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Detecting ulcerative colitis 
from colon samples using efficient 
feature selection and machine 
learning
Hanieh Marvi Khorasani1, Hamid Usefi2* & Lourdes peña‑castillo1*

Ulcerative colitis (UC) is one of the most common forms of inflammatory bowel disease (IBD) 
characterized by inflammation of the mucosal layer of the colon. Diagnosis of UC is based on clinical 
symptoms, and then confirmed based on endoscopic, histologic and laboratory findings. Feature 
selection and machine learning have been previously used for creating models to facilitate the 
diagnosis of certain diseases. In this work, we used a recently developed feature selection algorithm 
(DRPT) combined with a support vector machine (SVM) classifier to generate a model to discriminate 
between healthy subjects and subjects with UC based on the expression values of 32 genes in colon 
samples. We validated our model with an independent gene expression dataset of colonic samples 
from subjects in active and inactive periods of UC. Our model perfectly detected all active cases and 
had an average precision of 0.62 in the inactive cases. Compared with results reported in previous 
studies and a model generated by a recently published software for biomarker discovery using 
machine learning (BioDiscML), our final model for detecting UC shows better performance in terms of 
average precision.

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gut with an increasing health 
 burden1. Ulcerative colitis (UC) and Crohn’s disease are the two most common forms of chronic IBD with UC 
being more widespread than Crohn’s  disease2. There is no cure for  UC3 and people with the disease alternate 
between periods of remission (inactive) and active  inflammation2. The underlying causes of UC are not com-
pletely understood yet, but it is thought to be a combination of genetic, environmental and psychological factors 
that disrupt the microbial ecosystem of the  colon3,4. Genome-wide association studies (GWAS) have identified 
240 risk loci for  IBD5 and 47 risk loci specifically associated with  UC6. However, the lower concordance rate 
in identical twins of 15% in UC compared with 30% in Crohn’s disease indicates that genetic contribution in 
UC is weaker than in Crohn’s  disease7. Thus, using gene expression data for disease diagnostic might be more 
appropriate for UC than using GWAS data, as it has been done for Crohn’s  disease8.

There are several features used for clinical diagnosis of UC including patient symptoms, and laboratory, 
endoscopic and histological  findings7. Boland et  at9 carried out a proof-of-concept study for using gene expres-
sion measurements from colon samples as a tool for clinical decision support in the treatment of UC. The 
purpose of Boland et al’s study was to discriminate between active and inactive UC cases; even though, they 
only considered gene expression of eight inflammatory genes instead of assessing the discriminatory power of 
many groups of genes, they concluded that mRNA analysis in UC is a feasible approach to measure quantitative 
response to therapy.

Machine learning-based models have a lot of potential to be incorporated into clinical  practice10; specially in 
the area of medical image  analysis11,12. Supervised machine learning has already proved to be useful in disease 
diagnosis and prognosis as well as personalized  medicine13,14. In IBD, machine learning has been used to classify 
IBD paediatric patients using endoscopic and histological  data15, to distinguish UC colonic samples from control 
and Crohn’s disease colonic  samples16, and to discriminate between healthy subjects, UC patients, and Crohn’s 
disease patients using transcriptional profiles of peripheral  blood17.
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In this study, our goal was to investigate whether combining machine learning with a novel feature selec-
tion algorithm, an accurate model using the expression profiles of few ( < 50 ) genes could be generated from 
transcriptome-wide gene expression data. To do this, we apply a machine learning classifier on gene expression 
data to generate a model to differentiate UC cases from controls. Unlike previous  studies16,17, to reduce the 
effect of technical conditions, we combined a number of independent gene expression data sets instead of using 
a single data set to train our model. Additionally, by using feature selection, we were able to identify 32 genes 
out of thousands genes for which expression measurements were available. The expression values of these 32 
genes is sufficient to generate a SVM model to effectively discriminate between UC cases and controls. On a gene 
expression dataset not used during training, our proposed model perfectly detected all active cases and had an 
average precision of 0.62 in the inactive cases.

Methods
Data gathering.  We searched the NCBI Gene Expression Omnibus database (GEO) for expression profiling 
studies using colonic samples from UC subjects (in active and inactive state) and controls (healthy donors). We 
identified five datasets (accession numbers  GSE115218,19,  GSE1122320,  GSE2261921,  GSE7521422 and  GSE945216). 
As healthy and Crohn’s disease subjects were used as controls in  GSE945216, this data set was excluded from our 
study. We used three of the datasets for model selection using 5-fold cross-validation, and left one dataset for 
independent validation (Table 1). We partitioned the validation dataset into two datasets: Active UC vs controls, 
and inactive UC vs controls.

All data sets were obtained from studies where the diagnoses of patients were either based on endoscopical 
findings  (GSE7521422 and  GSE2261921), followed the criteria described by Lennard-Jones23  (GSE1122320), or 
based on clinical features as well as radiologic, endoscopic and laboratory findings  (GSE115218). Disease state 
was either assessed during colonoscopy and classified into 1) no signs of inflammation (inactive), 2) low inflam-
mation, and 3) moderate/high inflammation (active) (GSE22619); defined as active with a Mayo endoscopic sub-
score ≥ 2 (GSE75214), or graded by a gastroenterologist or gastrointestinal pathologist (GSE11223, GSE1152). 
The control group had either normal mucosa at endoscopic level (GSE75214), no significant pathological findings 
during endoscopic and histological examinations (GSE22619), normal colonoscopies (GSE1152 and GSE11223) 
or tissues abnormalities other than IBD (GSE1152 and GSE11223).

For each dataset,  GEO2R25 was used to retrieve the mapping between probe IDs and gene symbols. Probe 
IDs without a gene mapping were removed from further processing. Expression values for the mapped probe 
IDs were obtained using the Python package  GEOparse26. The expression values obtained were as provided by 
the corresponding authors.

Data pre‑processing.  We performed the following steps for data pre-processing: (i) Calculating expression 
values per gene by taking the average of expression values of all probes mapped to the same gene. (i) Handling 
missing values with K-Nearest Neighbours (KNN) imputation method (KNNImputer) from the “missingpy” 
library in  Python27. KNNImputer uses KNN to fill in missing values by utilizing the values from nearest neigh-
bours. We set the number of neighbours to 2 (n-neighbours=2) and we used uniform weight.

To get our final training datasets we merged datasets GSE1152, GSE11223, and GSE22619 by taking the genes 
present in all of them. The merged dataset has 39 UC samples and 38 controls, and 16,313 genes. These same 
genes were selected from GSE75214 for validation. As the range of expression values across all datasets were 
different, we normalized the expression values of the final merged dataset and validation dataset by calculating 
Z-scores per sample.

Model  generation.  To create a model to discriminate between UC patients from healthy subjects, we 
selected the features (genes) using the dimension reduction through perturbation theory (DRPT) feature selec-
tion  method28. Let D = [A | b] be a dataset where b is the class label and A is an m× n matrix with n columns 
(genes) and m rows (samples). There is only a limited number of genes that are associated with the disease, and 
as such, a majority of genes are considered irrelevant. DRPT considers the solution x of the linear system Ax = b 
with the smallest 2-norm. Hence, b is a sum of xiFi where Fi is the i-th column of A. Then each component xi of x 
is viewed as an assigned weight to the feature Fi . So the bigger the |xi| the more important Fi is in connection with 
b . DRPT then filters out features whose weights are very small compared to the average of local maximums over 

Table 1.  Summary of datasets used in this study.

Accession number # of controls # of UC cases Description of samples Platform # of genes (features) Usage

GSE115218,19 4 4 Mucosal biopsies from uninflammed 
colonic tissues

Affymetrix Human Genome U133A 
Array and Affymetrix Human 
Genome U133B Array

19,353 Model selection

GSE1122320 24 25 Biopsies from uninflammed sigmoid 
colon

Agilent-012391 Whole Human 
Genome Oligo Microarray G4112A 18,626 Model selection

GSE2261921,24 10 10 Mucosal colonic tissue from discord-
ant twins

Affymetrix Human Genome U133 
Plus 2.0 Array 22,189 Model selection

GSE75214-active22 11 74 Mucosal colonic biopsies from active 
UC patients and from controls

Affymetrix Human Gene 1.0 ST 
Array 20,358 Model evaluation

GSE75214-inactive22 11 23 Mucosal colonic biopsies from inac-
tive UC patients from controls

Affymetrix Human Gene 1.0 ST 
Array 20,358 Model evaluation
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|xi|’s. After removing irrelevant features, DRPT uses perturbation theory to detect correlations between genes of 
the reduced dataset. Finally, the remaining genes are sorted based on their entropy.

Selected features were assessed using 5-fold cross-validation and support vector machines (SVMs) as the clas-
sifier. First, we performed DRPT 100 times on the training dataset to generate 100 subsets of features. Then, to 
find the best subsets, we performed 3 repetitions of stratified 5-fold cross-validation (CV) on the training dataset. 
We utilized average precision (AP) as calculated by the function average_precision_score from the Python library 
scikit-learn29 (version 0.22.1) as the evaluation metric to determine the best subset of genes among those 100 
generated subsets. The four subsets with the highest mean AP over the cross-validation folds were chosen for 
creating the candidate models. For each of the four selected subset of features, we created a candidate SVM model 
using all samples in the training dataset. To generate the models, we used the SVM implementation available in 
the function SVC with parameter kernel=’linear’ from the Python library scikit-learn. To evaluate the prediction 
performance of each of the ten models, we validated it on the GSE75214-active and GSE75214-inactive datasets. 
In this step, we utilized the precision-recall curve (PRC) to assess the performance of the candidate models on 
unseen data. An additional candidate model was created using the most frequently selected genes.

BioDiscML.  BioDiscML30 is a biomarker discovery software that uses machine learning methods to analyze 
biological datasets. To compare the prediction performance of our models with BioDiscML, we ran the software 
on our training dataset. 2/3 of the samples (N=52) were utilized for training and the remaining 1/3 (N=25) for 
testing. Since the software generates thousands of models, and we required only one model, we specified the 
number of best models as 1 in the config file (numberOfBestModels=1). One best model out of all models was 
created based on the 10-fold cross-validated Area Under Precision-Recall Curve (numberOfBestModelsSort-
ingMetric= TRAIN-10CV-AUPRC) on the train set. We used Weka 3.831–33 to evaluate the performance of the 
model generated by BioDiscML, on the GSE75214-active and GSE75214-inactive datasets. Selected features 
by BioDiscML are C3orf36, ADAM30, SLS6A3, FEZF2, and GCNT3. In order to be able to use the model in 
Weka, we loaded the training dataset as it was created by BioDiscML, which was one of the outputs of the soft-
ware. This dataset has six features, including selected genes and class labels, and 52 samples. We also modified 
our validation datasets by extracting BioDiscML selected features. After loading the training and test dataset 
in Weka explorer, we loaded the model, and we entered the classifier configuration as “weka.classifiers.misc.
InputMappedClassifier -I -trim -W weka.classifiers.trees.RandomTree – -K 3 -M 1.0 -V 0.001 -S 1” which is the 
classifier’s set up in the generated model by BioDiscML.

Use of experimental animals, and human participants.  This research did not involve human partici-
pants or experimental animals.

Results
Feature selection reduced significantly the number of genes required to construct a classifica‑
tion model.  We performed DRPT 100 times on the training dataset to select 100 subsets of features. Then 
we performed 5-fold cross-validation to find the subsets with the highest mean average precision (AP) over the 
folds. The range of AP for the 100 subsets is between 0.82 and 0.97, with an average of 0.91± 0.03 . Table 2 shows 
the ten subsets with the highest cross-validated AP and the number of selected features (genes) on each subset. 
On average, DRPT selected 37.55± 8.84 genes per subset.

Top  five  models  are  able  to  perfectly  discriminate  between  active  UC  patients  and  con‑
trols.  We selected the four top subsets with the highest mean AP, which are subsets 10, 51, 58, and 83 
(Table 2), and created candidate models based on them. Each candidate model was created using all samples 
on the training dataset and the features of the corresponding subset. To identify the genes most relevant to dis-
criminate between healthy and UC subjects, we looked at the number of times each gene was selected by DRPT. 
On 100 DRPT runs, 211 genes were selected at least once. The upper plot on Fig. 1 shows the number of times 
each gene was selected, and the lower plot shows the normal quantile-quantile (QQ) plot. Based on this plot, we 

Table 2.  Ten top subsets of genes with the highest cross-validated average AP.

Subset AP # of Features

Subset 10 0.97 42

Subset 51 0.97 47

Subset 58 0.97 32

Subset 83 0 .97 39

Subset 5 0.96 37

Subset 16 0.96 30

Subset 33 0.96 27

Subset 55 0.96 22

Subset 62 0.96 46

Subset 74 0.96 50
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saw that the observed distribution of the number of times a gene was selected deviates the most from a Gaussian 
distribution above 31 times. We considered the genes selected by DRPT more than 31 times as highly relevant 
and created a fifth model using 32 genes selected by DRPT at least 32 times over 100 runs.

In order to evaluate the prediction performance of the candidate models, each model was tested on the valida-
tion datasets, and PRC was plotted for model assessment (Figs. 2, and 3). As the AP approximates the  AUPRC34, 
we used AP to summarize and compare the performance of these five models. All five candidate models achieved 
high predictive performance on the validation dataset GSE75214-active with an average AP of 0.97± 0.03 , while 
the average AP of these five models on the validation dataset GSE75214-inactive was 0.60± 0.06 . The models 
with the best performance were the model created with the 32 most frequently selected genes and subset 83 with 
an AP of 1 and 0.68 on GSE75214-active and GSE75214-inactive, respectively. However, based on a Friedman 
 test35 ( p− value = 0.17 ), all five models have comparable performance on the validation datasets. We chose the 
model generated with the 32 most frequently selected genes as our final model.

Our top models outperformed the model generated by BioDiscML..  The average AUPRC achieved 
by the model created by BioDiscML on both GSE75214-active and GSE75214-inactive datasets was 0.798 and 
0.544, respectively. Comparing the performance of our candidate models and the model created by BioDiscML 
on the two validation datasets, we observed that we achieved better AUPRC on both datasets (AUPRC = 1 on 
the active dataset, AUPRC = 0.68 on the inactive dataset). In terms of running time, subset selection by DRPT 
and final model creation and validation, took 3 minutes, while the running time of BioDiscML to create all the 
models and output the best final model was 1,890 minutes.

Figure 1.  Identifying the most frequently selected genes. Top: Number of times each gene was selected. Genes 
were sorted based on the number of times they were selected by DRPT. Bottom: Normal QQ-plot. Horizontal 
line at 31 indicates the threshold selected to deem a gene as frequently chosen.
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Links between the most frequently selected genes and UC..  We used Ensembl REST API (Ver-
sion 11.0)36 to find the associated phenotypes with each gene belonging to the subset of the 32 most frequently 
selected genes (Table 3). Among these 32 genes, FAM118A is the only one with a known phenotypic association 
with IBD and its subtypes. The evidence supporting the association of some of the other 31 genes with UC based 
on phenotype is more indirect. For example, long term IBD patients are more susceptible to develop colorectal 
 cancer37, and one of the 32 genes, TFRC, is associated with colorectal cancer. IBD patients are more prone to 
develop cardio vascular disease which is associated with blood pressure and  cholesterol38, and four of the most 
frequently selected genes (LIPF, MMP2, DMTN and PPP1CB) are associated with blood pressure and choles-
terol.

We looked at whether some of the 32 most frequently selected genes contained any of the 241 known IBD-
associated  SNPs5. To do this, we utilized Ensembl’s  BioMart39 website (Ensembl Release version 98 - September 
2019) to retrieve the genomic location of the 32 genes. We then used the intersectBed utility in  BEDtools40 to 
find any overlap between the 241 IDB risk loci and the genomic location of the 32 genes. None of the IBD-
associated SNPs was located on our 32 genes. Similarly, gene set enrichment analysis found no enriched GO 
term or pathway among these 32 genes. Additionally, these 32 genes are not listed as top differentially expressed 
genes in previous studies on  UC41,42.

We searched the literature for links between the 32 genes and UC, and we found the following. MMP2 expres-
sion has been found significantly increased in colorectal neoplasia in a mouse model of  UC43 and MMP2 levels 
are elevated in  IBD44. TFRC has been found to have an anti-inflammatory effect on a murine colitis  model45. 
KRT8 genetic variants have been observed in IBD patients and it was suggested that these variants are a risk fac-
tor for  IBD46. DUOXA2 has been shown to be critical in the production of hydrogen peroxide within the colon 
and to be up-regulated in active  UC47.

Figure 2.  Precision-recall curve of top selected subsets on GSE75214-active.

Figure 3.  Precision-recall curve of top selected subsets on GSE75214-inactive.
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Discussion
In this study we showed the feasibility of using machine learning and feature selection to identify a reduced 
number of genes from microarray data to aid in the diagnosis of UC. One might argue that distinguishing UC 
patients from Crohn’s disease (CD) patients has more clinical relevance than distinguishing UC patients from 
controls. However, we were limited on the choice of groups to classify by data availability, as we could only 
find three gene expression data sets obtained from colonic samples of UC and CD patients in GEO (GSE1152, 
GSE75214 and GSE126124). As children samples were transcriptionally profiled for  GSE12612448 instead of 
adults ones, we decided that the age difference could introduce extra biological variation in the expression data 
unrelated to UC. That left us with only two data sets which were not enough to train the model with multiple 
data sets and have at least one hold-out data set for validation.

Another limitation of this study is that we used gene expression profiles of colonic samples. Further research 
is required to assess the accuracy of our 32-gene model in gene expression profiles of blood samples. A recent 
 study48 found a similar transcriptional profile between blood and colon tissue from patients with IBD. If indeed 

Table 3.  Phenotypes associated with the 32 most frequently selected genes by DRPT as obtained from 
Ensembl REST API (Version 11.0)36.

Gene symbol Associated phenotypes # of times selected

CWF19L1 Spinocerebellar ataxia, autosomal recessive 17; depressive disorder, Major 100

FCER2 Blood protein levels; post bronchodilator FEV1 100

MMP2 Multicentric Osteolysis-Nodulosis-Arthropathy (MONA) spectrum disorders; cholesterol, HDL; lip and oral cavity carcinoma; body height; 
winchester syndrome 99

PPP1CB Noonan Syndrome-like disorder with loose anagen hair 2; Heel bone mineral density; Blood pressure; basophils asopathy with developmental 
delay; short stature and sparse slow-growing hair 99

RPL23AP32 Attention deficit disorder with hyperactivity; body Height 95

ZNF624 None 94

REG1B Contrast sensitivity; Body Mass Index 93

TFRC

Breast ductal adenocarcinoma; esophageal adenocarcinoma; thyroid carcinoma; clear cell renal carcinoma; prostate carcinoma; pancreatic 
cancer; gastric adenocarcinoma; hepatocellular carcinoma; lung adenocarcinoma; rectal adenocarcinoma; basal cell carcinoma; colorectal 
adenocarcinoma; squamous cell lung carcinoma; head and neck squamous cell carcinoma; colon adenocarcinoma; iron status biomarkers 
(transferrin levels); mean corpuscular hemoglobin concentration; red cell distribution width; combined immunodeficiency; red blood cell 
traits; high light scatter reticulocyte percentage of red cells; reticulocyte fraction of red cells; Immunodeficiency 46

91

FAM118A Chronic inflammatory diseases (ankylosing spondylitis, Crohn’s disease, psoriasis, primary sclerosing cholangitis, ulcerative colitis); Glu-
cose; Peanut allergy (maternal genetic effects); Heel bone mineral density 89

CFHR2 Macular degeneration; blood protein levels; feeling miserable; alanine aminotransferase (ALT) levels after remission induction therapy in 
acute lymphoblastic leukaemia (ALL); asthma 88

KRT8 Cirrhosis; familial cirrhosis; hepatitis C virus; susceptibility to, cirrhosis, cryptogenic cirrhosis, noncryptogenic cirrhosis; susceptibility to, 
gamma glutamyl transferase levels, cancer (pleiotropy) 88

PRELID1 Body fat distribution; heel bone mineral density; activated partial thromboplastin time 87

ZNF92 None 86

ABHD2 Itch intensity from mosquito bite adjusted by bite size; gut microbiota; Obesity-related traits; coronary artery disease; advanced age related 
macular degeneration; squamous cell lung carcinoma; pulse pressure 79

C16orf89 None 79

CAB39L Hemoglobin S; erythrocyte count; pancreatic neoplasms 79

SPATC1L None 76

DUOXA2 Familial thyroid dyshormonogenesis; thyroglobulin synthesis defect 72

MESP1 None 70

MAML3 Social science traits; intelligence (MTAG); chronic mucus hypersecretion; borderline personality disorder; congenital heart malformation 65

PITX2
Axenfeld-Rieger syndrome; ring dermoid of cornea; iridogoniodygenesis type 2; peters anomaly; familial atrial fibrillation; rieger anomaly; 
stroke; ischemic stroke; cataract; PITX2-related eye abnormalities; phosphorus; cognitive decline rate in late mild cognitive impairment; 
creatinine; intraocular pressure; incident atrial fibrillation; wolff-parkinson-white pattern; parkinson disease; early onset atrial fibrillation; 
anterior segment sygenesis 4

65

DMTN Total cholesterol levels; LDL cholesterol 62

ASF1B None 52

PGF Mood instability; blood protein levels 50

BEX4 None 49

ODF1 Body weight; body mass index; glucose; IgA nephropathy; Chronic lymphocytic leukaemia; type 2 diabetes; erythrocyte indices 47

PTGR1 Body height; menarche; monocyte count; blood protein levels 45

ZNF35 None 44

LIPF Maximal midexpiratory flow rate; blood protein levels; respiratory function tests; blood pressure 39

SLC25A13 Citrullinemia type II; neonatal intrahepatic cholestasis due to citrin deficiency; citrin deficiency; citrullinemia type I; bone mineral density 38

BARX2 Type 2 diabetes; breast cancer; night sleep phenotypes; response to cyclophosphamide in systemic lupus erythematosus with lupus nephritis; 
stroke 35

C2orf42 None 34
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our 32-gene model is found accurate in blood samples, then a less invasive procedure such as a blood test could 
be used to diagnose UC instead of a colonoscopy or sigmoidoscopy.

In a previous study where machine learning was employed to perform a risk assessment for CD and UC 
using GWAS  data49, a two-step feature selection strategy was used on a dataset containing 17,000 Crohn’s disease 
cases, 13,000 UC cases, and 22,000 controls with 178,822 SNPs. In that study, Wei et al reduced the number 
of features by filtering out SNPs with p-values greater than 10−4 and then applied a penalized feature selection 
with L1 penalty to select a subset of SNPs. We decided against filtering out genes based on an arbitrary p-value 
of statistical significance of differential expression, as researchers are strongly advised against the use of p-values 
and statistical significance in relation to the null-hypothesis50,51.

Our 32-gene model achieved AP of 1 and 0.62 discriminating active UC patients from healthy donors, and 
inactive UC patients from healthy donors, respectively. We found direct or indirect links to UC for about a 
quarter of the 32 most frequently chosen genes. The remaining genes should be further investigated to find asso-
ciations with UC. To put the performance of our 32-gene model into perspective, we looked at previous studies 
applying machine learning to create models for the diagnostic of UC. Maeda et al.52 extracted 312 features from 
endocystoscopy images to train a SVM to classify UC patients as active or healing. This approach achieve 90% 
precision at 74% recall; which is lower than the one achieved by our 32-gene model (Figs. 2, and 3). Yuan et al.17 
applied incremental feature selection and a SMO classifier (a type of SVM) on gene expression data from blood 
samples to discriminate between healthy subjects, UC patients, and Crohn’s disease patients. The 10-fold cross-
validation accuracy of their best model using the expression values of 1170 genes to classify UC patients was 
92.31%, while our method obtained better accuracy than this with substantially less number of genes. In terms 
of potential for clinical translation of a machine learning-based model, a model requiring to quantify the gene 
expression levels of fewer genes is more suitable for the development of a new diagnostic test than one requiring 
the quantification of the expression levels of thousands of genes.

Using an efficient feature selection method such as DRPT and a SVM-classifier on gene expression data, we 
generated a model that could facilitate the diagnosis of UC from expression measurements of 32 genes from 
colonic samples. To avoid systematic experimental bias on the training data, we used three transcriptomic data-
sets from three separated studies. Our top model was validated with promising results on a data set not used for 
training; however, additional research is required to evaluate the 32 genes as potential biomarkers on a external 
set of subjects.
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