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ABSTRACT
A human Visual System (HVS) has the ability to pay visual attention, which is one
of the many functions of the HVS. Despite the many advancements being made
in visual saliency prediction, there continues to be room for improvement. Deep
learning has recently been used to deal with this task. This study proposes a novel
deep learning model based on a Fully Convolutional Network (FCN) architecture.
The proposed model is trained in an end-to-end style and designed to predict visual
saliency. The entire proposed model is fully training style from scratch to extract
distinguishing features. The proposed model is evaluated using several benchmark
datasets, such asMIT300,MIT1003, TORONTO, andDUT-OMRON. The quantitative
and qualitative experiment analyses demonstrate that the proposed model achieves
superior performance for predicting visual saliency.

Subjects Computer Vision, Data Mining and Machine Learning
Keywords Deep learning, Convolutional neural networks, Fully Convolutional Network,
Semantic Segmentation, Encoder-decoder architecture, Human eye fixation

INTRODUCTION
A Human Visual System (HVS) processes a part of the visual scene instead of the whole
scene. This phenomenon is called Human Visual Attention (HVA), also referred to as visual
saliency prediction, which is an important research area in the field of computer vision.
HVA is also known as human eye fixation prediction, visual saliency prediction, or saliency
map detection. Visual saliency prediction is also beneficial for other applications in the
computer vision field, including salient object detection (Liu & Han, 2016), image retrieval
(Huang et al., 2011), multiresolution imaging (Lu & Li, 2013), and scene classification
(Cheng et al., 2015; Lu, Li & Mou, 2014; Yao et al., 2016).

Many models have been developed to predict visual saliency, the most popular being
the saliency map. Saliency maps describe the probability that each image pixel will attract
human attention. In other words, saliency maps are images that display the unique
qualities of each pixel in a given image (Gao & Vasconcelos, 2005). To produce a saliency
map, the salient points in the image are collected and convolved with a Gaussian filter
(Gao & Vasconcelos, 2005). The probability that each pixel in the image will attract human
attention is represented by a heat map or gray-scale image. Notably, saliency maps smooth
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the image, making it more meaningful and easier to analyze. This is useful for condition
image captioning architecture because it indicates what is salient andwhat is not (Mackenzie
& Harris, 2017).

To evaluate the saliency map, human eye fixation data in free viewing is used because
there is a direct link between human eye movement and visual attention (Mackenzie &
Harris, 2017). Generally, HVA runs on two approaches. The first is a bottom-up approach
which utilizes low-level features, including intensity, color, edge orientation, and texture
(Gao, Mahadevan & Vasconcelos, 2008; Le Meur et al., 2006). Such an approach attempts
to decide regions that show obvious characteristics of their surroundings. The second is
a top-down approach, which is task-driven and requires an explicit understanding of the
context of the visual scene. Moreover, it depends on the features of the object of interest
(Gao, Han & Vasconcelos, 2009; Kanan et al., 2009).

The deep Convolutional Neural Network (CNN) is the most widely utilized deep
learning method for image processing applications (Mahdianpari et al., 2018). Specifically,
CNN is capable of extracting discriminant visual features (e.g., 2-D spatial features) by
applying a hierarchy of convolutional filters using multiple nonlinear transformations.
Studies have also used Convolutional Neural Networks (CNNs) for studying saliency map
detection to confirm the importance of end-to-end task learning and automatic feature
extraction (Fang et al., 2016; Jetley, Murray & Vig, 2016; Kruthiventi et al., 2016; Pan et al.,
2016; Vig, Dorr & Cox, 2014). The deep CNN model achieves an even higher classification
accuracy. For example, deep learning techniques have achieved superior results in multiple
tasks, such as driverless car, scene classification, object (e.g., vehicle) detection, image
classification, and semantic segmentation. However, deep learning architecture requires
sufficient training data for superior performance on several sets of visual tasks, such as local
image detection (Girshick et al., 2014), global image classification (Krizhevsky, Sutskever &
Hinton, 2012), and semantic segmentation (Long, Shelhamer & Darrell, 2015).

Although several deep learning models have been proposed to solve the problem of
saliency prediction, and those models provide good performance. However, those models
essentially proposed for object recognition and then fine-tuned for saliency prediction.
Consequently, the pixel-based classification of visual attention task remains challenging.
This highlights the necessity of designing a novel FCN model specifically for the task of
saliency prediction. In addition, our proposed model is designed for training from scratch.
Therefore, we added some modules (e.g., three inception modules and residual modules)
to improve the model performance.

The inception module is useful since benefits from filters with different sizes in one
layer, which contribute to multi-scale inference and enhance contextual information. This
highlights the necessity of combining feature maps at different resolution to extract useful
information. In addition the residual module recovers more accurate information and
simplifies optimization, while avoiding the vanishing gradient problem.

In this study, we utilized an encoder–decoder structure based on the Fully Convolutional
Network (FCN) architecture to address the problem of bottom-up visual attention in visual
saliency predication. FCN has the same architecture as the CNN network, but unlike CNN
it does not contain any fully connected layers. FCNs are also powerful visual models that
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generate high-level features from low-level features to produce hierarchies. Moreover,
FCN utilizes multi-layer information and addresses pixel-based classification tasks using
an end-to-end style (Long, Shelhamer & Darrell, 2015). In addition, the proposed model
also includes both inception and residual modules to improve multi-scale inference and
the recovery of more accurate information, respectively.

This study proposes a new model based on an encoder–decoder structure (i.e., FCN) to
improve the performance of visual saliency prediction. The specific contributions of this
work are as follows:

(1) A new model of FCN architecture for visual saliency prediction that uses two types
of modules is proposed. The first module contains three stages of inception modules,
improves the multi-scale inference, and performs contextual information. The second
module contains one stage from the residual module and also recovers more accurate
information and simplifies optimization, while avoiding the vanishing gradient problem.

(2) Four well-known datasets, including TORONTO, MIT300, MIT1003, and DUT-
OMRON, were used to evaluate the proposedmodel. The experiments demonstrate that the
proposed model achieves results comparable or superior to those of other state-of-the-art
models.

The remainder of this article is organized as follows. First, the proposed model is
described in more detail in ‘Related Work’ and the materials and methods used to produce
and evaluate the proposed model are discussed in ‘Material and Methods’. ‘Experimental
Results’ presents the quantitative and qualitative experimental results obtained from the
four datasets. Finally, the results are summarized, and possible future uses and applications
of the proposed model are explored in ‘Discussion’.

RELATED WORK
Visual saliency prediction has received attention from computer vision researchers for
many years. The earliest computational model was introduced by Koch and Ullman
(Krizhevsky, Sutskever & Hinton, 2012), which inspired the work of Itti, Koch & Niebur
(1998). This model combines low level features at multiple scales to generate saliency
maps. Subsequently, many models have been proposed to address visual saliency detection
(Fu et al., 2015; Gong et al., 2015; Guo et al., 2017; Li et al., 2014; Liu et al., 2016; Liu et al.,
2014a; Liu, Zou & Meur, 2014b; Wang & Shen, 2017; Wang et al., 2019a; Wang et al., 2016;
Wang et al., 2017b). Most of this work has been focused on how to detect visual saliency
in an image/video using different methods (Borji & Itti, 2012; Wang, Shen & Shao, 2017a;
Wang et al., 2019b).

Most conventional attention models are based on a bottom-up strategy. These contain
three important steps to detect visual saliency: feature extraction, saliency extraction,
and saliency combination. Salient regions in the visual scene are first extracted from
their surroundings through hand-crafted low-level features (e.g., intensity, color, edge
orientation, and texture), and center–surround contrast is widely used for generating
saliency. The saliency may also be produced by the relative difference between the region
and its local surroundings (Itti, Koch & Niebur, 1998; Harel, Koch & Perona, 2007; Bruce &
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Tsotsos, 2006). The last step for saliency detection combines several features to generate the
saliency map.

Recently, many visual saliency models have been introduced for object recognition.
Deep-learning models achieved better performance compared to non-deep learning
models. The Deep Neural Networks (DNN) (Vig, Dorr & Cox, 2014), was trained from
scratch to predict saliency. Subsequent models were based on pre-trained models, for
example, the DeepGaze I model (Kümmerer, Theis & Bethge, 2014), which was the first
to be trained on a pre-trained model (AlexNet Krizhevsky, Sutskever & Hinton, 2012)
trained on ImageNet (Deng et al., 2009), and outperformed the training stage from scratch.
DeepGaze II (Kümmerer, Wallis & Bethge, 2016) has also has been proposed based on a
pre-trained model (VGG-19 Simonyan & Zisserman, 2014), where attention information
was extracted from the VGGNet without fine-tuning the attention task. Next, the DeepFix
model Kruthiventi, Ayush & Babu (2017) was proposed by Kruthiventi et al. based on
a pre-trained model VGG-16. Furthermore, in Mahadevan & Vasconcelos (2009) object
detection and saliency detectionwere carried out using a deep convolutional neural network
(CNN). Finally, the SALICON net model (Huang et al., 2015) was proposed to capture
multi-scale saliency using combined fine and coarse features from two-stream CNNs that
were trained with multi-scale inputs.

Since the superior success of transfer learning models for visual saliency prediction has
been established, several new models have been proposed that have improved saliency
prediction performance. For instance, the SALICON model fine-tunes a mixture of deep
features (Huang et al., 2015) using AlexNet (Krizhevsky, Sutskever & Hinton, 2012), VGG-
16 network (Simonyan & Zisserman, 2014), and GoogleNet (Szegedy et al., 2015) for visual
saliency prediction. PDP (Jetley, Murray & Vig, 2016) and DeepFix (Kruthiventi, Ayush &
Babu, 2017) were used on the VGG-19 network for the same task using MIT300 and the
SALICON dataset, and FUCOS (Bruce, Catton & Janjic, 2016) fine-tunes features that were
trained on the PASCAL dataset. Overall, DeepFix and SALICON models demonstrated
significantly improved performance compared to DeepGaze I in the MIT benchmark.

MATERIAL AND METHODS
Proposed model
The proposedmodel follows an FCN structure (i.e., a pixel-based approach) and the generic
encoder–decoder form. The important difference between CNN and FCN networks is that
the latter has learning filters throughout its structure. Even the decision-making layers at
the end of the network are filters. FCNs also do not have any fully connected layers that
are usually available at the end of the network.

Figure 1 explains the architecture of the proposed model for visual saliency prediction
and the configuration of the proposed model is explained in Table 1. The encoder
stage contains three blocks of convolution layers, each of which is followed by batch
normalization, rectified linear unit (ReLU), and max pooling. The encoder stage is the
same as that of a conventional CNN and generates feature maps by down-sample pooling.
The decoder stage also transposes convolutional layers but does so in the opposite direction.
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Figure 1 Architecture of the proposed model.
Full-size DOI: 10.7717/peerjcs.280/fig-1

Table 1 Configuration of the proposed model.

Layer type Filter size

Encoder Convolution 3× 3, 64
Residual Module (*), 64
Convolution 3× 3, 128
Max pooling 2× 2
Convolution 3× 3, 256
Max pooling 2× 2

Decoder Inception Module (*), 256
Transposed convolution 3× 3, 256
Convolution 3× 3, 256
Convolution 3× 3, 128
Transposed convolution 3× 3, 64
Convolution 3× 3, 2
Pixel Classification Layer −

Therefore, the decoder stage produces label maps (up-sampling) with the same input image
size. The transposed convolution layers contain un-pooling and convolution operators.
Unlike the max-pooling operation, the un-pooling operation increases the size of feature
maps through the decoding stage. In addition, the image input size of the proposed model
is 224 × 224 pixels. Figure 1 illustrates the proposed model architecture to predict visual
saliency.

Three inception modules are also used in the proposed model. Inception modules are
useful because they benefit from different sized filters in one layer, which contributes
to the multi-scale inference and enhances contextual information (Long, Shelhamer &
Darrell, 2015). In addition, a residual module is also added to the proposed model because
it effectively avoids the vanishing gradient problem by introducing an identity shortcut
connection (Lin et al., 2014). Moreover, activations from a previous layer are reused by the
residual module for the adjacent layer to learn its weights. Figure 2 shows the architecture
of the inception and residual modules, respectively. Figure 2A explains the layers of the
inception module which contains three branches. The first two contain a sequence of two
convolution filters, where the patch sizes of the layers are 1×1, the second layer is 3×3, and
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Figure 2 Architecture of (A) Inception and (B) residual modules.
Full-size DOI: 10.7717/peerjcs.280/fig-2

Table 2 Configuration of inception and residual modules.

Module Convolutional configuration Operation Output

Inception 1× 1,256 3× 3,256
1× 1,256 5× 5,256
1× 1,256

Concatenation 256

Residual 1× 1,32 3× 3,64 1× 1,64
1× 1,64

Element-wise sum 64

the last layer is 5×5, respectively. The third branch contains only one convolutional filter
which has a patch size of 1×1. Each convolutional layer is followed by batch normalization
and ReLU. Figure 2B explains the structure of the residual module, which contains two
branches. The first branch has a stack of three convolutional filters, sized 1×1, 3×3,
and 1×1, respectively. The second branch has a single 1×1 convolutional filter. The two
branches are combined by element-wise summation. Table 2 explains the number of each
filter in the two modules (i.e., inception and residual). Notably, the convolutional module
contains a Convolutional 2D, Batch Normalization, as well as a ReLU layer. The transposed
convolutional module also contains the same layers as the convolutional module.
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Semantic segemnation
The segmentation task plays an important role in image understanding and is essential
for image analysis tasks (Karami, Shehata & Smith, 2018). In semantic segmentation,
each region or pixel is labeled as a class, such as flower, person, road, sky, ocean, or car.
Many applications use semantic segmentation techniques, such as autonomous driving,
Bio Medical Image Diagnosis, robotic navigation, localization, and scene understanding.
Furthermore, Deep Neural Networks (DNNs) are commonly used as effective techniques
for semantic segmentation (Long, Shelhamer & Darrell, 2015). Semantic segmentation
works with semantics and location; global information determines the ‘‘what’’ while
local information determines the ‘‘where’’ of an image. Deep feature hierarchies encode
semantics and location in a nonlinear local-to-global pyramid (Long, Shelhamer & Darrell,
2015). Our proposed model (i.e., FCN) uses semantic segmentation techniques to assign
each pixel in the given image into appropriate classes (i.e., foreground or background) in
order to predict visual saliency (i.e., saliency map generation).

Datasets
The proposed model was trained using a standard available dataset (i.e., SALICON) and
subsequently tested on four other well-established datasets, including TORONTO, MIT
300, MIT1003, and DUT-OMRON. All these datasets have different characteristics and so
each is described below.

SALICON
The largest dataset for visual attention applications on the popular Microsoft Common
Objects in Context (MS COCO) image database is SALICON (Lin et al., 2014). This dataset
contains 10,000 training, 5,000 validation, and 5,000 testing images with a fixed resolution
of 480x640.While this dataset contains the ground truth data for the training and validation
datasets, the test dataset ground truth data were unavailable (Jiang et al., 2015).

TORONTO
One of the most widely used datasets for visual attention is the TORONTO dataset. It has
120 color images with a resolution of 511x681 pixels. This dataset contains images that
were captured in indoor and outdoor environments and has been free-viewed by 20 human
subjects (Bruce & Tsotsos, 2006).

MIT300
The MIT300 dataset has 300 natural images and the eye-tracking data of 39 users who free
viewed these images were used to generate saliency maps. This dataset is challenging since
its images are highly variable and natural (Judd, Durand & Torralba, 2012). A MIT saliency
benchmark website for model evaluation (http://saliency.mit.edu/results_mit300.html) is
available to evaluate any saliency model using this dataset.

MIT1003
MIT1003 includes 1,003 images from the Flicker and LabelMe collections. Saliency maps of
these images have also been generated from the eye-tracking data of 15 users. This dataset
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contains 779 landscape and 228 portrait images that vary in size from 405 × 405 to 1,024
× 1,024 pixels, making it the largest available eye fixation dataset (Judd et al., 2009).

DUT-OMRON
DUT-OMRON has 5,168 high quality images that were manually selected from over
140,000 images. The largest height or width of this dataset is 400 pixels and each image is
represented by five subjects. There is more than one salient object in this type of dataset
and the image has a more a complex background (Riche et al., 2013).

Evaluation metrics
Several methods may be used to evaluate the correspondence between human eye fixation
and model prediction (Ghariba, Shehata & McGuire, 2019). Generally, saliency evaluation
metrics are divided into distribution- and location-based metrics. Previous studies on
saliency metrics found it is difficult to perform a reasonable comparison for assessing
saliency models using a single metric (Riche et al., 2013). Here, we accomplished our
experiment by extensively considering several different metrics, including the Similarity
Metric (SIM), Normalized Scanpath Saliency (NSS), and AUC. The last metric is the area
under the receiver operating characteristic (ROC) curve (e.g., AUC-Borji, and AUC-Judd).
For clarification, we indicate the map of fixation locations as Q, the predicted saliency map
as S, and the continuous saliency map (distribution) as G.

Similarity Metric (SIM)
The SIM metric produces a histogram that is a measurement of the similarity between two
distributions. This metric considers the normalized probability distributions of both the
saliency and human eye fixation maps. SIM is also computed as the sum of the minimum
values at each pixel, after normalizing the input maps. Equation (1) explains how to
calculate the SIM metric.

SIM=
∑
i=1

min(Ś(i),Ǵ(i)), (1)

where
∑

iŚ (i)=1, and
∑

iǴ (i)=1, and Ś and Ǵ are the normalized saliency and the fixation
maps, respectively. Importantly, a similarity of one indicates that the distributions are the
same whereas a zero indicates that they do not overlap.

Normalized Scanpath Saliency (NSS)
NSS was is a simple correspondence measure between saliency maps and ground truth
data, computed as the average normalized saliency at fixated locations. NSS is, however,
susceptible to false positives and relative differences in saliency across the image (Bylinskii
et al., 2018). To calculate NSS given a saliency map S and a binary map of fixation
location F,

NSS=
1
N

N∑
i=1

S̄(i)xF(i), (2)

where N=
∑

iF(i) and S̄= S−µ(s)
σ (S) , and N is the total number of human eye positions

and σ ( S) is the standard deviation.
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Table 3 Comparison of the quantitative scores of several models on the TORONTO (Bruce & Tsotsos,
2006) dataset.

Model NSS SIM AUC-Judd AUC-Borji

ITTI 1.30 0.45 0.80 0.80
AIM 0.84 0.36 0.76 0.75
Judd Model 1.15 0.40 0.78 0.77
GBVS 1.52 0.49 0.83 0.83
Mr-CNN 1.41 0.47 0.80 0.79
CAS 1.27 0.44 0.78 0.78
Proposed Model 1.52 0.46 0.80 0.76

AUC-Borji
The AUC-Borji metric, based on Ali Borji’s code (Borji et al., 2013), uses a uniform random
sample of image pixels as negatives and defines false positives as any fixation (saliency)
map values above the threshold of these pixels. The saliency map is a binary classifier that
separates positive from negative samples at varying thresholds, the values of which are
sampled at a fixed step size. The proportion of the saliency map values above the threshold
at the fixation locations is the true positive (TP) rate. Conversely, the proportion of the
saliency map values that occur above the threshold sampled from random pixels (as many
samples as fixations, sampled uniformly from all image pixels) is the false positive rate
(FP).

AUC-Judd
The AUC-Judd metric (Judd et al., 2009) is also popular for the evaluation of saliency
models. As with AUC-Borji, positive and negative samples are separated at various
thresholds by treating the saliency map as a binary classifier. Unlike AUC-Borji, however,
the thresholds are sampled from the saliency map’s values. The proportion of the saliency
map’s values above a specific threshold at specific fixation locations is known as the true
positive (tp) rate. Alternatively, the proportion of the saliency map’s values that occur
above the threshold of non-fixated pixels is the false positive (fp) rate.

EXPERIMENTAL RESULTS
This Section explains all the steps for implementing our work (see Table 3 for more details
about experimental steps). Specifically, training, adjusting the parameters, validating, and
testing the proposed model on the aforementioned datasets (e.g., TORONTO, MIT300,
MIT1003, and DUT-OMRON) are described in details.

Model training
The most important step for the proposed model is model training. In this work, the
proposed model was trained from scratch (i.e., full-training). Training of models from
scratch is challenging due to computational and data availability, leading to problems
of overfitting. However, there are several techniques, such as normalization, data
augmentation, and dropout layers that are useful for mitigating the problems generated
from overfitting.
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The full-training style has two different categories. In the first category, the CNN
architecture is fully designed and trained from scratch. In this case, the number of CNN,
pooling layers, the kind of activation function, neurons, learning rate, and the number of
iterations should be determined. In the second category, the network architecture and the
number of parameters remain unchanged, but the advantages of pre-existing architecture
and full-training is applied to given images.

In this study, the first category was employed. Specifically, the proposed model was
trained using the well-known dataset, SALICON (see ‘SALICON’ for more details) and
was also validated using a specific validation dataset (i.e., 5000 images). This dataset is the
largest available for visual attention (i.e., 10,000 images for training, 5,000 for validation)
and was created for saliency applications. At the beginning of the training task, all filter
weights were randomly initialized because a pre-trained network was not used in this study.
A mini-batch of 16 images was used in each iteration and the learning rate was set as 0.001.
The proposed model parameters were learned using the back-propagating loss function by
stochastic gradient descent with a momentum (SGDM) optimizer.

Since the number of images available for the training task was limited (i.e., 10,000
images), we suggested using the date augmentation technique to increase the number of
training images by creating modified versions of images in the dataset. This technique was
carried out to mitigate overfitting by rotating at 30◦ intervals. This technique also improves
performance and the proposed model’s ability for generalization. Figure 3 illustrates the
proposed model’s training progress from the mentioned training images (SALICON).

Model testing
In this step, we evaluated the proposed model using very well-known datasets including
TORONTO, MIT300, MIT1003, and DUT-OMRON. Based on the experimental results,
one can see the proposed model has the ability to predict visual saliency in a given image.
The output of the test image is described as the saliency map, which can be obtained from
the last layer of the proposed model. All the training and testing tasks were performed
on an Intel CPU i7-3370K machine with 3.5 GHz and 16 GB RAM memory. An NVIDIA
GeForce GTX 1080 Ti GPU with 11 GB of memory under CUDA version 8.0 was also
utilized in this work.

DISCUSSION
Quantitative comparison of the proposed model with other advanced
models
To evaluate the efficiency of the proposed model for predicting visual saliency, we
compared it to 10 state-of-the-art models, ITT, AIM, Judd Model, GBVS, Mr-CNN,
CAS, SalGAN, DeepGaze I, DeepGaze II, and ML-NET. The models were applied to four
datasets (i.e., TORONTO, MIT300, MIT1003, and DUT-OMRON), and the quantitative
results are presented in Tables 3, 4, 5 and 6, respectively. All these models differ in terms
of computational speed (i.e., run time). Table 7 explains the runtime properties of the
proposed model as well as the other 10 visual saliency models. From this table, one can see
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Figure 3 Value of validation accuracy (A) and loss as a function of epochs (B).
Full-size DOI: 10.7717/peerjcs.280/fig-3

the run time of the proposed model is about 12 s on our machine which has no GPU and
is an Intel CPU i7-3370K.

Notably, the main difference between the proposed model and other state-of-art models
is that the proposed model was specifically designed for saliency prediction, whereas
the other pre-trained models were essentially designed for object recognition and then
fine-tuned for the visual saliency prediction task. In addition, the proposed model was
trained from scratch, which requires a large number of training images to provide a
reasonable performance; however, the largest dataset available for this application contains
only 10,000 images (e.g., SALICON), which is considered relatively small to train a model
from scratch.

Table 3 shows that, with the TORONTO dataset, the proposed model outperforms other
models (deep and classical models) in terms of NSS; however, in terms of SIM, AUC-Judd,
and AUC-Borji, the GBVS model provides the best results (note that the bolded values are
the best results). From Table 4, one can see that with the MIT300 dataset, the model that
provides the best performance is DeepGaz II in terms of the AUC-Judd and AUC-Borji
metrics. However, the SalGAN model produces the best results for the SIM metric, while
the ML-NET model provides the best value for the NSS metric. In Table 5 (for MIT1003
dataset), one can see that the proposed model surpasses the other models in terms of the
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Table 4 Comparison of the quantitative scores of several models on theMIT300 (Judd, Durand & Tor-
ralba, 2012) dataset.

Model NSS SIM AUC-Judd AUC-Borji

ITTI (Itti, Koch & Niebur, 1998) 0.97 0.44 0.75 0.74
AIM (Bruce & Tsotsos 2006) 0.79 0.40 0.77 0.75
Judd Model (Judd et al., 2009) 1.18 0.42 0.81 0.80
GBVS (Harel, Koch & Perona, 2007) 1.24 0.48 0.81 0.80
Mr-CNN (Liu et al., 2016) 1.13 0.45 0.77 0.76
CAS (Goferman, Zelnik-Manor & Tal, 2011) 0.95 0.43 0.74 0.73
SalGAN (Pan et al., 2016) 2.04 0.63 0.86 0.81
DeepGaze I (Kümmerer, Theis & Bethge, 2014) 1.22 0.39 0.84 0.83
DeepGaze II (Kümmerer et al., 2017) 1.29 0.46 0.87 0.86
ML-NET (Cornia et al., 2016) 2.05 0.59 0.85 0.75
Proposed Model 1.73 0.42 0.80 0.71

Table 5 Comparison of the quantitative scores of several models on theMIT1003 (Judd et al., 2009)
dataset.

Model NSS SIM AUC-Judd AUC-Borji

ITTI 1.10 0.32 0.77 0.76
AIM 0.82 0.27 0.79 0.76
Judd Model 1.18 0.42 0.81 0.80
GBVS 1.38 0.36 0.83 0.81
Mr-CNN 1.36 0.35 0.80 0.77
CAS 1.07 0.32 0.76 0.74
SalGAN 1.31 0.64 0.78 0.75
ML-NET 1.64 0.35 0.82 –
Proposed Model 1.35 0.44 0.88 0.78

Table 6 Comparison of the quantitative scores of several models on the DUT-OMRON (Yang et al.,
2013) dataset.

Model NSS SIM AUC-Judd AUC-Borji

ITTI 3.09 0.53 0.83 0.83
AIM 1.05 0.32 0.77 0.75
GBVS 1.71 0.43 0.87 0.85
CAS 1.47 0.37 0.80 0.79
Proposed Model 1.84 0.45 0.88 0.76

SIM and AUC-Judd metrics, while the GBVS model provides the best results for the NSS
metric. Finally, Table 6 shows that, with the DUT-OMRON dataset, the proposed model
achieved the best result in terms of the AUC-Judd metric, while the GBVS model is the
best in terms of the AUC-Borji metric.
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Table 7 Runtime of the proposed model and ten visual saliency models.

Model Training Deep Learning Run Time

BMS No No 0.3 S
CAS No No 16 S
GBVS No No 2 S
ITTI No No 4 S
Mr-CNN yes Yes 14 S (GPU)
SalNet yes Yes 0.1 S (GPU)
eDn yes Yes 8 S (GPU)
AIM yes No 2 S
Judd Model yes No 10 S
DVA yes Yes 0.1 S (GPU)
Proposed Model yes Yes 12 S

Qualitative comparison of the proposed model with other advanced
models
The qualitative results obtained by the proposed model are compared with five state-
of-the art models, ITTI, FES, CovSal, GBVS, and SDS-GM (Li & Mou, 2019), on the
aforementioned datasets (i.e., TORONTO, MIT300, MIT1003, and DUT-OMRON).
Figure 4 shows the visual saliency map results and the proposed model visual saliency
prediction, i.e., generating saliency map, within the given images. Based on the evaluation
of the proposed model, the proposed model produces saliency maps comparable to other
state-of-the-art models.

Ablation study
In this work, we evaluated several different aspects of the proposed model’s architecture.
Table 8 illustrates the results of the experiments conducted in this work. Based on the
architecture of the proposed model, we suggested 13 different scenarios in order to find an
optimum architecture. Several conclusions were obtained based on these experiments:

(1) From scenarios S1 to S4, we can see the best global accuracy is achieved with 3
encoder-3 decoder stages (i.e., global accuracy was 85.05% and loss function was 0.2384).

(2) S7 describes the proposed model using 3 convolutional modules & 3 inception
modules. This architecture also produced the best global accuracy (i.e., global accuracy was
93.63%, and loss function was 0.1051) compared to S5 and S6, which contain one and two
inception modules, respectively.

(3) S13 is the last scenario we selected as the entire model, including 3 convolutional,
3 inception, and 1 residual module (i.e., Fig. 1). This scenario produced a higher global
accuracy (i.e., global accuracy was 97.05%, and loss function was 0.07) compare to those
of scenarios S11 and S12.

CONCLUSIONS
A new deep CNN model has been proposed in this paper for predicting visual saliency
in the field of view. The main novelty of this model is its use of a new deep learning
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Figure 4 The saliency maps obtained from the proposed model and five other state-of-the-art models
for a sample image from the TORONTO,MIT300, MIT1003, and DUT-OMRON datasets.

Full-size DOI: 10.7717/peerjcs.280/fig-4
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Table 8 Different FCNmodels applied in this study.

FCNModels Training Validation

Scenarios Description Accuracy Loss Accuracy Loss

S1 2 convolutional modules 79.14% 0.2650 78.88% 0.2700
S2 3 convolutional modules 85.05% 0.2384 83.08% 0.2571
S3 4 convolutional modules 83.47% 0.2548 82.94% 0.2608
S4 5 convolutional modules & 80.04% 0.2873 76.52% 0.2775
S5 3 convolutional modules & 1 inception modules 89.69% 0.2119 85.05% 0.2231
S6 3 convolutional modules & 2 inception modules 90.84% 0.1995 85.37% 0.2454
S7 3 convolutional modules & 3 inception modules 93.63% 0.1051 89.24% 0.1666
S8 3 convolutional modules & 1 residual modules 87.55% 0.2138 84.97% 0.2317
S9 3 convolutional modules & 2 residual modules 83.23% 0.2597 82.10% 0.2684
S10 3 convolutional modules & 3 residual modules 81.66% 0.2750 79.12% 0.2921
S11 3 convolutional modules & 1 inception module & 1 residual

module
89.46% 0.1829 88.59% 0.1889

S12 3 convolutional modules & 2 inception module & 1 residual
module

92.73% 0.1255 89.92% 0.2111

S13 3 convolutional modules & 3 inception module & 1 residual
module

97.05% 0.07 90.64% 0.1588

network with three encoders and three decoders (convolution and deconvolution) for
visual saliency prediction, as well as its inclusion of two modules (inception and residual
modules). The proposed model was trained from scratch and used the data augmentation
technique to produce variations of images. The experiment results illustrate that the
proposed model achieves superior performance relative to other state-of-the-art models.
Moreover, we discovered that an increase in the number of training images will increase
the model prediction accuracy (i.e., improvement in model performance); however, the
implementation of the model requires a large amount of memory and so it is difficult to
use large numbers of training images. Furthermore, because the model was trained from
scratch, we expected the model will require more training data that other models, which
are currently unavailable.

A promising direction for future research is to collect a new dataset, generate its ground
truth, and design new models with good performance and improved evaluation metrics
based on the one proposed herein. Extending the proposed model and applying it to
examples of dynamic saliency (i.e., video images), is another plausible and interesting
avenue of research. The proposed model may also facilitate other tasks, such as scene
classification, salient object detection, and object detection, making it applicable in a
number of disciplines. Importantly, future models based on that proposed herein should
be able to learn from high-level understanding, so they are able to, for example, detect the
most important object of the image (e.g., focusing on the most important person in the
room). Saliency models also need to understand high-level semantics in the visual scene
(i.e., semantic gap), and cognitive attention studies can help to overcome some of the
restrictions identified in the proposed model.
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