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Abstract

A new generalized linear mixed quantile model for panel data is proposed. This proposed

approach applies GEE with smoothed estimating functions, which leads to asymptotically

equivalent estimation of the regression coefficients. Random effects are predicted by using

the best linear unbiased predictors (BLUP) based on the Tweedie exponential dispersion

distributions which cover a wide range of distributions, including those widely used ones,

such as the normal distribution, Poisson distribution and gamma distribution. A Taylor

expansion of the quantile estimating function is used to linearize the random effects in the

quantile process. The parameter estimation is based on the Newton-Raphson iteration

method. Our proposed quantile mixed model gives consistent estimates that have asymp-

totic normal distributions. Simulation studies are carried out to investigate the small sample

performance of the proposed approach. As an illustration, the proposed method is applied

to analyze the epilepsy data.

Introduction

Panel data and other repeated measurements are very common in clinical tests of new drugs,

economic studies, as well as many other areas of applied studies. Such data are from the sub-

jects measured repeatedly over time. In the collection of data, correlation may exist between

repeated measurements within the same subject. Furthermore, data collected from biological

units often exhibit over-dispersion, heteroscedasticity and within-subject dependence, such as

the epileptic seizure count data. [1] In this case, both the subject- and observation-level depen-

dence should be accounted when constructing an analysis method. Mixed models are widely

used in data analysis to account for these issues by introducing random effects. In the litera-

ture, mixed regression methods are developed to evaluate covariate effects on the mean of a

response variable. [2–4] The new anti-epileptic drug progabide may have different effects for

patients with different seizure rates. [1] Often, subjects at different levels of a response variable

might be affected by risk factors differently or event in opposite direction. The traditional

regression method modelling the conditional mean may not be informative enough to catch
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these effects and could even provide misleading results on the effects of covariates. Quantile

regression would be more appealing for the analysis of data with such heteroscedasticity.

Quantile regression has become a widely used technique in statistical studies and applica-

tions. [5] In stead of modelling the effects of covariates on the conditional mean, quantile

regression models are based on the conditional quantiles which extends regression for the

mean to the analysis of the entire conditional distribution of the outcome variable. Therefore,

location, scale and shape of the distribution can be fully examined to provide a complete view

of how the covariates affect the entire response distribution. Comparing to the classical mean

regression, quantile regression is more robust to outliers and also invariant to monotonic

transformations. Quantile regressions do not require any Gaussian assumptions for the

response and can deal with heavy-tailed and asymmetric data.

The extension of quantile regression (QR) to repeated measures has been a rising area of

research in statistics. A quasi-likelihood method firstly proposed with estimated correlation

matrix in the median regression. [6] This method was extended to construct a weighted GEE

model. [7] A general stationary auto-correlation structure for the covariance matrix was

applied in a proposed weighted quantile regression model. [8]

Mixed effects regression models are very popular in analysing clustered, repeated measure-

ments and panel data, which are collected from clinical trials, agricultural field studies, envi-

ronmental and wildlife ecology studies, to name a few. Literature contributions have extended

QR into mixed modelling framework. A quantile random effects model with a penalized likeli-

hood was developed. [9] Using the asymmetric Laplace distribution (ALD), a method was pro-

posed to account for the within-subject correlations using a random intercept. [10] A linear

mixed quantile regression model by incorporating a multivariate Laplace distribution was sug-

gested. [11] A linear quantile mixed model which extends quantile regression models

(QR-LMM) was developed with random intercepts to include random slopes. [12] Then an

extension of QR-LMM was provided to modelling and estimation of nonlinear quantile regres-

sion when data are clustered within two-level nested designs. [13] The induced smoothing

method has been extended to quantile regression to redefine smoothed objective functions. [8,

14–16] Literature applied the Newton-Raphson iteration method to eliminate computational

issues and automatically get both the estimates of parameters and their covariance matrix.

In this paper, we develop a generalized mixed quantile regression model (1.1) Based on the

assumption of Tweedie exponential dispersion distributions, subject-specific and observation-

specific random effects are predicted by their orthodox best liner unbiased predictors (BLUP).

General stationary auto-correlation matrix has been used to avoid the need to specify any par-

ticular working correlation structure between repeated measurements. Continuous quantile

estimating functions are obtained by applying the induced smoothing method. A Taylor

expansion of estimating functions accommodates the variation of random effects within the

estimation of parameters in the quantile regression. Parameters are estimated through New-

ton-Raphson iterations. The simulation results reveal that our proposed quantile mixed regres-

sion model performs well. Parameter estimation obtained by our proposed method is

consistent and asymptotically normal.

Our methodology is based on the fact that the mean and a quantile of a positive value (U)

times a variable Y, denoted as E(U�Y) and Q(U�Y), are equal to the positive value U times the

mean and quantile of Y. That is E(U�Y) = U�E(Y) and Q(U�Y) = U�Q(Y). For the same data,

the mean and quantile regression analysis can share some common heterogeneity that are

measured by random effects. Therefore, we can borrow the random effects from the mean

regression when we conduct quantile regression analysis. Because the good properties of

Tweedie distributions, we can predict the random effects using their BLUPs. This avoids the

integration over random effects and possible sampling step (e.g. Monte Carlo) for the
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estimation process. Also, it allows us to utilize the simple Newton-Raphson algorithm to

update the estimators with much less computation cost than other approaches involving re-

sampling stochastic processes (e.g. Bayesian using Markov Chain Monte Carlo).

Currently we are working on a hierarchical model on the two levels of random effects.

Results will be reported in a separate paper.

The remainder of this paper proceeds as follows: In the next, we develop the proposed gen-

eralized quantile mixed regression method and the iteration steps of parameter estimation.

Asymptotic properties are then discussed. To illustrate the performance of the proposed

method, we apply the method to the epileptic seizure count data and carry out extensive simu-

lation studies. This paper is concluded with a few remarks in the final section.

Proposed quantile regression models

In this section, we first introduce a class of Tweedie exponential dispersion distributions. The

good properties of the Tweedie distributions can be applied to predict random effects in our

following proposed mixed models. If random variable Y is said to follow a Tweedie exponen-

tial dispersion distribution with location parameter μ, dispersion parameters σ2 and another

shape parameter q, denoted as Twq(μ, σ2), its density is of the form

fqðy; m; s2Þ ¼

cqðy; s2Þexp
1

s2

ym1� q

1 � q
�
m2� q

2 � q

� �� �

if q 6¼ 1; 2;

c2ðy; s2Þexp �
1

s2

y
m
þ log ðmÞ

� �� �

if q ¼ 2;

c1ðyÞexpfy log ðmÞ � mg if q ¼ 1;

8
>>>>>>><

>>>>>>>:

ð1Þ

where cq(y;σ2) are given. [17] Also, E(Y) = μ and Var(Y) = σ2 μq are the mean and variance of

the distribution. This Tweedie family actually covers many well-known distributions which

gives us the flexibility to use it for the assumptions of random effects in the generalized linear

mixed models. Specifically, it is normal when q = 0, Poisson when q = 1 and σ2 = 1, gamma

when q = 2, and inverse-Gaussian when q = 3.

Data setup and the models

In a repeated measurement setup, responses are collected along with certain multidimensional

covariates from a large number of independent individuals. Let yi1; . . . ; yij; . . . ; yini be ni� 2

repeated measures observed from the ith subject, for i = 1, . . ., m, where m is a positive integer.

Motivated by the epileptic seizure count data which exhibits a high degree of over-dispersion,

we assume that there exist subject-specific and observation-specific random effects. Let U =

(U�, U��) where U� = (U1, . . ., Um)T and U�� ¼ ðU11; . . . ;U1n1
; . . . ;Umnm

Þ
T

denote the vectors of

subject-specific and observation-specific random effects, respectively. The vector xij = (xij1, . . .,

xijp)T is for the p-dimensional covariate vector corresponding to yij.
Assume that the subject-specific random effects U1, . . ., Um are positive, independent and

identically distributed with mean E(Ui) = 1 (log(E(Ui) = 0), later we assume the conditional

mean of the response is uij μij) and variance var(Ui) = σ2. Given U� = u� = (u1, . . ., um)T, the

observation-specific random effects U11; . . . ;U1n1
; . . . ;Umnm

are positive and conditionally

independent. The distributions of these random effects are members of the Tweedie family:

Ui* Twr(1, σ2), r� 2 and UijjUi ¼ ui � Twtðui; n
2u1� t

i Þ, t� 2. When ν2 = 0, Uij = Ui for all

j = 1, . . ., ni, we have just one level of random effects in our mixed model. This hierarchical

PLOS ONE Mixed quantile regression with panel data

PLOS ONE | https://doi.org/10.1371/journal.pone.0237326 August 11, 2020 3 / 16

https://doi.org/10.1371/journal.pone.0237326


structure of random effects provides us with additional flexibility when modelling the baseline

variation, as well as correlation structure among repeated observations.

Assume that the conditional distribution of Yij, given U = u, depends on uij,

YijjU ¼ u � Twqðuijmij; g
2u1� q

ij Þ;

where mij ¼ exp ðxTijbÞ; β is the vector of regression parameters; and γ2 is a dispersion parame-

ter. This assumption on Y is for predicting random effects in the next section but may not be

hold for estimating quantile regression parameters. When q = 1, the conditional distribution

of Yij becomes a Poisson distribution with conditional mean E(Yij|U) = uij μij. This gives us the

ability to deal with count observations while maintains the flexibility of our model to be

applied to analysis of other types of data (i.e. continuous, binary, and ordinal etc.)

The analysis of epileptic data, based on the assumptions of the conditional mean, reveals

that the new drug may have different effects for patients with different seizure rates. [1] And

the data has a few outliers. To provide a richer characterization of the data, similar assump-

tions can be made on the conditional quantiles of the response distribution. For a given U, the

τth quantile of the conditional distribution of Yij can be assumed as

QtðYijjUÞ ¼ uijm
t
ij; ð2Þ

where mtij ¼ exp ðxTijbtÞ and βτ is the quantile regression parameter vector. We are interested in

consistently estimating βτ as efficiently as possible.

Note that, model (1) can be rewritten as

QtðYijjUÞ ¼ exp ð loguij þ xTijbtÞ; ð3Þ

which we call it a generalized linear mixed quantile model. When the conditional distribution

of the the response is Poisson, the model will be a Poisson linear mixed quantile regression

model.

Orthodox best linear unbiased predictors of random effects

To predict the subject-specific and observation-specific random effects, we introduce an

orthodox best linear unbiased predictor (BLUP). [18] That is

Û ¼ EðUÞ þ covðU;YÞvar� 1ðYÞfY � EðYÞg:

Using properties of Tweedie distributions, the subject-specific random effects are predicted

by

Û i ¼
1þ s2

Pni
j¼1

wijmij
1� qYij

1þ s2
Pni

j¼1
wijmij

2� q
; ð4Þ

where

wij ¼
1

g2 þ n2mij
2� q
:

The observation-specific random effects are predicted similarly as

Û ij ¼ g
2wijÛ i þ n

2wijmij
1� qYij: ð5Þ
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The mean squared distances between these random effects and their predictors are

ci ¼ EðÛ i � UiÞ
2
¼

s2

1þ s2
Pni

j¼1
wijmij

2� q ð6Þ

and

cij ¼ EðÛ ij � UijÞ
2
¼ g2wijðn

2 þ g2ciwijÞ: ð7Þ

Based on the mean squared distances, consistency results about random effects predictors

can be drawn under ‘small dispersion asymptotic’ (Û i!
p
Ui as σ2! 0, Û ij!

p
Uij as σ2+ ν2! 0)

and large sample asymptotic (Û i!
p
Ui as ni!1). See [19] for proofs.

Prediction

Using the BLUPs of the random effects, Û ij, the estimating equation is built as the following:

C
0
ðbÞ ¼

Xm

i¼1

Xni

j¼1

xij
mij

1� q

g2
fyij � Û ijmijg ¼ 0: ð8Þ

For the unknown parameters σ2, ν2 and γ2, we apply the following adjusted Pearson estima-

tors

ŝ2 ¼
1

m

Xm

i¼1

ðÛ i � 1Þ
2
þ

1

m

Xm

i¼1

ci;

n̂2 ¼
1

Pm
i¼1

ni

Xm

i¼1

Xni

j¼1

fðÛ ij � Û iÞ
2
þ cij þ ci � 2g2ciwijg

and

ĝ2 ¼
1

Pm
i¼1

ni

Xm

i¼1

Xni

j¼1

(
ðyij � Û imijÞ

2

mij
q

þ cimij
2� q

)

:

These dispersion estimators are obtained iteratively, with initial values provided in the

appendix. They are unbiased, when adjusted by their bias corrections.

To solve the estimating Eq (8), we apply the Newton-Raphson algorithm to update the

value of regression parameter β by

b
�
¼ b � S� 1ðbÞC

0
ðbÞ;

until convergence. And the sensitive matrix S(β) has the form

SðbÞ ¼ �
Xm

i¼1

Xni

j¼1

1

g2
mij

2� qxijx
T
ij þ

Xm

i¼1

ci
Xni

j¼1

wijmij
2� qxij

 !
Xni

j¼1

wijmij
2� qxij

 !T

þ
Xm

i¼1

Xni

j¼1

n2wij

g2
ðmij

2� qxijÞðmij
2� qxijÞ

T
:

Initial values to start the first iteration are deferred to the S1 Appendix. Within each itera-

tion, subject-specific and observation-specific random effects are updated by their BLUPs, Û �
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and Û �� in (4) and (5), at β = β
�

. Dispersion parameters are then updated by their adjusted

Pearson estimators at β = β
�

using updated Û � and updated Û ��.

Estimation of quantile regression parameters

The quantile regression parameter, βτ, can be estimated by minimizing the following objective

function, pretending that Uij are observable,

Kðbt;UÞ ¼
Xm

i¼1

Xni

j¼1

rtðyij � Uijm
t

ijÞ; ð9Þ

where ρτ(s) = s(τ−I(s� 0)) is a check loss function [5], Uij are unspecified random effects. Esti-

mating equations can be derived from function (9) as follows:

C0ðbt;UÞ ¼
@Kðbt;UÞ

@bt
¼
Xm

i¼1

Xni

j¼1

xijUijm
t

ijctðyij � Uijm
t

ijÞ ¼ 0; ð10Þ

where ctðsÞ ¼ r0tðsÞ ¼ t � Iðs < 0Þ is a discontinuous function.

In order to incorporate the within correlations between repeated measurements in quantile

regression models, we denote εi ¼ ðεi1; . . . ; εij; . . . ; εiniÞ
T

which is a continuous error vector

with elements εij ¼ yij � Uijm
t
ij satisfying Pr(�ij� 0) = τ with unknown density fij(�). Let Gi ¼

diag½fi1ð0Þ; . . . ; finið0Þ� and Di ¼ diag½Ui1m
t
i1; . . . ;Uini

mtini �. The term Γi can be well estimated:

f̂ ijð0Þ ¼ 2hn½ exp ðxTij ðb̂tþhn � b̂t� hnÞÞ�
� 1
;

where hn! 0, when n!1, is a bandwidth parameter. [20] This diagonal matrix describes

the dispersions in �ij and can be simply treated as a scalar matrix when fij is difficult to estimate.

Since ψτ(�i) is Bernoulli distributed and can be seen as a random noise vector in the mean

regression, we can account for within correlations in quantile regression by estimating the cor-

relation matrix of ψτ(�i). However, whatever correlation matrix that �i follows, the correlation

matrix of ψτ(�i) is no longer the same as the one of �i, and it is difficult to specify its correlation

structure.

We extend the quasi-likelihood method [6] to quantile regression and apply a general sta-

tionary auto-correlation structure for the covariance matrix. Incorporating with random

effects, we have the following estimating equation

Cðbt;UÞ ¼
Xm

i¼1

XT
i DiGiS

� 1

i ðrÞctð�iÞ ¼ 0; ð11Þ

where Si(ρ) is the covariance matrix of ψτ(�i) with the form SiðrÞ ¼ A
1
2
i CiðrÞA

1
2
i where Ai ¼

diag½si11; . . . ; sinini
� and σijj = (ψτ(�ij)). The correlation matrix of ψτ(�i) is denoted as Ci(ρ) with

ρ being a correlation parameter. Suppose that the covariance matrix Si(ρ) has a general sta-

tionary auto-correlation structure with the correlation matrix Ci(ρ) given by

CiðrÞ ¼

1 r1 r2 � � � rni � 1

r1 1 r1 � � � rni � 2

..

. ..
. ..

. ..
.

rni � 1 rni � 2 rni � 3 � � � 1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A
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for all i = 1, . . ., m, where the correlation ρℓ can be estimated by

r̂‘ ¼

Pm
i¼1

Pni � ‘
j¼1

~yij~yi;jþ‘=ðmðni � ‘ÞÞ
Pm

i¼1

Pni
j¼1

~y2
ij=ðmniÞ

for ℓ = 1, . . ., ni−1 with ~yij defined as ~yij ¼ ctðyij � Uijm
t
ijÞ=

ffiffiffiffiffiffi
sijj
p

At the true parameter βτ, Uijm
t
ij

is the τth quantile of yij conditional on Uij. Hence Pr ðyij < Uijm
t
ijjUijÞ ¼ t, which leads to a

substitute of σijj,

~sijj ¼ ½ctð�ijÞ� ¼ ½t � Iðyij < Uijm
t
ijÞ� ¼ ½Iðyij < Uijm

t
ijÞ�

¼ fE½Iðyij < Uijm
t
ijÞjUij�g þ Ef½Iðyij < Uijm

t
ijÞjUij�g

¼ ½Pr ðyij < Uijm
t
ijÞjUij� þ E½Pr ðyij < Uijm

t
ijjUijÞð1 � Pr ðyij < Uijm

t
ijjUijÞÞ�

¼ tð1 � tÞ:

Consequently, the matrix Ai can be replaced with

~Ai ¼ diag½~si11; � � � ; ~s1nini
� ¼ diag½tð1 � tÞ; � � � ; tð1 � tÞ�ni�ni ð12Þ

The general stationary auto-correlation matrix, Si(ρ), accommodates the correlations of

many stationary dynamics such as auto-regressive order 1 (AR(1)), moving average order 1

(MA(1)), and equi-correlations (EQC) models.

Finding the solution for (11) is very difficult because the objective function C(βτ, U) is nei-

ther convex nor continuous and could not be differentiated. Although several methods do not

require differentiable and continuous estimating functions, they are very complicated and

computationally demanding. To avoid these difficulties, we apply the induced smoothing

method [15], which leads to the following continuous estimating equation

~Cðbt;UÞ ¼
Xm

i¼1

XT
i DiGiS

� 1

i ðrÞ
~ctð�iÞ; ð13Þ

where

~ctð�iÞ ¼ t � 1þ Fð
bi1
ri1
Þ; � � � ; t � 1þ Fð

bini
rini
Þ

 !T

;

with bij ¼ log ðyij=ðUijm
t
ijÞÞ, rij ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
xTijOxij

q
for j = 1, . . ., ni,O being an estimate of covariance

matrix of βτ and F(�) being the CDF of standard normal distribution.

To use the BLUPs of random effects, Û � and Û ��, updated by (4) and (5), a Taylor expan-

sion of (13) at U ¼ Û gives

~Cðbt;UÞ ¼ ~Cðbt; ÛÞ þ
@ ~Cðbt;UÞ

@U

�
�
�
�
�
U¼Û

ðU � ÛÞ; ð14Þ

where

~Cðbt; ÛÞ ¼
Xm

i¼1

XT
i D̂iGiS

� 1

i ðrÞ
~ctð�̂iÞ; ð15Þ

and D̂i and ε̂i are obtained from Δi and �i with Uij replaced by Û ij, for j = 1, . . ., ni. The first
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order derivative of (13) with respect to U at Û is

@ ~Cðbt;UÞ
@U

�
�
�
�
�
U¼Û

¼ �
Xm

i¼1

XT
i OiGiS

� 1

i ðrÞ
~L i;

where Oi ¼ diag½mti1; . . . ; mtini �,
~Li ¼ diag½�ðbi1=ri1Þ=ri1; . . . ; �ðbini=riniÞ=rini �jUij¼Û ij

and ϕ(�)

being the pdf of standard normal distribution.

Since Û is unbiased, EðU � ÛÞ ¼ 0, quantile estimating equation can be approximated by

(15). Moreover, we have ðUi � Û iÞ ¼ EðUi � Û iÞ
2
¼ ci and ðUij � Û ijÞ ¼ EðUij � Û ijÞ

2
¼ cij,

and when only one level of random effects is considered, covðUij � Û ij;Uis � Û isÞ ¼

covðUi � Û i;Ui � Û iÞ ¼ ci for j, s = 1, . . ., ni.
Furthermore, the first order derivative of the estimating objectives in (14) with respect to βτ

is

@ ~Cðbt;UÞ
@bt

¼ �
Xm

i¼1

XT
i D̂iGiS

� 1

i ðrÞ
~L iXi: ð16Þ

By using the Newton-Raphson algorithm, the smoothed estimators of βτ and the condi-

tional covariance matrix O can be updated by

~b�
t
¼ ~bt þ �

@ ~Cðbt;UÞ
@bt

" #� 1

� ~Cðbt; ÛÞ
� �

; and

~O� ¼ �
@ ~Cðbt;UÞ

@bt

" #� 1

� cov ~Cðbt;UÞ
� �� �

� �
@ ~Cðbt;UÞ

@bt

" #� 1

;

where

covð ~Cðbt;UÞÞ ¼
Xm

i¼1

XT
i D̂iGiS

� 1

i ðrÞ
~ctð�̂iÞ

~cT
t
ð�̂iÞS

� 1

i ðrÞGiD̂ iXi

þ
Xm

i¼1

XT
i OiGiS

� 1

i ðrÞ
~LiCi

~LiS
� 1

i ðrÞGiOiXi

and Ci ¼ ci � Ini�ni if ν2 = 0, Ci ¼ diag½ci1; . . . ; cini � if ν
2 6¼ 0, until convergence. The uncondi-

tional standard deviations of βτ can be estimated by bootstrap method.

Asymptotic properties

In this section, we derive asymptotic distributions of the proposed estimates b̂t and ~bt
obtained from the estimating functions (11) and (13) respectively.

Theorem 11. Under regularity conditions A1-A5 listed in the S1 Appendix, the estimator b̂t
is

ffiffiffiffi
m
p

-consistent and asymptotically normal, i.e.

ffiffiffiffi
m
p
ðb̂t � btÞ ! Nð0;G� 1ðbtÞVfG� 1ðbtÞg

T
Þ;
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where

GðbtÞ ¼ lim
m!1

1

m

Xm

i¼1

XT
i DiGiS

� 1

i ðrÞGiDiXi;

V ¼ lim
m!1

1

m

Xm

i¼1

XT
i DiGiS

� 1

i ðrÞcovfctð�iÞgS
� 1

i ðrÞGiDiXi:

Under regularity conditions A1-A5 listed in the S1 Appendix, the smoothed estimating func-
tion ~Cðbt;UÞ is equivalent to the estimating functionC(βτ, U), i.e.

1
ffiffiffiffi
m
p f ~Cðbt;UÞ � Cðbt;UÞg ¼ opð1Þ:

Theorem 2. Under regularity conditions A1-A5 listed in the S1 Appendix, the estimator ~bt is
ffiffiffiffi
m
p

-consistent and asymptotically normal, i.e.
ffiffiffiffi
m
p
ð~bt � btÞ ! Nð0;G� 1ðbtÞVfG� 1ðbtÞg

T
Þ; ð38Þ

where G(βτ) and V are defined as in Theorem 1.

Proofs are deferred to the S1 Appendix.

Theorem 1 and Theorem 2 imply the asymptotic equivalence of the estimators obtained

from the smoothed and original estimating equations.

A real data analysis

In this section we illustrate our proposed quantile mixed regression model by analyzing the

panel data with two-week seizure counts for 59 epileptics presented by [1]. This data is classic

and available in the R package MASS, and can be applied on to compare our results with oth-

ers’ in the literature. The number of seizures was recorded for a baseline period of 8 weeks,

and then patients were randomly assigned to an anti-epileptic drug treatment group (Trt=1)

or a control group (Trt=0). Further counts of seizures were then taken during the two-week

periods before four successive visits to the clinic. Preliminary analysis suggests much lower

counts during the fourth visit than other visits, we use a linear trend covariate Visit (coded

(-0.3,-0.1,0.1,0.3)) introduced by [21].

Let yij be the seizure count for patient i on the jth visit, Base be the logarithm of a quarter of

baseline seizure counts, Trt be the treatment indicator, Age be the logarithm of age, Visit be the

visit time. We take the Base, Trt, Age, Visit, and the interaction term Base.Trt as the covariates,

while ui and uij are random effects at patient and visit levels respectively. Our analysis is based

on a Poisson mixed quantile regression model using BLUPs of random effects as

YijjU ¼ u � PoissonðuijmijÞ

and

QtðYijjU ¼ uÞ ¼ uijm
t
ij;

where μij = exp(β0 + β1×Base + β2×Trt + β3×Age + β4×Visit + β5×Base.Trt),
mtij ¼ exp ðb0t þ b1t � Baseþ b2t � Trt þ b3t � Ageþ b4t � Visit þ b5t � Base:TrtÞ; β and βτ
are regression parameters.

We fit our proposed quantile regression model for three quantiles, τ = 0.25, 0.50 and 0.85,

respectively, and for two different dispersion structures, ν2 = 0 and ν2 6¼ 0. We report the
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estimated parameters (EP), their asymptotic standard errors (SE) and their 95% confidence

intervals (CI) in Table 1. For both dispersion structures ν2 = 0 and ν2 6¼ 0, the results of the

mean regression parameter and dispersion parameter estimates are comparable with those

from previous studies. [1, 18] As indicated, the predicted mean counts of seizure for the treat-

ment group can be either higher or lower than the counts in the control group depending on

whether the baseline exceeds a threshold or not. [18] The anti-epileptic drug may be restricted

to patients with high baseline counts.

Comparing to other alternative methods using mean regression models, our proposed

model allows us to examine the effects of a factor at different levels of the response distribution.

By taking different quantiles of the seizure count response variable, we tend to capture more

hidden features of the covariate effects on the seizure count. At the 0.25th quantile, the counts

of seizures depends more on the baseline for both models with and without visit-specific ran-

dom effects. The drug treatment does not show significant effects. At higher quantiles (τ=0.50,

0.85), when we consider the random effects at visit levels (ν2 6¼ 0), the anti-epileptic drug tend

to have significant effect to control seizure counts. By introducing the visit-level random

effects Uij, we are able to capture the dependence of observations between visits or the trajec-

tory of measurements over time for each patient. Therefore, the effect of the drug could be esti-

mated more accurately to indicate whether there is a drop of seizure counts over time.

Table 1. Estimated regression and dispersion parameters (EP), their standard errors (SE) and corresponding 95% confidence intervals (CI) from fitting the pro-

posed Poisson mixed quantile regression model for two different dispersion parameter structures, ν2 = 0 and ν2 6¼ 0, with τ = 0.25, 0.5, 0.85.

τ Parameter ν2 = 0 ν2 6¼ 0

EP SE CI EP SE CI

β0 -1.59 1.24 (-4.02, 0.85) -1.23 1.21 (-3.61, 1.15)

β1 0.90 0.14 (0.63, 1.17) 0.87 0.14 (0.60, 1.14)

β2 -0.90 0.45 (-1.78, -0.03) -0.84 0.41 (-1.64, -0.04)

β3 0.57 0.36 (-0.14, 1.28) 0.48 0.36 (-0.21, 1.18)

β4 -0.30 0.17 (-0.63, 0.03) -0.26 0.19 (-0.63, 0.10)

β5 0.35 0.22 (-0.07, 0.78) 0.32 0.21 (-0.09, 0.74)

σ2 0.21 0.22

ν2 0.28

0.25 β0τ -2.82 1.59 (-5.95, 0.30) -0.66 1.09 (-2.80, 1.47)

β1τ 1.01 0.19 (0.66, 1.36) 0.79 0.12 (0.55, 1.03)

β2τ -1.12 0.67 (-2.43, 0.19) -0.75 0.46 (-1.65, 0.16)

β3τ 0.74 0.42 (-0.08, 1.57) 0.40 0.31 (-0.20, 1.01)

β4τ -0.21 0.23 (-0.65, 0.24) -0.28 0.18 (-0.62, 0.07)

β5τ 0.46 0.27 (-0.07, 0.98) 0.28 0.24 (-0.19, 0.75)

0.5 β0τ -1.56 1.00 (-3.52, 0.39) -1.19 0.92 (-3.00, 0.61)

β1τ 0.89 0.13 (0.65, 1.15) 0.86 0.11 (0.64, 1.08)

β2τ -0.88 0.49 (-1.83, 0.08) -0.83 0.37 (-1.56, -0.11)

β3τ 0.55 0.30 (-0.03, 1.13) 0.47 0.28 (-0.07, 1.01)

β4τ -0.28 0.21 (-0.70, 0.14) -0.26 0.26 (-0.57, 0.05)

β5τ 0.34 0.25 (-0.14, 0.83) 0.32 0.20 (-0.07, 0.71)

0.85 β0τ -0.96 1.11 (-3.13, 1.22) -0.86 0.86 (-2.55, 0.83)

β1τ 0.82 0.18 (0.48, 1.17) 0.83 0.13 (0.57, 1.09)

β2τ -0.84 0.54 (-1.91, 0.22) -0.82 0.41 (-1.62, -0.01)

β3τ 0.54 0.33 (-0.11, 1.18) 0.43 0.26 (-0.08, 0.94)

β4τ -0.54 0.18 (-0.89, -0.18) -0.28 0.18 (-0.62, 0.07)

β5τ 0.31 0.27 (-0.21, 0.83) 0.32 0.21 (-0.08, 0.72)

https://doi.org/10.1371/journal.pone.0237326.t001

PLOS ONE Mixed quantile regression with panel data

PLOS ONE | https://doi.org/10.1371/journal.pone.0237326 August 11, 2020 10 / 16

https://doi.org/10.1371/journal.pone.0237326.t001
https://doi.org/10.1371/journal.pone.0237326


Accepting significant level slightly larger than 0.05, visit time also have significant effects on

seizure counts if we take the visit-level random effects in the model. The differences of the esti-

mates of model parameters between the models with and without visit-specific random effects,

especially the intercept terms are remarkable. Our simulation results in the following section

reveals that ignoring visit-specific random effects is the main reason of it

Simulation studies

In this section, we conduct a simulation study mimicking the seizure count data to examine

the performance of our proposed approach and compare the simulation results with other

methods in the literature. We take Base, Trt, Age, Visit and the interaction Base.Trt as our

covariates. We generate a dataset of 10000 subjects, and their seizure count response variables

following a Poisson mixed model. We specify the parameter values of β0 = −1.30, β1 = 0.88, β2

= −0.88, β3 = 0.50, β4 = −0.23, β5 = 0.34, σ2 = 0.24 and ν2 = 0.44 as the true model parameters

of the conditional mean regression model. The data with 10000 subjects is treated as a pseudo-

population. For 500 simulation runs, we sample 59 subjects each time from this pseudo-

population.

The simulated data are analysed for both dispersion structures, ν2 = 0 and ν2 6¼ 0 each at

three quantiles (τ = 0.25, 0.50, 0.85). We report the average bias (Bias, compared to the esti-

mated parameters of 10000 datasets), the average of estimated standard errors (ESD, using

bootstrap for each simulation) of the parameters over 500 simulations in Table 2. We calcu-

lated coverage percentages of 95% confidence intervals for regression parameters using asymp-

totic normality of their estimators. The coverage percentages of 95% prediction intervals for

random effects (u1 and u11) are also reported. Estimated coverages of 95% intervals denoted as

CP0.95 are reported in Table 2. To compare our method with other methods, we also report the

results for fitting a generalized linear mixed-effects model (GLMM) using glmer function in

the R package lme4 and fitting a linear quantile mixed model (LQMM) using the R-package

lqmm. [22, 23] Both GLMM and LQMM are random intercept models, where the GLMM is

with a logarithm link function and the LQMM utilizes the logarithm of seizure counts (exclud-

ing zero values) as response. The results of estimates for fixed-effect coefficients and the vari-

ance of the random effects, σ2, are reported in Table 3.

As in Table 2, the results of mean regression parameters are in accordance with those from

[18], except that the dispersion parameters σ2 and ν2 are both just slightly underestimated.

Compared to GLMM models in Table 3, our proposed method gives much smaller biases for

the estimates of β0 and the variance of random effects, σ2. Moreover, we obtain better coverage

probabilities which are all around 0.95 for fixed-effects parameters.

From the results of the simulation we can observe that, ignoring the visit-specific random

effects, or say set ν2 = 0, leads to high estimation bias of the intercept coefficient, as well as its

standard deviation of the estimator. The standard deviations of the estimators of other param-

eters are inflated, too. This leads to higher coverage percentages of the 95% confidence inter-

vals than their nominal level. When both subject-specific and visit-specific random effects are

considered, all estimates of parameters have small biases and smaller standard errors com-

pared to the model with only one level of random effects. This agrees with the findings in the

real data analysis in the previous section. Compared to results in Table 3, our model, especially

with ν2 6¼ 0, outperforms the LQMM with smaller biases in estimating the fixed-effect coeffi-

cients and the variance of random effects, σ2. Our model is also good in estimating the stan-

dard errors of fixed-effect coefficients, ESD, and hence leads better 95% confidence interval

coverage probabilities.

PLOS ONE Mixed quantile regression with panel data

PLOS ONE | https://doi.org/10.1371/journal.pone.0237326 August 11, 2020 11 / 16

https://doi.org/10.1371/journal.pone.0237326


As we can see in Table 2, the estimated coverage percentages of 95% confidence intervals

are around 0.95 except for a few parameters with values of as high as 0.99 at τ = 0.25 for the

model without consideration of visit-level random effects with ν2 = 0. This indicates that our

estimators of the regression parameters and the estimates of their standard deviations work

well. Furthermore, from the normal plots of the estimates of the regression parameters (Fig 1

shows a normal plot of estimates for β2 under the model ν2 6¼ 0), our proposed estimators are

approximately normally distributed and inferences based on it are reliable.

Conclusion

In this paper, we have proposed a generalized linear mixed quantile regression model for panel

data. By assuming Tweedie exponential dispersion distributions, we predict the subject-spe-

cific and visit-specific random effects by their orthodox BLUPs and treat them as fixed values

in the quantile regression parameter estimation process. In order to account for the correla-

tions between repeated measures, we applied a general stationary auto-correlation structure to

the estimating equations. To reduce computational burden caused by the non-continuous

Table 2. Average bias (Bias), average of estimated standard errors (ESD) of the parameters and coverage percentages of 95% intervals (CP0.95) over 500 simulations

at quantiles 0.25, 0.5, 0.85.

τ Parameter ν2 = 0 ν2 6¼ 0

Bias ESD CP0.95 Bias ESD CP0.95

β0 0.04 1.07 0.95 0.00 1.25 0.95

β1 -0.01 0.12 0.94 -0.03 0.14 0.94

β2 0.02 0.37 0.95 0.00 0.42 0.94

β3 -0.01 0.31 0.95 0.01 0.37 0.95

β4 0.00 0.10 0.89 0.02 0.23 0.95

β5 -0.02 0.18 0.95 0.01 0.22 0.93

U1 0.97 0.98

U11 0.95

σ2 -0.03 -0.04

ν2 -0.01

0.25 β0τ -0.24 3.14 0.98 0.09 1.19 0.95

β1τ 0.01 0.45 0.98 -0.02 0.17 0.96

β2τ -0.17 1.88 0.99 0.06 0.51 0.95

β3τ 0.03 0.82 0.98 -0.02 0.33 0.94

β4τ -0.05 0.72 0.97 0.01 0.22 0.94

β5τ 0.06 0.73 0.99 -0.02 0.24 0.96

0.50 β0τ -0.11 1.48 0.95 0.05 1.18 0.93

β1τ -0.01 0.20 0.97 -0.02 0.16 0.94

β2τ -0.06 0.68 0.97 -0.02 0.50 0.94

β3τ 0.02 0.42 0.95 -0.01 0.34 0.93

β4τ 0.01 0.34 0.94 0.01 0.22 0.95

β5τ 0.02 0.30 0.96 0.02 0.24 0.94

0.85 β0τ 0.23 1.21 0.95 -0.02 1.14 0.94

β1τ -0.04 0.16 0.94 -0.02 0.15 0.95

β2τ -0.02 0.54 0.98 -0.04 0.49 0.95

β3τ -0.02 0.34 0.95 0.02 0.33 0.95

β4τ 0.00 0.30 0.95 -0.01 0.21 0.96

β5τ 0.02 0.25 0.97 0.02 0.23 0.95

https://doi.org/10.1371/journal.pone.0237326.t002
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estimating functions, along with Newton-Raphson iteration technique, we have extended the

induced smoothing method to quantile regression. Our simulation studies reveal that our pro-

posed method performs well. As an illustration, the proposed quantile regression estimator is

applied to a real data set.

In this paper, we take both subject-specific and visit-specific random effects into consider-

ation in quantile regression modelling. We obtain BLUPs of random effects and mean regres-

sion parameters prior to the estimation of quantile regression parameters. The prediction of

random effects are not updated in the quantile estimation process. Therefore, we may develop

our proposed quantile mixed model to connect the prediction of random effects and the esti-

mation of quantile regression parameters. Our method can be easily extended to accommodate

quantile mixed models with response following other distributions by specifying the value of

the shape parameter q for assumed Tweedie distributions and a proposed model for the condi-

tional response mean (e.g. YijjU ¼ u � Tw0ðuijmij; g
2u1� 0

ij Þ which is a normal distribution with

a possible mij ¼ xTijb).

Table 3. Average bias (Bias), average of estimated standard errors (ESD) of the parameters and coverage percent-

ages of 95% intervals (CP0.95) over 500 simulations for GLMM and LQMM models.

Model Parameter Bias ESD CP0.95

GLMM β0 -0.25 1.24 1.00

β1 0.02 0.16 0.93

β2 -0.04 0.50 0.96

β3 0.01 0.36 1.00

β4 -0.07 0.09 0.34

β5 0.00 0.24 0.96

σ2 0.20

LQMM β0τ -0.11 1.17 0.96

τ = 0.25 β1τ -0.09 0.17 0.95

β2τ 0.22 0.43 1.00

β3τ -0.18 0.34 0.96

β4τ -0.09 0.24 0.96

β5τ -0.12 0.23 1.00

σ2 -0.11

LQMM β0τ 0.09 1.17 1.00

τ = 0.50 β1τ -0.05 0.17 0.96

β2τ 0.23 0.44 1.00

β3τ -0.08 0.34 0.92

β4τ -0.08 0.24 0.89

β5τ -0.10 0.22 1.00

σ2 -0.09

LQMM β0τ 0.06 1.16 0.96

τ = 0.85 β1τ 0.05 0.15 0.96

β2τ 0.23 0.43 1.00

β3τ 0.10 0.33 0.96

β4τ -0.10 0.23 0.92

β5τ -0.12 0.21 1.00

σ2 -0.20

https://doi.org/10.1371/journal.pone.0237326.t003
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Fig 1. Normal plot of treatment. Normal plot of estimates for β2 under the model ν2 6¼ 0.
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