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Abstract—Timed Petri nets are used as models of cluster

tools representing the flow of wafers through the chambers

of the tool as well as sequences of actions performed by

the robotic transporter. Since the durations of all activi-

ties are also represented in the model, performance char-

acteristics can be derived from the model for steady–state

as well as transient behaviors. The performance of single–

blade tools is compared with that of dual–blade tools. The

effects of multiple loadlocks, redundant chambers and mul-

tiple robots are discussed and analyzed. Modeling of wafer

routings with chamber revisiting and processing of wafers of

multiple types is also briefly discussed.
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I. Introduction

ACLUSTER tool is an integrated, environmentally iso-
lated manufacturing system consisting of process,

transport, and cassette modules, mechanically linked to-
gether [3]. The factors which stimulate an increased use of
clustered tools in recent years include improved yield and
throughput, reduced contamination, better utilization of
the floor space, and reduced human intervention [17].

Because of high throughput requirements, cluster tools
perform a number of activities concurrently, for example,
different wafers are processed in different chambers at the
same time, and also the robotic transporter can be mov-
ing to a position required by the next step. Petri nets
[15], [10] are formal models developed specifically for rep-
resentation of concurrent activities and for their coordi-
nation, i.e., for ordering specific actions or for performing
actions simultaneously by more than one component of a
system. Petri nets are sometimes called “condition–event
systems” because their two types of basic elements, called
places and transitions, represent the (satisfied or unsatis-
fied) conditions of some events, and the events which can
occur only when all conditions associated with them are
satisfied. Formally, Petri nets are represented by bipartite
graphs (i.e., graphs with two types of vertices, one rep-
resenting places, and the other transitions), and directed
arcs connecting these two types of vertices. The dynamic
behavior of nets is represented by the so called tokens as-
sociated with places. The distribution of these tokens can
change (as an occurrence of some events), representing the
behavior of the modeled systems.

In order to analyze the performance of modeled systems,
the durations of all activities must also be taken ito ac-
count. Several types of nets “with time” have been pro-
posed by associating “time delays” with places [16], or

occurrence durations with transitions [1], [13], [22] of net
models. Also, the introduced temporal properties can be
deterministic [13], [14], [16], [22], or can be random vari-
ables described by probability distribution functions (the
negative exponential distribution being probably the most
popular choice) [1], [2], [22].

Analysis of timed net models based on their behavior
(represented by the set of states and transitions between
states) is known as reachability analysis. For complex mod-
els, the exhaustive reachability analysis can easily become
difficult because of the very large number of states (for
some models the number of states increases exponentially
with the size of the model, which is known as the “state ex-
plosion problem”). Several approaches can be used to deal
with the excessive numbers of states. One approach re-
duces the number of states by using state aggregation (i.e.,
by combining groups of states into single ‘superstates’); an-
other uses symmetries of the state space. For some classes
of net models, the performance properties can be derived
from the structure of the net models; this approach is
known as structural analysis. The most popular exam-
ple of this approach is analysis based on place–invariants
(or P–invariants) for models covered by families of simple
cyclic subnets (which are implied by P–invariants).

Traditionally, performance of cluster tools was analyzed
by using timing diagrams representing typical sequences of
events, and deriving performance formulas from a critical
path that determined the cyclic behavior of a tool [11], [12],
[20]; such an approach is highly dependent on the analyzed
cluster tool and its properties, and becomes quite compli-
cated for tools which are complex. This paper presents
an approach based on timed Petri nets which can be used
for modeling and evaluation of a large variety of cluster
tools, including single–blade and dual–blade ones, tools
with multiple loadlocks, redundant chambers and multiple
robots. Several such models are discussed in greater de-
tail, and their steady–state as well as transient behaviors
are analyzed. The performance of the models is obtained
by structural analysis (for the steady–state), as an alter-
native approach to the one presented in [18], where the
performance of Petri net models is obtained by reachabil-
ity analysis, i.e., by the exhaustive generation and analysis
of the state space that needs to be repeated for each change
of any one of modeling parameters. Net models presented
in this paper are composed of simple subnets implied by
place invariants, and this allows to derive the performance
in symbolic form, similar to the approach proposed in [13],
[16]. There is, however, a significant difference between the
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approach proposed in [13] and the one used in this paper;
[13] uses the sets of all possible circuits in nets which must
be “consistent”. The number of such circuits, for many
nets, grows exponentially with the size of the model. The
approach described in this paper is based on basic place
invariants which represent only some of the circuits. More-
over, the number of place invariants can be further reduced
by simple net transformations [23] which eliminate all those
net elements which are insignificant for performance eval-
uation. In effect, the number of significant place invariants
is a linear function of the model size. In addition, the ap-
proach presented in [13] is valid for basic place/transition
nets only, and does not allow inhibitor arcs or arc weights,
both of which are frequently used in models presented in
this paper.

The approach presented in this paper is derived from
earlier work on modeling and analysis of schedules for man-
ufacturing cells [23].

Section 2 recalls basic concepts of timed Petri nets in or-
der to avoid confusion that may arise due to a large variety
of different types of Petri nets and especially timed Petri
nets; in modeling with timed Petri nets, even a minor dif-
ference in the assumed behavior of net models may have a
major impact on the representation of the model. Models
of single–blade cluster tools are discussed and evaluated in
Section 3, while Section 4 presents models of dual–blade
cluster tools; it also contains a brief comparison of the per-
formance of single–blade and dual–blade tools. Section 5
describes several extension and generalization of the mod-
els discussed in Sections 3 and 4; these extensions include
cluster tools with multiple loadlocks, redundant chambers
and tools with multiple robots. Performance characteris-
tics of more general cluster tools are also included. Several
concluding remarks and a number of further extensions are
outlined in Section 6.

II. Timed Petri Nets

Petri nets have been proposed as a simple and convenient
formalism for modeling systems that exhibit parallel and
concurrent activities [10], [15], [19]. In Petri nets, these
activities are represented by the so called tokens which
can move within a (static) graph–like structure of the net.
More formally, a marked (place/transition) inhibitor Petri
net M is defined as M = (N ,m0), where the structure N
is a bipartite directed graph, N = (P, T,A,B,w), with a
set of places P , a set of transitions T , a set of directed arcs
A connecting places with transitions and transitions with
places, A ⊆ T×P∪P×T , a (possibly empty) set of inhibitor
arcs which connect places with transitions, B ⊂ P ×T , arc
weight function which assigns a weight (or multiplicity)
to each arc of the net, w : A → {1, 2, ...}, and an initial
marking function m0 which assigns nonnegative numbers
of tokens to places of the net, m0 : P → {0, 1, ...}.

A place is shared if it is connected to more than one
transition. A shared place p is guarded if for each two
transitions sharing it there exists another place which is
connected by a directed arc to one of these sharing transi-
tions and an inhibitor arc to the other (so only one of these

two transitions can be enabled by any marking). A shared
place p is free–choice if the sets of places connected by di-
rected arcs and inhibitor arcs for all transitions sharing p
are identical and the weights of the arcs are the same. An
inhibitor net is free-choice if all its shared places are either
guarded or free–choice. A net is (structurally or statically)
conflict–free if all its shared places are guarded. A marked
net is (dynamically) conflict–free if for any marking reach-
able from the initial marking, and for any shared place, at
most one of transitions sharing this place is enabled. The
models of cluster tools discussed in this paper are (stati-
cally or dynamically) conflict–free nets.

In order to study performance aspects of Petri net mod-
els, the duration of activities must also be taken into ac-
count and included into model specifications. In timed nets
[22], occurrence times are associated with transitions, and
transition occurrences are real–time events, i.e., tokens are
removed from input places at the beginning of the occur-
rence period, and they are deposited to the output places
at the end of this period (sometimes this is also called a
three–phase firing mechanism as opposed to one–phase in-
stantaneous occurrences of transitions in stochastic nets
[1], [2] and time nets [6], [9]). All occurrences of enabled
transitions are initiated in the same instants of time in
which the transitions become enabled (although some en-
abled transitions cannot initiate their occurrences). If, dur-
ing the occurrence period of a transition, the transition be-
comes enabled again, a new, independent occurrence can be
initiated, which will overlap with the other occurrence(s).
There is no limit on the number of simultaneous occur-
rences of the same transition (sometimes this is called in-

finite occurrence semantics). Similarly, if a transition is
enabled “several times” (i.e., it remains enabled after ini-
tiating an occurrence), it may start several independent
occurrences in the same time instant.

More formally, a conflict–free timed Petri net is a pair,
T = (M, f), where M is a marked net and f is a tim-

ing function which assigns a (constant or randomly dis-
tributed) occurrence time to each transition of the net,
f : T → R

+, where R
+ is the set of nonnegative real

numbers.

The occurrence times of transitions can be either deter-
ministic or stochastic (i.e., described by some probability
distribution function); in the first case, the corresponding
timed nets are referred to as D–timed nets, in the second,
for the (negative) exponential distribution of firing times,
the nets are called M–timed nets (Markovian nets). In both
cases, the concepts of state and state transitions have been
formally defined and used in the derivation of different per-
formance characteristics of the model [22]. Only D–timed
Petri nets are used in this paper.

In timed nets, the occurrence times of some transitions
may be equal to zero, which means that the occurrences
are instantaneous; all such transitions are called immedi-

ate (while the others are called timed). Since the immediate
transitions have no tangible effects on the (timed) behavior
of the model, it is convenient to ‘split’ the set of transitions
into two parts, the set of immediate and the set of timed
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transitions, and to first perform all occurrences of the (en-
abled) immediate transitions, and then (still in the same
time instant), when no more immediate transitions are en-
abled, to start the occurrences of (enabled) timed transi-
tions. It should be noted that such a convention effectively
introduces the priority of immediate transitions over the
timed ones, so the conflicts of immediate and timed tran-
sitions are not allowed in timed nets. Detailed character-
ization of the behavior of timed nets with immediate and
timed transitions is given in [22].

Each place/transition net N = (P, T,A,B,w) can con-
veniently be represented by a connectivity (or incidence)
matrix C : P × T → Z (Z denotes the set of integer num-
bers) in which places correspond to rows, transitions to
columns, and the entries are defined as:

∀ p ∈ P ∀ t ∈ T : C[p, t] =







































−w(p, t),
if (p, t) ∈ A ∧ (t, p) 6∈ A,

+w(t, p),
if (t, p) ∈ A ∧ (p, t) 6∈ A,

w(t, p)− w(p, t),
if (t, p) ∈ A ∧ (p, t) ∈ A,

0, otherwise.

Connectivity matrices disregard inhibitor arcs and ‘self-
loops’, that is, pairs of arcs (p, t) and (t, p) with the same
weights w. A pure net is defined as a net without selfloops
[15].

A P–invariant (place invariant, sometimes also called S–
invariant) of a net N is any nonnegative, nonzero integer
(column) vector I which is a solution of the matrix equation

C
T × I = 0,

where C
T denotes the transpose of matrix C. It follows

immediately from this definition that if I1 and I2 are P–
invariants of N , then also any linear (positive) combination
of I1 and I2 is also a P–invariant of N . A basic P–invariant
of a net is defined as a P–invariant which does not contain
simpler invariants.

Similarly, a T–invariant (transition invariant) of a net
N is any nonnegative, nonzero integer (column) vector J
which is a solution of the matrix equation

C× J = 0,

and a basic T–invariant of a net is defined as a T–invariant
which does not contain simpler invariants.

Moreover, a net Ni = (Pi, Ti, Ai, Bi, w) is a Pi-implied
subnet of a net N = (P, T,A,B,w), Pi ⊂ P , if:

(1) Ai = A ∩ (Pi × T ∪ T × Pi);
(2) Ti = {t ∈ T | ∃ p ∈ Pi : (p, t) ∈ Ai ∨ (t, p) ∈ Ai};
(3) Bi = B ∩ Pi × Ti.

It should be observed that in a pure net N , each P–
invariant I of a net N determines a PI -implied (invariant)
subnet of N , where PI = {p ∈ P | I(p) > 0}; PI is some-
times called the support of the invariant I. All nonzero

elements of I select rows of C, and each selected row i cor-
responds to a place pi with all its input and all output arcs
associated with it.
Finding basic invariants is a ‘classical’ problem of lin-

ear algebra, and there are known algorithms to solve this
problem efficiently [7], [8].

Net invariants can be very useful in performance eval-
uation of net models; if a net is covered by a family of
conflict–free cyclic subnets, the cycle time of the net, τ0, is
equal to the maximum cycle time of the covering subnets
[13], [16]:

τ0 = max(τ1, τ2, ..., τk)

where k is the number of subnets covering the original net,
and each τi, i = 1, ..., k, is the cycle time of the subnet i,
which is equal to the sum of occurrence times associated
with the transitions, divided by the total number of tokens
assigned to the subnet:

τi =

∑

t∈Ti
f(t)

∑

p∈Pi
m(p)

.

In many cases, the number of basic P–invariants can be
reduced by removing from the analyzed net all these ele-
ments which do not affect the performance of models [23].
Fig.1 shows one of such transformations which reduces par-
allel paths that have no influence on the behavior of a
timed net, but which can increase the number of (basic)
P–invariants.
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(a)
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p2

p1

(b)

t1

t2

t3

p1
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t1

t2

t3

p1

p2

Fig. 1. Parallel path reduction.

In Fig.1, part (a) is the simple case of parallel paths,
while part (b) shows a more intricate case, which still
can be simplified without affecting the performance of the
model (in fact, the state space in both cases is not affected
by the transformation). It should be noticed that paral-
lel paths can be either all unmarked, as in Fig.1(a), or all
marked, as in Fig.1(b), but they cannot be “mixed”, i.e.,
one path marked and the other unmarked.

III. Models of Single–Blade Cluster Tools

The cluster tools analyzed in this section are m–chamber
cluster tools with one robotic transporter. Each of the
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chambers performs a unique process, and there is a sin-
gle chamber for each process. The only explicit storage
facility is the loadlock. For single–blade tools, the robotic
transporter can carry only one wafer at a time. The model
assumes that all wafers have the same process sequence,
and that no chambers are revisited, as in [12].

A sketch of a 3–chamber cluster tool is shown in Fig.2,
where LL denotes the loadlock to store cassettes of wafers;
C1, C2 and C3 are process chambers which modify the
properties of the wafers, and R is a robotic transporter
(or simply a robot) which moves the wafers between the
loadlock and the chambers as well as from one chamber to
another.

LL

C1

C2

C3R

Fig. 2. An outline of a 3–chamber cluster tool.

When a batch of wafers arrives at an empty cluster tool,
it is placed in the loadlock which is then typically pumped
down to vacuum. All the time required to get a batch into
the cluster and ready for processing is denoted as τload.
The robot, assumed to be idle at the loadlock, moves the
first wafer to the first chamber. For simplicity, it is as-
sumed that the chambers are numbered as they appear in
the process sequence. When the process in the first cham-
ber is finished, the wafer is moved to the second chamber,
after which the second wafer can be moved into the first
chamber. After a number of such wafer transports, the first
wafer arrives back at the loadlock. When all wafers have
been processed and returned to the loadlock, the loadlock
is raised to atmospheric pressure and the batch is removed.
The time interval between when the last wafer arrives at
the loadlock and when the batch is removed is denoted as
τunload.

In general, the time to process a batch consists of the
following [12]: τload, the time τinit to reach steady state,
the time spent in steady state τsteady, the time τend to
process final wafers, and τunload.

A. Steady–State Behavior

The model for the steady–state behavior is the simplest
one, so it is discussed first. Several elements of the cluster
tool can be ignored for steady state considerations (e.g.,
the loadlock). Moreover, it is assumed that all chambers
are used concurrently, i.e., when the i-th wafer is moved
to chamber 1, the (i− 1)-th wafer is processed in chamber

2, and (i − 2)-th wafer is processed in chamber 3. The
sequence of the operations in each cycle is as follows (it is
assumed that the cycle begins when a new wafer is moved
to chamber 1):

• pick next wafer from loadlock, transport it to chamber 1
and load it; chamber 1 can start its process;
• move to chamber 3, unload the wafer (when ready),
transport it to loadlock and drop it there;
• move to chamber 2, unload the wafer (when ready),
transport it to chamber 3 and load it; chamber 3 can start
its process;
• move to chamber 1, unload the wafer (when ready),
transport it to chamber 2 and load it; chamber 2 can start
its process;
• return to loadlock to begin another cycle.

A Petri net model of this sequence of operations is shown
in Fig.3. The model contains three sections modeling the
three chambers, each represented by one transition (t1, t2
and t3, respectively). Each of these transitions has one
input and one output place (representing the conditions
“wafer loaded in chamber” and “wafer ready for unload-
ing”). The remaining part of the model represents the se-
quence of steps corresponding to one complete cycle of the
robot. This sequence begins (as indicated by the initial
marking) by picking a wafer from the loadlock (transition
t01). The operations represented by transitions are shown
in Tab.1.

TABLE I

Operations Represented by Transitions in Fig.3.

transition operation

t01 pick next wafer from the loadlock,
move it to chamber 1 and load;

t13 move the robot to chamber 3;
t34 unload the wafer from chamber 3,

move it to loadlock and drop:
t42 move the robot to chamber 2;
t23 unload the wafer from chamber 2,

move it to chamber 3 and load;
t31 move the robot to chamber 1;
t12 unload the wafer from chamber 1,

move it to chamber 2 and load;
t20 move the robot to loadlock.

In order to obtain the effect of steady–state, place p40 is
used as “input” and “output” of the cluster tool. When a
wafer is finished, a token is deposited in p40, and the same
token is used as the next wafer a moment later. The initial
marking of p40 is irrelevant (as long as it is nonzero), and
the behavior is exactly the same if more than one token
is assigned initially to p40. Moreover, it can be observed
that p40 creates a parallel path between t01 and t34, so it
has no effect on the performance of the model, and can be
removed (with the two arcs connected to it).
All transitions are timed transitions, and the occurrence

times associated with them represent the times of the cor-
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t1 t2 t3

t13

p23 p32 p34p12 p21

p40

p1a p1b p2a p2b p3a p3b

t12 t23t01 t34

p4a p4b

p10 

t20 t31 t42

Fig. 3. Petri net model for the steady-state behavior of a single–blade 3–chamber too tool.
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t01 t34

t2

p1 p2 p3
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p4

p34

t20
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t31

t11

t21

N

p10

Fig. 4. Petri net model for the initial transient behavior of a single–blade 3–chamber tool.

responding operations.
The net shown in Fig.3, after removal of place p40, has

four P–invariants; the sets of transitions of subnets implied
by these P–invariants are:

invariant set of transitions

1 t1, t01, t12, t20
2 t2, t12, t23, t31
3 t3, t23, t34, t42
4 t01, t12, t23, t34, t13, t20, t31, t42

Because the cycle time of the model is equal to the max-
imum cycle time of subnets implied by P–invariants, the
cycle time τ0 is:

τ0 = max(τ1, τ2, τ3, τ4)

where τi denotes the cycle time of the subnet i, so, τ1 =
f(t1)+f(t01)+f(t12)+f(t20), τ2 = f(t2)+f(t12)+f(t23)+
f(t31), and so on.

If τ0 is equal to one (or more) of the first three terms,
the model is called “process bound” because the duration
of the process performed by the corresponding chamber
determines the cycle time (and the throughput) of the tool;
if the cycle time is equal to the last term, the model is called
“transport bound” [20].

B. Initial Transient Behavior

The initial transient behavior is due to the fact that the
chambers, at the beginning of each batch, are empty. Con-
sequently, the sequence of operations is slightly different at
the beginning of the batch than in the steady state, and
this difference must be captured by the model. Fig.4 shows
the model representing the initial transient behavior (as an
extension of the steady–state model).

The initial sequence of operations is described by the
steps (and the corresponding transitions) shown in Tab.2.

The duration of this transient behavior can be estimated
from the sequence of operations, as has been done in [12],
but it can also be evaluated from a slightly modified Petri
net model. It can be shown [22] that the graph of reach-
able states for any conflict–free bounded net can only be
a straight path (if the behavior is finite) or a path with
a cycle (if the behavior is infinite); the cycle in this case
represents the steady state behavior of the model. So, the
model shown in Fig.4 needs to be slightly modified to create
its cyclic, infinite behavior representing the steady–state.
This can be done by merging places p0 and p4. Then, how-
ever, similarly as for the net shown in Fig.3, the merged
place can be deleted (together with its arcs) as it has no ef-
fect on the performance of the model. Such modified model
can then be analyzed for the initial transient behavior that
determines the time τinit.
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TABLE II

Operations Represented by Transitions in Fig.4.

transition operation

t01 pick a wafer from the loadlock,
move it to chamber 1 and load;

t11 since chamber 2 is empty, wait for
the end of chamber 1 operation;

t12 unload the wafer from chamber 1,
move it to chamber 2 and load;

t20 move the robot to loadlock;
t01 pick a wafer from the loadlock,

move it to chamber 1 and load;
t22 since chamber 3 is empty, move

the robot to chamber 2;
t23 unload the wafer from chamber 2,

move it to chamber 3 and load;
t21 move the robot to chamber 1;
t12 unload the wafer from chamber 1,

move it to chamber 2 and load;
t20 move the robot to loadlock.

For example, assuming (just for the sake of this example)
that f(t1) = f(t2) = f(t3) = 10, and all other timed tran-
sitions have the associated time equal to 1, the state graph
corresponding to the (modified) net of Fig.4 is shown in
Fig.5, where the time spent in each state is given in paren-
theses. State 12 is the first state after the initial transient
behavior, so τinit = 26 (the sum of times associated with
states 1 to 11), while the cycle time τ0 = 13 (the sum of
times associated with the cyclic states). The steady–state
solution (discussed earlier), for the same timing values, re-
sults in τ1 = τ2 = τ3 = 13 and τ4 = 8, so τ0 = 13, and the
model is process bound.

1(1) 3(1)

2(10) 4(1)

5(1)

6(1)

7(7)

8(1)

9(1)

10(1)
11(1)

12(1)

13(1)

14(5)
15(1)

16(1)

Fig. 5. State graph for the modified net of Fig.4.

C. Final Transient Behavior

The final part of processing a batch of wafers is also
different from the steady–state because there are no more
wafers in the loadlock, but still the wafers remaining in
the chambers must complete their operations and be trans-
ported back to the loadlock. The Petri net model for this
part of processing is shown in Fig.6.

The sequence of required operations begins with the last
wafer picked from the loadlock; the operations are de-
scribed in Tab.3.

The duration of the final transient behavior can be es-
timated on the basis of required operations, or it can be

TABLE III

Operations Represented by Transitions in Fig.6.

transition operation

t01 pick a wafer from the loadlock,
move it to chamber 1 and load;

t13 move the robot to chamber 3;
t34 unload the wafer from chamber 3,

move it to loadlock and load;
t42 move the robot to chamber 2;
t23 unload the wafer from chamber 2,

move it to chamber 3 and load;
t21 move the robot to chamber 1;
t12 unload the wafer from chamber 1,

move it to chamber 2 and load;
t13 move the robot to chamber 3

(loadlock is empty);
t34 unload the wafer from chamber 3,

move it to loadlock and drop;
t42 move the robot to chamber 2;
t23 unload the wafer from chamber 2,

move it to chamber 3 and load;
t33 since chamber 1 is empty, wait for

the end of chamber 3 operation;
t34 unload the wafer from chamber 3,

move it to loadlock and drop;
t44 chamber 2 is empty, end of processing.

obtained from analysis of the net model (Fig.6). In this
case no modification is needed; the behavior of the model
in Fig.6 is finite, so it directly determines the time τend.
For the timing information used in Section 3.3, the final
transient behavior is τend = 34.

D. Complete Model

The complete Petri net model of a 3–chamber cluster
tool, shown in Fig.7, is obtained by merging models in
Fig.4 and Fig.6 (the model shown in Fig.3 is included in
both Fig.4 and Fig.6).
The total time of processing a batch of wafers in a single–

blade cluster tool, τbatch, is thus equal to:

τbatch = τload + τinit + τsteady + τend + τunload

where τsteady = (N − m − 1) ∗ τ0, m is the number of
chambers, and N is the number of wafers in a batch; this
formula takes into account that the initial transient be-
havior requires m wafers from the batch to initialize the
m chambers, and that the final transient behavior begins
when the last wafer is picked from the loadlock.

IV. Models of Dual–Blade Cluster Tools

The main difference between dual–blade cluster tools and
single–blade tools is that the robotic transporter, for dual–
blade tools, can carry two wafers at the same time. Conse-
quently, the sequence of operations is different, and usually
shorter, which can make a difference especially for trans-
port bound cluster tools.
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t1 t2 t3

t01 t23t12 t34
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Fig. 6. Petri net model for the final transient behavior of a single–blade 3–chamber tool.
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Fig. 7. Petri net model of a single–blade 3–chamber cluster tool.

A. Steady–State Behavior

Fig.8 shows the steady-state model of a 3–chamber clus-
ter tool with a dual–blade robot (so it corresponds to the
model shown in Fig.3 for the single–blade case).

t1 t2 t3p23 p32 p34p12 p21p10 

t11 t22 t33

t01

t12 t23

t34

p1a

p1b

p2ap2b

p0

p3a

p3b

Fig. 8. Petri net model for steady–state behavior of a dual–blade
3–chamber tool.

As before, the three chambers are represented by tran-
sitions t1, t2 and t3, each with a single input and a single
output place; the remaining part of the model represents
the sequence of the robot’s actions, with transitions t11, t22
and t33 representing sequences of “unload the wafer from

a chamber, rotate, and load the wafer into a chamber”, for
chambers 1, 2 and 3, respectively.
The model shown in Fig.8 has four P–invariants with the

following sets of transitions in invariant–implied subnets:

invariant set of transitions

1 t1, t11
2 t2, t22
3 t3, t33
4 t01, t11, t12, t22, t23, t33, t34

As before, the cycle time τ0 (for the steady–state behav-
ior) is determined by the subnet with the maximum cycle
time:

τ0 = max(τ1, τ2, τ3, τ4)

and the cycle times τi are equal to (each subnet has a single
token assigned to it):

τ1 = f(t1) + f(t11),
τ2 = f(t2) + f(t22),
τ3 = f(t3) + f(t33),
τ4 = f(t01) + f(t11) + f(t12) + f(t22) + f(t23)+

f(t33) + f(t34).
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In order to compare this cycle time with the one for
single–blade cluster tool, a more detailed analysis of the
operation times is needed. The operations can be repre-
sented by collections of some elementary actions, some of
which are common for single–blade and dual–blade tools
(e.g., picking a wafer from a loadlock, loading a wafer into
a chamber or unloading it), while some others are different
(e.g., rotating the robot to get access to the other blade).
Each of these actions has its execution time, and it is as-
sumed, for simplicity, that the execution times of the same
actions for different chambers are equal (it is a minor mod-
ification to make them different). The elementary actions
are:

action description

u rotate the robot (for dual–blade case);
v move robot between two adjacent chambers, or

between the loadlock and the first chamber, or
between the last chamber and the loadlock (for
simplicity all these times are assumed equal);

w pick a wafer from the loadlock;
x load a wafer into a chamber;
y unload a wafer from a chamber;
z drop a wafer in a loadlock.

The execution time of any operation is simply equal to
the sum of execution times of actions constituting the op-
eration. For the operations represented by transitions in
Fig.3 (single–blade tool) these execution times are thus as
follows:

transition execution time

t01 v + w + x
t12 v + x+ y
t23 v + x+ y
t34 v + y + z
t13 2v
t20 2v
t31 2v
t42 2v

The execution times of operations represented by tran-
sitions in Fig.8 (dual–blade tool) are:

transition execution time

t01 u+ v + w
t11 u+ x+ y
t12 v
t22 u+ x+ y
t23 v
t33 u+ x+ y
t34 u+ v + z

For transport bound single–blade and dual–blade cluster
tools, the cycle times are thus:

τ
(1)
4 = 12v + w + 3x+ 3y + z,

τ
(2)
4 = 5u+ 4v + w + 3x+ 3y + z,

so, the difference is 8v for the single–blade tool versus 5u
for the dual–blade tool (since the other terms are equal). If
the time of the operation v is significantly longer than the

other operations (including u), then the dual–blade tool
offers much better performance (estimated as at least two
times better than the single–blade tool in [20]). Indeed,
assuming that u = w = x = y = z = v/4, the total times

are: τ
(1)
4 = 14v and τ

(2)
4 = 7.25v, so the cycle time of the

dual–blade tool is almost one half of that of single–blade
tool.
For process bound cluster tools, the differences are not

so significant because the cycle times are dominated by the
process times of (some) chambers, which are the same for
single–blade and dual–blade tools.

B. Initial Transient Behavior

The net model for the initial transient behavior is shown
in Fig.9. The arc (t34, p0) is an addition to convert the
acyclic net into a cyclic one, so the transient behavior can
be captured more easily.
For the temporal information similar to that used in Sec-

tion 3.2 (i.e., for f(t1) = f(t2) = f(t3) = 10, f(t11) =
f(t22) = f(t33) = 2 (in order to make the behavior com-
parable to that in Section 3.2), and f(ti) = 1 for all other
timed transitions), the transient behavior τinit is equal to
44, while the cycle time τ0 is equal to 12.

C. Final Transient Behavior

The net model for the final transient behavior of a dual–
blade cluster tool is shown in Fig.10. As before, it is an
extension of the model developed for steady–state behavior.

The time τend, for the same temporal information as in
Section 4.2, is equal to 53.

V. Extensions

The basic configurations of cluster tools discussed in pre-
vious sections can easily be modified to create more com-
plex structures. Three such extensions are presented in
greater detail: cluster tools with multiple loadlocks, clus-
ter tools with multiple identical chambers and cluster tools
with multiple robots. Several generalizations of the pre-
sented models are also discussed briefly.

A. Multiple Loadlocks

In the case when the τload + τunload constitutes a sig-
nificant component of the total time of processing a batch
of wafers, a considerable improvement can be achieved by
doubling the loadlock, as outlined in Fig.11.
The idea of using two loadlocks (instead of one) is to

process the contents of one loadlock while loading and un-
loding the other, introducing concurrency at yet another
level.
A Petri net model of a dual–loadlock cluster tool is out-

lined in Fig.12, where the details of the wafer processing are
abstracted by a single transition tsum with the occurrence
time equal to τinit + τsteady + τend.

It can be observed in Fig.12(b) that the two loadlocks
are connected by a “selection loop” (with a single token)
which switches the loadlock working with the chambers,
and makes the other loadlock available for loading and un-
loading.
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Fig. 9. Petri net model for initial transient behavior of a dual–blade tool.
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Fig. 10. Petri net model for final transient behavior of a dual–blade 3–chamber tool.
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Fig. 11. An outline of a 3–chamber 2–loadlock cluster tool.

Using P–invariants and subnets implied by them, the
total time for processing a batch using a single–loadlock
tool is (Fig.12(a)):

τ
(1)
batch = τload + τsum + τunload

while for a dual-loadlock cluster tool (Fig.12(b)) it is:

τ
(2)
batch = max(τsum, (τload + τunload + τsum)/2)

so, if the time τsum is comparable with τload + τunload, the
dual–loadlock cluster tool can have the throughput almost
twice that of a single–loadlock tool. On the other hand, if

τsum is much greater than τload + τunload, the performance
advantages of a dual–loadlock tool are rather insignificant
(but there can be a significant difference in availability be-
tween these two types of tools, especially when the loadlock
is not the most reliable component of a tool).

B. Multiple Chambers

For process bound tools, one (or more) of the chambers
is usually the bottleneck, i.e., the element which limits the
performance of the entire cluster tool. It is known [4] that
the bottleneck is the component with the maximum “ser-
vice demand”; in the context of an m-chamber cluster tool,
it will be the chamber with the longest processing time.
An obvious approach to improve the throughput of such a
system is to duplicate the critical chamber and use both
chambers alternatively to increase the throughput of the
tool. Fig.13 shows an outline of a 3–chamber cluster tool
with replicated chamber C2.
The Petri net model of a dual–blade cluster with two

identical chambers C2, for steady–state behavior, is shown
in Fig.14, in which the two chambers C2 are connected by
a “selection loop” (p′2, t

′

22, p2
′′, t22

′′), similar to the one in
Fig.12. The two copies of chamber C2 are used alterna-
tively, processing two wafers simultaneously, and therefore
increasing the throughput of the tool.
The net shown in Fig.14 has six P–invariants, four in-

variants corresponding to the chambers, one representing
the robot’s cycle of operations, and one corresponding to
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Fig. 14. Petri net model for the steady–state behavior of a dual–blade 3–chamber tool with two chambers C2.

the loop selecting the redundant chambers. The sets of
transitions in the implied subnets are:

invariant set of transitions

1 t1, t11
2 t′2, t

′

22

3 t′′2 , t
′′

22

4 t3, t33
5 t′22, t

′′

22

6 t01, t11, t12, t
′

22, t
′′

22, t23, t33, t34

The cycle time, in this case, is determined in a slightly
different way because different elements of the net are used
with different frequencies within a single cycle of the net.
T–invariants determine the frequencies of transition occur-
rences within each cycle. For the net in Fig.14, the only
T–invariant is equal to 1 for t′2, t

′′

2 , t
′

22 and t′′22, and is equal
to 2 for all remaining transitions. Consequently,

τ
(2)
0 = 0.5 ∗max(2τ1, τ2, τ3, 2τ4, τ6)

where τ5 is ignored because its set of transitions is a proper
subset of that for invariant 6, and the initial factor 0.5 is
due to the fact that 2 wafers are processed in each full
cycle of this model. τ6 is a weighted sum of T–invariants
and occurrence times of the corresponding transitions:

τ6 = 2f(t01) + 2f(t11) + 2f(t12) + f(t′′22) + f(t′21)+
2f(t23) + 2f(t33) + 2f(t34)

so, if the value of τ0 (Section 4.A) is determined by the
value of τ2 (which is the reason of introducing multiple

chamber C2), the cycle time τ
(2)
0 is almost one half of the

cycle time τ0.

It should be noted that the initial and final transient
behaviors of tools with multiple chambers become more
complicated, because of initial loading (and final unload-
ing) of all wafers from the multiple chambers. The details
are not presented here; they can be derived similarly as for
the cases discussed earlier.

C. Multiple Robots

For cluster tools with many chambers, it may be bene-
ficial to use several robots, each of which services a group
of chambers. The groups of chambers are coordinated in

such a way that the outcome of one group becomes the
load for the next group. Since multiple robots introduce
concurrency at the transport level, for cluster tools which
are transport bound, a significant reduction of the cycle
time can be achieved in this way.
Fig.15 shows an outline of a cluster tool with five cham-

bers serviced by two robots; the first robot services cham-
bers C1 and C2 and also loads chamber C3; the second
robot unloads chamber C3 (when it is ready) and moves
the unloaded wafers to consecutive chambers of the tool
(C4 and C5) and then back to the loadlock LL.
The Petri net model of this single–blade cluster tool, for

steady–state behavior, is shown in Fig.16. The model is
composed of two sections corresponding to the two robots,
which are connected by the submodel representing chamber
C3.
The model shown in Fig.16 has seven P–invariants, one

for each chamber and one for each robot, with the following
sets of transitions in invariant–implied subnets:

invariant set of transitions

1 t1, t01, t12, t20
2 t2, t12, t23, t31
3 t3, t23, t34
4 t4, t34, t45, t53
5 t5, t45, t56, t64
6 t01, t13, t23, t31, t12, t20
7 t34, t35, t56, t64, t45, t53

If the operations required for servicing the chambers are
split between the two robots, for transport bound cluster
tools the reduction of the cycle time due to the second
robot can be up to two times.

D. Generalized Models

Since all presented models have very “modular” struc-
ture, with easily identifiable submodels corresponding to
chambers, loadlocks and robots, the models can easily be
generalized to cover whole families of cluster tools with
similar structures.
For example, the steady–state model of a single–blade

cluster tool with k chambers is a straightforward extension
of the model shown in Fig.3; the section representing a
single chamber (and its robot’s operations) is replicated k
times, as shown in Fig.17 for k = 5.
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Fig. 16. Petri net model for the steady–state behavior of a single–blade 5–chamber cluster tool with two robots.
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Fig. 17. Petri net model for the steady–state behavior of a single–blade 5–chamber cluster tool.

The model shown in Fig.17 has six P–invariants, five of
them related to the five chambers, and the last one de-
scribing the robot’s cycle of operation. In the general case,
such a model for a tool with k chambers will have k + 1
P–invariants, with the cycle time defined by:

τ0 = max(τ1, τ2, ..., τk, τk+1)

where τi = f(ti) + f(ti−1,i) + f(ti,i+1) + f(ti+1,i−1), for
1 ≤ i ≤ k, and τk+1 = f(t01) + f(t12) + ... + f(tk,k+1) +
f(tk+1,k−1) + f(tk,k−2) + ...+ f(t20) + f(t1,k).

For dual–blade k–chamber cluster tool, the general
steady–state solution is also based on k + 1 invariant–
implied subnets, and the subnet cycle times are τi =
f(ti) + f(tii) for 1 ≤ i ≤ k, and τk+1 = f(t01) + f(t11) +
f(t12) + f(t22) + ...+ f(tkk) + f(tk,k+1).

Similarly, a model of a cluster tool with k loadlocks is
a straightforward generalization of the model outlined in
Fig.12(b), and the only difference is that the “selection
loop” connects k loadlocks sections instead of just two that
are shown in Fig.12(b). Fig.18 shows the loadlock selec-
tion part for the case of three loadlocks; the characteristic
modularity that can be seen in this model is used to derive
the cycle time for a general case of a cluster tool with k
loadlocks (assuming that all the loadlocks are identical and
that the time of switching from one loadlock to another is
negligible):

τ
(k)
0 = max(τsum, (τload + τunload + τsum)/k).

VI. Concluding Remarks

A systematic approach to modeling and analysis of a
large variety of cluster tools has been presented. It uses
timed Petri nets to represent the activities of the modeled
tools, including the durations of these activities. The de-
veloped models represent steady–state and well as transient
behaviors, so the analysis can cover all stages of wafer pro-
cessing. On the other hand, simplified models can be de-
rived for selected behaviors (e.g., steady–state), for which
general symbolic results can be obtained by structural anal-
ysis of net models.
The proposed approach is modular in the sense, that

more complicated models can be derived from simpler ones
by replicating some sections of the model. This modular
structure can be used to derive general performance char-
acteristics for “standardized” tools, even without detailed
analysis of their net models.
The proposed approach can also be used to model other

aspects of cluster tools, which are not discussed in this
paper. For example, many cluster tools use routing with
revisiting some of the chambers. Although the modeling
approach in such cases is slightly different, the basic ideas
remain very similar. If, for example, a 3–chamber tool (as
outlined in Fig.2) is used with revisiting chamber C2, the
flow of wafers is:

LL → C1 → C2 → C3 → C2 → LL

and the Petri net model can be (conceptually) derived from
a 4–chamber model in which the chambers C2 and C4 are
“folded” into one, by modifying the operations of the robot.



573

tload tunload

pbatch

p0 p1a
p44

p4

N N

tsum

(a)

p4

p44
p1ap0

tload’

pbatch’

tunload’

tunload"tload"

pbatch"
N

N N

N

tsum

(b)

Fig. 12. Outline of a model for a cluster tool with single loadlock (a)
and with two loadlocks (b).

Fig.19 shows one of possible Petri net models for such a tool
with a dual–blade robot; the double use of chamber 2 in
each cycle is represented by two unload/load transitions
(t2a and t2b) associated with chamber 2; t2a for the first
load and second unload operations and t2b for the second
load and first unload operations.

The model of chamber 3 is different from the others be-
cause the load and unload operations are performed sep-
arately for this chamber (the chamber is empty when the
load operations is performed, so there is nothing to unload,
and there is no “next” wafer to be loaded when the unload
operation is performed).

The sequence of robot’s operations is shown in Tab.4.

The net shown in Fig.19 has one T–invariant (with values
equal to 1 for all transitions except of t2, for which the value
is 2, representing the two visits of each wafer), and four P–
invariants, one for each chamber, and one for the robot.
The cycle time can thus be evaluated in the same way as
before.

The proposed approach can also be used for modeling
and analysis of cluster tools which process several types
of wafers within the same batch. Fig.20 shows a simple

LL

C1

C2

C3R

C2

Fig. 13. An outline of a 3–chamber tool with two chambers C2.

C1

C3

LL

C2

R1

C4

R2

C5

Fig. 15. An outline of a 5–chamber tool with two robots.

model for a dual–blade 3–chamber cluster tool which pro-
cesses two types of wafers. The wafer type, for consecutive
wafers picked from the loadlock, is generated by a simple
cyclic subnet with transitions tx1 and tx2; by modifying this
subnet, any other pattern of wafer types can be generated.
The type of a wafer is passed along the chambers using

the upper (type–1) or lower (type–2) path. Each chamber
is a free–choice structure (places p1, p2 and p3) which allows
two different types of processing (represented by t′1, t

′

2 and
t′3 for type–1 wafers, and by t′′1 , t

′′

2 and t′′3 for type–2 wafers).
The remaining part of the model is similar to the model
shown in Fig.8 although the operations of unloading and
loading the chambers are represented separately in Fig.20
because they may involve wafers of different types.
In the case when the batch is a random collection of wafer

types, a different approach is needed; the cycle connecting
tx1 and tx2 should be removed; the two transitions become
free–choice, and then the selection of wafer type becomes
random, described by “choice probabilities” assigned to tx1
and tx2.
Symbolic results derived at the end of Section 3 corre-

spond directly to the fixed and incremental cycle time pro-
posed in [21], where the (average) time required for process-
ing a batch of N wafers is characterized by two parameters,
τfixed, the ‘fixed cycle time’, and τ0, the incremental time
per one wafer during the steady–state behavior:

τbatch = τfixed +Nτ0
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Fig. 20. Petri net model for a dual–blade 3–chamber cluster tool with two types of wafers.

The only significant difference with respect to formulas
derived earlier in this paper is that the simple formula of
[21] does not take the transient behaviors into account, so
it underestimates the batch processing time.

Models of cluster tools contain many repetitions of the
same subnets (which represent the chambers or the load-
locks). All such multiple subnets can be “folded” into one
if a high–level Petri net is used. For example, in colored
Petri nets [5], tokens have attributes (called colors) which
may be used to distinguish the actual chamber or loadlock
in such a folded structure. Colored Petri net model sim-
plify the structure of the model, but their analysis becomes
more elaborate than in the case of place/transition nets.

Finally, it should be noted that net models can easily be-
come quite complicated, so their analysis without appropri-
ate tools may be too difficult to be practical. Fortunately,
many software tools have been developed for analysis of
different classes of Petri nets [24], and there are some ef-
forts to standardize the representation of net models which,
hopefully, will further increase their popularity.
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