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Abstract

Introduction

In many practical situations, we are interested in the effect of covariates on correlated multi-

ple responses. In this paper, we focus on estimation and variable selection in multi-response

multiple regression models. Correlation among the response variables must be modeled for

valid inference.

Method

We used an extension of the generalized estimating equation (GEE) methodology to simul-

taneously analyze binary, count, and continuous outcomes with nonlinear functions. Vari-

able selection plays an important role in modeling correlated responses because of the

large number of model parameters that must be estimated. We propose a penalized-likeli-

hood approach based on the extended GEEs for simultaneous parameter estimation and

variable selection.

Results and conclusions

We conducted a series of Monte Carlo simulations to investigate the performance of our

method, considering different sample sizes and numbers of response variables. The results

showed that our method works well compared to treating the responses as uncorrelated.

We recommend using an unstructured correlation model with the Bayesian information crite-

rion (BIC) to select the tuning parameters. We demonstrated our method using data from a

concrete slump test.

Introduction

Multivariate multiple regression analysis is often used to assess covariate effects when one or

multiple response variables are collected in observational or experimental studies. Many multi-

variate regression techniques are designed for univariate responses. A common way to deal
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with multiple response variables is to apply the univariate technique separately to each vari-

able, ignoring the joint correlation among the responses.

Consider the concrete slump test study reported in [1], [2], and [3]. The data set consists of

three continuous output variables (slump, flow, and 28-day compressive strength (CS)). We

wish to model these responses as a function of seven concrete ingredients (covariates): cement

(X1), fly ash (X2), blast furnace slag (X3), water (X4), super plasticizer (X5), coarse aggregate

(X6), and fine aggregate (X7). The responses are correlated, and separate regression analysis

will not take into account the importance of covariance on the response variables. Fig 1 shows

the correlation among the output variables; in particular, slump and flow are highly correlated.

The joint model for all responses results in 27 parameters that must be estimated. Some of

the covariates have no influence on the response variable(s), and excluding them results in a

simpler model with better interpretive and predictive value.

The multi-response regression problem has been studied by various researchers in the

generalized linear model (GLM) framework. For instance, the curd and whey method [4]

uses the correlation among the response variables to improve the predictive accuracy. Mul-

tivariate modeling methods have been extensively used in transportation and accident anal-

ysis, especially for binary outcomes [5–7]. Some researchers have explored multivariate

modeling with consideration of correlation in a Bayesian framework. For example, see [8]

for the modeling of multivariate spatio-temporal Tobit regression and [9] for an approach

based on spatial analysis.

Fig 1. Scatter plot indicating the relationship between slump (Y1), flow (Y2), and compressive strength (Y3).

https://doi.org/10.1371/journal.pone.0236067.g001
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The analysis of multivariate outcomes is more difficult when there are multiple types of out-

comes. These occur frequently in the investigation of, e.g., dose–response experiments in toxi-

cology [10, 11], birth defects in teratology [12], and pain in public health research [12, 13]. The

methodologies used for mixed outcomes include factorization-based approaches on extensions

of the general location model [14, 15]. However, these approaches depend on parametric

distributional assumptions. Approaches based on latent variables include [16] and [17]. Modi-

fied generalized estimating equations (GEEs) [18] have been used to model longitudinal data;

these approaches are of great interest because of their simplicity.

The GEE approach of [18] provides flexible modeling of multivariate observations based on

a quasi-likelihood (QL) approach. In QL modeling, one assumes the existence of the first two

moments of the responses of interest. It extends the GEE methodology to simultaneously ana-

lyze binary, count, and continuous outcomes with nonlinear models that incorporate the

intra-subject correlation. The method uses a working correlation matrix. The incorporation of

the intra-subject correlation makes this approach attractive. However, when we apply a joint

model for all responses, many regression parameters must be estimated, and some have little

or no influence on the responses. Large models can be difficult to interpret, so variable selec-

tion for multi-response modeling is of great interest.

We first systematically study the GEE approach in a cross-sectional set-up with multiple

responses [11, 19]. Simultaneous parameter estimation and variable selection [20] has been

used in many areas, including longitudinal data analysis [21]. We have extended this method

to multivariate multiple regression using a penalized GEE methodology. We use the Bayesian

information criterion (BIC) and generalized cross validation (GCV) to find the tuning param-

eters. Our simulation studies show that our methodology performs well.

The remainder of the paper is organized as follows. In the next section, we review the GEE

for multiple responses and introduce our penalized GEE and the computational procedures.

We discuss the distributional properties of the estimates and presents the simulation studies,

subsequently and provides concluding remarks in the last section.

Materials and methods

GEE for multiple outcomes

We now discuss the GEE model based on the marginal distributions of the response for the

analysis of longitudinal data. In a cross-sectional study with multiple responses, [12] used

the GEE approach to estimate the parameters. Let the observations ðymi ; x
m
i Þ denote the

response and covariate respectively for the mth response (m = 1, 2, . . ., Mi) measured on sub-

ject i = 1, . . ., n. The QL approach requires us to specify the first two moments of the data

(ymi ). We define

Eðymi Þ ¼ m
ðmÞ
i ¼ f ðxmi ; β

ðmÞÞ

varðyðmÞi Þ ¼ sðmÞhðmÞðmðmÞi Þ ¼ s
2ðmÞ
i

where h(m)(�) is a known function, s(m) is a scaling parameter, f(m)(�) is a nonlinear function

of the coefficients, and β(m) is a p(m) × 1 vector of model coefficients for the mth response var-

iable. Let yi ¼ ðy
ð1Þ

i ; . . . ; yðMiÞ
i Þ;μi ¼ ðm

ð1Þ

i ; . . . ; m
ðMiÞ
i Þ and β ¼ ðβð1Þ

T
; βð2Þ

T
; . . . ; βðMÞ

T
Þ
T

be the

p × 1 vector of model parameters for all M outcomes, where p = (p(1) + p(2) + � � � + p(M)). In

the QL framework with multiple outcomes, the regression coefficients β can be estimated by
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solving the GEEs

SðβÞ ¼
Xn

i¼1

DT
i V

� 1
i εi ¼ 0: ð1Þ

For each subject i, let Di be an Mi × p full-rank derivative diagonal block matrix

such that Di ¼ diagð @m
ð1Þ

i

@βð1Þ
T ;

@m
ð2Þ

i

@βð2Þ
T ; � � � ;

@m
ðMiÞ
i

@βðMiÞ
T Þ, εi = (yi − μi) be an Mi × 1 vector of

residuals, and Vi ¼ A1=2
i RiðαÞA

1=2
i be the Mi ×Mi working covariance matrix of yi. Here,

Ai ¼ diagðs2ð1Þ

i ; s
2ð2Þ

i ; . . . ; s
2ðMiÞ
i Þ is an Mi ×Mi diagonal matrix of varðyðmÞi Þ and Ri(α) is an

Mi ×Mi working correlation matrix parameterized with the parameter vector α. The GEE

estimator β̂ is asymptotically consistent as n goes to infinity.

Penalized GEE

To perform parameter estimation and variable selection simultaneously in the presence of

mixed discrete and continuous outcomes, we propose a penalized version of the extended

GEEs [12, 19]. Penalized likelihood methods such as LASSO [22] and SCAD [20] have been

successful both theoretically and in practice. All the variables are considered at the same time,

which may lead to a better global submodel. The penalized GEE has the feature that the consis-

tency of the model holds even if the working correlation is misspecified. However, to improve

the statistical efficiency of the coefficient, we recommend a covariance matrix based on the

estimate of the unstructured working correlation. The regression coefficients β can be esti-

mated by solving the penalized GEEs defined by

Xn

i¼1

DT
i V

� 1

i εi � nP0
l
ðβÞsignðbÞ ¼ 0 ð2Þ

where P0
l
ðβÞ ¼ @PlðβÞ=@ β is the vector derivative of the penalty function Pλ(β) with λ being

the vector of tuning parameters.

Although different penalty functions can be adopted, we consider only LASSO and SCAD.

The former has the sparsity property, and the latter simultaneously achieves the three desirable

properties of an ideal penalty: sparsity, unbiasedness, and continuity [20]. The LASSO penalty

defined as Pλ(β) = ||β|| as per [22], where as per [20], the derivative of the SCAD penalty is

defined as

P0
l;aðbÞ ¼ l

(

Iðb � lÞ þ
ðal � bÞ

þ

ða � 1Þl
Iðb > lÞ

)

for some a > 2 and b > 0:

where a and λ are tuning parameters.

Computational algorithm. To compute β̂, we use the local quadratic approximation

(LQA) algorithm [20]. With the aid of the LQA, the optimization of (2) can be carried out

using a modified Newton–Raphson (MNR) algorithm. The estimate of β̂ at the (r + 1)th itera-

tion is

β̂rþ1 ¼ β̂r �

(
@Sðβ̂rÞ

@β
� nSlðβ̂rÞ

) � 1

fSðβ̂rÞ � nUlðβ̂rÞg ð3Þ
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where

SlðbrÞ ¼ diagðP0
l
ðjb1rjÞ=jb1rj; . . . ; P0

l
ðjbprjÞ=jbprjÞ;

@Sðβ̂rÞ

@β
¼ �

Xn

i¼1

DT
i V

� 1
i Di; ; UlðbrÞ ¼ SlðbrÞbr:

Given a tuning parameter λ, we repeat the above algorithm to update β̂r until we achieve

convergence.

Correlation structure. Many researchers (e.g., [23–25]) have shown that an incorrectly

specified correlation structure reduces the estimation efficiency. Thus, we suggest using

an unstructured correlation structure Ru(α) to estimate each variance and covariance

uniquely. This structure can be estimated using a residual-based moment method. Let

dVðaÞ ¼ Â1=2diagðR̂u; . . . ; R̂uÞÂ1=2 be the unstructured covariance matrix estimate. We have

R̂u ¼
1

n

Xn

i¼1

Â � 1=2

i εiε
T
i Â
� 1=2

i :

Tuning parameter selection

We set a = 3.7 for SCAD penalty as per [20]. Thus, we tune λ for both LASSO and SCAD. We

define the GCV [26] criterion via

GCVðlÞ ¼
1

n
D

ð1 � n� 1df ðlÞÞ2

and the BIC (see [27] and [6]) via

BICðlÞ ¼ log
D
n

� �

þ
logðnÞ
n

� �

df ðlÞ

where D is the deviance of the model and df(λ) = tr{X(XT X + nSλ)−1 XT}. We choose the tun-

ing parameter λ that minimizes GCV(λ) and BIC(λ).

Properties of estimates

Let b ¼ ðβA; βN Þ be the true vector of the regression coefficients. Under some necessary regu-

larity conditions [28, 29] for sufficiently large n, the parameter estimates of the penalized GEE

with the LASSO (λ = Op(n−1/2)) and SCAD (λ = op(1)) penalties are consistent and asymptoti-

cally normal, i.e.,

ffiffiffi
n
p
ðβ̂ � βÞ!

D Nð0;O� 10 O1O
� 1
0 Þ

where O
� 1
0 O1O

� 1
0 is the sandwich variance estimator, with O0 ¼

Pn
i¼1

DT
i V

� 1
i Di � nΣλðβ̂Þ and

O1 ¼
Pn

i¼1
DT

i V
� 1
i covðyiÞV

� 1
i Di.

The cov(yi) can be replaced by εiε
T
i .

Results

Performance analysis

We conducted a series of simulation studies to investigate the performance of our variable

selection approach on continuous, binary, and count response outcomes using the LASSO

and SCAD penalty functions. The simulations were conducted using the R software. For faster
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optimization of the tuning parameter λ, we used the warm-starting principle, where the initial

value of β is replaced by β̂ðlþdlÞ for the MNR algorithm. We select the model with minimum

BIC(λ) or GCV(λ). We assess the model performance using the model error (ME) [20] as well

as the standard error and the correct and incorrect deletions. The ME is due to the lack of fit

of an underlying model and is denoted by MEðb̂Þ. Its size reflects how well the model fits the

data:

MEðb̂Þ ¼ ExfmðXβÞ � mðXβ̂Þg
2

where μ(X|β) = E(y|X). The ME has been expressed as the median relative model error (MRME).

The relative model error is defined via

RME ¼
ME
MEfull

;

where MEfull is the ME calculated by fitting the data with the full model. The correct deletions

are the average number of true zero coefficients correctly estimated as zero, and the incorrect

deletions are the average number of true nonzero coefficients erroneously set to zero. In the

tables, the estimated values for correct and incorrect deletions are reported in the columns

“Correct” and “Incorrect”. For comparison purposes, we estimated the covariance matrix of the

response variables based on both the unstructured working correlation (UWC) and the indepen-

dent working correlation (IWC). We simulated 1000 data sets consisting of n = 50 and n = 100

observations from the response model

gðEðYÞÞ ¼ XT
ij b

with i = 1, 2, . . . n subjects and j = 1, 2, . . ., m responses. For binary outcomes we use a logit link;

for count outcomes we use a log link; and for continuous (normal) outcomes we use the identity

link function. We generated the covariates Xij from the multivariate normal distribution with

marginal mean 0, marginal variance 1, and AR(1) correlation with ρx = 0.5. For the simulations,

we considered the following three cases of continuous, binary, and count response outcomes

with different β values and correlation ρy between the responses and with s2
y ¼ 1.

Case 1: Three correlated cormal responses. We consider correlated normal responses

(m = 3) with AR(1) true correlation. We set ρy = 0.7 and consider two covariates (k = 2) with

β = (β(1), β(2), β(3)) = ((3, 1.5), (0, 0), (2, 0)). The simulation results are summarized in Table 1

for IWC and Table 2 for UWC. The tables show that the nonzero estimates of both SCAD and

LASSO are close to the true values, i.e., b
ð1Þ

1
¼ 3, b

ð1Þ

2
¼ 1:5, and b

ð3Þ

1
¼ 2. However, the stan-

dard errors of the estimates in Table 2 are lower, which can be attributed to the correlation

between the responses. For both n = 50 and n = 100, the mean ME and its standard error

are smaller for SCAD than LASSO. The average number of zero coefficients increases as n
increases in Table 2, especially for SCAD. This indicates that SCAD performs better than

LASSO.

Case 2: Two correlated normal responses and one independent binary response. We

consider three outcomes (m = 3): two continuous and one binary. The continuous outcomes

were generated from a normal distribution and were correlated with AR(1) true correlation.

We set ρy = 0.7 and consider the binary outcome from an independent binary observation and

two covariates (k = 2) with β = (β(1), β(2), β(3)) = ((3, 1.5), (0, 0), (2, 0)). The simulation results

are summarized in Tables 3 and 4. The tables show that the nonzero estimates for IWC are

similar to those for UWC. However, because of the large correlation (0.7) between the contin-

uous responses, the standard errors of b
ð1Þ

1
¼ 3, b

ð1Þ

2
¼ 1:5 are smaller for UWC. Again, the
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Table 1. Simulations results for correlated normal responses (Case 1) with IWC.

Selection Penalty MRME Correct Incorrect

n = 50

l̂GCV
SCAD 0.064 1.297 0.000

LASSO 0.092 0.982 0.001

l̂BIC
SCAD 0.053 1.532 0.000

LASSO 0.113 1.180 0.002

n = 100

l̂GCV
SCAD 0.030 1.298 0.000

LASSO 0.038 0.871 0.001

l̂BIC
SCAD 0.025 1.538 0.000

LASSO 0.043 1.066 0.000

Selection Penalty b̂
ð1Þ

1 b̂
ð1Þ

2 b̂
ð3Þ

1

n = 50

l̂GCV
SCAD 2.998(0.171) 1.496(0.168) 1.993(0.154)

LASSO 2.898(0.203) 1.388(0.219) 1.831(0.229)

l̂BIC
SCAD 2.998(0.171) 1.496(0.168) 1.992(0.147)

LASSO 2.866(0.236) 1.356(0.244) 1.789(0.266)

n = 100

l̂GCV
SCAD 2.998(0.115) 1.506(0.116) 1.996(0.105)

LASSO 2.931(0.170) 1.438(0.154) 1.891(0.152)

l̂BIC
SCAD 2.998(0.115) 1.506(0.115) 1.998(0.100)

LASSO 2.898(0.216) 1.403(0.192) 1.857(0.190)

https://doi.org/10.1371/journal.pone.0236067.t001

Table 2. Simulations results for correlated normal responses (Case 1) with UWC.

Selection Penalty MRME Correct Incorrect

n = 50

l̂GCV
SCAD 0.045 1.457 0.000

LASSO 0.079 1.214 0.001

l̂BIC
SCAD 0.035 1.661 0.000

LASSO 0.079 1.261 0.011

n = 100

l̂GCV
SCAD 0.022 1.513 0.000

LASSO 0.040 1.265 0.000

l̂BIC
SCAD 0.017 1.696 0.000

LASSO 0.040 1.318 0.000

Selection Penalty b̂
ð1Þ

1 b̂
ð1Þ

2 b̂
ð3Þ

1

n = 50

l̂GCV
SCAD 2.999(0.155) 1.496(0.145) 1.992(0.137)

LASSO 2.884(0.200) 1.427(0.156) 1.842(0.185)

l̂BIC
SCAD 3.000(0.145) 1.496(0.131) 1.993(0.122)

LASSO 2.861(0.212) 1.421(0.164) 1.823(0.236)

n = 100

l̂GCV
SCAD 2.998(0.102) 1.505(0.098) 1.996(0.091)

LASSO 2.921(0.122) 1.457(0.100) 1.892(0.125)

l̂BIC
SCAD 2.999(0.092) 1.504(0.090) 1.996(0.083)

LASSO 2.917(0.122) 1.454(0.100) 1.887(0.124)

https://doi.org/10.1371/journal.pone.0236067.t002
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Table 3. Simulations results for correlated normal and independent binary responses (Case 2) with IWC.

Selection Penalty MRME Correct Incorrect

n = 50

l̂GCV
SCAD 0.059 1.755 0.007

LASSO 0.129 1.663 0.024

l̂BIC
SCAD 0.054 2.143 0.030

LASSO 0.154 1.787 0.051

n = 100

l̂GCV
SCAD 0.027 1.816 0.001

LASSO 0.072 1.799 0.023

l̂BIC
SCAD 0.023 2.122 0.003

LASSO 0.095 2.002 0.043

Selection Penalty b̂
ð1Þ

1 b̂
ð1Þ

2 b̂
ð3Þ

1

n = 50

l̂GCV
SCAD 2.995(0.171) 1.494(0.165) 2.192(0.799)

LASSO 2.888(0.188) 1.381(0.201) 0.772(0.423)

l̂BIC
SCAD 2.996(0.171) 1.494(0.165) 2.069(0.919)

LASSO 2.864(0.204) 1.355(0.218) 0.687(0.419)

n = 100

l̂GCV
SCAD 2.997(0.115) 1.506(1.113) 2.078(0.487)

LASSO 2.906(0.145) 1.413(0.144) 0.903(0.435)

l̂BIC
SCAD 2.997(0.115) 1.506(0.113) 2.060(0.470)

LASSO 2.876(0.159) 1.381(0.167) 0.731(0.383)

https://doi.org/10.1371/journal.pone.0236067.t003

Table 4. Simulations results for correlated normal and independent binary responses (Case 2) with UWC.

Selection Penalty MRME Correct Incorrect

n = 50

l̂GCV
SCAD 0.056 1.829 0.005

LASSO 0.094 1.762 0.006

l̂BIC
SCAD 0.037 2.209 0.037

LASSO 0.097 1.824 0.008

n = 100

l̂GCV
SCAD 0.025 1.825 0.001

LASSO 0.057 1.880 0.002

l̂BIC
SCAD 0.015 2.336 0.001

LASSO 0.063 2.091 0.002

Selection Penalty b̂
ð1Þ

1 b̂
ð1Þ

2 b̂
ð3Þ

1

n = 50

l̂GCV
SCAD 2.995(0.156) 1.492(0.148) 2.192(0.815)

LASSO 2.918(0.148) 1.429(0.141) 0.782(0.391)

l̂BIC
SCAD 2.998(0.142) 1.488(0.133) 2.076(0.936)

LASSO 2.912(0.150) 1.424(0.140) 0.739(0.364)

n = 100

l̂GCV
SCAD 2.999(0.108) 1.501(1.002) 2.079(0.480)

LASSO 2.938(0.102) 1.453(0.094) 0.882(0.388)

l̂BIC
SCAD 3.002(0.096) 1.498(0.102) 2.066(0.469)

LASSO 2.927(0.097) 1.445(0.091) 0.767(0.299)

https://doi.org/10.1371/journal.pone.0236067.t004
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average number of zero coefficients is higher for UWC than for IWC. As the SCAD sample

size increases, the mean ME and its standard error decrease for both GCV and BIC. The

LASSO estimates for b
ð1Þ

3
are not close to the true value, but the SCAD estimates of the nonzero

coefficients are all close to the true values. Thus, SCAD performs better than LASSO.

Case 3: Two correlated normal responses and one binary response. We consider three

outcomes (m = 3): two continuous and one binary. They are generated using an unstructured

correlation structure with the parameters ρ12 = 0.3, ρ13 = 0.4, and ρ23 = 0.6, and we consider

two covariates (k = 2) with β = (β(1), β(2), β(3)) = ((3, 1.5), (0, 0), (2/3, 0)). We set the β values

for the binary outcome smaller than before to avoid numerical instability. The correlated nor-

mal and binary outcomes were generated in R using the BinNor package [30] for generating

multiple binary and normal variables simultaneously given marginal characteristics and asso-

ciation structure; it is based on the methodology of [31]. The simulation results are summa-

rized in Tables 5 and 6. The tables show that if the sample size is increased, the mean ME and

its standard error are reduced. Again, the standard errors of the nonzero parameter estimates

are lower for UWC than IWC. The average numbers of zero coefficients using SCAD with BIC

for all sample sizes are close to the target value of three, and for SCAD with GCV the nonzero

estimated coefficients are close to the true values for n = 50 and n = 100.

Overall, Tables 1 to 6 show that the nonzero estimates are unbiased regardless of the corre-

lation structure. However, the unstructured correlation resulted in lower standard errors com-

pared to the estimates based on an independent working correlation. The average number of

zero coefficients is higher in the unstructured case. We notice a decrease in the mean ME

when the sample size increases from 50 to 100 for both LASSO and SCAD. SCAD has a smaller

mean ME than LASSO in all cases. We conclude that SCAD with BIC performs well.

Table 5. Simulations results for correlated normal and binary responses (Case 3) with IWC.

Selection Penalty MRME Correct Incorrect

n = 50

l̂GCV
SCAD 0.071 1.916 0.209

LASSO 0.092 1.343 0.173

l̂BIC
SCAD 0.070 2.446 0.301

LASSO 0.119 1.509 0.258

n = 100

l̂GCV
SCAD 0.034 1.775 0.066

LASSO 0.050 1.449 0.084

l̂BIC
SCAD 0.047 2.430 0.151

LASSO 0.056 1.622 0.152

Selection Penalty b̂
ð1Þ

1 b̂
ð1Þ

2 b̂
ð3Þ

1

n = 50

l̂GCV
SCAD 2.997(0.167) 1.499(0.171) 0.543(0.520)

LASSO 2.899(0.202) 1.395(0.214) 0.241(0.224)

l̂BIC
SCAD 2.997(0.167) 1.499(0.170) 0.246(0.461)

LASSO 2.886(0.219) 1.361(0.238) 0.212(0.222)

n = 100

l̂GCV
SCAD 2.998(0.114) 1.503(0.116) 0.633(0.201)

LASSO 2.918(0.149) 1.421(0.157) 0.287(0.194)

l̂BIC
SCAD 2.998(0.113) 1.503(0.115) 0.309(0.432)

LASSO 2.892(0.166) 1.393(0.188) 0.253(0.185)

https://doi.org/10.1371/journal.pone.0236067.t005
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Case study

We now revisit the concrete slump test data set discussed in Section 1. From Fig 1, we see that

slump (Y1) and flow (Y2) are highly correlated. We therefore used penalized GEE to perform

the variable selection and parameter estimation. The resulting estimates are given in Tables 7

to 9. The second and third columns of the tables give the performance using penalized GEE

with IWC for SCAD and LASSO. The fourth and fifth columns give the performance using

penalized GEE with UWC. For the model selection procedures, both unweighted BIC and

GCV were used to estimate the regression coefficients; their performance was similar. There-

fore, we present only the results based on the unweighted BIC. Table 7 shows that SCAD with

IWC selected 5 of the 7 covariates for slump (Y1), whereas LASSO with IWC selected 4 covari-

ates. The difference is that LASSO omitted fine aggregate (X7). SCAD and LASSO with UWC

obtained the same estimates for all the variables: they retained fine aggregate (X7) but forced

fly ash (X2) and coarse aggregate (X6) to zero. Table 8 shows that both SCAD and LASSO with

IWC selected fly ash (X2), water (X4), and coarse aggregate (X6) for flow (Y2), but SCAD and

LASSO with UWC selected only fly ash (X2) and water (X4). The standard errors of the esti-

mates is lower with UWC. Table 9 shows that LASSO with IWC selected all the covariates

except coarse aggregate (X6) for CS (Y3), whereas the other methods dropped coarse aggregate

(X6) and superplasticizer (X5).

Concrete slump test data with artificial binary response. For illustration purposes, we

create an artificial binary response variable to indicate whether or not a specimen can sustain a

heavy load before distortion. For this analysis, we consider that concrete with a compressive

strength below 35 is of poor quality. We therefore convert this continuous response to a

binary based on the quality. Let Y3 = 1 if the compressive strength is above 35, and Y3 = 0

Table 6. Simulations results for correlated normal and binary responses (Case 3) with UWC.

Selection Penalty MRME Correct Incorrect

n = 50

l̂GCV
SCAD 0.065 1.975 0.167

LASSO 0.098 1.538 0.117

l̂BIC
SCAD 0.059 2.493 0.242

LASSO 0.106 1.601 0.241

n = 100

l̂GCV
SCAD 0.031 1.980 0.041

LASSO 0.059 1.578 0.057

l̂BIC
SCAD 0.037 2.537 0.094

LASSO 0.063 1.700 0.079

Selection Penalty b̂
ð1Þ

1 b̂
ð1Þ

2 b̂
ð3Þ

1

n = 50

l̂GCV
SCAD 2.998(0.153) 1.496(0.153) 0.574(0.498)

LASSO 2.883(0.178) 1.417(0.173) 0.209(0.237)

l̂BIC
SCAD 2.993(0.147) 1.495(0.145) 0.287(0.464)

LASSO 2.872(0.180) 1.407(0.181) 0.190(0.219)

n = 100

l̂GCV
SCAD 2.998(0.105) 1.500(0.106) 0.643(0.337)

LASSO 2.907(0.121) 1.442(0.113) 0.256(0.211)

l̂BIC
SCAD 2.990(0.100) 1.499(0.097) 0.357(0.433)

LASSO 2.894(0.126) 1.421(0.122) 0.216(0.184)

https://doi.org/10.1371/journal.pone.0236067.t006
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otherwise. The goal is to apply variable selection to model the correlated continuous and

binary outcomes. The resulting estimates are given in Tables 10 to 12 (the columns of these

tables are the same as those for Tables 7 to 9).

Table 10 shows that SCAD with IWC selected 5 of the 7 covariates for slump (Y1), whereas

LASSO with IWC selected 4 covariates. The difference is that LASSO omitted fine aggregate

(X7). These results are similar to the independent results in Table 7, which confirms the use of

IWC. SCAD with UWC forced fly ash (X2) to zero whereas SCAD with IWC did not. LASSO

with UWC selected the same variables as LASSO with IWC. Table 11 shows that all the meth-

ods selected fly ash (X2), water (X4), and aggregate (X6) for flow (Y2). Table 12 shows that all

the methods except LASSO with IWC selected 5 covariates for the binary CS (Y3). The esti-

mates obtained with UWC have lower standard errors.

Table 7. Estimates of regression coefficients for slump (Y1), with standard error in parentheses.

Variable IWC UWC

SCAD LASSO SCAD LASSO

X1 – – – –

– – – –

X2 -0.0297 -0.0375 – –

(0.0021) (0.0013) – –

X3 -0.0061 -0.0098 -0.0023 -0.0023

(0.0001) (0.0010) (0.0003) (0.0003)

X4 0.0866 0.1222 0.0278 0.0278

(0.0003) (0.0025) (0.0015) (0.0015)

X5 – – – –

– – – –

X6 -0.0011 -0.0017 – –

(0.0000) (0.000) – –

X7 0.0070 – 0.0163 0.0163

(0.0000) – (0.0000) (0.0000)

https://doi.org/10.1371/journal.pone.0236067.t007

Table 8. Estimates of regression coefficients for flow (Y2), with standard error in parentheses.

Variable IWC UWC

SCAD LASSO SCAD LASSO

X1 – – – –

– – – –

X2 -0.0529 -0.0715 -0.0169 -0.0169

(0.0024) (0.2544) (0.0022) (0.0022)

X3 – – – –

– – – –

X4 0.2868 0.3341 0.2507 0.2507

(0.0004) (0.0077) (0.0000) (0.0000)

X5 – – – –

– – – –

X6 -0.0033 -0.0121 – –

(0.0000) (0.0031) – –

X7 – – – –

– – – –

https://doi.org/10.1371/journal.pone.0236067.t008
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Conclusion

We have considered the selection of significant variables in multivariate multiple-response

regression problems. We developed an extended GEE approach to take into account the corre-

lation among the response variables. Our approach automatically and simultaneously selects

the significant variables in high-dimensional models. We also proposed an efficient algorithm

to implement the method. We performed many Monte Carlo simulations to assess the perfor-

mance of the method for different sample sizes. The results showed that the methodology

works well, especially when the SCAD penalty function is used together with the BIC tuning

criterion. The estimates of β are unbiased regardless of the choice of correlation structure. We

demonstrated the approach in a case study.

Table 10. Estimates of regression coefficients for slump (Y1), with standard error in parentheses.

Variable IWC UWC

SCAD LASSO SCAD LASSO

X1 – – – –

– – – –

X2 -0.0298 -0.0375 – -0.0173

(0.0017) (0.0017) – (0.0000)

X3 -0.0061 -0.0098 -0.0042 -0.0071

(0.0001) (0.0016) (0.0002) (0.0002)

X4 0.0869 0.1222 0.0494 0.0753

(0.0003) (0.0041) (0.0014) (0.0097)

X5 – – – –

– – – –

X6 -0.0011 -0.0017 – –

(0.0000) (0.000) – –

X7 0.0070 – 0.0113 0.0073

(0.0000) – (0.0001) (0.0006)

https://doi.org/10.1371/journal.pone.0236067.t010

Table 9. Estimates of regression coefficients for compressive strength (Y3), with standard error in parentheses.

Variable IWC UWC

SCAD LASSO SCAD LASSO

X1 0.1017 0.1032 0.0972 0.0972

(0.0000) (0.0000) (0.0000) (0.0000)

X2 0.0322 0.0337 0.0229 0.0299

(0.0000) (0.0000) (0.0000) (0.0000)

X3 0.0920 0.0931 0.0871 0.0871

(0.0004) (0.0003) (0.0007) (0.0007)

X4 -0.0866 -0.0802 -0.0494 -0.0494

(0.0000) (0.0000) (0.0000) (0.0000)

X5 – 0.0173 – –

– (0.0000) – –

X6 – – – –

– – – –

X7 0.0165 0.0174 0.0119 0.0119

(0.0000) (0.0000) (0.0000) (0.0000)

https://doi.org/10.1371/journal.pone.0236067.t009
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