1, τ2, τ3, τ4, τ5)
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Table 1. Finding place invariants for the net shown in Fig.1.

i w u r

1 -1,+1,0,0,0,0 {1} {}
0.0,0,0,0,0 {1, 2} {1} invariant {1, 2}

0,+1,0,-1,0 0 {1, 5} {1}
0,0,+1,-1.0,0 {1, 5, 3} {1, 2}
0,0,0,0,0,0 {1, 5, 3, 6} {1, 2, 3} invariant {1, 3, 5, 6}

2 +1,-1,0,0,0,0 {2} {}
0,0,0,0,0,0 {2, 1} {1} invariant {1, 2}

0,-1,0,0,0,+1 {2, 9} {1}
0,0,-1,0,0,+1 {2, 9, 4} {1, 2}
0,0,0,0,-1,+1 {2, 9, 4, 7} {1, 2, 3}
0,0,0,0,0,0 {2, 9, 4, 7, 8} {1, 2, 3, 5} invariant {2, 4, 7, 8, 9}

3 0,-1,+,0,0,0 {3} {}
-1,0,+1,0,0,0 {3, 1} {1}
0,0,+1,-1,0,0 {3, 1, 5} {1, 3}

. . . . . . . . . . . .

9 -1,0,0,0,0,+1 {9} {}
0,-1,0,0,0,+1 {9, 2} {1}
0,0,-1,0.0,+1 {9, 2, 4} {1, 2}
0,0,0,0,-1,+1 {9, 2, 4, 7} {1, 2, 3}
0,0,0,0,0,0 {9, 2, 4, 7, 8} {1, 2, 3, 5} invariant {2, 4, 7, 8, 9}

where:

τ1 = f(t1) + f(t2),
τ2 = f(t2) + f(t3),
τ3 = f(t1) + f(t3) + f(t4) + f(t5) + f(t6),
τ4 = (f(t1) + f(t2) + f(t3) + f(t4))/2,
τ5 = f(t1) + f(t2) + f(t3) + f(t5) + f(t6).

Other performance characteristics can be derived in a similar way [4].

4. Incremental approach

In many cases, the components of the model are known in advance and can
be used for incremental approach to finding place invariants of a net model.

For the example shown in Fig.2, place invariants of simple subnets are obvious
(and even formally can be determined in a single step). Submodels (a) and
(c) (i.e., subnets implied by place invariants {p1, p2} and {p5, p6, p7, p8, p9}) are
combined using a single transition (t1) which does not change the invariants.
The combined subnet implied by {p1, p2, p5, p6, p7, p8, p9} is merged with the
remaining subnet by transitions t2 and t3, as shown in Fig.3. This integration
can create new invariants, but all such invariants must contain places connected
to t2 and/or t3, so only these places should be checked for new place invariants.
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Fig.3. Merging subnets.

In general, if two subnets are merged by transitions in a set Tshared, new
place invariants are found by the same procedure as before but restricted to
places in the set Inp(Tshared) and Out(Tshared):

program Invariants2;
Inv := {};
for each pi in Inp(Tshared) ∪ Out(Tshared) do

w := M[i,*];
u := { i };
r := {};
Eliminate(w,u,r)

od

end

Analysis of the case shown in Fig.3 corresponds to a part of Tab.1 that
includes places p1 to p4, p6 and p7, which is about one half of the total Table.

It should be observed that the gains of the incremental approach actually
increase with the size of the model.

5. Concluding remarks

Invariant–based performance analysis derives analytical characterization of
the model’s performance provided the model is covered by a family of conflict–
free subnets. If this is the case, the subnets are implied by place invariants of
the net model. Efficient method of finding place invariants uses an incremental
approach of merging simple submodels into more complex ones.

It should be noted that the efficiency of the incremental approach depends
upon ordering the merged models. For instance, if the first step of merging the
submodels shown in Fig.2 combines submodels (a) and (b) rather than (a) and
(c), the potential advantages of the approach will be lost.

The process of finding place invariants can be simplified in several ways, for
example, by model reductions. Each simple path in the model can be reduced to
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a single element because any place invariant must either contain the whole path
or none of its elements. Similarly, parallel paths (i.e., simple paths originating
and terminating in a single transition) can be merged because if a place invariant
contains one of these paths then there must exist another invariant containing
the other path - there is no need to repeat the steps of finding these two invariants
independently.

A similar considerations in the context of deadlock analysis (and finding
siphons in net models) showed that simple net reductions can significantly reduce
the required computations [17].
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