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Abstract

Planetary gear trains (PGT) are widely used in the field of renewable energy,

especially in wind turbines. A wind turbine uses planetary gearboxes to transfer

wind torque to a generator, and even though gearboxes are designed according to

sound engineering practices, they fail much sooner than their design life estimates.

Unexpected PGT failures are costly, and it is vital to detect these failures early. This

thesis proposes proper methods and analyses that help the wind turbine industry

to prevent future failure by enlightening the nonlinear dynamic behavior of PGT

under random force. This thesis will investigate one of the main factors in PGT

failure: random vibration caused by wind turbulence. In this thesis, a hybrid dynamic

model was proposed to model the stochastic nonlinear dynamics of a PGT with an

elastic ring gear, and then the statistical linearization method (SL) was introduced to

linearize the model. A new criterion of the SL is introduced to linearize the stochastic

nonlinear dynamic model of a gear pair. The stochastic response of a thin-walled ring

gear PGT under three equally-spaced random moving loads was also investigated. A

series of parametric studies was conducted, and the obtained results revealed that

the proposed model for the PGT accurately represented the dynamic behavior of

the PGT with an elastic ring gear, and the SL gave acceptable accuracy. Also, the

energy-based SL was enough accurate and valid to apply to stochastic nonlinear gear

pairs under heavy load conditions, and the accuracy of the SL decreased for light load

conditions. Finally, analysis on the effect of random moving loads on the ring gear
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showed that the mean of displacement was affected by the critical speeds, and random

loads’ speed does not influence the standard deviation of displacement. Monte Carlo

simulations (MCS) were conducted to verify the proposed model and method, and

MCS proved the accuracy of the proposed model and process.
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Chapter 1

Introduction

1.1 Background

The process of converting the kinetic energy of wind into other types of energy has

been used by humankind for centuries. It is believed that the first windmills were

designed 2000 years ago by Persia and China to grind corn [1, 2]. Over time wind

energy has been harvested and used to make life easier for humankind, such as power

boats across the ocean or pumping water throughout farmlands. In the 20th century,

millions of small wind turbines had been installed in rural and remote areas to provide

electricity. The need for greater energy resources has increased because of industrial

development and the unstable cost of fossil fuels, and as a result, wind energy de-

velopment has grown exponentially. In addition, wind power is a preferred source

of renewable energy because of its sustainability, reliability, cleanness, cost-stability,

and competitiveness in comparison to other energy sources.

Energy extraction from wind is considered one of the fastest growing sources of

electricity in the world. For example, the total capacity of Canadian installed wind

power grew from 444 MW in 2004 to 12,817 MW in 2018 (see Figure 1.1)[3]. This rapid
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Figure 1.1: Installed Wind Power Capacity in Canada (in MW)[3]

development was because of the design and optimization of modern wind turbines.

Different types of wind turbines have been designed based on their capacity, en-

vironmental conditions, and remoteness. Among modern wind turbines, the design

most commonly believed to be the most efficient is the horizontal axis wind tur-

bine which has high efficiency and capacity for producing electricity at different wind

speeds. The kinetic energy of the wind is transferred through the blades to the gear-

box, and then from the gearbox to the generator, as shown in Figure 1.2 [4]. The

generator creates electricity and transfers it to the consumer through a grid connec-

tion system. Because the wind turbine works at a low rotational speed, the primary

purpose of the gearbox is to increase the low input rotational speed into a high output

2



Figure 1.2: Wind turbine [4]

rotational speed.

(a) Direct drive (b) CVT (c) PGT

Figure 1.3: Types of gearboxes are used in wind turbines

Depending on the capacity and geometrical size of the wind turbine, different
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Figure 1.4: Planetary gear transmission [5]

types of drive trains are used, such as direct drive, simple gear transmission, re-

verted gear transmission, continuously variable transmission (CVT), and planetary

gear transmission (PGT) (see Figure.1.3). Among these, planetary gear transmission

is the most common transmission in wind turbines because of its unique properties.

These include the number of speed ratios, high power-to-volume ratios, compactness,

and high efficiency. Planetary gearboxes include a sun gear, a ring gear, a carrier,

and three or more planet gears, depending on the design, as shown in Figure 1.4. The

planet gears are mounted on the carrier, and they are enmeshed with both the sun

gear and the ring gear. The planets rotate around the sun gear, while the ring gears

are either fixed or spinning.
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Figure 1.5: Surveys of land-based European wind turbines over 13 years [6]

1.2 Problem Statement

Despite all the advantages of wind turbines, there are significant challenges associated

with harnessing their energy. One of the main challenges of extracting energy from

wind turbines is component failure. Wind turbines are often installed in places where

accessing them for maintenance and repair is difficult, therefore, any failure results in

high repair and replacement costs. The failure and downtime of the components of

two different types of land-based wind turbines, over 13 years, is shown in Figure 1.5.

The components analyzed in the survey include: electrical systems, electrical controls,

hydraulic systems, rotor hubs, mechanical brakes, rotor blades, gearboxs, generator,

drive trains, and yaw systems.

Figure 1.5 shows that gearbox, drive train, and rotor blades have the highest
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downtime per failure in comparison with other components. These parts are the

main section of the mechanical part of the wind turbine, which is directly exposed to

wind and transfers the generated torque from blades to the generator. In addition,

wind continually fluctuates based on its nature, and these fluctuations cause vibration

in the mechanical part and is a significant factor in planetary gearboxes’ failure.

Among these mechanical parts, the gearbox is the largest contributor to turbine

downtime and the costliest to repair per failure when compared to other components,

as shown in Figure 1.5. Wind turbine gearboxes are designed to last at least 20 years,

however, since they are continuously subjected to fluctuating torques caused by wind

speed variation, they fail considerably earlier than intended. They are also one of the

most expensive parts of the wind turbine. Thus, their failure is the primary concern

in wind turbine design.

1.3 Research Overview

A significant factor in planetary gearboxes’ failure is vibration. A significant problem

of calculating vibration is that the unpredictability of wind, which makes wind turbine

vibration more complicated. This thesis systematically investigates the vibration of

PGT in a wind turbine under both deterministic and random loads.

Despite the significance of planetary gearboxes in different industries, the lack of

proper methods and analysis has created gaps in procedure. This project creates an

occasion for the advancement of this significant scientific topic. The dynamic model
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examined in this research, and its analysis, will be useful for analyzing wind turbine

gearboxes. The significance of this research, and then findings and developed methods

go well beyond the wind power industry. All the methods and analysis developed in

this project will be applicable not only for wind turbines, but also for the automation

and aviation industries.

Although much research has been conducted in the dynamic behavior of planetary

gear trains of a wind turbine, there are research gaps that are essential to analyze the

dynamics of wind turbines PGTs deeply. These gaps are mainly in comprehensive

modeling of PGTs, solving nonlinear stochastic dynamics of a complex system such

as PGT, and applying the effects of elasticity and random moving loads. This thesis

focuses on finding the proper model and method to cover these research gaps in

modeling wind turbine planetary gear trains.

1.4 Research Contributions

The goal of this project is to investigate the dynamic behavior of planetary gearboxes

in wind turbines. More specifically, the research focus is placed on 1) the effect of

moving gear meshing loads; 2) the elastic deformation of the ring and 3) the backlash

non-linearity. Accordingly, this project’s contributions to the state of the art are:

1. A stochastic nonlinear dynamic model of the planetary gear transmission (PGT),

taking the elastic ring gear, the elastic supports, nonlinear moving mesh, and

multi-backlash into consideration.
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2. Develop the nonlinear backlash equation with variables from the finite element-

lumped parameter model of PGT.

3. Apply statistical linearization technique on the nonlinear moving mesh of planet-

ring pair by considering ring gear elasticity and sun-planet pair of PGT.

4. Developed an energy-based criterion of statistical linearization technique for

nonlinear stochastic dynamic gear systems.

5. Developed an accurate model to represent the elastic ring gear.

6. A method for investigating the random moving load effects on the ring gears

and analyze the effect of the moving random load speeds on the dynamics of

the rings.

Beyond the aforementioned contributions, this project is to provide more insight

into the dynamics of planetary gear transmission. Even though the following listed

items are not the main contributions, thorough work is to be conducted on them

through this project. The following is a list of these items which includes:

• Create a comprehensive list of literature surrounding dynamic behavior of plan-

etary gearboxes in wind turbines.

• A comprehensive model to analysis the random vibration of PGTs, including

random load, backlash, and elastic ring gear.
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• Develop methods and analysis of the PGTs well beyond the wind power indus-

try.

• Increase the accuracy of analysis and decrease the complexity of the nonlinear

random vibration of PGTs.

1.5 Organization of Thesis

The thesis is organized as below:

Chapter 1 ( the current chapter) includes the background, research overview,

research objectives and organization of this dissertation.

Chapter 2 reviews prior studies of the dynamics of planetary gears, and focuses

on the literature of the following topics: PGT dynamics models, solution methods of

dynamic equations, the nonlinear dynamics of the PGT, the flexibility of ring gears,

moving load of ring gears, and random factors. These point out gaps in the literature.

Chapter 3 creates a model of PGT dynamics that includes a flexible ring gear,

backlash, and multi-mesh under random excitation. The hybrid model, which is finite

element-lumped parameter modeling, is used in this chapter. The backlashes between

sun-planet pairs and ring-planet pairs are represented by a nonlinear function, and this

nonlinear equation is then treated with the statistic linearization method. Finally, the

response statistics of the PGT model are represented. This chapter is a manuscript

of one full journal paper, and one presented conference paper.
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Chapter 4 introduces a new version of the statistical linearization method to solve

the nonlinear system for a single gear pair. The method is based on energy. The

obtained results for a single gear pair are compared with the results of the Monte

Carlo Simulations. This chapter is a manuscript of a full research article.

Chapter 5 proposes two models developed to compute the natural frequencies and

mode shapes of a ring gear. The first model represents the ring gear as a smooth

ring, and the second model represents the ring gear modeled as a smooth ring with

attached masses. The obtained results are compared with the results from ANSYS.

This chapter is a manuscript of a conference paper.

Chapter 6 provides vibration analysis of the elastic ring gear under a random

moving load. The ring gear of the PGT is subjected to a moving load caused by the

planets’ movement throughout the inside of the ring gear. Therefore, the dynamic

responses of the ring gear under random-moving loads are analyzed here. For this

purpose, only the ring gear with applied meshing force will be modeled. The obtained

results are compared with the results of the Monte Carlo Simulations. This chapter

is a manuscript of a full research article.

Chapter 7 provides the general conclusions of this research. Contributions of this

work, as well as future research directions, are clearly explained.
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Chapter Paper Title List of Authors Conference or Journal Status

1 3

Statistical Linearization of

Nonlinear Stiffness Matrix

of Planetary Gear Train

Jalal Taheri Kahnamouei,

Jianming Yang

ASME 2017

International Mechanical Engineering

Congress and Exposition

November 3–9, 2017

Accepted,

Full paper, 2017

2 3

Development and Verification

of a Computationally Efficient

Stochastically Linearized

Planetary Gear Train Model

with Ring Elasticity

Jalal Taheri Kahnamouei,

Jianming Yang

Journal of Mechanism and Machine Theory

Submitted,

25th April, 2020

Revision

3 4

Random Vibration of A

Nonlinear Gear Pair Using

Energy-Based

Statistical Linearization

Jalal Taheri Kahnamouei,

Jianming Yang

Journal of Acta Mechanica Solid Sinica

Submitted,

10th July, 2020

Under review

4 5
Free Vibration Properties of

Ring Gears

Jalal Taheri Kahnamouei,

Jianming Yang

CSME-CFDSC Congress 2019,

Western University,

London, ON, June 2-5, 2019

Accepted,

June, 2019

Full paper

5 6

Random Vibration Analysis of

Thin-Walled Elastic Rings

under Multiple Moving Loads

Jalal Taheri Kahnamouei,

Jianming Yang

Proceedings of the Institution

of Mechanical Engineers,

Part C:

Journal of Mechanical Engineering Science

Submitted,

29th October 2019,

Under review
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Chapter 2

Literature Review

2.1 Introduction

Planetary gear trains (PGT) have application in a wide range of industries from

energy to aviation because of their unique properties, such as number of speed ra-

tios, high power-to-volume ratio, compactness, and high efficiency. There are many

concerns regarding design and operation: one such concern is vibration, especially

for some high speed and heavy load applications. For example, PGT in wind tur-

bines have severe dynamic problems, which affect turbine reliability and fatigue life.

Extensive research has been conducted to investigate the dynamic performance of

PGT [1-3]. Some prominent subjects of existing research include natural frequencies

and vibration modes [1, 3-5], mesh phasing [6, 7], instability [6-8], nonlinear dynamics

[9, 10], elasticity effect [11, 12], and gear backup ratio [11, 12] in the condition of time-

variant mesh stiffness. In addition, review papers have also been published [13, 14]

that presented the research has been done in PGT dynamics.

In heavy load applications, some parameters and items are more critical than

others, and they include random excitation, nonlinear phenomena, and deformation
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of the ring gear. For example, in the PGTs of wind turbines, the deformation of the

ring gear becomes non-negligible. Thus, some researchers focus on these phenomena

and carry out analyses of their effects on the dynamic response of the PGT [12, 15, 16].

Section 2.2 discusses the main three models used representing the PGT dynamics.

Section 2.3 focuses on methods used for solving the dynamic equations. Section 2.4

presents an overview of the nonlinear dynamics of the planetary gear system. Sec-

tion 2.5 provides a summary of the literature regarding the flexibility of ring gears

and offers a brief analysis of the studies. Section 2.6 reviews the literature on random

factors. Finally, section 2.7 focuses on the effect of moving load on the elastic ring’s

dynamic responses.

2.2 Models of Dynamics

Experts utilize dynamic modeling to simulate and analyze the dynamic response of

geared systems. Generally, there are three main types of models that demonstrate

the dynamic modeling of PGTs: the lumped parameter model (LPM), the finite

element model (FEM), and the finite element-lumped parameter models. Thus, the

simplification level of a real system, the boundary conditions, and the degrees of

freedom each determine the accuracy of the results obtained from each model. The

use of each model depends on the purpose and complexity of the research.
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Figure 2.1: Lumped parameter modeling of planetary gear transmission [4]

2.2.1 Lumped parameter modeling

Research has been conducted on the dynamics of PGTs using the lumped-parameter

model. Lin and Parker [4] studied the dynamic responses of the PGTs using the

typical LPM shown in Figure 2.1. In this model, the carrier and each gear have three

degrees of freedom: two transverse motions and one rotational motion. A spring

represents each gear mesh between the sun-planet and ring-planet pairs. In addition,

each bearing was modeled by springs. Kahraman [17] used the LPM to study the

natural frequency of the PGTs. He computed the natural frequencies obtained from
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a purely torsional model against a torsional transverse model.

Kahraman [18] applied the LPM to study the influence of the planet meshing

phase on dynamic response. In this model, helical gears were considered. Therefore,

to represent the three-dimensional model, six degrees of freedom, including three

rotational and three transnational, were allocated for each component. In addition,

static transmission error was considered an excitation in the LPM.

The LPM is relatively simple and accurate when the flexibility of the system’s

components is negligible. However, in some applications, the flexibility of gears is

important and should be considered to obtain accurate results; for example, the ring

gear of PGT is applied in wind turbines. Therefore, an alternative modeling method

needs to model the PGT with greater detail.

2.2.2 Finite element modeling

PGTs are a complicated system and oversimplifying them may not give accurate

results. Thus, it is necessary to apply more detail, such as the geometry or contact

forces through teeth in the model. The lumped parameter model is unable to model

all of these details. On the other hand, the finite element model gives us the possibility

of applying more detail in the model with high fidelity and accuracy.

Parker et al. [19] investigated the dynamic behavior of PGTs under a wide range

of operating torques and speeds using semi-analytical finite element modeling. They

studied the torque and speed sensitivity of dynamic responses modeled with greater
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details of tooth geometry and contact forces between gears. They found a strong

agreement between the natural frequencies obtained from the finite element modeling

and analytical eigensolution [4].

Ambarisha and Parker [20] examined the dynamics of PGTs with both the fi-

nite element and lumped parameter models. Tooth contact loss and mesh stiffness

variation were considered as nonlinear springs in the LPM. The finite element model

intrinsically considered tooth contact loss and mesh stiffness in the analysis. The

obtained result from finite element model were compared to the obtained results

from lumped-parameter analytical model. The comparisons showed that the spectra

in both sets of results agreed well, and both methods can be used to analyze the

dynamic behavior of PGTs.

Although the finite element model gives accurate results, some of the details of

transmission, such as sun gear, or planet gears’ elastic behavior are not significant and

based on the analysis, can be neglected. In addition, FEM often requires significant

computational time. Also, in some modeling, the elastic behavior of components

should be ignored except the ring gear. Thus, researchers may benefit from a model

that combine the speed of the LPM and the accuracy of the FEM.

2.2.3 Finite element-lumped parameter modeling

In order to overcome the high computations of the finite element model, and the

lack of reliability of the lumped parameter model, alternative approaches have been
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introduced. Finite element-lumped parameter modeling gives the complexity and

accuracy of the finite element model for critical components, as well as the simplicity

and quickness of the LPM for non-primary components.

Abousleiman and Velex [15, 21] developed the finite element-lumped parameter

model to study the dynamics of PGTs and the elastic behavior of ring gear. They

modeled the PGT by assembling the finite element model of the flexible ring with the

lumped parameters of other components. Therefore, the LPM shows that ring gear

deformation influences the general dynamic response of the PGT, and the proposed

model can consider the deformation without unnecessarily increasing the complexity

of the model. Because brick elements with two nodes were used in modeling the ring,

a high number of elements were needed to achieve accurate results. Thus, this model

requires greater computational time. In order to describe the circular nature of the

ring gear, a curved beam element will be used in this thesis to give a more accurate

result with fewer elements.

2.3 Solution of nonlinear dynamic planetary gear

trains

The dynamic equation of planetary gears is complex, and if nonlinearity or random-

ness is added to the equation, the equation becomes more difficult to solve. In the

meantime, researchers have introduced various solution methods to solve the dynamic
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equation of the PGTs. They were used based on the complexity of the dynamic equa-

tions and the required accuracy.

Wu and Parker [1] used a perturbation method, which gives the approximate

solution of the nonlinear problems based on assuming a small parameter as a per-

turbation parameter, to solve dynamic equations of the PGTs with an elastic ring

gear. In this study, the results showed that all vibration modes were fitted into four

modes, which were rotational, translational, planetary, and purely ring modes. Xun

et al. [22] solved the dynamic equation of the PGT using the same perturbation

method, as mentioned above. The obtained results demonstrated that proper tooth

profile modification decreases the system vibration amplitudes.

Sun and Hu [23] used the harmonic balance method, which provides the periodic

solutions of nonlinear ordinary differential equations, to solve the dynamics of the

PGT system with consideration of the nonlinearity caused by multiple backlashes and

time-varying mesh stiffness. They used numerical simulation to verify the proposed

method, and the obtained results showed that the variation of stiffness ratio and

transmission error have an important role in the nonlinear dynamic behavior of the

PGTs. Guo and Parker [24] studied the nonlinear dynamic behavior of the PGTs

of wind turbines under simultaneous excitation using the extended harmonic balance

method. Numerical integration and finite element modeling were applied to validate

the results. Bahk and Parker [9] utilized both the perturbation and harmonic balance

methods to solve the nonlinear dynamics of PGTs. They evaluated the accuracy of
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both methods with finite element and numerical integration simulations.

Kahraman [18] employed the modal summation method to solve the dynamic

responses of the PGTs. For this purpose, he neglected the time-varying meshing

stiffness due to the changing number of teeth in the mesh. In addition, Sondkar and

Kahraman [25] found the dynamic responses of the double-helical PGT by solving

the dynamic equation with the summation method. Sondkar and Kahraman [25]

used the same solution method to solve the dynamics of the double-helical PGT.

They considered the model with a linear, time-invariant meshing between the gear

pairs, as well as any number of planets and supports.

The numerical method is one of the common methods to solve the dynamic equa-

tions, mainly when the equations include the nonlinear part. Wei et al. [26] applied

the numerical precise integration method to solve the multistage planetary gears dy-

namic equation. They established that this method was more accurate and suitable

for solving the equations with a high degree of freedom. Qiu et al. [27] analyzed

the dynamic response of the PGT under pitching base movements with the Runge-

Kutta method. The authors found that when the base movement was considered in

the model, it caused the rich parametric exaction beside the parametric excitation

due to mesh stiffness variation. Kim, et al. [28] used the Newmark time integration

method to solve the nonlinear dynamic equation of planetary gears with time-varying

pressure angles and contact ratio. The authors applied the Newton Raphson method

at each time step defined by the Newmark algorithm. Yang and Yang [29] applied
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the stochastic Newmark scheme to solve the PGT dynamic equation under both ran-

dom and deterministic excitation. The authors analyzed the effect of the white noise

intensity on the dynamic responses of the PGT.

All these presented methods have limitations when the model includes nonlinear-

ity and randomness parameters.These methods are not able to solve the stochastic

problems, and they can only provide the mean value of results; on the other hand,

mean value, variance, and higher-order moments of results are essential for analyzing

the systems under random excitation. Thus, it is necessary to introduce a new ap-

proach to evaluate the nonlinear PGTs’ nonlinear stochastic dynamic behavior. This

thesis will present a useful solution method to solve the nonlinear stochastic vibration

of PGT with statistical linearization technique.

2.4 Nonlinearity

Due to the existence of nonlinear phenomena such as backlash, manufacturing er-

rors, and mesh stiffness variation, nonlinearity is an inevitable part of a gear system.

These nonlinear sources have different effects on the dynamic behavior of the PGTs.

Among them, tooth backlash has strong nonlinearity because of the unexpected loss

of contact. Mesh stiffness variation is caused by changing the number of teeth in mesh

contact. Significant research has been undertaken regarding the nonlinear dynamics

of the planetary gear.

Kahraman [2] developed a nonlinear dynamic model of planetary gearboxes, which
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included contact loss, manufacturing errors, and mesh stiffness variation. He defined

dynamic load sharing factors and analyzed the influence of design parameters on

dynamic load sharing factors. Sun et al. [23] attempted to model a nonlinear dynamic

system for the planetary gear by considering multiple backlashes, error excitation,

and mesh stiffness variation. They solved it using the harmonic balance method and

conducted a parametric study. The analysis demonstrated that the increase of mesh

stiffness variation and static transmission errors intensified the nonlinearity of the

system.

Ambarisha et al. [20] employed a lumped-parameter model and a finite element

method to investigate the nonlinear dynamic behavior of planetary transmissions.

They considered the gear meshes as nonlinear due to tooth separation, and the system

showed high nonlinear dynamic responses, such as chaotic motions. Bahk et al. [9]

studied the nonlinear dynamic response of planetary gearboxes by considering the

mesh stiffness variation. They conducted the parametric analysis for the operating

range of the mesh frequencies. The analysis demonstrated that the tooth separation

exists at large external torque.

Guo and Parker [30, 31] studied the dynamic behavior of the planetary gear of a

wind turbine. They extended the nonlinear dynamic equations, which included con-

tact loss, mesh stiffness variation and bearing clearance. They found that excitation,

due to the clearance, caused chaos. Furthermore, Guo [24] had researched nonlinear

dynamics of wind turbines’ planetary transmissions, which were affected by gravity.
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The results showed that the nonlinearity of the system was enhanced because of tooth

wedging and bearing-raceway contacts caused gravity.

Kim [28] developed a nonlinear dynamic model, which included time-varying pres-

sure angles and contact ratios for the planetary gearboxes. He found that this model

had higher radial displacements and greater mesh deformations in comparison to con-

stant pressure angle and contact ratios. Li et al. [32] used a numerical method to solve

the nonlinear equations of motion on multi-stage planetary gear. They also studied

bifurcation and chaos, which were influenced by backlash, damping coefficient, and

excitation frequency. The results show that these parameters caused different non-

linear dynamic responses to the system.

Considering nonlinearity alongside the random load and ring gear, elasticity makes

the PGT’s model more complicated. There is no precise method to solve the nonlinear

random vibration of complicated systems. All these works of literature studied the

nonlinear dynamic behavior of the PGT with rigid ring gear under deterministic

excitation.

2.5 Flexibility of the Ring Gear

Ring gears are considered rigid bodies in many studies. In real PGT systems, to main-

tain a high torque-to-weight ratio, the ring gear is designed with thin rims. However,

the thin ring gear elastic deformation under operating conditions has become an im-

portant issue. This elastic behavior has a significant effect on the dynamic behavior of
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the gearbox. Therefore, the elastic behavior of the ring gear is necessary to consider

because the rigid body model cannot sufficiently assess an accurate dynamic response

of the system.

Tanna and Lim [33] studied the free vibration characteristics of elastic ring gear.

They compared the results obtained from smooth ring and ring gear models with

experimental results to establish the more accurate method to model the ring gear,

and they found that the ring gear model considering the effect of teeth was more

accurate. Kahraman et al. [11, 12] analyzed the influence of the flexibility of inner

gears on the dynamic behavior of a planetary gearbox using the finite element/semi-

analytical model. They investigated the influence of rim thickness on ring gear stress,

ring gear deflection, and the planet sharing load. The results indicated that elastic

ring gear had a significant impact on increasing the bending stress of the teeth on all

ring gear and on balancing the planet load sharing.

Abousleiman et al. [15] present finite element and lumped parameter models to

analyze the three-dimensional dynamic response of PGT with deformable ring gear.

The results found that elastic ring gears helped improve load distributions on ring-

planet pair meshes. They [21] developed the model to incorporate finite element

models of both the elastic ring and the carrier, and realized that the elastic deflection

of the ring gear was more critical than the carrier in their case study.

Wu et al. [1] studied the modal properties and natural frequencies of a planetary

gearbox with thin flexible ring gear. They concluded that rotational, translational,
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planet, and purely ring modes were the vibration modes of equally-spaced PGTs with

flexible ring gear. Wu [34] also investigated the vibration of flexible ring gear fixed

with elastic supports. They found that the natural frequencies affected by stiffness of

springs, angle of supports, number and location of the springs. Later, they [35] studied

the effects of unequally spaced planets on the dynamic characteristics of planetary

gearboxes with flexible inner gears. In addition, they investigated the relation between

the modal properties of PGTs.

Chen, and Shao [16, 36] utilized a curved Timoshenko beam to model a flexible

ring gear. They assumed the tooth was rigid and analyzed the influence of the number

and kind of support points on the meshing stiffness of ring-planet gear pairs. They

analyzed the effects of tooth root crack on the dynamic response of PGT by potential

energy and the curved-beam model. Furthermore, they studied the effects of rim

deformation and the mesh stiffness of PGTs.

Wei et al. [26] established the virtual equivalent shaft method to analyze the

vibration of planetary transmissions with a deformable ring gear and a flexible planet

carrier. They concluded that the influence of the ring gear elasticity was dominant,

and the effect of the deflection of the carrier was negligible. Hu. [37] utilized the

baseline model to formulate a planetary gearbox with a elastic ring gear. They used

the model to predict the ring gear deflection and to analyze the ring gear deformation

on dynamic responses of the PGTs. The analysis revealed that ring deformation had

a significant effected on ring-planet gear. In addition, the results showed that elastic
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ring gear improved load distribution of PGTs with manufacturing errors.

All these studies examined the free or deterministic vibration of the ring gear.

However, the random vibration of the ring gear individually or, in a complete model

PGT has not been conducted.

2.6 Random Loads

Geared systems are under two types of forces, which are internal and external loads.

Meshing forces are internal, which are created from gear mesh. Deterministic and

random loads applied from the outsides are external loads. In the majority of the

analysis, internal load and deterministic loads are considered in the system. Even

though many analyses have been conducted of planetary gearboxes subjected to deter-

ministic excitation, few have been conducted regarding the planetary gear dynamics

under random excitation. However, random factors always exist and have an essen-

tial effect on geared system dynamics. In applications that are directly subjected to

external random loads, such as wind turbine gearboxes or land vehicle transmissions,

random load effects cannot be ignored.

Through a few publications considering randomness, Yang and Yang [29] analyzed

the random vibration behavior of the PGT under combined external white noise and

deterministic excitation. They examined the effect of the noise levels on dynamic

responses they found out that the variances of the response were affected by the noise

level. This study focused only on PGT, and later they published an extended work
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[38], which studied the dynamic behavior of wind turbines’ PGT under wind turbu-

lence. They used colored noise to applied wind turbulence as a random excitation to

the model.

Srikanth and Sekhar [39, 40] built the dynamic model of the PGT of a wind turbine

subjected to stochastic wind loads which were estimated according to the standard

model. Wei and Han [42] investigated the influence of various uncertain parameters on

the dynamic response of the wind turbines’ PGT when subjected to the random wind

excitation. During the examination of the effect of different parameters, they found

that the uncertain stiffness parameters at the intermediate and high-speed stages had

significant effects on the dynamic responses of the system.

Wang and Shen [43] investigated the dynamic response of wind turbines’ PGT

with consideration for the random factors, loads and design parameters. They used

Runge-Kutta and the random sampling method to determine the dynamic responses

and the statistic method to determine the meshing forces. Beyaoui et al. [45] studied

the stochastic dynamic responses of the PGTs, and they considered the random factor

caused by the variation of aerodynamic torque on wind turbine blades. In order to

define the random factor, uniform and normal probability distributions were applied

to the model. The study [44] is the only research that investigated the dynamic

behavior of a wind turbines’ PGT under the effects of random wind excitation and

the stability of the system under the effects of random backlash. In this research, since

the ring gear elasticity was not considered, the torsional model of PGT was used, and
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the impact of a backlash on dynamic responses of the system was not studied.

In all the above literature, the random vibration of the wind turbine’s PGT was

studied. Although, none of those accurately represented the dynamic behavior of

PGT because of simplifying the model, disregarding the elastic effects of the ring

gear and backlash nonlinearity.

2.7 Moving Load

The ring gear of planetary gearboxes is subjected to a moving load caused by the

movement of the planets throughout the inside of the ring gear. As noted in sec-

tion 2.5, in order to analyze the PGT dynamic behavior accurately, it is necessary to

consider the elasticity of the ring gears. Meshing forces due to the moving planets

through the ring gear cause deflection on the ring gear. Thus, to accurately study

the dynamics of the PGTs, it is necessary to consider the moving load on the model

and its effects on other components, especially on ring gear.

Metrikine and Tochilin [46] investigated the steady-state response of a deformable

ring under a moving load by an analytic method. The authors assumed that elastic

springs attached the ring to the fixed point, and load was applied in a radial direc-

tion. They analyzed the effect of the load moving velocity on the ring patterns. The

results show that at the lower load velocity the ring pattern was symmetric and at

the high load velocity it becomes asymmetric. Forbes and Randall [49] investigated

the dynamic responses of a flexible ring under a moving load and analyzed the reso-
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nance phenomenon caused by the moving loads. The authors considered the ring was

stationary. They analyzed the effect of the magnitude-varying moving load, phase

varying moving load, and non-uniform continuous moving load on dynamic response

of the elastic ring. Both published papers focused on the dynamics of the ring under

moving spring, but they have not studied the effect of moving loads in mechanisms

such as the planetary gear trains. In addition, a single-deterministic moving load was

considered, which in actual cases, we have multi-random and deterministic forces.

Canchi and Parker [47] investigated the vibration of elastic ring gear excited by

moving springs, which represent the moving loads. They analyzed the ring’s paramet-

ric instabilities by considering the spring’s stiffness alteration, number spacing, and

placement. The same authors [48] employed a rotating thin-walled ring to model and

analyze the in-plane vibration and instability of a ring gear due to moving springs.

In this study, multiple moving springs with time-variant stiffness were considered as

moving loads. In addition, the examinations have been conducted on the rotating

and non-rotating ring under moving springs. Although this research focused on the

dynamic behavior of ring gear under multi-moving loads, randomness was not consid-

ered in the model. In addition, the dynamic behavior of the ring gear under various

moving load speeds was not investigated.
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2.8 Current Status of the Research Gap in PGT

Based on the literature review presented, and despite the vast amount of research that

has been done on the dynamics of PGTs, relatively little attention has been given

to the random vibration of PGT. Thus, according to the literature, several gaps are

detected are presented:

• The majority of these works introduced a simple model, and none of them con-

sidered nonlinearity, ring gear elasticity, and random excitation simultaneously

in a dynamic model of the PGT wind turbines.

• There are still many gaps in the ability to solve the nonlinear stochastic dy-

namics of PGT and analyzing the effect of random-moving loads on ring gears.

• Although several studies conducted on statistical linearization of nonlinear geared

system dynamics, all of these studies focused on the single gear pair.

• Only the forced-based statistical linearization was introduced to treat the non-

linear gear system dynamics. However, there are several criteria, such as an

energy-based statistical linearization, which can be used to solve the nonlinear

dynamics of the geared systems.

For this reason, the overall aim of this thesis is to develop a model to analyze the

nonlinear stochastic dynamics of the planetary gear trains of wind turbines.
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2.9 Conclusion

Few experiments show that the PGTs are affected by various complex phenomena,

such as elastic behavior of ring gear, backlash, time-variant mesh stiffness, and ran-

domness. Considering these phenomenon in the PGT model makes it more realistic

and increase the model complexity. Prior studies failed to treat the nonlinear ran-

dom vibration of the planetary gearboxes of wind turbines with the elastic ring gear.

Thus, we should develop a feasible method to model and analyze the PGTs’ dynamic

behavior in such a way as close as to the realistic case.
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of the presented research paper to the ASME 2017, International Mechanical Engi-

neering Congress and Exposition, November 3-9, 2017, Tampa, Florida, USA.

In this chapter, the stochastic nonlinear hybrid model of planetary gear transmission
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with elastic ring gear is presented. The elastic behavior of the ring gear and nonlinear

backlash between gear pairs are the challenges of modeling the planetary gear trans-

mission (PGT) under random excitation. Thus, the finite element-lumped parameter

model was developed to model the PGT with the elastic ring gear, and the statistical

linearization (SL) method was applied to nonlinear moving mesh loads to solve the

nonlinearity. In the proposed model, to solve the nonlinear equations of the planetary

gear trains, the statistical linearization method was used. To the best of my knowledge,

there is no published research similar to this chapter in which PGT modeled with con-

sidering nonlinearity, randomness, and ring gear elasticity. In addition, more figures

regarding the dynamic response of the PGT components, discussed in section 3.6.1 in

this chapter, are shown in the Appendix at the end of the thesis.

Tobe [31]and Yang [27] applied the statistical linearization into the fixed gear pair with

only rotational movement.

Abstract

This paper develops a hybrid dynamic model for the analysis of nonlinear stochastic

vibration of a wind turbine’s planetary gear train (PGT) with an elastic ring gear.

The elastic deformation of ring gear is considered and incorporated into the model

through the finite element model. Moving loads are used to incorporate the meshing

loads between the planet-ring gear pairs. In addition, the model includes both the

stiffness variation and the backlash nonlinearity between meshing gears. The backlash
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is linearized using the statistical linearization technique, and a linear set of equations

is obtained based on which simulation is carried out with PGT parameters in wind

turbines. A parametric study is conducted, and the results demonstrate that the

statistical linearization method is accurate enough to study the nonlinear stochastic

PGT. The results reveal that the moving mesh has a strong effect on PGT when the

ring gear elasticity is considered. The influence of rim thickness on PGT dynamics was

analyzed, and the results show that the effect is significant. Monte Carlo simulations

are used to verify the accuracy of the proposed method.

3.1 Introduction

Planetary Gear Trains (PGT) have a wide range of applications in several industries

because of their unique properties. Vibration and dynamics are two main concerns

in the design and operation of PGTs, especially for high speed and heavy load ap-

plications. Wind turbine PGTs have severe dynamic problems that severely affect

reliability and fatigue life, and this paper seeks to propose the model and the method

to help solve those problems.

Significant research has been conducted on the nonlinear dynamics of PGTs, par-

ticularly the factors of backlash and mesh stiffness variation, which causes the dy-

namics of gear systems to become nonlinear [1-4]. Kahraman conducted a significant

study into the field of nonlinear PGT dynamics [1] which included contact loss, man-

ufacturing errors, and mesh stiffness variation. Sun et al. [5] attempted to model a
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nonlinear dynamic system for the planetary gear by considering multiple backlashes,

error excitation, and mesh stiffness variation. They discovered that a variety of stiff-

ness ratio and transmission errors have a significant effect on the dynamic behavior

of PGTs. Ambarisha and Parker [6] considered tooth separation as a nonlinear phe-

nomenon, and used a lumped-parameter model and a finite element method to study

the dynamic behavior of planetary transmissions, and the obtained results showed

chaotic motions responses. Guo and Parker [7, 8] studied the dynamic behavior of

the planetary gear of wind turbines by considering contact loss, mesh stiffness vari-

ation, and bearing clearance. They discovered that the PGT showed the chaotic

responses because of internal excitation due to the clearance.

In the majority of studies, ring gear was modeled as a rigid body; however, in real

PGT systems, the ring gear is designed with thin-wall thickness rims to maintain a

high torque-to-weight ratio. Thin ring gears show elastic behavior under operating

conditions for heavy load applications, and the deformation of the ring gear has a

critical effect on the dynamic behavior of PGTs. Several studies have looked into the

impact of the ring’s elasticity on the dynamic behavior of PGTs. Kahraman et al. [9,

10] studied the influence of ring gear thickness on ring gear stress, ring gear deflection,

and the planet sharing load, by using the finite element/semi-analytical model. The

results showed that elastic ring gear had a significant influence on balancing the load

sharing on the planet. Abousleiman et al. [11, 12] analyzed the effect of elastic ring

gear on the load distributions on ring-planet pair meshes. They discovered that elastic
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ring gears improve load distributions throughout ring-planet pair meshes, and that

the effect of elasticity of the ring gear was more influential than the elasticity of other

components. Yong Hu [13] studied the effect of the elasticity of ring gear on the

load distribution of PGTs. Their analysis revealed that the ring deformation affected

ring-planet gear mesh, and modified load distribution on PGTs.

Although research on PGT dynamics is abundant, very little research has been

conducted regarding PGT stochastic dynamics, particularly, there is a lack of study

on the element of randomness. Randomness is an essential feature in geared sys-

tem dynamics and for some systems, the primary workload is random, such as the

transmission set in wind turbines. A few publications have begun to consider the

impact of randomness on PGT dynamics [14-18] . Yang and Yang [19, 20] investi-

gated the response of a PGT under random external excitation of white noise and

colored noise. They discovered that the variance in responses was affected by the noise

level. Beyaoui et al. [21] studied the stochastic dynamic responses of PGTs, and they

considered the random factor caused by the variation of aerodynamic torque on wind

turbine blades. Chen [22] investigated the dynamic behavior of a wind turbine’s PGT

under random wind excitation. Chen’s research did not consider ring gear elasticity,

and the influence of backlash on the dynamic behavior of PGT was not analyzed. All

aforementioned literature in this section studied either nonlinearity, randomness, or

ring gear elasticity of PGTs. PGT models became more complicated when nonlinear-

ity, randomness and ring gear elasticity are considered into model. Currently, there is
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no precise method to solve the nonlinear random vibration of PGT dynamic systems.

In this paper, we analyze the stochastic nonlinear dynamics of wind turbine PGTs

with elastic ring gear. Section 3.2 proposes a hybrid model that combines elements of

finite element model (FEM) with lumped parameter model (LPM). Section 3.3 used

the element of wind torque to the proposed hybrid model, which includes a determin-

istic and a turbulent component. Section 3.4 discusses the stochastic linearization

technique, which is used to linearize the proposed stochastic nonlinear model. Sec-

tion 3.5 is a look at the solution method, which is based on the stochastic Newmark

algorithm, and is used in this paper to solve the obtained equivalent linear model.

Section 3.6 describes the Monte Carlo simulations (MCS), which were carried out

to verify the results. Section 3.7 covers the results and analysis of simulation using

the proposed model, and then verifies those results using Monte Carlo simulations

(MCS). A parametric study is also conducted based on the simulation to study the

effect of ring gear wall thickness on the dynamic response of the PGT.

3.2 Dynamic Model

In this paper, the proposed hybrid PGT model (Figure 3.1) contains specific com-

ponents used to study the stochastic nonlinear vibration. The core components of a

PGT are sun gear, three planet gears, a carrier, and a ring gear. For the sun gear,

planet gears, and carrier, the planet gears transmission and rotation displacements

are considered, and LPM was used for modeling them. An elastic thin-walled ring
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Figure 3.1: Hybrid model of planetary gear transmission

is used to represent the ring gear, which is assembled to the frame through several

equally-spaced bolt connections. FEM was used to model the elastic ring, and stiff-

ness and mass matrices of each element were calculated based on the curved beam

theory. The meshing force between the ring-planet pairs was applied to the model as

moving loads.
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Choosing suitable subscripts and coordination systems is critical to defining the

equation of motion of each component properly. Throughout the paper, the subscripts

c, s, r, and p represent the carrier, sun gear, ring gear, and planet gear, respectively.

sp and rp represent the sun-planet and ring-planet gear pairs. In addition, Three

coordinate frames are used in the model: xy for the sun gear and carrier, ξη for the

planet gears, and υτ for the ring’s element. The rotational displacements along the

line of action are ui = Riθi (i = s, c, p) where Ri is the base circle radius of gear body

or the radius of the carrier, and θi is the component rotation. Meshing stiffness is

assumed as time-variant stiffness (see Figure 3.2), and the Fourier Series is used to

represent it as [23]:

k(t)i,n≈ k̄i+2kai

z∑
j=1

(
p

(j)
i,nsinω(t−Ωi,nTm)+q

(j)
i,ncosω(t−Ωi,nTm)

)
i=sp,rp (3.1)

where k̄i is the average of the stiffness, p
(j)
i,n and q

(j)
i,n are the harmonic coefficients of

Fourier series (see Appendix 3.A.1), z is the number of the harmonic terms retained,

kai amplitude of the stiffness variation, ω is the meshing frequency, Tm is the mesh

period, Ωsp,n is the phase shift between the first and nth sun-planet meshes, Ωrp,n the

phase shift between the first and nth ring-planet meshes. Also, Ωsr is denote phasing

shift between the ring-planet and sun-planet meshes for the nth planet, and c̄s and c̄r

are contact ratios as shown in Figure 3.2.

46



(a) Mesh stiffness of sun-planet mesh (b) Mesh stiffness of ring-planet mesh

Figure 3.2: Time varying mesh stiffness of gear pair

3.2.1 Sun Gear

The sun gear is the central gear of the PGT, and in the wind turbine, it is used as the

output. Using the above notation, the relative compression displacement along the

line of action, δsp,n, in the arbitrary nth sp pair without backlash, can be represented

as:

δsp,n = −xs sinψsp,n + ys cosψsp,n + us − ξn sinαs − ηn cosαs + up,n (3.2)

ψn =
2π (n− 1)

N
n = 1, 2, ...N (3.3)

ψsp,n = ψn − αs (3.4)
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where αs is the pressure angle of the sun gear, ψn is the position of the nth planet, N

is the total number of planets. Taking the backlash into consideration, the meshing

force in the nth sp mesh can be written as:

fsp,n =


k (t)sp,n (δsp,n − bsp) , δsp,n ≥ bsp

0, −bsp ≤ δsp,n ≤ bsp

k (t)sp,n (δsp,n + bsp) , δsp,n ≤ −bsp

(3.5)

where ksp,n is the mesh stiffness between the sun and the nth planet gear, and 2bsp is

the total clearance between the meshing teeth. If we do not consider the damping at

this point, the equations of motion for the sun gear are as follows:

msẍs + ksxs −
N∑
n=1

fsp,n sinψsp,n = 0 (3.6)

msÿs + ksys +
N∑
n=1

fsp,n cosψsp,n = 0 (3.7)

Is
R2
s

üs + ksuus +
N∑
n=1

fsp,n = 0 (3.8)

where ks and ksu are bearing the stiffness of the sun in transnational and rotational

directions.

3.2.2 Carrier

The carrier holds the planet gears, and it rotates relative to the sun gear. In the

wind turbine, the aerodynamic torque of the wind is input through the carrier. The
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equations of motion of the carrier then are:

mcẍc + kcxc +
N∑
n=1

kp,n [xc − ξn cosψn + (ηn − uc) sinψn] = 0 (3.9)

mcÿc + kcyc +
N∑
n=1

kp,n [yc − ξn sinψn + (ηn − uc) cosψn] = 0 (3.10)

Ic
R2
c

üc +
N∑
n=1

kp,n (−xc sinψn + yc cosψn + uc − ηn) =
Tin
Rc

(3.11)

where kc is the carrier bearing stiffness in the translational direction, kp,n is the nth

planet bearing stiffness, and Tin is the torque caused by the wind which is discussed

in section 3.3.

3.2.3 Ring Gear

The ring gear is the outer fixed internal gear which meshes with planetary gears. The

ring gear is modeled as a smooth thin-walled ring connected to the frame through

a certain number of bolt connections. Each bolt connection is modeled as three

springs, namely ksc,r , ksc,τ , and ksc,θ (Figure 3.3a). Curved beam elements are used

to discretize the ring with a typical element shown in Figure 3.3b. The stiffness and

mass matrices of the ring are created by curved beam theory, and the meshes between

the ring-planet pairs are considered as moving loads.
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(a) A finite element model of the ring gear with six supports

(b) A curved beam element under moving load

Figure 3.3: Ring gear model
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3.2.3.1 Element Stiffness and Mass Matrices

The mass and stiffness matrices of an element are calculated based on reference [24].

The reference [24] used a curved beam for modeling arc structures, while this research

applied the same method for modeling the ring gear. Here, we directly give the final

equations, and details can be found in the reference paper and in Appendix 3.A.2.

[kl] =
ĒIl
R3
r

[D] [B]−1 l = 1, 2, ...L (3.12)

[ml] = ρRr[B]−1T
∫ θ2

θ1

(
[H]T [Λ] [H] dθ

)
[B]−1 l = 1, 2, ...L (3.13)

where kl and ml are the stiffness matrix and mass matrix of the lth element, respec-

tively, Ē and ρ are the elasticity module and the density of the ring material. θ1 and

θ2 are the angular coordinations of the two nodes of the element, and D, B, Λ and

H are matrices given in Appendix 3.A.2.

3.2.3.2 Moving Meshing Force frp

The ring gear of a PGT is subjected to vibration under multiple moving meshing

forces, frp,n (n = 1, 2, ..., N), and due to the elastic behavior of the ring gear applying

these moving loads on the model in a proper way is important. The ring gear is

supported by six equally-spaced elastic supports while moving loads, caused by the

planet-ring meshing pairs, rotate throughout the inside of the ring gear (see Figure

3.4). Each moving load is assumed to have a constant angular velocity, ωc, and is at
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a fixed angular distance 2π/N form its neighbors. The acting point of moving loads

are:

θr,n = ωct+
2π (n− 1)

N
n = 1, ..., N (3.14)

where θr,n is the angular coordination of the nth moving load inside the ring gear.

In the following, the process leads to the ring gear dynamic equation under moving

meshes were presented.

Figure 3.4: Ring gear under moving meshing loads of the planets.

To develop the ring gear dynamic equation under the moving load, the meshing
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force in the rp mesh should be defined. Because backlash is considered the meshing

force can be calculated by:

frp,n =


k (t)rp,n (δrp,n − brp) , δrp,n ≥ brp

0, −brp ≤ δrp,n ≤ brp

k (t)rp,n (δrp,n + brp) , δrp,n ≤ −brp

(3.15)

where krp,n is the stiffness between rp mesh, and 2brp is the total clearance between

meshing teeth of the planet-ring pair, and δrp,n is the relative compression displace-

ment and can be computed in a way similar to the sp mesh as follows.

δrp,n = ξn sinαr − ηn cosαr − un + uυ,n cosαr − uτ,n sinαr (3.16)

where uυ,n and uτ,n are the displacements in the radial and tangential direction at the

contact point, respectively. Due to the moving of this contact point, we can translate

the two displacements into that of the two nodes using the following shape function

[24]:

uυ,n = G1 +G2 cos θr +G3 sin θr +G4θr sin θr +G6θr cos θr (3.17)

uτ,n=G1Āθr+G2 sin θr−G3 (sin θr−θr cos θr)+G5+G6 (cos θr+θr sin θr) (3.18)

uθ,n = G1ĀR
−1
r θr + 2G4R

−1
r sin θr +G5R

−1
r + 2G6R

−1
r cos θr (3.19)

In these equations, G1 - G6 are constants computed with the node displacements

of the ring element in meshing with the planet. According to the shape functions
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presented in Eqs. 3.17 to 3.19, the displacements of the nodes of lth element, {ul},

can be defined as:

{uυ uτ uθ}T =
[
N̄
]
{ul,υ ul,τ ul,θ ul+1,υ ul+1,τ ul+1,θ}T (3.20)

where [N̄ ] is shape function matrix that can be found in Appendix 3.A.2. In addition,

for FEM modeling, we need to transform the frp,n into its equivalent node forces as:

fl =

N̄11 N̄12 . . . N̄16

N̄21 N̄22 . . . N̄26


T 
−frp,n sinαr

frp,n cosαr

 (3.21)

In Eq. 3.21, N̄i,j is the component of the shape function matrix and fl is the

transformed node force array caused by moving mesh and defined as:

fl =

{
fr1 fτ1 M1 fr2 fτ2 M2

}T
(3.22)

Due to the movement of the planet through the ring gear, the value of fl varies

with time, and this transformed node force would be zero for the elements without

applied moving mesh. The governing equation of the element by considering the effect

of moving mesh can be represented as:

[ml]{ül}+[kl]{ul}={fl}δ̂
(
θr,n−

2π(l−1)

L
−ωct

)
n=1, ..., N l=1, ..., L (3.23)

where ωc is the carrier angular velocity, and δ̂ is the Dirac delta function. The global
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dynamic equation of the entire ring is obtained by assembling the elements and then

applying the boundary conditions.

[Ml]{Ül}+ [Kl +Ksc]{Ul} = {Fr} (3.24)

where Ml is the global mass matrix of the ring, Kl is the global stiffness matrix of

the ring, Ksc is the supports’ stiffness matrix, Ul is the global displacement of the

ring, and Fr is the applied moving mesh forces vector. Ksc and Fr can be found in

Appendix 3.A.3.

3.2.4 Planet Gear

The planet gears are held by the carrier, and they mesh with both the sun gear and

the ring gear. With the rp meshing force frp,n, the governing equations of the motion

of a planet can be represented as:

mpξ̈n+kpξn − fsp,n sinαs+frp,n sinαr−kp,n (xc cosψn + yc sinψn − ξn)=0 (3.25)

mpη̈n+kpηn−fsp,n cosαs−frp,n cosαr−kp,n (xc sinψn+yc cosψn + uc−ηn)=0 (3.26)

Ip
R2
p

ün + fsp,n − frp,n = 0 (3.27)
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3.3 Wind Torque

The input torque is placed on the carrier, as in the case of wind turbine PGTs, and

wind is the source of the input torque. The wind speed can be split into two parts,

namely the mean wind velocity, V0, which is deterministic, and the turbulence, Vt,

which is random. Then the torque generated by the wind can be calculated by [20]:

Tin ≈
1

2
ρaAbRb

Cp
λ0

V 2
0︸ ︷︷ ︸

Td deterministic part

+ ρaAbRbV0
Cp
λ0

V0Vt︸ ︷︷ ︸
Tr Random part

(3.28)

where ρa is the air density, Ab is the swept area of the rotor, Rb is the rotor radius,

Cp is the power coefficient, and λ0 is the tip speed ratio defined as:

λ0 =
ωr0Rb

V0

(3.29)

where ωr0 is the rotation speed of the rotor. The random turbulence in this paper is

modeled based on the Von Karman spectrum, which is implemented in the dynamic

model through the following filter [20, 25].

Vt = σt (kvχ+ kvTva1χ̇) (3.30)

a2T
2
v χ̈+ (a2Tv + Tv) χ̇+ χ = W (t) (3.31)
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where W (t) is white noise, a1 and a2 are two constant values which are 0.4 and 0.25,

respectively, χ is the variable associated with the filter, and Tv = lt/Vo where σt is

the intensity of turbulence, and lt is the length of the turbulence.

3.4 Statistical Linearization

In this paper, backlash between the sun-planets pair and ring-planets pair are consid-

ered and statistical linearization is applied to both. fsp,n and frp,n are strongly non-

linear functions of the general coordinates due to the backlash as shown in Eqs. 3.5

and 3.15. These nonlinear equations are first approximated with linear equations

through the stochastic linearization technique [26]. Paper [26] used SL for a fixed

center gear model in which gears relative displacements affect form only gear rota-

tional; this research used the SL method for planetary gear in which gears relative

displacements affect from rotational, transnational, and elastic displacements of gears.

In the following section, steps are provided for the linearization which is mainly based

on [27]. A nonlinear function of a general backlash type is expressed as:

f(x) =


k(x− b), x ≥ b

0, −b ≤ x ≤ b

k(x+ b), x ≤ −b

(3.32)

where x represents the relative displacement (δsp,n or δrp,n) and b is a general expres-

sion of the clearance. A linear function, fe(x) in the following form is sought.
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fe(x) = kex̂+ f0 (3.33)

where ke is an equivalent stiffness, f0 denotes the original shift, and x̂ is the zero-mean

displacement defined as x̂ = x− E(x) where E() indicates the mean operation. The

difference between Eqs. 3.32 and 3.33 is:

ε = f(x)− ke(x− E(x))− f0 (3.34)

To minimize ε in the stochastic sense, the following two conditions should be met.

∂E (ε2)

∂ke
= 0 (3.35)

∂E (ε2)

∂f0

= 0 (3.36)

This leads to the following two relations if it is assumed that the responses follow the

Gaussian distribution.

ke = E

[
df

dx

]
(3.37)

f0 = E [f(x)] (3.38)

Finally, after taking expectation of gradient of the nonlinear function (f), ke and

f0 can be reached as:
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ke =
k

2
[2 + erf (V1)− erf (V2)] (3.39)

f0 =kµ− σk√
2π

(
e−V

2
1 −e−V 2

2

)
−kµ

2
[erf (V2)−erf (V1)]+

kb

2
[erf (V1)+erf (V2)] (3.40)

where σ and µ are the standard deviation and the mean of x, respectively. V1 and

V2 are two variables defined by:

V1 =
−b− µ√

2σ
(3.41)

V2 =
b− µ√

2σ
(3.42)

3.4.1 Overall Linearized Equation

The aforementioned statistical linearization method is applied to nonlinear dynamics

equations (Eqs. 3.5 and 3.15) and then combining Eqs. 3.6−3.11, 3.24, 3.25−3.27,

3.28, 3.30, and 3.31 and inserting the damping will give the linear dynamic equation

of the whole system. It can be presented in a matrix form as:

[M ] ¨{U}+ [C] ˙{U}+ [Ke]{U} = Fd +W (t)− Fe (3.43)

where [M ], [C],and [Ke] are the overall mass, damping, and equivalent stiffness

matrix respectively, and Fd, and Fe are the deterministic load and the load gen-

erated by stochastic linearization, respectively. Their entries can be found in the

Appendix 3.A.3. U is the overall generalized coordinate vector expressed as follows:
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{U} = {xs ys us︸ ︷︷ ︸
sun

ξ1 η1 u1︸ ︷︷ ︸
planet1

· · · ξN ηN uN︸ ︷︷ ︸
planet N

xc yc uc︸ ︷︷ ︸
carrier

u1,υ u1,τ u1,θ︸ ︷︷ ︸
node 1

· · · uL+1,υ uL+1,τ uL+1,θ︸ ︷︷ ︸
node L+1

χ︸︷︷︸
filter

}
(3.44)

3.5 Solution procedure

Different numerical methods were introduced to solve the MDOF dynamic model

which is subjected to both deterministic and random excitation. In this paper, the

stochastic Newmark [28] algorithm is used to solve Eq. 3.43. In this algorithm, the

time is first discretized into many short time intervals and Eq. 3.43 is recast into the

state space form as below.

{Yi+1} = [T1]{Yi}+ [T2]{Hi}+ [T3]{Wi} (3.45)

The elements in this equation are given as:

{Yi} =


Ui

U̇i

 (3.46)

[T1] =

Ce + ∆t
2
Ke M

M −M ∆t
2


−1 Ce − ∆t

2
Ke M

M M ∆t
2

 (3.47)
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[T2] =

Ce + ∆t
2
Ke M

M −M ∆t
2


−1 ∆t

2
∆t
2

0 0

 (3.48)

[T3] =

Ce + ∆t
2
Ke M

M −M ∆t
2


−1 
√

∆tB 0

0 B∆t
√

∆t√
12

 (3.49)

{Hi} =


Fi

Fi+1

 (3.50)

{Wi} =


Ni

Pi+1

 (3.51)

where (Ni;Pi) is an independent standard Gaussian random variable and the subscript

i means the ith time instant. Due to the deterministic load, the mean response of the

system is not zero, which can be obtained through taking the ensemble average of

Eq. 3.45.

〈Yi+1〉 = T1 〈Yi〉+ T2 〈Hi〉 (3.52)

where 〈〉 represents the ensemble average. To determine the correlation matrix, mul-

tiplying Eq. 3.45 with its transposition, and then taking the ensemble average gives:

[Ri+1] = [T1][Ri][T1]T + [T2][B1][T2]T + [T3][B2][T3]T + [T1][B3][T2]T + [T2][B3]T [T1]T

(3.53)

where [Ri]=
〈
YiY

T
i

〉
, [B1]=

〈
EiE

T
i

〉
, [B2] is a unity matrix, and [B3]=〈Yi〉Ei.
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3.6 Monte Carlo simulations

Monte Carlo simulations [29] were carried out to verify the obtained results by using

the statistical linearization method for PGT with an elastic ring under random exci-

tation. Assembling the PGT motion equations and taking the backlash nonlinearity

into account, the governing equation of the nonlinear stochastic dynamic equation of

PGT takes the following form:

[M ] ¨{U}+ [C] ˙{U}+ {f̄(t, U)} = Fd +W (t) (3.54)

where f̄(t, U) is the vector of nonlinear functions. To perform the MCS in this

research, initially, the white noise excitation that was applied to the system through

Eq. 3.31 was discretized into time steps, ∆t. Therefore, a series of independent and

identically distributed random variables, Γ, was generated by using Matlab software to

represent the white noise. The variables have zero mean and variance, σ2
Γ = 2πS0/∆t,

where S0 is the white noise spectral density. The variable Γ is given as:

Γ =

√
2πS0

∆t
γ (3.55)

where γ is an independent and identically distributed random number. Each of these

random variables (Γ) were substituted into the nonlinear dynamic model, and then the

deterministic solution was performed on Eq. 3.54. After a sufficient set of simulations

that could determine the accuracy of the MCS results, the response statistics were

62



computed from an ensemble of responses.

3.7 Simulation and Result Analysis

The simulations were carried out using MATLAB software to evaluate the PGT of a

wind turbine. Throughout the simulations, the mean of wind speed assumed 16 km/h,

and the mechanical parameter values of the PGT of wind turbines with 50 m tower

height are provided in Table 3.1[30], and the material properties and system param-

eters are provided in Table 3.2. The ring is divided into 18 curved beams, with six

equally-spaced supports on the ring gear. The number of planets and supports con-

sidered were three and six, respectively. In this case, because the number of the sun

gear teeth and ring gear teeth are integer multiple of the number of planets, the phase

shift of all sun-planet pair meshes equal to zero (Ωsp,n = 0, n = 1, 2, 3), and the phase

shift of all the ring-planet meshes equal to zero (Ωrp,n = 0, n = 1, 2, 3).
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Table 3.1: Planetary gear transmission parameters

Sun Planet Ring Carrier

Teeth number 21 39 99 -

Mass (kg) 181.6 104 - 759.9

Moment of inertia (kg.m2) 3.2 3.2 - 59.1

Pitch diameter (mm) 215.6 400.4 1016.4 -

Bearing stiffness (N/m) 100 6.8×109 - 5×109

Torsional stiffness (Nm/rad) 45.8×106 - - -

Mesh stiffness average (N/m) k̄sp = 16.9× 109, k̄rp = 19.2× 109

Pressure angle (◦) αs = 20, αr = 20
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Table 3.2: Material properties and system parameters

Parameter Value Parameter Value

b (µm) 100 ρ (kg/m3) 7800

Ē (GPa) 210 ω (rad/s) 22.990

Ḡ (GPa) 79.3 ωc (rad/s) 0.2322

kr(N/m) 1.362× 1010 c̄s 1.6

kτ (N/m) 1.362× 1010 c̄r 1.5

kθ(N.m/rad) 5.146× 109 Ωsr 0.25

Tm(s) 0.2733

Using the simulation results, the mean and the mean square of all generalized

coordinates are analyzed. Also, to determine the accuracy of the proposed linearized

model, Monte Carlo simulations were carried out, and the results were compared. In

this study, according to the required accuracy and system complexity, 100,000 simu-

lations with time step ∆t = 0.0027 s and S0 = 1 were carried out, and comparisons

of the obtained results from SL and the Monte Carlo simulations were given. Then,

the effect of elastic ring gear on meshing forces, the sun-planet, and the ring-planet

pairs were analyzed. A parametric study was conducted based on the simulation to

study the effect of a ring gear’s rim wall thickness on the dynamic response of the

PGT.
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(a) Mean of displacement

(b) Variance of displacement

Figure 3.5: Displacement of Node (3) at τ direction (the blue line represents the

statistical linearization, and the red line represents the Monte Carlo simulations)
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3.7.1 Dynamic Responses

In this section, Monte Carlo simulations are used to verify the accuracy of the pre-

sented model and solution method. The mean and variance of the displacement of

the ring gear’ node, planet gear, sun gear, and carrier are compared with the MCS

results. In this section, for brevity, only the response of one specific direction of each

component is presented in following.

The results generated by the MCS for node 3 were identical to results of the

linearized model (Figure 3.5). The mean and variance of displacement responses of

nodes 3 at tangential direction are shown in Figure 3.5. The positions of the nodes are

shown in Figure 3.3a where Tc is the period of the carrier. The figure shows that both

the gear meshing frequency and the planet frequency are presented in the response.

Three peaks show the planet frequency in one carrier period. In addition, based on

the obtained results from the linearized model and MCS, both methods agree well. It

should be noted that the number of elements affects the phase difference in response

of the nodes, and in this study, the phase difference between every two adjacent nodes

was 1
18

carrier period.

The results obtained by the MCS for sun gear, carrier, and planet gear were

near identical to the results of the linearized model (Figures 3.6-3.8). The mean and

variance of displacement responses of the sun gear and the carrier at the rotational

direction are shown in Figures 3.6 and 3.7. Comparisons with Monte Carlo simula-

tions demonstrated that the obtained results from the linearized model are in good
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(a) Mean of displacement

(b) Variance of displacement

Figure 3.6: Displacement of sun gear at θ direction (the blue line represents the

statistical linearization, and the red line represents the Monte Carlo simulations)
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(a) Mean of displacement

(b) Variance of displacement

Figure 3.7: Displacement of carrier at θ direction (the blue line represents the statis-

tical linearization, and the red line represents the Monte Carlo simulations)
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(a) Mean of displacement

(b) Variance of displacement

Figure 3.8: Displacement of planet at η direction (the blue line represents the statis-

tical linearization, and the red line represents the Monte Carlo simulations)
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agreement with the MCS. The mean and variance of displacement responses of the

planet gear at η direction are shown in Figure 3.8, and both the linearized model and

MCS are in good agreement.

For computational time, the comparison revealed that MCS required much more

computational time than SL because in MCS the most accurate results were obtained

running numerous simulations. The MCS requested 223 hours of CPU time to process

100,000 simulations, while SL needed only 48 seconds of CPU time to perform the

same function on the same computer (CPU i7-8700 3.2GHz/16GB RAM). This proved

that the SL method increased the computational efficiency of stochastic nonlinear

dynamic analysis of PGTs.

3.7.2 Ring gear deformation under moving meshes

Ring gear displacement under a moving meshing force, caused by the movement of

the planet throughout the inside of the ring gear, is presented. The moving meshing

forces traverse the ring gear for one rotation cycle in a time equal to the carrier

period. Mean and standard deviation of displacement of the contact point of the ring

gear and planet 1 with angular velocity ωc = 0.2322 rad/s are shown in Figure 3.9.

Ring gear displacement caused by other planets is the same with a 1/3 period phase

difference. Both the mean and mean square of displacement undergo six cycles in

one carrier period, and this is because of elastically supported ring gear having six

equally-spaced supports. From the figure, it is evident that the elastic supports have a
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significant effect on dynamic responses, and the displacement decreased significantly

when the meshing load approached the supports.
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(a) Mean value of displacement

(b) Mean square value of displacement

Figure 3.9: Displacement of ring gear due to the moving meshing load of planet 1,f erp,1.
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3.7.3 Equivalent linear meshing loads

In this section, the equivalent linear meshing forces obtained from the statistical

linearization process in section 3.4 are presented. The mean of the equivalent linear

meshing forces in both the sun-planet and the ring planet pairs can be obtained by

taking the ensemble average from Eq. 3.33. The mean squares are computed by first

multiplying Eq. 3.33 by its transposition and then calculating the average.

For both the sun-planet and the ring-planet pairs meshes, only one pair is pre-

sented and there is only one phase difference between the adjacent pairs. The equiv-

alent linear meshing load results for the sun-planet and the ring-planet pairs are

provided in Figures 3.10 and 3.11, respectively. In both cases, the meshing frequency

caused by the time-varying meshing stiffness was recorded. In any ring-planet pair,

the lower frequency is always equal to the chosen number of supports; in this study,

the lower frequencies are equal to six, matching the number of supports. However, in

the sun-planet pair, a lower frequency is not recorded because the sun-planet mesh

was not directly connected to the ring.
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(a) Mean value of meshing force

(b) Mean square value of meshing force

Figure 3.10: Equivalent linear meshing force between the sun-planet pair
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(a) Mean value of meshing force

(b) Mean square value of meshing force

Figure 3.11: Equivalent linear meshing force between the ring-planet pair
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3.7.4 Influence of rim thickness of ring gear

It is apparent that the elastic deformation of the ring gear has a significant effect on

the dynamic response of the components of the PGT. There is a tendency to make

the rim as thin as possible in the interest of making the weight of the PGT lighter.

To verify this effect, three different wall thicknesses, tr1=87 mm, tr2=128 mm, and

tr3=168 mm, were used to calculate the responses.

First, the mean and the mean square values of the node (3) on the ring gear

were examined and the results are shown in Figure 3.12. It was discovered that

whenever the thickness was increased, the response decrease. This response was

expected because a thicker rim generates a higher stiffness.

Secondly, the responses of the sun, planet and the carrier were observed using the

model simulation, and the results are given in Figures 3.13−3.15, respectively. For the

planet and the carrier, the rim thickness increased, the responses slightly decreased.

However, any effect on the sun gear was negligible, possibly because the sun is under

the action of three planets simultaneously, and the effects of the planets on the sun

gear may have canceled each other out. Thus, it appears that the elasticity of the

ring has little effect on the response of the sun gear.
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(a) Mean value of displacement

(b) Mean square value of displacement

Figure 3.12: Displacement of Node (3) (tr1=87 mm, tr2=128 mm, tr3=168 mm)
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(a) Mean value of displacement

(b) Mean square value of displacement

Figure 3.13: Displacement of sun gear in the x direction (tr1=87 mm, tr2=128 mm,

tr3=168 mm)
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(a) Mean value of displacement

(b) Mean square value of displacement

Figure 3.14: Displacement of planet gear in the η direction (tr1 =87 mm, tr2 =128 mm,

tr3 =168 mm)
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(a) Mean value of displacement

(b) Mean square value of displacement

Figure 3.15: Displacement of carrier in the rotational direction (tr1 =87 mm, tr2 =128

mm, tr3 =168 mm)
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3.8 Conclusion

This paper analyzed the stochastic dynamics of the PGT of wind turbine with elastic

ring gear. Time-varying mesh stiffness and the backlash nonlinearity between meshing

gears were considered. In this paper, the ring was modeled as continuous, and all

other components were treated as lumped-parameter models. Statistical linearization

was used to handle nonlinearity, and then the random Newmark method was used

to solve the equations. Monte Carlo simulations were then conducted to verify the

proposed model and the linearization method.

This paper discovered that the statistical linearization method is accurate enough

to study the nonlinear stochastic PGT in wind turbines, and the MCS results verified

the accuracy of the method. In addition, the rim thickness of the ring gear had a

significant effect on the dynamic responses of the ring gear itself; however, the effect

was weak on the dynamic response of the carrier, planet gear, and sun gear.

The method used to connect the ring to the frame also had a significant effect on

the dynamic responses of the ring gear and the gear meshing force. The ring-planet

meshing forces, in particular, were affected by the number of the supports. However,

the interaction between the number of supports and the number of planets was not

examined in this paper.

82



3.A Appendix

3.A.1 Fourier series’ harmonic coefficients

p(j)
sp,n =

−2

jπ
sin(jπ(c̄s − 2Ωsp,n))sin(jπφs) (3.56)

q(j)
sp,n =

−2

jπ
cos(jπ(c̄s − 2Ωsp,n))sin(jπφs) (3.57)

p(j)
rp,n =

−2

jπ
sin(jπ(c̄r − 2Ωrp,n − 2Ωsr))sin(jπφr) (3.58)

q(j)
rp,n =

−2

jπ
cos(jπ(c̄r − 2Ωrp,n − 2Ωsr))sin(jπφr) (3.59)

3.A.2 Matrix used in finite element model of curved beam

[B]=



1 cosθ1 sinθ1 θ1sinθ1 0 θ1cosθ1

Āθ1 sinθ1 −cosθ1 sinθ1−θ1cosθ1 1 cosθ1 + θ1sinθ1

Āθ1R
−1
r 0 0 2R−1

r sinθ1 R−1
r 2R−1

r cosθ1

1 cosθ2 sinθ2 θ2sinθ2 0 θ2cosθ2

Āθ2 sinθ2 −cosθ2 sinθ2−θ2cosθ2 1 cosθ2+θ2sinθ2

Āθ2R
−1
r 0 0 2R−1

r sinθ2 R−1
r 2R−1

r cosθ2



(3.60)
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[D] =



0 0 0 −2 sin θ1 0 −2 cos θ1

0 0 0 2 cos θ1 1 −2 sin θ1

−Rr 0 0 −2Rr cos θ1 R−1
r 2Rr sin θ1

0 0 0 2 sin θ2 0 −2 cos θ2

0 0 0 −2 cos θ2 1 −2 sin θ2

Rr 0 0 2Rr cos θ2 R−1
r −2Rr sin θ2



(3.61)

[H] =


1 cos θ sin θ θ sin θ 0 θ cos θ

Āθ sin θ − cos θ sin θ − θ cos θ 1 cos θ + θ sin θ

ĀθR−1
r 0 0 2R−1

r sin θ R−1
r 2R−1

r cosθ

 (3.62)

Ā = 1 +

(
Il
AR2

r

)
(3.63)

[Λ] = diag (A A I) (3.64)

{uυ uτ uθ}T = [H] {Gl G2 G3 G4 G5 G6}T (3.65)

{ul,υ ul,τ ul,θ ul+1,υ ul+1,τ ul+1,θ}T = [B] {Gl G2 G3 G4 G5 G6}T (3.66)

[
N̄
]

= [H] [B]T (3.67)

3.A.3 Matrices M , K and C

3.A.3.1 Mass matrices

[M ] =

[M1] 0

0 a2T
2
v

 (3.68)
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[M1] = diag (Ms Mp1 · · · Mpn Mc Ml) (3.69)

[Mj] = diag

(
mj mj

Ij
R2
j

)
j = s, c, p1, . . . , pN (3.70)

3.A.3.2 Stiffness matrices

[Ke] =

[Ke1] [Ke2]

0 1

 (3.71)

[Ke1] =

 [Ki] [Kj]

[Kj]
T [Kl] + [Ksc]

 (3.72)

[Ke2] =

[
0 0 0 · · · 0 ρaAbRb

Cp
λ0
V0σtkv 0 · · · 0 0

]T
(3.73)

[Ki] =



KS1 KS2 · · · KS2 · · · KS2 0

KP1 · · · 0 · · · 0 KQ1

. . .
...

. . .
...

...

KPn · · · 0 KQn

. . .
...

...

symmetric KPN KQN

KC



(3.74)
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[KS1] =
3∑

n=1

k (t)e,sp


sin2 ψsp,n − sinψsp,n cosψsp,n − sinψsp,n

cos2 ψsp,n cosψsp,n

symmetric 1

 (3.75)

[KS2] = k (t)e,sp


sinαs sinψsp,n cosαs sinψsp,n − sinψsp,n

− sinαs cosψsp,n − cosαs cosψsp,n cosψsp,n

− sinαs − cosαs 1

 (3.76)

[KPn] = k (t)e,sp


sin2 αs cosαs sinαs − sinαs

cosαs sinαs cos2 αs − cosαs

− sinαs − cosαs 1

 (3.77)

+k (t)e,rp


sin2 αr − cosαr sinαr − sinαr

− cosαr sinαr cos2 αr cosαr

− sinαr cosαr 1

 (3.78)

[KQn] = kp,n


− cosψn − sinψn 0

sinψn − cosψn −1

0 0 0

 (3.79)

[KC ] =
3∑

n=1

kp,n


sin2 ψsp,n + cos2 ψsp,n 0 − sinψn

0 sin2 ψsp,n + cos2 ψsp,n cosψn

− sinψn cosψn 1

 (3.80)
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[Kj] =



0 · · · 0 · · · 0 · · · 0

KR · · · 0 · · · 0 · · · 0

...
. . .

...
. . .

...
. . .

...

0 · · · KR · · · 0 · · · 0

...
. . .

...
. . .

...
. . .

...

0 · · · 0 · · · KR · · · 0

0 · · · 0 · · · 0 · · · 0



(3.81)

[KR] = k (t)e,rp


−N11 (θ) sinαr −N12 (θ) sinαr · · · −N16 (θ) sinαr

N21 (θ) cosαr N22 (θ) cosαr · · · N26 (θ) cosαr

N31 (θ) N32 (θ) · · · N36 (θ)

 (3.82)

[Ksc] = diag (ksc,r ksc,τ ksc,θ · · · 0 · · · ksc,r ksc,τ ksc,θ · · · 0) (3.83)

{W (t)} = {0 0 0 · · · Ww 0 · · · 0} (3.84)

{Fd} =

{
0 0 0 · · · Td

Rc

0 · · · 0

}
(3.85)

{Fe} = {Fe,sp + Fe,rp Fr} (3.86)
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{Fe,sp} = {−
3∑

n=1

f0,sp sin(ψsp,n)
3∑

n=1

f0,sp cos(ψsp,n)
3∑

n=1

f0,sp

− f0,sp sin(ψsp,1) − f0,sp cos(ψsp,1) f0,sp

− f0,sp sin(ψsp,2) − f0,sp cos(ψsp,2) f0,sp

− f0,sp sin(ψsp,3) − f0,sp cos(ψsp,3) f0,sp 0 0 0}T (3.87)

{Fe,rp} = {0 0 0 f0,rp sin(αr) − f0,rp cos(αr) − f0,rp

f0,rp sin(αr) − f0,rp cos(αr) − f0,rp

f0,rp sin(αr) − f0,rp cos(αr) − f0,rp 0 0 0}T (3.88)

{Fr} = {f0,rp (N11 (θ1) cos (αr) +N21 (θ1) sin (αr))

f0,rp (N16 (θ1) cos (αr) +N26 (θ1) sin (αr)) 0 · · ·

0 · · · f0,rp (N11 (θ2) cos (αr) +N21 (θ2) sin (αr))

f0,rp (N16 (θ2) cos (αr) +N26 (θ2) sin (αr)) 0 · · ·

0 · · · f0,rp (N11 (θ3) cos (αr) +N21 (θ3) sin (αr))

f0,rp (N16 (θ3) cos (αr) +N26 (θ3) sin (αr)) 0 · · · 0}T (3.89)

3.A.3.3 Damping matrices

[C] =

[C1] [C2]

0 a2Tv + Tv

 (3.90)

[C1] = 0.05 [M1] + 0.03 [Ke1] (3.91)
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[C2] =

[
0 0 0 · · · 0 ρaAbRb

Cp
λ0
V0σtkvTva1 0 · · · 0 0

]T
(3.92)
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In this chapter, the energy-based statistical linearization technique was developed for

nonlinear stochastic dynamic gear systems. There are four criteria of statistical lin-

earization, in which two of them are forced-based, and two others are energy-based.

This chapter focused on energy-based statistical linearization, and the idea of this

criterion is according to minimizing mean-square error in potential energies between

the original and equivalent linear systems. Force-based statistical linearization was
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used by Yang for fixed gear-pair, and, in Chapter 3, I used force-based statistical lin-

earization for planetary gear transmission with moving gear-pair. To the best of my

knowledge, there is not any published research that developed energy-based statistical

linearization for geared systems.

Abstract

In this article, an energy-based statistical linearization method (SL) is proposed to

simulate a nonlinear dynamic model of spur gear pair. The gear pair operates un-

der combined deterministic and random loads, and both backlash and time-varying

mesh stiffness are considered in the dynamic model. The equivalent linear function

approximates the teeth backlash nonlinearity in the gear model. The energy-based

linearization, which minimizes the error in potential energy between the original and

equivalent linear systems, is used. Simulations are conducted on a gear-pair, and the

effect of the input torque on the dynamic response of the gear pair is then examined.

The results demonstrate that for high input torque, the system operates in the linear

range. For low input torque, the results are not similar to the original because the

system became strongly nonlinear. Monte Carlo simulations were carried out to verify

the accuracy of the presented method.
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4.1 Introduction

Geared systems are widely used in mechanisms found in the automation and aviation

industries. The advancement of these industries demands high-performance mecha-

nisms, and it is necessary to enhance the performance of the gears in order to meet the

needs of these industries. Thus, an in-depth analysis of the various aspects of a geared

system is necessary. The dynamic behavior of gears has been widely investigated by

researchers to clarify the fundamental problems of a gear pair [1-3] . These prob-

lems become more critical in complicated mechanisms such as backlash, clearance,

and tooth crack [4, 5]. The literature shows that the operation of a geared system

is affected by many factors, which include backlash, time-varying mesh stiffness, and

randomness [3, 6, 7]. Therefore, this paper will provide a detailed assessment of

the three aforementioned phenomena in order to help describe many of the dynamic

specifications of a geared system.

While considerable research has been conducted on the deterministic part of these

systems, only limited research has been conducted on the stochastic part of these sys-

tems. Different methods have been introduced to solve the stochastic equations, but

only some of them apply to the stochastic gear dynamic systems. The first method

of SL was introduced to engineering fields by Booton [8] to study nonlinear control

system under random signals. Brückner and Lin [9] developed an SL method for

systems with both parametric and external white noise excitations. They found the
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first and second moments by minimizing the mean square deviation of the difference

between the linear and nonlinear equations. Elishakoff et al. [10] proposed a new SL

method based on the potential energy of the system. They determined the equiv-

alent linear equations by minimizing the mean square of the difference of potential

energies of the original and equivalent models. Sobiechowski, and Socha [11] applied

four different SL criteria to Duffing oscillator and then compared the results to each

other. Although several studies have been published in the statistical linearization of

geared systems, those studies only used a force-based criterion; no research has yet

investigated the stochastic linearization of geared systems using energy-based criteria.

Tobe, and Sato [12], first used a statistical linearization method in order to analyze

the nonlinear stochastic spur gear dynamics. Tobe et al. [13] then conducted a second

study using an experimental method to compare results to their previous study, and

the results verified the SL results of [12]. Based on the SL method introduced by

Tobe, Yang [14] developed a statistical linearization method and used a stochastic

Newmark scheme to investigate the dynamic responses of the geared system under

both deterministic and random excitation. The linear equations were established by

minimizing the mean square deviation of the difference between the linear and nonlin-

ear parts. His findings suggested that, gears work as a linear system in heavy-loaded

operating conditions. Kahnamouei and Yang [15] developed a stochastic nonlinear

dynamic model of a planetary gearbox with an elastic ring gear and used the SL

method to linearize the nonlinear-moving mesh loads. The nonlinear backlash func-
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tions were more complicated in their model because backlash functions were affected

by the transverse and torsional movement of gears and carrier, and elastic behavior

for the ring gear.

Other stochastic nonlinear gear analysis methods include aspects that factor into

the proposed method of this study. Neriya et al. [16], who used the matrix exponential

method to study the oscillation of helical geared systems using both deterministic and

random excitation. They considered the backlash and time-variant mesh stiffness in

a dynamic model, and concluded that the combination of the matrix exponential

and piecewise linearization methods was stable and accurate. Naess et al. [17] used

the path integration method to study stochastic gear mechanics, and modeled the

gear pair with the backlash under Gaussian white noise. Hasnijeh et al. [18] used an

adaptive time-stepping path integration method to investigate the nonlinear random

dynamics of a spur gear. They then used the Monte Carlo simulations to validate

the accuracy of their method. These methods did not attempt to simplify equation

solution through linearization.

In this paper, the energy-based statistical linearization is applied to the gear

model, which includes gear backlash, mesh stiffness variation, and random excitation.

The linear equation obtained by the method is then solved using the stochastic New-

mark method. To analyze the efficiency of the method under various load conditions,

different values of torque are chosen and then applied to the equation to generate

simulated results. In addition, the Monte Carlo simulations (MCS) are carried out
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to assess the reliability of the method.

Figure 4.1: Four-DOF transverse-torsional model of gear pair

4.2 Dynamic Model

In this paper, a single pair of spur gears is considered ( Figure 4.1). To develop the

dynamic gear model, a transverse-torsional model is used with four degrees of freedom.

This model includes gears with the known parameters of mass, mi, mass moments of

inertia, Ii, number of teeth, ai, and pitch radius, ri (i=1,2). Also, bearings are used to

support gears with lumped stiffness, ky1 and ky2 , at directions y1 and y2, respectively.

Each gear has two degrees of freedom, one translation in the yi direction, which is
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parallel to the line of action of the gears, and one rotational in the θi direction. The

equation of the gear pair shown in Figure 4.1 is given by:

m1ÿ1 + k1y1 + f (y1 − y2 + θ1r1 − θ2r2) = 0 (4.1)

I1θ̈1 + f (y1 − y2 + θ1r1 − θ2r2) r1 = Tin (4.2)

m2ÿ2 + k2y2 − f (y1 − y2 + θ1r1 − θ2r2) = 0 (4.3)

I2θ̈2 − f (y1 − y2 + θ1r1 − θ2r2) r2 = −Tout (4.4)

where Tin and Tout refer to the input and output torques applied to the first and

second gears, respectively, and f is the mesh force between the gear pair. In order to

transform the system with four aforementioned equations into a third order equation,

the torsional motion equations are rewritten in terms of the relative translational

displacement, z = θ1r1 − θ2r2. The governing equations of motions of the gears are

given as:

m1ÿ1 + k1y1 + f (y1 − y2 + z) = 0 (4.5)

m2ÿ2 + k2y2 − f (y1 − y2 + z) = 0 (4.6)

mcz̈ + f (y1 − y2 + z) =
Tin
r1

(4.7)

where

mc =
I1I2

I2r2
1 + I1r2

2

(4.8)
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In equations 4.5 to 4.7, f represents the nonlinear function caused by the backlash,

2b, at meshing point and is given as:

f(δ) =


kh(t)(δ − b), δ ≥ b

0, −b ≤ δ ≤ b

kh(t)(δ + b), δ ≤ −b

(4.9)

where kh(t) is the mesh stiffness, and δ represents the relative displacement at the

gear meshing point and is given as:

δ = y1 − y2 + z (4.10)

Due to the k(t) is assumed as time-variant stiffness, it is expanded into the Fourier

Series [19].

kh(t) ≈ k0 +
n∑
j=1

[
k(j)
a sinωj t+ k

(j)
b cosωj t

]
(4.11)

where k0 is the average of the stiffness, k
(j)
a and k

(j)
b are the harmonic coefficients of the

Fourier series, n is the number of the harmonic terms retained, and ω is the meshing

frequency. In addition to the deterministic excitation, the gear pair works under

random excitation, and random excitation is considered in the model by embedding

it into the second side of Eq. 4.7. Therefore, the governing equation of the gear

system considering the stochastic excitation takes the following form:

Mq̈ + Cq̇ +Ksq + Fint(q) = Fex +BW (t) (4.12)
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M = diag(m m mc) (4.13)

q = {y1 y2 z}T (4.14)

Ks = diag(k1 k2 0) (4.15)

Fint = {f(δ) f(δ) f(δ)} (4.16)

Fex =

{
0 0

Tin
r1

}
(4.17)

B = diag(0 0 w̄0) (4.18)

where M is a mass matrix, C is a damping matrix, Ks is a bearings’ stiffness matrix,

q the displacement vector, Fint is the internal nonlinear meshing force vector, Fex

represents the external force vector, and w̄0 and B are the amplitude and amplitude

matrix of random excitation, respectively. W (t) is the Gaussian white noise vector

with mean and correlation function as follows:

E[W (t)] = 0 (4.19)

E[W (t)]E[W (t+ τ)] = 2πS0D(τ) (4.20)

where 2πS0 is the intensity of white noise, D(τ) is the Dirac delta function, and E[·]

indicates the expectation operation for continuous random variables which is defined

as:

E [·] =

∫ ∞
−∞

[·] g(X)dX (4.21)
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g(X) =
1

σ
√

2π
e

−(X−X0)
2

2σ2 (4.22)

In this paper, proportional damping is assumed, therefore, the damping matrix

is given as C = ΛaM + ΛbK where Λa and Λb are constant numbers. Because the

system operates under excitation of non-zero mean external forces, the response of

Eq. 4.12 will be a non-zero mean represented by the following equation:

q = q0 + q̂ (4.23)

where q0 is the mean value of displacement vector, and q̂ is the zero-mean displacement

vector. Substituting Eq. 4.23 into Eq. 4.12 is given in equation 4.24 below.

Mq̈0 + Cq̇0 +Ksq0 +M ¨̂q + C ˙̂q +Ksq̂ + F (q0 + q̂) = Fex +BW (t) (4.24)

4.3 Statistical Linearization Formulation

Statistical linearization is one of the most useful methods to solve the nonlinear

equations under both deterministic and stochastic excitation. The nonlinear meshing

force function, f(δ), is replaced by the linear function, fe(δ), as follows:

fe(δ) = keδ̂ + f0 (4.25)

where ke is the equivalent stiffness and f0 denotes the produced deterministic force.

By replacing the nonlinear part of Eq. 4.24 with linear function, the governing equiv-
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alent linear equation expresses in the following form:

Mq̈0 + Cq̇0 + Ksq0 + M ¨̂q + C ˙̂q + Ksq̂ + Keq̂ + F0 = Fex + BW (t) (4.26)

where matrix Ke and vector F0 are denoted by the following forms:

[Ke] =


ke −ke ke

−ke ke −ke

ke −ke ke

 (4.27)

{F0} =

{
f0 −f0 f0

}T
(4.28)

Taking ensemble average of Eq. 4.26 yields:

Mq̈0 + Cq̇0 +Ksq0 + f0 = Fex (4.29)

Subtracting Eq.4.26 from Eq.4.29 gives:

M ¨̂q + C ˙̂q + (Ks +Ke)q̂ = BW (t) (4.30)

Equations 4.29 and 4.30 give the mean and standard deviation of the responses,

respectively. There are different criteria of linearization to determine the coefficients

of an equivalent linear equation, ke and f0. In this paper, a energy-based SL is used.
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4.3.1 Energy-based criteria

In this criterion, linearization is conducted based on the potential energy of the sys-

tem. In order to determine the equivalent linear coefficients, this method requires

that the mean square of the difference of the potential energies of the original and

equivalent model becomes a minimum [20]. From Eq. 4.25, the difference in potential

energy of the original and equivalent model is expressed as:

εp = P (δ)−
∫

(keδ̂ + f0)dδ̂ = P (δ)− 1

2
ke δ̂

2 − f0δ̂ (4.31)

where P (δ) is the potential energy of the nonlinear part and from Eq. 4.9 it is defined

as:

P (δ) =



1
2
kh(t)δ

2 − kh(t)bδ, δ ≥ b

0, −b ≤ δ ≤ b

1
2
kh(t)δ

2 + kh(t)bδ, δ ≤ −b

(4.32)

According to the criteria, the minimization of the mean square of εp is given as:

E
[
ε2
p

]
= minimum (4.33)

where E[ ] is expectation operation which is denied in Eq. 4.21. By considering this

criteria, Eq. 4.33 can be expressed as:

E
[
ε2
p

]
= E

[(
P (δ)− 1

2
ke δ̂

2 − f0δ̂

)2
]

(4.34)
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Therefore, to minimize the difference derivative that comes from Eq. 4.34, with

respect to ke and f0, the equations are expressed as:

∂E
[
ε2
p

]
∂ke

= 0 (4.35)

∂E
[
ε2
p

]
∂f0

= 0 (4.36)

By inserting the Eq. 4.34 into the Eq. 4.35, we have:

∂

∂ke
E

[
P (δ)2 +

1

4
ke

2δ̂4 + f0
2δ̂2 − P (δ)ke δ̂

2 − 2P (δ)f0δ̂ + kef0δ̂
3

]
= 0 (4.37)

Taking the derivative respect to ke and applying E(δ̂3) = 0 because of δ̂ is zero

mean variable, the Eq. 4.37 expressed in the following form:

E

[
1

2
keδ̂

4 − P (δ)δ̂2

]
= 0 (4.38)

After applying expectation operation and moving all parts except ke to the other

side of the equation, we have:

ke =
2E
[
P (δ)δ̂2

]
E
[
δ̂4
] (4.39)

By assuming the δ has the Gaussian distribution, the numerator of Eq. 4.39 can

be represented in the form of Eq. 4.40 obtained through the process in which the

integration by parts was applied on the expectation of the second-order derivative of
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P (δ). Appendix 4.A.2 explains in detail the mathematics process that leads to Eq.

4.40.

E
[
P (δ)δ̂2

]
= σ4E

[
O2P (δ)

]
+ σ2E [P (δ)] (4.40)

and because δ̂ is zero mean variables, its fourth-order expectation is equal to:

E
[
δ̂4
]

= 3σ4 (4.41)

Thus, by inserting the Eq.s 4.40 and 4.41 into the Eq. 4.39, ke is expressed in the

following form:

ke =
2

3
E

[
∂2P (δ)

∂δ2

]
+

2

3

E [P (δ)]

σ2
(4.42)

Finally the equivalent mesh stiffness is repressed in the following form:

ke =
2

3

[
E
∂f(δ)

∂δ
+
E (P (δ))

σ2

]
(4.43)

Also, by inserting Eq. 4.34 into Eq. 4.36, we have:

∂

∂f0

E

[
P (δ)2 +

1

4
ke

2 δ̂4 + f0
2δ̂2 − P (δ)ke δ̂

2 − 2P (δ)f0δ̂ + kef0δ̂
3

]
= 0 (4.44)

Taking the derivative respect to f0 and applying E(δ̂3) = 0 leads to:

E
[
2f0δ̂

2 − 2P (δ)δ̂
]

= 0 (4.45)
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getting expectation and moving all parts except f0 to other side gives:

f0 =
E
[
P (δ)δ̂

]
E
[
δ̂2
] (4.46)

The numerator of Eq. 4.46 can be rewritten in the following form obtained through

the process, which applied the integration by parts on the expectation of the first-order

derivative of P (δ), and Appendix 4.A.1 describes all detail about this mathematical

process (Appendix 4.A.1 Eq. 4.74).

E
[
P (δ)δ̂

]
= σ2E

[
∂P (δ)

∂δ

]
(4.47)

Inserting Eq. 4.47 into Eq. 4.46 leads:

f0 =
σ2E [OP (δ)]

E
[
δ̂2
] (4.48)

then after applying E
[
δ̂2
]

= σ2, the f0 can be expressed into the following forms:

f0 = E [f(δ)] (4.49)

Finally, f0 are represented as the following form, and all detailed calculations are

described in Appendix B:

f0 =kh

[
δ0

2
(2+erf(V1)−erf(V2))−

σ√
2π

(
e−V

2
1 −e−V22

)
+
b

2
(erf(V1)+erf(V2))

]
(4.50)

where
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Vi =
(−1)ib− δ0√

2σ
i = 1, 2

4.4 Solution Method

In this paper, the stochastic Newmark family method [21, 22] is used to solve the

stochastic dynamic model of a geared system. After applying the linearization tech-

nique, the linear equations Eq.s 4.29 and 4.30 are gathered and represented in the

following form:

Mq̈ + Cq̇ + (Ks +Ke) q = Fex + F0 +BW (t) (4.51)

For stochastic Newmark, the following equations are obtained by recasting Eq.

4.51 into state-space form with {q(t) q̇(t)}T , and discretizing the time into a series

of small time intervals ∆t [21].

C+ ∆t
2
(Ks+Ke) M

M −M ∆t
2



q0 (ti+1)

q̇0 (ti+1)

=

C−∆t
2
(Ks+Ke) M

M M ∆t
2



q0 (ti)

q̇0 (ti)

+

∆t
2

∆t
2

0 0




Fex (ti)− F0 (ti)

Fex (ti+1)− F0 (ti+1)

+


√

∆tB 0

0 B∆t
√

∆t√
12




Ψ (ti)

Φ (ti+1)

 (4.52)

where Ψ (ti) and Φ (ti) are independent and identically distributed outcomes of stan-

dard Gaussian random variables. For convenience, the vectors and the matrices of

Eq. 4.52 can be shown as:

109



{Y (ti+1)} = [N2]{Y (ti)}+ [N3]{F (ti)}+ [N4]{W (ti)} (4.53)

{Y (ti)} =


q (ti)

q̇ (ti)

 (4.54)

[N1] =

C + ∆t
2

(Ks +Ke) M

M −M ∆t
2

 (4.55)

[N2] = [N1]−1

C − ∆t
2

(Ks +Ke) M

M M ∆t
2

 (4.56)

[N3] = [N1]−1

∆t
2

∆t
2

0 0

 (4.57)

[N4] = [N1]−1


√

∆tB 0

0 B∆t
√

∆t√
12

 (4.58)

{F (ti)} =


Fex (ti)− F0 (ti)

Fex (ti+1)− F0 (ti+1)

 (4.59)

{V (ti)} =


Ψ (ti)

Φ (ti+1)

 (4.60)

The mean response is obtained by taking the ensemble average of Eq. 4.53 and is

given as:

〈{Y (ti+1)}〉 = [N2] 〈{Y (ti)}〉+ [N3] 〈{F (ti)}〉 (4.61)
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where 〈〉 represent the ensemble average operation. Multiplying Eq. 4.53 with its

transpose, and taking the average provides the correlation matrix [22]:

[R (ti+1)] = [N2][R (ti)][N2]T+[N3][D1][N3]T+[N4][D2][N4]T+[N2][D3][N3]T+[N3][D3]T [N2]T

(4.62)

where

[R (ti)] =
〈[
Y (ti)Y (ti)

T
]〉

[D1] =
〈[
F (ti)F (ti)

T
]〉

[D2] =
〈[
V (ti)V (ti)

T
]〉

[D3] =
〈[
Y (ti)F (ti)

T
]〉

The entries inD2 are either zero or unity. The relation between the mean responses

obtained from Eq. 4.61 and the diagonal elements of R(t) obtained from Eq. 4.62,

provide the standard deviation of responses as below:

σj (t) =

√
Rj,j (t)− 〈Yj (t)〉2 j = x, y, z (4.63)

4.5 Monte Carlo simulations

In this study, Monte Carlo simulations [23] were carried out to verify the accuracy of

the obtained results by using the energy-based statistical linearization method for the

spur gear pair. To perform the MCS, the discretized independent random variables
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with identical distribution represent the Gaussian white noise excitation. MATLAB

software was used to generate a series of random variables, Υ, with zero mean and

variance σ2
Υ = 2πS0/∆t, and the variable is defined as:

Υ =

√
2π

∆t
υ (4.64)

where υ represents an random number with independent and identical distribution.

At each time step, one of these random variables was embedded into the nonlinear

dynamic equation, Eq.4.12, and then the response q(t) was computed using the de-

terministic solution scheme. After conducting numerous set simulations that could

determine the MCS results’ accuracy, the response statistics were computed as follow:

Ê[η] =
1

N

N∑
i=1

ηi η = x, y, z (4.65)

σ̂η =

√√√√ 1

N − 1

N∑
i=1

(
ηi − Ê[η]

)2

η = x, y, z (4.66)

where Ê[ ] is expectation operator for discrete random variables, σ̂ is the variance of

discrete random variables, and N is the number of Monte Carlo simulations.
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4.6 Simulation Results and Analysis

4.6.1 Parameters

A simulation was carried out with a single gear pair (Figure 4.1), the properties of

which are given in Table 4.1. The backlash parameter was considered b = 20µm.

Further, the amplitude of white noise, w̄0, in Eq. 4.51 was set as 100. Depending on

the level of input torque, three cases were observed: (a) without impact, (b) single-

sided impact, and (c) double-sided impact. The results of the linearization method

for all cases are provided. To determine the accuracy of this method, the results

were then compared with results obtained from the Monte Carlo simulations. In this

study, 20,000 set of simulations with time step ∆t = 0.01 s and S0 = 1 were carried

out.
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Table 4.1: Gears’ Parameters

Parameter Value Parameter Value

a1 21 I1 (kg.m2) 3.2

a2 39 I2 (kg.m2) 3.2

r1 (mm) 215.6 k1 (N/m) 5.9× 109

r2 (mm) 400.4 k2 (N/m) 5.9× 109

m1 (kg) 181.6 kh (N/m) 16.9× 109

m2 (kg) 104

4.6.2 No impact

Tooth separation between the gear pair was not observed when the relative displace-

ment at the gear meshing point, δ (Eq. 4.10), was always greater than the back-

lash. The geared system meets this condition when the gears are heavily loaded. To

study the no-impact condition, a simulation was conducted using the same param-

eters (Table 4.1), and under the excitation of heavy loads, Tin = 4 × 104N.m and

Tout = 7.4× 104N.m, respectively.

The mean and standard deviation of the displacements in the y1, y2, and z di-

rections are shown in Figures 4.2-4.4, respectively. These results demonstrate that

the value of the mean and standard deviation of the energy-based SL and the Monte

Carlo simulations are in agreement. This proves that, in the heavy load condition,
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the SL method gives accurate results. A probability density function (PDF) of the

system, based on the energy-based SL and MSC for t=0.03 s, is shown in Figure 4.5.

From the figure, one can discover that the system solved by the linearization method

and the Monte Carlo simulations operate outside of the backlash region. This demon-

strates that the heavy load condition system works in the linear condition and that

both methods provide similar results.
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(a) Mean of displacement

(b) Standard deviation of displacement

Figure 4.2: Displacement obtained by energy-based SL and MCS at y1 direction for

Tin = 4× 104N.m.
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(a) Mean of displacement

(b) Standard deviation of displacement

Figure 4.3: Displacement obtained by energy-based SL and MCS at y2 direction for

Tin = 4× 104N.m.
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(a) Mean of displacement

(b) Standard deviation of displacement

Figure 4.4: Displacement obtained by energy-based SL and MCS at z direction for

Tin = 4× 104N.m.
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Figure 4.5: Probability density function obtained by energy-based SL and MCS at δ

for Tin = 4× 104N.m.

4.6.3 Single-sided impact

Based on Eq. 4.9, the single-sided impact case exist when δ becomes less than b

but still greater than −b. Thus, in this case, the gear pair works on one side of the

backlash region and loses its contact during a particular time. To reach this operating

condition, Tin = 4× 103N.m and Tout = 7.4× 103N.m are applied.

The mean and standard deviation of displacements are represented in figure 4.6-

4.8, and the obtained results in the y1 and y2 directions agree well with the the Monte

Carlo simulations’ results. From Figure 4.8, the mean and standard deviation of

displacement of the z direction does not agree well with the Monte Carlo simulations.
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This means that the intensity of the load affects the accuracy of the SL method, and

when the system operates in backlash zone, the responses included the errors. A

probability density function of the system, based on statistical linearization methods

and the Monte Carlo simulations for t=0.03 s, is shown in Figure 4.9, and both

methods show that the system operates in single-sided impact.

120



(a) Mean of displacement

(b) Standard deviation of displacement

Figure 4.6: Displacement obtained by energy-based SL and MCS at y1 direction for

Tin = 4× 103N.m.
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(a) Mean of displacement

(b) Standard deviation of displacement

Figure 4.7: Displacement obtained by energy-based SL and MCS at y2 direction for

Tin = 4× 103N.m.
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(a) Mean of displacement

(b) Standard deviation of displacement

Figure 4.8: Displacement obtained by energy-based SL and MCS in z direction for

Tin = 4× 103N.m.
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Figure 4.9: Probability density function obtained by energy-based SL and MCS at δ

for Tin = 4× 103N.m.

4.6.4 Double-sided impact

According to Eq. 4.9, double-sided tooth impact is observed when δ varies to the

region of less than −b during a certain period of time. The light load condition

causes the geared system to operate in the entire backlash region. Thus, to have

a double-sided impact condition, torques Tin = 800N.m and Tout = 1480N.m were

applied.

The mean and standard deviation of displacements are represented in Figure 4.10-

4.12. Although the mean and standard deviation at y1 and y2 obtained from energy-

based SL are partially in agreement to the obtained results from the Monte Carlo
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simulations, in comparison with no impact and single-side impact, the results have

more error. From Figure 4.12, there is an error between the mean and standard devi-

ation of displacement in the z direction when using the the Monte Carlo simulations.

The reason is that when the geared system is under a light load condition, the system

becomes strongly nonlinear. A probability density function of the system is shown

in Figure 4.13. The obtained results from statistical linearization and the Monte

Carlo simulations show that the system operates in double-sided impact conditions,

although the results do not fully agree with the Monte Carlo simulations.
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(a) Mean of displacement

(b) Standard deviation of displacement

Figure 4.10: Displacement obtained by energy-based SL and MCS at y1 direction for

Tin = 800N.m.
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(a) Mean of displacement

(b) Standard deviation of displacement

Figure 4.11: Displacement obtained by energy-based SL and MCS at y2 direction for

Tin = 800N.m.
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(a) Mean of displacement

(b) Standard deviation of displacement

Figure 4.12: Displacement obtained by energy-based SL and MCS at z direction for

Tin = 800N.m.
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Figure 4.13: Probability density function obtained by energy-based SL and MCS at

δ for Tin = 800N.m.

A comparison of the computational time between the statistical linearization

method and Monte Carlo simulations showed that MCS required 8 hours to eval-

uate the response for 20,000 simulations, and SL methods took 35 seconds for the

same function with the same computer (CPU i7-8700 3.2Ghz/16GB RAM).

4.7 Conclusion

The energy-based statistic linearization method is introduced in this paper to analyze

the vibration of spur gears under both deterministic and random excitation. The

underlying theory of energy-based statistic linearization methods are based on the
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potential energy of the system, and give equivalent linear equations for the nonlinear

system. The effect of the torque on dynamic behavior was investigated.

A comparison of the results with the Monte Carlo simulations demonstrates the

different degrees of accuracy for various excitation levels. In the linear and no-impact

conditions, SL returns a very similar result with the Monte Carlo simulations. This

is because the linearization technique is more effective when the gears work in the

linear conditions; an equivalent system is in agreement to the original system. For

single-sided impact conditions, the energy-based SL shows agreement results in y1 and

y2 directions, although the obtained results in the z direction are slightly different

from the Monte Carlo simulations’ result. The reason is that the z direction includes

the nonlinear part, and the SL method cannot accurately represent the system non-

linearity. In light load conditions, the results show double-sided tooth impact. In

this condition, the obtained results from the SL method agree less with the obtained

results from the Monte Carlo simulations. This means that, under light load condi-

tions, the SL method cannot precisely represent the nonlinear system. Finally, the

results demonstrate that the statistical linearization method is accurate and valid for

stochastic nonlinear geared systems under heavy load conditions such as planetary

gear transmission in wind turbines.
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4.A Appendix A

4.A.1 Expectation of first-order derivative of P (δ):

ased on Eq. 4.21, an expectation of the first-order derivative of P (δ) is given as:

E

[
∂P (δ)

∂δ

]
=

∫ ∞
−∞

∂P (δ)

∂δ
g(δ)dδ (4.67)

By getting the integration by parts of the right side of Eq. 4.67, the following equation

is obtained:

∫ ∞
−∞

∂P (δ)

∂δ
g(δ)dδ = P (δ)g(δ)−

∫ ∞
−∞

P (δ)
∂g(δ)

∂δ
dδ (4.68)

Taking advance of P (δ)g(δ)→ 0 when the δ trends to infinity and incorporating Eq.

4.68 into Eq. 4.67 leads to:

E

[
∂P (δ)

∂δ

]
= −

∫ ∞
−∞

P (δ)
∂g(δ)

∂δ
dδ (4.69)

The first-order derivative of Gaussian function is given as:

∂g(δ)

∂δ
= − 1

σ2
(δ − δ0)g(δ) (4.70)

Inserting Eq. 4.70 into 4.69 gives:

E

[
∂P (δ)

∂δ

]
=

1

σ2

∫ ∞
−∞

P (δ) (δ − δ0)g(δ)dδ (4.71)
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Knowing that δ̂ = δ − δ0, Eq. 4.71 can be written as:

E

[
∂P (δ)

∂δ

]
=

1

σ2

∫ ∞
−∞

P (δ)δ̂g(δ)dδ (4.72)

The right side of the Eq.4.72 is the definition of the expectation thus:

E

[
∂P (δ)

∂δ

]
=

1

σ2
E
[
P (δ)δ̂

]
(4.73)

Finally, Eq. 4.73 can be written as:

E
[
P (δ)δ̂

]
= σ2E

[
∂P (δ)

∂δ

]
(4.74)

4.A.2 Expectation of second-order derivative of P (δ):

Taking derivation from Eq. 4.71 gives the expectation of second-order derivative of

P (δ) as:

E

[
∂2P (δ)

∂δ2

]
= − 1

σ2

∫ ∞
−∞

∂P (δ)

∂δ
(δ − δ0)g(δ)dδ (4.75)

By getting the integration by parts of the right side of Eq. 4.75 and taking advance

of P (δ)g(δ)→ 0 when the δ trends to infinity, the following equation is obtained:

E

[
∂2P (δ)

∂δ2

]
=
−1

σ2

∫ ∞
−∞

P (δ)
∂

∂δ
[(δ − δ0) g(δ)] dδ (4.76)

The derivative part of the right side of Eq. 4.76 is given as:
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∂

∂δ
((δ − δ0) g(δ)) = g(δ)− (δ − δ0)2

σ2
g(δ) (4.77)

Inserting Eq. 4.77 into Eq. 4.76 and applying δ̂ = δ − δ0 gives:

E

[
∂2P (δ)

∂δ2

]
=

1

σ2

∫ ∞
−∞

P (δ)g(δ)

(
δ̂2

σ2
− 1

)
dδ (4.78)

Based on expectation definition (Eq. 4.21), the Eq. 4.78 can be written as:

E

[
∂2P (δ)

∂δ2

]
=

1

σ4
E
[
P (δ)δ̂2

]
− 1

σ2
E [P (δ)] (4.79)

Also, Eq. 4.79 can be written in following form:

E
[
P (δ)δ̂2

]
= σ4E

[
∂2P (δ)

∂δ2

]
+ σ2E (P (δ)) (4.80)

4.B Appendix B

Applying the definition of expectation on Eq. 4.9 gives:

E [f(δ)]=

∫ −b
−∞

kh(δ+b)g(δ)dδ+

∫ ∞
b

kh(δ−b)g(δ)dδ (4.81)

E [f(δ)]=kh

[∫ ∞
−∞

δg(δ)dδ−
∫ b

−b
δg(δ)dδ+b

∫ −b
−∞

g(δ)dδ−b
∫ ∞
b

g(δ)dδ

]
(4.82)

V =
δ − E [δ]√

2σ
(4.83)
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E [f(δ)]=kh

[
1√
2πσ

∫ ∞
−∞

(
√

2σV +µ)e−y
2√

2σdV − 1√
2πσ

∫ V2

V1

(
√

2σV +µ)e−V
2√

2σdV

+
b√
2πσ

(∫ V1

−∞
e−V

2√
2σdV −

∫ ∞
V2

e−V
2√

2σdV

)]
(4.84)

E[f(δ)]=kh

[
E [δ]−E (δ)

2
(erf(V2)−erf(V1))− σ√

2π
(e−V

2
1 −e−V 2

2)+
b

2
(erf(V1)+erf(V2))

]
(4.85)

Incorporating E [f(δ)] = f0 and E [δ] = δ0:

f0 =kh

[
δ0

2
(2+erf (V1)−erf (V2))− σ√

2π

(
e−V

2
1 −e−V22

)
+
b

2
(erf (V1)+erf (V2))

]
(4.86)
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In this chapter, the new model was proposed to represent an elastic ring gear accu-

rately. In addition, analytical results from published paper verified the accuracy of

the curve beam element for modeling smooth ring, and compare results with Ansys to

determine the accurate model were conducted.
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Abstract

Ring gears are used in many applications, planetary gear trains (PGTs) in particular.

The ring gear dynamic properties have a significant effect on the overall dynamics of

the system with ring gears installed. This paper proposes two models developed to

compute the natural frequencies and mode shapes of a ring gear. In Model I, the ring

gear is modeled as a smooth ring without attached masses, and in Model II, the ring

gear modeled as a smooth ring with attached masses. In both models, curved beam

elements are used to model the smooth ring. The results are compared against those

from ANSYS, and show that Model II gives more accurate results.

Keywords: curve beam element, natural frequency, ring gear

5.1 Introduction

Planetary gear trains (PGTs) are widely used in many fields, such as aerospace,

automation, and energy. The dynamics of PGTs in operation is critical to safety and

performance; thus, many studies have been conducted on the general aspects of PGT

dynamics [1, 2].

With increasing operational speeds, the dynamic deformation of ring gear has

become an outstanding issue. Thus, the free vibration characteristics of the ring,

including natural frequencies and mode shapes, need to be examined carefully in

the design stage. In the open literature, most research modeled the ring gear as
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a smooth curved beam or as a thin-walled circular ring. For example, Mallik and

Mead [3] analyzed the natural frequencies and mode shapes of the in-plane vibration

of thin-wall rings by using a wave technique. Davis et al. [4] considered the shear

deformation of ring gear and employed the two-node curved beam finite element

model. Yand [5] and Wu [6] applied the finite element method to dynamic responses

with the curved beam theory. Petyt, and Fleischer [7] carried out an analysis of

the free radial vibration of the ring by using a 3D finite element model with curved

beam elements under different boundary conditions. Sabir, and Ashwell [8] studied

the in-plane vibration of a curved beam using the finite element method. A real

ring gear, in fact, is not smooth; rather, there are gear teeth on the ring. Some

researchers have noticed that a smooth ring with a uniform cross-section might be

an oversimplification; thus, the results based on this model are questionable in some

cases. Tanna, and Lim [9] compared the modal frequencies and vibration modes of

smooth rings against real ring gears, and Chen et al. [10, 11] studied the dynamic

responses of elastic ring gear modeled by a curved Timoshenko beam.

This paper investigates the free vibration of a ring gear using proposed models to

calculate a quantitative figure of the effect of the gear teeth on ring dynamics. First,

the ring gear is modeled as a smooth ring with no attachments. Second, the ring gear

is assumed to have rim and teeth, where the rim is modeled as a smooth ring, and

lumped-masses represent each tooth. In both models, the finite element method is

used. The results obtained from the two methods are then compared against data
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Figure 5.1: Model of a ring gear

from a published paper [12]. It indicates that the results from the second method are

more accurate than the first method.

5.2 Dynamic Model

A ring gear under investigation in this paper is shown in Figure 5.1. For the purpose

of FE modeling in later sections, a global coordinate frame XY Z is placed at the

ring’s center, with the Z-axis perpendicular to the XY plane.
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(a) A smooth ring model

(b) A curved-beam element of ring

Figure 5.2: Model I
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5.2.1 Model I

In this model, the ring gear is modeled as a smooth elastic ring with a uniform cross-

section. The outer diameter (OD) of the ring is taken as the same as the ring gear,

while the inner diameter (ID) of the ring is taken as the diameter of the pitch circle,

as shown in Figure 5.2a. The ring is first divided into curved beam elements. For

convenience, the number of elements is chosen to be equal to the number of teeth. An

element is shown in Figure 5.2b, and a local coordinate frame, including the radial,

tangential, and rotational directions, is defined. The six degrees of freedom of the

element include ux, ut, and uθ for both nodes. The method in [13] is employed to

achieve the element mass and stiffness matrices, which gives:

[k] =
EI

R3
[V ] [Q]−1 (5.1)

[m] = ρR[Q]−1T
∫ θ2

θ1

[P ]T [Λ][P ]dθ[Q]−1 (5.2)

where m is mass matrices, and k is the stiffness matrices. I is the moment of inertia,

E is the module of elasticity, and ρ is the and the mass density of the material. Λ,

Q, V , and P are complex parameters, which are not provided here to save space
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(interested readers can find these parameters in [13] in the following).

[V ] =



0 0 0 2 sin θ1 0 2 cos θ1

0 0 0 2 cos θ1 1 2 sin θ1

R 0 0 2R cos θ1 R−1 2R sin θ1

0 0 0 2 sin θ2 0 2 cos θ2

0 0 0 2 cos θ2 1 2 sin θ2

R 0 0 2R cos θ2 R−1 2R sin θ2



(5.3)

[Q] =



1 cos θ1 sin θ1 θ1 sin θ1 0 θ1 cos θ1

Jθ1 sin θ1 − cos θ1 sin θ1 − θ1 cos θ1 1 cos θ1 + θ1 sin θ1

Jθ1R
−1 0 0 2R−1 sin θ1 R−1 2R−1 cos θ1

1 cos θ2 sin θ2 θ2 sin θ2 0 θ2 cos θ2

Jθ2 sin θ2 − cos θ2 sin θ2 − θ2 cos θ2 1 cos θ2 + θ2 sin θ2

Jθ2R
−1 0 0 2R−1 sin θ2 R−1 2R−1 cos θ2


(5.4)

[P ] =


1 cos θ sin θ θ sin θ 0 θ cos θ

Jθ sin θ − cos θ sin θ − θ cos θ 1 cos θ + θ sin θ

JθR−1 0 0 2R−1 sin θ R−1 2R−1cosθ

 (5.5)

J = 1 +

(
I

AR2

)
(5.6)

[Λ] = diag(A A I) (5.7)

Assembling the equations of all elements gives the global equation:

[M ]
{
Ü
}

+ [K] {U} = 0 (5.8)
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where M is the global mass, K is the stiffness matrices, and U is the global displace-

ment vector, which is defined as:

U = {ux,1 ut,1 uθ,1 · · · ux,i ut,i uθ,i} (5.9)

5.2.2 Model II

In this model, the ring gear is modeled as a smooth ring with attached lumped

masses, which represent the effect of the teeth. Each tooth is considered a lumped

mass, including mass, mT , and the moment of inertia around the axis through the

center of the tooth, JT , as shown in Figure 5.3a. The smooth ring is determined

with an OD equivalent to that used in Model I, and an ID equal to the diameter

of the dedendum circle. The mass and stiffness matrices of the smooth ring can be

computed in the same way as Model I using Eqs. 5.1 and 5.2.
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(a) A smooth ring with lumped-mass model

(b) A curved-beam element of ring

Figure 5.3: Model II

With the tooth masses and moments of inertia considered as lumped masses at-
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tached to the FEM notes, as shown in Figure 5.4, then the internal forces at the two

nodes of an element can be represented by the following:

Fx,i = Fx,i+1 +mT üx,i (5.10)

Ft,i = Ft,i+1 +mT üt,i (5.11)

Mθ,i = Mθ,i+1 + JT üθ,i (5.12)

Figure 5.4: Internal forces of curved-beam element

Fx,i, Ft,i and Mθ,i are the internal forces and moments of the elements and are

given as:

Fx = F ′t (5.13)

Ft =
EA

R
(ux + u′t)

Mθ

R
(5.14)

Mθ =
EI

R
(ux + u′′x) (5.15)
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Based on Eqs. 5.10 to 5.12, assembling the equation of elements and boundary

conditions gives the global equation as:

[M +MT ]
{
Ü
}

+ [K] {U} = 0 (5.16)

where

[MT ] = diag(m1
T m2

t · · · mN
T

) (5.17)

[mt] = diag(mT mt · · · mT
) i = 1, · · · , N (5.18)

5.3 Simulation and Results

In this study, numerical examples have been conducted on a ring gear using both

Model I and Model II. For comparison purposes, ANSYS is used in the analysis. The

results and comparison against ANSYS are provided (see Figure 5.6). The geometry

and material properties of the ring gear in the simulation are given in Table 5.1.

Matlab software was used to determine the natural frequencies of both models.
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Table 5.1: Ring gear properties

Parameters Value

Outer radius (mm) 201.14

Root radius (mm) 182.8

mT (kg) 0.028

IT (kg.m3) 554.8× 10−9

ρ(kg/m3) 7858

E(Pa) 205× 109

Number of teeth 64

Modal Analysis of ANSYS was used to determine the mode shapes and natural

frequencies of the elastic ring gear. Three-dimensional solid model of ring gear was

generated in SOLIDWORK and then exported to ANSYS. In the analysis, the mate-

rial properties of gear were defined as material properties listed in Table 5.1 . Accord-

ing to the characteristics of the ring gear, 3-D 20-Node Structural Solid (SOLID186)

was used in the model. The finite element model consisted of 2,672 elements and

16448 nodes. During the mesh generation process, numbers of elements have been

chosen to obtain acceptable convergence, where the results’ values improved unnec-

essarily by increasing the number of elements. The elaborated FE model of elastic

ring gear was shown in Figure 5.5 . Because the models I and II are studied using

in-plane vibration of the ring gear, mode shapes and natural frequencies - which are
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bounded to in-plane- were considered. In addition, frequencies bounded to rigid body

motion were ignored. Analysis of the obtained natural frequencies and modal shapes

was conducted in the following section.

Figure 5.5: Ring gear finite element model

For validation of the curved beam element method, we compared the results Model

I against published data [12]. In comparison, the natural frequencies were transformed

into dimensionless values. All the dimensions and material properties used were taken

from Wu [12]. Table 5.2 shows that the results from [12] and the curved beam element

matched very well.
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Table 5.2: Dimensionless natural frequencies of equally-supported rings compared

with published data [12]

ω
√

ρAR4

EIy

ω1,2 ω1,2[12] ω3,4 ω3,4[12] ω5 ω5[12]

1.640 1.643 7.529 7.589 10.205 10.465

Although the curved beam element is accurate in its computation of the dynamics

of a smooth ring, its applicability to ring gear still needs to be verified. For the ring

gear given in Table 5.1, the natural frequencies are calculated using Models I, II,

and ANSYS. All results are given in Table 5.3. The relative errors of Models I and

II against the ANSYS results are provided in Table 5.4. From Table 5.3, it is clear

that all the results are quite close to those from ANSYS, however, the accuracies are

different.

151



Table 5.3: Natural frequencies of ring gear obtained from Model I, II, and ANSYS

Natural frequencies

ANSYS Model I Model II

1 590 641 601

2 1650 1811 1697

3 3129 3474 3242

4 4977 5631 5216

5 7166 8309 7605

6 9652 11527 10390

If ANSYS results are taken as benchmarks, the comparison in Table 5.4 clearly

shows that Model II has much higher accuracy than that of Model I. For example,

the relative error of Model I for the first six frequencies ranges from 8.6% to 19.4%,

while for Model II the same problem gives a relative error between 1.8% and 7.6%.
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Table 5.4: Errors between Model I, Model II, and ANSYS Results

Natural frequencies

ANSYS vs. Model I ANSYS vs. Model II Model I vs. II

1 8.6 % 1.8 % 6.6 %

2 9.7 % 2.8 % 6.7 %

3 11.0 % 3.6 % 7.1 %

4 13.1 % 4.8 % 7.9 %

5 15.9 % 6.1 % 9.2 %

6 19.4 % 7.6 % 10.9 %

It is observed that all the natural frequencies from Model I are higher than those

from Model II. This makes sense given that, in Model I, the tooth effect is neglected.

While in Model II, each tooth is modeled as an attached mass and moment of inertia;

thus, more accurate results can be obtained. It is reasonable to deduce that with

the decrease of rim thickness, the results from Model I would have given even higher

errors, and Model II would become a better model for ring gear dynamics. Figure 5.6

shows the mode shapes of the ring gear for the first six natural frequencies. As

expected, mode shapes are less affected by the model methods.
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(a) ω1
(b) ω2

(c) ω3 (d) ω4

(e) ω5 (f) ω6

Figure 5.6: Ring gear’s mode shapes from ANSYS
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5.4 Conclusions

In this paper, free vibration of ring gears is studied using two models. Model I

simplifies a ring gear as a smooth ring with the pitch circle diameter as the ID. Model

II, however, treats ring gear as a smooth ring with the dedendum circle diameter as the

ID, and each tooth is modeled as a mass and a moment of inertia. For computation,

in both models, curved beam elements were used. And for verification purposes, the

results were compared with ANSYS results as well. It is indicated that Model II is a

better description of ring gear dynamics.
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In this chapter, the influence of the random moving load on the ring gear deformation

was studied. Our review of the previous literature about ring gear revealed a lack

of research on random moving load on the ring. Therefore, I studied the elastic

ring dynamic behavior under multiple random moving loads. Also, the analysis was

carried out for various angular load velocities.
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Abstract

This paper investigates the random vibration of a thin-walled ring subjected to mul-

tiple moving loads applied from the inside of the ring. A ring gear in a planetary gear

train with three equally-spaced planets is taken as an example. The ring is discretized

with the finite element method of curved beam elements. The supports of the ring

gear are treated as three linear springs to mimic the general bolt connection. The

stochastic Newmark algorithm is used to solve the equations, and to obtain the mean

and variance of the responses. Monte Carlo simulations are also conducted to verify

the results from the stochastic Newmark scheme. A parametric study is conducted

to examine the effect of design parameters on the responses.

6.1 Introduction

Thin-walled ring structures are widely used in various engineering applications. Some

of them are subjected to multiple moving loads. Typical examples include stators in

electrical machinery, such as motors and generators, and ring gears in a planetary

gear train (PGT). In some cases, the excitation loads have a random component.

For example, the ring gear in a PGT of wind turbines is subjected to sequential

meshing forces at the ring-planet mesh, which contains a periodic component and a

random one. The dynamics of the ring in such applications significantly affects the

performance of the machines in which it is embedded, and, thus, deserves a systematic
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investigation.

Figure 6.1: Ring Model (— represents the original ring, - - - represents the ring after

deformation )

Interest in the ring dynamics is traced back to the 1970s. Plentiful of publications

can be found in scientific journals and conference proceedings. Chidamparam and

Leissa [1] reviewed the published works before 1993. Some recent representative

works are as follows. Wu and Parker [2] studied the modal properties and natural

frequencies of a thin-walled ring supported by a general flexible foundation using
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Galerkin and perturbation methods. Tanna and Lim [3] studied the deviation of

smooth rings and ring gears in free vibration characteristics. Wang et al. [4] examined

the mode contamination and stability problems of a symmetric ring. Hu et al. [5]

used the baseline model to predict the deformation of the ring gear and to analyze

the influence of ring deformation on the dynamic response of planetary gearboxes.

Research on the vibration of rings (or curved beams) under moving loads is also

found in the literature, such as [6-9]. In addition, Metrikine and Tochilin [10] investi-

gated the steady-state response of an elastic ring under a moving load by an analytic

method. They analyzed the effect of the load moving velocity on the ring patterns.

Forbes and Randall [11] investigated the dynamic responses of a flexible ring under

a moving load and analyzed the resonance phenomenon caused by the moving loads.

Karttunen and Hertzen [12] analyzed the vibration response of a cylinder cover under

circumferential-moving loads. They modeled the cover as a viscoelastic material and

investigated the influence of single and twin loads with three different distributions.

Canchi and Parker[13, 14] employed a rotating and non-rotating thin-walled ring to

model and analyze the vibration and instability of a ring gear due to moving springs.

Despite the above-cited publications, there are no research works on the vibration

of rings under random moving loads. This paper takes the ring gear of a PGT as

the object and investigates its vibration under multiple moving random loads. The

ring gear is simplified as a smooth ring which is modeled with curved beam elements.

Three springs represent the supports of the ring gear. The multiple moving loads,
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containing both random and deterministic components, are applied to the ring from

the inside. The stochastic Newmark method is utilized to solve the equations. In

addition, Monte Carlo Simulations (MCS) is also conducted to verify the results

obtained from the Newmark method. The parametric study follows to investigate the

effect of the main parameters on the vibration response.

6.2 Dynamical Model

A ring with a radius of R and a sectional area of A is illustrated in Figure 6.1. A

certain number of loads, generally 3 to 5 for a PGT, move along the circumference

with a constant speed, ωc. The ring is assumed to be connected to the housing with a

certain number of bolts, each of which is represented by three springs, kr, kτ and kθ.

A global coordinate frame XY is placed with the origin coincident with the center of

the ring. Other parameters are as shown in the figure.

The finite element model (FEM) with curved beam elements is used to model the

ring. A typical element with a local coordinate system r, τ is schematically shown in

Figure 6.2a. Each node has three degrees of freedom ur,l, uτ,l and uθ,l. The second

subscript, l, represents the node index. θ1 and θ2 are the angular coordinate of the

two nodes of the element.
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(a) Element displacement

(b) Element forces

Figure 6.2: Curve beam element
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6.2.1 Shape function

Different researchers have proposed various shape functions for curved beam elements.

In this paper, the one introduced by Wu [7] as below is used:

ur = G1 +G2 cos θ̃ +G3 sin θ̃ +G4θ̃ sin θ̃ +G6θ̃ cos θ̃ (6.1)

uτ = G1

(
1 +

(
I

AR2

))
θ̃ +G2 sin θ̃ −G3 cos θ̃+

G4

(
sinθ̃ − θ̃ cos θ̃

)
+G5 +G6

(
cos θ̃ + θ̃ sin θ̃

)
(6.2)

uθ = G1

(
1 +

(
I

AR2

))
R−1θ̃ + 2G4R

−1 sin θ̃ +G5R
−1 + 2G6R

−1 cos θ̃ (6.3)

where G1 - G6 are constants of integration, which are determined by applying the

boundary conditions to the Eqs (6.1) to (6.3). θ̃ is the instant angle of the moving

force on the element, and I is the moment of inertia. To write the equations in a

more compact matrix form gives:

{u} =
[
S(θ̃)

]
{ul} (6.4)

where [S(θ̃)] is shape function matrix defined as below:

[
S(θ̃)

]
= [P ]× [Q]T (6.5)
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where P is obtained from the displacement functions of a curved beam, Q is obtained

by applying the boundary conditions of the curved element, and are given as:

[Q] =



1 cos θ1 sin θ1 θ1 sin θ1 0 θ1 cos θ1

Jθ1 sin θ1 − cos θ1 sin θ1 − θ1 cos θ1 1 cos θ1 + θ1 sin θ1

Jθ1R
−1 0 0 2R−1 sin θ1 R−1 2R−1 cos θ1

1 cos θ2 sin θ2 θ2 sin θ2 0 θ2 cos θ2

Jθ2 sin θ2 − cos θ2 sin θ2 − θ2 cos θ2 1 cos θ2 + θ2 sin θ2

Jθ2R
−1 0 0 2R−1 sin θ2 R−1 2R−1 cos θ2


(6.6)

[P ] =


1 cos θ̃ sin θ̃ θ̃ sin θ 0 θ̃ cos θ̃

J θ̃ sin θ̃ − cos θ̃ sin θ̃ − θ̃ cos θ̃ 1 cos θ̃ + θ̃ sin θ̃

J θ̃R−1 0 0 2R−1 sin θ̃ R−1 2R−1cosθ̃

 (6.7)

J = 1 +

(
I

AR2

)
(6.8)

u and ul are the displacement vectors at the point of the moving force and the two

nodes of the element. They are defined as:

{u} = {ur uτ uθ}T (6.9)

{ul} =

{
ur,l uτ,l uθ,l ur,l+1 uτ,l+1 uθ,l+1

}T
(6.10)
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6.2.2 Transformation of moving loads

The forces on a curved beam element of the ring are displayed in Figure 6.2b. The

meshing force, traveling with a constant angular velocity, ωc, is transformed to nodal

forces through the shape function as below:

{Fl(t)} =
[
a(θ̃n)

]T 
Fn,r(t)

Fn,τ (t)

 (6.11)

where Fl(t) represents the nodal force array transformed from the moving load. It

has the following form.

{Fl(t)} =

{
Fr,l Fτ,l Mz,l Fr,l+1 Fτ,l+1 Mz,l+1

}T
(6.12)

The subscripts l and n are the index of the element number and the moving force

number respectively. Fn,r(t) and Fn,τ (t) are the radial and tangential components of

moving load, respectively, and are defined as:

Fn,r(t) = −Fn(t) sinα (6.13)

Fn,τ (t) = −Fn(t) cosα (6.14)

where α is the pressure angle of the ring gear as shown in Figure 6.2b. a(θ̃n) is a

matrix defined as:
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[
a(θ̃n)

]
=

S11(θ̃n) S12(θ̃n) · · · S16(θ̃n)

S21(θ̃n) S22(θ̃n) · · · S26(θ̃n)

 (6.15)

where Si,j(θ̃n), i = 1, 2, j = 1−6, is the shape function matrix’s component as defined

by Eq. (6.5). Clearly, the node forces of an element transformed from the moving

loads vary with time because the instant position of the force, θ̃n, changes with time.

If an element does not have a moving force applied at a time moment, then the

transformed node force would be zero.

6.2.3 Representation of moving loads

The multiple moving loads, Fn(t), are equally separated and composed of a periodical

component and a random one. If the random component is represented as white noise,

then a moving force can be expressed as:

Fn(t) = Fd(t+
n− 1

Nωc
2π) + b̄nW (t) n = 1, ..., N (6.16)

where Fd(t) is a deterministic moving force, ωc is the constant angular velocity of

the moving load, N is the total number of moving loads, W (t) is white noise, and

b̄ is white noise intensity. The multiple white noises are assumed independent from

each other (uncorrelated). The deterministic meshing forces can be obtained from

the results of deterministic vibration analysis, and be approximated as a harmonic

form.
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Fd(t) = F0 + fa sinω t (6.17)

where F0 is the average of the force, fa is the amplitude of the moving harmonic load,

and ω is the meshing frequency of the planet-ring mesh.

6.2.4 Element and global equations

For a curved beam element, the governing equation of motion can be represented as:

[m] {ül}+ [k] {ul} =
{
Fl(t, θ̃n)

}
δ

(
θ̃n − (l − 1)

2π

L
− ωct

)
n = 1, ..., N, l = 1, ..., L (6.18)

where m and k are mass and stiffness matrices of the element, and δ is the Dirac

delta function which is used to represent the instant position of the moving force.

The element mass and stiffness matrices are given below. The detail of derivation is

not given for the sake of space saving; interested readers are referred to [7].

[k] =
EI

R3
[V ] [Q]−1 (6.19)

[m] = ρR[Q]−1T
∫ θ2

θ1

(
[P ]T [Λ] [P ] dθ

)
[Q]−1 (6.20)
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where ρ is the density of the material. E is the module of elasticity. Λ, and V are

given as:

[V ] =



0 0 0 −2 sin θ1 0 −2 cos θ1

0 0 0 2 cos θ1 1 −2 sin θ1

−R 0 0 −2R cos θ1 R−1 2R sin θ1

0 0 0 2 sin θ2 0 −2 cos θ2

0 0 0 −2 cos θ2 1 −2 sin θ2

R 0 0 2R cos θ2 R−1 −2R sin θ2



(6.21)

[Λ] = diag (A A I) (6.22)

The global governing equation of motion of the whole ring can be obtained by

assembling the element ones and taking consideration of the boundary conditions.

After inserting Rayleigh damping, the equation takes the following form.

[M ]{Ü}+ [C]{U̇}+ [K]{U} = {F (t, θ̃)} (6.23)

where M , K, and C are the global mass matrix, global stiffness matrix, and global

damping matrix. Proportional damping is assumed in this paper so that C = λMM+

λKK. λM and λK are two constants.

The stiffness matrix K consists of two parts as [K] = [KR]+[KS]. KR is assembled
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through element equations, and KS is the part of the boundary conditions.

[KS] = diag (kr kτ kθ · · · 0 · · · kr kτ kθ · · · 0) (6.24)

F (t, θ̃) is the global force vector and for a specific time step is given as:

F (ti, θ̃) = {Fr,1 Fτ,1 Mz,1; · · · ; Fr,n Fτ,n Mz,n · · · ;Fr,L Fτ,L Mz,L}T (6.25)

All the entries in the above are zero except for those related to the elements with

the moving loads applied at the specific moment. U is the global node displacement

vector in the form below:

U = {ur,1 uτ,1 uθ,1 · · · ur,n uτ,n uθ,n · · ·ur,L+1 uτ,L+1 uθ,L+1}T (6.26)

where L is the total number of elements.

6.3 Solution Procedure

Eq. (6.23) is solved by the stochastic Newmark algorithm developed by Bernardan

and Fleury [15]. Before applying the scheme, the excitation force is first split into

a deterministic component and a random one according to Eqs. (6.16) and (6.17).

Then Eq. (6.23) becomes:

[M ]{Ü(t)}+ [C]{U̇(t)}+ ([K]){U(t)} = {Fd(t, θ̃)}+ [B]{W (t)} (6.27)
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Eq. (6.27) is first recast into state-space form with {Y (t)} = {U(t), U̇(t)}T , and

the time is discretized into a series of small-time interval ∆t. The following recursive

equation can be obtained through the Newmark scheme.

{Y (ti+1)} = [T1]{Y (ti)}+ [T2]{H (ti)}+ [T3]{W (ti)} (6.28)

where the vectors and the matrices are defined as:

{Y (ti)} =


U (ti)

U̇ (ti)

 (6.29)

[T1] =

C + ∆t
2
K M

M −M ∆t
2


−1 C − ∆t

2
K M

M M ∆t
2

 (6.30)

[T2] =

C + ∆t
2
K M

M −M ∆t
2


−1 ∆t

2
∆t
2

0 0

 (6.31)

[T3] =

C + ∆t
2
K M

M −M ∆t
2


−1 
√

∆tB 0

0 B∆t
√

∆t√
12

 (6.32)

{H (ti)} =


Fd (ti)

Fd (ti+1)

 (6.33)
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{W (ti)} =


Ω (ti+1)

Φ (ti+1)

 (6.34)

where Ω (ti) and Φ (ti) are independent standard Gaussian random variables. Taking

ensemble average of Eq. (6.28) gives the mean response as below.

〈Y (ti+1)〉 = T1 〈Y (ti)〉+ T2 〈H (ti)〉 (6.35)

〈〉 represents the ensemble average operation. Note that the zero mean of white

noise has been used in achieving the above. Multiplying Eq. (6.28) with its transpose,

and taking average gives the correlation matrix:

[R (ti+1)] = [T1][R (ti)][T1]T + [T2][G1][T2]T+

[T3][G2][T3]T + [T1][G3][T2]T + [T2][G3]T [T1]T (6.36)

where

[R (ti)] =
〈
Y (ti)Y (ti)

T
〉

(6.37)

[G1] =
〈
H (ti)H (ti)

T
〉

(6.38)

[G2] =
〈
W (ti)W (ti)

T
〉

(6.39)

[G3] =
〈
Y (ti)H (ti)

T
〉

(6.40)

The entries in G2 are either zero or unity. Standard deviation can be obtained by:

σj (t) =

√
Rj,j (t)− 〈Yj (t)〉2 (6.41)
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6.4 Simulation and Result Analysis

With the dynamic model and the solution procedure presented in the above section,

simulation is conducted on a ring gear taken from a wind turbine PGT in which three

equally spaced planets are included. The parameters of the ring are as follows:

E = 210 GPa, outer radius = 520 mm, α = 20◦, face width= 230 mm, ρ =

7800 kg/m3, and root radius = 492.5 mm.

The ring is connected to the housing through 6 bolts. The stiffness in the three

directions are kr = 1.362×1012 N/m, kτ = 1.362×1012 N/m and kθ = 3.405×1010 N ·

m/rad. The ring is divided into 36 curved beam elements with the bolt connections

positioned at nodes. The noise level is assumed as b̄ = 105. The load moves at an

angular speed ωc = 2.8rad/s. Meshing frequency is equal to ω = 100.8rad/s. The

period equal to the time in which the moving load is traversing the ring gear for one

rotation cycle. The average of the deterministic force is equal to F0 = 1× 106N , and

fa is equal to 6.5×105N . For verification purpose, simulation is conducted with both

the stochastic Newmark and Monte Carlo Simulations.

Figure 6.3 shows the mean and standard deviation of displacement, ur, of a mov-

ing point where F1 is applied. Clearly, both the mean and the standard deviation

experience six cycles in one revolution. This is reasonable because of the six sup-

ports of the ring gear. Also, low and high-frequency signals can be observed in the

response, especially in Figure 6.3a. The source of high frequencies is the meshing
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frequency of the applied moving harmonic forces. The mean and Standard deviation

of displacement, ur, at the mid-node of a segment between two supports is shown in

Figure 6.4. It can be seen that the dominant lower frequency is three in one revo-

lution which is different from Figure 6.3. This makes sense because there are three

planets in the specific case. Another observation from both figures is that the results

from the stochastic Newmark and MCS agree very well.
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(a) Mean of displacement

(b) Standard deviation

Figure 6.3: Response of contact point of moving load, F1 for one rotation cycle of

force inside the ring
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(a) Mean of displacement

(b) Standard deviation

Figure 6.4: Response of a mid-node
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6.4.1 Effect of Speed

In this section, in order to study the effect of the load’s speed on dynamic responses

of the ring, analysis is done for three angular load velocities, ωc1 = 22 rad/s, ωc2 =

30 rad/s, and ωc3 = 50 rad/s. The computed mean values for various load speeds

from Eq. 6.35 is illustrated in Figure 6.5a for the moving point and Figure 6.6a for

the mid-node. Figures 6.5b and 6.6b depict the standard deviation of displacement

obtained from Eq. 6.41 for the same load speeds for the moving point and the mid-

node, respectively. From the figures, we see that alterations of the load velocity change

the ring’s deflection amount and standard deviation, but this alteration for various

load speeds has different trends for the mean and standard deviation. Moreover, from

the figure, one can conclude that by increasing the load speed, the relative amount

of variation of the mean and standard deviation are different.

Figure 6.6a shows that the maximum amount of mean of displacement increases

from 4.76×10−5 to 9.59×10−5 ,which is a almost two times growth, by increasing the

load speed from ωc1 = 22 rad/s to ωc2 = 30 rad/s. Then it decreases to 4.12× 10−5

when the load velocity increases from ωc2 = 30 rad/s to ωc3 = 50 rad/s. This trend

happens because when the speed of the deterministic forces approach the critical

speed (31.3rad/s), the mean of displacement increases; then when the load moves

with a velocity above the critical speed, the mean of displacement decreases.
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(a) Mean of displacement

(b) Standard deviation of displacement

Figure 6.5: Response of contact point of moving load, F1, under various load speeds
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(a) Mean of displacement

(b) Standard deviation of displacement

Figure 6.6: Response of mid-node under various moving-load speeds
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Figure 6.6b shows that the standard deviation of displacement decreases as load

speed increases. The maximum standard deviation diminishes from 1.97 × 10−6 to

1.82 × 10−6, which is 7 percent reduction, when load speed increases from ωc1 =

22 rad/s to ωc2 = 30 rad/s. Then by increasing load speed to ωc3 = 50 rad/s stan-

dard deviation decreases to 1.66×10−6, which is 9 percent reduction. It can be found

that when the white noise force speed increases the random effect of is decrease on

ring displacement. The same trend result is shown by Fryba [16] and Yoshimura

[17] for beam and Zibdeh [18] for rotating beam under white noise excitation. The

standard deviation is independent of the load speed and affects by white noise inten-

sity, damping, and stiffness of the ring which are constant in this section. Therefore,

the reason for slightly decreasing of the standard deviation with increasing the speed

is how much the load speed increase, the acting time of the load vibration on ring

decrease.

In addition, numerical studies have been carried out for moving load with speed

2.8 rad/s to 50 rad/s to study the critical speeds. We take the responses of the

mid-node point as an example. The results of the mean and standard deviation

for different load angular velocities are illustrated in Figures 6.7. For comparison

purposes, results are normalized by the maximum mean and standard deviation of

mid-node displacement associated with load speed, ωc = 2.8 rad/s. The factors

ξm and ξsd represent the normalized mean and standard deviation, respectively. In

addition, the critical speed of the ring is obtained from a free vibration analysis of
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the ring and the equation ωcr = Lcw0/πR, where Lc is the length of ring, and w0

is the fundamental natural frequency of the ring. Thus, based on the analysis the

critical speed is ωcr = 2378.8. Since we consider the harmonic force excitation in the

model, the critical speeds related to the frequency of harmonic excitation (meshing

frequency) are observed, as well.

Figure 6.7: Critical Speed

Figure 6.7 shows that the maximum of the mean of the displacement varies non-

uniformly by alteration of the load speed. At the low load speed, less than 8, the

maximum mean of the displacement does not change significantly. In load speeds,

ωc = 31.3, 36.6, and 44 rad/s, the resonance happens, and the mean of the dis-
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placement of the mid-node is maximum. These speeds are the critical speeds of the

system since they are equal to the ωcr/n, where n is an integer number. In addition,

Figure 6.7 shows that at load speeds, ωc = 34.19 rad/s and ωc = 40.55 rad/s, the res-

onance occur. These speeds are considered the critical speed caused by the resonance

associated with meshing frequency. Thus, when the moving-load speed approaches

the critical speeds, the maximum mean of deflection of a ring increases, and when

loads move faster than critical speed, the maximum deflection decrease.

From Figure 6.7, one sees that the maximum Standard deviation of displacement

decreases smoothly from low speed to high speed. The reason for the sightly reduc-

tion of the standard deviation by increasing the velocity can be that at high speed,

there is not enough time for sizeable dynamic displacement. Furthermore, this trend

shows the independency of the maximum standard deviation of displacement from

the critical speeds.

6.4.2 Effect of white noise intensity

In this section effect of the white noise intensity (b̄1, b̄2, b̄3) on the dynamic response

of the ring under moving load is analyzed. The analysis is conducted for a different

amount of white noise intensity. Since the mean of displacement is not affected by

the variation of the random force, in this section only Standard deviation of displace-

ment is discussed. Figure 6.8 shows the Standard deviation of displacement of the

mid-node of the ring under three different white noise intensity for three different
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load speed, ωc = 22 rad/s, ωc = 30 rad/s, and ωc = 50 rad/s. It can be seen that

by increasing the intensity of the white noise the amount of the standard deviation

increases. Figures 6.8a to 6.8c display that different amount of standard deviation is

obtained for different load speeds under the same white noise intensity. From these

figures, one sees that by increasing the load speed, standard deviation of displace-

ment of mid-node of ring decreases; therefore higher load speed has a lower standard

deviation. The reason is that at lower load speeds, the random load has more acting

time on ring; therefore its effects become more obvious. It can be concluded that

random load effect on dynamic response of the system is under influence of the load

speed and white noise intensity.

6.4.3 Effect of supports

In this section, the influence of the types of supports for different load speeds on the

dynamics response of the ring has been investigated. For this purpose, three boundary

conditions are considered. The bolt supports which used in previous sections are

named case 1 and the supports without torsional spring, which represents the pin

supports, with same radial and tangential stiffnesses are case 2. The case in which the

pin supports assumed with following stiffnesses, kr = 5×1010 N/m, kτ = 5×1010 N/m

are named case 3. In this section for brevity, only standard deviation of the mid-node

displacement is presented.

Figure 6.9a shows the Standard deviation of displacement for mid-node of the ring
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(a) Load speed ωc = 22 rad/s

(b) Load speed ωc = 30 rad/s
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(c) Load speed ωc = 50 rad/s

Figure 6.8: Standard deviation of displacement of mid-node under moving-load speeds

for various noise level

under load speed ωc1 = 22 rad/s for three cases. It can be seen that the standard

deviation of displacement for cases 1 and 2 are almost the same. That is because

the stiffness of radial and tangential directions is high and same, thus the bolt and

pin support almost show the same responses. At case 3 amount of the standard

deviation increase, on the other hand, the amplitude of standard deviation decrease.

This means that when the stiffness of the supports decreases the effect of the moving

forces increase.

The same analysis has been conducted to the two other load speeds, ωc2 = 30 rad/s

and ωc3 = 50 rad/s, with different boundary conditions and the results are shown in
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Figures 6.9b and 6.9c. The almost same trend is shown in both figures. In addition,

at load speed ωc3 = 50 rad/s case 1 and case 2 give a different response. This shows

that at higher speeds pin support has less standard deviation in compare with bolt

support with same amount of stiffnesses.

Types of support and the stiffness of the support which presents the tightness of

the supports have an impact effect on the dynamic behavior of the ring gear under

moving loads.

(a) Load speed ωc = 22 rad/s
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(b) Load speed ωc = 30 rad/s

(c) Load speed ωc = 50 rad/s

Figure 6.9: Standard deviation of displacement of mid-node under moving-load speeds

for various supports
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6.5 Conclusions

The object of this research is to analyze the effect of moving random loads on the

ring’s dynamic responses. The finite element model with a curved beam element is

used for modeling the ring. In the model, fixed springs are applied at the boundary

condition to represent the supports. The ring is excited by both deterministic and

random moving loads, and they transfer to the nodal forces by shape function. We

use the stochastic Newmark algorithm to compute the statistics of the results.

For verification of the presented method, Monte Carlo simulations were carried

out. The comparison indicates that the results obtained from the presented method

match well with the results obtained from the Monte Carlo simulations.

The effect of the load speed on dynamic responses of the ring is analyzed for

three load speeds. The results show that by increasing the load speed, initially mean

of displacement increases and then decreases. In contrast, the standard deviation

of displacement shows a slightly decreasing by increasing the load speed. Thus, the

increment of the speed has a lower influence on the standard deviation of displacement

in comparison with the mean of displacement.

The critical speed of the moving load has been investigated. It has been shown

that there are several critical speed associated with the system and the frequency

excitation of harmonic force. A comparison between trends of the means and standard

deviations shows that the variation of the standard deviation is much lower than the
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mean. The general trend of the mean of displacement is affected by the critical speed.

In contrast, the standard deviation of displacement is not influenced by the critical

speeds.

The effects of white noise intensity and supports on the dynamic response of the

ring under random moving load has been analyzed. The obtained results show that

loads speed has significant role in the random load and supports stiffness efficacy on

ring dynamic behavior. It can be concluded that at the higher speed pin support

gives lower the standard deviation of displacement in comparison with the bolt.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This dissertation studied planetary gearboxes’ dynamic behavior with elastic ring gear

under random excitation. The focus of this research was on the planetary gearboxes

of horizontal axis wind turbines under the condition of wind turbulence excitation.

In addition, a discrete analysis was conducted for ring gear and single gear-pair, to

gain a better understanding of the elastic ring gear dynamics under moving load and

the efficiency of the different statistical linearization criteria.

7.1.1 Dynamics of Planetary Gear Trains

This thesis is the first research to propose a nonlinear stochastic dynamic model of

PGT considering elastic ring gear and backlash nonlinearity. The developed project

model included a flexible ring gear, backlash, and time-variant mesh stiffness of the

planetary gear. For efficient and accurate modeling, both the lumped-parameter and

the finite element method were combined in the proposed model. In addition, the

dynamic model included a nonlinear phenomenon, which was a result of the backlash
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between gear meshes. This model was used to study planetary gears in wind turbines

by considering wind turbulence, backlash, and ring gear elasticity and will improve

our understanding of nonlinear random vibration in planetary gears.

Then a statistical linearization method was used and applied to the hybrid non-

linear stochastic model. The results demonstrated that the statistical linearization

method could be a suitable method to linearize the nonlinearity of complex geared

systems. In addition, the results showed that the ring gear’s rim thickness, and the

way the ring is connected to the frame, have a significant effect on the dynamic

behavior of the gearbox.

7.1.2 Moving load

This thesis studied the random vibration of a thin-walled ring gear of PGT under three

equally-spaced moving loads. A finite element method with curved-beam elements

was used to model the ring. Three springs were then applied to the boundary of the

elements to represent each bolt connection. A parametric study was carried out to

examine the effect of moving random loads’ speed on the dynamic behavior of the

ring. The results showed that by increasing the load speed, the mean of displacement

increased and then decreased. In contrast, the standard deviation of displacement

showed a slight decrease when the load speed was increased. Thus, the increment of

the load speed had a lower influence on the standard deviation of displacement in

comparison with the mean of displacement.
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The results demonstrated that several critical speeds were associated with the

characteristic of the system or the frequency excitation of harmonic force. The ob-

tained results showed, that for the same random load intensity and support connec-

tion, increasing load speed gave a lower standard deviation of displacement. This

thesis gives a tool to allow computationally efficient, yet accurate, prediction of the

effect of moving load speed on vibration displacement.

7.1.3 Gear pairs

A new criterion of the statistic linearization method was used to study the nonlinear

behavior of a single gear pair. In this thesis, the backlash is not the sole source of

nonlinearity, and time-varying mesh stiffness is the source of the nonlinearity. Energy-

based statistic linearization methods, which minimize the error in potential energy

between the original and equivalent linear systems, gave an equivalent linear equation

for the nonlinear equation. Parametric studies were then conducted and the effect of

the input torque level on the dynamic response of the gear pair was analyzed. Monte

Carlo simulations were carried out to verify the accuracy of the method.

The results showed that in high input torque, the obtained results were close to

the original systems. This proves that the gear system worked in the linear conditions

under heavy load conditions. In addition, in lower input torque, some errors between

the obtained results from the SL method and MCS were observed. The reason for

the errors is, in the lower torque condition, the system works in a backlash, which
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caused the system to become nonlinear, and linearization methods fail to estimate

representations of the original system. Thus, we can conclude that the statistical

linearization method is accurate and is a valid method to solve stochastic nonlinear

equations under heavy load conditions.

7.2 Future Work

This dissertation, prioritized many important factors of PGTs in wind turbines. Some

factors were ignored that might potentially have a significant effect on PGT response,

and these are listed in this section. Also, there are different techniques and solution

methods to treat the nonlinearity that might also be suitable for complex geared

systems. Thus, the following suggestions are presented for future work:

• In this thesis the backlash and the time-varying meshing stiffness between gear

pairs in the planetary gear transmission were considered as a system nonlinear-

ity. In future work, other types of nonlinearity, such as bearing clearance, might

be of interest. The carrier’s mean bearing and the high-speed shaft’s bearings

clearance are one of the main concerns of the PGT design. In addition, tooth

crack affects the mesh stiffness and would have a direct influence on geared

systems dynamic behavior.

• In the case of randomness, there are different sources of randomness in a geared

system, and this study only considered one source. For example, since man-
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ufacturing errors always exist in gear production, the backlash can become a

random variable. In addition, if offshore wind turbines are studied, the ocean

waves might be considered as random force instead of the wind turbulence.

• In this thesis, force-based and potential energy-based linearization methods are

used. For future work, the energy-based linearization method only applied

to single gear mesh in this thesis, and it can be applied to PGT research.

Results obtained from an energy-based linearization method can be compared

with the results obtained from force-based linearization method to discover

which method is more suited for complex gear systems.

• The elastic ring gear properties have a significant effect on the overall dynamics

of planetary gear transmissions. In this thesis, the ring gear is modeled as a

smooth ring. For future work, to increase the accuracy of the PGT simulation,

the ring can be modeled as a smooth ring, and lumped-masses can represent

each tooth. A ring gear under a moving loads with an attached mass could then

be analyzed.
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Appendix

This appendix includes the obtained results from the linearized model and Monte Carlo

Simulations for PGT. In section 3.7.1 only the selected responses of PGT components

were presented; All the mean and variance of displacement responses of the ring gear,

planet gear, sun gear, and carrier are shown in this appendix.
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(a) Mean of displacement

(b) Variance of displacement

Figure A.1: Displacement of Node (1) in the radial direction
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(a) Mean of displacement

(b) Variance of displacement

Figure A.2: Displacement of Node (1) in the tangential direction
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(a) Mean of displacement

(b) Variance of displacement

Figure A.3: Displacement of Node (1) in the rotational direction
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(a) Mean of displacement

(b) Variance of displacement

Figure A.4: Displacement of Node (2) in the radial direction
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(a) Mean of displacement

(b) Variance of displacement

Figure A.5: Displacement of Node (2) in the tangential direction
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(a) Mean of displacement

(b) Variance of displacement

Figure A.6: Displacement of Node (2) in the rotational direction
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(a) Mean of displacement

(b) Variance of displacement

Figure A.7: Displacement of Node (3) in the radial direction
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(a) Mean of displacement

(b) Variance of displacement

Figure A.9: Displacement of Node (3) in the rotational direction
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(a) Mean of displacement

(b) Variance of displacement

Figure A.10: Displacement of sun gear at x direction
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(a) Mean of displacement

(b) Variance of displacement

Figure A.11: Displacement of sun gear at y direction
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(a) Mean of displacement

(b) Variance of displacement

Figure A.12: Displacement of sun gear at θ direction
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(a) Mean of displacement

(b) Variance of displacement

Figure A.13: Displacement of planet gear at ξ direction
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(a) Mean of displacement

(b) Variance of displacement

Figure A.14: Displacement of planet gear at η direction
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(a) Mean of displacement

(b) Variance of displacement

Figure A.15: Displacement of planet gear at θ direction
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(a) Mean of displacement

(b) Variance of displacement

Figure A.16: Displacement of carrier at x direction
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(a) Mean of displacement

(b) Variance of displacement

Figure A.17: Displacement of carrier at y direction
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(a) Mean of displacement

(b) Variance of displacement

Figure A.18: Displacement of carrier at θ direction
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