
DESIGN OF A LOW-COST UNMANNED

SURFACE VEHICLE FOR SWARM ROBOTICS

RESEARCH IN LABORATORY

ENVIRONMENTS

by c© Calvin Gregory

A thesis submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

October 2020

St. John’s Newfoundland

Abstract

Swarm robotics is the study of groups of simple, typically inexpensive agents working

collaboratively toward a common goal. Such systems offer several benefits over single-

robot solutions: they are flexible, scalable, and robust to the failure of individual

agents. The majority of existing work in this field has focused on robots operating in

terrestrial environments but the benefits of swarm systems extend to applications in

the marine domain as well. The current scarcity of marine robotics platforms suitable

for swarm research is detrimental to progress in this field. Of the few that exist, no

publicly available unmanned surface vehicles can operate in a laboratory environment;

an indoor tank of water where the vessels, temperature, lighting, etc. can be observed

and controlled at all times. Laboratory testing is a common intermediate step in the

hardware validation of algorithms. This thesis details the design of the microUSV: a

small, inexpensive, laboratory-based platform developed to fill this gap.

The microUSV system was validated by performing laboratory testing of two algo-

rithms: a waypoint-following controller and orbital retrieval. The waypoint-following

controller was a simple PI controller implementation which corrects a vessel’s speed

and heading to seek predetermined goal positions. The orbital retrieval algorithm is

a novel method for a swarm of unmanned surface vehicles to gather floating marine

contaminants such as plastics. The vessels follow a circular path, orbiting around

a central collection location and veer outwards to retrieve contaminants they detect

outside the designated area. This method can potentially be used to cluster floating

plastics together from a large region to facilitate cleanup.

ii

Acknowledgements

I wish to extend my deepest thanks to Dr. Andrew Vardy and Dr. Ralf Bachmayer

for their guidance and supervision throughout this degree program: I could never

have succeeded without you. Special thanks to Paul Brett and Joe Singleton for their

support and providing access to facilities at the Marine Institute. You continue to

open both physical and metaphorical doors for me. I am grateful to Michael Dawson,

Anthony Randell, Whymarrh Whitby, and Zach Brown who provided invaluable sug-

gestions and insight during the design process. Thanks also to Hilary Sinclair, Jerry

Smith, and Mitchell Burke who helped me with fabrication and the lab technicians,

Craig Mitchell, Trevor Clark, and Matt Curtis for helping me set up my experiments.

Finally, I would like to thank my parents for their constant encouragement and con-

fidence in my accomplishments; especially when I was in doubt.

The work discussed in this thesis was partially supported by the Natural Sciences

and Engineering Research Council of Canada.

iii

Contents

Abstract ii

Acknowledgements iii

List of Tables viii

List of Figures ix

List of Code Listings xi

List of Acronyms xii

1 Introduction 1

1.1 Thesis Objectives and Outline . 4

2 Problem Definition 6

2.1 Overview of Swarm Robotics Platforms 7

2.1.1 Terrestrial Swarm Platforms 7

2.1.2 Aerial Swarm Platforms . 9

2.1.3 Marine Swarm Platforms . 9

iv

2.1.3.1 Overview of Unmanned Surface Vehicles 11

2.2 Problem Statement . 15

2.2.1 Design Requirements and Constraints 15

3 Hardware Design 20

3.1 Mechanical Subsystems . 21

3.1.1 Hull . 21

3.1.1.1 Stability . 24

3.1.1.2 Waterproofing . 26

3.1.2 Propulsion System . 28

3.1.3 General Arrangement . 30

3.1.3.1 Onboard Electronics Bracket 31

3.1.3.2 Component Mounting 33

3.1.4 Modular Tool Mounting . 34

3.2 Electrical Subsystems . 35

3.2.1 Electronic Devices . 35

3.2.1.1 Onboard Sensors . 38

3.2.2 Power System . 39

3.3 Fabrication and Assembly . 40

3.4 Peripheral Devices . 43

4 Software Design 45

4.1 System Architecture . 45

4.1.1 Server Software . 46

4.1.2 Vessel Control Software . 48

v

4.2 Inter-Application Communication . 49

4.3 CVSensorSimulator Implementation 52

4.3.1 Concurrency . 54

4.3.2 Sensing and Communication 61

4.4 MUSVController Implementation . 68

4.5 PeripheralController Implementation 70

5 System Configuration and Testing 71

5.1 Laboratory Environment Configuration 71

5.2 Server and Vessel Software Configuration 74

5.3 Waypoint Following Experiment . 76

5.3.1 WaypointController Algorithm 76

5.3.2 Linear Path Test . 78

5.3.3 Elliptical Path Test . 79

5.3.4 Multi-Vehicle Test . 81

6 Clustering Floating Marine Contaminants 84

6.1 Marine Plastics . 85

6.2 Overview of Swarm Clustering and Foraging 87

6.3 Orbital Retrieval Algorithm . 90

6.3.1 Instruction Hierarchy . 92

6.4 Algorithm Testing . 98

6.4.1 Experimental Methods . 100

6.4.2 Results . 104

6.4.2.1 Single Test Performance 104

vi

6.4.2.2 Aggregate Experimental Performance 106

7 Conclusion 113

7.1 Future Work . 115

7.1.1 Hardware Improvements . 116

7.1.2 Software Improvements . 118

Bibliography 120

A Bill of Materials 135

vii

List of Tables

2.1 Pros and Cons of Available Marine Swarm Robotics Research Platform

Candidates . 14

2.2 Marine Swarm Robotics Research Platform Design Requirements . . 19

3.1 Generalized Bill of Materials . 41

4.1 microUSV Control Software Applications 46

A.1 Detailed Bill of Materials . 136

viii

List of Figures

3.1 microUSV . 21

3.2 Sequential Hull Design Iteration Prototypes 22

3.3 microUSV Hull Lines Plan (Dimensions in mm) 23

3.4 Righting Lever Length vs Heel (Roll) Angle Plot 26

3.5 Lid Seal - Double Lap Joint . 27

3.6 Drive Train Assembly Exploded View Drawing 29

3.7 Electronics Bracket Assembly Drawing 32

3.8 microUSV equipped with nets for contaminant clustering experiments 34

3.9 System Integration Diagram . 35

3.10 Electronics Bracket with Labelled Components 37

3.11 Voltage Bus Drawing . 40

3.12 External Pose Detector System Data Flow Diagram 43

4.1 Control Software Inter-Application Message Sequence Diagram 47

4.2 CVSensorSimulator Simplified Class Diagram 55

4.3 CVSensorSimulator Thread Sequence Diagram 60

4.4 CVSensorSimulator Thread Sequence Diagram - Frame Handoff . . . 61

ix

4.5 Server Computer Software Update Frequency vs Number of Robots on

the Network . 62

4.6 CVSS Coordinate Frame . 64

4.7 CVSS Application Window . 65

4.8 Colored Target SensorZone Geometry 66

4.9 MUSVController Simplified Class Diagram 69

5.1 Laboratory Setup for microUSV Testing and Experiments 72

5.2 Linear Path Test Trajectory Plot . 78

5.3 Elliptical Path Test Trajectory Plot 80

5.4 Elliptical Path Test Trajectory Error Plot 81

5.5 Multi-Vehicle Test Overhead Camera View 82

6.1 Steps of the Orbital Retrieval Algorithm - Retrieval Maneuver 92

6.2 Orbit Tangent Vector Calculation Geometry 97

6.3 Comparison Plot Between the Measured Average Target Distance and

the Average Target Pixel Distance from the 0 Vessels - 15 Targets Test

Run . 103

6.4 Performance Metric Data Plots from the 3 Vessels - 15 Targets Test Run105

6.5 Average Target Pixel Distance Aggregate Data Plots 107

6.6 Final Cluster Size Aggregate Data Plots 109

6.7 2D Vessel Trajectory Plot - Successful Retrieval Maneuver 110

6.8 2D Vessel Trajectory Plot - Failed Retrieval Maneuver 111

x

List of Code Listings

4.1 Motor Speed Message Send Function 50

4.2 Motor Speed Message Receive Loop 50

4.3 Protobuf RequestData Message Definition 52

4.4 Protobuf SensorData Message Definition 53

4.5 Robot Class SensorValue Update and Get Methods Pseudocode . . . 56

4.6 FrameBuffer Update and Get Method Pseudocode 58

xi

List of Acronyms

ASV Autonomous Surface Vehicle. 11

AUV Autonomous Underwater Vehicle. 10

BOM Bill of Materials. 40

BOTS Bio-Inspired Robotics Lab. 2, 10

CVSS CVSensorSimulator. 5, 45, 73, 91, 114

FDM Fused Deposition Modeling. 28, 113

GM Metacentric Height. 25

GPS Global Positioning System. 38, 61, 88

GZ Righting Lever Length. 25

HSV Hue, Saturation, Value. 52

IMU Inertial Measurement Unit. 36, 48

INS Inertial Navigation System. 61

xii

IP Internet Protocol. 73

JSON JavaScript Object Notation. 74

LiPo Lithium Polymer. 117

MRS Multi-Robot Systems. 1

OEM Original Equipment Manufacturer. 18

PCB Printed Circuit Board. 117

PI Proportional-Integral. 74

PLA Polylactic Acid. 22

protobuf Protocol Buffer. 51

RC Remote Control. 13

TCP Transmission Control Protocol. 51

UAV Unmanned Aerial Vehicle. 9

UDP User Datagram Protocol. 51

USB Universal Serial Bus. 43, 71

USV Unmanned Surface Vehicle. 3, 10, 20, 84, 113

XML Extensible Markup Language. 51

xiii

Chapter 1

Introduction

Swarm robotics is a subset of Multi-Robot Systems (MRS): any collection of two or

more robots working together [38]. A swarm robotics system is a MRS that has taken

inspiration from the collaborative and self-organizing behaviors of social insects such

as bees and ants [22]. It emphasizes the decentralized control of large numbers of

small, inexpensive robots performing simple actions and interactions to accomplish

tasks as well as, or often better than, a single large, expensive, and complex robot

could achieve. Şahin [31] defines swarm robotics as follows:

“Swarm robotics is the study of how a large number of relatively simple physically

embodied agents can be designed such that a desired collective behavior emerges from

the local interactions among agents and between the agents and the environment.”

The characteristics required of the physical agents Şahin describes are further

elaborated on by Brambilla et al. [22]. They offer the following list of attributes that

are required to be considered a swarm robotics system:

• The robots are autonomous.

1

• The robots are situated in the environment and can act to modify it.

• The robots’ sensing and communication capabilities are local.

• The robots do not have access to centralized control and/or to global knowledge.

• The robots cooperate to tackle a given task.

Swarm robotics systems offer many benefits over traditional single or multi-robot

systems in select applications. They are flexible, scalable, and robust [31, 95]. The

workers in an ant colony are flexible and will reallocate themselves depending on the

current available resources and needs of the colony without any central governing au-

thority to coordinate their actions. Similarly, a swarm robotics system can implement

and switch between modular behaviors to handle a wide variety of scenarios without

requiring any changes to the physical robots themselves. Swarm solutions offer easy

scalability: by increasing the number of robots a swarm’s work scope and/or speed

can be increased almost indefinitely. They are also able to handle the loss or failure of

an arbitrary number of individuals with ease as the rest of the swarm will continue its

mission uninterrupted. This fault-tolerant nature makes swarm systems very robust.

Such characteristics are potentially beneficial to missions conducted in any do-

main; terrestrial, aerial, or marine. Although the majority of existing research in this

field is focused on terrestrial robots, there are examples of aerial and marine swarm

robotics platforms in development as well [27, 32, 10]. The members of the Bio-

Inspired Robotics Lab (BOTS) at Memorial University are interested in contributing

to the research and development of swarm robotics in the marine domain, among

other topics. Current interests include researching collective bathymetric mapping/-

2

surveying tasks and clustering of floating contaminants such as oil and plastic. These

interests prompted the lab to begin an internal research initiative focused on marine

swarm robotics.

A key aspect of the planned BOTS marine swarm robotics project was the ac-

quisition of a hardware platform for algorithm testing and validation. The project

had access to indoor laboratory testing facilities and a limited budget so it was de-

cided to search for a small Unmanned Surface Vehicle (USV) that could be outfitted

for indoor swarm testing operations at low cost. Such a testbed could be used as a

stepping-stone to evaluate algorithms before investing in larger, more costly hardware

for open water experiments on lakes or oceans. Unfortunately we were unable to find

such an existing platform. The commercial and open-source USVs evaluated were too

large, too expensive, and/or customized too heavily towards a specific application to

serve as a general purpose research platform for the BOTS project. This prompted

the researchers to develop their own.

This thesis will discuss the design, development, and testing of a novel, general

purpose, low-cost marine swarm robotics research platform for use in laboratory envi-

ronments called the microUSV. An article describing this platform titled microUSV:

A low-cost platform for indoor marine swarm robotics research was published in April

of 2020 [41]. It will also include a discussion of a preliminary algorithm for clustering

floating marine contaminants called Orbital Retrieval which was implemented and

tested on the microUSV platform. A publication discussing this work is expected to

be published within the next year.

3

1.1 Thesis Objectives and Outline

This thesis aims to address a gap in the available marine robotics platforms. Its

objectives include:

• Evaluate existing marine robotics platforms and identify their shortcomings

specific to swarm robotics research applications.

• Design the hardware and software for a new marine swarm robotics research

platform which addresses these shortcomings.

• Demonstrate the suitability of this new platform through experimental valida-

tion of marine swarm robotics research applications.

Chapter 2

The second chapter of this thesis reviews existing swarm robotics platforms and exist-

ing USV platforms. It also provides a formal problem definition for the development

of the microUSV and the platform’s design requirements and constraints.

Chapter 3

The third chapter describes the hardware design of the microUSV. It discusses the

design decisions and justifications for the design of the microUSV’s mechanical and

electrical subsystems.

Chapter 4

The fourth chapter describes the microUSV system’s software design. It discusses

the general design of the control software running onboard the vessels as well as the

4

AprilTag-based pose tracking system called CVSensorSimulator (CVSS).

Chapter 5

The fifth chapter details the experiment used to validate the functionality of the mi-

croUSV system: a waypoint following test using a simple PI controller. The validation

test scenarios included a linear path following test, an elliptical path following test,

and a multi-vehicle test.

Chapter 6

The sixth chapter is a discussion of the Orbital Retrieval algorithm: a novel approach

for collecting floating marine contaminants using a swarm of USVs. It includes a

description of the algorithm, description of the procedures used to test it and analysis

of the experimental results.

Chapter 7

The final chapter features concluding remarks and a discussion of future work. This

includes a discussion of flaws in the microUSV design and potential solutions to be

implemented in a future design revision.

5

Chapter 2

Problem Definition

This chapter provides a discussion of existing swarm robotics research platforms.

It demonstrates the need for a new marine swarm robotics platform to fill the gap

in existing research hardware. Such platforms are crucial to supplement simulation

results when validating new algorithms experimentally. The chapter concludes by

defining the design criteria and constraints for the development of such a platform

including a formal problem statement.

Simulation is the most popular tool for developing and testing algorithms among

swarm robotics researchers due to the high cost and complexity of acquiring and

maintaining a swarm of physical robots [22]. Modern simulation environments are

robust and fairly easy to use so many experiments in swarm robotics are conducted

solely through simulation or models, some of the most popular environments being

ARGoS [70], Gazebo [51], CoppeliaSim [76], and Stage [91]. Although useful, these

predominantly terrestrial swarm simulators, like any simulated environment, are im-

perfect. They must sacrifice some level of accuracy in modeling the physical world

6

to quickly compute results. For controller development this tradeoff in accuracy for

speed is acceptable; beneficial even. It allows researchers to iterate on their ideas

more frequently and more easily. They are not, however, an accurate reflection of the

real world and cannot be treated as such.

Simulation of marine robots is particularly difficult. The marine environment is

dynamic, complex, and hostile to robots. Selection of marine robotics simulators

is sparse [29]: few among those available are capable of handling multiple robots

and those that can are imperfect [83, 69]. Computational fluid dynamics simulations

remain an unsolved problem, mostly relying on numerical methods which are very

computationally expensive [86]. These tools have proven to be invaluable for ship

analysis and design but are not substitutes for hardware testing [61]. This is doubly

true for marine robotics where inaccuracies in the environment and vehicle models

may compound to generate even larger errors. All simulator results must eventually

be validated on a hardware platform to be trusted.

2.1 Overview of Swarm Robotics Platforms

2.1.1 Terrestrial Swarm Platforms

Ground robots are by far the most popular domain among swarm robotics researchers.

The planar dynamics of terrestrial robots makes them easier to control than other

kinds of robots such as aerial or marine vehicles and are thus easier to study. As

a result, there exists a modest selection of general purpose ground swarm robotics

research platforms built by different laboratories around the world [64, 48, 39, 60].

7

Such platforms are almost universally small robots designed to operate in a controlled

laboratory environment. Their size makes them relatively inexpensive to build which

is a virtual necessity when assembling a swarm with dozens of individuals.

Terrestrial swarm robotics platforms can be subcategorized into two groups: those

that use wheels for locomotion [17, 16] and those that use vibrations [5]. Wheeled

robots typically operate using a differential drive configuration which allows them

to pivot in place and easily achieve any desired pose in a 3D planar state space.

Robots using vibration for locomotion are holonomic meaning they can also maneuver

anywhere in a planar environment. Robots using vibrations to move require smaller

actuators than those of a wheeled robot. They are typically much cheaper and much

slower than their wheeled counterparts.

The low cost of vibration-based locomotive platforms is a large contributing factor

in the success of the Kilobot [77]: the single most popular hardware platform among

swarm robotics researchers. It has been used in many experiments and ongoing

projects as the platform of choice due to its simple design and cheap materials costing

an order of magnitude less than similar existing platforms at the time of its creation

[74]. Hundreds of these $14 robots can be assembled without incurring egregious

cost and they are general purpose enough to be useful in a wide variety of swarm

experiments such as formation control and swarm synchronization.

For some applications a general purpose solution like the Kilobot is not suitable.

Problems that require environmental manipulation, construction and stigmergy for

instance, demand larger, more expensive robots equipped with grippers and more

powerful actuators [94, 15]. Such platforms are typically custom built to meet the

demands of the application they target. Although more expensive than the small

8

general purpose alternatives, the larger swarm robots are still often used to test and

validate base-level swarm robotics concepts [26].

2.1.2 Aerial Swarm Platforms

An Unmanned Aerial Vehicle (UAV) has very complex and fast system dynamics.

This makes them difficult to control as even the simplest action for a terrestrial robot,

staying in place, requires active control for a UAV to achieve [27]. The topic of swarm

UAV research has received a steady growth in interest in spite of, or perhaps due to, its

inherent challenges. This is largely because of the improving quality and decreasing

cost of UAV hardware components allowing construction of many cheaper UAVs, and

growing interest in using aerial robots for surveillance and military applications [28].

There are two types of aerial swarm robotics platforms: multirotor and fixed-wing

aircraft [27]. Quadrotors are the most popular among these due to their minimal com-

plexity, maneuverability, and ability to achieve stable flight and hover [44]. Swarms

of quadrotors have been demonstrated to function both in laboratory environments

with access to motion capture systems [72] and outdoors using systems such as GPS

inertial navigation, Ultra-wideband positioning, and Visual-Inertial Odometry for lo-

calization [92, 93]. UAVs can also operate in heterogeneous swarms, in tandem with

terrestrial or marine robots [59, 90, 71].

2.1.3 Marine Swarm Platforms

The marine category of swarm robotics platforms includes both underwater [24, 10]

and surface marine robots [81, 30]. An underwater robot is commonly known as an

9

Autonomous Underwater Vehicle (AUV) while a surface robot is called an Unmanned

Surface Vehicle (USV). Similar to the dichotomy in control complexity between ter-

restrial and aerial robots, USV control is two dimensional and thus much simpler

than the three dimensional control of AUVs. This makes USVs a more appealing

platform for most general purpose research on swarm robotics applications in marine

environments. The discussion of marine swarm robotics platforms in this thesis will

be limited to USV platforms.

Dedicated marine swarm robotics platforms are very rare. Those that exist are

typically custom built and outfitted specifically for their target application such as

environmental monitoring [57]. It is far more common for an existing, general pur-

pose USV platform with onboard autonomy and communication capabilities to be

repurposed for swarm applications [32, 71]. Laboratory marine robotics platforms

are even rarer. The only known laboratory-based USV platform for swarm robotics

research is the mCoSTe system developed by Larkin et al. [53]. It has been tailored

for use in the flow tracking experiments it was initially conceived to test but is general

enough to be repurposed for testing other concepts such as the swarm heterogeneity

experiment described in [73]. This platform is not available for purchase commer-

cially, nor is it open source. Although the individual vessels are inexpensive, the full

system relies on an expensive external pose tracking system for localization making

it a costly platform overall. These factors make it an unsuitable platform for the

Bio-Inspired Robotics Lab (BOTS) marine swarm robotics project. The discussion of

marine swarm robotics platforms must, therefore, be expanded to include a discussion

of existing general USV platforms as potential candidates.

10

2.1.3.1 Overview of Unmanned Surface Vehicles

A USV, sometimes known as an Autonomous Surface Vehicle (ASV), is an au-

tonomous boat capable of augmenting or even replacing the use of manned vessels in

dirty, dangerous, and/or monotonous tasks. These platforms are commonly used for

oceanographic research and military applications such as surveillance and environ-

mental monitoring [56, 58]. Designed to survive in harsh open-water environments,

these vehicles are typically large and expensive.

The majority of industrial USVs are custom designed and built for their target

application and are not generally available for purchase commercially. Those that

are available on the market can range in size from 1.3 to 8 meters in length making

them unsuitable for indoor operations. These commercial vessels can cost between

$30,000 and several million USD per vessel depending on their sensor payload [6, 2, 3].

This makes the cost of purchasing a fleet of commercially available USVs prohibitive

for many laboratories and researchers. The capabilities and engineering support that

accompany commercial USV platforms make them an appealing choice for deployment

as a final solution or industrial product but their cost makes them unsuitable for

swarm robotics research and development purposes.

Open source USV platforms offer an alternative to purchasing commercial options.

Open source solutions are generally much less expensive and can be built and modified

by an individual user or researcher to suit their specific needs. They, like commercial

USVs, are generally developed for operation on open bodies of water and so must be

large enough to achieve stability under the influence of wind and waves. Most are too

large to operate indoors and none are equipped with the sensing equipment needed

11

to do so. Such platforms are slowly being introduced to the research community

such as the Jetyak [49], ARCAB [25], and SMARTBoat 3 [46]. These three platforms

showcase the three predominant approaches to USV development for research.

The Jetyak is a fully functional USV capable of carrying the same instrumentation

and navigation equipment as large commercial USVs. It is built by outfitting a

traditional marine vessel, in this case a kayak, with the equipment needed for onboard

automation and locomotion. Its $15,000 USD fabrication cost, while cheaper than

commercial USV systems, make it too expensive to produce in large quantities for

multi-robot systems research.

The Arctic Research Centre Autonomous Boat (ARCAB) demonstrates the second

common approach: developing a traditional marine vessel from the ground up. This

type of platform often reflects the design approach seen in industry but with a smaller

size and cheaper components. In the case of the ARCAB system, the 900×700 mm

catamaran design is a stable mobile sensor platform large enough to accommodate the

needs of the researchers who built it but not much more. It does, however, have the

same cost issue as the Jetyak: at 3000 euro per vessel the cost of acquiring multiple

vessels is prohibitive.

The SMARTBoat 3 is a recently published system with a much lower reported

cost of $200 per vessel. It achieves this by utilizing the third design approach: build-

ing a custom vessel targeted at a narrow range of applications. The SMARTBoat 3

is intended as a cheap autonomous environmental monitoring platform and only fea-

tures relevant to that task need be included. This allowed the team developing this

vessel to eschew conventional design practices like utilizing traditional hull shapes

and materials as the vessel’s speed and efficiency are non-essential. The SMART-

12

Boat 3 design uses repurposed off-the-shelf components for floatation which heavily

constrains the vessel’s shape. As such, the vessel’s toroidal hull-form does not reflect

the hydrodynamics of larger USV’s, the eventual target platform for any algorithm

researchers would develop while using it. This makes it an unsuitable testing platform

for general marine swarm robotics research.

The final category of USV under consideration are those developed for, and by,

amateur roboticists and Remote Control (RC) boat hobbyists [14, 1, 19]. These

platforms are normally constructed on a budget in the hundreds, not thousands, of

dollars. As such, hobbyist USVs are typically small, in the 300 mm to 1 m range, and

inexpensive. RC hobbyists typically have different objectives than most researchers;

they often seek to optimize a particular aspect of their vessels such as speed and

maneuverability or else they are seeking to produce scale models of larger vessels as

accurately as possible. The shortcoming of such platforms for research purposes is

their incomplete set of features: very few hobbyist products are equipped for local-

ization or onboard autonomy. Nonetheless these platforms can provide an excellent

source of inspiration for the development of small scale USV research platforms and

the market for RC boat components represents an inexpensive means to acquire small

marine-grade parts that might otherwise need to be custom made.

The advantages and disadvantages of the available USV platforms cited above are

summarized in Table 2.1.

13

Name Category Pros Cons

Heron USV [6] Commercial Large, modular, stable Expensive, outdoor use

only

C-Worker 8 [2] Commercial Large, long range Expensive, outdoor use

only

CAT-Surveyor

[3]

Commercial Large, stable Expensive, outdoor use

only

Jetyak [49] Open-Source Uses commercial hardware,

long range, publicly avail-

able

Expensive, outdoor use

only

ARCAB [25] Open-Source Stable, publicly available Expensive, outdoor use

only, difficult fabrication

SMARTBoat 3

[46]

Open-Source Inexpensive, publicly avail-

able

Outdoor use only, abnor-

mal dynamics

n3m0 [14] Hobbyist Inexpensive, simple, pub-

licly available

Slow fabrication, unstable

Unnamed

Boat Autopilot

Project [1]

Hobbyist Inexpensive, simple Difficult to customize for

research applications

Lake Maps NL

USV [19]

Hobbyist Inexpensive, stable Difficult fabrication, not

publicly available, outdoor

use only

aPad [57] Research Plat-

form

Demonstrated success in

research

Application specific, out-

door use only, abnormal

dynamics

mCoSTe [53] Research Plat-

form

Indoor use, inexpensive Not publicly available, ex-

pensive localization system

Table 2.1: Pros and Cons of Available Marine Swarm Robotics Research Platform

Candidates 14

2.2 Problem Statement

Based on the review of existing USV platforms, none found were suitable for use in

the BOTS marine swarm robotics project. They are predominantly large, expensive,

and designed for outdoor operation. Of the platforms discussed the most appropriate

would be the mCoSTe system [53] which, as discussed, is not available for purchase,

not open source, and relies on an expensive external pose tracking system. There

is a gap in the capabilities of available USV platforms. A marine equivalent to the

Kilobots system is needed: an inexpensive platform which operates indoors that can

be utilized to validate concepts and simulation results through hardware experiments.

The design, fabrication, and testing of such a platform was the primary goal of the

work discussed in this thesis.

Problem statement: Develop a low-cost, general purpose, open source USV plat-

form for marine swarm robotics research which can operate indoors in a laboratory

environment.

2.2.1 Design Requirements and Constraints

The proposed platform must be a functional USV. As such, certain properties are

expected. It must:

1. Float and be hydrostatically stable in water.

2. Endure continous partial immersion in water.

3. Be capable of self-powered, untethered locomotion and maneuvering.

4. Be capable of autonomous operation.

15

Self-powered locomotion and autonomous operation demand the inclusion of an

onboard power system and actuators as well as a means of decision-making, typically

in the form of an onboard computer or microcontroller(s). It must also include a

means of sensing its local environment to inform the decision process.

Additionally, the aim of the proposed platform was to serve as a testbed for, and

eventual stepping stone towards, full-scale USV swarms. It should, therefore:

5. Reflect the dynamics of equivalent larger existing USVs.

This means that the vessel design is limited to using traditional hull forms and

control interfaces seen in commercial and research USV platforms. These include

mono-hull, catamaran, or trimaran vessel designs with a propeller-and-rudder config-

uration or differential drive propellers.

The proposed platform is intended as a general purpose platform for swarm

robotics research. As such, it should include features commonly utilized in swarm

robotics experiments. These include:

6. Inter-vessel communication capabilities.

7. Customizable or modular tooling options.

The ability for a swarm of of robots to communicate amongst themselves is a very

common requirement among modern swarm robotics algorithms. A platform meant

to validate such algorithms must include this capability. It should also be capable of

supporting tools or equipment customized for a given task such as object aggregation

or dispersion, collective transport of objects, flocking behaviors, and collective map-

ping tasks. As a general purpose platform, no single set of tools would be acceptable

16

for all applications so the proposed platform must be modifiable to suit a researcher’s

current needs. A modular system for tool mounting would be a suitable alternative to

a fixed tooling payload. This requirement also ties into the vessel’s stability require-

ments: The platform must be sufficiently stable to accommodate any such custom

tool or device within reason.

The proposed platform is intended for indoor operations in a controlled laboratory

environment. This expectation simplifies or eliminates many of the most challenging

aspects of USV design such as seakeeping requirements, communication range, battery

life, corrosion resistance, and waterproofing. The members of BOTS have access to

Memorial University’s Deep Tank facility: a 3.65×3.65 m indoor tank of water with

an overhead gantry for testing purposes. The proposed platform must be capable

of maneuvering in an environment as confined as this tank or more. To provide

sufficient space to maneuver in an environment of fixed size, the vessel’s size must be

constrained. It must:

8. Have a length overall of less than 1
10

the shortest side of its test tank.

The platform must be low-cost. This means the total cost to build and run the

system should be minimized. This constraint influences the design of the whole system

from the selection of components and materials, the techniques used to fabricate it,

and the choice of peripheral equipment surrounding the vessels themselves during

operation. The vessel’s cost also benefits from the size constraint, requiring less

materials and less powerful actuators.

Finally, the platform must be open source. This comes with the expectation that

other researchers may seek to replicate and use the platform for their own work. It

17

should, therefore, be as simple to replicate as possible. The vessel design should:

9. Use readily available off-the-shelf components wherever possible.

10. Use only simple fabrication techniques.

The use of off-the-shelf, or Original Equipment Manufacturer (OEM), components

is beneficial to both the platform’s cost and replicability. Such parts are generally

cheaper and easier to acquire than custom parts. The restriction to use of only sim-

ple fabrication methods is an acknowledgement that swarm robotics researchers come

from diverse backgrounds and with distinct sets of knowledge. Not all are experts in

machining and fabrication. The platform should eschew techniques that are exces-

sively complex or require the use of expensive machinery. This should simplify the

construction and maintenance process for those researchers who are less comfortable

dealing with custom hardware, making the platform more accessible to the research

community as a whole.

The platform discussed in this thesis was designed to meet each of these require-

ments, summarized in Table 2.2. They informed all design decisions discussed in

subsequent chapters.

18

Item No. Importance Requirement

1 Must Float and be hydrostatically stable in water.

2 Must Endure continuous partial immersion in water.

3 Must Be capable of self-powered untethered locomotion

and maneuvering.

4 Must Be capable of autonomous operation.

5 Should Reflect the dynamics of equivalent larger existing

USVs.

6 Must Include inter-vessel communication capabilities.

7 Must Include customizable or modular tooling options.

8 Must Have length overall of less than 1
10

the shortest side

of its test tank.

9 Should Make use of readily available off-the-shelf compo-

nents.

10 Should Require only simple fabrication techniques.

Table 2.2: Marine Swarm Robotics Research Platform Design Requirements

19

Chapter 3

Hardware Design

The microUSV, shown in Figure 3.1, is a proposed open source small Unmanned

Surface Vehicle (USV) platform designed for swarm robotics experiments in labora-

tory environments [41]. It was designed to be inexpensive to produce, capable of

onboard autonomous control, and easily reprogrammable. The design leverages 3D

printing and off-the-shelf hobbyist electronics to produce a marine robotics research

platform that costs just over $500 CAD for a single unit and is much cheaper when

produced in multiples. It measures 23 cm in length and so is capable of maneuvering

in the 3.65×3.65 m enclosed indoor water tank available for testing. Model files and

source code for the microUSV are available through an open access license on the

project’s public online repository [40] which also includes detailed vessel fabrication

and assembly instructions.

This chapter will discuss the design of the microUSV’s hardware subsystems.

20

Figure 3.1: microUSV

3.1 Mechanical Subsystems

The mechanical design process behind the microUSV followed a simplified version of

the Ship Design Spiral visualized by Evans [34]. This iterative design process is very

popular in ship design due to the intrinsically interrelated nature of a vessel’s design

parameters. The microUSV design is far simpler than a traditional manned vessel

but alternately reworking and improving the vessel’s hull design, propulsion systems,

and general arrangement yielded a better vessel design with each iteration. Figure 3.2

shows some of the hull prototypes produced during the design process and illustrates

the progression in hull design over the course of the project. The design discussed in

this chapter is the final result of this iterative process.

3.1.1 Hull

The microUSV’s indoor operating environment made a small vessel design essential.

The vessel has a length overall of 230 mm, a beam of 89.2 mm, and a depth of

21

Figure 3.2: Sequential Hull Design Iteration Prototypes

121.5 mm as seen in Figure 3.3. A laboratory tank is a tightly confined operating

environment when compared to a lake or ocean, with a surface area measured in

m2 rather than km2. A small vessel is better suited to operating in such a small

body of water than a full sized USV designed for the open water. A full sized USV

with a length overall of 1.3m, such as the vessel described in [6], or greater would be

nearly incapable of maneuvering in a 3.65×3.65 m test tank. One or more scaled-

down vessels are fully capable of maneuvering in such a confined environment and,

by extension, are better at demonstrating the behaviors being investigated by the

operator(s).

A small vessel design is also beneficial for its reduced material costs: A smaller

vessel requires smaller parts which influences not only the volume of materials required

but also their selection. Using smaller parts reduces the vessel’s weight which results

in lower loads on the hull so structural components can be made smaller and lighter.

The microUSV’s hull design eschews more traditional structural materials like steel

and aluminum for parts made of Polylactic Acid (PLA) plastic produced using an

Ultimaker 2+ 3D printer. The printer’s print volume constrained the size of custom

components that could be included in the design to 223×223×205 mm maximum.

Multiple plastic hull designs were prototyped, and the material was deemed strong

22

Figure 3.3: microUSV Hull Lines Plan (Dimensions in mm)

enough to support the vessel’s small operating loads.

The vessel’s hull form was designed using the lines plan of a tugboat [7] for refer-

ence. A tugboat hull was chosen for its stability and compact design. Good stability

is of particular importance to the microUSV due to the use of an external pose detec-

tor system which will be discussed in Chapter 4. The compactness of this hull type

is beneficial due to the increased usable internal cavity volume relative to the vessel’s

size. The vessel’s low length-to-beam ratio is important to allow sufficient width of

the internal volume for onboard electronics to be mounted without greatly increasing

the vessel’s length overall. The microUSV’s hull was further compressed lengthwise

relative to the reference lines plan to decrease this length-to-beam ratio and allow the

hull to be fabricated as a single component on the 3D printer’s limited build platform

23

space.

3.1.1.1 Stability

The importance of mounting onboard electronics also influenced the decision to use

a monohulled design over the catamaran design often seen in other small USVs [6, 3]:

Mounting heavy components like batteries at or below the waterline improves the

vessel’s stability without increasing the beam length which results in a vessel with

a smaller footprint, better able to navigate confined spaces. Due to the microUSV’s

small size, a catamaran design would require the twin hulls to be scaled up to pro-

vide enough internal space for component mounting. They would quickly exceed the

volume necessary to keep the vessel afloat and further increase the vessel’s footprint.

Since the microUSV operates exclusively indoors it does not need to survive wind and

large waves, so the catamaran’s tradeoff in size for stability was deemed unnecessary.

The microUSV’s monohulled design utilizes other means to achieve the necessary

stability.

A fin keel was added to improve vessel stability without resorting to widening the

hull. A keel’s surface area catches water as the vessel rolls, inducing a drag force to

resist the motion. The keel form chosen was a NACA series 0018 hydrofoil tapered

along its depth [45]. The symmetrical members of the NACA series of 4-digit foils

are popular for use as ship rudders, keels, daggerboards, and the like [67]. Foils used

for these purposes typically fall within the 0010 to 0035 range with keels being at

the lower end of that range, 0010 to 0015, to minimize drag as the additional lift

generated by a wider foil is not as critical as it would be for a rudder [79]. The

microUSV keel’s NACA profile at 0018 falls just outside the typical range. A wider

24

profile was used to accommodate the inclusion of a steel ballast plate inside of it.

The steel ballast plate in the keel lowers the vessel’s center of gravity, thus in-

creasing the Metacentric Height (GM). Molland [62] defines GM as “The vertical

separation of the metacenter and the center of gravity as projected on to a transverse

plane” where the metacenter is “The intersection of successive vertical lines through

the center of buoyancy as a ship is heeled progressively”, heel angle referring to the

degree of roll a ship is experiencing. The metacenter is the effective pivot point for a

ship experiencing roll and its height dictates the stability of a vessel.

Increasing a vessel’s GM increases its stability due to the resultant increase in the

vessel’s Righting Lever Length (GZ). GZ is the horizontal distance between a vessel’s

center of gravity and the line of action of its buoyancy force. When offset due to roll,

the gravity and buoyancy forces generate a couple moment which rights the vessel.

A longer righting lever increases the righting moment experienced by a vessel as it

rolls, returning it to an upright position faster. In the case of the microUSV, the

vessel has an estimated natural roll period of 1.17 seconds calculated using the Weiss

formula shown in Equation 3.1 where kxx refers to a vessel’s radius of gyration and

g is the acceleration due to gravity [63]. The microUSV’s GZ curve, calculated using

an iterative righting lever simulation with respect to vessel heel angle [78] and shown

in Figure 3.4, shows no angle of vanishing stability, defined as the x-intercept on a

vessel’s GZ curve, meaning it can theoretically right itself from any degree of roll.

Tφ =
2πkxx√
gGM

(3.1)

25

Figure 3.4: Righting Lever Length vs Heel (Roll) Angle Plot

3.1.1.2 Waterproofing

The hull design includes a lid to keep water out of the internal cavity in the case of

excessive roll or splashes. This lid is mounted to the hull using a double lap joint

around the hull’s entire upper edge, shown in Detail B of Figure 3.5, and is kept in

place by a pair of hair elastics. The design does not include a gasket or O-ring and so

is splash proof but not completely watertight. In order to achieve a fully waterproof

design a gasket flange or O-ring groove would need to be added with many tightly

spaced bolts along the joint between hull and lid to squeeze the sealing elastomer

component.

Assuming a number 2 machine screw size, the maximum bolt spacing suggested

in Shigley’s [23] would demand a minimum of 13 bolts, with accompanying nuts and

washers, to seal the lid of the microUSV. These fasteners would contribute an extra

20 to 30 grams of metal to the vessel’s weight with an extra estimated 10 to 12 grams

26

Figure 3.5: Lid Seal - Double Lap Joint

worth of 3D printed plastic to form a flange on which to mount the bolts and sealing

elastomer. These components would add significant weight to the vessel, almost 10%

of the vessel’s total weight, and require increased buoyancy, and therefore hull size,

to support them. These components would all be situated near the top of the vessel

and would shift the center of gravity upward, reducing its GM and stability. The

microUSV was designed to operate on the water’s surface and should never need

to endure being submerged under water, so the costs of a fully waterproof design

outweighed its benefits.

The vessel has, however, been successfully tested for very brief periods of im-

mersion: it can survive for one second fully submerged in water without any water

reaching the internal cavity and can likely endure longer immersions, but this has not

been tested. It is easily capable of surviving the splash from a wave or an accidental

immersion during retrieval.

The PLA plastic used for the hull is naturally waterproof, but it is also a biodegrad-

27

able material: Its integrity may gradually deteriorate due to exposure to UV light

or temperature changes over time. Additionally, the layered building process used

by Fused Deposition Modeling (FDM) 3D printers is imperfect. There is a chance

of introducing small, often unnoticeable, defects and gaps in the walls of a part dur-

ing the printing process. Although a 3D printed hull made with an accurate printer

can easily survive a handful of immersions in water, it is unlikely to endure months

or years of repeated use without leaking which would likely destroy the electronics

housed inside. Therefore, an additional waterproof coating of epoxy was added to the

hull’s external surfaces.

3.1.2 Propulsion System

The microUSV’s propulsion system consists of a pair of propellers driven directly

by DC motors, the components for which can be seen in Figure 3.6. Each motor

connects to its drive shaft via a universal joint shaft coupler to mitigate small shaft

misalignments. The drive shafts are arranged in parallel with a spacing of 48 mm and

independently controlled motors to allow differential drive. A differential drive system

was chosen over a more traditional propeller and rudder arrangement to improve the

vessel’s maneuverability: making the microUSV better able to navigate its confined

operating environment.

The vessel’s drive shafts are kept watertight with a pair of custom stuffing tubes.

A stuffing tube is a simple assembly packed with grease which forms a seal around

a rotating shaft. The microUSV’s stuffing tubes are made of stainless steel with a

bushing at each end to support the shaft as it rotates and the void space between

28

Figure 3.6: Drive Train Assembly Exploded View Drawing

29

shaft and tube is filled with petroleum jelly. These tubes are mounted to the hull and

themselves sealed in place using a marine-grade silicone sealant. The stuffing tubes

needed to be custom made as all existing off-the-shelf stuffing tube and drive shaft

systems were too long to fit the vessel’s hull.

The propulsion system consists of mostly off-the-shelf components to reduce costs:

the propellers, drive dogs, and shaft couplers were all sourced from RC boat part

suppliers. The drive shaft, motors, and components for the stuffing tubes were also

purchased off-the-shelf but required further modification.

3.1.3 General Arrangement

The location of the microUSV’s center of gravity is an important factor contributing

to the vessel’s stability. It is a key variable used in calculating a vessel’s GM [62]. To

maximize GM, the center of gravity should be positioned as low as possible on the

vessel. The vessel’s center of gravity must also be aligned with its center of buoyancy

in order to avoid statically pitching or rolling to one side which would increase the

ship’s wetted area, negatively impacting performance. If the centers of gravity and

buoyancy were misaligned, with the center of gravity too far forward for instance,

the vessel would pitch forward, submerging more of the forward section of its hull.

This shifts the vessel’s center of buoyancy forward until the buoyancy and gravity

force vectors align and their couple moment is removed. The new equilibrium point

is statically pitched forward.

A vessel’s center of buoyancy is a function of its external geometry only which is

both difficult to change and influences countless other factors from vessel footprint

30

to hydrodynamic characteristics. For the sake of aligning the centers of gravity and

buoyancy it is easier to consider the center of buoyancy fixed and to move the internal

components in order to shift the vessel’s center of gravity into alignment instead. This

process is called creating a general arrangement.

The general arrangement of a vessel is the layout of internal volumes and com-

ponents. In the case of the microUSV there is only one internal volume so this task

is limited to the arrangement of internal components. The objectives of this process

were to align the vessel’s centers of gravity and buoyancy while maintaining easy

access to all components critical for operation and maintenance such as the power

switch and batteries. The general arrangement must also accommodate any special

requirements unique to certain components such as the motors being mounted in line

with the drive shafts or the wireless antenna being mounted as high as possible inside

the vessel. These factors governed the design of the microUSV’s onboard electronics

bracket which holds the majority of its internal components and so has the largest

impact on the location of the vessel’s center of gravity.

3.1.3.1 Onboard Electronics Bracket

The electrical components onboard the microUSV are all mounted to a 3D printed

bracket except for the batteries and motors which are mounted directly to the hull.

The motors are mounted independently to ensure alignment with the drive shafts and

the batteries are mounted below the electronics bracket in order to keep the vessel’s

center of gravity as low as possible to improve stability. This electronics bracket is

mounted on three threaded posts inside the hull as far forward as possible. These

screws are easily accessible and can be easily removed to change batteries or bench

31

test and debug the electrical system. The electronics bracket mounting process is

illustrated in Figure 3.7.

Figure 3.7: Electronics Bracket Assembly Drawing

The void space near the aft end of the vessel created by this bracket design is

intentional. The center of buoyancy is nearly centered along the vessel’s length but

the drive shafts and stuffing tubes amount to a significant weight at the aft end of

the vessel which cannot be moved. The forward position of the electronics bracket

and batteries is to counteract this imbalance, shifting the center of gravity forward

32

into alignment.

3.1.3.2 Component Mounting

All internal components onboard the microUSV are mounted using screws and 3D

printed brackets. All screws onboard the vessel are the same size, phillips head number

2-56 machine screws, to minimize the number of tools required for assembly. With

the exception of four through-holes above the waterline used to connect the lid to the

hull, none of the mounting points on the vessel can use a traditional stack of screws,

nuts, and washers. The design instead utilizes heat-set threaded inserts. These are

bonded into plastic components using heat from a soldering iron and allow screws to

be attached inside the hull without introducing holes through it which must be sealed

and would represent additional points of failure.

The placement of these mounting brackets, screws, and heat-set inserts is influ-

enced not only by the locations of the components they are used to mount but also the

assembly procedure used to mount them. The heat-set inserts must be installed using

a hot soldering iron which would damage any part of the 3D printed hull it contacted.

The axes of the heat-set inserts must, therefore, provide sufficient clearance to avoid

interference between the soldering iron and the hull during the installation process.

Two methods were used to achieve this. The first is used for the three vertical con-

nection points used to mount the electronics bracket: simply placing the mounting

holes far enough away from the hull walls to provide the necessary clearance. The

second is used for mounting the stuffing tubes and motors: the insert holes are angled

away from the hull walls, 20 degrees offset from vertical, to allow the soldering iron

to access a point that is directly below an overhang without interference.

33

3.1.4 Modular Tool Mounting

The lid of the microUSV is held in place by a pair of hair elastics. These elastics attach

to four screws on the outside of the hull near the joint between hull and lid which serve

as tie-down posts. These screws serve a second purpose as well: they offer a modular

mounting point for experiment-specific tools. 3D printed brackets can be attached

to these screws and serve as a base for any custom tool or sensor without needing

to redesign and rebuild the hull. Figure 3.8 shows the microUSV outfitted with a

pair of side-mounted nets. This configuration was used in the contaminant clustering

experiment discussed in Chapter 6. Examples of other potential tool configurations

include side-mounted hooks for capturing other vessels or tethering to them, drag

or trawling nets to simulate the behaviors of fishing fleets, or an onboard camera to

enable a multitude of detection and recognition tasks.

Figure 3.8: microUSV equipped with nets for contaminant clustering experiments

34

Figure 3.9: System Integration Diagram

3.2 Electrical Subsystems

The microUSV’s onboard electronics system is designed to utilize readily available

hobbyist components. This minimizes cost and allows damaged or defective com-

ponents to be replaced quickly. It also grants access to the large user communities

supporting each of these products, potentially simplifying the debugging process for

a new user. A system integration diagram is provided in Figure 3.9.

3.2.1 Electronic Devices

To achieve onboard autonomous control and reprogrammability, a single-board com-

puter was selected as the primary control unit: A Raspberry Pi Zero W. The Pi Zero

is the smallest of the popular family of pocket-sized computers and is well suited to

35

small robotics projects. The Pi Zero W features a built-in wireless module used for

communication between each vessel and the computer running the CVSensorSimu-

lator server software, the specifics of which are discussed in Chapter 4. It runs the

Raspbian operating system which grants it the same functionality as most desktop

Linux systems. This allows the microUSV’s onboard control software to be written in

any number of popular high-level programming languages and easily changed during

testing.

The Raspberry Pi communicates with an Arduino Nano, which serves as a pe-

ripheral control device. The Arduino is included to simplify the interface between

the vessel’s primary controller and peripheral devices; a motor controller and Inertial

Measurement Unit (IMU). It also offers room for expansion with eight unused digital

pins and six unused analog pins available for additional devices or sensors.

The peripheral devices, a Qik 2s9v1 dual serial motor controller and MinIMU-

9 v5, were both sourced from Pololu Robotics and Electronics. These are each very

small devices with easily accessible drivers and support communities which fulfill their

designed roles in the microUSV system: The IMU is included to augment any custom

odometry system a user may deploy while the motor controller drives the vessel’s

motors. The current localization system implementation does not utilize the IMU

data as the computer vision based sensor simulation software discussed in Chapter

4 proved sufficient for real-time localization without it. The sensor is included in

anticipation of the need of future users to develop and test more complex localization

systems without needing to modify the vessel’s hardware. All onboard electronic

devices are shown in Figure 3.10.

The motors selected for the microUSV were also sourced from Pololu. They are

36

Figure 3.10: Electronics Bracket with Labelled Components

37

12 V DC motors with a 5:1 gearbox. Since the torque requirements for the chosen

28mm diameter propeller were so small, the priorities when selecting a motor were

its small size and power consumption. The motor’s voltage rating was also a primary

consideration to interface with the microUSV’s power system.

3.2.1.1 Onboard Sensors

The sensors usable on the microUSV are limited due to the vessel’s size and indoor

operating environment. Traditional navigation sensors for full scale USVs such as

a Global Positioning System (GPS) and magnetometer cannot function in indoor

environments and powerful rangefinder systems such as LIDAR can weigh as much

as the rest of the microUSV’s components combined and would need to be mounted

high on the vessel to function properly. Mounting one of these systems onboard would

quickly sink or flip the vessel. Those sensors that are small and light enough to fit

the microUSV cannot produce data of sufficient quality to be reliable. Unable to

use traditional odometry sensors, the design instead uses an external pose detector

system discussed in Chapter 4 based on computer vision. The only physical sensor

included in the microUSV design is an IMU which are available in small sizes and

low-costs with good performance. Similar to the Augmented Reality for Kilobots

system [74], the addition of virtual sensors using external hardware allows for more

complex behaviors without greatly increasing the hardware cost or complexity of the

vessels.

Each microUSV is marked with a unique AprilTag attached to its lid. These tags

allow the position of each vessel to be tracked when in view of an overhead camera

using the AprilTag detection algorithm [68]. These tags must be kept in view of the

38

camera in order to receive up-to-date pose estimates and calculate a vessel’s simulated

sensor values. The AprilTag detection algorithm can detect tags with a large degree

of skew but to ensure the most reliable performance the microUSV design attempts

to minimize roll motion and so must be very stable, a dominant factor in the vessel’s

hull design.

3.2.2 Power System

The vessel’s power system was designed to be as simple as possible. Power is provided

by a pair of standard 9V alkaline batteries. Using standard batteries greatly simplifies

vessel maintenance and they are much cheaper than lithium-polymer batteries which

are popular in mobile robotics applications. Since the microUSV operates exclusively

indoors, ease of maintenance was deemed more important than extended battery life

as the vessels can be easily pulled from the water and have fresh batteries installed

between experiments if necessary.

The Raspberry Pi, IMU, and motor controller cannot accept the 9V battery power

with a maximum input voltage for each device ranging from 5V to 5.5V. A simple

voltage regulator circuit, shown in Figure 3.11, was added to the design to accom-

modate these requirements providing regulated 5V DC and unregulated 9V DC. The

unregulated 9V DC power is used to drive the motors. This circuit doubles as a

voltage bus allowing devices to be quickly connected to power without disturbing the

rest of the system using standard 2.54mm header pin connectors. The 5V section

of the voltage bus has its ground and live rail running adjacent to each other while

the 9V section has a 2.54mm (one pin row) separation between its live and ground

39

Figure 3.11: Voltage Bus Drawing

rails. By using the appropriately sized connector housings on their jumper wires, a

two-pin housing for 5V devices and a 3-pin housing with a gap in the middle slot

for 9V devices, the risk of connecting a device to the wrong input voltage is greatly

reduced.

3.3 Fabrication and Assembly

A detailed Bill of Materials (BOM) for all components required to build a microUSV

can be found in Appendix A.1. A simplified BOM is included in Table 3.1, which sum-

marizes the components required to produce a single microUSV with cost estimates

in Canadian dollars.

The instructions for fabrication, assembly, and testing of the microUSV are pro-

vided in detail on the project repository Wiki page [40]. The major steps are summa-

40

Component Category Description Cost [$CAD] Sources of

Materials

3D Printed Components Custom 3D printed com-

ponents including the

Hull, Lid, and brackets.

90.44 3D Printer

(Custom)

Electronic Devices and

Wiring

Electronic devices such

as the Raspberry Pi, Ar-

duino, and motor con-

troller as well as the com-

ponents to connect them

200.18 BuyaPi,

Digikey, Pololu

Mechanical Components

and Fasteners

Screws, Nuts, Propellers,

Drive Shafts, etc.

146.39 Amazon,

Hobby King,

McMaster-Carr

Adhesives and Sealants Epoxy, silicone sealant,

Loctite

85.00 Amazon, Hard-

ware Stores

Total: 522.00

Table 3.1: Generalized Bill of Materials

41

rized below and require an estimated two days of fabrication effort for a single user

to complete with an additional three days of indirect production time also required

for steps such as 3D printing and adhesive curing.

• 3D print all necessary components

• Insert a ballast plate into the keel

• Mount the keel to the bottom of the hull

• Apply epoxy coating to hull and lid

• Cut and assemble two stuffing tubes

• Thread the tips of two drive shafts

• Assemble and solder the voltage bus

• Solder header pins onto all other electronic devices

• Mount all electronic devices to the electronics bracket

• Cut and terminate eight jumper cables

• Use jumper cables to connect electronic devices

• Bore propellers and one end of each shaft coupler to accommodate a 1/8” drive

shaft

• Mount motors, drive shafts, and stuffing tubes inside the hull

• Mount batteries and electronics bracket inside the hull

42

• Install desktop and onboard software

• Configure lab environment

3.4 Peripheral Devices

In addition to the vessels themselves, several other devices are required for the mi-

croUSV system to function: A Universal Serial Bus (USB) camera, a computer, and

a wireless router. Figure 3.12 illustrates the arrangement of these devices to form the

external pose detector system discussed in Chapter 4.

Figure 3.12: External Pose Detector System Data Flow Diagram

A custom single-camera system was chosen over a commercial pose tracking system

due to the significantly lower cost. The camera must be mounted above the operating

area in order to capture video of the vessels in operation or more specifically, their

AprilTags. A Logitech C920 camera was used for this purpose during preliminary

43

development but was later replaced with an Intel RealSense D435. The high video

feed resolution of these cameras allows for detections at a longer range, thus increasing

the size of the operating area however the increased video bandwidth demands more

processing time and so can introduce latency. The best results were achieved during

testing using either camera set to output a 720p video feed. The D435 was ultimately

selected because it offered lower latency than the C920, allowing the system to achieve

a higher update frequency, and also features a global shutter which eliminates the

occasional spatial distortion introduced by the C920’s rolling shutter. The camera is

connected via USB to a computer, referred to henceforth as the server computer.

The server computer is responsible for running the AprilTag detection algorithm

to continuously update a 2D pose estimate for each microUSV visible in the video

feed. The computer used during testing was running an Intel i7-8750H CPU. It also

receives update requests from the microUSVs and responds with simulated sensor data

messages. The server computer sends these messages over a wireless network via a

router to which all the microUSVs are connected. The wireless router used in testing

was a NETGEAR Nighthawk AC1900 with a maximum bandwidth of 1300 Mbps

however a router of this quality is not necessary. Each vessel requires approximately

200 Bytes/second of bandwidth so a small fleet of vessels can easily be managed by

a low-end wireless router.

44

Chapter 4

Software Design

This chapter discusses the design of the microUSV’s control software. All software

used for this project was either available through open source libraries or custom writ-

ten for this application. The complete source code is publicly available via the project

repository [40] or GitHub (https://github.com/CalvinGregory/microUSV).

4.1 System Architecture

Three software applications running concurrently are required for microUSV opera-

tion: the main controller application running onboard each vessel called MUSVCon-

troller, a small motor controller application called PeripheralController, and a server

application called CVSensorSimulator (CVSS). These applications are summarized

in Table 4.1. As discussed in Chapter 3, the selection of sensors suitable for use on

the microUSV was limited due to its small size and indoor operating environment.

Instead of physical sensors, the system design calls for the use of an external pose

tracking system to simulate the sensor values observed by each vessel.

45

https://github.com/CalvinGregory/microUSV

Application Name Language Hardware Device

MUSVController Python Onboard Raspberry Pi

PeripheralController C Onboard Arduino Nano

CVSensorSimulator C++ External Server Computer

Table 4.1: microUSV Control Software Applications

CVSS is responsible for continuously calculating and updating these values based

on the data acquired from an overhead camera positioned above the operating area.

During operation one or more vessels will query the server computer for their sen-

sor data. The sensor values are sent to the Raspberry Pi onboard each microUSV

which is running the MUSVController application. This application is responsible

for interpreting the simulated sensor data to determine the vessel’s next action, i.e.

the speed at which to spin its port and starboard propellers. These two speed val-

ues are then sent to the vessel’s onboard Arduino which is connected to the motor

controller and running the PeripheralController application. This application parses

motor speed messages from the Raspberry Pi and forwards the values to the motor

controller which applies voltage to each motor accordingly. This process, illustrated

in Figure 4.1, repeats continuously to form a feedback loop.

4.1.1 Server Software

The Linux server computer runs the CVSS application which uses computer vision

to continuously estimate the values observed by each microUSV’s virtual sensors.

Its primary purpose is providing a global pose estimate to each vessel using the

46

Figure 4.1: Control Software Inter-Application Message Sequence Diagram

AprilTag attached to its lid. Since USVs operate in a planar environment they are

only concerned with 2D pose information. The server software’s global pose estimates

consist of a vessel’s position in the x and y axes and its heading angle (x, y, θ). To

simplify the interface to the AprilTag library [68] written in C, CVSS was written in

C++. As a global manager agent, it has access to all pose estimates simultaneously

and so can also be used to simulate multiple sensors for behaviors such as collision

avoidance and target tracking.

The microUSV platform does not meet the full definition of a swarm robotics

platform due to the inclusion of this centralized agent. The server’s inclusion does

not, however, prevent it from fulfilling its primary goal of providing a suitable swarm

research platform: the server only simulates sensor values and all control decisions

occur onboard the vessels themselves. The individual members of the swarm do not

have full access to the server’s global knowledge and so can still effectively replicate

47

the behaviors of decentralized agents.

The global information available to the application via the server offers some ben-

efits to the system as well: it allows the simulation of different sensor configurations

and inter-vessel communication schemes by artificially constraining access to data.

Different sensor types, arrangements, ranges, and resolutions can all be tested and

tuned without altering the underlying hardware. Researchers can also easily test

algorithms using multiple communication schemes. As an example, a system with

no inter-vessel communication can be simulated by restricting a vessel’s sensor data

access to its own data. A system with limited inter-vessel communication range can

be simulated by restricting a vessel’s sensor data access to its own data in addition

to the data of any other vessels within an arbitrary distance.

4.1.2 Vessel Control Software

There are two devices onboard each vessel running custom software: A Raspberry Pi

(the primary controller) and an Arduino (the peripheral controller). The Arduino ap-

plication, PeripheralController, simply acts as a pass-through device for motor speed

messages. It receives integer motor speed commands from the primary controller and

forwards them to the Qik motor controller using Pololu’s Arduino library for the de-

vice. This application can also be modified to include an interface to the onboard

IMU, also a Pololu device with an accompanying library, which connects to the Ar-

duino. The Inertial Measurement Unit (IMU) data can be used to augment a state

estimation system implemented on the Raspberry Pi.

The microUSV’s primary controller runs the MUSVController application. This

48

application was written in Python due to the Raspbian operating system’s native

support for the language and the ability to prototype quickly. It contains the logic

for autonomous control of the vessel which includes requesting and parsing sensor

data from CVSS.

4.2 Inter-Application Communication

The microUSV system has two inter-application communication links: the CVSS to

MUSVController link between each vessel and the central server and the MUSVCon-

troller to PeripheralController link onboard a vessel between its primary controller

and peripheral controller boards as shown in Figure 4.1. The link between a vessel

and the server is handled wirelessly over WiFi while the link between two devices

onboard each vessel is a wired connection over USB.

The wired link between a microUSV’s onboard Raspberry Pi and Arduino is used

to send motor speed commands from the main controller application to the motor

controller interface. This interface can also be used to communicate with other pe-

ripheral devices onboard the vessel such as an IMU but at the time of writing, only

the motor controller interface was required. These are simple messages consisting of a

pair of integers; one for the starboard motor speed and one for the port motor speed.

These speed values must fall within the range of -127 and +127 to be considered

valid commands so the PeripheralController application truncates any values it re-

ceives outside that range to the maximum positive or negative speed as appropriate.

Each message is prepended by two consecutive * characters as seen in Code Listings

4.1 and 4.2. This short header is included to avoid passing any noise values picked up

49

by the serial line to the motor controller. The messages are sent over a serial port at

a baud rate of 115200 for minimal latency. The MUSVController application uses the

pyserial library to encode its serial messages while the Arduino can handle parsing

serial messages natively.

def send speeds (arduino , portSpeed , starboardSpeed) :

arduino . wr i t e (s t r u c t . pack (’<cchh ’ , ’∗ ’ , ’∗ ’ , \

starboardSpeed , portSpeed))

// s t r u c t . pack encodes byte in fo rmat ion as a s t r i n g for

// s e r i a l t r ansmi s s i on . The argument ’<cchh ’ i n d i c a t e s the

// s t r i n g w i l l use l i t t l e −endian encoding and conta in 2

// chars f o l l owed by 2 shor t i n t s .

return

Code Listing 4.1: Motor Speed Message Send Function

i f (S e r i a l . a v a i l a b l e ()) {

i f (S e r i a l . read () == ’ ∗ ’) {

i f (S e r i a l . read () == ’ ∗ ’) {

qik . se tSpeeds (r e cv In t () , r e cv In t ()) ;

} } }

Code Listing 4.2: Motor Speed Message Receive Loop

The wireless link between the server and a given microUSV needs to encode much

50

more data than the wired link and should be scalable to accommodate future ad-

ditions to the system’s simulated sensor suite. This makes the simple, nonscaling

communication scheme written for the wired link unfeasible for long term use in the

wireless link. It must also be able to transfer data between applications written in two

different languages; C++ and Python. Google’s Protocol Buffer (protobuf) library

[8], specifically protobuf build 3.7.1, was chosen as a suitable open source, language-

neutral tool for this task. It serializes data structures in a compact way that requires

less data than more traditional solutions such as Extensible Markup Language (XML)

which reduces the system’s wireless bandwidth requirement, allowing for the oper-

ation of more vessels simultaneously and potentially lower communication latency.

These messages are transmitted over WiFi using the Transmission Control Protocol

(TCP). TCP was chosen over User Datagram Protocol (UDP) since the maximum

expected number of vessels operating simultaneously was relatively low, in the eight

to twelve range. The error checking offered by TCP was deemed more important

than the slight improvement in speed offered by UDP with such low network traffic

and the higher risk of packet loss using UDP was unacceptable for robot navigation.

The wireless link communication protocol works as follows: The server computer

running CVSS maintains an open network socket awaiting messages from any mi-

croUSV. The microUSVs all have access to the server’s socket address and can send

it a message requesting their most recently updated sensor values. The request mes-

sage definition can be seen in Code Listing 4.3. The request message contains the

AprilTag ID number of the sending microUSV which allows the server to identify the

vessel which sent the request and pull the data associated with that vessel. The server

responds to the request message by sending a SensorData message, defined in Code

51

Listing 4.4, which contains the requesting vessel’s simulated sensor values. Details of

the message format and syntax used can be found in the protobuf documentation [8].

message RequestData {

i n t32 t a g i d = 1 ;

bool r eques t waypo int s = 2 ; }

Code Listing 4.3: Protobuf RequestData Message Definition

4.3 CVSensorSimulator Implementation

CVSS is responsible for tracking all AprilTag-marked microUSVs in the operating

environment and calculating their sensor values. To achieve this, it stores a list of

Robot objects, one for each microUSV, which contain the current sensor values for

that vessel, as shown in Figure 4.2. These sensor values must be updated each time

the system receives a new frame from the overhead camera. Sensor updates are calcu-

lated based on the data provided by the PoseDetector object; a wrapper class around

the AprilTag library [68]. This object pulls camera frames from the FrameBuffer and

calculates the pose of any visible AprilTags. The pose estimates are then combined

with location estimates for any colored targets in the operating area which are ex-

tracted from the camera frame using Hue, Saturation, Value (HSV) color thresholding

methods in the OpenCV library [21]. Floating colored targets, specifically magenta

ping-pong balls, were used as a generic stand-in for surface contaminants in marine

environments for the purpose of experiments. The combined data provides CVSS

52

message SensorData {

message Pose2D {

f l o a t x = 1 ;

f l o a t y = 2 ;

f l o a t yaw = 3 ; }

message Waypoint {

f l o a t x = 1 ;

f l o a t y = 2 ; }

Pose2D pose = 1 ;

repeated Pose2D n e a r b y v e s s e l p o s e s = 2 ;

repeated in t32 t a r g e t s e n s o r s = 3 [packed=true] ;

goog l e . protobuf . Timestamp timestamp = 4 ;

repeated Waypoint waypoints = 5 ;

bool loop waypoints = 6 ; }

Code Listing 4.4: Protobuf SensorData Message Definition

53

with an estimate of each vessel’s pose in the environment as well as the values of its

“target sensors” which detect floating colored targets near each vessel.

4.3.1 Concurrency

Robots rely on frequent, real-time updates from their sensors to autonomously nav-

igate their environments. Since CVSS is serving as a substitute for the microUSV’s

key navigation sensors, it is crucial that the application exhibit as little latency as

possible with an acceptable update frequency. The sequential execution of each step

needed to update the sensor values of all vessels was far too slow to enable real-time

operation: Parallelizing as much of the application as possible was essential.

CVSS runs five concurrent threads:

• the main/server thread,

• the video capture thread,

• the AprilTag detector thread,

• the target detector thread,

• and the detection processor thread.

The application’s main thread doubles as the thread handling socket requests and

responses over the wireless network. After initializing the application, it maintains

an open socket awaiting request messages from a microUSV. When a request message

is received, the thread identifies which Robot object corresponds to the requesting

vessel, pulls the sensor values currently stored in that Robot object and puts them

54

Figure 4.2: CVSensorSimulator Simplified Class Diagram

55

in a SensorData message which it sends back to the vessel. Since this operation can

occur at any time, it is entirely likely the server thread will attempt to pull data from

a Robot object while that object is being updated with new data by another thread.

This means means the Robot class must be thread-safe.

To that end, each Robot object contains two instances of its SensorValues; com-

plete and incomplete. The server’s pull operation can only access the complete

set of sensor values, locking them during use, while the update operation can access

both instances. When an update occurs, the updating thread iterates through each

value in the incomplete SensorValues instance before locking the complete values

and copying over the now-updated values from the incomplete instance, as seen in

Code Listing 4.5.

void Robot : : updateSensorValues () {

// update each v a l u e in SensorValues incomple te . . .

std : : lock guard<std : : mutex> l o ck (s e n s o rV a l l o ck) ;

complete = incomplete ; }

SensorValues Robot : : getSensorValues () {

std : : lock guard<std : : mutex> l o ck (s e n s o rV a l l o ck) ;

return complete ; }

Code Listing 4.5: Robot Class SensorValue Update and Get Methods Pseudocode

The video capture thread has a single purpose: to pull frames from the overhead

camera into memory as soon as they are available. This thread has access to the ap-

plication’s FrameBuffer object and executes the updateFrame method continuously

56

in a loop. The FrameBuffer’s data can also be accessed by the AprilTag detector

thread which retrieves the most recent frame for processing, so much like the Robot

class, the FrameBuffer class must be thread-safe.

The FrameBuffer object is functionally a queue of length one which decouples

the acquisition and accessing operations associated with camera frame data. Since

CVSS is trying to provide real-time sensor values, each new frame must immediately

supersede the previous one: saving old frames for processing is redundant since the

data they contain is out of date as soon as a new frame is available. The FrameBuffer

stores only the most up to date data without introducing a backlog of redundant

frames.

The FrameBuffer class contains three image variables: a readFrame, a write-

Frame, and a bufferFrame. The class’ get method can access the readFrame while

the update method can access the writeFrame. Both methods have access to the

bufferFrame. When called, the update method overwrites the writeFrame with

the newest camera frame data then locks the buffer. It then moves the frame it stored

in the writeFrame into the buffer. Since the data in the bufferFrame is redundant

as soon as a new writeFrame is acquired, the method uses pointer swapping instead

of a move operation for better speed: The redundant data in the bufferFrame is

moved into the writeFrame where it can safely be overwritten during the next up-

date operation. The update method then unlocks the new frame lock to indicate

that a new frame is in the buffer.

The FrameBuffer’s get method starts by trying to acquire the new frame lock

which is initialized in a locked state. If no new frame is in the buffer the method call

waits there for an update operation to complete and the lock to be released. Once

57

the new frame lock is acquired, the get method also locks the buffer and swaps the

bufferFrame into the readFrame and returns its value. These methods can be seen

in Code Listing 4.6.

void FrameBuffer : : updateFrame () {

cv : : VideoCapture >> ∗writeFrame ;

std : : lock guard<std : : mutex> l o ck (b u f f e r l o c k) ;

writeFrame . swap (bufferFrame) ;

new frame lock . unlock () ; }

Mat FrameBuffer : : getFrame () {

new frame lock . l o ck () ;

s td : : lock guard<std : : mutex> l o ck (b u f f e r l o c k) ;

readFrame . swap (bufferFrame) ;

return ∗readFrame ; }

Code Listing 4.6: FrameBuffer Update and Get Method Pseudocode

The AprilTag detector thread, target detector thread, and detection processor

thread all operate on the same data from the FrameBuffer so they must be synchro-

nized. These threads use a set of three barriers to ensure they are working on, at

most, two subsequent frames. The AprilTag thread starts by acquiring the most re-

cent camera frame from the FrameBuffer and stores it in a global variable frame. It

then reaches the frameAcquisitionBarrier. The target detector thread starts its

execution by waiting at that barrier so once it is reached by the AprilTag detector

thread both threads can begin processing. The AprilTag detector thread proceeds to

58

run the frame through the AprilTag algorithm via a PoseDetector object while the

target detector thread runs HSV color thresholding on the frame. Once each of these

threads has finished their work they arrive at the first of a pair of detector barriers.

The detection processor thread performs post-processing on the data acquired by

the AprilTag detector and target detector threads. It starts its execution waiting at

the first detector barrier. Once the other two threads arrive there, it pulls the data

they have been working on from global variables into its local variables and then

arrives at the second detector barrier. The AprilTag detector and target detector

threads do not have any instructions between the first and second detector barriers

so they arrive immediately and are synchronized with the detection processor thread.

At this point the AprilTag detector and target detector thread have finished their

processing responsibilities for frame n and have handed their data to the detection

processor thread. They return to the start of their respective loops and begin pro-

cessing data on frame n+1 while the detection processor thread finishes processing

frame n. The detection processor thread proceeds to use the data from the other

two detection threads to populate the sensor values for each Robot object before

restarting its own loop to await their arrival once again.

This method of dividing pre and post processing tasks between multiple threads

allows CVSS to be processing two frames simultaneously at all times. This sequence

of thread interactions is illustrated in Figure 4.3. Figure 4.4 shows the same sequence

of inter-thread communications while highlighting the concurrent processing of frames

n and n+1.

59

Figure 4.3: CVSensorSimulator Thread Sequence Diagram

60

Figure 4.4: CVSensorSimulator Thread Sequence Diagram - Frame Handoff

Figure 4.5 shows that CVSS is able to maintain a stable sensor estimate update

rate between 17 and 21 Hz while managing a fleet of up to 10 vessels. This update

frequency is sufficient for simple navigation tasks even without utilizing the onboard

IMU to estimate pose between updates.

4.3.2 Sensing and Communication

The computer vision-based nature of CVSS heavily influences the style of its virtual

sensors: they are limited to those that can be estimated using camera data from a

single perspective. Two types of sensors have been implemented in the current build:

vessel pose estimation and colored target detection. The pose estimation sensor is

a stand-in for a localization sensor such as Global Positioning System (GPS) or an

Inertial Navigation System (INS). The colored target detection sensor represents a

61

Figure 4.5: Server Computer Software Update Frequency vs Number of Robots on

the Network

means of ranged environmental sensing such as LIDAR, radar, a standard or infrared

camera, etc. Since the microUSV is meant as a general purpose research platform,

the implementation of its target detection system is not specific to a particular sensor

or method. Sensors used to detect icebergs are not necessarily suited to tracking

floating plastics or oil slicks and vice versa. It is assumed that in any real-world

implementation based on microUSV testing the specific sensor(s) will be chosen based

on the target application but will be capable of producing similar types of ranged

detection data.

The SensorData message type used to transmit data from CVSS to a microUSV,

shown in Code Listing 4.4, defines all sensor types currently implemented including

localization and environmental sensors. Each message field represents the data from

a particular sensor. It also defines two sub-message types which are treated as objects

on either end of the transmission to simplify the message construction and parsing

62

code; Pose2D and Waypoint. Since USVs operate in an effectively planar environ-

ment, the application extracts each vessel’s two dimensional pose from its AprilTag

detection data for localization: x position, y position, and heading angle (yaw). Way-

points are also represented as 2D coordinates. The values in the waypoints message

field are not sensor values, but instead used for pathing in the waypoint following

controller discussed in Chapter 5.

Each microUSV is marked with a unique AprilTag attached to its lid. These

fiducial tags allow the position of each vessel to be tracked when in view of an overhead

camera using the AprilTag detection algorithm [68]. These tags must be kept in view

of the camera in order to receive up-to-date pose. The AprilTag detection algorithm

can detect tags with a large degree of skew but to ensure the most reliable performance

the microUSV design attempts to minimize roll motion and so must be very stable;

a dominant factor in the vessel’s hull design. AprilTags have several families of tags

with different levels of pattern intricacy: more complex tag families can have more

pattern variations and combinations and thus more family members while simpler

families can generally be perceived at greater distances. The detection distance was

of greater importance to the microUSV system than the number of possible tags so a

simple tag family, 25h9, was chosen. This tag family is the second lowest in resolution,

ahead of the 16h5 family which was found to be susceptible to noise during testing.

The CVSS coordinate system, shown in Figure 4.6, is based on the data produced

by the AprilTag algorithm. It follows a right handed coordinate system with its

origin placed at the center of the camera frame with heading angles being measured

clockwise relative to the negative y axis.

AprilTag detection and processing is handled in CVSS by the PoseDetector class.

63

Figure 4.6: CVSS Coordinate Frame

This wrapper class searches a given camera frame for the AprilTags of microUSVs

stored in the system. It intentionally neglects any detections of tags not associated

with a microUSV as these spurious detections clutter the interface and waste pro-

cessing time. The pose estimates it creates are stored in CVSS’ Robot objects before

being bundled into a SensorData message, specifically the pose field, and sent to the

appropriate microUSV. This class is also responsible for drawing tag labels onto the

video feed shown to the operator as seen in Figure 4.7.

A microUSV’s target sensor, represented in the target sensors field of a Sensor-

Data message, detects the presence of objects of a specific color near the vessel. This

sensor is divided into six zones arranged to the port-forward section of the vessel with

an additional small capture sensor zone near the vessel’s midpoint as seen in Figure

64

Figure 4.7: CVSS Application Window

4.8. Each triangular zone represents a 10◦ sub-arc of a 60◦ wide sensor field of view

extending ahead of the vessel. Detections in each sub-arc are calculated and reported

independently so a vessel can have coarse information about the relative heading of a

detected target. Detections in the rectangular capture sensor zone are also calculated

and reported separately from the other zones. This virtual sensor is positioned to

solely detect when the microUSV has captured a target in one of its side-mounted

nets.

This sensor layout was tailored specifically to the Orbital Retrieval algorithm

discussed in Chapter 6 which was only concerned with detecting targets on each

vessel’s port side and those it had captured. This focus is reflected in the sensor zone

layout. The sensor geometry described is only one example of how the the system

could be configured. It can be easily rearranged to suit different target applications

65

Figure 4.8: Colored Target SensorZone Geometry

without modifying the underlying hardware.

The target sensors are a computer vision-based system: Their values are calcu-

lated by CVSS. First a vessel’s pose is estimated by the AprilTag detector thread.

Concurrently the target detector thread is performing color thresholding on the same

frame. This process creates a binary image where all pixels in the specified color

range are set to one while the rest are set to zero. The system was tuned to detect

magenta as ping-pong balls of this color were used as targets for the experiments in

Chapter 6. Both results are then passed to the detection processor thread.

The detection processor thread iterates through the system’s list of Robot objects,

passing to each the poses of all detected vessels and the binary image of detected

targets. The Robot objects then create a series of sensor zone masks based on their

66

current pose estimate and the SensorZone geometry shown in Figure 4.8. The sensor

zone masks are binary images with the same dimensions as the binary image of

detected targets which are initialized with zeros at each pixel location. Onto each

mask a different sensor zone sub-arc or capture sensor zone is projected from the

vessel’s pose in the form of pixel values set to one. These masks are then each

compared against the binary targets image using a bitwise AND operation. If any

non-zero pixels from the binary targets image overlap with the area of non-zero pixels

defined in a sensor zone mask, that sensor zone is assigned a detection value of true.

If no target pixels overlap with a sensor zone mask, that zone has a value of false.

The binary detection values are then stored as an ordered list in the Robot object’s

complete SensorValues to be later retrieved by the server thread.

The quality and stability of both AprilTag and colored target detections depends

heavily on the lighting conditions of the testing environment. In general, a brightly

lit environment is better for detections however this can sometimes introduce areas

with bright reflections which may impair the detection of any vessels or objects inside

them. This can be seen near the top edge of Figure 4.7 where the testing tank’s

overhead fluorescent light is reflecting off of the water’s surface. Diffusing light in the

testing environment can help mitigate this.

The detection processor thread also uses the AprilTag detection data to simulate

inter-vessel communication at limited range. The system, knowing the pose of every

detected vessel, can calculate the distance between each of them. Any vessels which

fall within a specified range of each other are considered able to communicate and

so can share their location. This is simulated in CVSS by adding the pose data of

any microUSV within range of a given vessel to that vessel’s SensorData message in

67

the nearby vessel poses field. This communication scheme was designed for the

collision avoidance behavior in the orbital retrieval algorithm but can be augmented

or changed to simulate alternate communication schemes transmitting any type of

data.

4.4 MUSVController Implementation

The MUSVController application is comparatively simple, consisting of only a main

client with a Controller object, shown in Figure 4.9. The client code, running on

the microUSV’s Raspberry Pi, is responsible for connecting to the CVSS socket and

sending a RequestData message. It will then receive a SensorData message in response

which it passes to its Controller object.

The Controller object can be an instance of one of several concrete classes im-

plementing the Controller interface: WaypointController, OrbitalConstructionCon-

troller, or OrbitalRetrievalController. The specific controller type can be chosen

during initialization. Additional implementations can also be added easily. The Con-

troller interface defines several key properties often critical for controller design and

a single method: get motor speeds. This method is expected to accept the ves-

sel’s sensor data as an argument, perform its control logic internally, and return a

pair of integer motor speeds. The client code calls this method in a loop, passing

it new sensor values each time and then forwarding the motor speed values to the

PeripheralController application over serial running on the vessel’s onboard Arduino.

Of the three controller types implemented, two will be discussed in detail during

later chapters: the WaypointController is discussed in Chapter 5 and the OrbitalRe-

68

Figure 4.9: MUSVController Simplified Class Diagram

69

trievalController is discussed in Chapter 6. The OrbitalConstructionController was

an implementation of the algorithm described by Vardy in [89]. This algorithm was

implemented as one of the first swarm applications tested on the microUSV platform.

During testing it was found that this algorithm’s purely reactive controller style

may not be suitable for the marine environment. The vessels’ momentum causes them

to drift on the surface of the water, introducing an effective latency of motion. This

algorithm was developed using terrestrial robots where the controller issuing a turn

command would result in an instantaneous turn. This does not happen when a USV

controller issues a turn command which can influence output thrust, not speed. This

means the vessels need time to accelerate and decelerate into their desired heading.

As written, the orbital construction algorithm does not handle the motion latency

well: the vessels tend to oscillate weakly along a mostly linear path leading out of the

operating area instead of in the desired circular orbit. The lessons learned through

implementing orbital construction heavily influenced the development of the orbital

retrieval algorithm.

4.5 PeripheralController Implementation

The PeripheralController application, written in C, serves a single purpose: forward-

ing motor speed messages to the vessel’s motor controller. It acts solely as a pass-

through application, receiving and parsing serial messages, performing simple error

checks, then passing the values to the motor controller via the PololuQik Arduino

library.

70

Chapter 5

System Configuration and Testing

This chapter describes the configuration steps needed to set up the microUSV system

and the laboratory environment in which the vessels will operate. This includes the

installation requirements and procedures for the system’s peripheral hardware as well

as discussion of server and vessel software configuration parameters. It also discusses

the methods and results from a series of waypoint following experiments used to

validate the system’s functionality.

5.1 Laboratory Environment Configuration

To configure an indoor body of water, such as a laboratory tank, for use as a microUSV

testing environment, the system’s peripheral devices must first be set up. As discussed

in Chapter 3, the microUSV system requires a server computer, wireless router, and

Universal Serial Bus (USB) camera in addition to the vessels themselves.

The camera must be positioned above and facing directly toward the water’s

surface and connected to the server computer like the setup shown in Figure 5.1.

71

There, the camera is suspended from the overhead I-beam using a flexible clamping

arm. With the specific computer and camera used during testing, a 720p video

resolution was found to generate the best results; offering a good compromise between

detection distance and latency. The camera lens should ideally be positioned between

1.75 and 1.85 meters from the water’s surface to maximize its field of view without

exceeding the detection range. This maximizes the effective area in which AprilTags

and colored targets can be detected. The visible, and therefore detectable, region of

water is referred to as the vessels’ operating area. Using the Intel RealSense D435

camera at that distance, with a 94◦ diagonal field of view and a 16:9 aspect ratio, the

operating area should have approximate dimensions of 2.6×1.5 m.

Figure 5.1: Laboratory Setup for microUSV Testing and Experiments

72

The camera must also be tuned to the lighting conditions of the environment.

A brightly lit tank is beneficial for CVSensorSimulator (CVSS) detections but risks

introducing surface reflections as discussed in Chapter 4. Since CVSS was developed

to run on the Linux operating system, it is assumed that a user will have access to the

v4l-utils package [11]. This package provides a terminal interface to directly modify

the internal parameters of most types of digital cameras which can be connected to

the server computer. The camera’s exposure time should be reduced as much as is

reasonable to reduce blurring and delay between frames. This will result in the camera

producing much darker images. To compensate, parameters such as the camera’s gain

and gamma should be increased where available to increase the image brightness. The

AprilTag algorithm [68] depends on the ability to detect clear edges in an image, so

any automatic camera sharpness parameters should also be maximized. Finally, if

CVSS is using color thresholding to simulate data for its virtual sensors, as is the

case for the orbital retrieval algorithm discussed in Chapter 6, the camera’s color

saturation should also be maximized to increase the contrast between colored targets

and the background.

The wireless router should be positioned near the tank, ideally with a clear line

of sight to all vessels in the operating area. In the Figure 5.1 setup, the router

was placed on top of the walls surrounding the tank to avoid being obstructed by

them. The server computer and all microUSVs must be connected to the router’s

network on the same subnet. Configuring a static Internet Protocol (IP) address for

the server computer is a suggested optional step. The IP address of each individual

microUSV does not matter for system functionality; they can be dynamically assigned

and changed between runs without consequence. Knowledge of the server computer’s

73

IP address, however, is critical. The microUSVs need the server computer’s IP address

in order to connect to CVSS and receive sensor updates: each of them must know the

address before communication can begin. The server IP address must be included in

the config file of each vessel in the system.

5.2 Server and Vessel Software Configuration

The MUSVController application running onboard each microUSV begins its initial-

ization process by reading values from a JavaScript Object Notation (JSON) configu-

ration file. This file contains information necessary for the microUSV to function that

may be unique to each vessel or may change between runs. The server computer’s

IP address is one such piece of information: each vessel’s config file includes the IP

address of the server computer which can be updated for different users or network

setups without modifying the controller’s source code. The microUSV’s configuration

file also includes controller and vessel-specific tuning parameters.

The vessel configuration file contains a variable used to select the type of controller

the vessel will run as well as the tuning parameters for each type. For instance,

the WaypointController discussed in Section 5.3 of this chapter is built on a pair

of Proportional-Integral (PI) controllers. The gains for these controllers are stored

in the vessel config file and can be easily edited during the tuning process without

modifying the controller’s source code.

Any parameters unique to a single vessel are also stored in its vessel configuration

file to be retrieved during initialization. These include the vessel’s AprilTag iden-

tification number, propeller spin direction flags, and motor bias. Each microUSV’s

74

AprilTag must be unique to allow CVSS to properly identify it. Each vessel must

therefore have its own unique tag identification number which it sends to CVSS in

RequestData messages. The propeller spin direction flags are a pair of values, one

for the port and one for the starboard motor, which indicate if the propellers need to

spin clockwise or counterclockwise to drive the vessel forward. Since vessels are not

guaranteed to have identical propeller configurations, this parameter must be unique

to each vessel. Due to small imbalances in motor efficiency, friction, wear, or any

number of other factors outside the control of software, a vessel’s motor output speed

is never guaranteed to be the same for both sides. Even when the same command is

issued simultaneously to each motor, the port and starboard sides will deliver slightly

different amounts of thrust, resulting in the vessel turning when a forward heading

is requested. This bias in motor speed can be corrected in the control software by

artificially reducing the output of one motor and increasing the other after a speed

command is issued. The vessel configuration file’s bias parameter controls how strong

a correction to apply and must be unique to each vessel.

CVSS also has a JSON configuration file which it reads during its own initializa-

tion process. This file contains data unique to a specific set of hardware and variables

which change frequently between experiment runs. The server configuration file in-

cludes the camera’s calibration parameters which can be obtained using OpenCV

[21] and a calibration target. It also contains a list of all microUSV’s in the system

and their associated AprilTag identification numbers. This list allows CVSS to fil-

ter out any spurious AprilTag detections not associated with a microUSV and avoid

wasting time processing them. The HSV threshold values and list of waypoints are

experiment-specific configuration file parameters which can easily be tuned between

75

runs. The HSV threshold values define a color range to search for in each camera

frame to detect colored targets. Including them as a tunable parameter makes chang-

ing the type of targets much simpler. Each test using the WaypointController may

require a different set of waypoints. Including them in the configuration file allows

them to be changed quickly without re-compiling CVSS.

5.3 Waypoint Following Experiment

Three test scenarios were used to validate the functionality of the microUSV sys-

tem: a linear path following test, an elliptical path following test, and a multi-vehicle

test. Each test case had the vessel(s) operate autonomously using a simple way-

point following algorithm based on PI controllers: WaypointController. The vessels

were initialized with a list of waypoints which they steer toward sequentially, their

PI controllers outputting motor speed commands which aim to minimize the vessel’s

distance-to-waypoint error and heading-angle error. This simple controller was cho-

sen over more elaborate modern controllers because it was simple to implement and

was familiar to most potential users, offering them a common frame of reference to

compare against existing systems: It was not intended as an efficient or novel solution

to the waypoint following problem.

5.3.1 WaypointController Algorithm

The getSpeeds function is called in a loop as long as the MUSVController application

is running. The specifics of the getSpeeds function implementation depends on the

type of controller object that was instantiated: for the WaypointController class,

76

the algorithm is outlined in Algorithm 1. The algorithm starts by requesting a list

of waypoint coordinates from CVSS by toggling the request waypoints flag in its

RequestData message to true. This flag is only toggled to true in a vessel’s first

message to CVSS. The controller proceeds to steer the vessel toward the first set of

waypoint coordinates in the list. Once the vessel is within 50 mm of the waypoint, it

has arrived within tolerance: The waypoint is removed from the head of the list and

the vessel proceeds toward the next one until no waypoints remain.

Algorithm 1: WaypointController

input : vessel pose, waypoints list

output: port motor speed, starboard motor speed

Function getSpeeds()

if waypoints in list then

calculate distance and heading angle errors

apply distance PI gains ⇒ calculate forward motor speeds

apply angular PI gains ⇒ calculate speed turn correction

applyTurnCorrection()

if vessel reached waypoint then

remove waypoint from list

end

return motor speeds

else

return zeros

end

Function applyTurnCorrection()
port motor speed -= turn correction

starboard motor speed += turn correction

77

Figure 5.2: Linear Path Test Trajectory Plot

5.3.2 Linear Path Test

For the linear path following test, the microUSV was placed in a test tank and

instructed to travel between two waypoints positioned 1.47 m apart along the camera’s

x-axis from left to right. The vessel’s trajectory can be seen in Figure 5.2 along with

the test’s waypoints and the expected trajectory between them.

This test demonstrated the microUSV’s ability to operate under its own power and

follow a pre-defined path using onboard control logic, including fine error correction.

The CVSensorSimulator system functioned as intended with an average update rate of

9.5 frames per second1 which was an acceptable update rate for navigation purposes.

The vessel followed the expected trajectory very well with some small deviations.

It reached the first waypoint with a small heading error and so when its waypoint

1The WaypointController tests were performed using an early software build and a different

camera: a Logitech C920. This frame rate value does not reflect the update frequency observed in

the final system configuration of 17 to 21 Hz as seen in Figure 4.5.

78

target was updated the vessel overcompensated and overshot the target heading before

correcting itself to arrive on target. Better controller tuning may have improved this

behavior, or it may simply be due to the limitations of this control scheme: since the

controller only has access to the position of its next goal and not the subsequent ones,

it does not know what heading angle will be needed after reaching its next waypoint.

This creates a tendency to start the next leg of its path with a non-zero heading error.

This pattern is also apparent in the elliptical path test.

Even so the vessel only deviated from the expected trajectory by a maximum

of 49mm; a small margin for a 1.47 m long path. This error was calculated as the

perpendicular distance from the vessel’s position to the expected trajectory line.

5.3.3 Elliptical Path Test

The elliptical path following test used a setup identical to that of the linear path test

but with a different set of waypoints. The vessel was instructed to follow an elliptical

path, or more accurately, an octagonal path whose vertices intersect an ellipse with a

major diameter of 1.36 m and minor diameter of 0.92 m. The vessel started at the left

edge of the tank and proceeded through the waypoints counterclockwise. The vessel’s

trajectory can be seen in Figure 5.3 with the expected trajectory and waypoints shown

as well.

This test demonstrated the microUSV’s ability to handle more aggressive maneu-

vers: It can perform tight turns while keeping its AprilTag in view of the overhead

camera.

This trajectory deviated from its expected trajectory much more than what was

79

Figure 5.3: Elliptical Path Test Trajectory Plot

observed in the linear path test, but the vessel still reached each waypoint in sequence.

Here the influence of sudden changes in heading error due to waypoint handoff is more

obvious. While traveling between waypoints the vessel’s only concern is reaching the

next target, so its heading is directed at the next waypoint. Only once that way-

point is reached is the next waypoint considered with the vessel’s current heading

significantly off target. This leads to considerable overshoot in the vessel’s trajec-

tory, which is particularly noticeable on sharp turns like that observed at the fifth

waypoint on the far right of Figure 5.3. The vessel still manages to achieve a rea-

sonable approximation of the intended trajectory. Path following performance could

be improved substantially by implementing a more robust control scheme such as the

method described in [54].

The error, as seen in Figure 5.4, was calculated as the perpendicular distance

from the vessel’s position to the expected trajectory line. Due to the two-dimensional

80

Figure 5.4: Elliptical Path Test Trajectory Error Plot

nature of the trajectory there were multiple expected trajectory line segments. The

error calculation was therefore treated as a piecewise function, changing the expected

trajectory line equation each time the vessel was considered to have reached its next

waypoint. These transition points are denoted in Figure 5.4 by the vertical dotted

lines. Note how the error tends to rise sharply after reaching each waypoint before

decreasing as the vessel compensates for the sudden change in goal position.

5.3.4 Multi-Vehicle Test

The multi-vehicle test used a nearly identical trajectory to the elliptical path following

test where each vessel is given the same set of eight waypoints arranged in a roughly

elliptical shape to follow. Unlike the elliptical test, once the vessels reached the final

waypoint in their trajectory, they were instructed to repeat that trajectory again ad

81

Figure 5.5: Multi-Vehicle Test Overhead Camera View

infinitum. Four vessels were launched sequentially from the same position, shown

in Figure 5.5, with a roughly even spacing between their start times. Each vessel

completed several laps of the trajectory with the first vessel successfully completing

three laps of the trajectory while the fourth vessel had time for just over two laps in

the 1-minute, 40-second-long test with the first and last vessel launching 28 seconds

apart.

Five and six vessel configurations were also tested and were managed by CVSS

without issue. Due to the limited space in the operating environment and the lack of

a collision avoidance strategy in this control scheme, these tests quickly resulted in

vessel collisions and pileups.

This test demonstrates the ability of CVSS to handle the simultaneous requests of

multiple vehicles with enough speed to allow for real-time navigation of each. It also

shows the microUSV’s are sufficiently stable to survive the disturbances introduced

by other vessels. The microUSVs appeared unperturbed by the wakes created by

82

the other vessels in the tank and the multiple inter-vehicle collisions which occurred

during testing. None of the collisions resulted in a vessel overturning or the overhead

camera losing view of their AprilTags.

83

Chapter 6

Clustering Floating Marine

Contaminants

This chapter discusses a novel method for gathering together dispersed surface con-

taminants in marine environments using a swarm of Unmanned Surface Vehicles

(USV): the orbital retrieval algorithm. The proposed method could be used to ag-

gregate contaminants such as floating plastics into clusters to assist cleanup efforts,

expanding the effective range of a manned vessel offshore or automating debris collec-

tion in smaller semi-enclosed environments like harbors. The chapter includes a brief

discussion of the impacts of marine plastics and existing approaches to object clus-

tering and aggregation using swarms of robots. It then describes the orbital retrieval

algorithm as well as the testing procedures and experimental results, performed on

the microUSV platform, used to validate it. At the time of writing there are no known

existing studies which investigate this topic in the marine domain.

84

6.1 Marine Plastics

Man-made pollution in marine environments is detrimental to life both above and

below the water’s surface. The damage caused by anthropogenic contaminants, par-

ticularly plastics and other petroleum-based products, being dumped into rivers and

oceans is not limited to a population or ecosystem localized at the dumping site, but

to all oceans and coastal regions on Earth. While large macroplastic debris, pieces

over 5 mm in length, are most concentrated in coastal regions near dumping sites,

ocean currents and other transport dynamics will carry contaminants thousands of

kilometers away to affect the farthest reaches of the oceans as it fragments over time

and is consumed by marine organisms [82]. Microplastics, plastic particles under 5

mm in length, have been demonstrated to work their way up a food chain, jumping

between organisms as the particles are consumed and re-consumed through natural

feeding and predation [52, 80]. They cause harm to organisms of all sizes, from zoo-

plankton to fish to humans: they are known to obstruct digestive tracts and leach

dangerous chemicals absorbed by the particles into the organisms [36, 75].

Marine plastics have a negative economic impact as well. From tourism and

shipping to fisheries and aquaculture, multiple disparate marine industries suffer from

the presence of plastics and other pollutants. Those working in such industries end

up responsible for the repair and cleanup costs caused by the abundance of marine

plastics rather than the producers (or consumers) of plastic products [66]. Most

people will never see the build up of anthropogenic pollutants first hand and so the

public in general is content to dismiss or forget the problem’s existence while it is out

of sight [65]. These petroleum-based contaminants, however, are non-biodegradable

85

and can linger in the environment for centuries, cycling through an ecosystem over

and over before finally decaying [18]. Waiting for these problems to resolve themselves

is not an effective solution; an active approach is required.

Removing plastics from marine environments is a complex and costly endeavor.

A 2014 study by Eriksen et al. [33] estimated the amount of floating plastic in

the oceans at 268,940 tons and growing. If humanity were to stop dumping plastic

waste into marine environments immediately the amount of material remaining in

the oceans would still represent a monumental effort to redress. The optimization of

marine cleanup methods is, therefore, paramount. Ship-based solutions are the most

frequently proposed for this task, typically by towing a dragnet through or around

large patches of contaminants [87]. Ships carry a high operating cost due to their

fuel consumption and crewing needs. They also offer limited mobility and are best

suited to managing large patches of pollutants offshore. The floating barrier concept

implemented by the Ocean Cleanup Project [4] has shown some positive preliminary

results but is only effective at large scales and when deployed at specific locations,

namely the ocean gyres. It is not a suitable solution for cases such as capturing

contaminants near shore in harbors and estuaries without heavily disturbing those

environments. An alternative solution for such an environment is the use of marine

robots such as USVs.

USVs have already shown success in acting as a force multiplier to manned mis-

sions performing other tasks such as bathymetric surveying [12]. They should prove

to be a valuable tool for marine cleanup operations as well. Deploying a swarm of co-

operative USVs to work in tandem with a manned mother ship could greatly improve

the range and effectiveness of a localized offshore cleanup operation while minimizing

86

the time required of and risk to human operators. USVs also offer a more nuanced

solution for routine maintenance and cleanup of smaller regions like harbors and es-

tuaries when paired with a passive contaminant collection tool like the Seabin [9]:

they can operate in shallow waters while avoiding nearby ship traffic autonomously.

At the time of writing, USV-based plastic cleanup operations must be restricted

to macroplastics due to the limited ability of available sensor technologies. Modern

detection techniques for micro and nano plastic particles in aquatic environments

requires the use of mass-spectrometry equipment [50]. These sensors cannot produce

the real-time feedback or high sampling frequencies required to control a robot. Until

such a real-time sensor exists, applications in this area are constrained to managing

the detectable macroplastic debris.

6.2 Overview of Swarm Clustering and Foraging

Clustering and foraging tasks in the context of swarm robotics research are very

similar: both seek to gather together objects initially dispersed throughout the envi-

ronment using a swarm of simple agents [20]. These objects could be simulated food

particles, victims in a search and rescue scenario, or pieces of waste to be gathered

and removed, among many others. These methods also typically share several basic

assumptions about their agents such as their ability to pick up and drop objects, a

limited detection range, short term memory, some form of inter-agent communica-

tion, and often limited localization capabilities. The details of clustering and foraging

methods vary as they are trying to achieve subtly different goals but both approaches

are worth evaluating as inspiration for a swarm-based marine environmental cleanup

87

method.

Swarm clustering involves robots placing objects near other objects to form clus-

ters of objects. The classical definition of a swarm clustering task does not require a

set gathering location; most existing approaches to this problem take a probabilistic

approach where the probability of an agent picking up or dropping an object under

different conditions determines the swarm’s clustering behavior as the agents explore

their environment randomly [42]. These solutions will typically form several smaller

clusters at random locations which tend to merge into a single cluster as time pro-

gresses, also in a random location [84, 88]. Such an approach would be suitable for

marine cleanup operations assuming the use of a mobile mother ship which could

move to the location of the final cluster to extract the contaminants.

Foraging tasks are very similar to clustering but differ in that foraging assumes a

predetermined location for the cluster. These algorithms seek to replicate the foraging

behavior of ants and other social animals. Foraging agents explore an environment

and gather targeted objects. Unlike clustering agents, foragers seek to form clusters

specifically at a central nest location [20]. In the case of marine cleanup operations, the

nest location would be a static contaminant collection point or tool such as a Seabin.

Foraging methods rely heavily on the ability of agents to leave and return to their

nest: they must have some form of localization. Studies in this area frequently assume

foraging agents have very limited localization capability so they have developed many

creative solutions such as stigmergy [85] and pheromones [43]. Most of these solutions

are impractical to implement in a marine environment and are largely unnecessary:

all known USV platforms are equipped with some means of localization such as Global

Positioning System (GPS). Vessels in a swarm-based marine cleanup operation can be

88

assumed to have localization capabilities, rendering most existing foraging solutions

at least partially redundant.

There are no known swarm object clustering or foraging implementations on wa-

ter. A swarm, or multi-agent, approach has been occasionally proposed for marine

cleanup before, mostly focused on addressing oil spills, and evaluated in simulation

[47, 35, 96] but these solutions have never been implemented using hardware. The

collection of a liquid contaminant like oil poses different challenges than collecting

solid contaminants such as plastic.

Marine contaminants, be they oil, plastic, or otherwise, have a tendency to drift

and disperse due to the motion of waves and currents. A swarm performing marine

contaminant clustering must conduct cluster maintenance constantly in addition to

the exploration and retrieval tasks of cluster formation to avoid losing progress to

entropy. Additionally gripper mechanisms often used in terrestrial clustering and

foraging solutions are not suitable for gathering marine plastics as their size and

shape is not consistent enough for a single gripper design. Skimmer contaminant

capture mechanisms such as the solution discussed in [96] are a common alternative.

These tools rely on a vessel’s forward momentum to keep any contaminant it captures

contained and so marine clustering agents cannot maneuver as freely as terrestrial

agents.

With these constraints in mind, the orbital retrieval algorithm, discussed in sub-

sequent sections, was predominantly inspired by the work of Gauci et al. [37] and

Vardy [89]. These solutions utilize very simple, forward motion only, controllers to

gather dispersed objects. The agents circle, or orbit, a fixed cluster area and push ob-

jects they find inward. Instructing all agents to orbit in the same direction minimizes

89

inter-agent interference, simplifying or eliminating the need for collision avoidance

strategies. This orbiting behavior is particularly interesting for marine contaminant

clustering as any dispersing contaminants will be recaptured by the orbiting agents

without the need for an explicit cluster maintenance instruction.

6.3 Orbital Retrieval Algorithm

The orbital retrieval algorithm was designed to form and maintain a cluster of floating

target objects at a designated position using a swarm of USVs. Conceptually, the

target objects represent pieces or patches of marine plastic or some equivalent floating

solid contaminant but for development and testing purposes, a target is an individual

object the algorithm is seeking. The vessels are assumed to have an onboard passive

capture device such as a forward facing net or skimmer. This device must be able

to capture a target object when the vessel moves toward and intercepts it, retain the

target by moving forward continuously, and release a captured target by moving in

reverse. In the case of testing using the microUSV, the vessels were equipped with

side mounted nets which capture targets to either side as shown in Figure 3.8. Targets

struck by the vessel’s bow will roll to one side and also be captured by one of the

nets.

Much like the methods discussed in [37] and [89] which inspired it, the orbital

retrieval algorithm is a purely reactive controller: the controller does not perform

mapping, path planning, or coordination with other vessels. When it receives a sensor

input it simply reacts, producing a single output. This type of controller is ideal for

swarm robotics applications as it can be implemented successfully on very simple

90

and cheap hardware. This approach requires minimal processing, simple inter-vessel

communication, and three sensors.

The first essential sensor is a means of global localization. As discussed above, all

known USV platforms are equipped with a localization system such as GPS so this was

an assumed to be an easy requirement for a platform implementing the algorithm to

meet. This also allows a cluster point to be predefined using the localization system’s

global coordinate frame and provided to each vessel in the swarm on initialization.

For the microUSV implementation of orbital retrieval, the role of localization sensor

is filled by CVSensorSimulator (CVSS) pose estimates, simulating GPS data. The

second essential sensor is a ranged target sensor: vessels must be capable of detecting

nearby targets with coarse resolution. The final essential sensor is a capture sensor

to indicate when the vessel has successfully captured a target. The sensor layout for

the microUSV implementation can be seen in Figure 4.8. The capture sensor zone is

positioned just ahead of the vessel’s side-mounted nets to detect when a target rests

in one or both of them. The target sensor zone is a roughly circular arc aimed toward

the vessel’s forward-port side. The zone is subdivided into six sub-arcs to simulate a

course resolution sensor reading. This sensor allows a vessel to detect a target within

the designated sensor zone and its relative heading within 10◦ but not the distance

between vessel and target. Since the vessels will be orbiting exclusively in a clockwise

direction, this sensor does not need to extend to the vessel’s starboard side. The

target sensor zone was, therefore, cut off at the centerline to reduce processing time.

The algorithm itself is outlined in Algorithm 2 and visualized in Figure 6.1. As

with the WaypointController algorithm discussed in Chapter 5, the controller is im-

plemented inside a getSpeeds function which is called in a loop, taking sensor data

91

as an input and returning a pair of integer motor speeds. The controller processes

the sensor data to deduce its current state, then reacts accordingly.

Figure 6.1: Steps of the Orbital Retrieval Algorithm - Retrieval Maneuver

6.3.1 Instruction Hierarchy

The controller performs one of several potential actions in descending order of priority.

The highest priority action is to add a captured target to the cluster. If the vessel

has captured a target, and the capture sensor is triggered, the vessel will attempt

to drive toward the center point of the designated cluster area. The cluster area is

a circular region defined by its origin coordinates and a cluster threshold radius,

shown in Figure 6.1. Targets inside this region are considered part of the cluster.

When a vessel carrying a captured target passes the cluster threshold, it moves

92

Algorithm 2: Orbital Retrieval

input : vessel pose, cluster area coordinates, colored target sensor data,

inter-vessel communication data

output: port motor speed, starboard motor speed

Function getSpeeds()

if carrying captured target then

if outside cluster threshold then

// drive toward cluster area center

find vector from vessel to cluster area center // Eqn. 6.1 and 6.2

find heading angle error

set distance error to 1.5 * (standard look ahead point distance)

apply PI gains ⇒ calculate motor speeds

else

set motor speeds to full reverse

reject new controller inputs for the next 1.5 seconds

end

else if other vessel ahead then

// veer left and decelerate

port motor speed = 66% of full reverse

starboard motor speed = 0

else if target detected ahead or to port then

// veer left toward target

set heading angle error to the sensor zone sub-arc detecting target(s)

set distance error to standard look ahead point distance

apply PI gains ⇒ calculate motor speeds

// The vessel will often overshoot, losing sight of the target. It

// will then veer back to the right, regaining sight of the target.

// This pattern results in the vessel oscillating left and right,

// following a roughly straight path toward the target.

else

motor speeds = orbitCW()

end

return motor speeds

93

in reverse at full speed for a fixed period of time. The target’s forward momentum

continues to carry it forward into the cluster and the vessel leaves the cluster area,

returning to its orbiting behavior in search of targets.

If a vessel is not carrying a captured target, its next priority is to avoid collisions.

The orbital retrieval algorithm includes a very simple collision avoidance strategy: if

there are any other vessels within collision range and they are positioned in the path

of this vessel then run the port propeller in reverse. This will result in the avoiding

vessel decelerating and turning slightly to port. This simple strategy handles most

cases of vessel congestion since all vessels should be orbiting in the same clockwise

direction and the obstructing vessel should be moving away from the avoiding vessel.

In the case of prolonged obstruction, the avoiding vessel will end up oscillating back

and forth between its collision avoidance and standard orbiting behavior: veering

to port will eventually lead to the obstructing vessel no longer being ahead of the

avoiding vessel, causing it to change behaviors and begin veering back to starboard

where it will again see the obstructing vessel and try to veer to port to avoid it,

staying roughly in place until the obstructing vessel moves clear.

The detection of nearby vessels is handled in CVSS by simulating short range

inter-vessel communication. If two vessels are within a given distance of each other,

they are considered within communication range and can share their pose data with

each other. This allows each vessel to calculate the relative distance and heading

between them. If one vessel is being obstructed by the other, its collision avoidance

behavior is triggered.

The next priority in the vessel’s instruction hierarchy is to seek any targets outside

the cluster it can detect. If a vessel’s target sensor reports a detection, that vessel

94

will steer towards the target’s last known relative heading and accelerate to avoid

obstructing any vessels behind it. Since the target sensor zone can only perceive the

vessel’s port side, this behavior will also result in controller state oscillations: If a

target is detected the vessel will veer to port towards it, likely overshooting and losing

sight of the target. At this point the default orbiting behavior takes over, turning

the vessel to starboard and subsequently reacquiring detection of the target. This

oscillation results in a the vessel taking a roughly straight path toward the target

which will eventually be captured triggering the controller to return it to the cluster.

The combination of a vessel leaving orbit, capturing a target, and returning it to the

cluster is called a retrieval maneuver. Figure 6.1 illustrates all the steps of a retrieval

maneuver with red circles indicating uncaptured targets and green indicating captured

targets.

The lowest priority instruction for each vessel is to orbit the cluster area in a

clockwise direction. This default behavior is critical for two reasons: First, completing

a clockwise orbit will result in a vessel sweeping its port-facing target sensor through

the broadest area outside the cluster area. This behavior effectively performs a sensor

sweep of the area surrounding the cluster with each orbit. Secondly, since the targets

are floating on the surface of the water, they tend to disperse over time, leaving the

cluster area. If a target leaves the cluster area, there is a high probability that it will

cross the path of an orbiting vessel which will detect it and return it to the cluster.

This behavior maintains the integrity of the cluster of existing captured objects while

other members of the swarm can periodically leave orbit to acquire new targets. This

orbiting behavior is outlined in Algorithm 3.

The orbit algorithm is based on the same PI controller waypoint seeking algorithm

95

Algorithm 3: Orbit Clockwise

input : vessel pose, cluster area center coordinates, orbit threshold

output: port motor speed, starboard motor speed

Function orbitCW()

if outside orbit threshold then

// calculate heading angle of vector tangent to orbit circle

find vector from vessel to cluster area center // Eqn. 6.1 and 6.2

find tangent orbit vector direction // Eqn. 6.3 and 6.4

place new look ahead point along tangent orbit vector

else

use look ahead point from previous timestep

end

// navigate toward look ahead point

find distance and heading angle errors

apply PI gains ⇒ calculate motor speeds

return motor speeds

as the WaypointController discussed in Chapter 5. Instead of a fixed list of waypoints,

however, the algorithm calculates its own waypoint, or look ahead point, at each

timestep. The look ahead point is a point located a fixed distance from the vessel

along a vector tangent to the orbit circle. Recalculating this tangent vector and look

ahead point each timestep results in the vessel following an approximately circular

orbit path around the cluster area at constant speed. Once the look ahead point

has been calculated, the algorithm applies the same PI controller logic to derive motor

output speeds from the vessel’s distance and heading angle errors.

If the vessel is inside the specified range from the cluster area origin designated

as the orbit threshold, the geometry used to calculate the new look ahead point

breaks down: it is impossible to derive a vector tangent to a circle from a point inside

that circle. When this occurs, the vessel simply skips calculating a new look ahead

point at that timestep and uses the look ahead point calculated prior, continuing

96

toward the last known tangent point outside the orbit circle.

Figure 6.2 shows the geometry the tangent vector calculation is derived from1.

The absolute heading angle from the vessel’s position to the vector tangent to the

orbit circle which will result in a clockwise orbit direction can be calculated as shown

in equations 6.1 through 6.4:

Dctr =
√

∆x2 + ∆y2 (6.1)

θ = arctan2(∆x,−∆y) (6.2)

φ = arcsin(R/Dctr) (6.3)

clockwise tangent orbit heading = θ − φ (6.4)

Figure 6.2: Orbit Tangent Vector Calculation Geometry

1Note that the CVSS coordinate frame defines positive angles as clockwise relative to the negative

y axis as shown in Figure 4.6. This may make the subsequent trigonometry calculations appear

incorrect if angles were assumed as defined counterclockwise relative to the positive x axis.

97

The vessel’s current heading angle can then be subtracted from this absolute

heading angle to find the heading angle error; the relative heading angle change the

vessel must make to follow the tangent vector direction.

6.4 Algorithm Testing

The orbital retrieval algorithm was tested using the microUSV platform in the Memo-

rial University deep tank, shown in Figure 5.1. Six vessels were available for testing,

all equipped with side-mounted nets. Each vessel 3D printed in a unique color to

make it easier for the user to distinguish them. Magenta ping-pong balls were used as

the targeted objects the vessels were intended to gather representing marine plastic

debris. The color of the ping-pong ball targets was chosen to maximize the color

separation between the targets and vessels when performing HSV color thresholding

in CVSS. Magenta was chosen as the color with the greatest separation in the HSV

color space from the vessels’ colors of orange, yellow, green, blue, brown, and red.

This color distinction in CVSS can be seen in Figure 4.7 where only the targets, not

the vessels, are outlined with magenta circles. The targets were also injected with

water, filling approximately half their internal volume, to ballast them. This makes

them rest lower in the water with their center of gravity at or below the waterline,

similar to marine plastic debris. It also makes them harder to move accidentally,

either by unintentionally adhering to a vessel and being dragged along its path or

being pushed around by currents produced by a vessel’s thrusters.

These experiments were meant to test the orbital retrieval algorithm’s effective-

ness at collecting floating contaminants. This was evaluated using two metrics of

98

performance: the average distance between all visible targets and the center of the

designated cluster area, or average target distance, as well as the number of targets

detected in the cluster area, or cluster size. An ideal solution should minimize the av-

erage target distance while maximizing the cluster size. A low average target distance

is an indicator not only of a dense cluster but that there are few outliers remaining in

view outside the cluster area. A large cluster size indicates that the vessels were able

to capture and retrieve the majority of contaminants in the operating area. CVSS was

able to detect the positions of all objects in view of the overhead camera, both vessels

and targets, for the duration of each experiment run. From this data, it calculated

and recorded the raw performance metric data for each time step of an experiment

run. It also recorded each vessel’s pose history; a vessel’s 2D pose at each time step

during the run.

The orbital retrieval experiment was conducted using different numbers of vessels

and targets deployed during each test run. Each run deployed a number of targets

ranging from five to 40 in multiples of five (5, 10, 15, etc.) and between zero and six

microUSVs. Testing each permutation of these two variables resulted in 56 total test

cases. Test cases with zero vessels deployed were included to serve as a reference for

performance. Contaminants floating in water have a tendency to disperse over time.

The zero-vessel test cases provided data on how quickly this dispersion occurs for the

targets used. The vessels’ controller parameters were kept identical for each test case:

The controller gains, the cluster area position and size, and the orbit threshold were

all constant. The only variables being evaluated were the number of vessels and the

number of targets deployed at the start of each test run.

It was hypothesized that any number of vessels running the orbital retrieval al-

99

gorithm would produce better results than the zero-vessel test cases and that this

performance would improve as more vessels were added. This trend of adding vessels

improving performance was expected to reverse with the addition of the fifth or sixth

vessel as inter-vessel interference was likely to begin impeding performance due to the

limited size of the operating area.

6.4.1 Experimental Methods

Each test run began with an empty tank. The water was given time, typically two

to three minutes, to become still between each run to avoid introducing currents or

waves from previous runs as additional variables. Each test started with the launch of

CVSS which would begin recording data from an empty tank with a circular cluster

area defined at the center of the camera’s field of view with a radius of 250 px. Next

the targets for that run would be deployed. The appropriate number of targets for

the run would be placed in a swimming pool net on the end of a long pole. This net

was then held over the tank, approximately 80 mm above the surface of the water,

and aligned with the center of the cluster area. The net was then quickly rotated

180◦ to face the surface of the water, dropping all targets simultaneously, before being

removed. The targets would all enter the water at approximately the same time, in

approximately the same place, and begin to disperse, spreading out toward the edges

of the operating area. This dispersion was allowed to continue uninterrupted for ten

seconds to produce a random distribution of targets throughout the environment.

After the dispersion period, the first vessel would be launched from the left side of

the tank: the vessel was placed in the water in view of the overhead camera and

100

released, allowing the onboard controller to take over. In test cases with multiple

vessels, the next vessel would then be launched from the same place after a five

second delay. This process was repeated until all vessels had been launched. Each

test run concluded three minutes after the launch of the first vessel: The vessels and

targets were retrieved, CVSS was reset, and the water was allowed to settle before

the next test began.

This testing procedure is slow; each run could take 15 to 20 minutes not including

any extra time required to organize the data recorded by CVSS or change the batteries

on one or more vessels between runs. Due to limited time and facility availability,

performing replications of all test cases was not feasible. Each of the 56 test cases was

run only once. To demonstrate the repeatability of the experiment’s results a single

test case was chosen and ran multiple times; specifically the test case deploying three

vessels and ten targets. This repeatability test case was run seven times in total and

the results from each run compared.

CVSS calculates the performance metric data for each run based on the data

acquired by applying color thresholding to the camera feed. It uses OpenCV’s [21]

connected components functions to estimate the number and position of colored tar-

gets in each frame. This is a fast, reasonably accurate, but noisy means of counting

the number of visible targets at each time step: it frequently underestimates the

number of targets in view of the camera as several targets very close to each other

may appear as a single blob to CVSS and only be counted once. It also provides a

good estimate of the average target distance. Using the raw thresholded pixel data,

however, provides a better average target distance estimate.

Instead of using connected components to calculate pixel blobs and estimating

101

the average target distance from the blob centroids, the average target distance can

instead be calculated by averaging the distance of each pixel belonging to a target.

Evaluating the average distance on a pixel level bypasses the issue of multiple targets

being classified as a single blob in CVSS, reducing their impact on the calculation

of average distance. It also is better able to track targets near the periphery of

the operating area where a target mostly out of view would not be counted by the

connected components method as its blob would not be large enough to be counted.

These factors result in the average target pixel distance producing a marginally better

estimate than the average target distance with less noise. Both the average target

distance calculated using connected components and the average target pixel distance

are shown in Figure 6.3 for comparison.

The two average distance data sets in Figure 6.3 were both calculated for the

same test run; zero vessels and 15 targets deployed. As expected, the targets disperse

over time, beginning the test an average distance of 75 pixels from the cluster area

center and ending over 400 pixels away after two minutes. The two measurement

methods agree strongly with a correlation coefficient of 0.985 between them. The

average target distance data, however, appears slightly more spread out. This was

confirmed by fitting a fifth order polynomial to each data set and estimating the

R2 for each curve. The average target pixel distance data had a marginally better

R2 value of 0.987 compared to the R2 of 0.976 of the average target distance curve.

This confirmed that the pixel level measurement resulted in less noisy data. The

average target pixel distance was therefore used as a performance metric instead of

the average target distance in all other tests.

102

Figure 6.3: Comparison Plot Between the Measured Average Target Distance and

the Average Target Pixel Distance from the 0 Vessels - 15 Targets Test Run

103

6.4.2 Results

6.4.2.1 Single Test Performance

Figure 6.4 shows both performance metrics plotted over time for an example test

case, specifically the case with three vessels and 15 targets. The trends shown in

these plots reflect the general behavior observed across all test cases.

The average target pixel distance starts low and begins rising as the targets dis-

perse, shown as a positive slope on the graph from zero to twenty seconds. This

behavior is identical to what was seen in the zero vessel, 15 target test case. The

dispersion is cut short at 20 seconds when the first vessel captures a target and starts

pushing it toward the cluster area, resulting in a sharp negative slope in the graph

as the captured target approaches the cluster. The uncaptured targets continue dis-

persing during this time, which can be observed at the end of the downward sloping

section when the captured target is released in the cluster and the average target

pixel distance stops decreasing. Several subsequent downward spikes coincide with

the three vessels retrieving other targets near the cluster area and working their way

outward to those on the periphery. The cluster stabilizes around 80 seconds when all

targets still in the operating area have been added to the cluster. These clustered tar-

gets still tend to disperse over time but are recaptured by the orbiting vessels, shown

as a sequence of low amplitude spikes in the distance plot from 80 to 180 seconds.

This agrees with the expected result: the addition of three vessels greatly reduced

the average distance targets moved from the center point of the cluster compared to

the zero vessel, 15 target case. The cluster size results, however, do not agree with

expectations.

104

(a) Average Target Pixel Distance vs Time (b) Cluster Size vs Time

Figure 6.4: Performance Metric Data Plots from the 3 Vessels - 15 Targets Test Run

The cluster size plot shows that the number of targets visible to CVSS decreases

steadily during the first 80 seconds of the test then stabilizes with an estimated 4.8

targets in the final cluster2. This is lower than expected: The three vessel swarm

kept fewer targets inside the operating area than the zero vessel, 15 target control

test which ended with a CVSS estimate of 6.7 targets in the operating area. Some

frequent vessel behavior observed during the test accounts for this discrepancy: while

performing their initial retrieval maneuvers, vessels were observed to force targets

other than the one they had captured away from the cluster point. Unlike in terrestrial

clustering applications, the floating targets are free to move and drift, requiring very

little interference to be forced away from the goal. Vessels would often bump into

targets or aim their thrusters outward as they turned toward the cluster area, catching

targets in their wake and pushing them out of the operating area. This resulted in

2Note that the cluster size estimate is based on noisy connected components data. The noise

in this data is heavily biased towards underestimating the number of visible targets. The CVSS

estimate for cluster size is used instead of manual observations for consistency across test cases but

for this test seven targets were counted in the final cluster; still fewer than expected.

105

the count of visible targets being consistently lower when any number of vessels were

introduced to the system compared to the control test, particularly when the number

of deployed targets was high. This behavior was unexpected but consistent across all

test cases.

Both average target pixel distance and cluster size results were reinforced during

the repeatability test. The three vessel, ten target test was run seven times producing

an average final target pixel distance of 97.17 pixels with a standard deviation of 22.71

pixels and an average final cluster size of 5.38 targets with a standard deviation of

1.28 targets. The consistency across replications is encouraging for the validity of all

test case results.

6.4.2.2 Aggregate Experimental Performance

Figure 6.5 shows two different visual representations of the same data: a line graph

and a surface plot of the average target pixel distance aggregated from the end of

all 56 test cases. The trend is particularly obvious in the line graph: regardless of

the number of targets deployed, the average target pixel distance improved with the

addition of one or two vessels but did not benefit substantially from the third or

fourth where the curve level off. The addition of the fifth and sixth vessel introduced

some inter-vessel interference and so there the distance curve begins to slowly rise

again but remains much lower than the zero vessel control cases.

The cluster size aggregate data in Figure 6.6, similarly plotted in two variations,

was very noisy, often performing worse than the corresponding zero vessel control

test case. Aside from a minor inconsistent jump in performance in two vessel tests,

the addition of extra vessels appears to have made little to no impact on the size

106

(a) Aggregate Data Line Graph

(b) Aggregate Data Surface Plot

Figure 6.5: Average Target Pixel Distance Aggregate Data Plots

107

of the final cluster. In fact the final cluster size appears to be very similar in all

test cases, about 5.2 targets, regardless of how many targets were initially deployed.

This is most visible in the Figure 6.6 surface plot where the resulting surface appears

mostly flat along the “Number of Targets Deployed” axis3. It was theorized that this

poor performance may have been caused by the spatial limitations of the microUSV

experimental setup.

The size of the microUSV operating area is limited by the overhead camera’s field

of view. For these experiments, the camera was positioned approximately 1.85 m

from the surface of the water outputting a 720p video feed. This was found to be the

maximum range and resolution the server computer could handle while still produc-

ing reliable AprilTag detections at an acceptable frequency. This configuration only

results in a 2.6×1.5 m operating area. The vessel’s maneuvering room, particularly

in the y-axis was fairly constrained.

Figure 6.7 shows CVSS operating area with an example of the path taken by

a vessel when performing a retrieval maneuver. The vessel starts in the top right

orbiting the cluster area, shown as a red circle, and detects a target in the bottom

right sector of the operating area. It veers toward it, capturing the target around

position (x:800,y:200) and turns back toward the cluster area. It carries the target

toward the cluster, veering sharply toward the center to deposit the captured target

before reversing sharply as shown by the sharp curvature change and subsequent

3It is worth noting that although the zero vessel test cases had more targets visible to the overhead

camera across all test cases, these targets were spread throughout the environment and not truly in

a cluster. Although the presence of vessels ended up pushing many targets further away from the

cluster, those they did capture were kept close together.

108

(a) Aggregate Data Line Graph

(b) Aggregate Data Surface Plot

Figure 6.6: Final Cluster Size Aggregate Data Plots

109

linear motion away from the cluster starting at (x:-100,y:200). It then continues

clockwise, detecting another target in the top left quadrant, and begins a second

retrieval maneuver.

Figure 6.7: 2D Vessel Trajectory Plot - Successful Retrieval Maneuver

Although the sequence of events depicted in Figure 6.7 was successful, the vessel

moved very close to the edge of the operating area at (x:700,y:625) as a result. Occa-

sionally, a vessel attempting to retrieve a target near the periphery of the operating

area would overshoot and move out of view of the overhead camera. It would fail

to retrieve the target, frequently pushing it out of the operating area in the process,

and lose localization capabilities. Sometimes the vessel could not recover from such

a failed maneuver, remaining lost outside the operating area for the remainder of the

test. Such a failed retrieval maneuver attempt can be seen in Figure 6.8.

110

Figure 6.8: 2D Vessel Trajectory Plot - Failed Retrieval Maneuver

In Figure 6.8, the vessel again detects a target in the lower right quadrant and

veers out to retrieve it. Unlike in Figure 6.7, the overhead camera loses sight of the

vessel at (x:450,y:650) and the vessel fails to retrieve the target. The vessel leaves the

operating area and stops moving.

This spatial limitation is an unrealistic shortcoming of the current microUSV

system. A full-scale USV fleet which would be equipped with onboard target sensors

and localization systems such as GPS would not encounter an invisible boundary the

vessels could not observe or move beyond. In the Figure 6.8 example, the vessel would

have simply captured the object and returned it to the cluster as normal. Similarly,

the targets pushed away from the cluster immediately following vessel deployment

would not move beyond detection range. The swarm might be able to reacquire them

111

later despite having initially pushed them away. This limitation must be addressed

before the orbital retrieval algorithm can be adequately tested.

The algorithm has shown some initial promising results but also demonstrated a

significant shortcoming: disrupting the outermost targets worse than entropy, nega-

tively impacting the clustering results. Addressing the testing system’s spatial con-

straint issue may greatly improve the algorithm’s cluster size metric performance.

112

Chapter 7

Conclusion

This thesis discusses the design of a novel USV platform for marine swarm robotics

research applications. The microUSV fills a gap among existing commercial and open

source Unmanned Surface Vehicle (USV) platforms: It was designed from the ground

up to operate in indoor laboratory environments. The microUSV was intended as an

intermediate hardware testing platform, bridging the gap between simulated testing

and full-scale validation of marine swarm robotics algorithms on expensive open water

USVs.

The platform was designed to be as small and inexpensive as possible while still

offering properties critical to swarm robotics research such as good stability and

onboard autonomy: It leverages predominantly off-the-shelf hardware and hobbyist

electronics. The vessel’s handful of custom components were designed for fabrication

using a Fused Deposition Modeling (FDM) 3D printer; the most common and lowest

cost type of 3D printer currently available. The design was made open source and as

simple to fabricate as possible to allow other researchers, regardless of their level of

113

familiarity with hardware assembly methods, to repurpose the platform for their own

work.

As part of the cost and size reduction measures, the microUSV system design

eschews physical sensors in favor of virtual ones. The vessels operate using simulated

sensor data generated by a server computer connected to an overhead camera and

running the AprilTag-based CVSensorSimulator (CVSS) application. This setup is

able to provide updates for multiple simulated sensors at a frequency of 17 to 21 Hz

to each of several vessels simultaneously. It provides pose estimates for localization

and simulates nearby target detection using image color thresholding.

The microUSV’s hardware and software were validated by testing the system’s

ability to perform waypoint following tasks and serving as the platform for initial de-

velopment of the orbital retrieval algorithm. The platform proved watertight, stable,

and easily capable of following set waypoints using a simple PI controller implemen-

tation during these experiments even with multiple vessels operating simultaneously.

The results from testing the orbital retrieval algorithm were less encouraging.

Orbital retrieval is a novel algorithm for clustering floating marine contaminants

using a swarm of USVs. This reactive control scheme guides vessels in a circular orbit

around a central cluster area, performing a sensor sweep of the surrounding water.

Any targets detected are retrieved and added to the cluster. The vessel’s orbiting

behavior helps maintain the integrity of the cluster as unlike objects in terrestrial

clustering applications, floating marine targets have a tendency to disperse naturally

over time. This approach was expected to yield larger and tighter clusters with the

addition of more vessels. This proved to be untrue.

The vessels executing the orbital retrieval algorithm were able to successfully form

114

and maintain a tight cluster of objects at the designated location but disrupted tar-

gets near those they retrieved in the process. Vessels unintentionally bumping into

or pushing targets away from the cluster with thrust from their propellers was detri-

mental to the system’s performance. This often resulted in fewer targets remaining in

the operating area at the end of each test than the control test cases where zero ves-

sels were deployed and the targets were allowed to disperse naturally. The algorithm

consistently produced smaller clusters than expected.

The poor performance during the orbital retrieval tests may not have been the

fault of the algorithm itself but of a testing system limitation: Because of its reliance

on a single overhead camera for sensor data, the microUSV system’s operating area is

restricted to that camera’s field of view. The current setup can achieve an operating

area of 2.6×1.5 m which proved to be too small for this experiment. The targets

vessels unintentionally pushed away from the cluster would frequently leave the op-

erating area, becoming undetectable and thus could never be retrieved. Without the

artificially limited operating area size, the vessels would be free to move further afield

to retrieve these targets at a later time. Vessels were also occasionally observed to

leave the operating area in pursuit of a target, losing localization sensor data in the

process and becoming unable to navigate. This limitation must be addressed before

development of the orbital retrieval algorithm can continue.

7.1 Future Work

In addition to the spatial limitations of its operating area, the microUSV system has

some flaws which could be addressed in a future design revision. The known design

115

issues are listed below with one or more potential solutions proposed for each.

7.1.1 Hardware Improvements

• The microUSV’s thruster efficiency is too easily influenced by slight misalign-

ments in its the drive train subassemblies. Not all potential users have the

patience or experience to properly align each motor to its drive shaft and stuff-

ing tube. Small angular misalignment between the motor and shaft are handled

by a universal joint coupler but the addition of a second universal joint would

also mitigate small axial misalignments. The drive train subassemblies could

also be made removable so they could be properly aligned and tuned before

installation.

• Similarly, modifying a vessel’s drive shafts requires the use of a lathe; a poten-

tially intimidating tool that is likely unfamiliar to any users without a back-

ground in mechanics or machining. An alternate means of mounting the pro-

pellers to the drive shaft without component modification would be ideal. The

microUSV hardware article [41] proposes bonding the propellers to the shafts

with adhesive as a possible alternative to threading them. This solution works

but is permanent and may not be ideal for long term maintenance purposes. A

shaft collar tensioned with setscrews similar to the drive dog may be a suitable

non-permanent alternative.

• The power switch on the voltage bus is difficult to access by hand. A tool

narrower than a user’s fingers such as a small screw driver is often needed to

turn the vessels on. This can be addressed by altering the voltage bus board

116

layout, moving the switch into a more accessible location.

• Installing and removing the onboard electronics bracket involves connecting or

disconnecting four jumper cables; one for each motor and one for each battery.

Bundling these four cables into a single umbilical cable between the hull devices

and electronics bracket devices would greatly simplify this process. Connecting

and disconnecting a single cable instead of four would reduce the time needed

to change batteries.

• On the topic of jumper cables, the various cables connecting devices on the

onboard electronics bracket could be replaced by a single custom Printed Cir-

cuit Board (PCB) to simplify the wiring process, greatly reducing the risk of

connecting a cable to the wrong pins. This solution is, however, more expensive

and does not allow for easy expansion like the jumper cable system.

• Alkaline nine volt batteries were chosen to power the microUSV over more

energy-dense alternatives such as Lithium Polymer (LiPo) batteries. Nine volt

battery are readily available and battery change times are much shorter than

LiPo charging times. These benefits were not found to be sufficient justification

for choosing them over LiPo batteries. Changing the microUSV’s power system

to use LiPo batteries would improve run times and reduce waste. This change

would require a careful reworking of the battery mounting configuration and

general arrangement to keep the vessels stable. Another possible improvement

to the onboard power system would be to replace the 9 V to 5 V voltage regu-

lator with a 9 V to 5 V buck converter circuit. Such a module would consume

less power than the voltage regulator in the current design and provide a mod-

117

est improvement to vessel operation time without significant alterations to its

electrical system.

• The vessel’s motors were connected directly to the batteries while all other

onboard devices were powered using the regulated five volt bus. The vessel’s

five volt devices, running on regulated power, would function the same way

regardless of the level of battery discharge. The motors, however, would produce

lower torques over time as the batteries drained, even when sent the same motor

speed command. The motors should run on a regulated power supply to give

consistent outputs independent of the slowly changing battery voltage. The

motors could be replaced with a similar model requiring a lower voltage and be

run off of the same regulated five volt bus as the other onboard devices.

7.1.2 Software Improvements

• A simulation environment should be developed which models the kinematics

and dynamics of the microUSV platform. The slow hardware experiment and

controller iteration process severely hampered development of the orbital re-

trieval algorithm: The total number of experiment runs, and their associated

opportunities for controller tuning, were limited due to the time investment re-

quired to set up and execute each individual test scenario. A simulator would

accelerate algorithm development considerably; allowing a greater number of

controller and environmental parameters to be considered and varied simul-

taneously with near-instantaneous experimental setup. Pairing the microUSV

with a swarm robotics simulator was the original intent during the platform’s

118

development: Testing on the microUSV platform was meant to serve as an in-

termediate step between simulation and full-scale hardware testing. Developing

a microUSV simulator will make the hardware platform a more useful tool for

swarm robotics development efforts.

• A future microUSV simulator should also incorporate dynamics modeling for

target interactions. Many of the unanticipated behaviors observed during test-

ing can be attributed to the interactions between the currents introduced by

a vessel’s wake or thrust path and the floating targets in the nearby environ-

ment. These behaviors, not being present in the ground-based swarms used

when testing the algorithms which inspired orbital retrieval, were unexpected

and hampered collection efforts. Modelling these behaviors will allow future

algorithm development to better predict and avoid such issues, potentially even

finding some useful interactions to exploit.

• Control algorithms running on the microUSV might produce more consistent

results if they could control the motor’s rotation speed instead of its input

voltage. Attaching a rotary encoder to each motor would allow controllers to

perform closed loop control on the propeller speed rather than the motor torque.

• As discussed above and in Chapter 6, the microUSV system’s operating area

is too constrained to effectively test some algorithms. The use of a more pow-

erful computer to run CVSS may allow the camera resolution to be increased,

increasing the maximum distance at which AprilTags can be detected, but this

solution is not scalable. Replacing the AprilTags with a different visual pose

detection system with greater detection ranges may prove more successful. The

119

WhyCode [55] tag system is worth investigating as they function similarly to

AprilTags at longer range and would require almost no hardware modifications.

Using an infrared sensitive camera to detect unique patterns of infrared-emitting

diodes mounted to the top of each vessel may also be considered. This is likely

harder to implement than repurposing an existing a commercial system such as

the HTC Vive trackers [13].

• The reactive control scheme implemented in the orbital retrieval algorithm may

not be suitable for marine environments. Because vessels cannot turn as quickly

as terrestrial differential drive robots but must accelerate and decelerate over

several seconds, the oscillatory behavior used in [37] and [89] is much slower.

This will need to be tested once the microUSV system has been updated to

address the spatial limitation issues. Using a trajectory planning approach

instead of a reactive controller may prove more effective in this environment.

• Expanding the microUSV’s target sensor range and allowing it to differentiate

between near and far targets may improve the performance of the orbital re-

trieval algorithm. Where the current implementation only detects the presence

of nearby targets, not the distance to them, it will always attempt to capture

the nearest target first, often pushing away those farther from the cluster point

in the process. If it were able to identify the farthest target and seek that one

first a vessel would travel from the outside of the operating area inward rather

than the current scheme which works from the inside outward. This may re-

duce the number of lost targets due to wave action and interactions with nearby

vessels.

120

Bibliography

[1] Boat autopilot - based on the arduino. https://www.instructables.com/id/

Boat-Autopilot/. Accessed: 2017-10-08.

[2] C-Worker 8 product information. https://www.asvglobal.com/product/

c-worker-8/. Accessed: 2019-05-30.

[3] CAT-Surveyor. https://www.subsea-tech.com/cat-surveyor/. Accessed:

2019-05-30.

[4] Cleaning up the garbage patches. https://theoceancleanup.com/oceans/.

Accessed: 2020-03-11.

[5] The correl lab swarm robotics platform - droplets. https://code.google.com/

archive/p/cu-droplet/. Accessed: 2020-03-08.

[6] Heron unmanned surface vehicle. https://www.clearpathrobotics.com/

heron-unmanned-surface-vessel/. Accessed: 2019-05-30.

[7] Laurent’s multi tug - dundrum bay! https://www.modelboatmayhem.co.uk/

Modellers/Laurent/1ndex.htm. Accessed: 2019-08-28.

121

https://www.instructables.com/id/Boat-Autopilot/
https://www.instructables.com/id/Boat-Autopilot/
https://www.asvglobal.com/product/c-worker-8/
https://www.asvglobal.com/product/c-worker-8/
https://www.subsea-tech.com/cat-surveyor/
https://theoceancleanup.com/oceans/
https://code.google.com/archive/p/cu-droplet/
https://code.google.com/archive/p/cu-droplet/
https://www.clearpathrobotics.com/heron-unmanned-surface-vessel/
https://www.clearpathrobotics.com/heron-unmanned-surface-vessel/
https://www.modelboatmayhem.co.uk/Modellers/Laurent/1ndex.htm
https://www.modelboatmayhem.co.uk/Modellers/Laurent/1ndex.htm

[8] Protocol buffers. https://developers.google.com/protocol-buffers/. Ac-

cessed: 2019-09-10.

[9] Seabin v5. https://seabinproject.com/the-seabin-v5/. Accessed: 2020-03-

06.

[10] Swarmdiver - micro swarming USV/UUV. https://www.aquabotix.com/

swarmdiver.html. Accessed: 2020-03-19.

[11] V4l-utils. https://linuxtv.org/wiki/index.php/V4l-utils. Accessed:

2020-04-14.

[12] ASV global and terrasond mark industry first for un-

manned hydrographic survey. https://www.asvglobal.com/

asv-global-terrasond-mark-industry-first-unmanned-hydrographic-survey/,

Aug 2016.

[13] HTC Vive Tracker Developer Guidelines, Jul 2017.

[14] n3m0 the autonomous boat. https://hackaday.io/project/

25508-n3m0-the-autonomous-boat, Jun 2017.

[15] M. Allwright, W. Zhu, and M. Dorigo. An open-source multi-robot construction

system. HardwareX, 5:e00050, 2019.

[16] F. Arvin, J. Espinosa, B. Bird, A. West, S. Watson, and B. Lennox. Mona:

an affordable open-source mobile robot for education and research. Journal of

Intelligent & Robotic Systems, 94(3):761–775, 2019.

122

https://developers.google.com/protocol-buffers/
https://seabinproject.com/the-seabin-v5/
https://www.aquabotix.com/swarmdiver.html
https://www.aquabotix.com/swarmdiver.html
https://linuxtv.org/wiki/index.php/V4l-utils
https://www.asvglobal.com/asv-global-terrasond-mark-industry-first-unmanned-hydrographic-survey/
https://www.asvglobal.com/asv-global-terrasond-mark-industry-first-unmanned-hydrographic-survey/
https://hackaday.io/project/25508-n3m0-the-autonomous-boat
https://hackaday.io/project/25508-n3m0-the-autonomous-boat

[17] F. Arvin, J. Murray, C. Zhang, and S. Yue. Colias: An autonomous micro

robot for swarm robotic applications. International Journal of Advanced Robotic

Systems, 11(7), 2014.

[18] D. K. A. Barnes, F. Galgani, R. C. Thompson, and M. Barlaz. Accumulation

and fragmentation of plastic debris in global environments. Philosophical Trans-

actions of the Royal Society B, 364(1526):1985–1998, 2009.

[19] M. Barnes, N. Graham, C. Gregory, A. Randell, and W. Whitby. Sunken history

of grand lake. Journal of Ocean Technology, 12(4):19–26, 2017.

[20] L. Bayındır. A review of swarm robotics tasks. Neurocomputing, 172:292–321,

2016.

[21] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[22] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm robotics: a

review from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41,

2013.

[23] R. G. Budynas and J. K. Nisbett. Shigley’s mechanical engineering design.

McGraw-Hill series in mechanical engineering. McGraw-Hill, New York, 9th ed..

edition, 2011.

[24] R. Campos, N. Gracias, and P. Ridao. Underwater multi-vehicle trajectory align-

ment and mapping using acoustic and optical constraints. Sensors, 16(3):387,

2016.

123

[25] D. F. Carlson, A. Fürsterling, L. Vesterled, M. Skovby, S. S. Pedersen, C. Melvad,

and S. Rysgaard. An affordable and portable autonomous surface vehicle with

obstacle avoidance for coastal ocean monitoring. HardwareX, 5:e00059, 2019.

[26] A. Christensen, R. O’Grady, and M. Dorigo. From fireflies to fault-tolerant

swarms of robots. IEEE Transactions on Evolutionary Computation, 13(4):754–

766, 2009.

[27] S.-J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar. A survey on

aerial swarm robotics. IEEE Transactions on Robotics, 34(4):837–855, 2018.

[28] T. Chung, M. Clement, M. Day, K. Jones, D. Davis, and M. Jones. Live-fly,

large-scale field experimentation for large numbers of fixed-wing UAVs. volume

2016-, pages 1255–1262. Institute of Electrical and Electronics Engineers Inc.,

2016.

[29] D. Cook, A. Vardy, and R. Lewis. A survey of AUV and robot simulators for

multi-vehicle operations. In 2014 IEEE/OES Autonomous Underwater Vehicles

(AUV), pages 1–8. IEEE, 2014.

[30] V. Costa, M. Duarte, T. Rodrigues, S. M. Oliveira, and A. L. Christensen. Design

and development of an inexpensive aquatic swarm robotics system. OCEANS

2016 - Shanghai, pages 1–7, 2016.

[31] E. Şahin. Swarm robotics: From sources of inspiration to domains of application.

In Swarm Robotics: SAB 2004 International Workshop, Santa Monica, CA,

USA, July 17, 2004, Revised Selected Papers, volume 3342 of Lecture Notes in

124

Computer Science, pages 10–20. Springer Berlin Heidelberg, Berlin, Heidelberg,

2005.

[32] M. Duarte, J. Gomes, V. Costa, T. Rodrigues, F. Silva, V. Lobo, M. Mon-

teiro Marques, S. Moura Oliveira, and A. Lyhne Christensen. Application of

swarm robotics systems to marine environmental monitoring. OCEANS 2016 -

Shanghai, pages 1–8, 2016.

[33] M. Eriksen, L. C. M. Lebreton, H. S. Carson, M. Thiel, C. J. Moore, J. C.

Borerro, F. Galgani, P. G. Ryan, and J. Reisser. Plastic pollution in the world’s

oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at

sea. PLoS ONE, 9(12):e111913, 2014.

[34] J. H. Evans. Basic design concepts. Journal of the American Society for Naval

Engineers, 71(4):671–678, 1959.

[35] D. Fritsch, K. Wegener, and R. D. Schraft. Control of a robotic swarm for the

elimination of marine oil pollutions. IEEE Swarm Intelligence Symposium, pages

29–36, 2007.

[36] T. S. Galloway. Micro- and Nano-plastics and Human Health, pages 343–366.

Springer International Publishing, Cham, 2015.

[37] M. Gauci, J. Chen, W. Li, T. Dodd, and R. Groß. Clustering objects with robots

that do not compute. pages 421–428, 01 2014.

125

[38] A. Gautam and S. Mohan. A review of research in multi-robot systems. In

2012 IEEE 7th International Conference on Industrial and Information Systems

(ICIIS), pages 1–5, Aug 2012.

[39] P. S. Gonçalves, P. D. Torres, C. O. Alves, F. Mondada, M. Bonani, X. Raemy,

J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat, J. C. Zufferey, D. Floreano, and

A. Martinoli. The e-puck, a robot designed for education in engineering, 2009.

[40] C. Gregory. microUSV project repository. https://doi.org/10.17605/OSF.

IO/7FQ6U, Mar 2020.

[41] C. Gregory and A. Vardy. microUSV: A low-cost platform for indoor marine

swarm robotics research. HardwareX, 7:e00105, Apr 2020.

[42] H. Hamann. Swarm Robotics: A Formal Approach. Springer International Pub-

lishing, Cham, 2018.

[43] J. Hecker, K. Letendre, K. Stolleis, D. Washington, and M. Moses. Formica ex

machina: Ant swarm foraging from physical to virtual and back again. volume

7461, pages 252–259, 2012.

[44] J. How, B. Bethke, A. Frank, D. Dale, and J. Vian. Real-time indoor autonomous

vehicle test environment. IEEE Control Systems, 28(2):51–64, 2008.

[45] E. N. Jacobs, K. E. Ward, and R. M. Pinkerton. The characteristics of 78 related

airfoil sections from tests in the variable-density wind tunnel. Technical report,

1933.

126

https://doi.org/10.17605/OSF.IO/7FQ6U
https://doi.org/10.17605/OSF.IO/7FQ6U

[46] W. Jo, Y. Hoashi, L. L. Paredes Aguilar, M. Postigo-Malaga, J. M. Garcia-Bravo,

and B.-C. Min. A low-cost and small usv platform for water quality monitoring.

HardwareX, 6:e00076, 2019.

[47] N. M. Kakalis and Y. Ventikos. Robotic swarm concept for efficient oil spill

confrontation. Journal of Hazardous Materials, 154(1):880–887, 2008.

[48] S. Kernbach, R. Thenius, O. Kernbach, and T. Schmickl. Re-embodiment of

honeybee aggregation behavior in an artificial micro-robotic system. Adaptive

Behavior, 17(3):237–259, 2009.

[49] P. Kimball, J. Bailey, S. Das, R. Geyer, T. Harrison, C. Kunz, K. Manganini,

K. Mankoff, K. Samuelson, T. Sayre-McCord, F. Straneo, P. Traykovski, and

H. Singh. The WHOI jetyak: An autonomous surface vehicle for oceanographic

research in shallow or dangerous waters. 2014 IEEE/OES Autonomous Under-

water Vehicles (AUV), pages 1–7, 2014.

[50] A. A. Koelmans, E. Besseling, and W. J. Shim. Nanoplastics in the Aquatic

Environment. Critical Review, pages 325–340. Springer International Publishing,

Cham, 2015.

[51] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-

source multi-robot simulator. In 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 3,

pages 2149–2154 vol.3. IEEE, 2004.

127

[52] S. Kühn, E. L. Bravo Rebolledo, and J. A. van Franeker. Deleterious Effects of

Litter on Marine Life, pages 75–116. Springer International Publishing, Cham,

2015.

[53] D. Larkin, M. Michini, A. Abad, S. Teleski, and M. A. Hsieh. Design of the

multi-robot coherent structure testbed (mCoSTe) for distributed tracking of geo-

physical fluid dynamics. Volume 5B: 38th Mechanisms and Robotics Conference,

Aug 2014.

[54] Z. Li, R. Bachmayer, and A. Vardy. Path-following control for unmanned sur-

face vehicles. IEEE International Conference on Intelligent Robots and Systems,

2017-:4209–4216, 2017.

[55] P. Lightbody, T. Krajńık, and M. Hanheide. An efficient visual fiducial localisa-

tion system. ACM SIGAPP Applied Computing Review, 17(3):28–37, 2017.

[56] Z. Liu, Y. Zhang, X. Yu, and C. Yuan. Unmanned surface vehicles: An overview

of developments and challenges. Annual Reviews in Control, 41:71–93, 2016.

[57] I. Lonc̆ar, A. Babić, B. Arbanas, G. Vasiljević, T. Petrović, S. Bogdan, and

N. Mĭsković. A heterogeneous robotic swarm for long-term monitoring of marine

environments. Applied Sciences, 9(7), 2019.

[58] J. Manley. Unmanned surface vehicles, 15 years of development. In OCEANS

2008, pages 1–4. IEEE, 2008.

[59] L. Marconi, C. Melchiorri, M. Beetz, D. Pangercic, R. Siegwart, S. Leutenegger,

R. Carloni, S. Stramigioli, H. Bruyninckx, P. Doherty, A. Kleiner, V. Lippiello,

128

A. Finzi, B. Siciliano, A. Sala, and N. Tomatis. The SHERPA project: Smart

collaboration between humans and ground-aerial robots for improving rescuing

activities in alpine environments. In 2012 IEEE International Symposium on

Safety, Security, and Rescue Robotics (SSRR), pages 1–4. IEEE, 2012.

[60] J. McLurkin, A. J. Lynch, S. Rixner, T. W. Barr, A. Chou, K. Foster, and

S. Bilstein. A Low-Cost Multi-robot System for Research, Teaching, and Out-

reach, pages 597–609. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[61] K. McTaggart, L. Boudet, and S. Oakey. Validation of a distributed simulation

of ship replenishment at sea with model tests. Journal of Marine Science and

Technology, pages 1–14, 2018.

[62] A. F. Molland. The Maritime Engineering Reference Book: A Guide to Ship

Design, Construction and Operation, pages 75–115. Elsevier Science, 2008. ch.3

Flotation and stability.

[63] A. F. Molland. The Maritime Engineering Reference Book: A Guide to Ship

Design, Construction and Operation, pages 484–577. Elsevier Science, 2008.

ch.7 Seakeeping.

[64] F. Mondada, G. Pettinaro, A. Guignard, I. Kwee, D. Floreano, J.-L. Deneubourg,

S. Nolfi, L. Gambardella, and M. Dorigo. Swarm-bot: A new distributed robotic

concept. Autonomous Robots, 17(2):193–221, 2004.

[65] C. Morris, P. Sargent, D. Porter, R. Gregory, D. Drover, K. Matheson, T. Maddi-

gan, C. Holloway, and L. Sheppard. Garbage in newfoundland harbours. Journal

of Ocean Technology, 11(2):18–26, Jul 2016.

129

[66] S. Newman, E. Watkins, A. Farmer, P. t. Brink, and J.-P. Schweitzer. The

Economics of Marine Litter, pages 367–394. Springer International Publishing,

Cham, 2015.

[67] C. O’Donnell. World’s cheapest foil chart for NACA section profiles. http:

//www.boat-links.com/foilfaq.html, Jan 1997. Accessed: 2020-03-27.

[68] E. Olson. AprilTag: A robust and flexible visual fiducial system. pages 3400–

3407, 2011.

[69] O. Parodi, V. Creuze, and B. Jouvencel. Communications with thetis, a real

time multi-vehicles hybrid simulator. 07 2008.

[70] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,

N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gam-

bardella, and M. Dorigo. ARGoS: a modular, parallel, multi-engine simulator

for multi-robot systems. Swarm Intelligence, 6(4):271–295, 2012.

[71] C. Powers, R. Hanlon, and D. G. Schmale. Tracking of a fluorescent dye in

a freshwater lake with an unmanned surface vehicle and an unmanned aircraft

system. Remote Sensing, 10(1):81, 2018.

[72] J. Preiss, W. Honig, G. Sukhatme, and N. Ayanian. Crazyswarm: A large

nano-quadcopter swarm. pages 3299–3304. Institute of Electrical and Electronics

Engineers Inc., 2017.

130

http://www.boat-links.com/foilfaq.html
http://www.boat-links.com/foilfaq.html

[73] A. Prorok, M. A. Hsieh, and V. Kumar. Formalizing the impact of diversity on

performance in a heterogeneous swarm of robots. IEEE International Conference

on Robotics and Automation (ICRA), pages 5364–5371, 2016.

[74] A. Reina, A. J. Cope, E. Nikolaidis, J. A. R. Marshall, and C. Sabo. ARK: Aug-

mented reality for kilobots. IEEE Robotics and Automation Letters, 2(3):1755–

1761, Jul 2017.

[75] C. M. Rochman. The Complex Mixture, Fate and Toxicity of Chemicals Asso-

ciated with Plastic Debris in the Marine Environment, pages 117–140. Springer

International Publishing, Cham, 2015.

[76] E. Rohmer, S. P. N. Singh, and M. Freese. CoppeliaSim (formerly V-

REP): a versatile and scalable robot simulation framework. In Proc. of The

International Conference on Intelligent Robots and Systems (IROS), 2013.

www.coppeliarobotics.com.

[77] M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, and R. Nagpal. Kilobot: A low

cost robot with scalable operations designed for collective behaviors. Robotics

and Autonomous Systems, 62(7):966–975, 2014.

[78] J. Rubinovas. Hydrostatics calculator for solidworks. https://www.floatsoft.

net/. Accessed: 2019-05-13.

[79] C. Sarraf, H. Djeridi, S. Prothin, and J. Billard. Thickness effect of naca foils on

hydrodynamic global parameters, boundary layer states and stall establishment.

Journal of Fluids and Structures, 26(4):559–578, 2010.

131

https://www.floatsoft.net/
https://www.floatsoft.net/

[80] N. Seltenrich. New link in the food chain? marine plastic pollution and seafood

safety. Environmental health perspectives, 123(2):A34–A41, 2015.

[81] D. Sousa, D. Hernandez, F. Oliveira, M. Lúıs, and S. Sargento. A platform

of unmanned surface vehicle swarms for real time monitoring in aquaculture

environments. Sensors (Basel, Switzerland), 19(21):4695, Oct 2019.

[82] M. Thiel, G. Luna-Jorquera, R. Álvarez Varas, C. Gallardo, I. A. Hinojosa,

N. Luna, D. Miranda-Urbina, N. Morales, N. Ory, A. S. Pacheco, M. Portflitt-

Toro, and C. Zavalaga. Impacts of marine plastic pollution from continental

coasts to subtropical gyres—fish, seabirds, and other vertebrates in the se pacific.

Frontiers in Marine Science, 5:238, 2018.

[83] T. Tosik, J. Schwinghammer, M. J. Feldvoß, J. P. Jonte, A. Brech, and E. Maehle.

Mars: A simulation environment for marine swarm robotics and environmental

monitoring. OCEANS 2016 - Shanghai, pages 1–6, 2016.

[84] D. Tsankova and V. Georgieva. From local actions to global tasks: Simulation of

stigmergy based foraging behavior. In 2004 2nd International IEEE Conference

’Intelligent Systems’ - Proceedings, volume 1, pages 353–358, 2004.

[85] D. Tsankova, V. Georgieva, F. Zezulka, and Z. Bradac. Immune network control

for stigmergy based foraging behaviour of autonomous mobile robots. Interna-

tional Journal of Adaptive Control and Signal Processing, 21(2-3):265–286, 2007.

[86] J. Tu. Computational fluid dynamics : a practical approach.

Elsevier/Butterworth-Heinemann, Amsterdam ; Boston, 2nd ed.. edition,

2013.

132

[87] S. Van Schie, K. Laura Stack, and B. Slat. Alternative Cleanup Concepts, pages

68–73. Mar 2014.

[88] A. Vardy. Accelerated patch sorting by a robotic swarm. In 2012 Ninth Confer-

ence on Computer and Robot Vision, pages 314–321. IEEE, 2012.

[89] A. Vardy. Orbital construction: Swarms of simple robots building enclosures.

2018 IEEE 3rd International Workshops on Foundations and Applications of

Self* Systems (FAS*W), pages 147–153, 2018.

[90] A. Vasilijevic, P. Calado, F. Lopez-Castejon, D. Hayes, N. Stilinovic, D. Nad,

F. Mandic, P. Dias, J. Gomes, J. C. Molina, A. Guerrero, J. Gilabert,

N. Miskovic, Z. Vukic, J. Sousa, and G. Georgiou. Heterogeneous robotic system

for underwater oil spill survey. In OCEANS 2015 - Genova, pages 1–7. IEEE,

2015.

[91] R. Vaughan. Massively multi-robot simulation in stage. Swarm Intelligence,

2(2-4):189–208, 2008.

[92] M. Waibel, B. Keays, and F. Augugliaro. Drone shows: Creative potential and

best practices. Verity Studios, Jan 2017.

[93] A. Weinstein, A. Cho, G. Loianno, and V. Kumar. Visual inertial odometry

swarm: An autonomous swarm of vision-based quadrotors. IEEE Robotics and

Automation Letters, 3(3):1801–1807, Jul 2018.

133

[94] J. Werfel, K. Petersen, and R. Nagpal. Designing collective behavior in a termite-

inspired robot construction team. Science (New York, N.Y.), 343(6172):754–758,

2014.

[95] Z. Yan, N. Jouandeau, and A. A. Cherif. A survey and analysis of multi-robot

coordination. International Journal of Advanced Robotic Systems, 10(12), 2013.

[96] E. M. H. Zahugi, M. M. Shanta, and T. V. Prasad. Oil spill cleaning up us-

ing swarm of robots. In N. Meghanathan, D. Nagamalai, and N. Chaki, editors,

Advances in Computing and Information Technology, pages 215–224, Berlin, Hei-

delberg, 2013. Springer Berlin Heidelberg.

134

Appendix A

Bill of Materials

135

Table A.1: Detailed Bill of Materials

ITEM NO. DESCRIPTION SOURCE QTY PKG COST PKG SIZE ORDER PKGS Total Cost PART NUMBER

1 Hull Rev 1.6 3D Print 1 $46.41 1 1 $46.41 MUSV-01

2 Lid Rev 1.6 3D Print 1 $18.71 1 1 $18.71 MUSV-02

3 Keel 3D Print 1 $13.51 1 1 $13.51 MUSV-03

4 Electronics Bracket 3D Print 1 $10.96 1 1 $10.96 MUSV-04

5 Stuffing Tube Bracket 3D Print 2 $0.23 1 2 $0.45 MUSV-05

6 Gearmotor Bracket 3D Print 2 $0.20 1 2 $0.39 MUSV-06

7 8GB Micro SD Card Class 10 Amazon 1 $10.99 1 1 $10.99

8 9V Battery Amazon 2 $13.98 8 1 $13.98

9 UVPOXY 500mL Kit Amazon 20 $66.85 500 1 $66.85

10 8” Mini to Micro USB Cable Amazon 1 $8.21 1 1 $8.21

11 Vaseline Petroleum Jelly Amazon 1.6 $3.67 433.5 1 $3.67

12 2mm Hair Elastic Amazon 2 $5.99 29 1 $5.99

13 Arduino Nano BuyaPi 1 $12.95 1 1 $12.95

14 Raspberry Pi Zero W BuyaPi 1 $12.99 1 1 $12.99

15 2x20 Male Header Pin Strip BuyaPi 1 $0.95 1 1 $0.95

16 Loctite Blue 242 Canadian Tire 1 $8.99 6 1 $8.99 067-0036-8

17 Marine Silicone Sealant Canadian Tire 5 $5.49 82 1 $5.49 067-0842-8

18 LM7805 5V Fixed Voltage Regulator Digikey 1 $2.32 1 1 $2.32 LM7805

19 Male Header Pin Digikey 44 $2.95 32 2 $5.90 732-2671-ND

20 Voltage Bus Breadboard Digikey 1 $1.65 1 1 $1.65 SBBTH1506-1-ND

21 22 AWG Stranded Wire (multiple colors) Digikey 5 $0.85 1 5 $4.25 22759/32-22-0-DS-ND

22 Slide Switch SPDT Digikey 1 $3.62 1 1 $3.62 563-1388-ND

23 9V Battery Snap Connector Digikey 2 $0.74 1 2 $1.48 36-235-ND

24 Crimp Connector 22-24AWG Female Digikey 38 $0.17 1 3 $6.31 WM2510-ND

25 Crimp Connector 22-24AWG Male Digikey 4 $0.41 1 4 $1.64 WM2517-ND

26 2 Pos. Conn Housing Digikey 12 $0.47 1 1 $5.62 WM2800-ND

27 3 Pos. Conn Housing Digikey 4 $0.67 1 4 $2.68 WM2801-ND

28 4 Pos. Conn Housing Digikey 1 $0.68 1 1 $0.68 WM2802-ND

29 2 Pos. Conn Housing w/ Latch Digikey 2 $0.38 1 2 $0.76 WM2900-ND

30 2 Pos. Conn Housing Male Digikey 2 $0.74 1 2 $1.48 WM2533-ND

136

Table A.1 – continued from previous page

ITEM NO. DESCRIPTION SOURCE QTY PKG COST PKG SIZE ORDER PKGS Total Cost PART NUMBER

31 0.1 µF Capacitor Digikey 4 $0.28 1 4 $1.12 478-3188-ND

32 28mm Diameter Propeller Hobby King 2 $2.17 5 1 $2.17 017000471-0

33 U-Joint Shaft Coupler Hobby King 2 $10.24 5 1 $10.24 017000469-0

34 #2 Flat Washer 18-8SS Mcmaster-Carr 8 $9.38 500 1 $9.38 98017A601

35 #2-56 Locknut 18-8SS Mcmaster-Carr 4 $5.17 50 1 $5.17 91831A002

36 #2-56x0.188” Heat Set Insert Mcmaster-Carr 25 $14.69 100 1 $14.69 94180A312

37 #2-56x1/4” PHMS 18-8SS Mcmaster-Carr 15 $5.88 100 1 $5.88 91772A077

38 #2-56x1/4” PHMS Nylon Mcmaster-Carr 10 $7.52 100 1 $7.52 94735A707

39 #2-56x7/16” PHMS 18-8SS Mcmaster-Carr 4 $9.83 100 1 $9.83 91772A080

40 #2x1/8” Unthreaded Nylon Spacer Mcmaster-Carr 4 $10.99 25 1 $10.99 94639A460

41 #5 Washer UHMW Mcmaster-Carr 4 $18.01 25 1 $18.01 95649A120

42 #5-40 Locknut 18-8SS Mcmaster-Carr 2 $6.69 100 1 $6.69 91831A006

43 1/8” Flanged Sleeve Bearing Mcmaster-Carr 4 $0.88 1 4 $3.51 6338K562

44 1/8x2” Bar Stock 304SS Mcmaster-Carr 1 $6.47 5 1 $6.47 8992K781

45 1/8x3” Drive Shaft 316SS Mcmaster-Carr 2 $5.99 1 2 $11.97 1263K133

46 5/16” 316SS Smooth-Bore Tube Mcmaster-Carr 2 $11.34 6 1 $11.34 89785k828

47 1/8” Brass Drive Dog Offshore Electronics 2 $3.26 1 2 $6.52 ose-80252

48 Pololu 5:1 Micro Metal Gearmotor HPCB 12V Pololu 2 $23.51 1 2 $47.03 3036

49 Pololu MinIMU-9 Pololu 1 $20.89 1 1 $20.89 2738

50 Pololu Qik 2s9v1 Pololu 1 $32.68 1 1 $32.68 1110

Total Cost (Single Vessel): $522.00

137

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Code Listings
	List of Acronyms
	Introduction
	Thesis Objectives and Outline

	Problem Definition
	Overview of Swarm Robotics Platforms
	Terrestrial Swarm Platforms
	Aerial Swarm Platforms
	Marine Swarm Platforms
	Overview of Unmanned Surface Vehicles

	Problem Statement
	Design Requirements and Constraints

	Hardware Design
	Mechanical Subsystems
	Hull
	Stability
	Waterproofing

	Propulsion System
	General Arrangement
	Onboard Electronics Bracket
	Component Mounting

	Modular Tool Mounting

	Electrical Subsystems
	Electronic Devices
	Onboard Sensors

	Power System

	Fabrication and Assembly
	Peripheral Devices

	Software Design
	System Architecture
	Server Software
	Vessel Control Software

	Inter-Application Communication
	CVSensorSimulator Implementation
	Concurrency
	Sensing and Communication

	MUSVController Implementation
	PeripheralController Implementation

	System Configuration and Testing
	Laboratory Environment Configuration
	Server and Vessel Software Configuration
	Waypoint Following Experiment
	WaypointController Algorithm
	Linear Path Test
	Elliptical Path Test
	Multi-Vehicle Test

	Clustering Floating Marine Contaminants
	Marine Plastics
	Overview of Swarm Clustering and Foraging
	Orbital Retrieval Algorithm
	Instruction Hierarchy

	Algorithm Testing
	Experimental Methods
	Results
	Single Test Performance
	Aggregate Experimental Performance

	Conclusion
	Future Work
	Hardware Improvements
	Software Improvements

	Bibliography
	Bill of Materials

