
Model fusion for compatibility verification of
software components

W.M. Zuberek

Department of Computer Science, Memorial University,
St.John’s, NL, Canada A1B 3X5

email: wlodek@mun.ca

DepCoS-RELCOMEX 2014 - Proceedings of the 9-th International Conference (Advances
in Intelligent and Soft Computing 286), Brunow Palace, Poland, June 30 – July 4, 2014, pp.521-529.
Copyright c© 2014 Springer–Verlag. The original publication is available at www.springerlink.com.
DOI 10.1007/978-3-319-07013-1 50.

Abstract. Similarly as in earlier work on component compatibility, the
behavior of components is specified by component interface languages,
defined by labeled Petri nets. In the case of composition of concurrent
components, the requests from different components can be interleaved,
and - as shown earlier - such interleaving can result in deadlocks in the
composed system even if each pair of interacting components is deadlock–
free. Therefore the elements of a component–based system are considered
compatible only if the composition is deadlock–free. This paper formally
defines model fusion, which is a composition of net models of individual
components that represents the interleaving of interface languages of in-
teracting components. It also shows that the verification of component
compatibility can avoid the exhaustive analysis of the composed state
space.
Keywords: software components, component-based systems, compo-
nent composition, component compatibility, compatibility verification,
model fusion, labelled Petri nets.

1 Introduction

In component-based software development the functionality of a software system
is decomposed among loosely coupled independent software components. Such
a reuse-oriented approach to defining and implementing software systems has
recently been extensively studied as it is believed to be a starting platform for
service orientation [4], [10].

In component-based systems [10], two interacting components, one requesting
services and the other providing them, are considered compatible if all possible
sequences of services needed by the requesting component can be provided by
the other one. This concept of component compatibility can be extended to
sets of interacting components, however, in the case of several concurrent re-
quester components, as is typically the case for client–server applications, the
requests from different components can be interleaved and then verifying compo-
nent compatibility must take into account all possible interleavings of requests.
Such interleaving of requests can lead to unexpected behavior of the composed
system, i.e. a deadlock can occur indicating component incompatibility [21], [22].



522 Model fusion for compatibility verification of software components

The behavior of components is usually described at component interfaces [17]
and the components are characterized as requester (active) and provider (reac-
tive) components. Although several approaches to checking component compos-
ability have been proposed [1], [2], [4], [11], [13], [18], further research is needed
to make these ideas practical [9].

The paper is an extension of previous work on component compatibility and
substitutability [8], [20], [21], [22]. Using the same formal specification of compo-
nent behavior in the form of interface languages, the paper addresses the verifi-
cation of component compatibility. Since interface languages are usually infinite,
their compact finite specification is needed for effective processing. Labeled Petri
nets [20], [21] are used as such specification.

Petri nets [14], [15] are formal models of systems which exhibit concurrent
activities with constraints on frequency or orderings of these activities. In labeled
Petri nets, labels, which represent services, are associated with elements of nets
in order to control component interactions. Well-developed mathematical theory
of Petri nets provides a convenient formal foundation for analysis of systems
modeled by Petri nets.

Model fusion is proposed to represent the interactions of components. The
fusion operation is performed by merging Petri net transitions that request and
provide the same service. Interleavings of requests from concurrent components
result in different execution paths in the combined model. The components are
compatible, if the combined model is deadlock–free. Deadlock–freeness can be
verified by structural methods, avoiding the exhaustive state space analysis be-
cause model fusion preserves structural (some) properties of the fused elements.
If the interacting components are not compatible, some correcting steps are re-
quired (in the form of redesign of some components or additional constraints
which prevent some interleavings to occur).

Section 2 recalls the concept of interface languages as the description of
component’s behavior and Section 3 presents a linguistic version of component
compatibility. Section 4 illustrates the proposed concepts by a simple example
and shows that compatibility verification for some classes of systems can be
performed using structural analysis of the fused model. Section 5 concludes the
paper.

2 Component Behavior

The behavior of a component, at its interface, can be represented by a cyclic
labeled Petri net [7], [8], [21]:

Mi = (Pi, Ti, Ai, Si,mi, ℓi, Fi),

where Pi and Ti are disjoint sets of places and transitions, respectively, Ai is
the set of directed arcs, Ai ⊆ Pi × Ti ∪ Ti × Pi, Si is an alphabet representing
the set of services that are associated with transitions by the labeling function
ℓi : Ti → Si ∪ {ε} (ε is the “empty” service; it labels transitions which do not



Model fusion for compatibility verification of software components 523

represent services), mi is the initial marking function mi : Pi → {0, 1, ...}, and
Fi is the set of final markings (which are used to capture the cyclic nature of
sequences of firings).

Sometimes it is convenient to separate net structure N = (P, T,A) from the
initial marking function m.

In order to represent component interactions, the interfaces are divided into
provider interfaces (or p-interfaces) and requester interfaces (or r-interfaces). In
the context of a provider interface, a labeled transition can be thought of as a
service provided by that component; in the context of a requester interface, a
labeled transition is a request for a corresponding service. For example, the label
can represent a conventional procedure or method invocation. It is assumed that
if the p-interface requires parameters from the r-interface, then the appropriate
number and types of parameters are delivered by the r-interface. Similarly, it is
assumed that the p-interface provides an appropriate return value, if such a value
is required. The equality of symbols representing component services (provided
and requested) implies that all such requirements are satisfied.

For unambiguous interactions of requester and provider interfaces, it is re-
quired that in each p-interface there is exactly one labeled transition for each
provided service:

∀ti, tj ∈ T : ℓ(ti) = ℓ(tj) 6= ε ⇒ ti = tj .

Moreover, to express the reactive nature of provider components, all provider
models are required to be ε–conflict–free, i.e.:

∀t ∈ T ∀p ∈ Inp(t) : Out(p) 6= {t} ⇒ ℓ(t) 6= ε

where Out(p) = {t ∈ T | (p, t) ∈ A}; the condition for ε–conflict–freeness could
be used in a more relaxed form but this is not discussed here for simplicity of
presentation.

Component behavior is determined by the set of all possible sequences of
services (required or provided by a component) at a particular interface. Such a
set of sequences is called the interface language.

Let F(M) denote the set of firing sequences in M such that the marking
created by each firing sequence belongs to the set of final markings F of M. The
interface language L(M), of a component represented by a labeled Petri net M,
is the set of all labeled firing sequences of M:

L(M) = {ℓ(σ) | σ ∈ F(M)},

where ℓ(ti1ti2 ...tik) = ℓ(ti1)ℓ(ti2)...ℓ(tik).
By using the concept of final markings, interface languages can easily capture

the cyclic behavior of (requester as well as provider) components.
Interface languages defined by Petri nets include regular languages, some

context–free and even context–sensitive languages [12]. Therefore, they are sig-
nificantly more general than languages defined by finite automata [5], but their
compatibility verification is also more difficult than in the case of regular lan-
guages.



524 Model fusion for compatibility verification of software components

3 Component Compatibility

Interface languages of interacting components are used to define the compati-
bility of components. A pair of interacting components, a requester component
“r” and a provider component “p”, are compatible if and only if all sequences
of services requested by “r” can be provided by “p”, i.e., if and only if:

Lr ⊆ Lp.

In the case of several requester components, “ri”, i ∈ I, interacting with a
single provider component “p”, the component compatibility requires that all
sequences of (interleaved) requests be satisfied by the provider, so:

LI ⊆ Lp

where LI is the language of interleavings of requester languages Li, i ∈ I. It
should be observed that LI does not necessarily contain all possible interleavings
of requests because some requests cannot be satisfied immediately upon request
and are delayed until some other operations and/or their sequences are performed
by the provider component. All such restrictions are represented by the fused
component models.

4 Model Fusion

Model fusion is used to combine separate models of interacting components into
one model which represents the possible behaviors of the interacting components.
The general idea is sketched in Fig.1 where a single transition representing ser-
vice “a” in the provider component is combined with requests of this service in
two requester components - the provider transition is conceptually “fused” (or
merged) with corresponding transitions of the requester components.

Requester−1 Requester−2Provider

p11

p12

p21

p22

p01

p02

a a a

Before fusion

Requester−1 Requester−2Provider

p11

p12

p21

p22

p01

p02

a a

After fusion

Fig.1. Model fusion for service ”a”.



Model fusion for compatibility verification of software components 525

More formally, if the provider component is modeled by

Mp = (Pp, Tp, Ap, S,mp, ℓp, Fp),

and the requester components are modeled by

Mi = (Pi, Ti, Ai, S,mi, ℓi, Fi), i ∈ I,

where S is a common set of services and all other sets (of places, transitions,
etc.) are disjoint, then the combined (or “fused”) model is

Mc = (Pc, Tc, Ac, S,mc, ℓc, Fc),

where:

Pc = Pp ∪ PI , PI =
⋃

i∈I Pi;

Tc = Tp − T0 ∪ TI . T0 = {t ∈ Tp | ℓp(t) ∈ S}, TI =
⋃

i∈I Ti;

Ac = Ap −A0 ∪AI ∪Apr, A0 = Pc × T0 ∪ T0 × Pc, AI =
⋃

i∈I Ai,

Apr = {(px, tik) | px ∈ Pp ∧ (px, t) ∈ A0 ∧ ℓi(tik) = ℓp(t)} ∪

{(tik, py) | py ∈ Pp ∧ (t, py) ∈ A0 ∧ ℓi(tik) = ℓp(t)};

∀p ∈ Pc : m(p) =











mp(p), if p ∈ Pp,

mi(p), if p ∈ Pi, i ∈ I;

∀t ∈ Tc : ℓ(t) =











ℓp(t), if t ∈ Tp.

ℓi(t), if t ∈ Ti, i ∈ I;

Fc = Fp ∪ FI , FI =
⋃

i∈I Fi;

and Inp(t) and Out(t) are, respectively, the input and the output sets places of
transition t. The composed model is obtained by deleting all labeled transitions
in the provider model (the set T0) with all arcs connected to these transitions
(the set A0), and adding arcs similar to the deleted ones but connecting places
of the provider model with labeled transitions of all requester models (the set
Apr).

The composed net can be analyzed by typical methods used for analysis of
Petri net models. In particular, for some classes of models, structural analysis
can be used for verification of deadlock freeness [19], [16] avoiding the exhaustive
state–based model analysis.

It can be observed that the fusion operation preserves the place invariants
[15] of the model, as well as their siphons. More specifically, if a collection of
component models is covered by a set of place invariants, than the same set of
invariants covers the fused model. Moreover, if all place invariants are marked,
than no deadlock can occur in the fused model, so the components are compat-
ible. The following example illustrates this property in greater detail.



526 Model fusion for compatibility verification of software components

5 Example

A simple system of two requesters and a single provider is shown in Fig.2. The
interface language of Requester-1 is simply (ab)*, the language of Provider
describes the behavior of (unbounded) stack with services “a” and “b” corre-
sponding to operations “push” and “pull’, and the language of Requester-2 is
that of bounded stack of capacity 2. Both stacks (i.e., Provider and Requester-2)
in Fig.2 are empty. Obviously, the languages of Requester-1 and Requester-2 are
(proper) subsets of the language of Provider.

Requester−1 Requester−2Provider

b

a a

b

a

b

p22 p21 p23p11 p12 p01p02

Fig.2. Net models of two requesters and a single provider.

Fig.3 shows the combined (or fused) model of the system from Fig.2. Struc-
tural analysis can be used to check its deadlock freeness (i.e., compatibility of
components).

Requester−1 Requester−2

Provider

b

a a

b

p11 p12 p01p02 p22 p23p21

Fig.3. A combined model of two requesters and a single provider.



Model fusion for compatibility verification of software components 527

It is known that a deadlock in a Petri net corresponds to an unmarked siphon
[6] (a siphon is a subset of places for which the set of output transitions is
a superset of the set of input transitions). Consequently, a deadlock freeness
can be verified by checking that the siphons cannot become unmarked (linear
programming can be used to for such checking [19]). Moreover, since all siphons
are composed of a rather small number of basis siphons [3], verification can be
restricted to basis siphons only.

The net shown in Fig.3 has three such siphons with the following subsets of
places:

siphon places

1 p11, p12
2 p11, p01, p21
3 p22.p23

Since all these siphons are actually marked place invariants, they cannot
become unmarked (place invariants preserve the markings). Consequently, the
deadlock cannot occur in the net shown in Fig.3, so the interacting components
are compatible.

It can be observed that the original models of components are covered by
place invariants (in the example shown in Fig.2, the model of Requester-1 is a
single place invariant, the model of Provider is covered by two place invariants,
and the model of Requester-2 is also covered by two place invariants). The com-
bined model is covered by the same place invariants because the fusion process
preserves the place invariants. Efficient methods of compatibility verification can
use such properties for simplifying the verification process.

Morel general structural approach to deadlock analysis is discussed in [19].

6 Concluding Remarks

The paper shows that the verification of component compatibility based on the
exhaustive analysis of the “state space”, as discussed in [20] and [21], can be
replaced by structural analysis of the model obtained by “fusion” of models of
interacting components.

It is expected that the proposed verification of component compatibility can
be quite efficient although this aspect needs to be studied in greater detail.

It should be noticed that the discussion of component compatibility was
restricted to a single provider component. In the case of several providers, each
provider can be considered independently of other, so a single provider case is
not really a restriction.

Similarly, the requester and provider components can use other components
in a sort of hierarchical structure. Since model fusion combines all component
models into a single net model, there are no restrictions on such structures.

Also, an important aspect of component compatibility is its incremental ver-
ification. The approach described in this paper is not incremental (with the
exception of some cases, for example, when all models of all components are



528 Model fusion for compatibility verification of software components

covered by place invariants), but may provide a foundation for an incremental
approach.

The paper did not address the question of deriving behavioral models of
components (which is common to all component-based studies). Such models,
at least theoretically, could be derived from formal component specifications, or
perhaps could be obtained through analyzing component implementations. Since
the component compatibility verification proposed in this paper does not require
the use of the underlying component models (they are used only to define the
interface languages), these interface languages could also be determined experi-
mentally, by executing the components and collecting the information about the
sequences of service requests.

Acknowledgement

The Natural Sciences and Engineering Research Council of Canada partially
supported this research through grant RGPIN-8222.

References

1. Attiogbe, C., Andre, P., Ardourel. G.: Checking component composability. Proc.
5-th Int. Symp. on Software Composition (LNCS 4089), pp.18-33 (2006)

2. Baier, C., Klein, J., Klueppenholz, S.: Modeling and verification of components
and connectors. In: “Formal Methods for Eternal Networked Software Systems”
(LNCS 6659), pp.114-147 (2001)

3. Boer, E.T., Murata, T.: Generating basis siphons and traps of Petri nets using
the sign incidence matrix, IEEE Trans. on Circuits and Systems, I – Fundamental
Theory and Applications, vol.41, no.4, pp.266-271 (1994)

4. Broy. M.: A theory of system interaction: components, interfaces, and services. In:
“Interactive Computations: The New Paradigm”, Springer-Verlag, pp.41-96 (2006)

5. Chaki, S., Clarke, S. M., Groce, A., Jha, S., Veith, H,: Modular verification of
software components in C. IEEE Trans. on Software Engineering, vol.30, no.6,
pp.388-402 (2004)

6. Chu, F., Xie, X.: Deadlock analysis of Petri nets using siphons and mathematical
programming. IEEE Trans. on Robotics and Automation, vol.13, no.6, pp.793-804,
1997.

7. Craig, D. C., Zuberek, W M.: Compatibility of software components – modeling
and verification. Proc. Int. Conf. on Dependability of Computer Systems, Szklarska
Poreba, Poland, pp.11-18 (2006)

8. Craig, D. C., Zuberek, W. M.: Petri nets in modeling component behavior and
verifying component compatibility. Proc. Int. Workshop on Petri Nets and Software
Engineering, Siedlce, Poland, pp.160-174 (2007)

9. Crnkovic, I., Schmidt, H. W., Stafford, J., Wallnau, K.: Automated component-
based software engineering. The Journal of Systems and Software, vol.74, no.1,
pp.1-3 (2005)

10. Garlan, D.: Formal modeling and analysis of software architecture: components,
connectors and events. Proc. Third Int. School on Formal Methods for the Design
of Computer, Communication and Software Systems: Software Architectures (SFM
2003) (LNCS 2804), pp.1-24 (2003)



Model fusion for compatibility verification of software components 529

11. Henrio, L., Kammueller, F., Khan, M. U.: A framework for reasoning on compo-
nent composition. Proc. 8-th Int. Symp. on Formal Methods for Components and
Objects (LNCS 6286), pp.41-69 (2009)

12. Hopcroft, J, E,, Motwani, R., Ullman, J. D.: Introduction to automata theory,
languages, and computations (2 ed.). Addison–Wesley (2001)

13. Leicher, A., Busse, S., Suess, J. G.: Analysis of compositional conflicts in
component-based systems. Proc. 4-th Int. Workshop on Software Composition;
Edinburgh, UK (LNCS 3628), pp.67-82 (2003)

14. Murata, T.: Petri nets: properties, analysis, and applications. Proceedings of the
IEEE, vol.77, no.4, pp.541-580 (1989)

15. Reisig, W.: Petri nets – an introduction (EATCS Monographs on Theoretical Com-
puter Science 4). Springer-Verlag (1995)

16. Reisig, W.: Understanding Petri nets – modeling techniques, analysis methods,
case studies, Springer-Verlag (2013)

17. Szyperski, C.: Component software: beyond object-oriented programming (2 ed.).
Addison–Wesley Professional (2002)

18. Zaremski, A. M., Wang, J. M.: Specification matching of software components.
ACM Trans. on Software Engineering and Methodology, vol.6, no.4, pp.333-369
(1997)

19. Zuberek, W. M.: Siphon-based verification of component compatibility, Proc. 4-
th Int. Conference on Dependability of Computer Systems (DepCoS-09); Brunow
Palace, Poland, pp.123-132 (2009)

20. Zuberek, W, M.: Checking compatibility and substitutability of software com-
ponents. In: “Models and Methodology of System Dependability”, Oficyna
Wydawnicza Politechniki Wroclawskiej, ch.14, pp.175-186 (2010)

21. Zuberek, W. M.: Incremental composition of software components. In: “Dependable
Computer Systems” (Advances in Intelligent and Soft Computing 97), Springer-
Verlag, pp.301-311 (2011)

22. Zuberek, W. M.: Service renaming in component composition. In: “Complex
Systems and Dependability” (Advances in Intelligent and Soft Computing 170);
Springer-Verlag, pp.319-330 (2012)


