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Abstract: Photovoltaic (PV) systems have recently been recognized as a leading way in the production
of renewable electricity. Due to the unpredictable changes in environmental patterns, the amount
of solar irradiation and cell operating temperature affect the power generated by the PV system.
This paper, therefore, discusses the grid-integrated PV system to extract maximum power from the PV
array to supply load requirements and the supply surplus power to the AC grid. The primary design is
to have maximum power point tracking (MPPT) of the non-uniformly irradiated PV array, conversion
efficiency maximization, and grid synchronization. This paper investigates various MPPT control
algorithms using incremental conductance method, which effectively increased the performance and
reduced error, hence helped to extract solar array’s power more efficiently. Additionally, other issues
of PV grid-connected system such as network stability, power quality, and grid synchronization
functions were implemented. The control of the voltage source converter is designed in such a
way that PV power generated is synchronous to the grid. This paper also includes a comparative
analysis of two MPPT techniques such as incremental conductance (INC) and perturb-and-observe
(P&O). Extensive simulation of various controllers has been conducted to achieve enhanced efficient
power extraction, grid synchronization and minimal performance loss due to dynamic tracking errors,
particularly under fast-changing irradiation in Matlab/Simulink. The overall results favour INC
algorithm and meet the required standards.

Keywords: photovoltaic; grid integration; MPPT; voltage source controller

1. Introduction

Governments and public bodies are now worried about energy production with as clean technology
as possible. Consequently, the requirements for future energy development are drawn up following
the Kyoto Protocol, which encourages the European countries ‘2020” plan. Solar, wind, photovoltaic,
and geothermal energy-focused energy production systems are sustainable and renewable alternatives
to non-clean traditional fossil-fuel and nuclear fission-based technologies.

Photovoltaic (PV) is one of the clean technologies that has grown significantly in recent years,
almost 60 per cent in Europe. PV systems are no longer isolated from the grid but connected to it as
part of electrical generation. Such plants are economically feasible, even without government subsidies
for renewable energy, and the photovoltaic plant’s potential is growing considerably. As a result,
the production of grid-connected PV plants continues to expand worldwide, exceeding hundreds of
megawatts, making these plants a vital part of the future electrical energy system and smart grids.

Due to the abundant availability of solar radiant energy, the impact of photovoltaic (PV) energy on
renewable energy sources can be considered as a vital and indispensable sustainable fuel. PV systems
have recently been recognized as a leading way in the production of renewable electricity. This can
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produce direct energy when exposed to solar radiation without any environmental effects of pollution.
The PV system is stationary, silent, free of mechanical parts, and has low running and manufacturing
costs compared to other renewable resources. The use of photovoltaic as a source of electrical energy
shows a growing trend both in the implementation of the global energy sector and in the performance
of various industrial plants. This trend is motivated by many factors, such as the decrease in the cost
of producing photovoltaic electricity per kW and the rise in fossil fuel prices and the development of
effective photovoltaic energy conversion technology. With energy issues becoming increasingly urgent,
the world needs to start developing new technology and related technologies. Today, large-scale
photovoltaic generation and the size of renewable energy have become core components of the
development plan, but the progress of the photovoltaic industry is the way ahead. However, due to its
characteristics, which differ from conventional power generation, the grid-connected PV power plant
and its performance and stability, a new challenge has emerged [1-4].

The grid-based PV systems are systems connected to a large, independent grid that usually
provide direct power to the main grid. Such grid-connected systems can be used both for decentralized
PV and central grid applications. Decentralized grid-connected photovoltaic applications include
photovoltaic generators on apartment roofs and an integrated building network that incorporates
photovoltaic systems into homes [3]. For PV networks connected to residential or commercial grids,
the demand for commercial electricity is served by the PV network, and the excess is supplied to the
grid, usually in lower kilowatt capacity. A typical hybrid grid-connected PV system, as shown in
Figure 1, consisting of solar PV panels, power conditioner, net metering and an inverter.
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Figure 1. Grid-Connected Photovoltaic (PV) System.

When surplus power returns to the grid and is purchased from the grid when there is a power
deficit through a net metering system, excess power is pumped into the electricity grid when PV
generates more than the required demand. In reality, when this happens, the meter runs the other way
round. As before, when the system does not generate enough energy, it can be drawn from the utility.
The “back-and-forth” between the grid and your network means that surplus capacity is still being
used and that shortages are being addressed.

Due to the changing nature of solar energy emitted as a consequence of unpredictable and
unexpected variations in weather conditions that alter the rate of solar irradiation and the values of
cell-operating temperature [5], the electrical device operated by solar arrays requires special design
considerations during early days, PV systems were primarily used as power sources for special
purposes, such as communications and satellites. With the development of the power electronics
network, the role of the PV source in all domestic and few commercial sectors has been extended.
Renewable energy, such as the PV network, is linked to the grid in a number of ways [6-10].
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Maximum power point tracking controllers play an important role in photovoltaic power
generation to extract maximum power from PV panels and help to run at their maximum power
point (MPP) with environmental changes and varying irradiance patterns. In order to run the PV
array at its maximum power point, the PV system implements the maximum power point tracking
controller and thus requires MPPT algorithms as varying solar irradiance results PV arrays with
non-linear voltage-current characteristics. These voltage-current characteristics have a particular point
where the maximum output is achieved. That point depends on the various environmental conditions.
Such conditions change during the day and differ depending on the season. Different MPPT control
methods are used for solar PV systems, Incremental conductivity INC, P&O, constant voltage, constant,
current fuzzy control, and neural network control. Incremental conductance and perturbation and
observation approaches are widely used for their simplicity and popularity [11-15].

This paper presents a comparative analysis of perturb-and-observe and incremental conductance
MPPT techniques using a boost converter, and the simulation model of the PV-based system with
the MPPT algorithm is implemented in Matlab/Simulink 2020. The purpose of this comparative
analysis is to determine which MPPT methods are better suited to MPPT in order to construct an
optimal algorithm.

The PV power injected into the grid must comply with the regulations, such as EN61000-3-2
and IEEE 1547 [5]. If the AC output voltage from the interconnecting inverter has higher levels,
the grid current injected contains less harmonic content. Multilevel and interleaved inverters can
deliver enhanced waveform efficiency, smaller filter sizes, lower electromagnetic induction and lower
harmonic distortion [6-8], which is ensured by power conditioning units. The power conditioning unit
is the heart of PV grid-connected systems. It is used mainly to overcome the following issues:

e PV should be synchronized with the grid voltage in case of distortion or imbalance in grid voltage,
or difference in grid frequency can affect the stability of the system [16].

e  The DC/AC converter is connected to the grid through an RL reactor, an RLC series filter to smooth
current harmonics [17] and a step-up A-Y transformer to insulate the PV farm from zero-sequence
current faults that might occur on the grid side. The AC/DC converter controls the PV voltage via
MPPT algorithm [18], as well as the reactive power injected to the grid [19].

e  The unbalanced load injects zero and negative sequence currents into the distribution network.
However, these sequence currents are mitigated by the VSC. Nonlinear loads inject the harmonics
current at the point of common coupling which is compensated by the same VSC. Moreover, VSC
integrates the stored energy to the three-phase AC grid [20].

e  Multipulse VSCs such as 12-pulse, 24-pulse and 48-pulse converters are the solution for large scale
solar PV grid interfaced power generating system to minimize harmonics in the line currents and
operate with low frequency-based control with good power quality, high efficiency and reliability
as compared with the conventional two-level topologies [21-23].

e In connecting photovoltaic installations to the grid, one essential problem is the ability to monitor
reactive power in both transient and stable conditions. To inject or require a pre-established
reactive power imposed by the electrical system operator or determined by the inverter itself, the
inverter must regulate the operation of the currents, depending on the magnitudes measured
from the grid.

e The connection of energy storage systems (ESS) with photovoltaic power plants is another
important problem to address in the future. Considering the prices of the energy generated and
used, and the optimization of the ESS power, it is important to determine when and how to charge
and discharge the energy. This is called smart power storage.

PV-grid simulations have been performed using Matlab in this article. Matlab technology enhances
incorporation with many new blocks that are readily available to minimize simulation time and ease
the complexity of the simulation process, and this should be integrated into the existing system to
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ensure its continued growth. The significant contributions made to the research work presented are
as follows.

e  This paper investigates the performance of two MPPT techniques such as incremental conductance
(INC) and perturb-and-observe (P&O) under parameter variations. The MPPT controllers for
a PV-grid connected system has been designed to achieve the optimum and fast maximum
power point tracking by varying temperatures and solar irradiance values. Extensive simulation
has been conducted to achieve enhanced efficient power extraction, grid synchronization and
minimal performance loss due to dynamic tracking errors, particularly under fast-changing
irradiation using Matlab/Simulink. The INC algorithm was proved to be robust as compared to
the P&O algorithm. This is discussed in Sections 3 and 4. The authors are not aware of any such
investigation carried out in the literature as per their best knowledge.

e  The complete PV grid-connected system has been designed with a boost converter (DC-DC)
and voltage source inverter (DC-AC). The control of the voltage source converter is designed
in such a way that PV power generated is synchronous to the grid. The duty ratio of boost
converter-based power conditioning was controlled using the MPPT controllers. The system-level
approach has been considered by providing a detailed analysis of the designed controller and
other electronic component.

2. System Modelling

Matlab/Simulink is used for PV-grid simulation. Simulink is an extremely versatile platform for
simulation. In this analysis, several Matlab/Simulink toolboxes were used to build different components
and to study the PV device under various conditions. Simulation in Matlab provided modelling and
variations in input parameters like temperature and irradiance to generate output power from the
PV module.

2.1. System Description

An integral part of the power conditioning unit in the PV-grid is the DC-DC converter where the
duty cycle is controlled by the MPPT controllers to generate the maximum power from the irradiance
at that time and the DC to the AC converter connected with the voltage source control (VSC) as shown
in Figure 2. For simulation, the PV array is connected to the DC to DC boost converter, which boosts
the DC value and in turn, is connected to the DC-AC inverter with the 25 kV AC grid.

, DC AC GRID
PV ARRAY DC oC
! (Boost (Inverter (IGBT)
.| CONTROL | |,| CONTROL
(via MPPT) (via VSC Controller)

&

Figure 2. Model of PV-Grid System.

2.2. PV Array

MATLAB has a build-in PV array block, even though the modelling of PV arrays can be done using
Simulink simple components. The built-in Simulink Sun Power-305E-WHT-D module is considered
for the simulation, with each module able to produce a power of 305.2 Watts power. Hence, a PV block
for an output power of 12.5 KW from the PV array under standard test conditions (STC) requires 45
solar modules with nine parallel string connection and five series string connection, so the average
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power obtained from the PV system is 5 X 9 X (maximum power obtained from each PV panel) 305.2 W
=13.7 kW at a temperature of 25 °C or STC. Series and parallel connection of strings layout is shown
in Figure 3.
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Modules in parallel strings

Figure 3. String Configuration.
2.3. Boost Converter (DC-DC Conuverter)

The boost converter is used to increase the output voltage of the PV module. The duty cycle
of the converter determines the output voltage. The state of the transistor determines the output of
the converter. The Matlab modelled boost converter is shown in Figure 4. The duty ratio is given by
1/1 — d, which depends on the output to input voltage ratio. The converter is a power transmission
medium for energy absorption from the solar panel and for injection into the DC-link. Figure 5 shows
the boost converter with MPPT controller to control the duty ratio of the DC-DC boost converter.
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Figure 4. Modelling of Boost Converter.
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Figure 5.
(MPPT) Controller.

Boost Converter

Circuit diagram of the DC-DC Converter with maximum power point tracking

Proper switching frequency is considered to achieve less harmonics in output voltage. To determine
minimum Inductor value denoted by Ly,;, and minimum capacitance value is denoted by Cpin for the
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converter and for continuous driving mode, the minimum, and maximum duty cycles can be obtained
from Equations (1)-(4):

V;
Dmin =1- % (1)
0
Vs
Dpax =1- % (2)
0
2 RL
Lmin = 2_7 X }nax (3)
s
DmaxVO
C.. — —max’0l 4
min stminVr ( )

where V. is the output voltage rip factor, Vimax and Viyin are the threshold values of the input voltage.
Ripple element in the system is considered as 5% for designing the converter. The ratings selected for
a PV side boost converter are 1 mH and 3500 puF depending on its minimum values of inductor and
capacitor. These parameters apply to the simulation model, as in Figure 6. The duty cycle is varied
from 0.71 to 0.5 and controlled the output of 600 volts to a constant DC output of at least 196 V to 250 V.
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Figure 6. Solar panel characteristics indicating maximum power point (MPP) and operating principle.

2.4. Maximum Power Point Tracking (MPPT)

Maximum power of PV is tracked with MPPT trackers, thus minimizing the size and number of
the PV panels and maximizing the production of electricity. The energy that the PV panels can absorb
is constant over time; variation in the irradiance angle of PV panels is caused due to the moving sun,
which causes the change in the amount of irradiation in the panels. The I-V properties changes and the
maximum power point (MPP) moves when this happens; hence a controlled outage with the same
operation point and new conditions will most likely occur. MPPT has been developed to overcome
this problem.

The output from the array varies with the intensity of incident sunlight, and for a given PV
system, there is only one maximum power, and the technology used for tracking is MPPT algorithms.
Most efficient and popular methods are perturbation and observation and incremental conductance
strategies. The main feature of the P&O methodology is the comparison of current PV power with
previous PV power. Maximum photovoltaic power is measured using a combination of current (I)
and voltage (V). When the difference between the previous power and the current power is not 0,
the purpose of this algorithm is to find an optimal position on the left or the right side of the last
position. Maximum power is reached when AP is equal to 0 [9,10]. The P&O solution shall be applied
to the buck-boost by changing the duty period of the PWM. When the current power is higher than the
previous one, the duty period will be increased before the MPP has been established. The downside is
that the steady-state oscillation is applied and the voltage deviation is large [11]. P&O approach has a
long time of monitoring and a slow response to changes in irradiance and temperature.
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2.4.1. Perturbation and Observation (P&O) Algorithm

The P&O algorithm is advantageous for simple software and hardware credit. The P&O algorithm
perturbs the duty cycle of the power converter. The algorithm uses voltage and current measurements
to calculate the change in power over the change in time (AP) and the change in duty cycle (AD) of the
signal sent to the switch gate in the converter. Since AP and AD can be either positive or negative,
there are four instances where the duty cycle of the gate signal will be increased or decreased. The flow
chart for the Figure 7 clearly explains the P&O algorithm.

APWM =
PWM - PWM_old

PWM = PWM = PWM = PWM =
PWM_old + K PWM_old — K[PWM_old + K| PWM_old - K

l I L

| Return to start P and O |

Figure 7. Flowchart of the Perturbation and Observation (P&O) algorithm.

The P&O algorithm has a simple structure, low cost, ease of execution, reduced number of
parameters, enhanced functionality, and may result in top-level performance. This algorithm depends
on the relationship between the output power of the PV module and its voltage. The actions of the
solar panel showing the MPP and the operating theory are shown in Figure 6 which implies that the
resulting shift in PV power is observed as follows: when the PV operating point is on the left of the
curve (AP/AV is positive), which implies the output power of the PV module is increased, the PV
module voltage perturbation towards the MPP will be increased. If the module’s operating point was
on the right side of the curve (AP/AV is negative), the PV module voltage perturbation should be
reduced to the MPP.

Figure 7 displays the flowchart for the implementation of the P&O algorithm; first, the voltage
and current from the PV array are calculated. The combination of voltage and current then gives the
actual power of the PV module. Then, test the status as to whether AP = 0 or not. If this status is
satisfied, the MPP will be the operating stage. If this is not sufficient, another status that is AP > 0 will
be reviewed. When this status is fulfilled, the AV > 0 will be verified. If satisfied, it means that the
operating point is on the left side of the MPP. When the AV > 0 condition is not achieved, it means that
the operating point is on the right side of the MPP. The cycle is performed continuously until the MPP
has been achieved. Therefore, there is often a balance between the fractions and the sampling rate in
the P&O algorithm.
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2.4.2. Incremental Conductance (INC) Algorithm

In the incremental conductivity method, the terminal voltage of the array is always adjusted
according to the MPP voltage based on the incremental and instantaneous conductivity of the PV
module. This algorithm was implemented in 1993 and was intended to fix some of the drawbacks of
the P&O algorithm. The objective of INC is to increase monitoring time and generate more energy in a
vast environment due to changes in irradiation [12]. The relationship between dI/dV and I/V is used
to measure the MPP. If dP/dV is negative, MPPT will be on the right side of the new position, and if
positive, the MPP will be on the left side. The IC-method equation is as follows:

oP a(VI) _dV al dl
AT _IW+VW_I+VW (5)
MPP is reached when:
8—P =0 6)
v
ol
I+ VW =0 (7)
Hence: o1 |
P ®)
JoP
v 0,V < Vmpp )
JP
EYAn 0,V =Vmpp (10)
JP
57 < 0,V > Vmpp (11)

The incremental conductivity flow chart is shown in Figure 8, MPP is shown on the right,
dI/dV < -I/V, and then the PV voltage must be decreased to reach the MPP [13]. IC methods can
be used to detect MPP, increase PV performance, reduce power losses and reduce device costs.
The implementation of INC on a microcontroller resulted in more accurate performance than P&O [13].
Figure 9 demonstrates the incremental conductivity approach used in Simulink, where the controller
output was optimized for the initial duty cycle, and the incremental conductivity algorithm was used.

Measure Vand I

AV=V(K) - V(k-1)
Al=I(k) - I(k-1)

[ a=a-ofset | [ a=a+ofet | [ a=asofbet || a=a-ofsel |

Figure 8. Incremental conductance flowchart.
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Figure 9. Matlab Model of Integral regulator method.

Of the two methods, incremental conductivity measures more precisely than the P&O method
and changes rapidly with the irradiation parameters. The oscillation around the MPP area can also
be suppressed by the complexity of its implementation. Tracking time is still not quick because the
increase and decrease of the voltage were chosen manually by trial and error.

MPPT used in this work is the gradual driving approach where the required variations are
found in the current, voltage, instantaneous values of voltage and instantaneous values of current.
The operation time is contrasted with a PWM producing triangle wave pulse. Therefore, the MPPT
provides the control signal to the PWM generator, which provides a pulse to the boost converter hence
controlling the duty ratio. This is applied to the simulation model in Figure 10, which controls a 600 V
constant DC output range from a minimum of 196 V and a maximum of 250 V due to duty cycle
variation of 0.71 to 0.5.

Duty Cycle

VPV : \j
o

»o  F—(1)

Pukes

1Py Delta D B——P

LRV Saturstion PWM Genersior
P{onioff {DC-DC)
Deblock MPPT
MPET

Figure 10. MPPT control block.

2.5. DC-AC Inverter

The inverter used for simulation is based on an insulated-gate bipolar transistor (IGBT).
The conversion percentage determines the amount of DC converted to AC. The pulse width modulation
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(PWM) method for triggering the IGBT, thus convert DC to AC. Matlab/Simulink’s universal bridge
was used as a 3-level IGBT in this project is in Figure 11.

3-Level IGBT

Figure 11. Three-level insulated-gate bipolar transistor (IGBT) block in Simulink.

The inverter of the proposed model is connected to the common DC connection. The interface
mechanism of the DC bus and the three-stage AC grid, followed by the L filter, transfer electricity into
the power supply grid. In the following equation, the value of the connecting DC tension and the grid
line voltage is related in Equation (12). The grid management control option is meant to control both
reactive and active power injected into the grid. Primary parameters for control are V4., Vb grid
voltage, I grid current, and V4. ref is a DC-link voltage reference:

0.612maVic > )(Vac)2 +30( duc) (12)

VSC converters are capable of controlling both reactive and active power separately. In the case of
a renewable energy network as a PV system, the active power reference is changed to control the DC
bus voltage in order to maintain the power balance. As a consequence, the energy pumped into the
grid will be the same as the power produced.

The control system for the converter is shown in Figure 12. It's based on a two-level cascaded
control system. The inner level controller regulates the AC current in the reference current loop while
the outer level controller regulates the DC bus voltage in the reference voltage loop.

Ii— l

b 4"‘# Viabc v
|/T'\1 Eoc —— _| IN [—VYWWYYY S )—
N ; n I s il

-
-
e,
PLL Vzabc
)
labc
Park =
y iq id o *
Via a Eoc
g Voltage (€= Current [« Reference ——
modulation |/ loop  |eld | computation [ Q=

P

Figure 12. Voltage source control (VSC) scheme.

Various controllers deal with current and voltages in the qdg rotating two-axis reference frame
to change the electrical grid angle. As a result, a phase locked loop (PLL) is needed to monitor the
grid angle.

IGBT turns on and off time at the inverter gate control signals. The inverter control loop produces
these signals. The configuration of the inverter control consists of the following.
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e  Phase-locked loop (PLL): A phase-locked loop (PLL) is used to determine the frequency and phase
of the grid in which the system is connected.

e DC voltage control loop: The voltage loop is used for DC bus voltage control and to ensure the
power balance between PV and grid-injected power.

e  Current control loop: Is programmed to evaluate the voltages to be used by the VSC to ensure that
the currents flowing through the converter are the same as the voltages provided by the controller.

e Voltage Modulation: voltages computed from the current loop in the dqg reference frame are
converted into the abc reference frame with the anti-park transformation block and are directly
inserted into the regulated voltage sources modelled on the AC converter side.

The control system is made up of the voltage control unit and the current control unit. The control
system output signal used as input for the PWM signal generator to control the grid end converter
by the pulse. The grid voltage is calibrated for the correct voltage for each sampling period Vdc,
and Vdc ref is compared to each sample. When modelling the PI controller for the voltage and current,
Equations (13)—(16) are used.

Vic_error = Vic_ref = Vic (13)

Ii_ref = Kp = Viae(Vic_error) + Ki = Vige f (Vidc_error)dt (14)
Ip_ref =0 (15)

Ia_error = La_ref —1a (16)

Vii=Vy [Kp — CR(Iy_gror) + Ki — CRf (Li_error)dt] + Ll, (17)
Ioerror = Iy ref 1 (18)

V', = —[Ky = CR(Iy_error) + Ki — CR f (Ty_error)dt] + LI (19)

where V4. is DC-link tension, V yc.ref, is DC-link tension of reference, and V qc_error is DC-link tension
error. The current components of Igref, Iqref, is referencing d and q axis components. The proportional
and integrated PI controller constant is Kp,_vdc, Ki_vdc. For the development of the current regulator,
Equations (17)—(19) are used. The current regulators PI controller Ky _¢r, K ¢ are 0.3 and 20 for V4 and
Vg, respectively. For the three-phase grid current Iope_giid, the d and q current components are the
Id and the I, respectively. The control voltage V ontrol_grid used for PWM generation is obtained by
applying a transformation to provide V4 and V.

The controller of the inverter is constructed, as shown in Figure 13, is grid-connected, which
operates at grid voltage and frequency of the grid. At the transformer’s side, ABC coordination is
used to measure current and voltage and pass by a step-by-step lock loop. This transformation is
called an asynchronous framework, from the abc frame to dq frame transformation, and three-phased
parameters are converted into two-phase parameters. The PLL is the phase angle. 3-stage VSC
transforms the 500 V DC into 260 V AC in the simulation. A 10 KVAR condenser bank filter is used to
minimize the harmonics generated by this VSC.

2.5.1. The Phase-Locked Loop (PLL) and the dqy Transformer

Converting the signals to the dqp frame gives accurate control. This inverter control portion
converts voltage and currents to per-circuit values. PLL picks up the grid voltage and determines
its frequency and angle. It plays an important role in equalizing the output and grid angles of the
inverters. The dqg transformer converts the reference frame from three-phase voltages and currents
from abc to dqp.
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Figure 13. Inverter control loop modelling.

PLL is shown in Figure 14 and is used to synchronize the inverter designed with the Grid Line.
The PLL control reduces the difference in phase angle between the inverter voltage (Vi) and the grid
voltage (Vgiq) to 0. By sensing grid voltage in a phase-locked loop, accurate synchronization control
can be performed to demonstrate noise relative to the grid. The current angle of the grid voltage is the
PLL output. Through managing , the actual and reactive power flux to the gridline can be obtained:

VinoVeri
P =i
Vinv - (20)
Q= > (Ving = Vg cosd)

PLL wt
(3ph)
.—b{ K- »{abc —
Vabc_prim > dq0 o
Vdv i
V->pu abe to dq0 aprm

.—»{ - »abe =
labc_prim \—b dq0 Tl 'Id<IE
q_prim

V->pul abc to dq1

Figure 14. Phase-locked loop and dqy transformation.

Equation (20) shows the reactive and active power of the system. Here Xj is the impedance
associated with the impedance and impedance of the transformer leakage, device reliability, and control
efficiency are the main issues of the hybrid operation system. These issues can be significantly removed
for the grid-connected option by improving the inverter pulse control and Synchronization process.

2.5.2. DC Voltage Control Loop

This loop controls the DC voltage at the inverter input and is also used to increase noise immunity
ability of inverter. The gains from the PI controller were selected using Equations (21) and (22).
The modelling and derivation of Equations (21) and (22) are similar to the referenced ones [24].
The other assumed parameters such as boost converter capacitor and switching frequency values are
3500 uF, and 4.5 kHz, respectively. Where Kp and K| are the proportional and integral gains of the
PI controller, and Ts is the switching time of the inverter switches, and it is 22 ms. The MATLAB
auto-tuning function was used to tune proportional and integral gains, and the values were 2.3625 and
532.125 respectively. The other assumptions such as nonlinearities attached with the switches. Also,
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the resistance of inductor and capacitors were ignored and treated as ideal. Figure 15 shows how the
DC link-controlled voltage block to obtain the voltage stable, voltage control, which have K, value 7
and K; value 800 of PI controller, regulate the inverter output voltage with the grid voltage:

3C

P = 20T, @D
K Ky 22
1™ 20T, (22)

PI2) I

Pl

Figure 15. Input DC voltage regulator.

2.5.3. Current Control Loop

This loop regulates the value of current in the dqy reference frame. The loop is shown in Figure 16.

- o Pix) N
. Pl
Idig_mes
Pl 4* VdViq_conv
5 Saturation -
Idig_ref I
-+
Vd\ig_mes Riot_put
PLIreg1
K- >
Feedforward
» _
Ltot_put —
Riot_pus

» K- >+

Ltat_pu2 EE—
Figure 16. Current Control Loop.

2.6. Voltage Modulation

The VSC converter can use the referenced voltages by modulating them with pulse width
modulation (PWM). Modulation determines IGBT switching cycle. Sinusoidal pulse width modulation
(SPWM) is one of the simplest methods used to incorporate PWM.

SPWM distinguishes two signals: desired signal or a modulating signal, and a triangular signal
considered as a carrier signal. The comparison of the two signals results in a square waveform signal
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containing a replica of the desired signal (Figure 17). The IGBT switching frequency will be the
carrier signal frequency. This technique enables easy signal filtering with good results. Higher carrier
frequency allows more accurate switching, but often implies a greater number of changes per cycle
and thus increased power loss.

Figure 17. Working principle of Sinusoidal pulse width modulation (SPWM) [14].

There are two parameters which have to be considered when designing the SPWM, the modulation
index and the carrier is shown in Equation (23), and the relationship between the frequency of the
modulation signal and the carrier is shown in Equation (24) [14]:

Am
m= e <1 (23)
n= J% = 3k(k € N) (24)

It also regulates the amplitude of the applied output voltage by adjusting the modulation index.
An index of modulation greater than one means overmodulation. Usually, switching frequencies
within the range of 215 kHz are considered sufficient for power system applications [14].

3. Simulation Result

Electrical demand is increasingly growing, and renewable energy sources are crucial for the
maintenance of the electrical grid and for the supply of isolated loads. This paper presents a
simulation-based comparative analysis of the two most popular algorithms, perturb and observation
and incremental conductivity techniques, to improve the energy conversion efficiency of the PV
method. Simulation analysis and results of the PV module shall be conducted in order to obtain
its characteristics.

The complete PV-grid system simulation is shown in Figure 18, with a total of 13.7 KW power
with 45 solar modules under STC. The system has 9 parallel strings with five series strings of PV array.
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Figure 18. PV-Grid connected system Simulation in Matlab.

3.1. Solar PV Array Characteristics

The irradiance and temperature of the system are varied for analysis of the system. Initially,
irradiance is set at a value of 1000 W/m?2 when time = 0.6 s for the simulation. Then irradiance is
decreased from thousand to two hundred and fifty (250 w/m?) from time = 0.6 to 1.1 s, from time
t=1.2to 1.6 5, irradiance value is increased to 1000 w/m? and to study the effect of temperature in PV
array the temperature is raised from 25 °C to 50 °C as shown in Figure 19.

80

Temp 50

. H H H H 1
0 - L ! 0 0.5 1 15 2 25 3

Time (sec) Time (sec)
(a) (b)

Figure 19. (a) Irradiance, (b) Temperature pattern of PV.

The study of PV output voltage vs. current characteristics simulated for various irradiance is
shown in Figure 20. The graphs show the behaviour of output current of the PV module is linear to the
amount of irradiance.

ok l l
0 5 10
Vpv (V)

Figure 20. I vs. V Characteristics for varying temperature.
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The irradiance also has an impact on voltage vs. power of the PV module. It also varies
with irradiance, as shown in Figure 21. The decrease in the amount of irradiance will reduce the
overall performance.

701 ! ' ! T
—_—25CT| : : :

60— 350 T oo e 4
—45CT|

Vpv(V)

Figure 21. P vs. V Characteristics with varying temperature.

Similarly, its analysis based on the temperature impacts on the PV array shown in Figures 22 and 23.
Temperature affects the voltage on the PV array. Temperature rise reduces the performance of PV panels.

0.2 Sun
0.4 Sun ||
0.6 Sun

—— 0.8 Sun

—— 1.0 Sun |

(A)

70

60

S0

§40

Figure 23. P-V Characteristics with varying irradiance.
3.2. PV Side Result Simulation for the P&O Algorithm and INC Algorithm

The simulation starts at t = 0 when irradiance is 1000 W/m?2, and the temperature is 25 °C as the
irradiance 1000 W/m? is the systems maximum irradiance here the maximum output power 13.7 kW
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will be extracted from PV array. From t = 0.6 s, the solar irradiance reduces to 250; hence the incident
solar energy reduces, and the output power reduces from 13.7 KW. Therefore, irradiance is directly
proportional to power generated; hence reducing irradiance will reduce the performance of the system.
The change in temperature also has a significant impact on the output voltage and output current from
the PV array. The graphs clearly show the increase in temperature decreases the performance of the
PV panels.

Figure 24a—d show the simulation results of P&O at the PV side and Figure 25a—d show the
simulation results of INC at the PV side. The result shows the irradiance pattern applied to the PV
module, the current and the voltage characteristics of the PV module and the active power output of
the PV module, respectively.
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Figure 24. (a) Irradiance vs. Time of P&O at PV side; (b) Current vs. Time of P&O at PV side; (c) Voltage
vs. Time of P&O at PV side; (d) Power vs. Time of P&O at PV side.
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Figure 25. (a) Irradiance vs. Time of INC at PV side; (b) Current vs. Time of INC at PV side; (c) Voltage

vs. Time of INC at PV side; (d) Power vs. Time of INC at PV side.

3.3. Simulation Results of P&O and INC Algorithm at Grid Side

Figure 26a—e illustrates the simulation using P&O model on the grid side. Figure 27a—e illustrates
the simulation using INC model on the grid side. This shows that the d-axis current component,
the g-axis current component, active and reactive power on the grid side, the DC voltage input to
the inverter and, injected PV voltage and current waveforms to the grid at the point of contact is in

phase, respectively.
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Figure 26. () Igreq vs. Time of P&O at Grid Side; (b) Igref vs. Time of P&O at Grid Side; (c) Power in
KW and KVA vs. Time of P&O at Grid Side; (d) V4. vs. Time of P&O at Grid Side; (e) Current and
voltage injected to the grid of P&O at Grid Side.
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Figure 27. (a) Igreq vs. Time of INC at Grid Side; (b) Igref vs. Time of INC at Grid Side; (c) Power in KW
and KVA vs. Time of INC at Grid Side; (d) V4. vs. Time of INC at Grid Side; (e) Current and voltage

injected to the grid of INC at Grid Side.



Electronics 2020, 9, 1512 21 of 23

4. Comparison between P&O and INC MPPT Algorithms

The P&O and INC MPPT algorithms are simulated and compared using the same conditions.
When atmospheric conditions are constant or change slowly, the P&O MPPT oscillates close to MPP,
but INC finds the MPP accurately at changing atmospheric conditions also. Simulation tests with
MATLAB/Simulink display PV and grid side output with varying time and irradiance. The INC
algorithm tracks rapidly changing irradiation conditions more precisely than the P&O process. In P&O
system, the voltage does not exceed the exact value but perturbs MPP value. Figures 25d and 26d
clearly demonstrate that the INC solution to the MPP is quicker and better than the P&O due to the
lack of a drifting problem and was the most effective under rapidly changing conditions.

5. Conclusions

In order to improve the conventional system due to fast-changing irradiation, this paper suggested
an improved MPPT controller without measuring the produced PV array capacity. The robust tracking
capability of gradually rising and declining irradiance was demonstrated in simulation. The proposed
MPPT allows the decoupling of the power shift caused by the simultaneous increase in disruption and
variance in irradiation.

The output power losses caused by dynamic tracking errors are dramatically reduced, especially
under fast-changing irradiation. The irradiation difference is calculated by an error in the PI DC voltage
controller signal. The PI regulator is designed to ensure zero signal error when the ambient conditions
are constant. The error of the signal, therefore, is just the difference in power induced by the variance
of the irradiation. Previously, the d-axis grid current component is used to measure the total power
shift in the PV array. The d-axis grid current component is then used to measure the overall shift in the
power of the PV array. The feasibility of an engineered PV network capable of providing sufficient
constant power to various AC loads with various environmental constraints, such as irradiance and
temperature, has therefore been studied.

6. Future Prospects

In the process, it has been developed that the system can be made more effective by using the
battery storage system parallel to the PV system to help produce more constant power and that the
complexity of the system design compared to the stand-alone grid-connected system. The PV system
with a battery storage system (BESS) can be tested for different environmental scenarios in the future.

Since the output power of the stand-alone PV system fluctuates due to various factors, or the
provided power is insufficient to supply the load, and if the constant load power of the BESS system
can be obtained by discharging the necessary amount of power from the battery.

In the stand-alone system, the excess power is fed to the dump load instead of being stored in the
battery and used when the power demand is high and cannot be met by the power generated by the
PV alone, so the excess power is absorbed in the BESS system.

The environmental conditions needed to be improved in this work have been quite elaborated;
future work will involve more realistic irradiance and temperature predictions on the PV panel.
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