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Abstract: Relative permittivity and soil moisture are highly correlated; therefore, the top boundary of
saturated soil gives strong reflections in ground-penetrating radar (GPR) profiles. Conventionally in
shallow groundwater systems, the first dominant reflection comes from the capillary fringe, followed
by the actual water table. The objective of this study was to calibrate and validate a site-specific
relationship between GPR-estimated depth to the capillary fringe (DCF) and measured water table
depth (WTDm). Common midpoint (CMP) GPR surveys were carried out in order to estimate the
average radar velocity, and common offset (CO) surveys were carried out to map the water table
variability in the 2017 and 2018 growing seasons. Also, GPR sampling volume geometry with radar
velocities in different soil layers was considered to support the CMP estimations. The regression
model (R2 = 0.9778) between DCF and WTDm, developed for the site in 2017, was validated using data
from 2018. A regression analysis between DCF and WTDm for the two growing seasons suggested
an average capillary height of 0.741 m (R2 = 0.911, n = 16), which is compatible with the existing
literature under similar soil conditions. The described method should be further developed over
several growing seasons to encompass wider water table variability.
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1. Introduction

Knowledge of the water table depth (WTD) is essential for understanding many environmental
scenarios, including water management in agriculture. WTD, where hydraulic pressure equals
atmospheric pressure, demarcates the saturated–unsaturated soil boundary. Naturally, a capillary
fringe, which is quasi–saturated but still has negative water pressure, occurs above the water table [1].
The capillary fringe, sometimes called the transition zone, in the vadose zone mediates space, water,
and nutrients for plants and soil organisms [2,3]. Both WTD and the depth to the top of the capillary
fringe (DCF) are subject to seasonal fluctuations, and thus, can affect agricultural water management
practices throughout the growing season. WTD can be measured through a borehole, but this is
generally unfeasible at larger scales, since it provides point scale measurements and is destructive.

High-resolution subsurface images of ground penetrating radar (GPR) can be used to measure
shallow WTD, especially in coarse-grain soils [4–6]. Various GPR field techniques for water table
studies have been developed over the decades. Annan et al. [7] stated that it was essential to have a
sharp boundary between saturated and unsaturated zones in a GPR profile for precise WTD estimation.
Larger wavelengths (i.e., lower frequencies) are recommended, even though the resolution of the radar
profile decreases with increasing wavelength [7]. Loeffler and Bano [8] also found that GPR frequencies
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higher than 900 MHz do not identify the top of the saturated zone (water table) due to the effect from
the capillary fringe and the transition zone. Therefore, most WTD studies have been carried out using
GPR frequencies lower than 250 MHz [9]. Nakashima et al. [10] and Takeshita et al. [11] used common
midpoint (CMP) data acquisition of GPR to explain the multiple reflections from the water table. CMP
data can be used to estimate the variation of relative permittivity (εr), and therefore, to calculate the
radar wave velocity (v) along the soil profile [10,12]. However, the common offset (CO) survey method
using 100 MHz is the most commonly used method in water table studies [5].

The GPR technique was employed during pumping tests to measure the temporal fluctuation of
WTD [13–15], and has been used for various groundwater studies [16–29]. However, it is challenging
to interpret a shallow water table depth associated with closely spaced soil horizons with only the
GPR outputs [30]. Advances in sophisticated sensor technology such as real-time WTD and soil
moisture data would help to improve the GPR outputs [4]. Still, site-specific GPR data validation is
needed to distinguish the accurate water table reflection from the capillary fringe or the transition
zone. The objective of this study was to calibrate and validate a site-specific relationship between
GPR-estimated DCF and measured WTD data in an agriculturally managed podzolic soil under boreal
climate conditions. We carried out GPR surveys along a 42 m transect over two growing seasons
through the use of a borehole with a real-time WTD sensor and soil moisture probes installed in
shallow soil.

2. Materials and Methods

2.1. GPR Theory

In GPR, a transmitter antenna (Tx) transmits high frequency (10 to 1200 MHz), short pulses of
electromagnetic (EM) energy into the subsurface, and a receiver antenna (Rx) captures the transmitted
energy [31,32]. Transmitted EM energy (henceforthreferred to as GPR wave) can be reflected, refracted,
or attenuated [33–35]. GPR wave propagation through the subsurface is highly sensitive to soil
moisture [32,33,36–41]. The water table reflects more than 40% of GPR wave energy in coarse-grained
soils [42]. Accordingly, the water table can give continuous and mostly flat reflections with high
amplitude in GPR radargrams [30,43–48]. Based on this advantage, GPR is instrumental and an
essential method in shallow groundwater studies [15,49]. Early researchers, for example Johnson [50],
Livari and Doolittle [51], and van Overmeeren [30,52], reported the ability of the GPR method to detect
water tables.

There are three characteristics to be considered when interpreting WTD from a GPR profile
(Figure 1). Firstly, saturation decreases from the bottom to the top of the capillary fringe (within the
transition zone), consequently increasing the radar wave velocity [53]. The thickness of this zone
depends on the amount, size (diameter), and interconnectivity of soil pores [4,54]. Secondly, oscillations
of the reflected radar pulse due to the transition zone result in a series of bands representing the
water table in the radar profile [4]. The top of the capillary fringe gives an earlier and more robust
reflection than the actual water table [55,56]. The wetting front also has the same phase reflection as
the water table [57]. Thirdly, the two-way travel time (TWTT) correspondence with the maximum
absolute amplitude of the airwave (tair) is the opposite of that of a reflection event (treflect) [55] (Figure 1).
In addition to the above characteristics, the maximum absolute amplitude occurs at the second half of
the respective GPR wavelet [58].

Equation (1) gives the radar signal velocity (v) of a nonmagnetic and low-loss geological material:

v =
c
√
εr

(1)
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where εr is the relative permittivity and c is the electromagnetic wave propagation velocity in free
space (=0.3 m/ns) [25,31,59]. In addition, the depth to a known reflector method [34] can be used to
calculate the GPR reflection wave velocity (vrw) of a monostatic antenna using Equation (2):

vrw =
2D
t

(2)

where t is the TWTT of the reflected GPR wave from a reflection boundary and D is the depth to the
boundary (ASTM D6432-11). εr of the soil just below the ground surface can be calculated using the
GPR direct groundwave method, using Equation (3) [32]:

εr =

[
c(tGW − tAW) + x

x

]2

(3)

where tGW and tAW are the direct groundwave and airwave arrival times, respectively, from the Tx to
the Rx antenna, and x is the antenna separation. εr can be derived from the measured volumetric soil
moisture content, θv, using an empirical model. Topp et al. [60] suggested the first model as given in
Equation (4) [61].

εr = 3.03 + 9.3θv + 146.0θ2
v − 76.7θ3

v (4)

Figure 1. Schematic diagram showing the uncertainty of the water table depth (WTD) estimation using
ground penetrating radar (GPR) due to effect of capillary rise under variable pore sizes (modified from
Paz et al. [5]).

2.2. Study Area

The experimental site included a silage-cornfield and a grass field at the Pynn’s Brook Research
Station (PBRS), managed by the Department of Fisheries and Land Resources of the Government of
Newfoundland and Labrador, located in Pasadena (49.073 N, 57.561 W), Newfoundland and Labrador
(NL), Canada. The area is characterized by a 2–5% slope, and the depth to the bedrock is >1 m from
the surface [62]. Details of the observed shallow soil profile are given in Table 1. The topsoil (εr1, d1) is
an organic soil layer with gravel. Immediately below the top layer is the Ap horizon (εr2, d2), classified
as loamy sand (sand = 82.0 ± 3.4%; silt = 11.6 ± 2.4%; clay = 6.4 ± 1.2%) [63]. The average bulk density
and porosity of the loamy sand layer (n = 28) are 1.31 g cm−3 (±0.07) and 51% (±0.03), respectively [63].
A well-sorted sandy soil layer (εr3, d3) was observed between the depths of 0.35 and 3.47 m, which
is likely to continue further down and act as a shallow aquifer. The average annual precipitation at
the site is 1113 mm per year, with 410 mm falling as snow, and the annual mean temperature is 4 ◦C.
Both parameters are as recorded at the nearest weather station, Deer Lake, NL, for last 30 years [64].
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Table 1. Details of different soil layers.

Soil Layer Depth Range (m) Layer Thickness (m) Relative Permittivity

Topsoil 0–0.05 d1 = 0.05 εr1
Loamy sand 0.05–0.35 d2 = 0.30 εr2

Sand (unsaturated) 0.35—top of the capillary fringe d3 = WTDm
1
− CF 2

− 0.35 εr3

1 Measured water table depth; 2 Height of the capillary fringe.

2.3. Data Collection and Basic Proccessing

The following materials and instruments were used for data acquisition, processing, and
interpretation in this study:

• PulseEKKO® Pro GPR system (Sensors and Software Inc., Mississauga, ON, Canada) with 100
and 250 MHz center frequency antennas

• Em50 data logger, and water level, electrical conductivity-, temperature- and SM-probes (METER
group Inc. (former Decagon Devices), Pullman, DC, USA)

• EKKO Project V3 R1 and IcePicker V3 R7 GPR data processing Software (Sensors and Software
Inc., Mississauga, ON, Canada)

The experimental site was ~50 m wide and 200 m long. The main GPR survey line of 42 m (along
the width of the field) was marked between the silage-cornfield and the grass field using wooden pegs
(Figure 2a). A shallow groundwater-monitoring borehole (3.47 m deep) was drilled at 19 m along the
main GPR survey line. The perpendicular distance between the borehole and the survey line was
0.5 m (Figure 2b). A water level, electrical conductivity, and temperature sensor, connected to a data
logger (Em50—Meter Group Inc. (former Decagon Devices), Pullman, DC, USA), was installed at
the bottom of the borehole. The water level sensor measured the height of the water column in the
borehole. Three soil moisture probes of 5 cm in length (ECH2O EC-5 of Meter Group Inc. (former
Decagon Devices), Pullman, DC, USA) were installed horizontally at depths of 0.1 m, 0.2 m, and 0.3 m
from the soil surface and connected to the same data logger (Figure 3a). An additional temperature
sensor was installed with the soil moisture probe at a depth of 0.2 m. GPR surveys were carried out
between the soil moisture probes and the borehole (Figure 3b). The soil moisture probes were oriented
perpendicular to the GPR survey direction.

Background GPR surveys were carried out: (i) before construction of the borehole, (ii) after the
construction of the borehole, but before installation of the water level sensor, and (iii) after installation of
the water level sensor. Sixteen 250 MHz GPR CO surveys (42 m in length, antenna separation = 0.38 m,
sampling interval = 0.05 m, temporal sampling interval = 200 ps) and 16 CMP surveys (near the
borehole) were performed in 2017 and 2018. Three 100 MHz GPR CO surveys (~30 m in length,
antenna separation = 1.0 m, sampling interval = 0.25 m, temporal sampling interval = 800 ps) were
also conducted under wet, median, and dry conditions in 2018 along the same GPR line.

Three basic GPR data processing steps were applied using the EKKO Project V3 R1 Software
(Sensors and Software Inc., Mississauga, ON, Canada), as listed below.

• Edit the first break (time-zero correction)
• Apply dewow and SEC2 (Spreading and Exponential Compensation) gain
• Background subtraction—applied to the full length of the trace

The dataset did not require extra processing such as bandpass filters, and the processing was
intentionally simplified to be applicable for every GPR profile in the dataset due to the low noise level
observed. After completing this basic processing, GPR files were exported to the IcePicker V3 R7
software (Sensors and Software Inc., Mississauga, ON, Canada) for automatic time picking.
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Figure 2. (a) Photograph captured during a 100 MHz survey at the starting point of the ground
penetrating radar (GPR) survey line. (b) Plan view of the borehole (BH) location with GPR survey
line and the location of soil moisture (SM) probes. A–A1 cross section is illustrated in Figure 3.
The intersection of the A–A1 section and GPR survey line is marked as “x”.

Figure 3. (a) A–A1 vertical cross-sectional view of the soil profile and the details of the borehole (BH).
(b) The sampling areas of soil moisture (SM) probes. “x” marks the position of the ground penetrating
radar (GPR) survey line.
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2.4. Data Analysis

CMP surveys were carried out using the borehole as the common midpoint at every field campaign
to calculate the average vrw from the surface down to the top of the capillary fringe. GPR CO survey
traces nearest to the borehole were only considered for the DCF estimation. Accordingly, the mean
TWTT to the capillary fringe reflection (mean tCF) was obtained from twelve GPR traces. The subjective
error was high when picking the leading edge of the wavelet [39]. Therefore, TWTT related to
the absolute maximum amplitude of the airwave (tair) and the reflection event (treflect) were picked.
This procedure was similar to the direct groundwave analysis by Grote et al. [65]. The actual tCF of
every single trace was determined using Equation (5).

tCF = treflect − tair (5)

DCF was then calculated from the mean tCF and the average vrw using Equation (2). DCF of eight
GPR surveys in 2017 were plotted in a linear regression model against the measured WTD (WTDm)
using the water level sensor at the same time as the GPR surveys. The regression equation obtained
from 2017 data was used to predict WTD (WTDp) for eight survey days in 2018. The WTDp and WTDm

for 2018 were compared using a 1:1 plot and root mean square error (RMSE). In a second step, WTDm

and DCF for all 16-survey days were plotted in a linear regression plot to estimate the average capillary
height. The slope and the intercept of the regression line were compared statistically with those of the
1:1 line. In the same manner, the prediction line was statistically compared with the 1:1 line.

A Pearson’s correlation test was performed at α = 0.05 (95% confidence level) for 33 variables
using 12 out of 16 survey days (n = 12) to evaluate the results. The variables used for the correlation
analysis were WTD, groundwater temperature (GW–Temp), electrical conductivity of groundwater
(GW–EC), soil moisture at 30 cm depth (SM30), 20 cm depth (SM20), and 10 cm depth (SM10), soil
temperature at 20 cm depth (Temp20), daily precipitation (Daily P), daily evapotranspiration (Daily E),
daily P minus daily E (P–E 1), and cumulative daily P minus daily E (P–E 2 to P–E 20 from 2 days to
20 days cumulative, respectively), εr−avg, εr1, εr2, and εr3 [66].

3. Results and Discussion

3.1. GPR Survey Outputs

GPR profiles from 250 MHz provided high-resolution radar images; therefore, multiple reflections
near the water table can be clearly observed (Figure 4). The elevations have not been corrected;
therefore, the reflections in Figure 4 can be observed as undulating boundaries. The GPR velocity is
independent of the frequency (for frequencies above 100 MHz to 1500 MHz) and dependent only on
the relative permittivity and the magnetic permeability [67]. Thus, the same velocity derived from
250 MHz could be used to analyze 100 MHz data on the same day; 100 MHz gives low-resolution radar
images with a relatively flat and clear boundary for the water table zone, and with fewer multiple
reflections (Figure 5a). The results from this study indicate that 250 MHz is suitable to examine shallow
DCF, whereas 100 MHz is more suitable to examine deeper WTD.

3.2. Estimation of DCF

The DCF derived using Equation (2), and CMP derived radar velocities for all 16 GPR survey
days, are given in Table 2. Two examples of semblance analyses for CMP velocity estimation are
illustrated in Figure 6. The fluctuation of WTDm related to GPR survey days (n = 16) varied from
1.85 m to 2.91 m. For the entire study period covering growing seasons in 2017 and 2018 (496 days),
the WTDm varied between 1.58–2.95 m. The shallowest WTDm of 1.58 m was observed in the
spring of 2018 (30 April 2018), while the deepest WTDm of 2.95 m was found in the early fall of 2017
(10–12 September 2017). Throughout the studied period, the average WTDm was 2.48 m, with an
annual average of 2.69 m in 2017 and 2.34 m in 2018 during the growing season (from May to the
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end of October). These data imply that the 2017 growing season was relatively dry, which was also
confirmed by weather data collected onsite (Appendix A).

Figure 4. Two-way travel time (TWTT) picks of the maximum amplitude of the reflection (treflect), after
time-correction (tCF), and the mean tCF. Ground penetrating radar (GPR) estimated (250 MHz) depth to
the capillary fringe (DCF) and the measured water table depth (WTDm) at the borehole (BH): (a) under
wet soil moisture conditions on 23 June, (b) under median soil moisture conditions on 3 October and
(c) under dry soil moisture conditions on 29 August in the growing season of 2017.
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Figure 5. Comparison of (a) 100 MHz, and (b) 250 MHz ground penetrating radar (GPR) radargrams.
Two-way travel time (TWTT) picks after time-correction, tCF, and the mean tCF are shown with
measured water table depth (WTDm) at the borehole (BH): (above) under wet soil moisture conditions
on 1 June, (middle) under median soil moisture conditions on 20 July, and (below) under dry soil
moisture conditions on 9 August in the growing season of 2018.
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Figure 6. Semblance analysis for velocity estimation of common midpoint (CMP) data on (a) 23 June 2017
(vrw = 0.091 m/ns) and (b) 31 October 2018 (vrw = 0.074 m/ns).

Table 2. Ground penetrating radar (GPR) estimated depth to the top of the capillary fringe (DCF)
which is derived from the mean two-way travel time (TWTT) to the capillary fringe reflection (tCF) and
common mid point (CMP) derived radar wave velocity (vrw) using Equation (2) for all GPR surveys.
Standard error (SE) of mean, and minimum (Min), median, and maximum (Max) of tCF time picks are
also given.

Date
tCF (ns) CMP Derived

vrw (m/ns)
DCF (m)

(= vrw × tCF/2)Min Median Max Mean SE

23 June 2017 32.65 35.08 38.04 35.07 ± 1.70 0.43 0.091 1.60
6 July 2017 27.97 28.51 34.80 29.21 ± 1.93 0.58 0.112 1.64
28 July 2017 27.71 28.82 39.78 32.40 ± 5.39 1.44 0.117 1.90

18 August 2017 32.11 37.81 39.67 36.43 ± 2.87 0.70 0.117 2.13
29 August 2017 30.21 32.29 39.16 33.59 ± 2.90 0.70 0.130 2.18

15 September 2017 27.70 35.23 38.83 34.31 ± 3.86 1.11 0.125 2.14
3 October 2017 32.80 36.26 42.15 36.84 ± 3.69 1.02 0.107 1.97

7 November 2017 33.09 39.45 44.36 40.23 ± 4.53 1.26 0.090 1.81
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Table 2. Cont.

Date
tCF (ns) CMP Derived

vrw (m/ns)
DCF (m)

(= vrw × tCF/2)Min Median Max Mean SE

1 June 2018 35.64 39.35 40.59 38.08 ± 2.06 0.47 0.082 1.56
20 June 2018 30.18 31.38 40.54 33.35 ± 3.82 0.83 0.100 1.67
29 June 2018 30.07 30.73 34.40 31.18 ± 1.35 0.33 0.103 1.61
20 July 2018 28.07 35.20 37.56 32.89 ± 3.33 0.77 0.113 1.86

9 August 2018 28.15 28.80 32.69 30.25 ± 2.01 0.44 0.125 1.89
7 September 2018 27.78 29.29 36.47 30.05 ± 2.67 0.67 0.129 1.94

2 October 2018 34.33 35.42 41.31 36.93 ± 2.65 0.61 0.091 1.68
31 October 2018 27.93 31.27 35.56 31.64 ± 2.78 0.61 0.074 1.17

3.3. Site-Specific Relationship for WTDm vs. DCF

The WTDm at the same time as the GPR survey and corresponding DCF obtained using GPR data
are plotted in Figure 7a. A strong linear regression with an R2 of 0.98 was found (Equation (6)) between
WTDm and DCF for GPR surveys in 2017:

WTDm = 0.6956DCF + 1.3884 (6)

Figure 7. (a) Linear regression plot of measured water table depth (WTDm) vs. ground penetrating
radar (GPR) estimated depth to the capillary fringe (DCF) for 2017 data (n = 8). (b) The 1:1 plot of the
predicted water table depth (WTDp) vs. WTDm in 2018 (n = 8).

The WTDp for 2018 based on the GPR measured DCF and the regression model (Equation (6)) was
plotted against the WTDm in a 1:1 plot (Figure 7b). The slope of the prediction line (1.6) and that of the
1:1 line (1.0) are significantly different at α = 0.05 (p-value = 0.004, df = 12, tcritical = 2.179 < tcalculated =

3.536) (Appendix B, Table A1). The error of WTD prediction was high during the wet survey days and
overestimated from the 1:1 line (Figure 7b). This behaviour could be due to the fact that the capillary
fringe would not fluctuate uniformly with the WTD fluctuation. As Bentley and Trenholm [55] stated,
the capillary height is greater when the WTD is increasing (during discharging) and lower when it is
decreasing (during recharging). However, the present study determines the capillary height based
on the WTDm through a regression equation (Equation (6)). The regression equation is a generalized
form of all measured data throughout a growing season. Therefore, the regression model might
not be suitable when there is a sudden decrease in WTD, like during heavy or long duration rain
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events. The rain event at the end of the growing season of 2018 was unexpectedly heavy (Appendix A);
consequently, it produced a maximum error in the WTD prediction on 31 October 2018 (Figure 8).
However, it is worth noting that the RMSE of 0.194 m between WTDm and WTDp can be considered
acceptable for the scale of application in most agricultural practices.

Figure 8. Temporal variability of the measured water table depth (WTDm) and the estimated depth
to the capillary fringe (DCF) using ground penetrating radar (GPR) for both years, and the predicted
water table depth (WTDp) for 2018.

In general, the spatial variation of DCF cannot be measured directly under heterogeneous field
conditions [68]. The proposed method provides a noninvasive approach to estimate DCF, which is
more beneficial in agricultural fields during the growing season since the capillary zone provides the
best soil moisture conditions for plants. The advantage of the proposed method is that both WTD
and DCF can be estimated in real time. The results would have been improved if a broader range of
measured data were available under different soil moisture and variable water table conditions.

As seen in Figure 9, WTDm and DCF for all survey days have a linear relationship (WTDm = 1.0123
DCF + 0.741) with an R2 of 0.91. The slopes of the regression line (1.01) and the slope of the 1:1 line (1.00)
are not significantly different at α = 0.05 (p-value = 0.89, df = 28, tcritical = 2.048 > tcalculated = 0.146)
(Appendix B, Table A2). Therefore, the intercept of the regression line (0.74 m, n = 16) can be considered
as the average capillary height within the growing seasons in 2017 and 2018. As a result, an average
capillary height of 0.74 m was suggested for the particular site throughout the growing season.
The average value agrees with the value of ~0.70 m capillary height for similar soil conditions described
by Liu et al. [69]. However, in contrast, Saintenoy and Hopmans argued that DCF cannot be estimated
directly because the maximum reflection is not related to the capillary fringe, but rather, to the inflection
point of the transition curve [70]. It is worth noting that in the present study, we believe that transition
zone reflections have no effect due to their relatively larger wavelength (i.e., low frequency) when
compared to the transition zone thickness, as described by Bano [9].
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Figure 9. Comparison of the measured water table depth (WTDm) and the estimated depth to the
capillary fringe (DCF) based on ground penetrating radar (GPR) data for all 16 GPR surveys. 1:1 line
indicates the measured and GPR-based water table depth.

3.4. Evaluation of Results

3.4.1. Calculation of εr

There are three soil layers in the experimental plot, as described in Section 2.2. The first layer
occurs at 0–0.05 m soil depth (d1 = 0.05 m, εr1), the second layer between 0.05–0.35 m (d2 = 0.30 m,
εr2), and the third from 0.35 m to the top of the capillary fringe (d3, εr3). The average εr from the
surface to the top of the capillary fringe (εr−avg) can be obtained from Equation (1), because vrw is
known from the CMP surveys. It is worth noting that CMP analysis might be suitable for layer velocity
estimation as well; however, in the present study, the resolution was not sufficient to extract the layer
velocities separately, due to low soil layer thickness. Instead, εr1 can be calculated using the GPR
direct groundwave arrival time (Equation (3)), while εr2 can be calculated using soil moisture data
(Equation (4)). Once εr−avg, εr1, and εr2 are known, εr3, which has the key contribution to the εr−avg,
can be calculated.

The calculated εr3 was compared with the literature and onsite weather data to evaluate the
results of this study. The average WTDm in all GPR survey days (n = 16) was 2.55 m. When the
average capillary height was approximated as 0.70 m (according to [69] and the present study),
the average d3 was calculated as 1.50 m (2.55 − 0.70 − (0.05 + 0.30)). Figure 10 illustrates the
overlapping of these three soil layers with the sampling volume geometry of the GPR CO survey,
as suggested by Illawathure et al. [71]. Twelve GPR traces collected near the borehole and the soil
moisture probes (i.e., the same as in the calculation of mean tCF) were considered for the illustration
and calculations below.
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Figure 10. Ground penetrating radar (GPR) wave paths related to twelve GPR traces at the intersection
of the GPR survey line and the A–A1 plane. A 250 MHz CO survey with 0.38 m antenna separation and
0.05 m sampling interval was considered. Tx1 and Tx12 = transmitter positions, Rx1 and Rx12 = receiver
positions, corresponding to first and twelfth trace. x = intersection of A–A1 plane (refer to Figure 2b).
Note that GPR wave paths are assumed to be straight.

The soil moisture data logging interval was 60 min. Therefore, each daily mean soil moisture
data point had 24 replicated measurements. Each soil moisture probe had a cylindrical sampling
volume (radius ~ 0.05 m, volume = 0.715 L) that covered 0.05 m soil heights, both above and below the
respective probe (Figure 3b) [72,73]. Daily mean soil moisture values at three depths were converted to
daily mean εr values using Equation (4); an average εr for the soil layer between 0.05–0.35 m (εr2) was
obtained from those εr values.

If the weighted average of εr1, εr2, and εr3 was considered as εr−avg, the percentage sample area of
each layer should be calculated with respect to the total GPR sample area (Figure 10 and Table 3). If w
is the weight and x the data number, then the weighted average (x) equals:

x =

∑n
i=1 wi × xi∑n

i=1 wi
(7)

e.g., estimation of the εr3 on 6/23/2017 (first data row in Table 4)

εr−avg =
(3.4% × εr1)+(19.5% × εr2)+(77.1% × εr3)

100%

εr3 =
εr−avg−(0.034εr1 + 0.195εr2)

0.771

εr3 =
10.9−(0.034 × 23.0 + 0.195 × 10.5)

0.771

εr3 = 10.5
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Table 3. Percentage sample area of each soil layer out of the total ground penetrating radar (GPR)
sample area related to twelve GPR traces collected from the top of the soil moisture probes on the
vertical plane of the GPR survey (refer to Figure 10).

Soil Layer Polygon
(Refer to Figure 9) Area (m2)

Percentage Out of Total
GPR Sample Area (%)

Topsoil pqsr 0.0462 3.4
Loamy sand rsut 0.2667 19.5

Sand (unsaturated) tuwv 1.0561 77.1
Total pqwv 1.3690 100.0

Table 4. Assumed depth of unsaturated sandy layer (d3), and calculated relative permittivities.

Date WTD (m) d3 (=WTD − 0.7 − d1 − d2) (m) εr−avg εr1 εr2 εr3

23 June 2017 2.47 1.42 10.9 23.0 10.5 10.5
6 July 2017 2.55 1.50 7.1 4.0 12.2 6.0

28 July 2017 2.74 1.69 6.5 13.2 7.5 6.1
18 August 2017 2.85 1.80 6.5 10.9 7.8 6.0
29 August 2017 2.90 1.85 5.3 19.5 8.1 4.0

15 September 2017 2.91 1.86 5.7 14.0 11.2 4.2
3 October 2017 2.77 1.72 7.9 6.2 11.6 7.0

7 November 2017 2.63 1.58 11.2 13.1 13.7 10.5
1 June 2018 2.24 1.19 13.3 15.2 12.2 13.5
20 June 2018 2.33 1.28 9.1 14.0 12.5 8.0
29 June 2018 2.31 1.26 8.4 19.5 12.1 7.0
20 July 2018 2.54 1.49 7.0 20.0 8.6 6.3

9 August 2018 2.61 1.56 5.8 6.5 12.8 4.0
7 September 2018 2.75 1.70 5.4 4.0 12.8 4.1

2 October 2018 2.56 1.51 10.8 8.0 12.4 10.5
31 October 2018 1.86 0.81 16.5 23.3 13.1 17.0

3.4.2. Correlation Analysis

The results of the Pearson’s correlation test are shown in Figure 11. The dataset and the detailed
correlation analysis are given in Appendix C (Table A3 and Figure A3, respectively). The present
results reveal that most of the variables tested were not correlated with WTD (also see Figure A1).
However, the WTD had strong negative correlations with εr−avg (r = −0.9041, p = 0.0001) and εr3

(r = −0.9019, p = 0.0001). Dry sand had lower εr than wet sand [74,75]. According to Equations (1)
and (2), εr and WTD are inversely proportional, based on the fact that water table recharging makes
unsaturated soil wetter, and water table discharging makes unsaturated soil drier [73]. It was also clear
that εr−avg and εr3 were strongly positively correlated (r = 0.9961, p = 0.0000), as εr3 was dominant in
the εr−avg calculation (Figure 10 and Table 3). WTD had negative (but moderate) correlations with P–E
11 through P–E 20, though the p-value of WTD vs. P–E 12 was slightly above the α-level (p = 0.0534).
The highest correlation among P–E vs. WTD was for P–E 16 (r = −0.6285, p= 0.0286). This suggested
that the WTD does not quickly respond to variables like daily P, daily E, or daily P–E, and that there is
a long time-lag between WTD response and P–E timing (Figure A2). This could be due to high runoff,
relatively thicker aquifer, etc. [76,77]. Since it is a sandy aquifer, low infiltration was not a factor in the
long responsive time of the WTD to the P–E [78,79].

GW–EC or GW–Temp were not correlated with any of other variables tested. The Temp20 had
a strong negative correlation with P–E 8, P–E 9, P–E 10, and P–E 11, with the maximum at P–E 10
(r = −0.8478, p = 0.0005). Further, Temp20 had moderate correlations with SM20 and SM30 as well.
To support these observations, the collected TDR data were examined. First, the SM10, SM20, and SM30
variables had strong positive correlations with each other (r > 0.95, p = 0.00), since all three values
mostly represented the same soil layer. Next, SM10 had no correlation with P, E, or P–E, while both
SM20 and SM30 had no correlation with P, E, P–E, P–E 1, or P–E 2. The highest correlations between
SM and cumulative P–E were as follows: between SM10 and P–E 6 (r = 0.7121, p = 0.0094), between
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SM20 and P–E 6 (r = 0.7486, p = 0.0051), and between SM30 and P–E 10 (r = 0.7920, p = 0.0021). From
SM10 to SM30, the time lag of P–E increased, as did the strength of the correlation. These results
imply that cumulative P–E affected the soil moisture as a function of depth and time. Cumulative P–E
also significantly affected the soil temperature at 20 cm, but not the temperature of the groundwater.
The same idea was reflected from the correlation analysis between εr and other variables as well [80,81].

Figure 11. Pearson’s correlation coefficient (r) of 33 variables tested (p > 0.05 are crossed).

εr1 had no correlation with any of the variables tested. It is worth noting that the depth of this
first soil layer was only 5 cm. It is obvious that εr2 had a strong positive correlation with SM10, SM20,
and SM30 (r > 0.98, p = 0.00), since εr2 was calculated from TDR data. Also, εr2 had a negative but
moderate correlation with Temp20 (r = −0.6551, p = 0.0208). There are positive moderate correlations
between εr2 and from P–E 3 to P–E 20. εr3 also had a negative but moderate correlation with Temp20
(r = −0.7226, p = 0.0079), and a moderate positive correlation with P–E 11 (r = 0.6516, p = 0.0217) and
beyond, except P–E 12 and P–E 15. This was because part of the cumulative P–E infiltrates through
the soil, increasing soil moisture and lowering soil temperature [81,82]. The soil moisture governs the
dielectric properties of the soil; therefore, the correlation analysis suggested that the behavior of the
estimated and calculated data was supported by the measured and onsite weather data.

4. Summary

In GPR, the Rx records different amplitudes of the receiving signals with respect to wave travel
time. The GPR interpreter observes the reflected or direct radar waves at Rx in a radargram and obtains
relevant TWTTs. Without knowing the vrw, it is impossible to derive DCF (e.g., using Equation (2)).
Under these circumstances, there are two challenges to estimating the DCF in a GPR radargram:
First, picking the TWTT of the capillary fringe reflection correctly; and second, knowing or properly
assuming the average vrw from the surface down to the top of the capillary fringe reflection.

The procedures described in the literature were combined to overcome the challenges of picking
the correct TWTT. The standard error of the mean tCF was > 1 except in 4 cases in 2017: 1.44 ns (28 July),
1.26 ns (7 November), 1.11 ns (15 September), and 1.02 ns (3 October). The standard deviation (SD)
of the mean tCF was above 3 ns for those four survey days. The error associated with the surveys
was mostly due to a high signal-to-noise ratio in the data acquisition. The lowest SDs of the mean tCF

were 1.70 ns and 1.35 ns for 23 June 2017 and 29 June 2018, respectively. The inconsistency of the GPR
reflection amplitude under wet conditions, as observed by Lunt et al. [21], could be a reason for the
error of time picking observed in our data set.

The challenge of defining vrw during GPR data analysis is associated with determining the average
εr of the material above the capillary fringe. εr controls the vrw and the reflection coefficients at the
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interfaces. The common vrw values suggested in the literature may not be accurate for heterogeneous
soil profiles in highly variable field conditions under different agricultural practices. In addition,
seasonal fluctuation of WTD and capillary height can significantly change the average εr. However,
vrw can be measured by using multi-offset GPR survey methods such as CMP and WARR (wide-angle
reflection and refraction), even though it is time- and labor- consuming to carry out multi-offset surveys
in every field campaign [5,32]. In the present study, three different εr values were assumed for different
soil layers above the capillary fringe. A weighted average method using CMP data, ground wave
analysis, and TDR data based on the GPR sampling geometry was used to calculate εr of unsaturated
soil layers in order to evaluate the velocity estimations.

These types approaches might help in addressing natural barriers of inherent soil properties and
the effect of their variability on agriculture. Maintaining the required soil moisture in the root zone
will lead to optimum crop yields, and implementing the best possible water management strategies
will reduce groundwater pollution threats due to intensive agriculture. Nevertheless, the average
capillary height considered (0.70 m) based on the study of Liu et al. [69] to estimate the εr3 is closer to
the average capillary height obtained from this study (0.74 m). It should be mentioned that taking an
average capillary height would be reasonable under static conditions, but this would not always be
suitable if the seasonal fluctuation of WTD is significant during the study period.
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Abbreviations

BH Borehole
CMP Common mid-point
CO Common offset
DCF Depth to the top of the capillary fringe
GPR Ground Penetrating Radar
max Maximum
min Minimum
n Number of samples
NL Newfoundland
PBRS Pynn’s Brook Research Station
r Correlation coefficient
Rx Receiver antenna
SM Soil moisture
TDR Time Domain Reflectometry
trw Reflected wave travel time
TWTT Two-way travel time of GPR waves
Tx Transmitter antenna
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v Average radar velocity
vrw Reflected wave velocity
WTD Water table depth
WTDm Measured water table depth
WTDp Predicted water table depth
α Attenuation coefficient/ significance interval
ε Absolute permittivity
ε0 Permittivity of a vacuum
εr Relative permittivity (dielectric constant)
θv Volumetric soil moisture content
σ Electrical conductivity

Appendix A. Graphs of Measured Data

Figure A1. (a) Temporal variation of water table depth (WTD) and soil moisture (SM) at three depths
measured near the borehole; (b) daily rainfall and daily average WTD fluctuation throughout the
study period.
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Figure A2. Time lag for water table response to cumulative P-E (daily precipitation minus daily
evapotranspiration; (a) one-day time lag, (b) 8-day time lag, and (c) 16-day time lag.
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Appendix B. Summary of Statistical Analysis

Comparing the Slopes of Regression Line and Prediction Line with 1:1 Line

To test whether the slopes for two independent populations are equal, the following null and alternative
hypotheses were tested:

Hypothesis 0 (H0). β1 = β2 i.e., β1 − β2 = 0

Hypothesis 1 (H1). β1 , β2 i.e., β1 − β2 , 0

The test statistic is

t =
b1 − b2√
s2

b1
+ s2

b2

∼ T(n1 + n2 − 4)

n = sample size; b1 and b2 are slopes,

sb =
sy.x

sx
√

n−1

sy.x = standard error of predicted y for each x in the regression, sx = standard deviation.
If the null hypothesis is true, then

β1 − β2 ∼ N
(
0, sb1−b2

)
where

sb1−b2 =
√

s2
b1
+ s2

b2

Table A1. Comparison of regression line and 1:1 line.

Regression 1:1 Line sb1-b2 0.085

n 16 16 t 0.146
b 1.012 1.000 df 28

sy.x 0.086 0.000 α 0.050
sx 0.264 0.264 p-value 0.885
sb 0.085 0.000 t-critical 2.048

significant No

Since t < t-critical and p-value > α, two slopes are not significantly different at α = 0.05.

Table A2. Comparison of prediction line and 1:1 line.

Regression 1:1 Line sb1-b2 0.169

n 8 8 t 3.536
b 1.597 1.000 df 12

sy.x 0.086 0.000 α 0.050
sx 0.171 0.171 p-value 0.004
sb 0.169 0.000 t-critical 2.179

significant Yes

Since t > t-critical and p-value < α, two slopes are significantly different at α = 0.05.
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Appendix C. Tables & Figures

Table A3. Dataset for correlation analysis.

Date WTD GW-Temp
(◦C)

GW-EC
(mS/cm)

SM30
(m3/m3)

SM20
(m3/m3)

Temp 20
(◦C)

SM10
(m3/m3)

Daily P
(mm)

Daily E
(mm)

28 July 2017 2.74 7.4 0.278 0.1972 0.1449 21.0 0.1029 0.3 2.3

18 August 2017 2.85 8.4 0.281 0.2153 0.1424 17.5 0.0996 0.8 3.1

29 August 2017 2.89 8.8 0.280 0.2294 0.1394 16.5 0.0993 0.0 3.7

15 September 2017 2.91 9.2 0.290 0.2822 0.2162 14.0 0.1384 0.0 3.1

03 October 2017 2.77 9.4 0.287 0.2808 0.2344 9.4 0.1407 0.0 2.3

07 November 2017 2.63 9.2 0.301 0.2966 0.2803 8.0 0.1662 15.2 0.4

01 June 2018 2.24 4.7 0.270 0.2890 0.2469 11.8 0.1501 0.0 3.9

20 July 2018 2.54 6.4 0.259 0.2260 0.1668 20.8 0.1138 0.0 5.7

09 August 2018 2.65 8.8 0.252 0.2923 0.2606 20.7 0.1627 13.7 3.6

07 September 2018 2.75 9.1 0.266 0.2932 0.2605 16.1 0.1598 0.0 2.6

03 October 2018 2.54 9.6 0.267 0.2850 0.2534 8.5 0.1480 0.0 1.0

31 October 2018 1.85 9.3 0.264 0.2960 0.2756 6.8 0.1560 0.3 0.0

Date P-E 1 P-E 2 P-E 3 P-E 4 P-E 5 P-E 6 P-E 7 P-E 8 P-E 9 P-E 10 P-E 11 P-E 12

28 July 2017 −2.1 −6.8 −12.0 −16.3 −20.5 −25.5 −28.9 −32.0 −31.6 −36.0 −41.5 −46.6

18 August 2017 −2.4 −4.1 −5.4 −10.0 −13.6 −8.7 −5.9 −10.7 −15.5 −19.3 −22.7 −6.0

29 August 2017 −3.7 −7.6 −11.1 3.7 0.3 1.4 3.2 1.9 0.7 2.1 −1.5 −3.9

15 September 2017 −3.1 −5.8 8.1 24.2 23.1 21.0 18.4 19.8 27.0 24.9 21.6 25.1

03 October 2017 −2.3 −4.1 −6.4 −7.8 −8.1 2.9 8.9 33.9 32.6 31.6 31.3 29.0

07 November 2017 14.9 22.2 20.9 29.7 30.6 29.4 27.8 27.8 27.1 26.2 27.3 31.3

01 June 2018 −3.9 −7.8 −10.1 7.1 3.4 0.8 −0.5 −0.8 1.2 7.3 5.5 2.8

20 July 2018 −5.7 −9.1 −10.5 −14.7 −14.7 −14.7 −14.7 −14.7 −14.7 −14.7 −14.7 −14.7

09 August 2018 10.2 25.6 25.1 22.5 23.1 20.6 17.1 16.8 11.7 6.8 5.5 42.1

07 September 2018 −2.6 −2.6 −2.6 −2.6 −2.6 −2.6 −2.6 −2.6 −2.6 −5.2 −8.3 −11.7

03 October 2018 −1.0 −2.7 −3.3 −5.2 −2.0 15.7 25.5 24.7 22.6 20.9 21.6 27.7

31 October 2018 0.2 −0.3 23.7 42.0 41.5 41.0 48.9 51.9 51.2 50.9 79.0 89.3
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Table A3. Cont.

Date WTD GW-Temp
(◦C)

GW-EC
(mS/cm)

SM30
(m3/m3)

SM20
(m3/m3)

Temp 20
(◦C)

SM10
(m3/m3)

Daily P
(mm)

Daily E
(mm)

Date P-E 13 P-E 14 P-E 15 P-E 16 P-E 17 P-E 18 P-E 19 P-E 20 εr−avg εr1 εr2 εr3

28 July 2017 −51.8 −56.9 −62.3 −67.9 −71.2 −75.5 −80.9 −83.9 6.5 13 7.5 6.1

18 August 2017 −9.2 −13.8 −18.0 −22.4 −24.2 −8.4 −12.1 −-15.0 6.5 11 7.8 6

29 August 2017 −5.6 −7.0 −11.5 −15.1 −10.2 −7.4 −12.3 −17.1 5.3 20 8.1 4

15 September 2017 21.7 20.6 24.4 22.9 19.1 15.4 11.5 8.0 5.7 14 11 4.2

03 October 2017 26.2 40.2 41.0 38.3 36.6 40.5 37.3 34.7 7.9 6.2 12 7

07 November 2017 29.9 28.4 26.8 25.5 24.7 26.5 29.9 28.5 11.2 13 14 11

01 June 2018 5.8 2.6 0.1 0.3 −0.6 2.7 −0.5 −3.1 13.3 15 12 14

20 July 2018 −14.7 −14.7 −14.7 −14.7 −14.7 −14.7 −14.7 −14.7 7 20 8.6 6.3

09 August 2018 38.7 38.5 34.8 33.3 34.3 42.4 41.7 36.9 5.8 6.5 13 4

07 September 2018 −15.0 −18.6 −22.6 −24.4 −26.8 −30.6 −33.9 −37.9 5.4 4 13 4.1

03 October 2018 26.0 25.4 23.7 36.9 48.6 49.0 45.8 42.8 10.8 8 12 11

31 October 2018 91.0 99.6 99.6 114.3 115.3 116.7 116.8 116.9 16.5 23 13 17
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Figure A3. Results of Pearson’s correlation analysis. The correlation coefficients (r) are shown in the lower triangle, and the corresponding p-values are shown in the
upper triangle.
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